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ABSTRACT

This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form

text in the medical domain. This research draws on natural language processing (NLP) techniques

that are used to parse and extract concepts based on a controlled vocabulary. Once important con-

cepts are extracted, additional machine learning algorithms, such as association rule mining and

decision tree induction, are used to discover classification rules for specific targets. This multi-

stage pipeline approach is contrasted with traditional statistical text mining (STM) methods based

on term counts and term-by-document frequencies. The aim is to create effective text analytic pro-

cesses by adapting and combining individual methods. The methods are evaluated on an extensive

set of real clinical notes annotated by experts to provide benchmark results.

There are two main research question for this dissertation. First, can information (special-

ized language) be extracted from clinical progress notes that will represent the notes without loss

of predictive information? Secondly, can classifiers be built for clinical progress notes that are rep-

resented by specialized language? Three experiments were conducted to answer these questions by

investigating some specific challenges with regard to extracting information from the unstructured

clinical notes and classifying documents that are so important in the medical domain.

The first experiment addresses the first research question by focusing on whether relevant

patterns within clinical notes reside more in the highly technical medically-relevant terminology

or in the passages expressed by common language. The results from this experiment informed

the subsequent experiments. It also shows that predictive patterns are preserved by preprocessing

text documents with a grammatical NLP system that separates specialized language from common

language and it is an acceptable method of data reduction for the purpose of STM.

Experiments two and three address the second research question. Experiment two focuses

on applying rule-mining techniques to the output of the information extraction effort from experi-

xi



ment one, with the ultimate goal of creating rule-based classifiers. There are several contributions

of this experiment. First, it uses a novel approach to create classification rules from specialized

language and to build a classifier. The data is split by classification and then rules are generated.

Secondly, several toolkits were assembled to create the automated process by which the rules were

created. Third, this automated process created interpretable rules and finally, the resulting model

provided good accuracy. The resulting performance was slightly lower than from the classifier

from experiment one but had the benefit of having interpretable rules.

Experiment three focuses on using decision tree induction (DTI) for a rule discovery ap-

proach to classification, which also addresses research question three. DTI is another rule centric

method for creating a classifier. The contributions of this experiment are that DTI can be used to

create an accurate and interpretable classifier using specialized language. Additionally, the re-

sulting rule sets are simple and easily interpretable, as well as created using a highly automated

process.
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Chapter 1

Introduction

A central challenge in knowledge discovery is handling both structured and unstructured data.

Structured data are the typical elements one might find stored in a database, carefully selected at-

tributes and their associated data types such as numbers, dates, or limited-length character strings.

These data are typically part of planned data collection efforts with associated data quality con-

cerns expressed through integrity constraints and business rules. Unstructured data are the inher-

ently ambiguous free-form passages of text or semi-structured lists and tables of data that are nat-

ural human language artifacts. With the advent of the Internet and World Wide Web protocols,

there are vast amounts of unstructured data available on-line with no end in sight. Of course, this

immense collection of information lacks any central planning, data quality standards, or easily in-

terpreted meta-data, making its use a challenging endeavor. Data analytic techniques including

traditional statistics, machine learning, and data mining have been successfully applied to struc-

tured data collections. Modern technology has made it possible not only to search for but to also

collect and store massive amounts of unstructured textual documents. There is a need to be able

to analyze and draw conclusions concerning these data. Text mining, while not as mature as data

mining, is being applied to many disciplines in the hope of uncovering unexpected and perhaps

counter-intuitive new knowledge.

A series of classic studies in medicine provide motivation for further research in this area.

Swanson and Smallheiser pursued a stream of research that looked at connecting important, but

bibliographically unrelated topics, by uncovering linkages through intermediate topics. Swanson’s

first effort in this regard connected fish oil with the treatment of Raynaud’s syndrome (Swanson,

1986a). While this first research was somewhat serendipitous and largely conducted by hand, it

provided promising results and a framework for a more automated discovery process. His original

discovery was prompted by reading two unrelated literature collections, leading to the hypothe-

sis that fish oil might be useful in the treatment of Raynaud’s syndrome. Patients suffering from
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Raynaud’s disease have problems related to blood flow in the extremities. Swanson then found

the literature on fish oil and its beneficial effects on blood viscosity, making the connection and

formulating a hypothesis. His second discovery followed a similar logical process, connecting

magnesium with migraine headaches (Swanson, 1988). These discoveries led to work on more au-

tomated hypothesis generation approaches based on text mining the medical literature (Swanson,

1987, 1989, 1990; Smallheiser and Swanson, 2007a, b, 1998).

This dissertation focuses on developing and evaluating hybrid approaches for analyzing

free-form text in the medical domain. This research draws on natural language processing (NLP)

techniques that are used to parse and extract concepts based on a controlled vocabulary. Once im-

portant concepts are extracted, additional machine learning algorithms, such as association rule

mining and decision tree induction, are used to discover classification rules for specific targets.

This multi-stage pipeline approach is contrasted with traditional statistical text mining (STM)

methods based on term counts and term-by-document frequencies. The goal is to create effective

text analytic processes by adapting and combining individual methods. The methods are evaluated

on an extensive set of real clinical notes annotated by experts to provide benchmark results.

Traditional “bag of words” methods create classifiers with acceptable performance and

rules can be constructed using these methods as well. So why combine NLP with STM? Sizes

of databases are constantly growing. Currently, there are over one billion progress notes available

in VA databases. By combining these techniques, they can be used as a method of data reduction.

Initial results from this research show it is possible to reduce the amount of data used to create the

classifiers by as much as 75%. The terms used to create the classifiers can be reduced by as much

50%. Rules created from specialized language are more likely to be interesting and more easily

interpretable because much of the noise is removed.

1.1 Why the medical domain?

Imagine your 85 year old grandfather goes to the hospital for a routine out patient procedure.

Grandpa has fallen a couple times in the past year and received a few bruises but he’s embarrassed

so he does not mention this to the admissions nurse. His procedure is completed without any com-

plications and he is in recovery waiting for you to come pick him up. He decides he needs to use

the restroom and gets out of his bed without requesting assistance and falls on the floor and breaks
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his hip along with some other injuries. Grandpa now becomes an inpatient and his quality of life

is altered for his remaining years. There are two issues with this scenario. First, and most im-

portantly, Grandpa now has a very painful and lengthy recovery ahead of him. Also, the older a

person is when they experience a fall-related injury, the less likely they are to have a meaningful

recovery. Secondly, had everything gone as expected, Medicare and his coinsurance would have

covered the cost of his procedure. Now, because the injury happened inside the hospital, the hospi-

tal is financially responsible for his medical bills for the treatment of his fall-related injuries. Had

the hospital staff known that your Grandfather was at risk for a fall, simple precautions could have

been in place to prevent the fall.

Falls are an important health care issue especially among aging veterans. A history of a pre-

vious fall is one of the most important clinical indicators that identifies an elderly patient as high

risk for additional falls and targets them for fall prevention programs (Ganz et al., 2007). However,

information about fall-related injuries (FRIs) in administrative databases has been found to be sig-

nificantly under-coded, thereby limiting a clinicians access to information about a history of falls

(Luther et al., 2005).

With the evolution of the electronic health record (EHR), ever increasing amounts of struc-

tured and unstructured data are being made available for research purposes. An EHR is made up

of both structured and unstructured data. More and more of this information is aggregated at the

point of patient contact by smart devices or captured as clinicians use mobile devices to create

clinical or pharmaceutical orders. Data such as vitals, demographic data, lab results and medical

codes are stored in structured data fields. In addition to the more structured data, the art of care-

ful observation and documentation has a long tradition in medicine. Clinicians are trained to use

the SOAP (Subjective, Objective, Assess, Plan) system for documenting the more subtle on-going

issues that are not easily captured through formal medical coding systems or the EHR structured

data fields. Much of the information stored in unstructured data is information provided by pa-

tients to clinicians. In other words, when a patient expresses how they feel or where a specific pain

has been occurring, this type of data is mainly stored in unstructured data. The most obvious arti-

fact of this documentation process is the large number of unstructured clinical notes that are also

an important component of the EHR. Specifically, the Veterans Health Administration, the largest

health care system in the US, has imported all veterans’ health records into its EHR system, which
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at this time exceed one billion progress notes.

Components necessary for this research are the controlled vocabularies of medical terms.

Creating such vocabularies is a very labor intensive and time consuming activity,and even though

controlled vocabularies have been created for numerous fields of research in many different dis-

ciplines, the development of controlled vocabularies in medicine are especially well-developed

and well-funded. Foremost is the Unified Medical Language System (UMLS) Metathesaurus cre-

ated by the National Library of Medicine (NLM). The Metathesaurus is a vocabulary database

containing biomedical and health related concepts as well as relationships among the concepts. It

is comprised of more than 100 source vocabularies, each representing hundreds, thousands, and

sometimes millions of health related terms. Because well-developed controlled vocabularies are a

necessary component of this research stream, this makes medicine an attractive area on which to

perform data/text mining research.

1.2 Research Questions

There are two main research questions this dissertation addresses. The first, can information (spe-

cialized language) be extracted from clinical progress notes that will represent the notes without

loss of predictive information? This is addressed by the experiment in Chapter 4. With this ques-

tion emerge some interesting issues to be addressed. Specifically, is the locus of predictive infor-

mation in specialized language, common language, or a combination and does the quality (i.e.,

coverage) of the controlled vocabulary affect the specialized language? In other words, is the qual-

ity of a controlled vocabulary covering a mature area better that one covering an emerging area?

The second research question is, can classifiers be built for clinical progress notes that are repre-

sented by specialized language? Three criteria were used to decide on the approaches to be used to

answer this question. First, the approaches had to allow for automated rule extraction. Secondly,

the resulting classifier had to be interpretable and finally, the classifier needed to be accurate. Two

approaches allowed this question to be answered while still adhering to these criteria. The first

approach uses modified association rule techniques to create classification rules. This approach

provided a classifier that supplied rules and was interpretable, however, even though it had ac-

ceptable accuracy we felt another approach might provide a more accurate model. The second ap-

proach uses a decision tree induction (DTI) process to create a decision tree and production rules.
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This approach created rules and was interpretable just as the first method, however, the accuracy

achieved with this classifier was much better.

Figure 1 shows the two research questions as well as the experiments used to answer them.

The results from the first research question are used to inform the next two experiments used to

answer the second research question.

Specialized
vs

Common Language

Decision Tree 
Induction Applied to 

Specialized 
Language

Rule Mining Applied 
to Specialized 
Language

Approach 2

Approach 1

Specialized

Language

Specialized

Language

Research Question 2Research Question 1

Figure 1.: Research Question Approaches

Figure 2 provides an overview of the research landscape and interrelationships between

the three experiments in this dissertation. In order to classify documents in health care, decision-

making rules are often handcrafted by clinical experts (Hayes and Weinstein, 1990; Hayes et al.,

1990). The left side of figure 2 shows this method of classification. This dissertation concentrates

on more automated, machine learning methods of classification. Research question one uses a hy-

brid methodology utilizing grammatical NLP in conjunction with machine learning. The results

of this are used to inform the two approaches used to answer research question two. The next sec-

tions describe each of the research questions in more detail.
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Figure 2.: Dissertation Map

1.2.1 Research Question One - Specialized Language vs Common Language

Medical progress notes are comprised of specialized language (medically-relevant terminology)

and common language. The first experiment focuses on whether relevant patterns within clinical

notes reside more in the highly technical medically-relevant terminology or in the passages ex-

pressed by common language. Of course, it is likely that a combination of both medically-relevant

and common language is used to express many thoughts regarding the progress of care. Yet, there

is still an interesting question to be resolved in determining the locus of clinically relevant pat-

terns. There is a natural experiment in separating the two languages and assessing the predictive

power of the language subsets. This experiment addressed the first main goal of this dissertation

and the results from this experiment informed the subsequent approaches that address research

question two. The research question this experiment sought to answer is using statistical text min-

ing (STM) for the purpose of classification, which set of terms from progress notes will provide

better accuracy: (1) all terms (2) only medically-relevant terms (MRTs) or (3) terms based on

common language? The contribution of this experiment is that it shows that predictive patterns
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are preserved by preprocessing text documents with a grammatical NLP system that separates spe-

cialized language from common language and it is an acceptable method of data reduction for the

purpose of STM.

This research described a way to reduce EHR text notes to only medically-relevant terms by

using a grammatical NLP system to extract medical concepts from progress notes. These medically-

relevant terms were used in a statistical text mining process in order to classify the notes as either

FALL or nFALL. Evaluation metrics were collected and all were slightly better when compared to

those for text mining the raw progress notes. This shows that important patterns are not lost by re-

moving common language, effectively reducing the information to be processed and in turn max-

imizing efficiency. Since no loss occurred, this extracted data can serve as a foundation for other

data mining research such as targeted information extraction and even clinical discovery.

1.2.2 Research Question Two - Rule-based Classifiers

An accurate classifier was created in the first experiment to answer research question one. Since

logistic regression was used to create the model, it is difficult for a human to interpret in spite of

its accuracy. For research question two, the goal was not only to see if classifiers can be built for

clinical progress notes represented by specialized language, but also can those classifiers be rule

based in order to improve their human interpretability. Three criteria were used to select the ma-

chine learning methodology for creating the classifiers. The first is criterion is automated. Human

can create rules but this is time consuming and expensive. One goal is to create an automated pro-

cess for generating rules. The second criterion is interpetable. An accurate classifier can be cre-

ated using many different machine learning methodologies, some of which, result in models that

are not easily interpretable by humans. We wanted the rules generated for the classifier to be in-

terpretable. The third criterion is accurate. This should be self explanatory because an inaccurate

model is obviously useless. We also wanted this model to be more accurate than simply assign-

ing a single classification to every case. Two approaches were used to answer this research ques-

tion taking the criteria into consideration. The main contribution of the experiments performed to

answer research question two is that predictive patterns are preserved by preprocessing text doc-

uments with a grammatical NLP system that separates specialized language from common lan-

guage.
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Approach One - Classification Rules

The first approach focuses on applying rule-mining techniques to the output of the information

extraction effort resulting from the first research question, with the ultimate goal of creating rule-

based classifiers. Association rule mining is one of the most widely used data mining techniques.

In particular, market basket analysis relies on using rule mining on the often very large collections

of shopping basket data collected at point-of-sale terminals. Most of the time, rule mining is ap-

plied to structured data. In addition to research question two, this approach addresses a couple of

research questions specific to it. First, Can traditional association rule mining procedures be used

to generate rules (frequent item sets) using specialized language? Secondly, can these rules be

used with acceptable accuracy for classification purposes? There are several contributions from

this approach. First, it uses a novel approach to create classification rules from specialized lan-

guage and to build a classifier. The data is split by classification and then rules are generated. Sec-

ondly, several toolkits were assembled to create the automated process by which the rules were

created. Third, this automated process created interpretable rules and finally, the resulting model

provided good accuracy.

There are other methods for creating a classifier that might have better performance such

as support vector machines (SVMs), which are especially useful where large variable sets ex-

ist. A dilemma arises using other methods in that the resultant predictive model cannot always

be interpreted by a human. One of the benefits of creating a classifier with rules is that the rules

themselves are interpretable. This approach used the data set from the first research question ex-

periment based on the extracted medically-relevant terms. A rule-based classifier was used to

classify this data set. The resulting performance was slightly lower than from the classifier from

the first experiment but had the benefit of having interpretable rules. Another dilemma that ex-

ists within association rule mining is extracting meaningful and interesting rules. By mining using

only medically-relevant terms, most terms that create uninteresting or not meaningful rules are

eliminated before the mining process begins.

Approach Two - Decision Tree Induction (DTI)

Approach two focuses on using DTI for a rule discovery approach to classification. DTI is an-

other rule centric method for creating a classifier. It is a method whereby the process iteratively
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selects a set of attributes that most effectively splits the sample data into subsets to create a classi-

fier. The tree is made of nodes which are either leaf nodes indicating the classification or decision

nodes that specify a test to be carried out on a single attribute value. Of course, these pathways

through the decision nodes are basically rules and a decision tree classifier is human interpretable.

The research question this approach seeks to answer is can decision tree induction be used to clas-

sify clinical progress notes represented by specialized language? There are several contributions,

which are the result of this approach. First, DTI can be used to create an accurate and interpretable

classifier using specialized language. Secondly, the resulting rule sets are simple and easily inter-

pretable. Third, an automated process is used to create rule sets.

There was no significance in the difference in the performance of the STM classifier from

the first experiment versus the DTI model from this approach. However, the resultant classifier

from the DTI process was much more interpretable, where as the model from the STM process

would be nearly impossible for a human to interpret.
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Chapter 2

Research Methodology

This chapter is organized in four sections, two are theoretically based and the other two are ap-

plication based. The first section is a theoretical discussion of computational linguistics and how

these theories lay the ground work for NLP. The second section is a discussion on how computa-

tional linguistics are applied, specifically, an explanation of NLP and how it is used in this disser-

tation. The third section is a theoretical discussion of computational learning theory and informa-

tion theory and how they lay the ground work for STM. The fourth section is a discussion of the

STM techniques used to complete the three studies.

2.1 Computational Linguistics

The Association for Computational Linguistics defines computational linguistics as “...the scien-

tific study of language from a computational perspective.” Computational linguistics is based on

linguistic theories and how mathematics can be applied. Computational linguists are interested in

providing computational models of various kinds of linguistic phenomena. There are two schools

of thought where processing language is concerned. One is statistically based where probabilities

are associated with possible meanings and the most probable outcome is the correct one. The sec-

ond is based on linguistics and the only way to gain understanding of text is to learn the rules of

the language. STM is based on the first approach. Computational linguistics is based on the sec-

ond approach.

When computers began to be thought of as useful for interpreting text there were two groups

of scientists interested in this: cryptographers and linguists. Cryptographers were generally statis-

ticians and saw the computer as being used for translation. Probabilities are associated with pos-

sible meanings and the most probable outcome is the correct one. Warren Weaver, a pioneer in

machine translation, published along with Shannon landmark work on communications (Shan-
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non and Weaver, 1949). Linguists, not being mathematicians, saw the computer as being used to

implement linguistic theories. Computational linguists develop formal models simulating aspects

of the human language faculty and implement them as computer programs. The creation of CYK

(Cocke, Younger, Kasami) is generally thought of as the birth of computational linguistics (Cocke,

1969; Kasami, 1965; Younger, 1967). Chomsky, one of the most famous linguists, published this

sentence in Syntactic Structures, “Colorless green ideas sleep furiously” Chomsky (1957). It is

grammatically correct but semantically nonsensical. He used it show the inadequacy of probabilis-

tic models of grammar and the need for more structured models.

Real world applications based on computational linguistics include applications in natu-

ral language understanding such as machine translation, spoken dialog systems, and question an-

swering as well as NLP which include information retrieval (IR), information extraction (IE), and

concept/term extraction. For the purposes of this dissertation, this section will only concentrate

on computational linguistics from an NLP perspective. Because of the use of body language and

other non-verbal cues, people are able to relax the rules of language and still effectively communi-

cate verbally. Written communications can many times be written using relaxed language rules but

without the verbal cues, effective communication can be hampered. This creates a need for com-

putational linguistics because not all written utterances are grammatically correct. IE, translation,

and grammar checking also create a need for computational linguistics.

Linguistics can be broken down into two categories: form and meaning.

• Form

– Morphology - Study of internal structures of words and how they can be modified

– Syntax - Study of how words combine to form grammatical sentences

– Phonology - Study of sounds (signs) as discrete, abstract elements in the speaker’s mind

that distinguish meaning

• Meaning

– Semantics - Study of the meaning of words (lexical semantics) and fixed word combina-

tions (phraseology) and how these combine to form the meanings of sentences

– Pragmatics - Study of how utterances are used in communicative acts, and role played by

context and nonlinguistic knowledge in the transmission of meaning
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The technologies used in this dissertation are mainly concerned with form, however, mean-

ing has a secondary consideration. This section discusses the theoretical aspects of computational

linguistics. The following subsections will provide definitions for terminology used within the sec-

tion and an explanation of the two categories. Unless otherwise stated, the information provided

in this section applies to the American English language. Most of the basics of computation lin-

guistics applies to languages in general. However, this dissertation is concerned with American

English, therefore, that is the concentration of this section.

2.1.1 Terminology

This sections provides definitions of terms, ideas, and theories used throughout this chapter.

Table 1: Computational Linguistic Terminology

Terminology Explanation

Affix A morpheme that is attached to a word stem to form a new word.

Morpheme The smallest unit in a language, which can be assigned a mean-
ing.

NP Noun Phrase - A phrase containing a noun and other modifying
words such as adjectives, adverbs, and other nouns.

VP Verb Phrase - A phrase containing a verb and modifying adverbs.
Context Free Grammar
(CFG)

A formal grammar in which every production rule is of the form
V → w where V is a single nonterminal symbol and w is a string
of terminals and or nonterminals. Used in linguistics to describe
the structure of sentences and words in natural language.

Bottom-up Parsing A strategy for analyzing unknown information that attempts to
identify the most fundamental units first, and then to infer higher-
order structures from them.

CYK Cocke, Younger, and Kasami. Sometimes referred to as CKY, is a
parsing algorithm for context free grammars that uses bottom-up
parsing and dynamic programming.
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2.1.2 Form

Morphology

Morphology deals with strings that make up words and these strings are combined to make sen-

tences. It also attempts to uncover the rules that govern the creation of words (Trost, 2003). Re-

gardless the language, the smallest unit in a language, which can be assigned a meaning is a mor-

pheme. Each language contains hundreds of thousands or even millions of words. In contrast,

languages contain some 10,000 morphemes, an order of magnitude smaller than the number of

words. There are semantic morphemes called roots such as dog, red, and take. There are also ab-

stract morphemes that imply plurality and tense such as s. A free morpheme forms a word on its

own such as dog. Bound morphemes occur only with other morphemes such as s in dogs. Each

language has grammatical rules that control how these morphemes are connected to create words.

Much of the parsing technology in an NLP pipeline has its background in morphology. The

parser finds tokens, then words. The part of speech for each word is computed and used to cre-

ate phrases. This being done correctly starts with determining word boundaries correctly. If the

words cannot be determined correctly, all subsequent steps will also be incorrect. These technolo-

gies were used in the first experiment to extract medically-relevant terms from the progress notes.

More detail on this can be found in Chapter 4 and in Appendix D. Vocabularies and ontologies as

well have underpinnings in morphology. The basic unit for both is words. From there words are

combined to create terms. These are explained in more detail in a subsequent section. The fol-

lowing sections discuss the core theoretical foundations that underpin critical components of NLP

pipelines.

Roots and Stems The root of a word is the base morpheme for the word with no affixes. For

example, the root of degrade is the morpheme grade with the affix morpheme de removed. A sim-

ilar concept is stemming. A stem is the base form of a word. One example is the stem for gave,

gives, and giving is give. Give is the base form for each of those words but not the root. Another

example is the stem for degrades and degrading is degrade while the root for degrades is grade.

A stemming NLP component was used in the NLP pipeline in experiment one, which focused on

assessing the predicative power of specialized versus common language. More detail on this can

be found in Chapter 4.
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Tense, Plurality, and Gender Some languages mark words with tense, plurality, and gender

while others do not (Trost, 2003). For example, Latin based languages mark words with gender

such as in Italian pomodoro (tomato - masculine), and cipolla (onion - femine). On the other hand,

Japanese does not mark plurality on nouns.

Derivation and Compounding New words can be created using derivation and compounding

(Trost, 2003). By using derivation, affix morphemes are added to stems to create a new word that

is also a different part of speech from the original word. For example, the noun hospitalize can be

derived from hospital by adding the affix morpheme ize. By compounding, a new word is created

by joining two base morphemes. For example, by compounding door and bell, a new word, door-

bell is created.

Affix There are different types of affix morphemes that can be joined to stem morphemes. A pre-

fix affix is joined to the beginning of a stem (Trost, 2003). For example, by adding the prefix un to

common creates uncommon. A suffix affix is a morpheme joined to the end of a stem. A common

suffix is to add an s to a stem to make it plural.

There are also rules for affixes. Multiple suffixes can be added to stems to create new words,

however, there are rules that control the order for affixes. For instance, the suffixes ize and ation

can be added to hospital to create hospitalization. Those same suffixes cannot be added in a differ-

ent order. The string hospitalationize is not a word. ize must be connected to a noun and creates a

verb. ation must be connected to verbs and creates nouns.

Applications There are several practical applications of the morphological theories in NLP.

Word processors apply morphology theories in hyphenation, spell checking, and grammar check-

ing. Grammar rules are used in NLP parses to determine parts of speech. Stemming is another

NLP component used to convert words into their stem forms.

Syntax

Syntax is the study of the rules used to construct phrases and sentences in natural languages (Ka-

plan, 2003). Just as there are rules that govern how words are made by combining letters, there are

grammatical rules that govern how words are combined to make phrases and sentences. In order
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for a grammatical NLP parser to make sense of a phrase, it must first be parsed into its grammati-

cal components. There are several syntactic theories that are behind this technology. A major goal

of syntactic theories is to define a notation that can be used to create rules that define a grammar.

Theories that were once popular are now considered to be out dated but they were instrumental

in the development of newer, more explanatory theories. A few syntactic theories are explained

below. What these theories have in common is that they map a sentence into a tree structure. The

root is the sentence, next are the phrases such as NPs and VPs, then the parts of speech, and finally

the words that comprise the sentence. How these theories differ is how the tree is built and what

can further be done with the tree.

• In 1957, Chomsky published Syntactic Structures where he laid out the original generative

theory, Transformational Grammar (Chomsky, 1957). In this theory, a sentence can be rep-

resented by a deep structure and a surface structure. The deep structure is the starting point

and maps a sentence in a tree of phrases representing the sentence. This tree goes through a

series of transformations where one tree is the input for a subsequent transformation until the

final tree, the surface structure, is created. The sentences of the language are the strings that

appear at the bottom of the surface structures. One example is to transform an active declara-

tive sentence into the passive equivalent. It is possible to go from a deep structure to a surface

structure but it is next to impossible go from a surface structure to a deep structure.

• Generalized Phrase Structure Grammar (GPSG) - Developed in the late 70s by Gerald Gazdar.

It is a framework for describing the syntax and semantics of natural languages (Gazdar et al.,

1985). One of its goals is to show that syntax of natural language can be described by CFG,

however, Gazdar has since argued that this is not true. Much of the innovations from GPSG

were later incorporated into Head Driven Phrase Structure.

• Head-Driven Phrase Structure Grammar (HPSG) - Developed by Carl Pollard and Ivan Sag. It

is used in NLP because it is organized in a modular way. It uses the concept of a sign which

has a type hierarchy and its features describe its properties (Phonological, Syntactic, and Se-

mantic) (Pollard and Sag, 1988). Grammatical rules are expressed through the constraints

signs place on each other.

• Lexical Functional Grammar (LFG) - Initiated by Joan Bresnan and Ronald Kaplan in the 70s.
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LFG views language as being made up of structures that are grammatical functions and syn-

tax (Bresnan, 1976). A sentence is broken into phrases such as verb phrases (VP) and noun

phrases (NP) and then further broken into parts of speech until finally are the words of the sen-

tence.

Syntactic Rules In English, words comprise a sentence if there is a noun and verb, as in:

Bob visited.

One grammatical rule from this could be:

A sentence can consist of noun-verb sequence.

Take this one step further and examine the sentence:

Bob visited Mary

Now another rule can be created.

A sentence can consist of a noun-verb-noun sequence.

So far these have been simple sentences. Do the rules hold when the sentence becomes

more complex? Take for example the sentence:

The man from city visited old woman.

There are more words in this sentence than previous examples but the previous rule still ap-

plies: man visited woman. More rules need to be created to compensate for the additional words.

The concept of a phrase becomes important now. A phrase is a contiguous sequence of related

words. The first phrase in the sentence above is The man from the city. The second phrase is old

woman. Now and additional rule can be created that describes this sentence.

A sentence can consist of NP - VP - NP.

In addition, rules can be made that qualify what comprises a NP or a VP. Syntactic rules

describe how sentences are constructed but are not concerned with meaning. In other words, a

sentence can be grammatically correct a not make any sense. A popular game, Mad Libs, allows
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players to create nonsensical sentences that are syntactically correct. Leonard Stern and Roger

Price created the game and published the first book of the game in 1958. Players are given sen-

tences with words missing. They are told to give a word based only on the part of speech. Those

words are entered along with the original words provided and a grammatically correct sentence is

formed, however, this sentence most likely is nonsensical because the player supplying the words

is unaware of the other words supplied by the game. The game is good for a laugh but it is also a

good exercise in syntax by looking at how sentences are formed by parts of speech and phrases.

Applications NLP parsers are grounded in syntactic theories which enable them to correctly

parse text into its correct parts of speech. This is one of the beginning steps in most NLP pro-

cesses. For example, to perform a lookup, the application must have the correct word to lookup

and its part of speech. The pipeline used in experiment one parses text eventually into words and

determines whether each word is a medically-relevant term or not. The details on how this is ac-

complished are in Chapter 4.

Phonology

This dissertation concentrates only on written language due to the fact that the progress notes are

written. However, much of this same background applies to spoken language as well. There are

language recognition systems that are used to convert natural spoken language into a form that a

computer can understand then NLP is performed on that. The IBM Watson computer application

is one example of that (Ferrucci et al., 2010). Phonology is briefly mentioned here even though no

spoken technology is used in this dissertation.

Phonology is the study of sounds as they are used in language. Computational phonology

is the study of computational techniques used to represent and process phonological information

(Bird, 2003). Humans have a vocal apparatus capable of creating an infinite variety of sounds.

Human language takes this infinite number of sounds and reduces them into a sound system con-

sisting of a few dozen categories of sounds called phonemes.

It should be noted that phonemes do not match one to one to the number of letters in an al-

phabet. The letter t has multiple phonemes associated with it and many vowel phonemes are as-

sociated with multiple letters such as ou. The number of phonemes in the English language also
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varies from dictionary to dictionary. For instance, the American Heritage Dictionary uses 25 con-

sonant and 18 vowel phonemes on the other hand, the Longman Pronunciation Dictionary uses 24

consonants and 23 vowels (Ladefoged, 2001).

2.1.3 Meaning

Semantics

Semantics is the study of the meaning of language. Computation semantics is the area of compu-

tational linguistics that uses a computational approach to natural language to acquire the meaning

(Lappin, 2003). Semantics is concerned with how the meanings of individual words contribute to

the meaning of the phrase or sentence containing those words.

There are two approaches to computational semantics. First, is static where each sentence

meaning is self-contained. Secondly, is dynamic where the semantic interpretation of a sentence

is dependent on previous sentences in the discourse. In using dynamic approaches, a dialog record

is constructed that allows the meanings of previous sentences to be used in the interpretation of

subsequent sentences.

Syntax and semantics are tied together. Once a sentence has be analyzed and parsed into its

syntactic components, computational semantics computes systematically the sentence’s mean-

ing from the words (Lappin, 2003). In many models, a syntactic structure is two dimensional

in that it contains both syntactic and semantic information. The Parallel Correspondence Model

(PCM) is an approach that encodes both syntactic and semantic information. There are several the-

ories that utilize this approach. GPSG, HPSG, and LFG discussed in the previous section use the

PCM model. In Fernandez et al., they propose a HPSG approach that applies semantic meaning

to phrases and sentences based on questions previously listed in the discourse (Fernandez et al.,

2011).

Applications The biggest application of semantics within NLP is Word Sense Disambiguation

(WSD). Homonyms exist in the English language, which are words that have different meanings

but are spelled and pronounced the same. Take for instance, the word cold. Cold can be used to

describe how one feels, the temperature outside, an illness, and many other meanings. NLP parsers

used to extract meanings from words are grounded in semantic theories. The pipeline used in ex-
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periment one does not have a WSD module. At the time, a WSD module for medical terminology

could not be located. Currently, this is a growing area of research within medical informatics.

Pragmatics

Closely related to semantics is pragmatics. Pragmatics is the study of the meaning of linguistic

messages in terms of context (Leech and Weisser, 2003). Mostly, pragmatics is related to speech

rather than the written word, however, it is discussed here because it has some practical applica-

tions in the field of NLP.

Illocutionary Acts, also known as Speech Acts, is one of the philosophical foundations of

pragmatics (Austin, 1962; Searle, 1969). A speech act conveys meaning through action. Up until

this point most approaches to language had been treated as a statement that can be treated as either

true or false (Leech and Weisser, 2003). Statements such as I promise are a verbal action rather

than stating something that is true or false. Speech acts characterizes verbal actions as one of three

categories of acts: locution, illocution, and perlocution.

Locution is the actual utterance and its apparent meaning (Austin, 1962). The utterance,

Don’t run in front of cars in its locutionary meaning is an utterance stating not to run in front of

cars. It does not convey whether the cars are moving or parked or where the cars are located. How-

ever, given the same utterance, from a speaker to a hearer next to a busy highway and the meaning

is taken not to run out into the traffic in front of the moving cars. This is the illocutionary mean-

ing. Now given the same statement in the same situation and it prevents the hearer of the utterance

from running out in front of cars and getting hurt, that is the perlocutionary meaning. The per-

locutionary meaning is dependent on two things: whether the hearer understands the utterance and

whether the hearer is willing to comply with the utterance.

Applications There are many applications for pragmatics in speech recognition and yet not as

many with written text. One of the areas in NLP where pragmatic theories are applied are the use

of pronouns. Pronouns are used extensively in writing and many utterances contain multiple pro-

nouns, some referring to people and others referring to objects. The challenge is to determine who

or what the noun is that the pronoun is referring. Pragmatic theories underpin the technology used

by NLP processes to determine these references.
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2.2 Natural Language Processing (NLP)

NLP is concerned with the interaction between natural language, human language as opposed to

computer language, and computers. This section discusses NLP and associated technologies that

are grounded in computational linguistic theories.

2.2.1 Vocabularies and Language Systems or Terminologies and Ontologies

The process of classifying information is as old as language itself. There is a nomenclature used

to represent language and the different tools used to classify language. A great deal of disagree-

ment exists in the literature concerning the meanings of some of these terms. What follows is the

nomenclature that will be used throughout this dissertation as well as the definitions. Since there is

disagreement, this should alleviate confusion caused by any preconceived definitions. Table 2 lists

some common terms used throughout this dissertation.

Table 2: Language Nomenclature

Terminology Explanation

Document Used to describe a unit of text. Has nothing to do with the way it is
physically stored. It is a logical unit.

Word (Graphic) A string of contiguous alphanumeric characters with space on either
side: may include hyphens and apostrophes, but no other punctuation
marks (Kucera and Francis, 1967).

Lexeme Corresponds to a set of words taken by a single word (Kucera and
Francis, 1967). The result of stemming. For example, “give”, “gave”,
“gives”, “giving”, and “given” all stem to the lexeme give.

Token The basic unit in a document. Can represent a word, number, symbol,
or letter. e.g. “Heart attack” contains two tokens; “Heart” and “attack”.
“B/P: 110/70” contains the other types of tokens. Both “B” and “P”
are letter tokens. “/” and “:” are symbol tokens and “110” and “70”
are number tokens. For the purposes of this dissertation, a token is sur-
rounded by spaces.

Term/Concept A single word or multiple contiguous words that represent a concept.
The two words in “heart attack” represent a single concept, therefore,
those two words can be a single term. “Heart” by itself is also a term.
A term can represent one or many concepts. e.g. “cold” can represent
a descriptive concept for temperature or it can represent a common
illness. A concept can also be represented by one or many terms. e.g.
“heart attack” and “myocardial infarction” represent a single concept.
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Controlled Vocabulary

In the field of computational linguistics, terms are brought together in collections to be used for

processing. A controlled vocabulary is the basic collection used. There are different types of con-

trolled vocabularies and the ANSI/NISO standard Z39.19-2005 (Ano, 2005), which covers vo-

cabularies and the development of them, explains in detail how controlled vocabularies are con-

structed, formatted, and managed. A controlled vocabulary in its basic form is a list of terms to be

used for processing. This is also the foundation for all other vocabulary collections. The goal of

a controlled vocabulary is to achieve consistency. Without consistency, the other vocabulary col-

lections would be ineffective. The standard defines relationship indicators and how they are used.

Figure 3 shows the relationship between the different types of controlled vocabularies. Table 3

list the different relationships that can be expressed by terms in the different types of controlled

vocabularies which are listed in table 4. Disciplines other than medicine use controlled vocab-

ularies as well. The Art and Architecture Thesaurus (AAT), the Getty Thesaurus of Geographic

Names (TGN), the Union List of Artist Names (ULAN), and the Cultural Objects Name Author-

ity (CONA) are all vocabularies that contain information on art, architecture, and material culture

and are all vocabularies that are created, maintained, and copyrighted by the The Getty Research

Institute (The Getty Research Institute, 2011). The Library of Congress Subject Headings (LCSH)

has been maintained since 1898 to catalog materials held by the US Library of Congress (Library

of Congress, 2011) . LCSH is also used internationally. The Labourline Thesaurus is published by

Labour Canada Library Services and consists of industrial relations/human resource management

terms (Chaplan, 1995). Another vocabulary resource is the Taxonomy Warehouse (TW:, 2011).

This is a repository of vocabularies and contains over 670 vocabularies covering 73 subject do-

mains. Vocabularies covering practically anything from Academic Link Thesaurus for Universities

to Zoological Record Thesaurus can be found at the Taxonomy Warehouse.

Ontology

Early students of Aristotle used the term metaphysics to refer to what Aristotle referred to as “first

philosophy.” Ontology has also been used as an alternative for metaphysics. The term ontology

was first published in 1613 independently by two different philosophers, Goclenius and Lohard

(Goclenius, 1613; Lorhard, 1613). Goclenius implies that ontology is concerned with abstract enti-
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Table 3: Vocabulary Relationships

Relationship Explanation Expressed
By

Example

Equivalency Used when more than one term can be
used to express a single concept or lexi-
cal variants.

USE &
USED
FOR

“MI” & “my-
ocardial in-
farction” and
“orthopedic” &
“orthopaedic”

Hierarchy Express broad to narrow or narrow to
broad relationships. Also known as “isa”
“hasa”

BT, NT “broken femur”
is a “fracture”
and “central
nervous sys-
tem” has a
“spinal cord.”

Association Sibling and derivational relationships. RT “broken femur”
and “broken
radius” are sib-
lings.
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Table 4: Vocabulary Types

Vocabulary Explanation Example

Synonym Ring Used exclusively in information re-
trieval. Ensures when a concept is used
in a search, any document containing
that concept or any synonymous concept
can be retrieved.

Searching for all documents
pertaining to heart attack, a syn-
onym ring is used to also re-
trieve documents pertaining to
MI, Myocardial Infarction, and
any of the other many concepts
that represent heart attack.

Taxonomy Controlled vocabulary with hierarchical
structure to it.

Thesaurus Controlled vocabulary with order and
structure added so relationships between
terms are represented by the standard-
ized relationship indicators.

UMLS Metathesaurs, a the-
saurus of medical concepts and
relationships made up of con-
trolled vocabularies such as ICD
1 and MeSH 2 (Cimino et al.,
2008; Tuttle et al., 2008).

Lexicon The vocabulary including its words and
expressions for a language. An inven-
tory of a languages lexemes. It is also
synonymous with thesaurus.
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ties and formal structures (Munn and Smith, 2008). The German philosopher, Christian Wolff used

the term when referring to Aristole’s “first philosophy” (Wolff, 1736). The computer and infor-

mation science disciplines have adopted the ontology to be a formal representation of knowledge.

Today, some refer to taxonomies, thesauri, terminology, and ontologies interchangeably. There is

much discussion as to what an ontology is as can be seen by the many definitions in table 5 (Al-

berts, 1993; Wielinga and Schreiber, 2010; van Heijst et al., 1997). Even though these definitions

differ, they all have the concept of expressing knowledge.

One of the most widely referenced definitions of ontology is from Gruber.

Ontologies: vocabularies of representational terms - classes, relations, functions, objects

constants - with agreed-upon definitions, in the form of human readable text and machine-

enforceable, declarative constraints on their well-formed use. Definitions may include re-

strictions on domains and ranges, placement in subsumption hierarchies, class-wide facts

inherited to instances, and other axioms.

The Penman Upper Model and the Generalized Upper Model, a descendant of the Penman

Upper Model, are examples of linguistic ontologies that exist (Bateman, 1990). The General Up-

per Model ”provides a domain- and task-independent classification system that supports sophisti-

cated natural language processing while significantly simplifying the interface between domain-

specific knowledge and general linguistic resources.”

Unified Medical Language System (UMLS)

In 1986, The National Library of Medicine (NLM) formed a multidisciplinary multi-site team to

create the UMLS (Humphreys et al., 1998).“The purpose of NLM’s Unified Medical Language

System (UMLS) is to facilitate the development of computer systems that behave as if they ‘un-

derstand’ the meaning of the language of biomedicine and health (National Library of Medicine,

2010).” The UMLS consists of three knowledge sources: Metathesaurus, Semantic Network, and

SPECIALIST Lexicon. These tools are provided by the National Library of Medicine and are

freely available to anyone possessing a license which is also free.

24



Table 5: Ontology Definitions

Author Definition

Wielinga and Schreiber An ontology is a theory of what entities can exist in
the mind of a knowledgeable agent

Alberts An ontology for a body of knowledge concerning
a particular task or domain describes a taxonomy
of concepts for that task or domain that define the
semantic interpretation of the knowledge

van Heijst An ontology is an explicit knowledge level speci-
fication of a conceptualization, which may be af-
fected by the particular domain and task it is in-
tended for

Gruber A specification of a representational vocabulary
for a shared domain of discourse - definitions of
classes, relations, functions and other objects - is
called an ontology.

Metathesaurus

The Metathesaurus is a large vocabulary database. The contents of this database are provided by

source vocabularies such as SNOMED-CT, DSM, and MeSH. The Metathesaurus provides con-

cepts which allow terms from different source vocabularies to be map to concepts. These concepts

allow users to link these heterogeneous source vocabularies together. The Metathesaurus also pro-

vides relationships between concepts, both parent/child and sibling. For example, the concept

‘myocardial infarction’ has a parent concept ‘structural disorder of the heart’, which has a parent

‘heart disease’ and a sibling ‘infarction.’ These concepts can be represented by terms from differ-

ent source vocabularies. Of the three knowledge sources, the Metathesaurus is the most widely

used (Chen et al., 2007). For the purposes of this dissertation, the UMLS Metathesaurus is consid-

ered a thesaurus and not an ontology.

Semantic Network

The Semantic Network currently contains 135 semantic types and 54 relationships. These se-

mantic types are categories in which to group the concepts in the Metathesaurus. There are also

semantic grouping such as organisms, anatomical structures, biologic function, chemicals, and
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events, which categorize the semantic types. These semantic types can be used to focus NLP ef-

forts toward a specific topic.

SPECIALIST Lexicon

Lastly is the SPECIALIST Lexicon and Lexical Programs. A set of lexical NLP tools have been

created and provided by the NLM. The purpose of these tools is help researchers “investigate the

contributions that natural language processing techniques can make to the task of mediating be-

tween the language of users and the language of online biomedical information resources (Na-

tional Library of Medicine, 2010).” A part of speech tagger, a spell checker (GSpell), and visual

tagging tool are just some of the tools that make up the lexical programs. The SPECIALIST Lexi-

con provides the general English lexical information which also includes biomedical terms needed

by the SPECIALIST Lexical Programs.

2.3 Computational Learning Theory

Where as the first section in this chapter discusses the theories used in NLP, this section discusses

the theories that are the underpinnings for Statistical Text Mining (STM) and associated technolo-

gies.

Computational Learning Theory also known as Statistical Learning Theory is a mathemat-

ical theory related to the analysis of ML algorithms. There are different approaches to computa-

tional learning theory. ML theories refer to the term “concept” differently from what has been and

will be used in this research. In this section, the term “concept” is used to mean the set of all in-

stances that positively exemplify some simple or interesting rule (Kearns and Vazirani, 1994). For

example, in the case of this research, the concept fall is represented by the set of all positive fall

documents. A “concept class” or “classification” is a collection of concepts over all instances. For

example, the documents in the corpus previously mentioned is a concept class made up of FALL

and nFALL concepts. This dissertation is not building any new theories or directly testing any the-

ories traditionally used in Information Systems (IS) research. It does however, combine several

existing ML technologies in novel ways to preprocess and classify documents. The three theories

that follow are some of the theories that have been used in either the building of the these ML al-

gorithms or in the evaluation of them.
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Probably Approximately Correct

Probably approximately correct learning (PAC learning) was proposed by Leslie Valiant in 1984

(Valient, 1983). The premise of PAC learning is that for a learning algorithm to be considered suc-

cessful (the correct part), learning an unknown target concept entails obtaining, with high proba-

bility (the probably part), a hypothesis that is a good approximation (the approximately part) of the

target concept (Haussler, 2011).

Vapnik-Chervonenkis Theory

Vapnik-Chervonenkis theory, otherwise known as VC theory, was proposed by Vladimir Vapnik

and Alexey Chervonenkis (Vapnik, 1998). It explains learning from a statistical point of view. VC

theory introduced the idea of Support Vector Machines (SVMs) which are another popular predic-

tion model building technique, however, it is not used in the dissertation because it is not designed

to be interpretable. VC theory also has a core concept called the VC Dimension. The VC Dimen-

sion is a way of quantifying the ease of learning categories from small data sets (Vapnik, 2000;

Kearns and Vazirani, 1994).

Algorithmic Learning Theory

Algorithmic learning theory also known as algorithmic inductive inference is another ML frame-

work and was introduced in Gold’s seminal paper Language identification in the limit (Gold, 2011).

He created this framework when he was investigating language learnability. In his research, infor-

mation is presented to the learner about an unknown language as well as a class of possible lan-

guages. The research question asked is “is the information sufficient for the learner to determine

which of the possible languages is the unknown language.” The learner receives a unit of informa-

tion and guesses which language the unknown language is. The language is considered learnable

if an algorithm exists that the learner can use to make guesses and after a finite period of time, the

guesses are correct. The idea of ML algorithms is based on this theory.

2.3.1 Machine Learning

The Oxford Dictionary defines “learning” as the acquisition of knowledge or skill through study,

experience, or being taught. From a computer science perspective, this definition fails to include
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the conditions that must occur in order for the same results to be achieved from multiple experi-

ences. Repeatable results is the desired effect to be achieved using ML. If a student is taught the

same material from professor A or professor B, the testing result of that student will most likely be

different for the two professors. However, using ML, given learning sets with the same probability

distribution, an algorithm should perform with no statistically significant difference.

Types of Machine Learning

There are two types of ML, supervised and unsupervised. The main difference between the two

methods is that in supervised learning, the model has some knowledge of the classification of a

subset of the data and learns from this subset. Supervised learning uses a “training” set of data to

learn. One of the main uses of supervised learning is classification. The classification of each da-

tum in the training set is known. The ML algorithm then uses this information to then classify data

with an unknown classification. Unsupervised learning on the other hand is used for discovery

tasks such as clustering. In this case, classifications of the data are not known. The ML algorithm

is then used to find patterns or clusters of information within the data. For the purposes of this dis-

sertation, supervised learning techniques are used.

With supervised ML, the machine is given examples chosen randomly and based on those

examples it attempts to generate an answer. Figure 4 shows a ML model (Vapnik, 1998). The Gen-

erator is the source of situations or in this case, documents. x ∈ X . For this research, X is the

set of documents or the corpus used in the STM process. x is fed to both the Supervisor and the

Learning Machine. The Supervisor then returns y for each x. In other words, for each document

x in the corpus X , there exists a classification y. If there are l documents in the corpus, then the

learning machine will have l pairs, (x1, y1), ..., (xl, yl) to use to learn. The Supervisor includes an

operator that is used to determine the value of y. For this research, the Supervisor is the group of

annotators that established the Gold Standard. The operator used in this case is not a mathematical

function but is based on a set of rules that the annotators used to determine the classification for

each document. The Learning Machine will create its own operator, which approximates the Su-

pervisor’s operator, to determine the classification, ȳ. Logistic regression, classification rules, and

decision tree induction are the ML techniques used in this dissertation.
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Figure 4.: Model of Learning from Examples

Machine Learning Algorithms

There are numerous ML algorithms. Decision tree induction is a category of algorithms and there

are several DTI algorithms. Table 6 describes many of these algorithms, some of which are used

in this dissertation. There are many more but for the purposes of STM, these are some of the more

popular.

2.3.2 Information Theory

In 1948, Shannon published what became a seminal article on maximizing the amount of infor-

mation that can be transmitted across an imperfect channel (Shannon, 1948). At the time, it was

thought that the faster you transmitted information the more errors occurred. He showed this was

not true provided the data were transmitted slower than the capacity of the channel. From this

came measurement techniques that are also used in the STM and ML processes. Many of these

measurements are used in the decision tree induction process and will be discussed in more detail

in a later chapter.

Where as Shannon was interested in reproducing at one point, either exactly or approxi-

mately, a message selected at another point, ML is concerned with taking a “message” and pre-

dicting whether it is similar to another message. Other concepts such as N-Grams also came out of

Shannon’s research (Shannon, 1951).

Information theory is applied in many places in machine learning but specifically two within

the technology used within this dissertation. The first place is in the decision selection process
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Table 6: Machine Learning Algorithms

Algorithm Description

Association Rule Mining A method for discovering interesting and meaningful
rules between variables or features. Even though asso-
ciation rule mining was not used in its complete form,
more information can be found in Chapter 5.

Classification Rule Mining Similar to association rule mining, however, rather than
being concerned with the interestingness of the rule, the
rule is judge on how well it is used in a classifier. Spe-
cific details on classification rule mining can be found in
Chapter 5.

Decision Tree Induction (DTI) A method in which a decision tree consisting of decision
nodes and leaf nodes is created. Decisions are made and
can lead to additional decision nodes or leaf nodes. The
leaf nodes are the classes for the classifier. There are sev-
eral DTI algorithms, such as C4.5, ID3, CHAID (CHi-
squared Automatic Interaction Detector), and Multivariate
Adaptive Regression Splines (MARS). Specific details on
DTI can be found in Chapter 6

Support Vector Machine Given a group of classified data belonging to one of two
classifications, an SVM graphs these training cases with
as large a gap between the two classifications as possible.
It then maps an unclassified case amongst the two clas-
sifications and predicts the classification based on which
side of the gap it is mapped. SVMs are good for classifi-
cations where the cases have large numbers of variables
or features.

Clustering Is an unsupervised methods where cases are grouped to-
gether based on similarities.

30



in DTI. The C4.5 algorithm used in answering the second research question relies on the infor-

mation gain ration. This is explained in more detail in Chapter 6. Additionally, text mining uses

entropy as a possible weighting scheme. It can be used as both a frequency and term weighting

scheme. Many models were built to answer the first research question (specialized versus com-

mon language) and some used entropy for frequency and term weightings, however, the none of

the models selected as having the best performance used entropy for weightings.

Entropy

The entropy of a random variable is the measure of the amount of information in that variable or

in other words a quantified measure of uncertainty in a random variable. This indicates how easily

message data can be compressed. For example, there is more uncertainty in predicting the number

from rolling a 6 sided die as opposed to predicting the flip of a two-sided coin. With the die you

have a 1 in 6 chance of predicting it correctly but a 5 in 6 chance of predicting it incorrectly. With

the coin, you have a 1 in 2 chance of either predicting it correctly or incorrectly. The uncertainty is

less with the coin.

Mutual Information

Mutual information on the other hand is the amount of information one random variable contains

about a second random variable. In other words, it is the measure of the information common or

mutual between two random variables. Mutual information can be used to measure the informa-

tion common between two cases.

Information Gain

Related is also information gain also known as Kullback-Leibler divergence (Kullback and Leibler,

1951). Information gain is the change in entropy from one state to another state. Information gain

can be used in decision tree induction in evaluating the splitting criterion. An attribute with high

information gain is preferable to a lower value. Information gain has a bias toward attributes with

many possible distinct outcomes (Quinlan, 1988). For example, an attribute such as patient ID

would have a high information gain value than an attribute such as gender but patient ID most

likely would not be a good choice for an attribute on which to split.

31









Appendix H

Information Systems Research Framework

The research performed for this dissertation was conducted using the information systems research

framework, specifically, the design science paradigm. The technologies and methods used to per-

form this research have their roots in Computational Linguistic, Computational Learning, and In-

formation theories. These technologies and methods will be used to create the artifacts, which are

classifiers. Classifiers were built using various machine learning (ML) techniques. These classi-

fiers were also evaluated in how well they classified clinical progress notes.

“The goal of information systems research is to produce knowledge that enables the appli-

cation of information technology for managerial and organizational purposes (Hevner and March,

2003).” Hevner et al. propose a conceptual framework for performing information systems (IS)

research. A diagram mapping out this framework can be seen in figure H.49.

People
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 - Capabilities
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Organizations
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 - Processes

Technology
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 - Communications Architecture
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Assess Refine

Figure H.49.: Information Systems Research Framework

This framework contains two paradigms that researchers use to perform IS research, behav-
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ioral science and design science. These two research paradigms are circular in nature, and together

these paradigms allow theories to be built that address phenomena related to business needs and

artifacts to be built and evaluated that address those business needs. In the rigor versus relevance

argument (Applegate, 2002), behavioral science addresses rigor with the development of theories

and design science addresses relevance with the development of artifacts that address business

needs. Within this framework, prior IS research and reference disciplines provide the foundations

for future research. This dissertation utilizes the design science paradigm. The technologies and

methods used to perform this research have their roots in information and computational learning

theories. These methods and technologies will be used to create the artifacts, which are classifiers.

H.1 Design Science

The design science paradigm defines IT artifacts as constructs, models, methods, and instantia-

tions. Table H.35 shows the different IT artifacts used in this research and the artifacts marked by

** are the artifacts created by this research.

Table H.35: Dissertation IT Artifacts
Artifact Explanation

Construct Computational linguistic vocabulary
Model Machine Learning Model
Methods ** Methodologies used to create classifiers
Instantiation ** Implementation of the classifier algorithms
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