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Longtime Dynamics of Hyperbolic Evolutionary Equations

in Unbounded Domains and Lattice Systems

Djiby Fall

ABSTRACT

This dissertation is a contribution to the study of longtime dynamics of evolutionary

equations in unbounded domains and of lattice systems. It is of particular interest to

prove the existence of global attractors for solutions of such equations. To this end, one

needs in general some type of asymptotical compactness. In the case that the evolutionary

PDE is defined on a bounded domain Ω in space, asymptotical compactness follows from

the regularity estimates and the compactness of the Sobolev embeddings and therefore

the existence of attractors has been established for most of the dissipative equations of

mathematical physics in a bounded domain. The problem is more challenging when Ω is

unbounded since the Sobolev embeddings are no longer compact, so that the usual regularity

estimates may not be sufficient.

To overcome this obstacle of compactness, A.V. Babin and M.I. Vishik introduced some

weighted Sobolev spaces. In their pioneering paper [2], they established the existence of a

global attractor for the reaction-diffusion equation

ut − ν∆u + f(u) + λu = g, x ∈ RN (1)

Lately, a new technique of ”tail estimation” has been introduced by B. Wang [49] to

prove the existence of global attractors for the reaction-diffusion equation (1) in the usual

Hilbert space L2(RN ). In this research we take on the same approach to prove the existence
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of attracting sets for some nonlinear wave equations and hyperbolic lattice systems.

The dissertation is organized as follows. In the first part (Chapter 2), we prove the

existence of a global attractor in H1
0 (RN )× L2(RN ) for the wave equation

utt + λut −∆u + u + f(u) = g, t > 0, x ∈ RN . (2)

Removing the coercive mass term u from (2), we achieve the same result for the more

challenging equation

utt + λut −∆u + f(u) = g, t > 0, x ∈ Ω (3)

where Ω is a domain of RN bounded only in one direction.

The second part of the dissertation deals with some lattice systems. We establish in

Chapter 3 the existence of global attractor for the equation

üi + λu̇i − (ui−1 − 2ui + ui+1) + f(ui) = gi, i ∈ Z (4)

which is a spatial discretization of (3).
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1 INTRODUCTION AND GENERAL CONCEPTS

Henri Poincaré (1854-1912) is often referred to as the father of “nonlinear dynamics”. To-

ward the end of the nineteenth century, he for the first time pointed out that irregular

behaviors in mechanics are not at all an unusual feature if the system being studied involves

a nonlinear interaction. Very simple systems can have highly complex dynamics. The be-

havior of the solutions of such systems over longer time is quite irregular and practically

cannot be predicted. Since Poincaré the study of nonlinear dynamics started to develop,

with major contributions of great mathematicians and physicists such as Lyapunov (1857-

1918) and Birkhoff (1884-1944) who developed the concept of dynamical systems as we

know it today. Meanwhile the study of nonlinear dynamics extends far beyond mechanics

to many fields not only of physics but also of chemistry, biology, economics etc. Before

1950, it primarily focused on the finite dimensional systems usually modeled by ordinary

differential equations.

The theory for the evolutionary partial differential equations was slower to emerge. This

theory along with the study of differential-delay and lattice systems constitute what is

known as infinite dimensional dynamical systems. The literature is extensive on the study

of these systems, mainly for partial differential equations in a bounded domain, see for in-

stance J. Hale [23], G. Sell & Y. You [42] or R. Temam [47], and the references therein.

It is just recently, since the pioneering work of Babin and Vishik [2], that mathematicians

got interested in the dynamics of partial differential equations in unbounded domains. In

this direction, several types of evolutionary equations have been investigated with inter-

esting results; yet there are still lots of open problems and large room for mathematical

contributions.

One can be interested in different features in the study of the dynamics of a system:
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singularity formations, finite-time blow up, existence of chaos, attracting sets, bifurcation

theory, invariant manifolds, exponential dichotomies, stability, . . . etc. In this work we focus

on the longtime behavior of the solutions of evolutionary equations in unbounded domains

and of lattice systems. In particular, the topic is the existence of global attractors. The

global attractor is a compact invariant set attracting the trajectory bundles of all bounded

subsets as time goes to infinity. Therefore, if it exists, a global attractor contains all the

essential, permanent dynamics of the system. And very often the global attractor has finite

fractal (or Hausdorff) dimension, thus reducing the initial infinite dimensional problem to

a finite dimensional one in the long run.

In the current theory of infinite dimensional dynamical systems, the global attractor is

a highlighted, core topic. The existence of global attractors for dissipative systems follows

in general from some type of asymptotical compactness of the corresponding semiflow. This

is proved in case the domain Ω is bounded by a priori estimates and the compactness of

Sobolev embedings. This method seems not to work when the domain is unbounded since

the Sobolev embeddings are no longer compact. It then becomes a difficult task to deal with

this compactness issue. Two major techniques seem to work in overcoming this difficulty:

working with weighted Sobolev spaces as phase space or using the “tail estimation methods”.

In 1990 Babin and Vishik [2] for the first time showed the existence of a global attractor

for the reaction-diffusion equation in RN ,

ut − ν∆u + f(u) + λu = g. (1.1)

To this end they used the weighted Sobolev space L2
γ(RN ) as phase space. They proved,

for γ < 0, the existence of a global attractor in the weak topology under certain growth

conditions on the nonlinearity f . For γ > 0, the attractor is in the strong topology and if

g(x) decreases sufficiently fast, then the attractors for different γ do not depend on γ.

In 1994 Feireisl, Laurençot, Simondon and Touré [20] considered a similar equation as

(1.1) without the mass term λu and they showed that for γ < −N
2 , the attractor is indeed

in the strong topology of L2
γ(RN ).

Some other authors have also considered weighted spaces for different types of equations.
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For the wave equation

utt + δut − φ(x)∆u + λf(u) = η(x), x ∈ RN , t > 0,

N.I. Karachalios amd N.M. Stavrakakis [24] established the existence and finite dimension-

ality of a global attractor in L2
g(RN ) where g(x) =

1
φ(x)

.

Working with the weighted spaces has a disadvantage of restraining the choice of the

initial data. In 1999, B. Wang [49] came up with the new idea of “tail estimations” to prove

the asymptotic compactness of the semiflow generated by the reaction-diffusion equation

(1.1). This led to the existence of a global attractor in L2(RN ) for system (1.1). This

method features an approximation of RN by sufficiently large bounded domains Ωk and

then show the null convergence of the solutions in Rn − Ωk. This method has been useful

to studying the dynamics of many evolutionary equations in unbounded domains as well as

lattice dynamical systems (see for instance [4, 49, 43, 50, 28]).

The dynamics of nonlinear wave equations in unbounded domains have been extensively

studied by Eduard Feireisl. In [16] he showed the existence of global attractor for 3D wave

equation in H1(R3)×L2(R3), but for the n-dimensional problem the attractor is only locally

compact, see [17]. Similar results have been obtained in [53].

It seems little is known on the existence of global attractor in the traditional Sobolev

spaces for nonlinear wave equations in unbounded domains. In Chapter 2, we consider the

damped wave equation with mass term,

utt + λut −4u + u + f(u) = g(x), x ∈ RN , t > 0 (1.2)

and show the existence of global attractor for the corresponding dynamical system. This is

done by applying the generalized “tail end estimation” method introduced in [4] and [49].

Moreover, removing the mass term in (1.2), we achieve the existence result for the equation

utt + λut −4u + f(u) = g(x), x ∈ Ω, t > 0 (1.3)

where Ω is a domain of RN , bounded only in one direction. This features the use of the

Poincaré inequality to achieve the monotonicity of the linear operator for the corresponding
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transformed first-order problem.

In Chapter 3 we study the dynamics of the seconder order lattice system, without mass

term,

üi + λu̇i − (ui−1 − 2ui + ui+1) + f(ui) = gi, i ∈ Z (1.4)

which can be seen as a spatial discretization of (1.3)in one dimension.

In chapter 4 we give some remarks on the dimension f the global attractors and present

some new directions with interesting open problems.

Before we get into the details of our work, let us introduce first the basic definitions and

results relevant to the general theory of dynamical systems. We present in this introductory

chapter the notions of semiflows and attractors along with a brief presentation of the theory

of semigroups and its relation to solving abstract nonlinear equations in a Banach space.

We also give an example of a sectorial operator and we finish with some inequalities that

will be useful in the subsequent chapters.

1.1 Semiflows and Attractors

We will use in this work the definition of semiflows as in Temam [47]. A stronger version

can be found in Sell&You [42], where the only difference is the continuity property.

Definition 1.1.1 Let (H, d) be a complete metric space. A family of operators {S(t)}t≥0

is called a semiflow on H, if it satisfies the following properties:

1. S(0) = I (identity in H), i.e. S(0)u = u ∀u ∈ H,

2. S(t)S(s) = S(t + s), ∀s, t ∈ R+,

3. The mapping S(t) : H → H is continuous for every t ≥ 0.

We introduce now the concepts of invariant sets and attractors of a semiflow

Definition 1.1.2 Let S(t) be a semiflow on H and K ⊂ H . We say that K is positively

invariant if S(t)K ⊂ K, for all t ≥ 0. K is invariant if S(t)K = K, for all t ≥ 0.
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To define attractors we will need the following asymmetric Hausdorff pseudodistance:

sup
a∈A

inf
b∈B

d(A, b) (1.5)

where A, B are bounded sets in H.

We say that A attracts B if

h(S(t)B,A) → 0, as t →∞, (1.6)

that is: for every ε > 0, there exists T ≥ 0 such that d(S(t)u, A) ≤ ε, for all t ≥ T and

u ∈ B.

Definition 1.1.3 A subset A of H is called an attractor for the semiflow S(t) provided

that

1. A is a compact, invariant set in H, and

2. there is a neighborhood U of A in H such that A attracts every bounded set in U .

An attractor A that attracts every bounded set in H is called a global attractor.

The existence of global attractor is in general related to what some authors call the

“dissipativity” of the dynamical system. This is equivalent to the existence of absorbing

sets.

Definition 1.1.4 Let B be a subset of H and U an open set containing B. We say that B

is an absorbing set in U if the orbit of any bounded set in U enters into B after a finite

time (which may depend on the set):

 ∀B0 ⊂ U , B0 bounded

∃t1(B0) such that S(t)B0 ⊂ B, ∀t ≥ t1(B0).

We also say that B attracts the bounded sets of U .

We have also the related concept of asymptotical compactness.

Definition 1.1.5 A semiflow {S(t)}t≥0 is said to be asymptotically compact on U if for

every bounded sequence {un} in U and tn →∞, {S(tn)un}t≥0 is precompact in H.
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We are now ready to present a standard result on the existence of global attractors which

can be found in [23, 47].

Theorem 1.1.1 Let {S(t)}t≥0 be a semiflow in X. If {S(t)}t≥0 has a bounded absorbing

set and is asymptotically compact in H, then {S(t)}t≥0 possesses a global attractor which is

a compact invariant set that attracts every bounded set in H.

1.2 Evolutionary Equations and Semigroup Theory

In practice semiflows are generated by the solutions of differential equations. We will con-

sider abstract nonlinear ODEs of the form

du

dt
+ Au = F (u, t) (1.7)

in a Banach space X, where A is an unbounded linear operator in X and F : X × R → X

is a nonlinear functional. In this section we will present the general existence theory for

equations such as (1.7). This will apply directly to a wide range of evolutionary partial

differential equations. We will first give some basic notions on semigroup theory which is

related to solving the corresponding linear problem

du

dt
+ Au = 0. (1.8)

1.2.1 Semigroups of Linear Operators

In the remainder of this section, X denotes a Banach space with norm ‖ · ‖X and L(X) is

the space of bounded linear operators on X.

Definition 1.2.1 We will say that a family of operators {T (t)}t≥0 is a C0-semigroup of

linear operators on X, if T (t) ∈ L(X) for all t ∈ [0,+∞) and the following hold:

(i) T (0) = I (identity in X)

(ii) T (t)T (s) = T (t + s), s, t ∈ [0,+∞)

(iii) lim
t→0+

T (t)x = x, for all x ∈ X.

6



We see that a C0-semigroup is a typical example of a semiflow on X.

Definition 1.2.2 Let T (t) be a C0-semigroup on X, its infinitesimal generator is the

linear operator A on X defined as follows

• The domain of A is:

D(A) = {x ∈ X : lim
h→0+

T (h)− I

h
x exists in X}

• for x ∈ D(A) we set:

Ax = lim
h→0+

T (h)− I

h
x =

d+(T (t)x)
dt

|t=0.

Next we will give a necessary and sufficient condition for an operator to be the infinitesimal

generator of a C0-semigroup in a Hilbert space H. We need to introduce first some concepts.

Let H be a Hilbert space with inner product 〈·, ·〉. A linear operator A : D(A)(⊂ H) → H

is said to be accretive if

Re 〈Ax, x〉 ≥ 0, ∀x ∈ D(A).

If in addition we have R(I + A) = H ( range of I + A is equal to H) then we say that A is

maximal accretive.

A C0-semigroup is said to be nonexpansive if ‖T (t)‖ ≤ 1 for every t ≥ 0.

Theorem 1.2.1 (Lumer-Phillips) Let H be a Hilbert space. Then a linear operator −A :

D(A)(⊂ H) → H is the infinitesimal generator of a nonexpansive C0-semigroup e−At on H

if and only if both the following condtions are satisfied:

(1) A is a closed linear operator and D(A) is dense in H, and

(2) A is a maximal accretive operator.

This is a classical result on semigroups and their generators. The proof can be found in

[38, 42]. However this result applies only to Hilbert spaces; there is a more general one on

Banach spaces, namely the Hille-Yosida theorem.
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As we mentioned in the beginning of this section, the semigroup theory will allow us

to solve the linear problem (1.8). Indeed let A be the generator of a C0-semigroup T (t)

on X; it is shown that for every x0 ∈ D(A), T (t)x0 is a solution of equation (1.8) in the

classical sense. For x0 ∈ X we call x(t) = T (t)x0 a mild solution of (1.8). The existence

of solutions in the classical sense is related to the differentiability of the C0-semigroup and

there is a particular class of differentiable semigroups called analytic semigroups.

Definition 1.2.3 We will say that T (t) is an analytic semigroup in X if there is an

extension of it to a mapping T (z) defined on some sector ∆δ ∪ {0} such that:

(1) T (z1 + z2) = T (z1)T (z2) for all z1 and z2 in ∆δ ∪ {0},

(2) for each x ∈ X, one has T (z)x → x as z → 0 in ∆δ ∪ {0},

(3) for each x ∈ X, the function z → T (z)x is an analytic mapping from ∆δ into X

where the sector ∆δ is defined as

∆δ = {z ∈ C : |arg z| < δ, z 6= 0}, for δ ∈ (0, π).

A related concept is that of sectorial operators.

Definition 1.2.4 A linear operator A : D(A) ⊂ X → X is said to be a sectorial operator

on X if it satisfies the following:

(1) A is densely defined and closed,

(2) there exist real numbers a ∈ R, σ ∈ (0, π
2 ) and M ≥ 1 such that one has Σσ(a) ⊂ ρ(A)

and

‖R(λ, A)‖ ≤ M

|λ− a|
, for all λ ∈ Σσ(a) (1.9)

where ρ(A) is the resolvent set of A, R(λ, A) the resolvent operator and Σσ(a) defined

as:

Σσ(a) = {z ∈ C : |arg(z − a)| > σ, z 6= a}.

The next theorem which can be found in [38, 42] gives the relation between analytic semi-

groups and sectorial operators
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Theorem 1.2.2 Let T (t) be a C0-semigroup on X with infinitesimal generator A and let

M ≥ 1, a ∈ R be chosen so that ‖T (t)‖ ≤ Me−at, for all t ≥ 0. Then the following

statements are equivalent:

(1) T (t) is an analytic semigroup and there is an analytic extension semigroup T (z) defined

on some sector ∆δ ∪{0} with 0 < δ < π
2 , and a constant M1 ≥ M such that ‖T (z)‖ ≤

M1e
−aRez for z ∈ ∆δ.

(2) A is a sectorial operator and one has

‖R(λ, A)‖ ≤ M2

|λ− a|
, for all λ ∈ Σξ(a), (1.10)

for appropriate constants M2 ≥ 1 and ξ ∈ (0, π
2 ).

Moreover, T (t) is a differentiable semigroup.

For many partial differential equations, particularly the parabolic ones, the corresponding

linear operator is sectorial. In the follwing example we present some elliptic operators that

turn out to be sectorial. This will be used in the next chapter to show that the transformed

linear operator for the nonlinear wave equation is maximal accretive.

Example 1.2.1 Let Ω be either Rn or an open bounded subset of Rn with uniformly C2

boundary ∂Ω.

We consider a second order differential operator

A(x,D) =
n∑

i,j=1

aij(x)Dij +
n∑

i=1

bi(x)Di + c(x)I

with real uniformly continuous and bounded coefficients aij , bi, c.

We assume that the matrix [aij ] is symmetric and that it satisfies the uniform ellipticity

condition
n∑

i,j=1

aijξiξj ≥ µ|ξ|2, x ∈ Ω, ξ ∈ Rn, (1.11)

for some µ > 0. Moreover if Ω 6= Rn, we consider a first order differential operator acting

on the boundary

B(x, D) =
n∑

i=1

βi(x)Di + γ(x)I. (1.12)
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We assume that βi, γ, belong to UC1(Ω̄), and that the uniform nontangentiality condition

inf
x∈∂Ω

|
n∑

i=1

βi(x)ν(x)| > 0 (1.13)

holds, with ν(x) being the exterior unit normal vector to ∂Ω at x ∈ ∂Ω.

Let X = Lp(Ω), 1 < p < ∞, be endowed with the usual norm ‖ · ‖p. Let Wm,p(Ω),

Wm,p
0 (Ω) denote the usual Sobolev spaces on Ω with the usual norms.

If Ω = Rn we set

D(A) = W 2,p(Rn), Au = A(·, D)u for u ∈ D(A)

If Ω 6= Rn, we set

D(A0) = W 2,p(Ω) ∩W 2,p
0 (Ω), A0u = A(·, D)u for u ∈ D(A0)

D(A1) = {u ∈ W 2,p(Ω) : B(·, D)u = 0 in ∂Ω}, A1u = A(·, D)u for u ∈ D(A1)

Theorems 3.1.2, 3.1.3 in [29] state that the operators A, A0, A1 are sectorial operators in X

and that there exists ω, ω1, ω2 ∈ R such that

ρ(A) ⊃ {λ ∈ C : Reλ ≥ ω}, ρ(A0) ⊃ {λ ∈ C : Reλ ≥ ω0}, ρ(A1) ⊃ {λ ∈ C : Reλ ≥ ω1}.

This example of sectorial operator will be useful in Chapter 2 when we work with the wave

equations.

1.2.2 Nonlinear Evolution Equations

In this section, we will briefly present the existence theory for abstract nonlinear evolutionary

equations in a Banach space X. There exists a vast literature on this issue, but we will just

give some basic results, see [38, 42, 47].
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We consider the following initial value problem in the Banach space X:


du

dt
+ Au = F (u)

u(t0) = u0 ∈ X, t ≥ t0 ≥ 0.
(1.14)

Assume that the nonlinearity F belongs to F ∈ CLip = CLip(X, X), the collection of all

continuous functions G : X → X that are Lipschitz continuous on every bounded set B in

X. We suppose also that −A generates a C0-semigroup T (t) on X.

At first, we give different notions of solution for problem (1.14) and then present some

existence results for such types of solutions.

Definition 1.2.5 Let I = [t0, t0 + τ) be an interval in R+, where τ > 0. A strongly

continuous mapping u : I → X is said to be a mild solution of (1.14) in X if it solves the

following integral equation

u(t) = T (t− t0)u0 +
∫ t

t0

T (t− s)F (u(s)) ds, t ∈ I. (1.15)

If u is differentiable almost everywhere in I with ut, Au ∈ L1
loc(I,X), and satisfies the

differential equation

du

dt
+ Au =a.e. F (u), on (t0, t0 + τ), and u(t0) = u0, (1.16)

then u is called a strong solution of (1.14). If in addition, one has ut ∈ C(I, X) and the

differential equation in (1.16) is satisfied for t0 < t < t0 + τ , then u is called a classical

solution of (1.14) on I.

We have the following result which is a particular case of Theorems 46.1 & 46.2 in G. Sell

& Y. You [42].

Theorem 1.2.3 Let −A generate a C0-semigroup T (t) on X and F ∈ CLip = CLip(X, X).

Then for every u0 ∈ X and t0 > 0, the Initial Value Problem (1.14) has a unique mild

solution u in X on some interval I = [t0, t0 + τ), for some τ > 0.

Assume that X = H is a Hilbert space or a reflexive Banach space. If u0 ∈ D(A) or

T (t) is a differentiable semigroup, then the mild solution is a strong one.
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Remark 1.2.1 The solution u in Theorem 1.2.3 can be extended to a maximum possible

interval I. Indeed u is maximally deifined if either τ = +∞ or lim
t→τ−

‖u(t)‖X = +∞.

1.3 Some Useful Inequalities

We present in this section some inequalities that will be used in the consequent chapters.

The most used inequality throughout our work is the Gronwall inequality which comes in

different forms. We present here some variants of it.

Lemma 1.3.1 (The Gronwall inequality) Suppose that a and b are nonnegative con-

stants and u(t) a nonnegative integrable function. Suppose that the following inequality

holds for 0 ≤ t ≤ T :

u(t) ≤ a + b

∫ t

0
u(s) ds. (1.17)

Then for 0 ≤ t ≤ T , we have

u(t) ≤ aebt. (1.18)

Lemma 1.3.2 (The uniform Gronwall inequality) Let g, h, y be nonnegative functions

in L1
loc[0, T ; R), where 0 < T ≤ ∞. Assume that y is absolutely continuous on (0, T ) and

that
dy

dt
≤ gy + h almost everywhere on (0, T ). (1.19)

Then y ∈ L∞loc(0, T ; R) and one has

y(t) ≤ y(t0)exp
(∫ t

t0

g(s) ds
)

+
∫ t

t0

exp
(∫ t

s
g(r) dr

)
h(s) ds, (1.20)

for 0 < t0 < t < T . If in addition one has y ∈ C[0, T ; R), then inequality (1.20) is valid at

t0 = 0.

The following theorem is concerned with the Poincaré inequality.

Theorem 1.3.1 (Poincaré inequality) Let Ω be a domain of RN bounded only in one

direction and let u ∈ H1
0 (Ω). Then there is a positive constant C depending only on Ω and

n such that

‖u‖L2(Ω) ≤ C‖∇u‖(L2(Ω))N , ∀u ∈ H1
0 (Ω). (1.21)
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Remark 1.3.1 The Poincaré inequality is usually presented for bounded domains but the

proof requires only the boundedness in one direction xi.
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2 ATTRACTORS FOR DAMPED WAVE EQUATIONS

We study in this chapter the existence of a global attractor for the following two damped

nonlinear wave equations in an unbounded domain of RN :

utt + λut −4u + u + f(u) = g(x), t > 0 (2.1)

and

utt + λut −4u + f(u) = g(x), t > 0 (2.2)

where λ is a positive constant, g is a given function and f is a nonlinear term satisfying

some growth conditions to be specified later. The long-time behavior of solutions of such

equations in a bounded domain was studied by many authors, for instance in [47], [42] and

the references therein.

In the unbounded domain case, there also exists an extensive literature. In 1994,

E. Feireisl [16] showed that the more challenging equation (2.2) admits a global attrac-

tor in H1(R3) × L2(R3) when N = 3. For arbitrary n, he obtain in [17] the same result in

the phase space H1
loc(RN )× L2

loc(RN ).

In 2001, S.V. Zelik [53] considered the nonautonomous case for equation (2.1), in which

the forcing term g depends on time. He obtained the existence of locally compact global

attractor and the upper and lower bounds for their Kolomogorov’s ε-entropy. Some other

authors have also considered different types of wave equations in unbounded domains ([24],

[25]) in weighted spaces.

In this chapter we establish the existence of global attractors in the usual Hilbert spaces

H1×L2, for equations (2.1) and (2.2) in unbounded domains of RN . To this end we cannot
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apply the same procedure as for bounded domains, since the Sobolev embeddings are no

longer compact. We will apply the ”tail estimation” method, introduced for the first order

lattice systems and the reaction diffusion equations ([4, 49, 50]). It features an ”approxima-

tion” of RN by sufficiently large bounded domains Ωk, then using the compactness of the

embeddings in Ωk and showing the uniform null convergence of the solutions on RN − Ωk,

we finally arrive to get the asymptotical compactness of the semiflow.

2.1 The Wave Equation with Mass Term

We consider in this section, the nonlinear wave equation with mass term,

utt + λut −4u + u + f(u) = g(x), t > 0

in RN . We shall establish first the existence and boundedness of solutions, then we shall

prove the asymptotic compactness of the corresponding semiflow to obtain the global at-

tractor.

2.1.1 Existence of Solutions and Absorbing Set

We start by transforming our problem into an abstract ODE in the space L2 × H1 and

prove that the new operator is maximal accretive. This will allow us to show the existence

of solutions and the uniform boundedness of such solutions.

We consider the system

utt + λut −4u + u + f(u) = g(x), x ∈ RN , t > 0 (2.3)

with initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ RN (2.4)

where λ > 0, g ∈ L2(RN ), and f ∈ C1(R, R) satisfies the following condition:

f(0) = 0, f(s)s ≥ νF (s) ≥ 0, ∀s ∈ R (2.5)
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where ν is a positive constant and F (s) =
∫ s

0
f(t) dt. In addition we assume that

0 ≤ lim sup
s→∞

f(s)
s

< ∞ (2.6)

Now set H = L2(RN ), V = H1(RN ), and X = V × H with the usual norms and

scalar products. We define the operator G in X by:

D(G) = H2(RN )×H1(RN )

Gw =


δu− v

−∆u + (λ− δ)v + (δ2 − δλ + 1)u


(2.7)

for w = (u, v) ∈ D(G).

Then (2.3), (2.4) are equivalent to the initial value problem in X:


wt + Gw = R(w), t > 0, w ∈ X

w(0) = w0 = (u0, v0 + δu)

(2.8)

where

R(w) =


0

−f(u) + g


The next result establishes the maximal accretivity of the the operator G in X.

Lemma 2.1.1 For a suitable δ chosen to be δ =
λ

λ2 + 4
, the operator G defined previously

is maximal accretive in X, and there exists a constant C(δ) > 0 depending on δ such that

〈Gw, w〉X ≥ C(δ)‖w‖2
X , ∀w ∈ D(G) (2.9)
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Proof: We first prove the positivity. Let w = (u, v) ∈ D(G), then

〈Gw , w〉X = 〈δu− v, u〉V + 〈−∆u + (λ− δ)v + (δ2 − δλ + 1)u, v〉H

= δ‖u‖2
V −

∫
RN ∇u · ∇v dx− 〈u, v〉H +

∫
RN ∇u · ∇v dx

+(λ− δ)‖v‖H + (δ2 − δλ + 1)〈u, v〉H

= δ‖u‖2
V + (λ− δ)‖v‖2

H + (δ2 − δλ)〈u, v〉H

Then setting

σ =
λ√

λ2 + 4(λ +
√

λ2 + 4)
, (2.10)

we have

〈G(w) , w〉X − σ(‖u‖2
V + ‖v‖2

H)− λ
2‖v‖

2
H ≥ (δ − σ)‖u‖2

V + (λ
2 − δ − σ)‖v‖2

H

−δλ‖u‖V ‖v‖H

≥ 2
√

(δ − σ)(λ
2 − δ − σ)‖u‖V ‖v‖H

−δλ‖u‖V ‖v‖H .

We can check that 4(δ − σ)(λ
2 − δ − σ) = λ2δ2 so that

〈G(w) , w〉X − σ‖w‖2
X − λ

2
‖v‖2 ≥ 0.

It suffices to take C(δ) = σ

Now we prove that the range of G + I equals X. Let f = (h, g) ∈ X; the question is

whether there exists a w = (u, v) ∈ D(G) such that:

Gw + w = f ?
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i.e.

 δu− v + u = h

−∆u + (λ− δ)v + (δ2 − δλ + 1)u = g

i.e.

 v = (δ + 1)u− h

−∆u + (λ− δ)[(δ + 1)u− h] + (δ2 − δλ + 1)u = g

i.e.

 v = (δ + 1)u− h

−∆u + (λ− δ + 1)u = g + (λ− δ)h

Note that the operator Au = −∆u in L2(RN ) with domain H2(RN ) is a sectorial operator

and there exists ω ∈ R such that %(A) ⊃ {λ ∈ C : Reλ ≥ ω} (this is a particular case in

Example 1.2.1 ). So the equation

−∆u + (λ− δ + 1)u = g + (λ− δ)h

has a unique solution u ∈ H2(RN ), thus letting v = (δ + 1)u − h and w = (u, v), we get a

unique w ∈ D(G) such that Gw + w = f . So the range of G + I equals X. This, with (2.9),

shows that G is maximal accretive and finishes the proof of lemma 2.1.1.

Lemma 2.1.1 together with the Lumer-Phillips Theorem 1.2.1 imply that −G generates

a nonexpansive C0-semigroup e−Gt on X. Furthermore since f verifies (2.6), the operator

R : X → X is locally Lipschitz continuous. By the standard theory of evolutionary equations

(see G. R. Sell & Y. You [42], Theorem 46.1) this leads to the existence and uniqueness of

local solutions as stated in the next lemma.

Lemma 2.1.2 If g ∈ L2(RN ) and f satisfies (2.6), then for any initial data w0 = (u0, v0) ∈

X, there exists a unique local solution w(t) = (u(t), v(t)) of (2.8) such that w ∈ C1((−T0, T0), E)

for some T0 = T0(w0) > 0.

In fact we will show that the local solution w(t) of (2.8) is bounded and exists globally.

Lemma 2.1.3 Assume that (2.5) and (2.6) are satisfied and that g ∈ H. Then any solution
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w(t) of problem (2.8) satisfies

‖w(t)‖X ≤ M, t ≥ T1 (2.11)

where M is a constant depending only on (λ, g) and T1 depending on the data (λ, g, R)

when ‖w0‖X ≤ R.

Proof: Let w0 ∈ D(G) be the initial condition in (2.8). Taking the inner-product of (2.8)

with w in X we find that

1
2

d
dt‖w‖

2
X = −〈Gw , w〉X + 〈R(w), w〉E

= −〈Gw , w〉X + 〈g , v〉H − 〈f , v〉H

≤ −C(δ)‖w‖2
X + ‖g‖H‖v‖H − δ〈f(u) , u〉H − 〈f(u) , ut〉H ,

by (2.5) we have

−δ〈f(u) , u〉H ≤ −δν

∫
RN

F (u) dx

and

−〈f(u) , ut〉H = − d

dt

∫
RN

F (u) dx.

Then using the Young inequality, it follows for any α > 0 that

1
2

d

dt
‖w‖2

X ≤ −C(δ)‖w‖2
X +

α

2
‖v‖2

H +
1
2α
‖g‖2

H − δν

∫
RN

F (u) dx− d

dt

∫
RN

F (u) dx

which implies that

d

dt

[
‖w‖2

X + 2
∫

RN

F (u) dx

]
≤ 2 (α− C(δ)) ‖w‖2

X − 2δν

∫
RN

F (u) dx +
1
α
‖g‖2

H

Now we can choose α small enough so that α− C(δ) < 0 and taking
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µ = min {−2(α− C(δ)) , δν} > 0 we have

d

dt

[
‖w‖2

X + 2
∫

RN

F (u) dx

]
≤ −µ

[
‖w‖2

X + 2
∫

RN

F (u) dx

]
+

1
α
‖g‖2

H (2.12)

and then by Uniform Gronwall inequality we get

‖w‖2
X + 2

∫
RN

F (u) dx ≤ e−µt

(
‖w0‖2

X + 2
∫

RN

F (u0) dx

)
+ (1− e−µt)

1
µα
‖g‖2

H

which yields

‖w‖2
X ≤ e−µt

(
‖w0‖2

X + 2
∫

RN

F (u0) dx

)
+

1
µα
‖g‖2

H . (2.13)

Now by (2.5) we have

∫
RN

F (u0) dx ≤ 1
ν

∫
RN

f(u0)u0 dx ≤ C

ν

∫
RN

u2
0(x) dx.

Then we deduce from (2.13) that for every w0 ∈ D(G),

‖w‖2
X ≤ e−µt

(
‖w0‖2

X +
C

ν
‖u0‖2

H

)
+

1
µα
‖g‖2

H . (2.14)

And by density of D(G) in X and the continuity of the solution of (2.8) in X × (0 , T (w0))

we see that (2.13) holds for every w0 ∈ X.

Now let R > 0 and ‖w0‖X ≤ R, then ‖u0‖H ≤ R and

‖w‖2
X ≤ e−µt

(
R2 +

CR2

ν

)
+

1
µα
‖g‖2

H (2.15)

which yields

‖w‖2
X ≤ 2

µα
‖g‖2

H , for t ≥ T1 =
1
µ

ln

{
µλ(R2 + CR2

ν )
‖g‖2

H

}
(2.16)

and (2.11) follows with M =
2

µα
‖g‖2

H and the proof is complete.

By (2.15), We have also the following result.
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Lemma 2.1.4 Let g ∈ H. Then for any given T > 0, every solution w of (2.8) satisfies

‖w‖X ≤ L, 0 ≤ t ≤ T (2.17)

where L depends on (λ, δ, ‖g‖H), T and ‖w0‖X .

Lemma 2.1.3 implies that the solution w(t) exists globally, that is T (w0) = +∞, which

implies that the system (2.8) generates a continuous semiflow {S(t)}t≥0 on X. Denote by

O the ball

O = {w ∈ X : ‖w‖X ≤ M} (2.18)

where M is the constant in (2.11). Then it follows from (2.11) that O is an absorbing set for

S(t) in X and that for every bounded set B in X there exists a constant T (B) depending

only on (λ, g) and B such that

S(t)B ⊆ O, t ≥ T (B). (2.19)

In particular there exists a constant T0 depending only on (λ, g) and O such that

S(t)O ⊆ O, t ≥ T0. (2.20)

2.1.2 Global Attractor

The existence of an absorbing set is the first step toward the existence of a global attractor.

We need now to prove the asymptotic compactness of S(t). The key idea lies in establishing

uniform estimates on “Tail Ends” of solutions, that is, the norm of the solutions w(t) are

uniformly small with respect to t outside a sufficiently large ball.

Lemma 2.1.5 If (2.5) and (2.6) hold, g ∈ H and w0 = (u0, v0) ∈ O, then for every ε > 0,

there exists positive constants T (ε) and K(ε) such that the solution w(t) = (u(t), v(t)) of

problem (2.8) satisfies

∫
|x|≥k

{
|u|2 + |∇u|2 + |v|2

}
dx ≤ ε, t ≥ T (ε), k ≥ K(ε). (2.21)
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Proof: Choose a smooth function θ such that 0 ≤ θ(s) ≤ 1 for s ∈ R+, and

θ(s) = 0 for 0 ≤ s ≤ 1; θ(s) = 1 for s ≥ 2.

Then there exists a constant C > 0 such that |θ′(s)| ≤ C for s ∈ R+.

Let w(t) = (u(t), v(t)) be the solution of problem (2.8) with initial condition w0 = (u0, v0) ∈

O then v(t) = δu + ut satisfies the equation

vt −∆u + (λ− δ)v + (δ2 − λδ + 1)u = −f(u) + g (2.22)

taking inner product of (2.22) with θ( |x|
2

k2 )v in H we get

∫
RN

θ(
|x|2

k2
)vvt dx−

∫
RN

∆uθ(
|x|2

k2
)v dx + (λ− δ)

∫
RN

θ(
|x|2

k2
)|v|2 dx

+(δ2 − λδ + 1)
∫

RN

θ(
|x|2

k2
)uv dx = −

∫
RN

f(u)θ(
|x|2

k2
)v dx +

∫
RN

θ(
|x|2

k2
)gv dx

(2.23)

But

−
∫

RN

∆uθ(
|x|2

k2
)v dx =

∫
RN

θ(
|x|2

k2
)∇u · ∇v +

2
k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u

=
∫

RN

θ(
|x|2

k2
)
[
δ|∇u|2 +∇u · ∇ut

]
+

2
k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u

=
1
2

d

dt

∫
RN

θ(
|x|2

k2
)|∇u|2 + δ

∫
RN

θ(
|x|2

k2
)|∇u|2

+
2
k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u,

and

(δ2 − λδ + 1)
∫

RN

θ(
|x|2

k2
)uv dx = (δ2 − λδ + 1)

∫
RN

θ(
|x|2

k2
)(δ|u|2 + uut)

=
1
2
(δ2 − λδ + 1)

d

dt

∫
RN

θ(
|x|2

k2
)|u|2 + δ(δ2 − λδ + 1)

∫
RN

θ(
|x|2

k2
)|u|2.
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Then (2.23) becomes

1
2

d

dt

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2

]

+δ

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2

]
+ (λ− 2δ)

∫
RN

θ(
|x|2

k2
)|v|2

= −
∫

RN

θ(
|x|2

k2
)f(u)(δu + ut) +

∫
RN

θ(
|x|2

k2
)gv dx− 2

k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u,

(2.24)

and since

∫
RN

θ(
|x|2

k2
)f(u)(δu + ut) ≥

d

dt

∫
RN

θ(
|x|2

k2
)F (u) + δν

∫
RN

θ(
|x|2

k2
)F (u),

we deduce that

d

dt

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2 + 2F (u)

]

+δα

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2 + 2F (u)

]

≤ −(λ− 2δ)
∫

RN

θ(
|x|2

k2
)|v|2 +

∫
RN

θ(
|x|2

k2
)gv dx− 2

k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u,

(2.25)

where α = min {1 , ν}. Now, there exists a constant K(ε) > 0 such that for k ≥ K, we have

−(λ− 2δ)
∫

RN

θ(
|x|2

k2
)|v|2 +

∫
RN

θ(
|x|2

k2
)gv dx− 2

k2

∫
RN

θ′(
|x|2

k2
)vx · ∇u ≤ ε

2
,

which implies by Uniform Gronwall inequality that
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∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2 + 2F (u)

]

≤ e−δαt

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u0|2 + |∇u0|2 + |v0|2 + 2F (u0)

]
+ ε

1− e−δα

2δα
.

Now since w0 ∈ O, there exist a constant M > 0, uniformly chosen for w0 ∈ O, such that

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u0|2 + |∇u0|2 + |v0|2 + 2F (u0)

]
≤ M.

Then we get for k ≥ K(ε),

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2 + 2F (u)

]
≤ Me−δαt + ε

1− e−δα

2δα
.

Choosing T (ε) =
1
δ

ln
( 2Mδα

2εδα− ε

)
, we deduce that

∫
RN

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2

]
≤ ε for t ≥ T (ε), k ≥ K(ε)

which yields (2.21) since 0 < δ2 − λδ + 1 < 1 for the particular choice of δ, and the proof is

complete.

By multiplying equation (2.22) with v and integrating we deduce the following energy

equation
d

dt
E(w(t)) + 2δE(w(t)) = G(w(t)) ∀t > 0, (2.26)

where E(w) is the quasi-energy functional,

E(w) = (δ2 − λδ + 1)‖u‖2
H + ‖∇u‖2

L2(RN ) + ‖v‖2
H , (2.27)
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and

G(w) = −2(λ− 2δ)‖v‖2
H + 2

∫
RN

gv dx− 2
∫

RN

f(u)v dx. (2.28)

This energy functional E will be used later as an equivalent norm, more suitable in proving

the asymptotical compactness.

The following lemma will be also useful in proving the asymptotical compactness.

Lemma 2.1.6 Let wn = (un, vn) −→ w0 = (u0, v0) weakly in X, then for every T > 0 we

have

S(t)wn −→ S(t)w0 weakly in L2(0, T ;X) (2.29)

and

S(t)wn −→ S(t)w0 weakly in X, for 0 ≤ t ≤ T. (2.30)

Proof: Since {wn}n converges weakly in X, then it is bounded in X so that, by lemma 2.1.4

{S(t)wn}n is bounded in L∞(0, T ;X). This, with (2.8), implies that

∂

∂t
S(t)vn is bounded in L∞(0, T ;H−1(RN )) (2.31)

and

S(t)vn is bounded in L∞(0, T ;L2(RN )). (2.32)

We infer that there exists a subsequence {wnj}j and w∞ = (u∞, v∞) ∈ L∞(0, T ;X) such

that

S(t)wnj −→ w∞ weakly in L2(0, T ;X), (2.33)

∂

∂t
S(t)vnj −→

∂

∂t
v∞ weakly in L∞(0, T ;H−1(RN )) (2.34)

and
∂

∂t
S(t)unj −→

∂

∂t
u∞ weakly in L2(0, T ;H). (2.35)
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We can show that w∞ is a solution of (2.8) with w∞(0) = w0. Indeed, we have by the mild

solution formula,

S(t)wnj = e−Gtwnj +
∫ t

0
e−G(t−s)R(S(s)wnj ) ds. (2.36)

And, since wnj → w0 weakly in X, we deduce from (2.33) that

e−Gtwnj +
∫ t

0
e−G(t−s)R(S(s)wnj ) ds −→ e−Gtw0 +

∫ t

0
e−G(t−s)R(w∞(s)) ds, (2.37)

weakly in X. which implies, by the uniqueness of weak limit that

w∞(t) = e−Gtw0 +
∫ t

0
e−G(t−s)R(w∞(s)) ds. (2.38)

That is w∞ is a solution of (2.8) and by the uniqueness of solutions we have w∞(t) =

S(t)w0. This shows that any subsequence of S(t)wn has a weakly convergent subsequence

in L2(0, T ;X), therefore we conclude (2.29). A similar argument yields (2.30).

Similar to (2.29) we also have that if wn −→ w weakly in X, then for 0 ≤ s ≤ T ,

S(t)wn −→ S(t)w0 weakly in L2(s, T ;X) (2.39)

We state here another useful lemma.

Lemma 2.1.7 Let Ω be a bounded domain in RN . Suppose un −→ u in L2(Ω) and vn −→ v

weakly in L2(Ω) , then
∫

Ω
f(un)vn dx −→

∫
Ω

f(u)v dx in R (up to a subsequence extraction).

Proof: By (2.6) we can show, up to a subsequence, that f(un) −→ f(u) in L2(Ω). Now

define the linear functionals In and I on L2(Ω) by

In(v) =
∫

Ω
f(un)v dx, I(v) =

∫
Ω

f(u)v dx.

Then In −→ I in L2(Ω)∗ (the dual space of L2(Ω). Indeed

|In(v)− I(v)| ≤
∫

Ω
|f(un)− f(u)||v| dx
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≤ ‖f(un)− f(u)‖L2‖v‖L2 .

which implies that

‖In − I‖L2 ≤ ‖f(un)− f(u)‖L2 −→ 0 as n −→∞.

So In → I in L2(Ω)∗ and vn → v weakly in L2(Ω), then it follows, by a classical result in

functional analysis that In(vn) −→ I(v), which proves the lemma.

We are now ready to prove the asymptotic compactness of the semiflow S(t).

Theorem 2.1.1 The semiflow S(t) generated by the system (2.8) is asymptotically compact

in X, that is if {wn}n is a bounded sequence in X and tn −→ +∞, then {S(t)wn}n≥1 is

precompact in X.

Proof: Let wn be a bounded sequence in X with ‖wn‖X ≤ R and tn −→ +∞ then by

(2.19) there exists a constant T (R) > 0 depending only on R > 0 such that

S(t)wn ∈ O, ∀n ≥ 1, ∀t ≥ T (R). (2.40)

Since tn −→ +∞, there exists N1(R) such that n ≥ N1 implies tn ≥ T (R) so that

S(tn)wn ∈ O, ∀n ≥ N1(R). (2.41)

Then there exists w ∈ X such that, up to a subsequence

S(tn)wn −→ w weakly in X. (2.42)

Now for every T > 0 there exists N2(R, T ) such that for n ≥ N2(R, T ) we have tn−T ≥ T (R)

so that

S(tn − T )wn ∈ O ∀n ≥ N2(R, T ). (2.43)

Thus there is a wT ∈ O such that

S(tn − T )wn −→ wT weakly in X, (2.44)
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and by the weak continuity (2.30) we must have w = S(T )wT which implies that

lim inf
n→∞

‖S(tn)wn‖X ≥ ‖w‖X . (2.45)

So we only need to prove that

lim sup
n→∞

‖S(tn)wn‖X ≤ ‖w‖X . (2.46)

By the energy equation (2.26), it follows that any solution w(t) = S(t)w of (2.8) satisfies

E(S(t)w) = e−2δ(t−s)E(S(s)w) +
∫ t

s
e−2δ(t−r)G(S(r)w) dr , t ≥ s ≥ 0. (2.47)

where E and G are given by (2.27) and (2.28), respectively.

In the following, T0 is the constant in (2.20), and for ε > 0, T (ε) is the constant in

(2.21). Let T0(ε) be a fixed constant such that T0(ε) ≥ max{T (ε) , T0}. Taking T ≥ T0(ε),

and applying (2.47) to the solution S(t)(S(tn − T )wn) with s = T0 and t = T , then we get,

for n ≥ N2(R, T ),

E(S(tn)wn) = E(S(T )(S(tn − T )wn))

= e−2δ(T−T0)E(S(T0)(S(tn − T )wn))

+
∫ T

T0

e−2δ(T−r)G(S(r)(S(tn − T )wn)) dr. (2.48)

Since T0 ≥ T0 we have S(T0)(S(tn−T )wn) ∈ O for n ≥ N2(R, T ), therefore by the definition

of E we find that

e−2δ(T−T0)E(S(T0)(S(tn − T )wn)) ≤ Ce−2δ(T−T0), ∀n ≥ N2(R, T ). (2.49)

On the other hand, we have

∫ T

T0

e−2δ(T−r)G(S(r)(S(tn − T )wn)) dr
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= −2(λ− δ)
∫ T

T0

e−2δ(T−r)‖S(r)S(tn − T )vn‖2 dr

+2
∫ T

T0

e−2δ(T−r)

∫
RN

gS(r)S(tn − T )vn dxdr

−2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr (2.50)

Let’s handle the first and last term of (2.50). Since we have,

e−2δ(T−r)S(r)S(tn − T )vn −→ e−2δ(T−r)S(r)v weakly in L2(T0, T ;H),

it follows that:

lim inf
n→∞

‖e−2δ(T−r)S(r)S(tn − T )vn‖L2(T0,T ;H) ≥ ‖e−2δ(T−r)S(r)v‖L2(T0,T ;H),

which implies that

lim sup
n→∞

−2(λ− δ)‖e−2δ(T−r)S(r)S(tn − T )vn‖L2(T0,T ;H)

≤ −2(λ− δ)‖e−2δ(T−r)S(r)v‖L2(T0,T ;H). (2.51)

Also by (2.44) and (2.39) we have

∫ T

T0

e−2δ(T−r)

∫
RN

gS(r)S(tn − T )vn dxdr −→
∫ T

T0

e−2δ(T−r)

∫
RN

gS(r)vT dxdr (2.52)

Now let’s handle the nonlinear term of (2.50). We have

−2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

= −2
∫ T

T0

e−2δ(T−r)

∫
|x|≥k

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

−2
∫ T

T0

e−2δ(T−r)

∫
|x|≤k

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr. (2.53)
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Handling the first term on the right-hand side of (2.53) gives

∣∣∣∣∣2
∫ T

T0

e−2δ(T−r)

∫
|x|≥k

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

∣∣∣∣∣
≤ C

∫ T

T0

e−2δ(T−r)

∫
|x|≥k

|S(r)S(tn − T )un||S(r)S(tn − T )vn|

≤ C

∫ T

T0

e−2δ(T−r)

(∫
|x|≥k

|S(r)S(tn − T )un|2
) 1

2
(∫

|x|≥k
|S(r)S(tn − T )vn|2

) 1
2

≤ ε2C

∫ T

T0

e−2δ(T−r) dr ≤ ε2C

2δ
, n ≥ N2(R, T ). (2.54)

We treat now the second term on the right-hand side of (2.53). We want to prove that as

n → +∞,

∫ T

T0

e−2δ(T−r)

∫
|x|≤k

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

−→
∫ T

T0

e−2δ(T−r)

∫
|x|≤k

f(S(r)uT )S(r)vT dxdr (2.55)

Set Ωk = {x ∈ RN : |x| ≤ k} and let r ∈ [T0, T ]. Then we have

S(r)S(tn − T )wn −→ S(r)wT , weakly in X.

By the compactness of the Sobolev embedding H1(Ωk) ⊂ L2(Ωk), we infer that

S(r)S(tn − T )un −→ S(r)uT , strongly in L2(Ωk) (2.56)

and

S(r)S(tn − T )vn −→ S(r)vT , weakly in L2(Ωk) (2.57)

then (2.55) follows from lemma 2.1.7.
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By (2.53), (2.54) and (2.55) we find that for k ≥ K(ε),

lim sup
n→∞

−2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

≤ εC − 2
∫ T

T0

e−2δ(T−r)

∫
|x|≤k

f(S(r)uT )S(r)vT dxdr.

Letting k −→∞ we obtain

lim sup
n→∞

−2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)S(tn − T )un)S(r)S(tn − T )vn dxdr

≤ εC − 2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)uT )S(r)vT dxdr. (2.58)

By (2.50), (2.51), (2.52) and (2.58), we finally obtain

lim sup
n→∞

∫ T

T0

e−2δ(T−r)G(S(r)(S(tn − T )wn)) dr

≤ −2(λ− δ)
∫ T

T0

e−2δ(T−r)‖S(r)vT ‖2 dr

+2
∫ T

T0

e−2δ(T−r)

∫
RN

gS(r)vT dxdr

−2
∫ T

T0

e−2δ(T−r)

∫
RN

f(S(r)uT )S(r)vT dxdr + εC,

that is

lim sup
n→∞

∫ T

T0

e−2δ(T−r)G(S(r)(S(tn − T )wn)) dr

≤
∫ T

T0

e−2δ(T−r)G(S(r)wT ) dr + εC. (2.59)

Taking limit of (2.48), (2.49) and (2.59) we get, as n →∞,

lim sup
n→∞

E(S(tn)wn) ≤ Ce−2δ(T−T0) +
∫ T

T0

e−2δ(T−r)G(S(r)wT ) dr + εC. (2.60)

On the other hand, since w = S(T )wT , by (2.47) we also have that

E(w) = E(S(T )wT ) = e−2δ(T−T0)E(S(T0)wT ) +
∫ T

T0

e−2δ(T−r)G(S(r)wT ) dr. (2.61)
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Hence it follows from (2.60)-(2.61) that

lim sup
n→∞

E(S(tn)wn) ≤ E(w) + Ce−2δ(T−T0) + εC − e−2δ(T−T0)E(S(T0)wT ). (2.62)

Now since wT ∈ O and T0 ≥ T (O) we find that

|e−2δ(T−T0)E(S(T0)wT )| ≤ Ce−2δ(T−T0).

Then from (2.62) we have

lim sup
n→∞

E(S(tn)wn) ≤ E(w) + Ce−2δ(T−T0) + εC. (2.63)

Now taking limit of (2.63) as T →∞ and then letting ε → 0, we obtain

lim sup
n→∞

E(S(tn)wn) ≤ E(w),

that is

lim sup
n→∞

(δ2 − λδ + 1)‖S(tn)un‖2
H + ‖∇S(tn)un‖2

L2(RN ) + ‖S(tn)vn‖2
H

≤ (δ2 − λδ + 1)‖u‖2
H + ‖∇u‖2

L2(RN ) + ‖v‖2
H . (2.64)

Noting that E(w) = (δ2 − λδ + 1)‖u‖2
H + ‖∇u‖2

L2(RN ) + ‖v‖2
H is equivalent to the norm of

X, we can assume without loss of generality that the norm of X is defined by it. Then we

have

lim sup
n→∞

‖S(tn)wn‖X ≤ ‖w‖X

as desired in (2.46). Therefore we get the strong convergence of S(tn)wn to w in X. The

proof is complete.

Now we state our main result obtained in this section.

Theorem 2.1.2 Assume that f satisfies (2.5), (2.6) and g ∈ L2(RN ). Then, problem (2.8)

possesses a global attractor in X = H1(RN )× L2(RN ) which is a compact invariant subset

that attracts every bounded set of X with respect to the norm topology.
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Proof: Since we have established the existence of an absorbing set in (2.18) and the asymp-

totic compactness of the semiflow S(t) in X in Theorem 2.1.1, the conclusion follows from

Theorem 1.1.1.

2.2 The Wave Equation Without Mass Term

In this section we will study the existence of global attractor for the wave equation without

mass term,


utt + λut −4u + f(u) = 0, x ∈ Ω, t > 0,

u|∂Ω = 0,

u(0, x) = u0(x), ut(0, x) = u1(x)

(2.65)

where Ω is a domain of RN bounded only in one direction, with smooth boundary. The case

Ω = RN , for this equation is still an open problem due to some difficulties in getting an

inequality such as (2.9) for the operator G in H1 norm. In our case we will use an equivalent

norm (provided by the Poincaré inequality) for which the desired estimate works. We assume

the same condtions (2.5) and (2.6) for the nonlinear function f .

We will work in the phase space X = V × H where V = H1
0 (Ω), H = L2(Ω). H is

endowed with the norm and inner product for L2 and V is endowed with the inner product

and norm defined as follows,

(u, v)V =
∫

Ω
∇u · ∇v dx, u, v ∈ V and ‖u‖V = ‖∇u‖Hn , u ∈ V. (2.66)

Now define the following bilinear operator in V :

(u, v)1 =
∫

Ω
uv dx +

∫
Ω
∇u · ∇v dx, u, v ∈ V, (2.67)

which is also an inner product in V with induced norm ‖u‖1 =
[
‖u‖2

H + ‖∇u‖2
Hn

] 1
2 . By the

Poincaré inequality ‖ · ‖V and ‖ · ‖1 are equivalent norms in V .That is, there are positive
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constants C1 and C2 such that

C1‖u‖V ≤ ‖u‖1 ≤ C2‖u‖V , ∀u ∈ V. (2.68)

Let’s make a transformation to write the equation (2.65) as a first order abstract ODE.

Choose δ =
λ

λ2 + 4
and set v = δu + ut, w =

 u

v

. Then, problem (2.65) is equivalent to

 wt + Gw = R(w), t > 0, w ∈ X

w(0) = w0 = (u0, u1 + δu0)
(2.69)

where

R(w) =

 0

−f(u)


and

Gw =

 δu− v

−∆u + (λ− δ)v + (δ2 − δλ)u



for w =

 u

v

 ∈ D(G) = (H2(Ω) ∩H1
0 (Ω))×H1(Ω).

As in Lemma 2.1.1 we show the positivity of the operator G with a similar estimate.

Lemma 2.2.1 For δ =
λ

λ2 + 4
, the operator G is maximal accretive in X and verifies the

following

(G(w) , w)X ≥ σ‖w‖2
X +

λ

2
‖v‖2

H , ∀ w =

 u

v

 ∈ X, (2.70)

where

σ =
λ√

λ2 + 4(λ +
√

λ2 + 4)
. (2.71)
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Proof: Let w =

 u

v

 ∈ X then we have:

(G(w) , w)X = (δu− v , u)V + (−∆u + (λ− δ)(v − δu) , v)H

= δ‖u‖2
V − (∇u , ∇v)Hn + (−∆u , v)H + (λ− δ)‖v‖2

H

−δ(λ− δ)(u , v)H

= δ‖u‖2
V + (λ− δ)‖v‖2

H − δ(λ− δ)(u , v)H

≥ δ‖u‖2
V + (λ− δ)‖v‖2

H − δλ‖u‖H‖v‖H .

Then setting σ =
λ√

λ2 + 4(λ +
√

λ2 + 4)
as in (2.10), we have

(G(w) , w)X − σ(‖u‖2
V + ‖v‖2

H)− λ
2‖v‖

2
H ≥ (δ − σ)‖u‖2

V + (λ
2 − δ − σ)‖v‖2

H

−δλ‖u‖V ‖v‖H

≥ 2
√

(δ − σ)(λ
2 − δ − σ)‖u‖V ‖v‖H

−δλ‖u‖V ‖v‖H

we can check that 4(δ − σ)(λ
2 − δ − σ) = λ2δ2 so that

(G(w) , w)X − σ‖w‖2
X − λ

2
‖v‖2

H ≥ 0.

The proof is complete.

The existence of solution for (2.69) follows in the same approach as for equation (2.8).

Similarly, we can prove an analogous result as in lemma 2.1.3 and we have shown that there
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also exists a bounded absorbing set O in X.

Now let’s establish the tail ends estimates for equation (2.69).

Lemma 2.2.2 If (2.5), (2.6) hold, g ∈ H and w0 = (u0, v0) ∈ O, then for every ε > 0, there

exists T (ε) and K(ε) such that the solution w(t) = (u(t), v(t)) of problem (2.69) satisfies

∫
Ω∩{|x|≥k}

[
|u(t)|2 + |∇u(t)|2 + |v(t)|2

]
dx ≤ ε, t ≥ T (ε), k ≥ K(ε). (2.72)

Proof:

The proof works basically like that for equation (2.8). Any solution w(t) =

 u(t)

v(t)


satisfies:

vt −∆u + (λ− δ)v + (δ2 − λδ)u = −f(u) + g (2.73)

and

ut + δu = v. (2.74)

We choose the same cut-off function θ.

Now take inner product in H of θ( |x|
2

k2 )v(x) with (2.73) to get

∫
Ω

θ(
|x|2

k2
)vvt dx−

∫
Ω

∆uθ(
|x|2

k2
)v dx + (λ− δ)

∫
Ω

θ(
|x|2

k2
)|v|2 dx

+(δ2 − λδ)
∫

Ω
θ(
|x|2

k2
)uv dx = −

∫
Ω

f(u)θ(
|x|2

k2
)v dx +

∫
Ω

θ(
|x|2

k2
)gv dx.

(2.75)

But

−
∫

Ω
∆uθ(

|x|2

k2
)v dx =

∫
Ω

θ(
|x|2

k2
)∇u · ∇v +

2
k2

∫
Ω

θ′(
|x|2

k2
)vx · ∇u

=
∫

Ω
θ(
|x|2

k2
)
[
δ|∇u|2 +∇u · ∇ut

]
+

2
k2

∫
Ω

θ′(
|x|2

k2
)vx · ∇u

=
1
2

d

dt

∫
Ω

θ(
|x|2

k2
)|∇u|2 + δ

∫
Ω

θ(
|x|2

k2
)|∇u|2

+
2
k2

∫
Ω

θ′(
|x|2

k2
)vx · ∇u,
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and

(δ2 − λδ)
∫

Ω
θ(
|x|2

k2
)uv dx = (δ2 − λδ + 1)

∫
Ω

θ(
|x|2

k2
)(δ|u|2 + uut)

=
1
2
(δ2 − λδ + 1)

d

dt

∫
Ω

θ(
|x|2

k2
)|u|2 + δ(δ2 − λδ + 1)

∫
Ω

θ(
|x|2

k2
)|u|2.

Then (2.73) becomes

1
2

d

dt

∫
Ω

θ(
|x|2

k2
)
[
(δ2 − λδ)|u|2 + |∇u|2 + |v|2

]

+δ

∫
Ω

θ(
|x|2

k2
)
[
(δ2 − λδ)|u|2 + |∇u|2 + |v|2

]
+ (λ− 2δ)

∫
Ω

θ(
|x|2

k2
)|v|2

= −
∫

Ω
θ(
|x|2

k2
)f(u)(δu + ut) +

∫
Ω

θ(
|x|2

k2
)gv dx− 2

k2

∫
Ω

θ′(
|x|2

k2
)vx · ∇u.

(2.76)

But δ2 − λδ could be negative for certain values of λ. Since δ2 − λδ + 1 > 0, let’s introduce

another equation to get a more desirable identity.

Taking inner product of θ( |x|
2

k2 )u(x) with (2.74), we get

1
2

d

dt

∫
Ω

θ(
|x|2

k2
)|u|2 dx +

∫
Ω

θ(
|x|2

k2
)|u|2 dx =

∫
Ω

θ(
|x|2

k2
)uv dx.

And adding the above and (2.76) yields

1
2

d

dt

∫
Ω

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2

]

+δ

∫
Ω

θ(
|x|2

k2
)
[
(δ2 − λδ + 1)|u|2 + |∇u|2 + |v|2

]
+ (λ− 3δ)

∫
Ω

θ(
|x|2

k2
)|v|2

= −
∫

Ω
θ(
|x|2

k2
)f(u)(δu + ut) +

∫
Ω

θ(
|x|2

k2
)gv dx− 2

k2

∫
Ω

θ′(
|x|2

k2
)vx · ∇u.

(2.77)
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Then the conclusion follows the same way as in the proof of lemma 2.1.5.

Similarly, we have the following energy equation for the solution of (2.69),

d

dt
E(w(t)) + 2δE(w(t)) = G(w(t)) ∀t > 0, (2.78)

where

E(w) = (δ2 − λδ + 1)‖u‖2
H + ‖∇u‖2

HN + ‖v‖2
H , (2.79)

and

G(w) = −2(λ− 3δ)‖v‖2
H + 2

∫
Ω

gv dx− 2
∫

Ω
f(u)v dx. (2.80)

The rest of the proof of existence of a global attractor is again similar to the case with

mass term. We get the main result in this section

Theorem 2.2.1 Let Ω be a domain of RN bounded in only one direction. Assume that f

satisfies (2.5), (2.6) and g ∈ L2(Ω). Then, problem (2.69) possesses a global attractor in

X = H1
0 (Ω)× L2(Ω) which is a compact invariant subset that attracts every bounded set of

X with respect to the norm topology.
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3 DYNAMICS OF SECOND ORDER LATTICE SYSTEMS

In this chapter we take on the longtime dynamics of a second order lattice differential

equation (LDE). Broadly speaking an LDE is an infinite system of ordinary differential

equations with a discrete structure in the phase space. They often come from a spatial

dicretization of an evolutionary PDE. However, many LDE’s occur as models in their own

right and are not approximations to the continuum limit. Lattice systems occur in many

applications such as electric circuit theory, neural networks, material science, theory of

chemical reactions, image processing, and biology. The mathematical study of LDE’s is

quite recent: the literature goes back to about 1987, with the full mathematical development

starting in 1990’s.

We consider in this chapter the following lattice system

üi + λu̇i − (ui−1 − 2ui + ui+1) + f(ui) = gi, i ∈ Z (3.1)

where u̇ and ü represent respectively the first and second derivatives of u with respect to

time t, f is a nonlinear function satisfying some growth conditions and g = (gi)i∈Z ∈ `2.

Equation (3.1) can be viewed as a spatial discretization of the one-dimensional damped

nonlinear wave equation,

utt + λut − uxx + f(u) = g, x ∈ R. (3.2)

In this chapter we will show the existence of global attractor for the semiflow generated

by (3.1). Here again the key lies in a variant of the “tail end estimates” used in the previous

chapter for the nonlinear wave equation.
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3.1 The Existence and Boundedness of Solutions

In this section we prove the existence and uniqueness of solutions of the following second

order lattice system, for all time t ≥ 0. We also show the uniform boundedness of solutions.

Consider the system

üi + λu̇i − (ui−1 − 2ui + ui+1) + f(ui) = gi, i ∈ Z (3.3)

with initial conditions

ui(0) = ui,0, u̇i(0) = ui,1, i ∈ Z. (3.4)

Here λ > 0 is a constant and f ∈ C1(R, R) satisfies f(0) = 0 and the following condition:

f(s)s ≥ νF (s) ≥ 0, ∀s ∈ R (3.5)

where ν is a positive constant and F (s) =
∫ s

0
f(t) dt. We remark that condition (3.5) is

satisfied if f is a nondecreasing function satisfying f(s)s ≥ o; for instance, if f is a polyno-

mial with positive coefficients and odd degree monomials.

We will consider the space `2 = {u = (ui)i∈Z |
∑
i∈Z

u2
i < ∞} which is a Hilbert space

with the usual inner product (u , v) =
∑
i∈Z

uivi and norm ‖u‖ = (
∑
i∈Z

u2
i )

1
2 .

Introduce two linear operators B, B̄ and A from `2 to `2 as follows. For u = (ui)i∈Z ∈ `2,

define

(Bu)i = ui+1 − ui, (B̄u)i = ui−1 − ui, and (Au)i = −(ui−1 − 2ui + ui+1). (3.6)

Then we see that

A = B̄B = BB̄ = −(B + B̄) (3.7)

(Bu , v) = (u , B̄v), and (Au , v) = (Bu , Bv), ∀u, v ∈ `2. (3.8)
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The bilinear form (u , v)1 = (Bu , Bv) defines also an inner product in `2 with induced

norm ‖u‖1 = ‖Bu‖. We let

H = (`2, (·, ·), ‖ · ‖), V = (`2, (·, ·)1, ‖ · ‖1) which are Hilbert spaces.

The norms ‖ · ‖ and ‖ · ‖1 are equivalent norms in `2. In fact we have

‖u‖2 ≤ ‖u‖2
1 =

∑
i∈Z

|ui+1 − ui|2 ≤ 4‖u‖2 ∀u ∈ `2. (3.9)

3.1.1 The Existence and Uniqueness of Solutions

In the remaining analysis our phase space will be X = V ×H equipped with the product

topology, which makes X a Hilbert space. The inner product and norm in X are as follows:

for ϕj =

 uj

vj

 ∈ X j = 1, 2 we have

(ϕ1 , ϕ2)X = (u1 , u2)1 + (v1 , v2),

‖ϕ‖2
X = (ϕ , , ϕ)X ∀ ϕ =

 u

v

 ∈ X.

Let v = δu + u̇, where δ > 0 is a positive parameter chosen as

δ =
λ

λ2 + 4
. (3.10)

Then the initial value problem (3.3), (3.4) can be reformulated as a first order abstract ODE

in X as follows

ϕ̇ + G(ϕ) = R(ϕ) , ϕ(0) =

 u0

v0

 (3.11)
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where G and R are defined on X as follows:

G(ϕ) =


δu− v

Au + (λ− δ)(v − δu)

 and R(ϕ) =

 0

−f(u) + g

 .

We make the abusive notations f(u) = (f(ui))i∈Z, F (u) = (F (ui))i∈Z.

Now let u ∈ `2 then since f(0) = 0 we have

‖f(u)‖2 =
∑
i∈Z

|f ′(θiui)||ui|2,

where θi ∈ (0, 1). By |θiui| ≤ |ui| ≤ ‖u‖, we get

‖f(u)‖ ≤ ‖u‖ max
−‖u‖≤s≤‖u‖

f ′(s). (3.12)

It follows from (3.12) that f(u) ∈ `2. Thus R maps X into itself. Next we prove the

existence and uniqueness of the solution of (3.11) as stated in the next lemma.

Lemma 3.1.1 For every initial data ϕ(0) =

 u0

v0

 ∈ X, there is a unique local solution

ϕ(t) =

 u(t)

v(t)

 of (3.11) such that ϕ ∈ C1 [−T (ϕ0) , T (ϕ0)] for some T (ϕ0) > 0.

Proof: We just need to prove that ϕ 7→ R(ϕ)−G(ϕ) is locally Lispchitz from X into itself.

Let B be a bounded subset of X and ϕ1, ϕ2 ∈ B, then similar to (3.12), there exists a

constant L(B) depending on B such that

‖R(ϕ1)−R(ϕ2)‖2
X = ‖f(u1)− f(u2)‖2

=
∑
i∈Z

|f ′(u1
i + θi(u2

i − u1
i ))|2|u1

i − u2
i |2

≤ L(B)‖ϕ1 − ϕ2‖2
X .
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Therefore R is locally Lipschitz. On the other hand, it is easy to see that G is a bounded

linear operator so that R(ϕ) − G(ϕ) is locally Lipschitz from X to X. The conclusion of

the lemma follows from the standard theory of abstract ordinary differential equations in

Banach spaces.

3.1.2 The Boundedness of Solutions

We start with presenting a positivity estimate for the linear operator G, which is crucial

toward proving the existence of absorbing set. In fact it is a key estimate used in this work.

Lemma 3.1.2 The operator G verifies:

(G(ϕ) , ϕ)X ≥ σ‖ϕ‖2
X +

λ

2
‖v‖2, ∀ ϕ =

 u

v

 ∈ X, (3.13)

where

σ =
λ√

λ2 + 4(λ +
√

λ2 + 4)
(3.14)

Proof: Let ϕ =

 u

v

 ∈ X then we have:

(G(ϕ) , ϕ)X = (δu− v , u)1 + (Au + (λ− δ)(v − δu) , v)

= δ‖u‖2
1 − (Bu , Bv) + (Au , v) + (λ− δ)‖v‖2

−δ(λ− δ)(u , v)

= δ‖u‖2
1 + (λ− δ)‖v‖2 − δ(λ− δ)(u , v)

≥ δ‖u‖2
1 + (λ− δ)‖v‖2 − δλ‖u‖‖v‖.
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Then

(G(ϕ) , ϕ)X − σ‖ϕ‖2
X − λ

2‖v‖
2 ≥ (δ − σ)‖u‖2

1 + (λ
2 − δ − σ)‖v‖2 − δλ‖u‖1‖v‖

≥ 2
√

(δ − σ)(λ
2 − δ − σ)‖u‖1‖v‖ − δλ‖u‖1‖v‖.

We can check that 4(δ − σ)(λ
2 − δ − σ) = λ2δ2, so that

(G(ϕ) , ϕ)X − σ‖ϕ‖2
X − λ

2
‖v‖2 ≥ 0.

The proof is completed.

We already established in lemma 3.1.1 the existence of local solutions for the system

(3.11). Now we will show that the solution exists globally, which is a direct consequence of

the boundedness.

Lemma 3.1.3 Assume that the nonlinearity f verifies (3.5), then any solution ϕ(t) of

system (3.11) exists globally for all t ≥ 0 and satisfies

‖ϕ‖2
X ≤ M2 =

2
λµ
‖g‖2, for t ≥ T1 (3.15)

for some constants µ and T1 = T1(R, λ, g) where ‖ϕ0‖ ≤ R.

Proof: Let ϕ(t) =

 u(t)

v(t)

 ∈ X be any solution of system (3.11) with v(t) = δu(t)+u̇(t).

Taking the inner product of (3.11) with ϕ(t) in X, we get

1
2

d

dt
‖ϕ‖2

X + (G(ϕ) , ϕ) + (f(u), u̇) + (f(u), δu) = (g, v). (3.16)

By (3.5) we have

(f(u), u̇) =
∑
i∈Z

f(ui)u̇i =
d

dt

∑
i∈Z

F (ui), (3.17)

(f(u), u) =
∑
i∈Z

f(ui)ui ≥ ν
∑
i∈Z

F (ui). (3.18)
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Since (g, v) ≤ 1
2λ
‖g‖2 +

λ

2
‖v‖2, it follows from (3.13) that

1
2

d

dt
‖ϕ‖2

X + 2σ‖ϕ‖2
X +

λ

2
‖v‖2 +

d

dt

∑
i∈Z

F (ui) + νδ
∑
i∈Z

F (ui) ≤
1
2λ
‖g‖2 +

λ

2
‖v‖2,

that is
d

dt

[
‖ϕ‖2

X + 2
∑
i∈Z

F (ui)

]
+ 2σ‖ϕ‖2

X + 2νδ
∑
i∈Z

F (ui) ≤
1
λ
‖g‖2. (3.19)

And taking µ = inf {2σ , νδ}, we get

d

dt

[
‖ϕ‖2

X + 2
∑
i∈Z

F (ui)

]
+ µ

[
‖ϕ‖2

X + 2
∑
i∈Z

F (ui)

]
≤ 1

λ
‖g‖2. (3.20)

Using Gronwall’s inequality we have

‖ϕ‖2
X + 2

∑
i∈Z

F (ui) ≤ e−µt

[
‖ϕ(0)‖2

X + 2
∑
i∈Z

F (ui,0)

]
+

1
λµ
‖g‖2(1− e−µt)

which implies

‖ϕ‖2
X ≤ e−µt

[
‖ϕ(0)‖2

X +
2
ν

max
−‖u0‖≤s≤‖u0‖

|f ′(s)|‖u0‖2

]
+

1
λµ
‖g‖2(1− e−µt). (3.21)

This yields lim
t→T (ϕ0)

‖ϕ‖X < ∞, so that the solution ϕ(t) exists globally for all t > 0. Now

let R > 0, ‖ϕ0‖X ≤ R and CR = max
−R≤s≤R

|f ′(s)| then

|ϕ‖2
X ≤ e−µt

(
R2 +

CRR2

ν

)
+

1
λµ
‖g‖2. (3.22)

Thus (3.15) follows with T1 =
1
µ

ln

{
λµ(R2 + CRR2

ν )
‖g‖2

}
and the proof is complete.

The previous Lemma 3.1.3 implies that equation (3.11) generates a continuous semiflow

{S(t)}t≥0 on X which posses a bounded absorbing set

O = {w ∈ X : ‖w‖X ≤ M} . (3.23)
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That is: for every bounded set B ⊂ X, there a constant T (B) > 0 such that

S(t)B ⊆ O, t ≥ T (B). (3.24)

In particular there exists a constant T0 depending only on (λ, g) and O such that

S(t)O ⊆ O, t ≥ T0. (3.25)

3.2 Global Attractor

Now that we have established the existence of absorbing set, it only remains to prove that the

semiflow S(t) is asymptotically compact to conclude the existence of global attractor. First

we present some type of “tail estimate” which will be useful toward proving the asymptotic

compactness.

Lemma 3.2.1 Let ϕ(0) =

 u0

v0

 ∈ O, then for every ε > 0 there exist positive constants

T (ε) and K(ε) such that the solution ϕ(t) =

 u(t)

v(t)

 ∈ X of system (3.11) satisfies

∑
|i|≥K(ε)

[
|(Bu(t))i|2 + |vi(t)|2

]
≤ ε, t ≥ T (ε). (3.26)

Proof: Choose a smooth function θ ∈ C1(R+, R) such that 0 ≤ θ(s) ≤ 1 for s ∈ R+, and

θ(s) = 0 for 0 ≤ s ≤ 1; θ(s) = 1 for s ≥ 2.

Then there exists a constant C > 0 such that |θ′(s)| ≤ C for s ∈ R+.

Let k be a fixed positive integer. Set wi = θ(
|i|
k

)ui, zi = θ(
|i|
k

)ui, y =

 w

z

 ∈ X.

Take inner product of (3.11) with y in X to get

(ϕ̇, y)X + (G(ϕ), y)X = (R(ϕ), y)X . (3.27)
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We can check that

(ϕ̇, y)X =
1
2

d

dt

∑
i∈Z

θ(
|i|
k

)|ϕi|2X , (3.28)

where

|ϕi|2X = |(Bu)i|2 + |vi|2 = |ui+1 − ui|2 + |vi|2. (3.29)

Now

(G(ϕ), y) = δ(Bu, Bw)− (Bv, Bw) + (Bu, Bz) + (λ− δ)(v − δu, z). (3.30)

Let’s estimate the terms in (3.30) one by one.

(Bu, Bw) =
∑
i∈Z

{[
θ(
|i + 1|

k
)− θ(

|i|
k

)
]
(ui+1 − ui)ui+1

+θ(
|i|
k

)(ui+1 − ui)2
}

≥ −4C0r
2
0

k
+
∑
i∈Z

θ(
|i|
k

)(ui+1 − ui)2, ∀t ≥ T0,

(Bv, Bw) =
∑
i∈Z

[
θ(
|i + 1|

k
)(vi+1 − vi)ui+1 − θ(

|i|
k

)(vi+1 − vi)ui

]
,

(Bu, Bz) =
∑
i∈Z

[
θ(
|i + 1|

k
)(ui+1 − ui)vi+1 − θ(

|i|
k

)(ui+1 − ui)vi

]
,

(Bu, Bz)− (Bv, Bw) =
[
θ(
|i + 1|

k
)− θ(

|i|
k

)
]
(ui+1vi − uivi+1)

≥ −
∑
i∈Z

|θ′(τi)|
k

|ui+1vi − uivi+1|

≥ −4C0r
2
0

k
, ∀t ≥ T0,

(λ− δ)(v − δu, z) = (λ− δ)
∑
i∈Z

θ(
|i|
k

)v2
i − δ(λ− δ)

∑
i∈Z

θ(
|i|
k

)uivi

≥ (λ− δ)
∑
i∈Z

θ(
|i|
k

)v2
i − δλ

∑
i∈Z

θ(
|i|
k

)uivi.

Thus, since δ < 1, we get that

(G(ϕ), y) ≥ −8C0r
2
0

k
+ δ

∑
i∈Z

θ(
|i|
k

)|(Bu)i|2 + (λ− δ)
∑
i∈Z

θ(
|i|
k

)v2
i
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−λδ
∑
i∈Z

θ(
|i|
k

)uivi ∀t ≥ 0.

And following the same arguments as in the proof of (3.13) we can get

(G(ϕ), y) ≥ −8C0r
2
0

k
+ δ

∑
i∈Z

θ(
|i|
k

)
[
σ|ϕi|2X +

λ

2
|vi|2

]
, ∀t ≥ T0. (3.31)

Now we estimate the right-hand side of (3.28):

(R(ϕ), y)X = −(f(u), z) + (g, z),

(f(u), z) =
∑
i∈Z

θ(
|i|
k

)f(ui)u̇i + δ
∑
i∈Z

θ(
|i|
k

)f(ui)ui

≥ d

dt

∑
i∈Z

θ(
|i|
k

)F (ui) + δν
∑
i∈Z

θ(
|i|
k

)G(ui), (3.32)

(g, z) =
∑
i∈Z

θ(
|i|
k

)givi =
∑
|i|≥k

θ(
|i|
k

)givi

≤ λ

2

∑
|i|≥k

θ(
|i|
k

)v2
i +

1
2α

∑
|i|≥k

g2
i .

(g, z) ≤ λ

2

∑
i∈Z

θ(
|i|
k

)v2
i +

1
2α

∑
|i|≥k

g2
i . (3.33)

Substituting inequalities (3.28), (3.31)-(3.33) into (3.27), we obtain

d

dt

∑
i∈Z

θ(
|i|
k

)[|ϕi|2X + 2F (ui)] +
∑
i∈Z

θ(
|i|
k

)[2σ|ϕi|2X + 2δνF (ui)]

≤ 8C0r
2
0

k
+

1
α

∑
|i|≥k

g2
i .

Since g ∈ `2, for every ε > 0, there exists a constant K(ε) > 0 such that

8C0r
2
0

k
+

1
α

∑
|i|≥k

g2
i ≤ ε.

Then for t ≥ T0, k ≥ K(ε), we have

d

dt

∑
i∈Z

θ(
|i|
k

)[|ϕi|2X + 2F (ui)] + µ
∑
i∈Z

θ(
|i|
k

)[|ϕi|2X + 2F (ui)] ≤ ε,
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where µ = inf{2σ , δν}. By Gronwall’s inequality,

∑
i∈Z

θ(
|i|
k

)[|ϕi|2X + 2F (ui)]

≤ e−µ(t−T0)
∑
i∈Z

θ(
|i|
k

)[|ϕi(T0)|2X + 2F (ui(T0))] +
ε

µ

≤ e−µ(t−T0)r2
0

(
1 +

2
ν

M0

)
+

ε

µ
, ∀t ≥ T0.

where M0 = max
−r0/ν≤s≤r0/ν

|f ′(s)|. Taking

T (ε) = max
{

T0 , T0 +
1
µ

ln
µ

ε
(1 +

2
ν

M0)r2
0

}
,

then for t ≥ T (ε) and k ≥ K(ε) we have

∑
|i|≥k

|ϕi|2X ≤
∑
i∈Z

θ(
|i|
k

)|ϕi|2X ≤ 2ε

µ
, (3.34)

which implies Lemma 3.1. The proof is completed.

Lemma 3.2.2 The semigroup {S(t)}t≥0 is asymptotically compact in X, namely, if {ϕn}n

is bounded in X and tn →∞ then {S(tn)ϕn}n is precompact in X.

Proof: Assume that ‖ϕn‖X ≤ r, n ≥ 1 for some positive constant r. By (3.24) there

exists T , such that

S(t){ϕn} ⊂ O, ∀t ≥ T (3.35)

where O is the absorbing set in (3.23). Now since tn → +∞, there exists N1(r) such that

tn ≥ T if n ≥ N(r) which implies that

S(t){ϕn} ⊂ O, ∀n ≥ N1(r) (3.36)

so that there exists ϕ0 ∈ X and a subsequence of {S(tn)ϕn}n (denoted still by {S(tn)ϕn}n)

such that

S(tn)ϕn → ϕ0 weakly in X. (3.37)
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We want to show that this convergence is the strong sense. Indeed let ε > 0, by

Lemma 3.2.1 and (3.35) there exists K1(ε), T (ε) > 0 such that

∑
|i|≥K1(ε)

‖(S(t)(S(Tr)ϕn))i‖2
X ≤ ε2

8
, t ≥ T (ε).

By tn → +∞, there exists N2(r, ε) such that tn ≥ Tr + T (ε) if n ≥ N2(r, ε). Hence,

∑
|i|≥K1(ε)

‖(S(Tn)ϕn)i‖2
X =

∑
|i|≥K1(ε)

‖(S(tn − Tr)(S(Tr)ϕn))i‖2
X ≤ ε2

8
. (3.38)

Again, since ϕ0 ∈ X, there exists K2(ε) such that

∑
|i|≥K2(ε)

‖ϕ0‖2
X ≤ ε2

8
.

Let K(ε) = max{K1(ε),K2(ε)} then by (3.37) we have

((S(Tn)ϕn)i)|i|≤K(ε) → ((ϕ0)i)|i|≤K(ε) strongly in R2K(ε)+1

as n → +∞, that is there exists N3(ε) such that

∑
|i|≤K(ε)

‖(S(Tn)ϕn)i − (ϕ0)i‖2
X ≤ ε2

2
, ∀n ≥ N3(ε). (3.39)

Setting N(ε) = max{N1(ε), N2(ε), N3(ε)}, we conclude for n ≥ N(ε) that

‖S(Tn)ϕn − ϕ0‖2
X =

∑
|i|≤K(ε)

‖(S(Tn)ϕn)i − (ϕ0)i‖2
X

+
∑

|i|>K(ε)

‖(S(Tn)ϕn)i − (ϕ0)i‖2
X

≤ ε2

2
+ 2

∑
|i|>K(ε)

‖(S(Tn)ϕn)i‖2
X − ‖ϕ0)i‖2

X

≤ ε2.

The proof is completed.
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Now we state the main result of this chapter as follows.

Theorem 3.2.1 Assume that f satisfies (3.5) and g ∈ `2. Then, the dynamical system

generated by equation (3.11) possesses a global attractor in X = V ×H which is a compact

invariant subset that attracts every bounded set of X with respect to the norm topology.

Proof: The conclusion follows from Theorem 1.1.1 since, by (3.24), there exists a bounded

absorbing set and the semiflow is asymptotically compact by Lemma 3.2.2.
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4 FINAL REMARKS

We finish this work by presenting some final remarks on the dynamics of evolutionary equa-

tions in unbounded domains. We also describe some open problems and new perspectives

in this area.

Finite Dimensionality and Exponential Attractors

One major feature of global attractors is that they usually have finite dimension. This

reduces the number of degrees of freedom of the system which hopefully will give it a simpler

description. There are two concepts of dimensions that are mostly used: the Hausdorff and

fractal dimensions.

However, the global attractor has two major drawbacks: on the one hand the rate

of attraction can be arbitrarily slow and on the other hand it is in general only upper

semicontinuous with respect to perturbations so that the global attractor can change very

drastically under very small perturbations in the structure of the original dynamical system.

This leads to essential difficulties in numerical simulations of the global attractor and even

makes it, in some sense, unobservable.

In view of these drawbacks, the concept of exponential attractor has been suggested by

Eden, Foias, Nicolaenko and Teman in [7]. It is a compact, positively invariant set with finite

fractal dimension, which attracts the bounded sets at an exponential rate. It is therefore

more robust than the global attractor but it is not unique.

We will introduce the concepts of fractal and Hausdorff dimensions for general sets in a

Banach space X.
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Definition 4.0.1 Let A be a subset of a Banach space X, d > 0, ε > 0. Then set

µd,ε(A) = inf
{ k∑

i=1

rd
i : ri ≤ ε and A ⊂

k⋃
i=1

Bri

}
, (4.1)

where Bri denotes a ball of radius ri in X.

It can be shown that µd,ε(A) increases as ε decreases.

Definition 4.0.2 We define the d-dimensional Hausdorff measure of A as:

µd = sup
ε>0

µd,ε(A) = lim
ε→0+

µd,ε(A). (4.2)

And the Hausdorff dimesion of A is defined by:

dH(A) = inf{d > 0 : µd(A) = 0}. (4.3)

A stronger measure of dimension is furnished by the fractal dimension.

Definition 4.0.3 Let A be a subset of the Banach space X. Let

Nε(A) = the minimum number of balls of radii ≤ ε that are necessary to cover A.

Then the fractal dimension of A, dF (A) is defined by:

dF (A) = lim sup
ε→0

log Nε(A)
log(1

ε )
. (4.4)

Another characterization of the fractal dimension is

dF (A) = inf {d > 0 : µd,F = lim sup
ε→0

εdNε(A) = 0}. (4.5)

Next, we give the definition of an exponential attractor for a semiflow {S(t)} defined on a

Banach space X.

Definition 4.0.4 A compact set M is called an exponential attractor or inertial set

for the semiflow {S(t)}t≥0 on X if

(i) SM⊂M,

53



(ii) M has finite fractal dimension, dF (M),

(iii) there are positive constants c0 and c1 such that

h(SnB,M) ≤ c0e
−c1t, ∀n ≥ 1. (4.6)

Here h(·, ·) is the Hausdorff pseudometric defined in (1.5).

For evolutionary PDEs in an unbounded domain, there have been results on the finite di-

mensionality of the global attractor as well as the existence of an exponential attractor, see

for instance [2], [9], [25]. However, there have been counterexamples on infinite dimensional-

ity of the global attractor ( see [2], [14], [54]), this implies automatically the nonexistence of

an exponential attractor. That is why the concept of Kolmogorov’s ε-entropy is exploited to

obtain some qualitative and quantitative information on such infinite dimensional attractors.

It is defined as follows.

Definition 4.0.5 Let K be a precompact set in a metric space M and ε > 0. Let Nε(K, M)

be the minimal number of ε-balls that cover K. Then the Kolomogorov’s ε-entropy of K

in M is the following number:

Hε(K, M) := lnNε(K, M). (4.7)

It is proved in [15] and [53, 54] that for a large class of equations of mathematical physics in

unbounded domains, the ε-entropy of the restrictions A|Ω∩BR
x0

:= {u0|Ω∩BR
x0

, u0 ∈ A} of the

corresponding global attractor to bounded subdomains Ω∩CR
x0

, where CR
x0

:= x0+[− R
2 , R

2 ]N

is the R-cube of RN centered at x0, satisfies

Hε(A|Ω∩CR
x0

, L∞(CR
x0

)) ≤ Cvol(Ω ∩ CR+K ln+ R′/ε
x0

) ln+
R′

ε
, (4.8)

where ln+ z := max{0, ln z} and the constants C, K, and R′ are independent of ε, R and

x0.

This type of estimates led to the introduction of infinite dimensional exponential

attractors by Effendiev, Miranville and Zelik in [10], by modifying the classical definition
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of exponential attractors and replacing the condition of finite fractal dimensionality by the

ε-entropy estimates (4.8). They prove in [10] that for certain reaction-diffusion equations

the corresponding semiflow admits an infinite dimensional exponential attractor.

It would be interestting to investigate the existence of infinite dimensional exponential

attractors for wave equations in unbounded domains.

Wave Equations in Exterior Domains

In this work we have considered wave equations in unbounded domains. An interesting class

of such equations are the wave equations in an exterior domain,


utt −∆u + ρ(x, ut) = f(u) in Ω× [0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), and u|∂Ω = 0,

(4.9)

where Ω is an exterior domain, that is Ω = RN − K for a compact connected subset K.

This type of equations have been extensively studied by M. Nakao [32, 33, 34, 35, 36, 37].

In [35], he showed the total energy decay for the corresponding linear equation which is

applied to obtain the global existence of finite energy solutions for the nonlinear equation.

Furthermore he derived the energy decay of the nonlinear equation in [32]. Some other

authors have also studied similar equations for instance, Tébou [46] and E. Zuazua [57]

among others.

There are interesting questions related to equation (4.9). The energy decay established

in [32], [34], [36] implies the dissipativity of the system. The question is whether there exists

a global attractor for such systems or not? Some other open problems have been mentioned

by M. Nakao in [36], for instance, to derive some decay rate of local energy for solutions of

(4.9) in the particular case where ρ(x, t) = a(x)|ut|rut or ρ(x, t) = a(x)(ut + |ut|rut) with

a(x) a localized function on some part ω of the boundary ∂Ω.
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Other Perspectives

Tail estimation

The tail estimation method has been crucial throughout our work to prove the asymp-

totical compactness in the case of wave equations in unbounded domains or for the

lattice systems. In [50], B. Wang proved that this tail estimation ( or asymptotical

nullness) along with the existence of a bounded absorbing set are necessary and suf-

ficient for the existence of a global attractor for lattice systems. It would of much

interests to investigate such a feature for evolutionary PDEs in unbounded domains.

Wave equation without mass term

We obtained the existence of a global attractor for the wave equation without mass

term (2.65) only for domains that are bounded in one direction. What happens for

general unbounded domains or Ω = RN is still an open question.
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