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Multichannel Functional Data Decomposition and Monitoring 
 

Hani Kababji 

Abstract 

 

 With current advances in sensors and information technology, online 

measurements of process variables become increasingly accessible for process control 

and monitoring. Such measurements may take the shape of curves rather than scalar 

values. The term Multichannel Functional Data (MFD) is used to represent the 

observations of multiple process variables in the shape of curves. Generally MFD 

contains rich information about processes. The challenge of process control in MFD is 

that Statistical Process Control (SPC) is not directly applicable. Furthermore, there is no 

systematic approach to interpret the complex variation in MFD. In this research, our 

objective is to develop an approach to systematically analyze the complex variation in 

MFD for process change detection and process faulty condition discrimination.  

 

The main contributions of this thesis are: MFD decomposition, process change 

detection, and process faulty condition discrimination.  We decomposed MFD into global 

and local components. The approach reveals global and local variations that are due to 

global signal shifts and local variations. Global variation was extracted using weighted 

spline smoothing technique, whereas, local variation was obtained by subtracting the 
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global variation from original signals. Weights were obtained using the local moving 

average of the generalized residuals. 

 

The proposed approach helps in process change detection and process faulty 

condition discrimination based on further MFD analysis using Principal Curve 

Regression (PCuR) Test. For process change detection, global variation component was 

used in the PCuR test. In-control global data sets were used as training data to detect 

process change that is due to global and local variation. On the other hand, for faulty 

condition discrimination purpose, local variation component was used in the PCuR test. 

In-control local variation data sets were used as training data in the PCuR test; therefore, 

process faulty condition that is due to local variations remains in control, whereas, 

process faulty condition that is due to global shifts appears as random out of control 

points in the PCuR test. 

 

We applied our approach on real life forging data sets. A simulation study was 

also conducted to verify the approach and results are promising for wide applications. 
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Chapter 1. Introduction 

 

This chapter presents a brief introduction and motivation of this research. The 

research objectives and an overview of thesis work are also introduced. 

 

1.1 Multichannel Functional Data (MFD) and Statistical Process Control 

This section presents a brief description about MFD and its corresponding 

challenges in statistical process control. An example is also provided to illustrate 

complexity in analyzing MFD. 

  

With current advances in sensors and information technology, online 

measurements for process variables become increasingly usable for industrial process 

monitoring and control. Process characteristics may be in the shape of multiple curves 

since process performance might be affected by multiple functional process variables. For 

instance, many industrial processes are time dependent; therefore, such process variables, 

which are monitored among time, take the shape of functional data.  

 

Generally, functional process variables contain rich information about monitored 

processes. Process characteristics track and describe the behavior of a process response 

with respect to a desired predictor, such as: process time, change in distance, etc....  
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Therefore, multiple sensors are commonly installed to collect data of functional process 

variables. The term Multichannel Functional Data (MFD) is used to represent 

observations of multiple function process variables. 

 

For example, forging process is equipped with sensors to measure tonnage signal 

as process variable. Since process faults may occur at different locations in the 

workpiece, multiple sensors are installed at different workpiece locations. Consequently, 

multiple channels are extracted from process sensors measuring tonnage signals as a 

function of time for every sample. See Figure (1.1, 1.2) [1].  In this example, four 

channels were extracted measuring the same process characteristic i.e. tonnage signal. 

However, in every channel the corresponding tonnage signal is considered as independent 

variable since tonnage signals are extracted from different sensors. Moreover, the 

tonnage values vary among different locations in the workpiece due to process physics. 

On the other hand, other processes and applications may contain extracted channels with 

completely different process characteristic. 
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Figure 1.1 Forging Press, Die, and Installed Sensors 
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The importance of monitoring MFD in such processes lies behind the fact that 

MFD monitoring provides an effective way in controlling the process since it monitors 

different process variables or multiple realizations of a process variable rather than just 

monitoring the average or the sum of sensed process variables. Therefore, more valuable 

information about a process can be obtained. 

 

The process cycle, which is the time interval needed for a part to be completely 

manufactured, in such processes is repeatable among samples on each part under the 

assumption that the samples of a particular channel are identical and independently 

distributed.  Although this assumption eases controlling MFD, many challenges still exist 

while monitoring sensed MFD.  
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Figure 1.2 MFD of One Part (Sample) in Forging Process 
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MFD is complex by its nature because of the existence of more than one variable 

in the shape of functional data which makes it hard to interpret. Besides, no systematic 

approach exists for analyzing and interpreting MFD. Statistical Process Control (SPC) is 

not directly applicable to this type of process characteristics because of the complexity in 

the variation of MFD [2, 3]. For example, the mean and the variance are not sufficient to 

represent process variations unlike vector process characteristics where it is easier to 

extract variations using process parameters.  

 

A further issue in analyzing MFD is late process change detection. Since some 

manufacturing processes contain high throughput time, late process change detection may 

result in large number of defective parts. Therefore, an online scheme for such processes 

monitoring is of crucial need. The online detection allows corrective actions to be taken 

before parts are completely manufactured. This lead to better process performance with 

less quality cost.  

 

Process faulty condition discrimination is a concurrent challenge with process 

change detection. For instance, in forging process different types of process faulty 

conditions may occur due to different causes, such as:  deformity in counterweight, and 

incorrect die setup. The discrimination among different process conditions needs deep 

understanding of process physics and further analysis in MFD to pinpoint a key feature 

that helps in discriminating different process conditions. 
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1.2 Objective and Contribution 

 The objective of this research is to systematically analyze MFD for process 

change detection and process faulty condition discrimination. In this study, we propose a 

new scheme for interpreting and monitoring MFD. The approach provides a new way of 

interpreting variations in MFD. We decompose original sensed MFD into global and 

local components to capture global and local variations in the sensed data based on 

previous process knowledge. Global patterns can reveal process global and local shifts. 

However, rapid local variations and the time at which they occur can be noticed by 

analyzing the local variation profile taking into account the correlation among time.  

   

Global variation is extracted using weighted spline smoothing applied on the 

original data, whereas, local variation is obtained by subtracting global pattern from the 

original data. Consequently, two data sets can be obtained providing rich information 

about the variation patterns in the original signals.  

 

For process monitoring purposes, the data sets obtained is further used as an input 

for Principal Curve Regression (PCuR) test [2]. Using global component, process faulty 

conditions can be detected. On the other hand, process faulty condition discrimination 

can be achieved by using local variation as input in PCuR test. 
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1.3 Overview of the Research 

 The thesis is organized as follows: Chapter 2 presents a review of the literature 

related to multivariate process control, sensor fusion, spline smoothing technique, and 

approaches in MFD processing and analysis. Chapter 3 summarizes the problem being 

analyzed in this research. Chapter 4 focuses on global and local variations extraction. 

Chapter 5 presents the grouping technique conducted to choose training data sets and 

PCuR model application. In chapter 6 a simulation study is presented to verify the 

application of the methodology proposed. Finally, chapter 7 consists of the summary, the 

conclusion of this research, and some suggestions for future research. The figure below 

illustrates the flow chart of the thesis contents. 

 

 

 

 

Figure 1.3 Thesis Flow Chart 
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    Chapter 2. Literature Review 

 

 This chapter presents a summary of previous work on multivariate process 

monitoring, sensor fusion, process monitoring with MFD, and spline smoothing 

technique. 

 

2.1 Multivariate Process Monitoring and Control 

Multivariate quality control provides procedures to monitor multiple variables 

simultaneously.  It is inherently more complex than univariate SPC, but it may be a more 

realistic representation of the data since in the real world processes do not usually have 

only one variable that is measured independently of all other variables in a system. 

However, multivariate control charts are designed to handle multiple variables in the 

shape of scalar vectors.  

 

 Several articles found in the multivariate control charts literature present different 

models and control charts to monitor manufacturing processes. Lowry and Montgomery 

[4] and Alt [5] presented reviews of multivariate control charts. They introduced brief 

discussion of Hotteling, Cumulative Sum Charts (CUSUM), and Exponentially Weighted 

Moving Average Charts (EWMA).  
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For instance, Alloway and Raghavachari [6] explored Hotelling ( 2T ) charts to 

represent multivariate data. Hotteling charts were used to detect shifts in the mean. James 

Williams et al. [7] extended the application of Hotelling ( 2T ) charts to monitor the 

coefficients of nonlinear regression applied on data profiles. They identified outlying 

observations and step or ramp vector in the mean over time.  

 

For the purpose of process variation detection, Hawkins [8] proposed a 

multivariate control scheme based on the linear regression of each variable of the 

remaining variables. He also extended his regression in [9] for variables in multivariate 

quality control to a cascade process. The regression adjusted variables were plotted on 

CUSUM charts for both location and scale variations. The performance of his approach 

depends on the nature of the process being monitored. Pignatello and Kasunic [10] 

introduced a multivariate CUSUM control chart (MCUSUM) to detect small deviations 

and shifts; they used simulation to compare the performance of this chart to the 

multivariate Shewart chart and multiple univariate Shewart and CUSUM chart. This work 

can not be applied to time related processes or functional data, since further analysis 

should take place to consider correlation among time. 

 

Fuchs and Benjamini [10] proposed the multivariate profile charts (PM) for 

Statistical Quality Control (SQC) which provides a higher accuracy in retrieving 

quantitative data information. Profile chart is a symbolic scatterplot, where summaries of 

data for individual variables are presented by symbol, and global information about the 
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group is displayed by the location of the symbol in the scatterplot. It is a display for the 

univariate and multivariate statistics. 

 

 There has been increase in multivariate quality control studies that use principal 

components (PCs) to aid monitoring of multiple variables i.e. to reduce the number of 

variables to be studied and monitored. Jackson and Morris [12] introduced the use of PCs 

instead of the original variables for multivariate quality control charts. The main 

advantage of PCs is that they are independent and few of them explain the variability of 

the original variables.  

   

Sparks et al. [13] used the Gabriel Biplot in multivariate process monitoring, 

which allows the detection of locations in variation and correlation structure accurately. 

The Biplot is a way to simplify the interpretation of the Principal Component Analysis of 

a data matrix. It is based on its singular value decomposition. 

 

For multivariate process change detection purposes, Apley and Shi [14] proposed 

a method based on Principal Component Analysis (PCA) to detect faults in a 

manufacturing process. They presented an example from the automotive industry, in 

which they determine which PCs are significant and analyze them to try to find the 

causes for the faults. 

 

 The previous work been done on control charts was applied on scalar data sets 

rather than functional non-stationary data or data with vectors that has correlation among 
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time. With current information technology and advanced data collection devices, 

manufacturing processes are monitored by sensors that reflects functional data in the 

shape of multiple curves to represent samples for process variable(s). This research 

studies the analysis and monitoring MFD taking time correlation into consideration. 

 

2.2  Sensor Fusion 

With current advances in technology and computational systems, more data can 

be easily collected from any controllable system. This relies on the fact that sensors ease 

the process of data collection and extraction. However, many challenges still exist when 

using sensors in industrial processes, such as: sensor allocation and sensor fusion 

problems. 

 

The objective in previous research work in sensor fusion was mainly focused in 

determining optimal locations for sensors in a controllable system. Besides, other 

researchers proposed different approaches to extract and collect data from installed 

sensors [14-16]. In this research, our sensors related objective is to develop an approach 

to analyze the MFD that is collected from several allocated sensors, to detect process 

changes and to discriminate among different faulty conditions. 

 

Process variation was lately used in sensor allocation problem, which has been 

studied in deep recently. For example, Y. Ding et al. [15] categorized traditional 

approaches in sensor optimization into two categories: multistation sensor allocation for 

the purpose of product inspection, and allocation of sensors for the purpose of variation 
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diagnosis but at a single measurement station. In their approach, based on the 

understanding of the mechanism of variation propagation, they developed a backward-

propagation strategy to determine the locations of measurement stations and the 

minimum number of sensors needed to achieve full diagnosability by setting a 

minimization cost objective function.  

 

In industrial processes, sensors may measure multiple realizations for the same 

process variable or different process variables in a given system. When sensors read more 

than one process variable, further analysis might take place to combine different outputs 

to generate multivariate characterization [15-16]. Many approaches could be used to 

analyze combinations of multiple variables, for example, principal component analysis 

reveals the variability among different variables, and correlation coefficients might 

reflect the relation among different monitored variables. 

 

 A common data fusion estimation approach for one variable system is to take the 

weighted average of various sensor realizations data to generate a composite fused value. 

Such approach may not lead to reliable measurements especially if one or more of the 

sensors are faulty [18]. 

 

 Kalman filtering and extended Kalman filtering are another estimation 

approaches been used in this field. They are linear systems techniques which cannot be 

used if the process model is not available; however, they work well if the data is only 

corrupted by noise. Such approaches are very sensitive to process outliers. Moreover, 
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artificial intelligence approaches such as adaptive neural network and fuzzy logic require 

an extensive training of the system prior to performing the actual experiments.  

  

 Considering nonlinearity in sensor functions, Suranthiran et al. [18] developed a 

new framework to optimally fuse the multinonlinear sensor data based on the assumption 

that at any particular time instance. Only one measurement from the multi readings of the 

sensors can be used and a partial blending of signal is not possible. This was achieved by 

scheduling the sensors in the sense of one sensor reading at a time instance. This 

approach shows good result in reducing number of sensors to be used in processes; 

however, in this optimal approach the correlation among time in the functional data was 

not considered. Therefore, there is a need for an analytical approach that can gather MFD 

measurements from several sensors for process control purposes.  

 

2.3   Process Monitoring With MFD 

Different approaches were developed for process control purposes for MFD. 

Some approaches were developed for process variations detection, others were developed 

for process condition detection. However, there is no systematic approach exists that can 

interpret MFD and decompose it by analyzing the full process cycle for the purpose of  

process change detection and process faulty condition discrimination. This section 

presents some recent work on MFD and process monitoring. 

 

For process variation detection, Mahmoud et al. [19] proposed a change point 

approach based on the segmented regression technique for testing the constancy of the 
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regression parameters in a linear profile data set. The advantages of their approach 

reveals more improved detection of sustained step changes in the process parameters and 

improved diagnostic tools to determine the sources of profile variation and the location(s) 

of the change point(s). 

 

Using simulation study on functional data, Jeong and Lu [3] proposed a 

methodology based on wavelet coefficients monitoring, to detect local shifts in processes. 

Their approach performed effectively against many types of process changes especially 

in detecting small shifts. This work has been applied on single channel functional data. 

 

Jin and Shi [20] presented a statistical approach for feature preserving data 

compression of tonnage information using wavelets. Moreover, Jin and Shi [21] 

developed a feature extraction methodology using PCA to represent variation patterns of 

tonnage signals, and they considered the interaction among the variables using fractional 

factorial design of experiment. Also, they used waveform signals [22] without prior 

faulty knowledge to develop a diagnostic system to automatically detect faulty 

conditions. 

 

Some efforts have been made in studying sensed MFD and investigating different 

process conditions. Kim et al. [1] studied the detection of faulty condition and faulty 

condition discrimination in forging process based on segmentation approach, the forging 

cycle was divided into segments and for each segment the distances of the original data 

points from their principle curve was used to produce an empirical distribution which 
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leads to faulty condition discrimination. They also proposed an approach, using the 

empirical distributions for the squared distances of data points from their principle curve, 

to detect global and local profile changes in multi-channel tonnage signals and to classify 

faulty patterns. 

 

Koh et al. [23] have developed an approach to detect faulty conditions based on 

collected data and engineering knowledge in tonnage of stamping machine sensed 

signals. The approach consists of partitioning signals into segments to represent process 

phases, at which they identified a set of signal attributes to describe the faulty conditions. 

Also, Koh et al. [24] used Haar transformation to detect and isolate multiple fault 

conditions. By partitioning signals into disjoint segment, mutually exclusive Haar 

coefficients were used to isolate faults at each stage of the process. 

 

  Jin [25] proposed a new method to use the partitioned monitoring segments of 

press tonnage signals to monitor individual station conditions in multi operation stamping 

processes. For this purpose, she developed a generic signal segmentation principle. She 

also used Hotelling 2T  control charts with consideration of the interactions among 

stations. She demonstrated the analysis procedure by providing a real case study of 

doorknob stamping process.  

 

 Zhou et al. [26] proposed a new approach to utilize sensed data and fault pattern 

information in process monitoring. They developed a directionally variant control chart 

through effective combination of multivariate  chart and univariate projection chart. They 
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also showed that adding univariate projection charts can improve the detection power for 

the pre-known process faults. They demonstrated their work by providing a case study of 

cycle-based tonnage monitoring of a forging process. Their approach showed capability 

in process faulty condition detection whether faulty conditions are pre-known or not; 

however, the approach could not provide faulty condition discrimination and signal 

variation analysis. 

 

2.4  Principal Curve and Principal Curve Regression Test in Process Monitoring 

 Principal Curve was first introduced by Hastie and Stuetzle [27] in 1989 as a 

smooth line which is self consistent curve which means that each point of the curve is the 

average of all data that is projected onto it. This curve has many advantages such as no 

distribution assumption about data. The data can be readily analyzed without 

transformation as opposed to Non- Linear Principal Component Analysis (NLPCA). 

Besides, the application of this curve does not need any constraint on the dimension of 

the data as the curve feature maintains the shape of the original data set. Global and local 

changes in the curve indicate the change in the data. 

 

 Many authors studied further properties for the principal curve and proved its 

existence. For example, Duchamp and Stuezle [28] proved the existence of principal 

curves and they showed that principal curves are critical points of the expected squared 

distance from the data. Kégl et al. [29] introduced principal curves with fixed length with 

the proof of their existence and uniqueness.  

  



 16   

The definition of the principal curve opened a wider vision for other researchers 

in the application of principal curves. For example, Banfield and Raftery [30] applied the 

principal curve to identify ice floes in satellite images and they reduce the estimation of 

bias that Hastie and Stuetzle [27] have introduced. In addition, LeBlance and Tibshirani 

[31] extended the principal curve concept to principal surfaces as they used it in 

multivariate regression splines study. Standford and Raftery [32] applied principal curves 

in clustering.  

 

Chang and Ghosh [33] applied principal curves in feature extraction and pattern 

classification problems. In most of their experiments they noticed that closed principal 

curves gives better results than opened principal curves in pattern classification problem.  

 

 Lately, Huang [2] introduced the concept of Principal Curve Regression (PCuR) 

as a model based on the principal curve of data signals, the generated principal curve 

combine data using multivariate regression model. He applied this concept on tonnage 

signals. Using in control data the model can predict deviations in future observations.  

 

2.5  Spline Smoothing  

Before embarking to the literature survey of spline smoothing, we introduce a 

brief review about spline smoothing. Splines are drafting aids that draw smoothed curves 

across data points by interpolating data points that are called knots. In this research we 

use spline for data interpolating since splines are piece wise functions whose individual 

curves meet at knots. This occurs because usually in splines the first and the second 
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derivatives at the end of a polynomial, fitting an interval, are equal to the corresponding 

derivatives at the beginning of the following polynomial. This feature guarantees 

continuity among data knots [34]. 

 

Wegman and Wright [35] provided a detailed bibliographic review of previous 

work on spline smoothing.  They emphasized that splines are interpolatory in nature. 

Besides, they demonstrated that the interpolation problem in splines is to fit curve 

through points in a plane. Besides, they introduced the cubic interpolating spline as a 

function with continuous derivatives up to and including order 2. They also categorized 

methods of spline smoothing according to the different ways of dealing wit noise into 

three categories: least square method, 100 percent confidence intervals methods, and 

regression splines method.  

 

Spline smoothing is usually used because of its natural and flexible features in 

fitting data [36]. Using the spline regression, the smoothing parameter can be determined 

based on the need of the study and data interpretation in a way which represents the trade 

off between two competitive aims, good fitting and avoiding rapid fluctuation. Moreover, 

the amount of smoothing does not depend on the response values, instead, it depends on 

the design points and it copes well whether or not the design points are regularly spaced. 

 

Eilers and Marx [36] presented a short review of B-splines. They showed 

connections to the familiar splines penalty on the integral of second squared derivative. 
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They also used nonparametric logistics regression, density estimation and scatterplot as 

examples.  

  

  In spline smoothing, the main fitting objective is to minimize the Residual Sum of 

Squares (RSS) and the local variation. A measure of the rapid local variability of a curve 

can be given by a roughness penalty such as the integrated squared second derivative. 

The modified sum of squares will be defined as follows [37]: 

dttGxGygS
N

i
ii

22

1
])([)]([)( ∫∑ ′′+−=

=
λ                                        (2.1) 

where: λ is the smoothing parameter, Y is the original data, and G(t) is the fitted value. 

Therefore, two extreme cases might occur: 

1) As λ ! ∞, the highest amount of smoothing occurs with the linear least squares fit 

with degree of freedom equals to 2. 

2) As λ ! 0, the lowest amount of smoothing occurs with a curve that is similar to the 

original data since no basis functions were estimated and no degrees of freedom 

will be taken out from the system, thus the system will have a degree of freedom 

equals to the same number of design points. 

  

The amount of smoothing can be controlled by either controlling the smoothing 

parameter or by specifying the degree of freedom. Choosing the smoothing parameter can 

be subjective by choosing the curve that fits the data subjectively with a corresponding 

smoothing parameter. On the other hand, a very well known proposed approach for an 

automatic choice of the smoother parameter is the cross validation method. 
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  As any other linear operator, smoothed fitted curves can be represented as linear 

smoother: 

ySG λ=�                                                         (2.2) 

where, y is the fit and λS is the linear operator and known as the smoother matrix. 

  

The smoother matrix λS  is symmetric positive nn× matrix, where n is the number 

of design points. The expression trace( λS ) gives the number of basis functions or the 

number of parameters involved in fitting, thus the effective degree of freedom can be 

written as follows [38]: 

)( λλ Stracedf =                                                          (2.3) 

 The smoother matrix diagonal values can be determined depending the on the 

design knots using the following equation [38]: 

4/32/34/34/1 )(2 −−−−= ii tfnS λλ                                           (2.4) 

where )( itf  is the standard normal density function of the design points. 

 

 Choosing the smoothing parameter in least squares spline smoothing problem has 

been advocated by Wahba and Wold [39, 40], and Wahba [41-43]. Wahba introduced a 

measure for the goodness of fitting as the average squared error which is called the cross 

validation function. She also demonstrated that choosing the smoothing parameter is base 

on minimizing the cross validation function. The basic principle behind the cross 

validation approach is to leave the data points out one at a time and to choose the value of 
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the smoothing parameter which the missing data points are best predicted by the 

remainder if the data.  

 

For example if λ
iG− is the smoothing spline calculated from all the data pairs 

except ( ), it yX
i

using λ smoothing parameter, the cross validation choice of λ is then the 

value of λ that minimizes the cross validation score XVS given by the following equation: 

∑ −− −= 21 )}({)( i
i

i tGynXVS λλ                                             (2.5) 

  An easier computation of cross validation score is given in a standard argument in 

regression theory by Cook and Weisberg [44] and Craven and Wahba [45].The following 

equation represents their easier form of evaluating XVS: 
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λ                                             (2.6) 

Caraven and Wahba also introduced a weighting technique to be implemented on 

the cross validation function to reflect unequally spaced data and called it the generalized 

cross validation function. This function was introduced by a simple matrix representation 

depending on the smoother matrix in the spline smoothing. Fleisher [46], Merz [47], and 

Paihua-Montes [48] provided a computer code of penalized least squares smoothing 

spline using the generalized cross validation function. Splines also have been introduced 

in the time series field. Wahba [43] developed the theory of periodic smoothing spline 

with application to spectral density estimation. 
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 More sophisticated techniques for smooth spline smoother matrix and its role in 

curve fitting were discussed by Cook and Weisberg [44]. In their book they discuss 

approaches to calculate the smoother matrix and the cross validation function. 

 

 Many spline smoothing applications were studied by Silverman [38]. In his paper 

he promoted the applicability of non parametric regression using cubic splines. He also 

provided an inference region for curves as a confidence interval based on Bayesian 

formulation. Silverman also proposed a formulation for weighted smooth spline smoother 

matrix. Motivated from Craven and Wahba results, Silverman [49] also developed an 

approximation for the smoother matrix to quite reduce computational burden by 

providing a detailed mathematical justification to approximate the generalized cross 

validation score. 

   

2.6 Summary 

 The most commonly used multivariate control charts are based on the Hotelling 

2T  chart. Such control charts are dealing with scalar data rather than multiple curve 

functional data. This implies the necessity of an approach to analyze MFD for the 

purpose of process change detection and faulty condition discrimination. 

 

 Two major objectives were studied in the sensor fusion problem. They were 

mainly concentrated in the determination of optimal sensors location and the optimal 

extraction for sensed data. However, in this research we analyze the MFD sensed by 
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allocated sensors for the purpose of process change detection and faulty condition 

discrimination. 

  

The majority of the work that has been done using principal curves shows the 

capability of the principle curve in summarizing the data since it has no distribution 

assumption, and the data can be readily analyzed without transformation as opposed to 

NLPCA approaches. 

 

 Using principal curve as a response in multivariate linear regression model as in 

the PCuR model shows the ability to detect deviations in multi-channel samples. Since 

principal curve feature maintains the shape of the original data; global and local changes 

in the data can be reflected on the curve. 

 

 Most of the work that has been done in faulty conditions diagnosis and 

monitoring has been applied on segments of channels signals. Some of the approaches 

depended on extracting empirical distributions from the data; others were depending on 

subjective judgment in pattern distinguishing. However, the need for an online solid 

approach for processes faulty conditions diagnosis offers opportunities for further 

research in this area. All the previous issues lead to the problem statement for this 

research, presented in the following chapter. 
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Chapter 3.  Problem Statement 

 

This chapter presents the problem definition in this research. Besides it gives a 

brief description about the approach being used to solve the problem. A summary of the 

main contributions that we have in this research is also provided. 

 

This research takes account of the following issues: MFD interpretation, process 

change detection, and process faulty condition discrimination. SPC concepts are not 

directly applicable to MFD [2, 3], since it is focused on the analysis of multivariate scalar 

data, and no systematic approach exists to analyze the complexity of variations in MFD. 

Also, late process change detection may result in high quality-costs and large number of 

defectives, especially if more than faulty condition exists. Motivated by this fact, we 

developed an approach to interpret the variations of MFD for process change detection 

and process faulty condition discrimination. The approach works on both multivariate 

processes and univariate processes with multiple realizations.  

 

We decomposed MFD into global and local components to reveal global and local 

variations in sensed signals. Global patterns were extracted by applying weighted spline 

smoothing on original data. Weights were determined using local moving average of the 

generalized residuals. This method provides weights which correspond to homogenous  
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variance among process cycle. Therefore, any variation in the process cycle can be 

captured. Local variation profiles were obtained by subtracting the global component 

from the original signals.  

 

Controlling and monitoring processes that include MFD become a subsequent 

challenge. For process change detection purpose, we used global variation component to 

detect changes in process variation. In-control global variations used as training data sets 

in PCuR test; therefore, process faulty conditions can be detected. 

 

For the purpose of process faulty condition discrimination, we used in control 

local variation as an input in the PCuR test. Process faulty condition that is due to local 

shifts appears out of control, whereas, process faulty condition that is due to global shifts 

remains in control since it is generated by shifting whole the cycle. We also conducted an 

exploratory study to extract the appropriate data sets needed to increase the performance 

of prediction in the PCuR model and to reduce the number of false alarms. 

 

The approach proposed was applied on real life forging data. A simulation study 

was also conducted to verify the developed approach. We simulated bivariate normal in-

control data sets with faulty conditions due to global shifts and faulty conditions that are 

due to multiple local problematic segments. Using the developed approach, no false 

alarms were observed, and results show the applicability of the developed approach on 

further applications.  
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Chapter 4. Global and Local Variations Decomposition 

 

 This chapter presents the methodology being developed to extract global and local 

variations in MFD. It provides a description about global and local components, the 

decomposition of global and local variations. 

  

4.1 Global and Local Variations 

 This section provides a description about the global and local components. Before 

embarking to the approach, the assumptions for the MFD to be analyzed in this paper are: 

1) the data are all cyclic; 2) the lengths of the cycle are the same; and 3) in each channel, 

the observations among cycles are identically independent distributed. 

 

 Since it is hard to interpret sensed MFD, unlike in vector characteristics where the 

mean and variance can describe process variability, we decomposed original signals into 

global and local patterns to extract process variation. The idea behind this decomposition 

is to separate global variations from local variations by which global signal shifts and 

local variations pattern can be captured. Global variation was extracted by developing 

smoothed curves using weighted spline smoothing in the sense that we increase local 

variations in problematic cycle intervals and decrease it elsewhere in the process cycle 

based on previous process and engineering knowledge. Local variation was extracted by
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 subtracting global variation from original signals. Using this signal decomposition we 

can separate defective samples that were caused by global shift in the process cycle from 

others which were caused by local variation in problematic process segments.  Eq. 4.1 

presents the decomposed components of the original signal. 

)()()( tLtGtY +=                             (4.1) 

 

where, Y(t) is the original signal, G(t) is the global variation pattern, and L(t) is the local 

variation pattern. 

  

Our approach was applied on real forging data. Three data sets were collected 

under different faulty conditions: normal condition, faulty condition one which 

corresponds to deformity in counterweight, and faulty condition two that occurs due to 

incorrect die setup. Each data set, under each process condition, includes 41 samples of 

four channels representing tonnage signals as a function of 90 design points of process 

time.  

  

Such decomposition can be illustrated with faulty conditions in a real forging 

process. In Figure 4.1, three data sets were collected under different faulty conditions: 

normal condition, faulty condition one which corresponds to deformity in counterweight, 

and faulty condition two that occurs due to incorrect die setup. Each data set, under each 

process condition, includes 41 samples of four channels representing tonnage signals as a 

function of 90 design points of process time. We noticed that faulty condition two curves 

behave almost the same like normal condition curves. The faulty condition one occurs 
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most likely in the problematic interval [20, 30] of the cycle, whereas faulty condition two 

takes place over all the cycle as a shift in the tonnage signal. Noticing the dissimilarity in 

behavior for faulty condition one than the other two conditions in the problematic interval 

(see Figure 4.1) [1]. We can look to the problem in a way by which we can extract data 

from the curves that can distinguish faulty conditions. The following section presents the 

methodology of decomposing signals into global and local patterns based on previous 

knowledge. 
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 Figure 4.1 Different Process Conditions 

Left: global pattern; Right: local pattern in the Problematic Time Interval 
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4.2  Global and Local Variations Extraction Using Weighted Spline Smoothing  

4.2.1 Global and Local Variations Extraction 

Using weighted spline smoothing for data sets under normal condition, we define 

the process weights vector (w) as a combination of different weights assigned based on 

local moving average of squared generalized residuals [38]. This weight vector is further 

used to produce global patterns for other process conditions to detect local and global 

variations for each process channel. 

  

Using weights vector, the spline smoothing curves after then will be determined 

by three main factors: local ordinary residuals, roughness penalty, and the weights values.  

Eq. 4.2 represents the modified residual sum of squares demonstrating the trade off 

among the three factors. 
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λ                            (4.2) 

 

The generalized residuals were used since it do not depend on the residuals variance and 

the smoother matrix corresponding value, besides it is useful in diagnostic procedures to 

detect outliers. We notice in (4.2) that generalized residuals are a scaled form of the 

ordinary residuals. The generalized residuals can be defined as follows [38]: 
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where σ is an estimate of residuals standard deviation factor; 
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Our approach starts with assigning a uniform vector of weights with { 1=iw }. 

The initial values of the residuals standard deviation and generalized residuals are used in 

finding the first combination of weights based on local moving average of the generalized 

residuals. Eq. 4.5 shows the formula for finding the first weights vector for each design 

knots [38]. 
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where, ),min( kindi +=  and ),1max( kimi −=  

 

Since our data sets are of moderate size, k value was determined to be 5 as in 

[38]. 

The first weights combination produced is further can be fed back into the weight 

estimate model to produce new updated weight estimation w�  as follows: 
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These steps can be applied till we reach iteration where the produced combination 

of weights generates a corresponding generalized residuals plot with homogeneous 

variance. i.e., random generalized residual plot or some sort of convergence occurs.   See 

Figure 4.2. 

 

As a result, the weights vectors are approximately similar for data variables 

extracted from the same sensor among different samples under normal process condition, 
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and there is no great need to have accurate weights values [38]. Therefore, an average 

weight value can be used to produce global pattern for future samples.  
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Figure 4.2 Absolute generalized residuals for reweighed Tonnage Signal 
Left: First reweighing iteration; Right: second reweighing iteration 

 

The basic idea of finding the cubic polynomial for a given interval can be shown 

in the following equation [48]: 

iiiiiiii dxxcxxbxxaxP +−+−+−= )()()()( 23                            (4.7) 

for i=1,2,�, n-1. 

where, andcba iii ,,,  id are coefficients, and andxxxx ii ,)(,)( 23 −−  )( ixx −  are called 

basis.  

Then, the polynomial fit G(t )over multi intervals will be represented as follows: 
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where iN  is an n-dimensional set of basis functions for representing the natural splines, 

and theta ( iθ  ) stands for the basis coefficients. 

Based on the spline features of continuity and first and second derivative existence, the 

polynomial coefficients can then be determined. Since the solution for the chosen global 

function is cubic spline, the function can be represented as follows: 

∑
=

=
n

j
jiji tNwtG

1

)()( θ                                                (4.9) 

  

The new smoothing parameter ( Gλ ) will be then determined using the extended 

argument of the cross validation method developed by Silverman in [38] for the weighted 

case. Consequently, the effective degree of freedom generated using this approach 

)( GDf can be determined using the following equation: 

   

))(2)(( 4/32/34/34/1 −−−− ∑= ikiGG tfwwtraceDf λ                          (4.10) 

where ∑ kw is the sum of weights of the design knots at t=i , and  f(ti) is the standard 

normal density function of the design points. 

  

Using the weighted spline smoothing or the corresponding degree of freedom, the 

generated spline smoothing will have the required features for the purpose of process 

condition detection and discrimination. In Figure 4.3, we notice that this approach reveals 

that faulty condition one occurs due to high local variations in the problematic segment,  
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whereas faulty condition two occurs due to global shift in the tonnage values. This result 

complies with the study conclusions conducted in [1]. 
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Figure 4.3 Sample of Global and Local Variation Extraction 
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4.3  Summary 

 In this chapter we discussed the spline smoothing technique used in developing 

global patterns to the original data in order to discriminate between different faulty 

conditions. The weighted spline smoothed curves were used to produce the global pattern 

of the original signals. Weights at each data knot were determined using the local moving 

average of the generalized residuals. Local variability profiles were extracted by 

subtracting original data curves from smoothed global patterns. 

  

The next chapter presents the PCuR model and test used to detect faulty 

conditions and to distinguish between them. Besides, the selection of training data sets 

based on clustering technique is also discussed. 
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Chapter 5. Monitoring Global and Local Variations of MFD 

 

 Obtaining global and local variations from original signals form a key feature of 

signal variations. For the purpose of process conditions detection and discrimination, we 

used global and local patterns as an input to the PCuR model. 

 

 5.1 Review of Principal Curve Regression Model 

 Recalling PCuR in chapter 2, Huang [2] introduced the concept of Principal 

Curve Regression for tonnage signals as follows: 

  

Denote by xk the p-channel tonnage signal observed at the kth crank angle of a 

cycle, k=1,2,�,m,  where xk = (xk1,�, xkp)T and the signal is of the form m
k 1}{x . If 

tonnage signals of n parts are observed, denote by m
ik 1, }{x  the ith observation of m

k 1}{x , 

where xk,i=(xk1,i,�, xkp,i)T is the ith observation of xk, i=1, �, n and k=1, �, m. The n 

samples are of the form m
k 1}{X , where the n×p matrix Xk=[xk,1, xk,2, ..., xk,n]T.  

The idea of PCuR is to extract principal curve from m
k 1}{x  and build regression model 

between the principal curve and m
k 1}{x .  
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Once the PCuR model is established from in-control tonnage signals, it can be 

used to determine whether process change occurs in future observations. The principal 

curve of new observation m
k 1}{z  is treated as new response m

k 1}{y .  

 

A multivariate linear regression model is assumed to adequately model 

�response� yk and �predictors� xk at the kth crank angle, k=1, �, m, i.e., 

T
ky  = [1 T

kx ] Bk + εk      (5.1) 

with 

E(εk)= 0, Cov(εk) = Σk,      k =1, �, m.    (5.2) 

By the results of Johnson, R.A, and Wichern, D.W. [50] in multivariate regression. The 

predicted ellipsoids for new response yk at time k are 
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 We used Bonferroni correction procedure to decrease the α value. This way less 

false alarms can occur in PCuR test. The primary α value for each data knot is 10%, 

therefore, the actual testing α value for all the cycle is )/( Mα =0.0011 for every time 

knot.  

 

 Huang [2] applied the PCuR test on the problematic interval and results in large 

number of out of control points appearing under faulty condition one compared to the 

samples of faulty condition two.  
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5.2 Monitoring Global and Local Variations Using PCuR 

 In this research we applied PCuR model to the forging samples without 

segmentation, i.e. a sample consists of 90 time knots and training data sets includes the 

first thirty samples of normal process condition. For process change detection purpose, 

we applied PCuR model to the global variation data sets, which were extracted by 

applying spline smoothing on the original signals. The results for normal condition data 

sets remain in control, whereas data points for faulty condition one and two exceeded 

threshold randomly, which indicates out of control status for data points. 

 

 For the purpose of faulty condition discrimination, we applied PCuR model on 

local variation profiles. As a result, all the samples under normal condition remain in- 

control. However, all samples of faulty condition one are out of control and 34 samples 

of faulty condition two remained in control. 

  

The following figure presents a sample result of applying PCuR on extracted 

global variation using in-control data sets. Results of applying PCuR test on global and 

local data sets using other process conditions are shown at the end of this chapter. 
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Figure 5.1 Result of PCuR Test on Global Pattern Under Normal Condition 
 

 

Using global variation data sets for process change detection, global and local 

variations were detected. On the other hand, local variation data sets were used for faulty 

condition discrimination purposes. Since faulty condition two is due to a global shift in 

the cycle, the corresponding local profile bear a resemblance to the local profile of the 
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training data sets; therefore it appears in-control. However local profiles for faulty 

condition one appears of control due to local variations. The result indicates the existence 

of some false alarms in applying PCuR model on local variations for faulty condition 

discrimination purpose. To illustrate the main cause of false alarms, we conducted an 

exploratory study to capture the variability among samples. 

 

5.3 Exploratory Study 

 According to Statistical Quality Control (SQC) concepts, an out of control status 

can be caused by variability and/or shift in the sample mean. This concept motivated the 

study of the a) RSS of the local variability data sets under normal condition for each 

sample composed of four channels p=4. 
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2))()((                                                   (5.4) 

and b) the mean of the residuals coming from the four channels for each sample under 

normal condition.  See Figure 5.7-(a,b). 
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where,  

sRSS  is the residual sum of squares for sample s, s=1,�,41 

sR  is the residuals mean for sample s. 

)( ic tY and )( ic tG is the original  and the spline smoothed data respectively at each knot i , 

i=1,�,n for channel c , c=1,�,p. 
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The following figure presents the RSS magnitudes and mean of residuals for all the 

samples collected under normal condition. 
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  (b) Mean of Residuals Under Normal Condition 

Figure 5.2 RSS and Mean of Residuals  
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 We chose twenty samples from each study as training data set that correspond to 

low variation for the PCuR model to predict faulty condition two as in control samples 

since it is caused by global signal shift. Eighteen samples were in common between the 

two studies groups RSSN  and RN as follows: 
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Using the obtained samples as training data set for PCuR test, the results 

improved by reducing the false alarms from 7 to 5 in detecting faulty condition two. The 

five false alarms samples of faulty condition two were out of control in few separate 

random knots i.e. not in the shape of cluster. Logically, this fact does not reflect defective 

condition occurrence on the working piece, since for a specimen to be defective, 

thermoplastic deformation may last for a time interval which will be reflected as cluster 

of out of control points in PCuR model. To interpret the result obtained by PCuR test for 

faulty condition two, we conducted the same exploratory study to capture the variability 

among samples collected under faulty condition two. The samples with high variation 

and shift in the mean RRSS FF , are represented below: 
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The false alarm samples for faulty condition two (F) are: 
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 We notice that faulty condition two has two groups of variability in its data set. 

The existence of some samples with high local variation caused the existence of false 

alarms in discriminating faulty condition two. 

 

5.4  Summary 

 In this chapter global and local variations under normal process condition were 

used as training data sets for the purpose of monitoring in the PCuR model and test. 

Global variation was used to detect process change, whereas local variation was used to 

discriminate among faulty conditions. However, some false alarms occurred, therefore, 

we conducted an exploratory study to capture the variability among the in control 

samples. The study was based on grouping and cluster analysis. The next chapter presents 

a simulation study performed to verify the proposed approach in decomposing MFD into 

global and local components.  

 

Results of applying PCuR test on different process conditions using global and local 

variations are shown below: 
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Figure 5.3 Result of PCuR Test on Global Pattern Under Faulty Condition One 
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Figure 5.4 Result of PCuR Test on Global Pattern Under Faulty Condition Two 
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Figure 5.5 Result of PCuR Test on Local Pattern Under Normal Condition 
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Figure 5.6 Result of PCuR Test on Local Pattern Under Faulty Condition One 
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Figure 5.7 Result of PCuR Test on Local Pattern Under Faulty Condition Two 
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 Chapter 6.  Simulation Study 

 

 6.1 Simulation Data 

We conducted the simulation study to verify our approach applicability on further 

applications and different types of process variables. We simulated a bivariate process 

with three process conditions: normal condition, a faulty condition due to two 

problematic segments in the cycle (faulty condition one), and a faulty condition due to 

global shift in the signal (faulty condition two). Thirty samples were simulated for every 

process variable with a cycle length equals to 90 knots. The signal functions under 

normal condition are given in the following equations: 

K
T

K xxY ε+++= )]sin(1),cos(1[                                                       (6.1) 

where, KY is channel denotation at time k, k=1,� ,90. Noise Kε  is generated from normal 

distribution. The covariance structure of the noise is 







10
012σ . Different values of 

variance 2σ were used to verify the approach under different variability structures in 

signals. The approach showed capability of faulty condition detection and discrimination 

using different combinations of covariance structures.  

 

Faulty condition one was generated by adding two deviations to shift every in-

control sample for both variables in two problematic time intervals. The length of the 

problematic segment is 10 knots. 
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The whole simulated signal was shifted to generate channels for faulty condition two. 

Figure 6.1 presents a sample of the simulated channels with their principal curve under 

normal condition.  
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Figure 6.1 Simulated Channels and their Corresponding Principal Curve 

  

6.2 Simulation Result 

Global and local patterns were extracted by applying weighted spline smoothing 

on in-control data sets. Weights were determined using local moving average of 

generalized residuals. Two iterations were generated till convergence occurred. Since the 

two channels present two different variables, two average weight vectors were produced. 

The weight vectors were used in fitting the two channels of future coming samples under 

different process conditions. Figure 6.2 shows global and local variations extractions for 

one channel of the simulated data. 
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Figure 6.2 Example of Global and Local Variation Extraction-Simulated Data 

  

The local variation under normal condition represents white noise. However, in 

the problematic segments, under faulty condition one, the variation magnitude is 

relatively higher than elsewhere in the simulated cycle. This indicates that faulty 

condition one is due to two problematic segments in the time intervals [20:30], and 

[50:60]. On the other hand, local variation under faulty condition two is similar to the 
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variation under normal condition, which shows that the cause of faulty condition two is a 

global shift in the signal. 
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Figure 6.3 Sample Results of Applying PCuR on Simulated Data 
First row is global data results; Second row presents results of local variations 

 
 

For the purpose of process change detection, we used global variation as input in 

the PCuR test. As a result, all samples under normal condition remains in-control, 

however, all samples for faulty condition one and two are out of control. On the other 

hand, using local variation as an input in the PCuR test, we could discriminate among 

process faulty conditions. All training data sets under normal condition remains in 
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control, and all samples of faulty condition one were out of control, whereas, all the 

samples of faulty condition two remained in control. See Figure 6.1. 

 

6.3 Summary 

 In this chapter, a simulation study was conducted to verify the developed 

approach. Three data sets were simulated representing bivariate data under three different 

process conditions: normal condition; faulty condition one, which is due to two local 

variations in the simulated cycles and; faulty condition two, which appears as global shift 

in the whole simulated cycles. Results were satisfactory. Global data appeared out of 

control for the faulty conditions and in control for the training data using the PCuR test. 

However, local variation data showed out of control status for faulty condition one, and 

remained in control for the in-control data sets and faulty condition two. 
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Chapter 7. Conclusion and Future Research Suggestions 

 

 This chapter presents the conclusion of the work that has been done in this 

research. A summary of the main contributions is also provided. Finally, directions for 

future research are also suggested in this chapter. 

 

7.1 Conclusion 

 This research presents a monitoring scheme that is able to handle and analyze 

multichannel functional data by decomposing data into global and local variations. In our 

methodology, we addressed weighted spline smoothing technique to generate global 

patterns for the purpose of detecting global shifts and variations that causes faulty 

conditions. Weights were determined using local moving average of the generalized 

residuals for diagnostic procedures. Local variations were obtained by subtracting global 

variations from original data. Using local variations, as a key feature to predict samples 

with local variations, we could discriminate among different faulty conditions. The data 

extracted from both global and local approaches were tested using PCuR test. Our 

example and results were illustrated using forging data sets from the industry. 

Furthermore, we simulated data to verify the proposed approach and results were 

satisfactory since no false alarms were observed. Therefore, our main contributions and 

achievements in this research can be summarized as follows: 
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• MFD interpretation by decomposition MFD into global and local components. 

• Process change detection using the extracted global variations from MFD by 

analyzing the whole cycle in a given industrial process. 

• Discriminating among different process conditions using local variation as input 

in the PCuR test. 

 

7.2 Future Research Suggestions 

 A further extension of this study can be focused on determining which process 

variable is significantly contributing in causing faulty conditions to occur. This work can 

start by decomposing the Hotelling 2T  statistic into independent components for each 

variable as in [51]. However, correlation among time should be considered in MFD.  

 

 Another desirable research direction is to estimate a confidence region for MFD 

or curve data using multiple samples. This study was accomplished for one sample 

depending on the finite dimensional Bayesian formulation for the curve estimation [38]. 

Finding confidence region for multi sample data provides solid structure for detecting 

faulty process conditions with MFD. 

 

 Last but not least research suggestion is to formulate an automatic approach to 

determine the amount of smoothness for the purpose of process change detection. This 

can be achieved by determining an optimal value of the effective degree of freedom by 

which local variations can be revealed. The optimal value can be controlled by assigning 

an objective function that maximizes the ratio of local variation in the problematic 
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segment to the variation at the rest of a process cycle. Other spline smoothing parameters 

can be determined using the variation and the smoother matrix as illustrated in [38]. 
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