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Hybrid Model for Characterization of Submicron Particles Using 
 Multiwavelength Spectroscopy 

 
Alicia C. Garcia-Lopez 

ABSTRACT 

 

 The area of particle characterization is expansive; it contains many technologies 

and methods of analysis.  Light spectroscopy techniques yield information on the joint 

property distribution of particles, comprising the chemical composition, size, shape, and 

orientation of the particles.  The objective of this dissertation is to develop a hybrid 

scattering-absorption model incorporating Mie and Rayleigh-Debye-Gans theory to 

characterize submicron particles in suspension with multiwavelength spectroscopy. 

 Rayleigh-Debye-Gans theory (RDG) was chosen as a model to relate the 

particle’s joint property distribution to the light scattering and absorption phenomena for 

submicron particles.  A correction model to instrument parameters of relevance was 

implemented to Rayleigh-Debye-Gans theory for spheres.  Behavior of nonspherical 

particles using RDG theory was compared with Mie theory (as a reference).  A 

multiwavelength assessment of Rayleigh-Debye-Gans theory for spheres was conducted 

where strict adherence to the limits could not be followed.  Reported corrections to the 

refractive indices were implemented to RDG to try and achieve Mie’s spectral prediction 

for spheres. 

 xii



 The results of studies conducted for RDG concluded the following.  The angle of 

acceptance plays an important role in being able to assess and interpret spectral 

differences.  Multiwavelength transmission spectra contains qualitative information on 

shape and orientation of non-spherical particles, and it should be possible to extract this 

information from carefully measured spectra.  There is disagreement between Rayleigh-

Debye-Gans and Mie theory for transmission simulations with spherical scatterers of 

different sizes and refractive indices.  Finally, it is not possible to adequately or 

realistically compensate for the differences between Mie and RDG through the use of 

hypochromicity models and/or effective refractive indices. 

 A hybrid model combining RDG and Mie theories was developed and tested for 

spheres of different sizes and refractive indices.  The results of hybrid model is that it 

approximates Mie theory much better than Rayleigh-Debye-Gans for particle sizes 

smaller than the wavelength and for a broader range of optical properties in the context of 

multiwavelength spectroscopy.  Overall, this new model is an improvement over 

Rayleigh-Debye-Gans theory in approximating Mie theory for submicron particles and is 

computationally more effective over other methods.  The development of the hybrid 

spherical model constitutes a platform for developing nonspherical models. 

 xiii



Chapter One 

Introduction and Methods 

1.1 Introduction 

Characterization of particles entails obtaining information about size, shape, orientation 

and chemical composition.  Particle characterization is a broad area of undertaking which 

encompasses many technologies, among them light spectroscopy techniques.  Light 

spectroscopy typically involves scattering and absorption methods.  Scattering 

measurements are performed at a single wavelength but measured as a function of the 

direction of observation.  For absorption, the light is measured in the forward direction as 

a function of wavelength.  Light scattering techniques typically use highly collimated 

sources (lasers), whereas absorption spectrophotometric techniques use broadband 

sources to produce multiwavelength spectra.  In either case the resulting spectra can be 

interpreted with the theory of electromagnetic radiation, which describes interaction of 

light with matter (Maxwell’s Equations).  Mie and Rayleigh-Debye-Gans theories are 

solutions to Maxwell’s Equations that relate the particle’s joint property distribution to 

the light scattering and absorption phenomena.  This connection is made through the 

optical properties that are characteristic of the materials contained in the particle. 

 The objective of this study is to develop a hybrid scattering-absorption model 

incorporating both theories to characterize submicron particles with multiwavelength 

spectroscopy.  To accomplish this objective Mie theory and Rayleigh-Debye-Gans theory 
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are revisited and extended to account for the field alteration predicted by Mie, and for the 

dipole radiation mechanism employed by Rayleigh-Debye-Gans.  Throughout this 

dissertation Mie theory and Rayleigh-Debye-Gans theories are emphasized because at 

this point they enable real time particle characterization for industrial and biomedical 

applications.  The largest area of application that would profit from this study is in the 

biological and biomedical field in the subject of microbial and disease detection in tissue 

and bodily fluids. 

 

1.2 Materials and Methods 

The programs for Mie theory, Rayleigh-Debye-Gans theory, instrument models and 

hypochromicity were developed in Matlab v6.5.1.  Computations for these programs 

were conducted using a Dell Inspiron 4100 with 1GHz Pentium III processor and 512 

MB RAM.  The optical properties (refractive indices) utilized were provided by Dr. 

Garcia-Rubio and the SAPD laboratory through the College of Marine Science at the 

University of South Florida [17]. 

 The computer codes developed for the analysis of Rayleigh-Debye-Gans and Mie 

particles were tested against published values of the scattering functions [1, 14].  In 

testing and exploring the algorithms for Rayleigh-Debye-Gans the refractive indices 

selected were those of soft bodies and hemoglobin, where soft bodies are defined here as 

particles whose relative refractive index is close to one with no absorption component.  

The values of the index of refraction n+iκ for biological particles commonly used are soft 

bodies (1 ) and hemoglobin (104.145. ≤≤ n 6.148. ≤≤ n , 15.001.0 ≤≤ κ ) [17].  

Polystyrene (1 , 2.25. ≤≤ n 82.001.0 ≤≤ κ ), silver bromide ( 5.36.2 ≤≤ n , 
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6.1001.0 ≤≤ κ ) and silver chloride ( 7.22 ≤≤ n , 0 85.0001. ≤< κ ) are materials found 

in industrial applications whose properties are used as standards for optical instruments 

[17].  Water (1 ) was used as the suspending medium.  The refractive indices 

as function of wavelength are reported in Appendix B. 

4.13 ≤≤ n.

 The ranges of particle volumes were chosen between 12700 nm3 and 87 µm3.  The 

spherical diameter equivalents to the volume range are between 25 nm -5.5 µm.  The 

table below gives the simulation parameters used to define the suspensions for the 

analyses conducted in this dissertation. 

         Table 1.1: Simulation Parameters 
Light Source Wavelength Particle Concentration Particle Density 

200-900 nm 1E-4 g/cc 1 g/cc 
 
1.3 Overview of Chapters 

This dissertation is divided into nine chapters.  Chapter two presents a review of Mie and 

Rayleigh-Debye-Gans theory, citing the resulting formulas for the scattered field and 

their matrix formulations.  For each theory the scattering intensity ratio that governs 

scattering measurements/simulations and the turbidity formula that governs transmission 

measurements/simulations are displayed.  The latter formula contains a term proportional 

to the scattering cross section, which takes different forms for the two models, and a term 

proportional to the absorption cross section, which is the same for both models.  Only 

simulations of transmission are reported, at multiwavelength. 
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 Chapter three describes aperture correction models that account for the fact that 

actual transmission measurements are inevitably polluted by the presence of some near-

forward scattered radiation.  The simulations of this effect are for the RDG model only, 

for 1 µm hemoglobin spheres. 



 Chapter four reports a study of nonspherical scatterers, simulating soft body 

ellipsoids.  Transmission curves are compared for two eccentricities, each with three 

different body orientations, using the RDG model. 

 Chapter five compares RDG theory and Mie theory for transmission with 

simulations for spherical scatterers of different sizes and refraction indices.  

Disagreement between the two theories is demonstrated.  The rest of the dissertation is 

concerned with attempts to modify RDG to bring the transmission simulations into closer 

agreement with Mie (the exact solution for spheres). 

 In chapter six, two approaches are described to increase the computed RDG 

turbidity to that of Mie.  The first approach is to use hypochromicity as a correction to 

RDG to account for absorption.  The second approach is based on the observation that the 

RDG formula for the extinction cross section is (very nearly) a simple quadratic function 

of n and κ; therefore one can invert this function and find "effective" values of κ or n that 

will result in turbidity values calculated by RDG in agreement with those computed by 

Mie.  Reasons for rejecting these approaches are cited. 

 Chapter seven presents the new hybrid model, based on the rigorous Mie 

calculation of the internal field and the Rayleigh-Debye-Gans approach for the scattering 

radiation.  This theory is developed in full for spheres.  In chapter eight the hybrid model 

is tested by simulated comparisons with Mie and Rayleigh-Debye-Gans theories, 

employing the span of optical properties of interest. 

 Finally, conclusions, contributions, and recommendations are covered in chapter 

nine. 
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Chapter Two 

Scattering Theories and Models 

This chapter describes light scattering theories and measurements of submicron particles 

in suspension.  The first section provides information on scattering and turbidity 

measurements used to characterize particles.  This section also provides a description of 

the models used to describe the observed measurement.  The subsequent sections provide 

an outline of Mie theory and RDG theory.  These theories describe the scattering 

phenomena observed in transmission and scattering measurements.  Specifically, the 

scattering intensity ratio as a function of wavelength (in our case a broad wavelength 

range) and angle of observation, and the turbidity as a function of wavelength (again 

broad wavelength range) are quantified.  Other more computationally intensive, 

techniques for solving light scattering and absorption problems are discussed.  These 

techniques include the T-Matrix and the Purcell-Pennypacker methods. 

 

2.1 Background 

There are many types of spectroscopy measurement used to characterize particles in 

suspension.  Most interest focuses on transmission  and scattering measurements.  In the 

former the electromagnetic energy of an incident wave is measured after interaction with 

a particle or suspension as it leaves the system in the forward direction.  In contrast, 

scattering measurements capture the light after interacting with a particle as it leaves the 
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system at any angle of observation.  They differ because transmission measurements 

capture both the (forward) scattered light and the unscattered portion of the incident 

beam.  Information concerning the properties of the scattering and absorbing particle is 

contained in the measured spectra, which are plots of the power intensity versus 

frequency or wavelength (and, direction).  Through the uses of the appropriate theories 

and models, it is possible to obtain estimates of the size, shape, chemical composition, 

internal structure, and surface charge from spectroscopic measurements [1].   

 A complete scheme for particle characterization must take into account various 

experimental conditions occurring in the lab system when spectroscopy measurements 

are conducted.  These include the type of measurement, instrumentation setup, particle-

light interaction, and other optical phenomena.  Figure 2.1 illustrates how these 

components relate to one another.  The scattering intensity ratio equation and the 

turbidity equation are energy balance equations that are developed from the scattering 

theories studied.  A detailed description of the transmission measurement and analysis is 

provided in chapter three.  Refractive indices and corrections are discussed in chapter six. 

 The desire to characterize particulate systems for real-time continuous monitoring 

has led to the selection of Rayleigh-Debye-Gans (RDG) theory and Mie theory.  

Computation time being the restricting factor, these theories provide light scattering 

solutions in a suitable time.  The rest of this chapter is dedicated to the description of Mie 

and RDG theories along with the development of the corresponding scattering intensity 

ratio and turbidity formulas. 
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Figure 2.1: Diagram for Complete Particle Characterization Model 
 

2.2 General Concepts and Equations 

The emphasis of this section is the utilization of the scattering matrix formalism to 

evaluate the extinction of light predicted by the scattering intensity and turbidity 

equations.  Throughout the recent course of light scattering history, the terms turbidity (or 

optical depth) and optical density have caused much confusion [4].  Turbidity has been 

traditionally defined as an attenuation coefficient due to scattering (only) for the 

transmission of the incident beam.  Herein, turbidity is described as the total attenuation 

observed due to scattering and absorption.  The term optical density (O.D.) was originally 

used synonymously with absorption; the units of O.D. are absorption unit per pathlength 

(Au/cm).  Turbidity will be described in the units of optical density. 
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The amplitude scattering matrix is used to relate the incident and scattered fields. 
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where  are the asymptotic incident and scattering fields parallel and 

perpendicular to the scattering plane; r is the distance from the scattering center to the 

detector, z is distance along the axis of propagation of the incoming wave, and k is the 

propagation constant or wave number in the medium surrounding the 

particle;

ssii EEEE ⊥⊥ ,,, ||||

( ) oonk λπ2= , where λo is the wavelength in vacuo and no is the refractive 

index of the medium. 

 Van de Hulst [2] describes in detail various assumptions made for simplifying the 

scattering functions with regard to rotation and symmetry of particles.  For a spherical 

particle S3 and S4 are equal to zero.  S1 and S2 are complex amplitude scattering elements; 

they depend on the indices of refraction, particle size, and the scattering direction.  S1 and 

S2 are given in the Mie model by formidable series expansions involving Bessel, 

Neumann, and Legendre functions.  The expressions for S1 and S2 predicted by Mie and 

RDG theory are provided in subsequent sections. 

 If the detector is not situated in the forward direction, it is illuminated only by 

light that is scattered by the particle; its construction shields it from the incident beam.  

The term “scattering measurement” refers to this configuration.  This scattered intensity Is 

is given by 
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Is/Io is known as the scattering intensity ratio.   

 On the other hand, if the detector is aligned with the incoming beam, it measures 

the forward scattered wave together with the transmitted incident wave.  The analysis of 

such a “transmission measurement” is most easily conducted by accounting for the 

energy loss suffered by the original incident beam.  There are two loss mechanisms 

which attenuate the incident beam, scattering and absorption.  The power scattered out of 

the beam by a particle is evaluated by the integrating the scattered intensity over an 

enclosing sphere “at infinity” (in spherical coordinates). 

( ) θφθφθλ
π π
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0

2

0

2 sin,,,   2.4 
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It is convenient to define a scattering cross section Csca as the area over which one would 

integrate the incoming intensity Io to balance the scattered power; thus  

powerscatteredCI scao =     2.5 

or 

( )
θφθ

φθλπ π

ddr
I
rI

C
o

s
sca sin

,,, 2

0

2
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∫ ∫=    2.6 

The scattering efficiency Qsca is the ratio of the Csca to the actual cross section G that the 

particle presents to the incoming beam: 

G
C

Q sca
sca =      2.7 

 The power absorbed by the particle will be discussed in detail in chapter five; it 

too can be expressed using an equivalent area Cabs: 

powerabsorbedCI abso =     2.8 

According to Van de Hulst [2], the absorption cross section for a particle of volume V 

and relative refractive index of refraction ( ) oninm κ+=  is given (in both theories) by 









+
−

=
2
1Im3 2

2

m
mkVCabs     2.9 

The absorption efficiency is expressed analogously: 

G
C

Q abs
abs =      2.10 

 Thus one can mathematically characterized the power loss in the incident light as 

if an area (Csca+ Cabs) were blocked out of the incident beam by each particle.  The 

extinction cross section and efficiency , then, are given by  
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absscaext CCC += , 
G

Cext
ext =Q    2.11 

 If the particle density in the medium is Np, then in an infinitesimal length dz there 

are Npdz particles per unit area; each effectively depletes the beam power by CextI.  

Therefore the attenuation of the beam intensity I(z) as a function of pathlength z is 

governed by 

( ) )()()( zICdzNzIdzzI extp−=−+     2.12 

or  

)(zICN
dz
dI

extp
z −=      2.13 

The solution to the differential equation is 

zCN extpeoIzI −= )()(      2.14 

 The optical theorem [1] states that the extinction cross section can be expressed in 

terms of the elements of the scattering amplitude matrix in the forward direction 

( )[ ] ([ 0Re40Re4
2212 ==== θ )]πθπ S

k
S

k
Cext    2.15 

The terms turbidity, or optical density τ are used to characterize the total attenuation in a 

sample of length l. 

lGQNlCN extpextp ==τ     2.16 

 In practice, a detector placed in the forward direction will have a finite aperture, 

and thus capture some of the radiation scattered at small angles; corrections for this effect 

are discussed in chapter three. 
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2.3 Mie Theory and Model 

The exact solution to the boundary value problem for light scattering by a sphere is 

generally referred to as Mie Theory [1].  Mie theory assumes that the spherical scattering 

object is composed of a homogeneous, possibly absorbing isotropic and optically linear 

material irradiated by an infinitely extending plane wave. 

 
Figure 2.2: Diagram of Coordinate System used in the Mie and RDG Models 

In figure 2.2 (x,y,z) refer to Cartesian coordinates and (θ,φ, rr ) refer to spherical 

coordinates.  The amplitude scattering matrix elements S1 and S2 are expressed explicitly 

as 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }∑

∑
∞

=

∞

=

+
+
+

=

+
+
+

=

1
2

1
1

coscos
1
12

coscos
1
12

n
nnnn

n
nnnn

ab
nn
nS

ba
nn
nS

θτθπθ

θτθπθ
  2.17 
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where πn(cosθ) and τn(cosθ) are defined in terms of the associated Legendre polynomial 

; 1
nP

( ) ( )

( ) ( )θ
θ

θτ

θ
θ

θπ

coscos

cos
sin

1cos

1

1

nn

nn

P
d
d

P

=

=
    2.18 

Note that there is no φ dependence in the Mie model.  To calculate the scattering intensity 

ratio using Mie theory, the equations in 2.17 for the amplitude scattering matrix elements 

can be substituted into equation 2.2  

 The amplitude scattering matrix elements for Mie theory at 0=θ  are given by: 

( ) ( ) ( ) ( )(∑
∞

=

++===
1

21 12
2
1000

n
nn banSSS ooo )  2.19 

The turbidity formula for Mie theory is calculated by substituting 2.l9, into equations 

2.15 and 2.16. 

 Through the direct calculation of the turbidity and scattering intensity ratio 

equations, Mie theory has been shown to be an effective tool for determining particle size 

distributions of nonspherical shapes, internal structures, and optical properties [4]. 

 

2.4 Rayleigh-Debye-Gans Theory and Model 

The basis of the theory for Rayleigh-Debye-Gans scattering is Rayleigh scattering.  

Rayleigh presented an approximate theory for particles of any shape and size having a 

relative refractive index near unity, Debye and Gans later added refinements.  Kerker [5] 

states that the fundamental approximation in the Rayleigh-Debye-Gans approach is that 

the “phase shift”, the change of the phase of a light ray that passes through the sphere is 
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negligible.  A restriction is therefore put upon the particle size, the wavelength, and the 

refractive index.  For a particle of radius a the restriction is 11 <<−mka2 . 

 The physical assumption of Rayleigh-Debye-Gans scattering is that each 

infinitesimal volume element of the particle gives rise to Rayleigh scattering and does so 

independently of the other volume elements.  The waves scattered in a given direction by 

these elements interfere due to the different positions of the volume elements in space.  

For spherical and non-spherical particles, a form factor  

( ) ∫= dVe
V

f iδθ 1     2.20 

is introduced that averages the phase difference δ throughout the volumes V of the 

(spherical and nonspherical) particle; the scattering amplitude elements S1 and S2 then 

take the form of 

( )θ
π

fV
m
mikS 








+
−

=
2
1

4
3

2

23

1     2.21 

( ) θθ
π

cos
2
1

4
3

2

23

2 fV
m
mikS 








+
−

=    2.22 

were .  Kerker lists form factors from various shapes, of which some are 

quoted in this dissertation.  In subsequent sections the specific derivation of the form of f 

is given, as well as a discussion for utilizing f to deduce orientation.  A detailed 

derivation of the scattering intensity ratio equation and the turbidity equation for RDG is 

developed in Appendix A.  The scattering intensity ratio is easily obtained by substituting 

equations 2.20 and 2.21 for the amplitude scattering elements into equation 2.2.  For 

unpolarized light, 2.3 becomes 

043 == SS
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The scattering cross section Csca is expressed from 2.6 as 

( )( )∫ +
+
−

=
π

θθθθ
π 0

22
2

2

224

sincos1
2
1

16
9 df

m
mVkCsca   2.24 

 The general expression for the absorption cross section is, from equation 2.9, 









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−

=
2
1Im3 2

2

m
mkVCabs     2.25 

The extinction cross section is the sum of these two (equation 2.24 and 2.25): 
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
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The expression for the turbidity for a monodispersed system can then be explicitly 

expressed by the following equation. 
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2.5 Hybrid Theory and Model 

The new scattering model proposed in this dissertation is a hybrid combination of Mie 

theory and Rayleigh-Debye-Gans theory.  Chapter six is dedicated to the description and 

development of the hybrid theory and model. 
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2.6 Methods Review 

In sections 2.3 and 2.4 the models presented for characterizing particles have been Mie 

theory for spherical particles and Rayleigh-Debye-Gans theory for arbitrary shaped 

particles.  To summarize, Mie theory is an exact mathematical solution to Maxwell’s 

Equations for light scattered by spheres.  It has been used extensively to characterize non-

spherical particles approximately for a broad range of sizes and optical properties.  

Although Mie theory provides good estimates of the size and chemical composition it 

does not posses the ability to estimate the actual shape and orientation of non-spherical 

particles.  Rayleigh-Debye-Gans theory provides information on shape and orientation 

for spherical and nonspherical particles; however, its applicability has limitations with 

regards to size and optical properties of systems. 

 For the case of nonspherical particles, many exact and approximate methods have 

been developed.  Singham and Bohren discuss advantages and disadvantages of several 

[6, 7].  Two methods considered significant to this investigation are the T-Matrix and 

Purcell-Pennypacker method.  The T-Matrix is the linear transformation connecting the 

coefficients of the eigenfunctions in the scattered field and those for the incident field.  It 

is through the linearity of Maxwell’s equations and the boundary condition satisfied by 

the electromagnetic field that these coefficients are linearly related.  Bohren states that in 

principle the coefficients of the T-matrix are obtainable by integration; however, 

computational difficulties arise if the particles are highly absorbing or their shapes 

extreme.  Recent progress has been made for computing the T-matrix as discussed by 

Mishchenko et. al [8].  Mishchenko provides a review and description of several 
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numerical techniques developed for single and aggregated particles.  The scope of this 

dissertation is on single particles and as such a brief overview follows. 

 The standard approach for computing the T-matrix for single scatterers is based 

on the extended boundary condition method developed by Waterman for homogenous 

particles.  Nearly all numerical results computed by the T-matrix relates to bodies of 

revolution.  The first computational advance of the T-matrix is using nonspherical 

particles of fixed orientation using the extended boundary condition method.  This 

method proved to be faster than the conventional separation of variables method for 

spheroids and discrete dipole approximation integral equation formulation.  The 

disadvantage to using the extended boundary condition method is its poor numerical 

stability for particles with very large real and/or imaginary parts of the refractive index, 

large size compared to the wavelength, and/or large extreme geometries. 

 Mishchenko discusses the iterative extended boundary condition as another 

approach for overcoming the problem of numerical instability in computing the T-matrix 

for highly elongated spheroids.  The disadvantage of this technique is that the numerical 

stability comes at the expense of considerable increase in computation code, complexity, 

and CPU time.  The last computational approach discussed by Mishchenko is that of 

using extended precision instead of double precision floating point variables.  This 

technique provides an increase in size parameter for spheroids and better accuracy.  The 

use of the extended precision variable requires only a negligibly small additional memory 

and its approach is simple with little additional programming.  The disadvantage to the 

extended precision is the CPU time. 
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 In the Purcell-Pennypacker method a particle is approximated by a lattice of 

dipoles, each small compared with the wavelength but still large enough to contain many 

atoms.  Each dipole is excited by the incident field and by the fields of all the other 

dipoles.  Two methods are used to solve for these equations; either iteration or matrix 

inversion.  The iterative method is slow for large parameters, dipoles and values of the 

refractive index.  The matrix inversion method, although useful for calculating scattering 

by a particle in more than one orientation and for orientational averaging over an 

ensemble of particles, is limited to small number of dipoles. 

 An embedding method using a scattering-orders approach was developed by 

Singham and Bohren [6].  The scattering-orders perturbation method is an extension of 

the series for the perturbation method which looks upon a nonspherical particle as a 

sphere, the boundary of which is distorted or perturbed by different amounts at different 

points [1].  In the case of Singham and Bohren, the scattering-order perturbation method 

is used to formulate the coupled dipole method.  This method uses the dipolar 

interactions as infinite series in scattering-orders.  Two interactions exist, those between 

dipoles within the sphere and all others.  The scattering fields resulting in the dipole 

interaction within the sphere are described by Mie theory or any other equivalent theory.  

It was demonstrated that this method worked and shortened computation time.  However, 

it was limited by the scattering-order series, which can diverge.  The greater the refractive 

index, the smaller the particle size for which it diverges. 
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 The endeavor to characterize bioparticulates in the context of engineering 

application requires identifying the problem, finding solutions, analyzing, designing and 

testing of the solution all taking place in real-time.  Mie, Rayleigh-Debye-Gans, and the 

new hybrid theory provide a more palatable means to characterize biological systems as 

compared to those aforementioned.  The rest of this dissertation describes how these 

theories are utilized and explored. 



Chapter Three 

Instrumentation Correction Model for Transmission 

The research presented in this document utilizes many models to represent those 

conditions present when taking experimental measurements.  As stated in the previous 

chapter and illustrated in figure 2.1, light scattering, instrumentation and optical formulas 

are integrated to make up a complete model for experimental conditions observed when 

taking turbidity measurements.  The previous chapter described the light scattering 

equations for the intensity ratio and transmission spectroscopy measurements.  This 

chapter is dedicated to discussing the instrument formulas available for simulating 

transmission measurements and implementation of the formulas to RDG theory. 

 

3.1 Instrumentation Correction Model 

Deepak et al. [9] defines the expression “forward scattering for a single scattering 

phenomenon” as scattered radiation reaching the detector after being scattered only once 

by a scatterer situated within the path of the direct radiation.  Ideally, the conditions for 

turbidity measurements entail a non-divergent beam illuminating a homogeneous 

medium and a detector directly, opposite the light source, possessing an acceptance angle 

close to zero (to capture light solely in the forward direction).  The turbidity equation 

presented in the previous chapter does not account for the instrument setup, therefore an 

instrument model or correction to the turbidity is introduced in this chapter.  On the basis 
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of the scattering theories presented and the instrument setup used for transmission 

measurements, the correction factor provided by Deepak et al. was chosen. 

 The correction factor is dependent upon the geometry of the transmission 

measurement through the angle θ, subtended at the scatterer by the detector window 

(figure 3.1).  Therefore the instrument design has to be taken into account.  For 

completeness the two designs provided by Deepak et al. were implemented [9]: the open 

detector and pinhole detector.  The geometries are illustrated in figure 3.1 (a) and (b).  

 
Figure 3.1: Transmission System (a) Open Detector (b)Pinhole Detector 
 
 Deepak et al. states that the true optical depth τ from transmission measurements 

cannot be obtained directly.  Deepak et al. notes that the finite aperture of the detector, in 

a transmission measurement, picks up some additional light that has been scattered into 

the aperture.  As seen in chapter two the turbidity formula (equation 2.16) 
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( ) ( ) extpabsscapabsscap lQNQQlGNCClN =+=+=τ    3.1 

accounts for light that has been scattered out of, or absorbed from, the incident beam.  

Recall that the power scattered by a particle equals (equation 2.4) 

( ) oscas ICddrrIpowerscattered == ∫ ∫ θφθφθλ
π π
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0

2 sin,,,   3.2 

However, if the finite aperture captures scattered light within a cone of half-angle δ in the 

forward direction, then the beam depletion due to scattering only  
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giving an effective scattering cross section of  
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The apparent extinction cross section of the particle can be written 
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or 
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 In the open detector system (figure 3.1a) a radiation source is placed at the focal 

length of the transmitter lens L1, which transmits a parallel beam through the medium of 

thickness l, which is in turn measured by an open detector of radius R2.  The path 

averaged correction factor P̂  for particles on axis is defined as 
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( )∫=
2

2csc,tanˆ

π

φ

φφδχδ dRP     3.7 

where the angle δ for the scatters satisfies 12tan LR=δ .  The pinhole detector system 

(Figure 3.1b) consists of a radiation source placed at the focal point of a lens L1.  A 

second lens L2, with focal length f, focuses the light through an aperture of radius r in the 

focal plane and onto the detector.  The path averaged correction factor  for the pinhole 

detector is simply 

P̂

( )δPP =ˆ      3.8 

The result of equation 3.2 stems from the fact that δ  is determined by fr=δtan , 

which stays constant. 

 The correction factor corresponding to the design set up can be introduced into 

the turbidity equation, equation 2.11, by multiplying through by ( )δP̂ : 

( )δχπλτ PmQalN extp
ˆ),()( 2=    3.9 

 

3.2 Implementation of Instrument Corrections 

The corrections for scattering developed by Deepak [9] have been evaluated for RDG 

theory for hemoglobin spheres.  Hemoglobin spheres are hypothetical spheres whose 

refractive indices are those of hemoglobin.  The refractive indices of hemoglobin were 

used to test these effects for strong scattering and absorption relative refractive indices 

( 1.0001.0,2.11 ≤≤≤≤ oo nnn κ ).  The acceptance angle for spectrometer detectors are 

typically less than or equal to 2 degrees.  The acceptance angles studied for both detector 
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configurations were 1, 2, and 5 degrees for a spherical particle of 1 µm.  The parameters 

used to conduct the simulations are provided in table 1.1. 

 Figures 3.2 and 3.3 show the simulated transmissions using Rayleigh-Debye-Gans 

theory with and without acceptance angle corrections for each detector configuration.  

The (uncorrected) Mie theory simulation is included as a reference.  The pinhole detector 

setup (figure 3.2) shows smaller subtle changes in the corrected spectra for all angles 

(RDG1, RDG2, RDG5) compared to uncorrected (RDG) spectra.  The open detector setup 

(figure 3.3) shows dramatic changes in the spectra as the aperture angle increases.  It is 

evident that the angle of acceptance plays an important role in being able to assess and 

interpret spectral differences.  Bohren has made similar statements concerning the angle 

of acceptance though here calculations have been provided. 

 Having demonstrated the methodology for correcting for finite detector apertures 

in transmission measurements, we next turn to a study of the effects of particle shape and 

orientation.  Aperture corrections are omitted in the simulations reported in the remainder 

of the dissertation, except where noted. 
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Figure 3.2: Calculated Transmission of Rayleigh-Debye-Gans for 1 µm Hemoglobin 

Spheres with Pinhole Detector Setup 
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Figure 3.3: Calculated Transmission of Rayleigh-Debye-Gans for 1 µm Hemoglobin 

Spheres with Open Detector Setup 
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Chapter Four 

Nonspherical Particles 

 

Form factors have been developed for many shapes such as cylinders, disks, rods, 

spheres, and ellipsoids.  We are interested in biological systems, whose particles are best 

represented by ellipsoids. 

 

4.1 Geometry and Notation for Ellipsoids 

It is convenient to carry out the present analysis in two non-standard, left handed 

coordinate systems, the laboratory and particle frame.  The laboratory frame establishes 

the position and orientation of the particle relative to the source and detector.  The 

particle frame exploits the convenience of particle coordinates in describing the 

scattering.  Therefore scattering calculations are in the particle frame and related back to 

the laboratory frame.  Unit vectors along the xL, yL, and zL axes in the lab frame are 

denoted by i , and LL j
rr

, Lk
r

; and similarly for the particle frame. 
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Figure 4.1: Light Scattering in Laboratory Frame 

 

 
Figure 4.2: Light Scattering in Particle Frame 

 
The behavior of light scattered from the particle is dependent upon its size, shape, 

orientation and chemical composition.  Figure 4.1 illustrates the incident beam 

approaching the particle in the zL-direction in the laboratory frame.  The light scattered 

from the particle can radiate in all directions.  The line in the scattering plane that bisects 

the angle π−θ between the incident and scattered beam is called the bisectrix [2], denoted 
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by BIS  in figures 4.1 and 4.2.  The plane through the bisectrix ( BIS ) and perpendicular 

to the plane of the scattering ( SCA ) will be called the bisectrix plane. 

 Equation 4.1 describes the directions of incident light, scattered light and the 

bisectrix from the laboratory frame. 
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kiINSCABIS
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kIN

rr

rr
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1θcosθsin

θcosθsin

+−=−=

−=

=

   4.1 

The description can also be expressed in the particle frame.  Figure 4.2 shows the angles 

α, β, γ used to relate the bisectrix to the particle axes.  Calculation of the scattered light 

intensity at different angles in the laboratory frame can be reconstructed through its 

relation to the particle frame. 

p
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j
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E
k
j
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where ip=|1 0 0|, jp=|0 1 0|, kp=|0 0 1| in the particle frame, the Euler angles ψ, φ, ω are 

used to relate the frames using the zyz’ Euler rotation sequence, and E is given by . 

ωωψωψ
φωφψφωψφψφωψ
φωφψφωψφψφωψ

cossinsinsincos
sinsincoscossincossincossinsincoscos
cossinsincoscoscossinsinsincoscoscos

+−−−
−+−

=E

 4.3 

Using this relationship, the directional cosines of angles α, β, γ can be found in the 

laboratory frame to mathematically describe the bisectrix (equation 4.1). 

LLL k
BIS

BISj
BIS

BISi
BIS

BIS rrr
⋅=⋅=⋅= γβα cos,cos,cos   4.4 
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In the case of an ellipsoid with a fixed orientation, we can see the use of the directional 

cosines in the form factor computed by Kerker: 
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γβα

π
θ

222222

3

2
232

coscoscos

2
9

cbaA
hAu

u
uJ

f

++=
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where A is a vector described by the directional cosines and a, b, c are the semiaxes for 

ellipsoid.  The variable h equals 





=

2
sin4 θ

λ
πh . 

 The following is a short table of various form factors, pertinent to this work, taken 

from Kerker [4].  The equations presented in this section were programmed; simulations 

conducted are reported in the next section. 

Table 4.1: Table of Form Factors 
Shapes Definition of variables Form factor f2(θ) 

Sphere Radius=a 
u=ha 

 

Concentric 
Sphere with 
spherical shell 

Inner radius=a 
Outer radius=b 
u=ha 
v=hb 
Inner refractive index=m1 
Inner refractive index=m2 

 

Ellipsoid of 
Revolution 

Semi axes are a,b, β is angle 
between figure axis & 
bisectrix 
u=h(a2cos2β + b2sin2β)1/2 

 

Ellipsoid Semi axes are a,b,c 
u=hA 
A2=a2cos2α + b2cos2β+ 
c2cos2γ 
α,β,γ are the directional 
cosines of the bisectrix 
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4.2 Ellipsoid Simulations 

For the simulation of the effects of shape and orientation on the multiwavelength 

transmission spectra, prolate ellipsoids with refractive indices of soft particles have been 

selected.  Ellipsoids have been used to model the scattering behavior of a large variety of 

biological systems such as microorganisms and red blood cells, and offer the possibility 

of exploring geometrical extremes between spheres and needle-like particles.  The 

semimajor and semiminor axes for prolate ellipsoid were determined for a volume 

equivalent to 1 µm diameter sphere. 

 For absorption it is apparent from equation 2.9 that the pathlength for the particle 

is not relevant since the absorbed power is proportional to the volume.  Nevertheless, 

scattering is proportional to the cross sectional area and therefore orientation.  For a 

prolate ellipsoid with length a along its semimajor axis and lengths b=c (<a) along its 

semiminor axes, the eccentricity ( ac /=ε ) values tested were 0.3 and 0.8.  Figure 4.3 

illustrates three orientations studied for the ellipsoid.  Consider the extinction cross 

sectional area of the particle as the shadow projected on the forward plane (Geometrical 

Optics).  Orientation A illuminates the ellipsoid along a semiminor axis, here the largest 

cross sectional area (football shape) is projected with the light passing through the 

shortest pathlength of the ellipsoid.  Orientation B illuminates the ellipsoid along the 

semimajor axis; here the smallest cross sectional area (circle) is projected with the light 

passing through at the longest pathlength of the particle.  Finally, orientation C 

illuminates across the ellipsoid along a nonaxial direction, here the projection of the 

particle and the light passing through are intermediate to those of orientation A and B.  

The orientations stated represent extreme cases for a particle fixed in space. 
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  Orientation A     Orientation B 

 
Orientation C 

 
Figure 4.3: Fixed Orientations A, B, and C for an Ellipsoid 

 
 For each of these orientations the projected cross sectional area in the laboratory 

xy plane and average pathlength along the laboratory z axis were calculated.  These 

projected values were used to compute the transmission (using the RDG form factors as 

presented earlier).  The algorithms for Rayleigh-Debye-Gans calculations for non-

spherical particles with volumes equivalent to that of a 1 µm diameter sphere, were tested 

against Mie calculations for the sphere, using the relative refractive indices in the range 

where the RDG assumptions are met; for these case studies the refractive indices of soft 
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bodies were used.  The multiwavelength turbidity spectra were calculated for soft body 

ellipsoids for two eccentricity values and three fixed orientations. 

 The multiwavelength turbidity spectra for the soft body ellipsoids are plotted 

along side the calculated turbidity using Mie theory.  Figure 4.4 shows the effect of the 

particle orientation (A, B, C) for a prolate ellipsoid with an eccentricity of 0.3.  Figure 4.5 

shows the turbidity for an ellipsoid with an eccentricity of 0.8.  (An eccentricity of 1 for 

an ellipsoid results in a sphere; thus the predicted spectra for RDG should be the same as 

for Mie theory.)  Comparison of ellipsoids with varying eccentricities (figures 4.4 and 

4.5) shows that particle orientation and shape have a significant effect on the features and 

amplitude of the multiwavelength turbidity, in the RDG model. 

 Multiwavelength transmission spectra contain quantitative and qualitative 

information on shape and orientation of non-spherical particles, and it should be possible 

to extract this information from carefully measured spectra.  This conclusion is in 

agreement with the results reported in Buehler [18]. 
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Figure 4.4: Calculated Transmission of Soft Body Prolate Ellipsoid ε=0.3 with a Volume 

Equivalent to a 1 µm Sphere 
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Figure 4.5: Calculated Transmission of Soft Body Prolate Ellipsoid ε=0.8 with a Volume 

Equivalent to a 1 µm Sphere 
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Chapter Five 

Validation Study of Rayleigh-Debye-Gans Theory 

This chapter scrutinizes Rayleigh-Debye-Gans theory by simulating a broad range of 

refractive indices and particle sizes, probing the limitations imposed by the assumptions 

and approximations implicit in the theory. 

 

5.1 Exploration of Theoretical Limits 

The limits of Rayleigh-Debye-Gans model were discussed in chapter two.  To 

summarize: the relative refractive index m must be close to one and the size of the 

particle must be much smaller than 1−mλ .  There exists a trade off for the limits of 

RDG theory; first, if m is close to one and no absorption is present then the size of the 

particle can be the same order of magnitude as the wavelength.  Conversely, if absorption 

is present and m is greater than one, the particle size must be smaller than the wavelength.  

Although these assumptions are invoked in the derivation of the theory, scope of the 

present research and the complexity of its models calls for a reevaluation of these 

restrictions for multiwavelength measurements where strict adherence to the limits cannot 

be followed.  Three approaches were taken to explore, through simulation, the constraints 

of this theory for spheres.  First, the sizes of the spherical particles were kept small 

compared to the wavelengths, but the wavelength-dependent relative refractive index was 

allowed to significantly exceed one , typical of actual materials. 
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Second, the relative refractive index was kept close to one while the absorption was held 

at zero, and particle sizes comparable to the wavelengths were considered.  Third, the 

contribution of absorption in the relative refractive index, kept close to 1, was 

investigated for particle sizes comparable to the wavelengths.  The following subsections 

describe in more detail the parameters used and the conclusions and observations drawn. 

 

5.2 Particle Diameter << Wavelength 

The first of the sensitivity studies conducted tested the limits of Rayleigh-Debye-Gans for 

relative refractive indices greater than one and the absorption greater than zero, while 

keeping small sized spherical particles, compared to the wavelengths (200 nm-900 nm).  

The multiwavelength transmission spectra were calculated for Mie and Rayleigh-Debye-

Gans using spheres of silver bromide ( 4.21.1 ≤≤ onn , 0 85.00001. ≤≤ κ ) and spheres 

of silver chloride ( 4.21.1 ≤≤ onn , 6.00001.0 ≤≤ κ ).  The spherical diameter sizes 

chosen were 25 nm and 50 nm.  Particle concentration, particle density, and wavelength 

range were kept constant 

 Figures 5.1, 5.2 show that Rayleigh-Debye-Gans gives an adequate approximation 

to Mie for particle sizes much smaller than the wavelength.  Figures 5.3, 5.4 reveals that 

for slightly larger particles Rayleigh-Debye-Gans no longer closely follows Mie Theory.  

Notice that in the spectral region where absorption is small (300-900 nm) both theories 

coincide even though n/no>1.  However, where strong absorption is present, the theories 

rapidly diverge (see the optical properties of AgBr and AgCl reported in Appendix B),  

clearly suggesting that absorption plays an important role in the disparity between the 

theories. 
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Figure 5.1: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 25 nm AgBr Spheres 
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Figure 5.2: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 25 nm AgCl Spheres 
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Figure 5.3: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 50 nm AgBr Spheres 
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Figure 5.4: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 50 nm AgCl Spheres 

 37



5.3 Particle Diameter ~ Wavelength, No Absorption 

The restriction of Rayleigh-Debye-Gans theory with respect to size was tested through 

the calculation of transmission spectra for nonabsorbing spherical particles with relative 

refractive index close to one.  The refractive indices chosen were soft bodies ( 04.1=n ) 

and hemoglobin ( 2.101.1 ≤≤ onn ).  Only the real part of the refractive index was used 

for hemoglobin.  Particle diameters used were 500 nm, 1 µm, and 5.5 µm. 

 Figures 5.5 and 5.6 show that Rayleigh-Debye-Gans theory approximates Mie 

theory for 500nm and 1µm.  Figure 5.7 shows that for a particle size of 5.5 µm Rayleigh-

Debye-Gans and Mie no longer coincide.  The combination of zero absorption and 

refractive index ratio close to 1 increases considerably the particle size ranges for which 

RDG is applicable; this is in agreement with the results reported in Kerker [5]. 
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Figure 5.5: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 500 nm Soft Body Spheres 
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Figure 5.6: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 1 µm Soft Body Spheres 
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Figure 5.7: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 5.5 µm Soft Body Spheres 
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 The multiwavelength transmission calculations conducted with only the real part 

of the refractive index of hemoglobin show that for 500 nm diameter particles (figure 

5.8), the theories follow one another closely in spectral shape but there are quantifiable 

differences in amplitude.  If the turbidity is used for analysis the spectral differences 

between the two theories would result in considerable variation in the estimate of particle 

size and concentration.  With increasing of the particle diameter to 1 µm (figure 5.9), the 

spectral shape for Mie theory relative to Rayleigh-Debye-Gans flattens considerably at 

the shorter wavelengths.  Figure 5.10 shows a semi-logarithmic turbidity plot of 5.5 µm 

particles to show the differences in shape and amplitude for the two theories.  The effect 

of a relative refractive index greater than one with no absorption results in a limited 

particle size range for RDG theory, in contrast to particles with a refractive index close to 

one with no absorption. 
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Figure 5.8: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 500 nm Hemoglobin Spheres with κ=0 
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Figure 5.9: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 1 µm Hemoglobin Spheres with κ=0 
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Figure 5.10: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 5.5 µm Hemoglobin Spheres with κ=0 
 

5.4 Particle Diameter ~ Wavelength, Absorption κ > 0 

The limits of validity Rayleigh-Debye-Gans theory with a relative refractive index close 

to one and an absorption value greater than zero were tested through the calculation of 

the transmission spectra for spherical particles whose sizes are comparable to those of the 

multiwavelength range.  The refractive indices of whole hemoglobin ( 2.101.1 ≤≤ onn , 

1.0001.0 ≤≤ κ ), meaning the real and imaginary part of the complex refractive index 

were considered.  The particle diameter sizes used were: 100 nm, 500 nm, and 1 µm.  

Figure 5.11 shows that Rayleigh-Debye-Gans and Mie closely follow one another for a 

100 nm sphere.  As the particle size was increased to 500 nm and 1 µm the calculated 

turbidity from Rayleigh-Debye-Gans slowly deviates from Mie (see figures 5.12 and 
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5.13).  As the size increases, the features of the spectra calculated with Mie theory flatten.  

This observed difference appears to be caused by absorption cross section Cabs which is 

proportional to the volume in case for RDG theory, but not in the case of Mie theory. 
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Figure 5.11: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 100 nm Hemoglobin Spheres 
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Figure 5.12: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 500 nm Hemoglobin Spheres 
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Figure 5.13: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 1 µm Hemoglobin Spheres 
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5.5 Conclusion 

There is disagreement between Rayleigh-Debye-Gans and Mie theory for transmission 

simulations with spherical scatterers of different sizes and refractive indices.  The 

disagreement is most severe when absorption is present.  The rest of this dissertation will 

be concerned with attempts to modify RDG theory to bring the transmission simulations 

into closer agreement with Mie. 

 



Chapter Six 

Corrections to the Refractive Index 
 

This chapter is dedicated to examining the effect of the complex index of refraction on 

the transmission characteristics of a particle.  Schemes for adjusting the complex 

refractive index to bring RDG predictions into agreement with Mie theory are presented. 

 

6.1 Refractive Index 

The complex refractive index is given by  

κinN +=      6.1 

where n and κ are non negative values ,n is the refractive index (real), κ is the absorption 

coefficient (imaginary).  The scattering of light is due to differences in refractive indices 

between the medium and the particle.  The refractive index of the particle (N1) relative to 

the suspending medium (N0) is, 

00

11

0

1

κ
κ

in
in

N
Nm

+
+

==      6.2 

referred to as the relative refractive index, as presented in chapter two 

 The real and imaginary parts of the complex refractive index expressed as 

function of frequency, are related through the integral Kramers-Kronig relations. 
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here ω is the angular frequency measured and P is the principal value of the integral [1].  

In principle, if either n(ω) or κ (ω) is known or can be measured, the other can be 

calculated directly through equations 6.3 and 6.4.  Measurements over the complete range 

of frequency (0 to ∞) are required when applying this transform. 

 

6.2 Hypochromic Effect 

The observable light scattering phenomena depends on the instrumentation configuration 

and optical properties of the material.  The optical properties (real and imaginary parts of 

the refractive index) are intrinsic properties of matter.  It is known that the optical 

properties depend on the state of aggregation [1].  However, under certain conditions (i.e. 

infinite dilution) the optical properties are additive and independent of concentration.  

The presence of absorbing groups (chromophors) in high concentration within particles 

gives rise to a concentration dependence of the observed optical phenomena.  This 

phenomenon generally results in a decrease of the imaginary component of the refractive 

index κ relative to its value in solution (hypochromicity).   

 Hypochromicity is a phenomenon in which an individual molecule, containing 

several chromophores, has a certain absorptivity at a given wavelength that is less than 

the sum of the absorptivities of the individual chromophores at that same wavelength.  

When analyzing particulate systems, the state of aggregation of chromophores within the 
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particles may result in hypochromic effects that bias the estimation of their concentration.  

For this reason, hypochromism was used to determine a correction factor for the 

imaginary part κ of the refractive index.  The most recent models for hypochromicity are 

those developed by Veshkin [11,12,and 13] and take into consideration the molecular 

structure and the number of chromophoric groups per unit volume of particle.  The 

procedure of Veshkin was extended to the multiwavelength scenario and implemented; 

details are given in Appendix D. 

 The differences in behavior observed between the spectra calculated with Mie and 

with RDG theory suggests, in agreement with the work of Latimer [15], that it may be 

possible to compensate RDG theory through the use of “effective” optical properties 

estimated from particles of known shape and composition. 

 

6.3 Implementation of Optical Correction for Absorption 

Rayleigh-Debye-Gans is limited to small changes in refractive index n(λ) close to one 

and small values of absorption κ (λ).  Rayleigh-Debye-Gans theory assumes each dipole 

absorbs and scatters independently and only considers the interference of the scattering 

wave.  As a result, the angular scattering intensity is shape and orientation dependent, 

whereas the absorption cross-section is independent of the particle shape (equation 2.9); 

in other words, the total absorption is only dependent on the particle volume (the total 

number of chromophoric groups in the particle).  When compared with Mie the latter 

causes a large discrepancy where the absorption efficiencies calculated with Mie theory 

always smaller (hypochromic) than the values calculated with RDG for large absorption 

coefficients (i.e., Hemoglobin, DNA).  This apparent hypochromicity suggests that the 
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theoretical models developed to account for hypochromic or “screening” effects may be 

able to bring RDG into a better agreement with Mie.   

 To explore the potential application of Veshkin’s correction the volume fraction 

of chromophoric groups (vf in equations 6.12- 6.21) is treated as an adjustable parameter.  

Two cases are considered: vf =0 corresponds to 100% hypochromicity which translates to 

the corrected κc (λ) being equal to zero; and vf=1 corresponds to using the value of κ (λ) 

directly.  Spherical hemoglobin particles with a diameter of 1 µm were where Veshkin’s 

correction was applied only to κ (λ).  The volume fraction values used in this study were 

0.15, 0.20, 0.33, and 0.50.  The molecular diameter of hemoglobin is 68 Å with the cross 

sectional area of 20 Å and a molecular weight of 16100 [16].  The orientation value q was 

set to one, meaning the molecules are randomly oriented [12]. 

 The results of the hypochromicity corrections implemented in RDG theory are 

shown in figures 6.1 and 6.2.  Figure 6.1 shows the spectra calculated with RDG and Mie 

without any corrections for hypochromicity, together with the spectra calculated with 

RDG and several levels of hypochromicity (i.e., volume fractions).  Notice that, although 

intermediate levels of hypochromicity result in improved RDG-calculated spectra, 

Veshkin’s model is not very effective in reducing the differences between Mie and RDG 

theories.  This point is demonstrated more dramatically when 100% hypochromicity is 

considered. Figure 6.2 shows the extreme cases of 0% and 100% hypochromicity applied 

to both theories. 
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Figure 6.1: Calculated Transmission of Mie and Rayleigh-Debye-Gans for 1 µm 

Hemoglobin Sphere with Veshkin Correction 
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Figure 6.2: Calculated Transmission of Mie and Rayleigh-Debye-Gans for 1 µm 

Hemoglobin Sphere with 0% and 100% Hypochromicity 
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The use of Veshkin’s model for the correction of the absorption coefficient brings about 

the problem of the inconsistency in terms of the Kramers-Kronig transforms since, after 

the correction, equations 6.3 and 6.4 will no longer hold.  To demonstrate this 

inconsistency, an effective value of neff(λ) was calculated through the Kramer-Kronig 

transform after κ (λ) was corrected, using Veshkin’s model.  All the conditions were kept 

the same for calculating the transmission as previously in this section.  Figure 6.3 shows 

the results of calculating the transmission for Rayleigh-Debye-Gans with an effective neff 

and a corrected κc using Veshkin’s model compared, to uncorrected values of κ and n for 

RDG and Mie theory. 
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Figure 6.3: Calculated Transmission of Mie and Rayleigh-Debye-Gans for 1 µm 

Hemoglobin Sphere with Veshkin Correction to kc and an Effective neff Calculated 
through Kramers-Kronig Transform 
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Using the effective n calculated from corrected κc, one would expect the transmission by 

RDG more closely the transmission calculated by Mie; however, the contrary is observed.  

A close look at the transmission values of figure 6.3 can be seen in figure 6.4.  At 

different volume fractions of the chromophore relating to kc and neff values, there are 

distinct differences in the shape of the spectra.  The differences in the spectra are rooted 

in determining the values n from a revised κ using the Kramers-Kronig transform. 
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Figure 6.4: Zoom in of Figure 6.4 of Calculated Transmission of Rayleigh-Debye-Gans 

for 1 µm Hemoglobin Sphere with Veshkin Correction to kc and an Effective n Calculated 
through Kramers-Kronig Transform 

 

 An alternate approach for bringing together Mie and RDG theories is the 

mathematical adjustment of the refractive indices at each wavelength.  This is explored in 

the next section. 
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6.4 Effective Refractive Index Estimation 

The concept behind calculating effective refractive indices is that given the absorption 

efficiency Qabs determined by Mie theory there is a set of n(λ) and κ(λ) values that would 

allow Rayleigh-Debye-Gans to predict some extinction efficiency Qext to coincide with 

the extinction efficiency calculated by Mie.  The absorption efficiency for either 

Rayleigh-Debye-Gans or Mie theory was expressed in chapter two as: 
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The scattering efficiency Qsca in RDG is expressed (equation 2.24): 
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Therefore, the extinction efficiency can then be expressed as the sum of equations 6.5 and 

6.7 
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If we assume Qext and n are known, then we can solve for κ explicitly using the quadratic 

formula. 
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The same type of algebra manipulation can be done to solve for the refractive index n if 

Qext and κ are known. 
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Equations 6.9 and 6.10 are written in terms of relative values.  Note that for equations 6.9 

and 6.10 to give real effective values for n1 and κ1; Qext,no, Qext,ko, q1, and q2 must always 

be positive.  The artificiality of this mathematical juggling is clear; changing only κ or n, 

and not the other, would lead to a violation of the Kramer-Kronig relations.  Therefore 

the implementation of this adjustment is rejected. 

 

6.5 Conclusion 

The effect of changes in the refractive indices has been explored as a means to extend the 

range of application of RDG and to bring it into better agreement with Mie theory for 

larger particles and for particles containing strong chromophoric groups.  It was 

concluded that, it is not possible to adequately or realistically compensate for the 

differences between Mie and RDG through the use of hypochromicity models and/or 

effective refractive indices.  Therefore, a different type of approach is required.  The 

following chapter discusses exploiting the internal field calculation of Mie theory as a 

vehicle to improve the Rayleigh-Debye-Gans and Mie conflict in the presence of 

absorption. 
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Chapter Seven 

New Hybrid Theory 

The hybrid theory developed in this chapter uses the Mie solution to compute the internal 

field of a sphere, and the Rayleigh-Debye-Gans approach to solve for the scattering 

fields.  The induced Rayleigh-Debye-Gans dipole moment is computed from the internal 

Mie field, rather than the incoming field.  From this we solve for the scattering fields in 

terms of the parallel and perpendicular components of the incoming light.  Form factors 

were generated through the scattering amplitude functions.  The following is the 

mathematical development of the hybridized theory for a spherical particle. 

 

7.1 Geometry and Notation 

 
Figure 7.1: Diagram of Scatterer Point and Detector Location 
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For describing the electric field scattered by a particle in the laboratory system there are 

two objects of interest, the detector and scatterer.  Figure 7.1 illustrates the detector 

located at rr  with spherical coordinates (r,θ,φ) or Cartesian coordinates (x,y,z).  Points 

within the scatterer are identified by R
r

 with coordinates (R,Θ,Φ) or (X,Y,Z).   

 The curvilinear unit vectors attached to the detector in figure 7.2 can be expressed 

in rectangular coordinates through the following equations: 
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Figure 7.2: Local Unit Vectors with Respect to the Detector 
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Figure 7.3 similarly depicts the unit vectors attached to a point inside the scatterer. The 

transformation equations for these vectors are identical to equations 7.1 and 7.2, with 

corresponding subscripts and angles. 

 
Figure 7.3: Local Unit Vectors with Respect to the Scatterer 

As indicated, the incident wave moves in the z-direction and is presumed to be plane-

polarized in the x-direction.  It impinges upon the particle and is scattered.  The scattered 

wave is detected at some angle θ and φ measured from the direction of propagation of the 

incident wave; see figure 7.1.  The following section provides a mathematical description 

of the fields induced by the particle.  As will be seen, the scattering dynamics are best 

described using the vectors e ΦΘ eeR
rrr ,, ; the scattered radiation is best described by 

φθ eeer
rrr ,, .  Therefore the transformation equations play an important role in unifying the 

description. 
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7.2 Internal Field 

 The incoming field for light illuminating a spherical particle, propagating in the z-

direction, and polarized in the x-direction, is described in generic Cartesian coordinates 

as 

( ) x
tiik

oi eeeEtE rv ωςςηξ −=,,,     7.3 

where k is the wave number in the medium.  The time factor  will be omitted in the 

following. 

tie ω−

 The resulting field inside the sphere is given by Mie theory as 
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where M
r

 and  are the solutions to the vector wave equation in terms of Bessel 

functions and spherical harmonics [1].  We truncate the series above in the following 

manner 
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where a is the radius of the spherical particle and λ is the wavelength.  Bohren and 

Huffman provide the general expressions for the terms M
r

 and N
r

 as series themselves,  

which we also truncate as: 

( ) [ ]( )2
1

11
11 cossin

3
cos

3
RkOeRkeRkRM O +ΘΦ−Φ≈ ΦΘ

vvrr
   7.6 

( ) [ ]( 2
111 sin

3
2coscos

3
2sincos

3
2 RkOeeeRN RE +Φ−ΘΦ+ΘΦ≈ ΦΘ

vvv )rr
  7.7 

 58



( ) ( )

[ ]( )2
11

2
1112

cossin
5
3

1cos2cos
5
3cossincos

5
6

RkOeRk

eRkeRkRN RE

+ΘΦ−

−ΘΘ+ΘΘΦ≈

Φ

Θ

v

vvrr

 7.8 

where k1 is the wave number inside the sphere.  The coefficients for cn and dn are 

calculated through 
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where µ1 is the permeability of the sphere and is presumed to equal µ , the permeability 

of the medium, and k is the wave number in the medium.  The primes denote 

differentiation with respect to ka. 

 The expressions of 7.6, 7.7 and 7.8 are translated to rectangular coordinates as 
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This expression can be written in exponential form to the same order of accuracy; since 

( )21 xOxe x ++=          7.15 
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we implement the following, 
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resulting in the following approximation for the Mie field inside the sphere. 
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Note that in the limit as , if we have , ,  then kk →1 11 →d 11 →c 12 →d

( ) x
ikZ

o eeERE rrr
→ , the incoming field value.  In chapter eight we demonstrate by computer 

studies that, indeed, c1, d1, and d2 all equal 1 when k1=k.  This is consistent; if the 

dielectric properties of the scatterer match those of the medium the incoming field is 

unaltered. 

 

7.3 Dipole Scattering Approach 

Electromagnetic theory states that a dipole located at R
r

 of intensity ( ) tieRp ω−
rr  radiates in 

the far field according to the following [2]: 
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where  is the scattered electric field radiated by the dipole and ε is the permittivity or 

dielectric constant of the medium.  It also states that a small dielectric sphere of radius ρ 

placed in a uniform static electric field 

sE
r

E
r

 generates a dipole moment.  The induced 

dipole moment is proportional to the field and is given by 
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where ε is the permittivity, m is the relative refractive index, and dV is the volume of the 

scatterer. 

 Rayleigh scattering assumes that an oscillating, nonuniform field ( ) tieRE ω−
rr

 

generates a dipole moment in a spherical volume given by the same expression in 

equation 7.19 and that the dipole re-radiates according to equation 7.18.  Following the 

RDG approach, we assume that each infinitesimal volume within the scatterer (not the 

entire scatterer itself) behaves in this fashion.  By substituting equation 7.19 into 7.18 we 

obtain the following expression for the incremental electric field radiated by the 

infinitesimal dipole located at R
r

: 
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For rR rr
<< , Rayleigh approximates rRr 1≈−1

rr , rRr ee rr
rr ≈− , and 

( ){ } rr eRikrieRrikRrik eeee
rrrvrr

⋅−⋅−− =≈ k .  When substituting these approximations into equation 

7.20 the following expression is obtained. 
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7.4 Hybrid Theory 

 The difference between Rayleigh-Debye-Gans theory and the hybrid theory 

presented herein is as follows: RDG assumes that the local field ( )RE
rr

 generating the 

infinitesimal dipole in equation 7.21 is given by the incoming field, whereas the hybrid 

theory takes the internal field that Mie theory gives for the sphere as the field inducing 

the dipole moment.  By using the internal Mie field, we are taking some account of the 

effect of the surrounding dipole field alterations to the incoming field (such as 

attenuation, which is highlighted in chapter five as a major shortcoming in RDG theory).  

The validity of either approach presumes that the incoming electric field is roughly 

uniform over the sphere, so that the radius a of the sphere must be a small fraction of the 

wavelength (a<< λ). 

 If we substitute the expression for the internal electric field, equation 7.17, into 

equation 7.21 an explicit formula for the scattered electric field is obtained. 
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In order to evaluate [ ]xrr eee rvv ××  and [ ]zrr eee rvv ××  one has to use the identities in 

equations 7.1,2.  The following expression is a result of the conversion and mathematical 

manipulation, with the identifications zeRZ rr
⋅=  and xeRX rr

⋅= . 

( )


































−+

−









+
−

−=
⋅

−

⋅
+

⋅−

θ

θφ

θ

θφφ

π ee

eeed
dVee

m
m

r
kEEd

x

r

r

eR
d

cdik

eR
d

cdik

eRikikr
os v

vv
r

rr

rr

vv

sin1

coscossin

2
1

4
3

1

11
1

1

12
1 2

1

2

22

     7.23 

 62



 As in Rayleigh-Debye-Gans theory, we sum (integrate) this over the total scatterer 

volume.  We introduce f1 and f2 as “form factors” for the sphere: 
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where  
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Note that if , since (as noted above) kk =1 1211 === ddc , f1 reduces to 

(∫ −⋅e
V

Z eeRik rrr1 )dVR , the form factor “f” in the RDG theory.  Furthermore observe that the 

factor f2, which does not appear in the RDG theory, goes to zero when . kk =1

 The problem now becomes how to calculate the integrals in equations 7.25 and 

7.26. They all have the form dVe SRi∫ ⋅
rr

 with constant S
r

.  Consider a local coordinate 

system in the sphere with its z’ axis aligned with S
r

.  If we look at figure 7.4, the element 

of volume at height z’ is 

( ) ''' 22 dzyxheightbasedV +=×= π    7.27 

 63



 
Figure 7.4: Diagram of the Volume at Height z’ for a Sphere 
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We can use Maple to perform these integrals.  The results are 
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Observe from figure 7.2 that θ and φ are the detector angles and that θer  is in the 

scattering plane while eφ
r  is perpendicular.  Therefore parallel and perpendicular 

components of the scattered field , equation 7.24, are expressed in terms of the form 

factors as 
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The scattering intensity is given by 
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7.5 Scattering Amplitude Matrix Formulation for the Hybrid Model 

Note that in this new model the scattered field can still be expressed using a scattering 

matrix in the manner of Van de Hulst, Bohren and Huffman, and Kerker.  To do so, the 

incoming field must be expressed in terms of its components parallel and perpendicular 

to the scattering plane.  In spherical coordinates the incoming field is given by 
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Here eφ
r  is perpendicular to the scattering plane while the unit vector ree rr θθ θ sincos +  

lies in the plane.  As a result the incoming field can be written as: 
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After some manipulation the scattered field (equations 7.32, 7.33) can be related to the 

incident field in a scattering matrix format: 










−

+−








+
−

−=








⊥⊥ i

i

s

s

E
E

f

ffV
m
m

r
k

E
E

,

||,

1

21
2

22

,

||,

0

0
cos
sincos

2
1

4
3

φ
θθ

π
  7.37 

 

7.6 Scattering Intensity Ratio and Turbidity 

The scattering intensity ratio is expressed using equation 7.24. 
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It can be written in terms of the scattering amplitude matrix equation 7.37; however this 

is not recommended due to the singularity ( ) 1cos −θ . 

 The formula for turbidity in the hybrid model is derived by calculating Csca from 

insertion of equation 7.38 into equation 2.6 from chapter two; the absorption cross 

section Cabs remains as in equation 2.9: 
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the turbidity is finally determined by (equation 2.16) 

( ) extpabsscap lGQNCClN =+=τ    7.40 
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Chapter Eight 

Validation and Sensitivity of Hybrid Theory 

The previous chapter gave a detailed mathematical description of the hybrid model.  This 

chapter is dedicated to performance evaluation of the model in comparison to those of 

Rayleigh-Debye-Gans and of Mie through a series of transmission simulation studies.  

First the hybrid model was tested with the propagation constant of the medium equal to 

that of the particle to verify correct programming implementation.  Second the validity of 

the hybrid theory using various particle sizes was tested for relative refractive indices 

close to one.  The third study tests the hybrid theory’s effectiveness by introducing 

absorption through the imaginary part of the refractive index.  The last study investigates 

the behavior of the hybrid theory for refractive indices exceeding the conditions required 

for Rayleigh-Debye-Gans theory, that is, having strong scattering and absorption 

components, for various diameter sizes.  The other parameters (concentration, pathlength, 

etc.) required to calculate the transmission were kept constant ,as listed in table 5.1. 

 

8.1 Validation of Hybrid Theory Implementation 

 As we indicated in chapter six, when  the internal Mie field approaches 

the incoming field; c

kk →1

1, d1, and d2 all approach 1.  The calculations displayed by figure 8.1 

confirm that 1211 === ddc  when kk =1 . 
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Figure 8.1: Coefficients c1, d1, and d2 Versus λ  at the Limit when k1=k 

 Another effect of taking k1 equal to k is that the form factor f1 of the hybrid model 

for spheres reduces to the form factor f of Rayleigh-Debye-Gans for spheres (and f2 goes 

to zero).  Figures 8.2 and 8.3 are 3-D images of these form factors graphed by 

wavelength λ and azimuthal angle of observation θ  (with 0=φ ).  Figure 8.2 shows f1 of 

the hybrid model.  The form factor f of Rayleigh-Debye-Gans is shown in figure 8.3. 

 As an example of the case where k1 (particle) is different from k (medium), the 

refractive indices of polystyrene ( 6.001.0 1 ≤≤ κ ) in water ( 0=κ ) were used to 

illustrate the behavior of the form factors for the hybrid model compared to that of 

Rayleigh-Debye-Gans.  Figures 8.4, 8.5, 8.6, and 8.7 are the real and imaginary parts of 

the form factors f1 and f2 for the hybrid model.  Figure 8.8 is the form factor for Rayleigh-
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Debye-Gans.  Note that the hybrid model’s factors contain real and imaginary parts even 

if 0=κ  (nonabsorbing). 

 Therefore our working program for the hybrid theory has been validated.  The 

next sections will reveal the superiority of the hybrid theory in approximating the exact 

(Mie) solution, for different particle diameters and relative refractive indices. 

 
Figure 8.2: Form Factor f1 for Hybrid Theory at k1=k 
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Figure 8.3: Form Factor f for Rayleigh-Debye-Gans Theory 

 
Figure 8.4: Real Part of Form Factor f1 for Hybrid Theory using Polystyrene 
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Figure 8.5: Imaginary Part of Form Factor f1 for Hybrid Theory using Polystyrene 

 

 
Figure 8.6: Real Part of Form Factor f2 for Hybrid Theory using Polystyrene 
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Figure 8.7: Imaginary Part of Form Factor f2 for Hybrid Theory using Polystyrene 

 

 
Figure 8.8: Form Factor f for Rayleigh-Debye-Gans Theory using Polystyrene 

 
 72



8.2 Case 1: Relative Refractive index 0nn ~1 and Absorption κ = 0 

The validity of the hybrid theory was tested against Rayleigh-Debye-Gans and Mie 

theory using the relative refractive indices of soft bodies ( 04.1=onn ) to calculate the 

transmission.  The spherical diameter sizes used were 50, 100, 250, and 500 nm.  The 

results of this study are shown in transmission spectral plots provided in figures 8.9, 8.10, 

8.11 and 8.12.  Figures 8.9 (50 nm) and 8.10 (100 nm) show that the hybrid theory for 

very small particles at the shorter wavelengths is a much better approximation to Mie 

theory than is RDG theory.  At wavelengths much larger than the particle size, the hybrid 

spectrum is still superior to Rayleigh-Debye-Gans.  In figure 8.11 the hybrid model for 

250 nm particles closely estimates Mie theory above 300nm wavelength and outperforms 

RDG even down to 200 nm wavelength (which is shorter than the diameter). 

 A significant change in the calculated transmission spectra is observed in figure 

8.12, where the diameter size is 500 nm.  Here the hybrid spectrum no longer resembles 

that of Mie theory or RDG at wavelengths shorter than half the diameter.  Nonetheless, 

for larger wavelengths the hybrid model again is a better approximation to the exact Mie 

theory than Rayleigh-Debye-Gans.  The inset of figure 8.12 is a zoom in of the spectra 

between 500 nm to 900 nm wavelength showing the hybrid model approximating better 

than RDG at the longer wavelengths. 

 In summary, the hybrid theory is seen to be a vastly improved model for 

estimating the transmission for nonabsorbing soft particles whose diameter is smaller 

than the wavelength.  The following section will explore the effect of including 

absorption in the hybrid model. 

 73



200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

0.03

Wavelength (nm)

O
pt

ic
al

 D
en

si
ty

Hybrid
Rayleigh-Debye-Gans
Mie

 
Figure 8.9: Comparison of Calculated Transmission for 50 nm Soft Body Spheres using 

RDG, Mie, and Hybrid Theories 
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Figure 8.10: Comparison of Calculated Transmission for 100 nm Soft Body Spheres 

using RDG, Mie, and Hybrid Theories 
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Figure 8.11: Comparison of Calculated Transmission for 250 nm Soft Body Spheres 

using RDG, Mie, and Hybrid Theories 
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Figure 8.12: Comparison of Calculated Transmission for 500 nm Soft Body Spheres 
using RDG, Mie, and Hybrid Theories 
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8.3 Case 2: Relative Refractive index ≥0nn 1 and Absorption κ > 0 

The previous section showed that the hybrid model provided an improved approximation 

to Mie theory for nonabsorbing particles and whose relative refractive index is greater 

than or equal to one.  In this section the contribution of absorption κ is included in the 

refractive index n, while the relative refractive 0nn  was kept close to one.  The optical 

properties of polystyrene ( 6.001.0,5.11.1 ≤≤≤≤ κonn ) were chosen in keeping with 

the requirements aforementioned.  The diameter sizes selected for the transmission 

calculations were, again, 50, 100, 250, and 500 nm.  Figures 8.13 and 8.14 are plotted on 

a semi log scale to enhance the features of the spectra.  For particles diameters of 50 and 

100 nm, figures 8.13 and 8.14, the calculated transmission by the hybrid model continues 

to approximate Mie theory closer than Rayleigh-Debye-Gans. 

 As the particle diameter is increased to 250 nm and 500nm, figure 8.15 and 8.16, 

interestingly the hybrid spectra qualitatively mimics the reduced transmission features 

displayed by Mie theory at wavelengths shorter than the diameter.  At wavelengths 

comparable to or larger than the diameter, the hybrid model remains the better estimate to 

Mie theory.  The insets of figures 8.15 and 8.16 show the spectra where the particle 

diameter is that of the wavelength and emphasize how well the hybrid model behaves 

compared to RDG in approximating Mie theory. 

 Evidently from the graphs, the differences between the incoming field and the 

Mie field are quite significant when absorption is present.  The results demonstrate that 

the hybrid model provides an improved approximation over Rayleigh-Debye-Gans theory 

for absorbing scatterers whose relative refractive index is close to one, over a very large 
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range of wavelengths.  The next section studies the behavior of the hybrid model for 

absorbing scatterers whose relative refractive index is approximately 1. 
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8.13: Comparison of Calculated Transmission for 50 nm Polystyrene Spheres using 

RDG, Mie, and Hybrid Theories 
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8.14: Comparison of Calculated Transmission for 100 nm Polystyrene Spheres using 

RDG, Mie, and Hybrid Theories 
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8.15: Comparison of Calculated Transmission for 250 nm Polystyrene Spheres using 
RDG, Mie, and Hybrid Theories 
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8.16: Comparison of Calculated Transmission for 500 nm Polystyrene Spheres using 
RDG, Mie, and Hybrid Theories 

 

8.4 Case 3: Relative Refractive index 0nn ~1 and Absorption κ > 0 

Now we turn to more general scatterers, with large relative indices of refraction and 

nonzero absorption.  Hemoglobin ( 15.001.0,2.11 ≤≤≤≤ κonn ) is both a strong 

scatterer and strong absorber and thus a good test study.  The diameter sizes used to 

calculate the transmission were 50, 100, 250, and 500 nm.  Figures 8.17, 8.18, 8.19, and 

8.20 show that at 50, 100 and 250 nm diameters the hybrid theory spectra approximates 

Mie theory better than does Rayleigh-Debye-Gans at all wavelengths, and at the diameter 

size of 500 nm (figure 8.20), the hybrid model provides a better estimate to Mie theory 

than Rayleigh-Debye-Gans for wavelengths larger than 300nm. 
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8.17: Comparison of Calculated Transmission for 50 nm Hemoglobin Spheres using 

RDG, Mie, and Hybrid Theories 
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8.18: Comparison of Calculated Transmission for 100 nm Hemoglobin Spheres using 

RDG, Mie, and Hybrid Theories 
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8.19: Comparison of Calculated Transmission for 250 nm Hemoglobin Spheres using 

RDG, Mie, and Hybrid Theories 
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8.20: Comparison of Calculated Transmission for 500 nm Hemoglobin Spheres using 

RDG, Mie, and Hybrid Theories 
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8.5 Conclusions 

The hybrid model for submicron spheres has been shown to approximate Mie theory 

much better than Rayleigh-Debye-Gans for particle sizes smaller than the wavelength.  

For a wide range of relative refractive indices the improvement is particularly marked for 

absorbing materials.  For the cases were absorption is introduced, the curves displayed 

that attenuation becomes more significant for the larger particles, and the hybrid theory is 

superior in accommodating attenuation.  The results of the simulations conducted in this 

chapter demonstrate that the strategy of using the Mie internal field, rather than the 

incoming field, to energize the RDG dipoles reaps very significant benefits.  One 

important benefit from the hybrid model was the computation time for calculating these 

spectra which was rapid. 



Chapter Nine 

Contributions and Future Work 

9.1 Contributions 

Mie theory is an exact solution to the wave equation for spherical scatterers [1].  This 

rigorous solution is limited to spheres and although it provides a good estimate for some 

characteristics of nonspherical particles, Mie theory cannot provide information on shape 

and orientation.  Rayleigh-Debye-Gans theory is an approximation to Mie theory and 

provides, through form factors, information about nonspherical particles.  The principal 

limitation of Rayleigh-Debye-Gans theory is that the complex relative refractive index 

must be close to one.  Other theories exist for determining the light scattering behavior of 

nonspherical submicron particles, such as the T-matrix and Purcell-Pennypacker 

methods.  In terms of real-time applications, these methods are more computationally 

intensive and therefore time consuming both in code generation and computer time.  The 

methods available are time consuming to the extent of making them impractical for 

engineering applications such as real time particle characterization. 

 The hybrid model presented here provides another tool for the analysis of 

submicron particles for real-time computations at multiwavelength.  The key to the 

superior performance of the hybrid theory is the incorporation of the Mie field, rather the 

incoming field, to generate the scattering produced by a particle.  This hybrid model has 

demonstrated vastly improved accuracy and applicability for a broader range of optical 
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properties than that of Rayleigh-Debye-Gans for multiwavelength particle 

characterization applications. 

 

9.2 Recommendations and Future Work 

Like most original work, the hybrid theory can be improved for the spherical model.  As 

the theory stands, the truncation at the first term of the series for the internal field can be 

extended to include second order terms.  These second order terms will influence the 

series for particles whose size is comparable with the wavelength.  In other words, at the 

shorter wavelengths the hybrid model does not exactly match Mie theory or Rayleigh-

Debye-Gans, but by extending the series we can include terms that will validate the 

model where a/λ≈1. 

 The hybrid model has been worked out for spherical particles; a proposed method 

of extending this model to other shapes such as ellipsoids could proceed by assuming that 

the internal field of the ellipsoid can be described by mapping the Mie internal field for a 

volume equivalent, or perhaps a circumscribing, sphere evaluated, as presented in chapter 

six, from the induced dipole moment using the postulated field.  To account for the shape 

of the particle, the form factor dVe SRi∫ ⋅
rr

 needs to be evaluated for the ellipsoid shape, as 

demonstrated with a sphere in chapter six.  These factors can be determined directly from 

table 4.1 by reinterpreting the constant vector S
r

.  Although the mathematics may appear 

complex for the form factors, they are relatively straightforward though time consuming. 
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Appendix A:  Intensity Ratio and Turbidity Model 

 Derivation of the intensity equation for RDG and non-polarized light:  Beginning 

with the equation of light taken from Van de Hulst [2] 
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2

21|| 2
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rk
IiiIII o+=+= ⊥λθ     A.1 

where 

( ) ( ) 2
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The scattering functions are described as function of the polarizability α 
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    A.3 

were k is the propagation constant, ( ) mλπλ 2k =  and λm is the wavelength in the 

material.  The polarizability for particles with a refractive index close to 1 and 

homogeneous with no approximation for the complex refractive index is 
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To account for the interference effects for each dipole, the phase factor is included to 

scattering function, equation (3) 
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The scattering function can be explicitly written in terms of the polarizablity by replacing 

equation A.5 into A.6 
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Appendix A (Continued) 
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Now that the scattering functions are defined in terms of shape, replace equation A.8 into 

equation A.2. 
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Take the equation above and replace it in equation A.1 
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Equation A.10 is the intensity ratio model which mathematical describes the light 

scattered by an arbitrary particle in terms of a non-polarized light source.  Per this 

derivation, it can be seen that the wavelength dependence of these functions. 

 The transmission equation as described by Kerker is mathematically described as  

dDDfQGN extp )(
0
∫
∞

= lτ     A.11 
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Appendix A (Continued) 
 
 

For a monodispersed system f(D)dD is represented by a delta function, therefore its 

integral equal to one.  The scattering efficiency factor  is function of the absorption 

and scattering of the particle and is described as 

extQ

absscaext QQQ += .           A.12 

The scattering efficiency factors are defined in terms of the particle scattering cross 

sectional Csca and it’s cross sectional area G. 

G
CQ sca
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The general equation for the scattering cross section [2] 
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The intensity ratio in the equation above can be replaced with equation A.10 and 

evaluated as 

∫

∫ ∫

∫ ∫

+
+
−

=

+
+
−

=

+
+
−

=

π

π π

π π

θθθϑθ
π

ϑθθθϑθ
π

ϑθθθϑθ
π

0

22
2

2

224

2

0 0

22
2

2

2

2

24

2

0 0

222
2

2

2

22

24

sin)cos1(),(
2
1

16
9

sin)cos1(),(
2
1

32
9

sin)cos1(),(
2
1

32
9

dR
m
mVk

ddR
m
mVk

ddrR
m
m

r
VkCsca

 A.15 

Substituting the Csca into equation A.13 results in 
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 The absorption efficiency factor is defined similarly to that of the scattering  

efficiency factor, equation A.13, except in terms of absorption.  The absorption cross 

section Cabs is defined as 
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The absorption efficiency factor can then be expressed as 
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The transmission equation A.11 can be explicitly expressed in terms of the scattering and 

absorption components of the efficiency factor. 
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Equation A.19 is the general form of transmission equation for all form factors.  Since the 

nomenclature of Kerker is being used, |R(θ,ϕ)|2 =P(θ) and can be replaced. 
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Figure B.1: Optical Properties for Water 
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Figure B.2: Optical Properties for Soft Body 
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Figure B.3: Optical Properties for Hemoglobin 
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Figure B.4: Optical Properties for Polystyrene 
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Figure B.5: Optical Properties of AgCl 
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Figure B.6: Optical Properties of AgBr 
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Figure B.7: Relative Refractive Index of Soft Body in Water 
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Figure B.8: Relative Refractive Index of Hemoglobin in Water 
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Figure B.9: Relative Refractive Index of Polystyrene in Water 
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Figure B.10: Relative Refractive Index AgCl in Water 
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Figure B.11: Relative Refractive Index of AgBr in Water 
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 A validation study for the Rayleigh-Debye-Gans theory was conducted, here 

RDG was programmed and tested against Mie theory.  The range of particle diameters 

was chosen between 25 nm -500 nm.  The simulation parameters used to define the 

suspensions for the transmission calculations are: light source wavelength 200-900nm , 

particle concentration 1E-4 g/cc, particle density 1g/cc. 

 

C.1 Validation of Rayleigh-Debye-Gans Theory 

The limits of applicability of RDG theory are established by the approximations made in 

its derivation (each volume element behaves as a Rayleigh scatterer and there is no phase 

shift through the particle) which require that 10 ≅nn  and λ≤d , where d is the diameter 

of the particle.  Because our analysis is for the Uv-vis-NIR (Near infrared) spectrum 

(190-900 nm), it is impossible to simultaneously satisfy both conditions at every 

wavelength.  Prior to any detailed study it is important to validate the software 

implemented for Rayleigh-Debye-Gans theory as a function of the wavelength, and to 

explore the behavior of the calculated spectra relative to a reference material.  

 Under the conditions of applicability of RDG, both Mie theory and RDG theory 

should yield the same results.  Polystyrene is a reference material with known 

wavelength-dependent optical properties that is used in the manufacturing of spherical 

particles used as standards for particle analysis.  Comparison of the turbidity spectra 

calculated with RGD and Mie for polystyrene particles suspended in water should 

provide a good indication of when the spectra deviate, and the theories no longer agree to 

an acceptable level. 



Appendix C (Continued) 
 
 The diameter sizes chosen were 25 nm, 50 nm, 100 nm, and 500 nm.  The 

calculated spectra have been plotted on a semilog axis to better illustrate the differences 

between theories.  Figures C.1 and C.2 demonstrate the expected close approximation of 

Rayleigh-Debye-Gans to Mie theory for small sized particles.  Figures C.3 and C.4 show  

divergences of Rayleigh-Debye-Gans approximation from Mie as the particle size 

increases while maintaining the optical properties within the limits of the theory.  

Appendix B shows the optical property requirements of RDG are met as functions of 

wavelength for polystyrene.  These results demonstrate that the programs developed for 

Rayleigh-Debye-Gans theory yield the expected values when compared with Mie theory 

and that the software developed can be reliably used for the simulations reported herein. 
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Figure C.1: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 25 nm Polystyrene Spheres 
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Figure C.2: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 50 nm Polystyrene Spheres 
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Figure C.3: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 100 nm Polystyrene Spheres 
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Figure C.4: Calculated Transmission of Mie and Rayleigh-Debye-Gans for a Suspension 

of 500 nm Polystyrene Spheres 



Appendix D: Estimation of Absorption Coefficient and Hypochromism Model 
 
The absorption coefficient κ is the imaginary value of the refractive index.  A 

mathematical derivation given by Maron [10], on the absorption of radiation as a function 

of thickness and concentration of absorbing material, describes how the absorption 

coefficient can be obtained.  The decrease in intensity of incident light of any wavelength 

passing through an absorbing substance is given by Lambert’s law.  The law states that 

the rate of decrease of intensity with thickness of absorbing material is proportional to the 

intensity of the light at point l, 

t
x I

dl
dI

κ=
−

     D.1 

where It is the intensity at thickness l and κ is the absorption coefficient characteristic of 

the medium.  The original intensity Io, is given at l=0 and the intensity at any point l can 

be found from the equation above.  Thus we can obtain 

l
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Accordingly, ln It falls off linearly and It exponentially, with the distance l the light 

travels through the absorbing medium. In the case of absorbing solutes the decrease in 

intensity with l is proportional only to It and the concentration of the solution C.  

CI
dl
dI

t
t ε=−      D.4 
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Appendix D (Continued) 
 
where ε is the molar absorption coefficient which is a proportionality constant determined 

by the nature of the absorbing solute and the wavelength used.  Integrating the equation 

above using the same limits as those in equation D.2 results in the following expression: 
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Cl

o

t e
I
I ε−=      D.6 

Equation D.5 and D.6 are the expression of  Beer’s law for absorption of light by 

solutions.  These two laws can be combined to form Beer-Lambert law which says the 

absorbance is directly proportional to the pathlength and the concentration.  This law is 

stated as equation D.5, however the absorbance and the complex refractive index are 

coupled through the absorptivity 

λ
κπε 4

=      D.7 

Through a transmission measurement and the use of equations D.5 and D.7 the 

absorption coefficient can be calculated.  This only holds for homogeneous solutions, 

otherwise scattering has to be considered. 
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Appendix D (Continued) 
 
D.1 Hypochromism Model 

 Hypochromism was quantified using the model developed by Vekshin [11,12].  

Vekshin’s model describes screening of chromophores when stacked along the molecular 

chain axis, see figure below. 

 
 

Figure D.1: Stack Arrangement of Chromophores along Chain Axis 
 

Experimentally the hypochromism value h at a given wavelength is defined by: 

ε
εε ˆ

%100 −
=h     D.8 

where ε is the extinction coefficient for the situation of single chromophore in units of 

cmM1  and ε̂  is the average extinction coefficient to account per 1 chromophore. 

From the screening model [12,13] 

















 −−=

k

s
Eq

qk
sE 3.211
3.2

ˆ [=]Å2   D.9 

This equation predicts the hypochromic extinction coefficient in a solution of stack 

chromophores (cluster) if the values E, s, q, and k are known.  E is in units of molecular 
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Appendix D (Continued) 
 
extinction coefficients (Å/molecule) which is function of wavelength, Ê  is the average 

extinction coefficient, s is the effective geometric area of a chromophore (Å2), q is the 

orientation factor, and k is not to be confused with the wave number but rather is the 

quantity of chromophores. 

 Transforming Vekshin’s model from units cmM1 to Å results in rewriting the 

above equation to 




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


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



 −−=
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Am Es
EqN

qk
s

4022.6
3.211

3.2
ε̂    D.10 

where NA is Avogadro’s number.  Equation D.10 can now be used to correct the 

imaginary component of the refractive index by first calculating the extinction coefficient 

using equation D.7.  The extinction coefficient is then transformed to molar units 

V
M w

m
ε

ε =      D.11 

where Mw is the molecular weight of the particle and V is the unit volume transformation 

of 1000 cm3/L. The number of chromophores k, is solved through the volume fraction or 

concentration of the sample 

( )
d

v
k f λλ =      D.12 

where vf is the volume fraction, λ is the wavelength, d is the diameter of the sample.  The 

probability of absorption of a photon by a molecule P can be presented as 

s
EqP
&

3.2=      D.13 
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 106

Na
EVE m

2)81(*ε
=&          D.14 

where E&  is the calculated value from equation D.9.  Vekshin’s screening equation can 

therefore be written in the following form 

( )[ ]kA
m p

qEkEV
sN

−−= 11
81

ˆ
2 &

ε    D.15 

where the extinction coefficient for one chromophore is calculated by 

w

m

M
Vε

ε
ˆ

ˆ =      D.16 

From this, the hypochromicity can be calculated using equation D.8.  The corrected 

imaginary part of the refractive index κc can be solved for using the following equation 

π
λεκ

4
ˆ

=c      D.17 
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