
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

2006 

Efficient suspicious region segmentation algorithm for computer Efficient suspicious region segmentation algorithm for computer 

aided diagnosis of breast cancer based on tomosynthesis aided diagnosis of breast cancer based on tomosynthesis 

imaging imaging 

Ravi K. Samala 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the American Studies Commons 

Scholar Commons Citation Scholar Commons Citation 
Samala, Ravi K., "Efficient suspicious region segmentation algorithm for computer aided diagnosis of 
breast cancer based on tomosynthesis imaging" (2006). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/2689 

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital 
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and 
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Efficient Suspicious Region Segmentation Algorithm for Computer Aided Diagnosis of 

Breast Cancer based on Tomosynthesis Imaging 

 
 

by 
 
 
 

Ravi K. Samala 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Electrical Engineering 
Department of Electrical Engineering 

College of Engineering 
University of South Florida 

 
 
 
 
 

Major Professor:  Wilfrido A. Moreno, Ph.D. 
Wei Qian, Ph.D. 

James Leffew, Ph.D. 
 
 
 

Date of Approval: 
October 18, 2006 

 
 
 

Keywords: perona-malik, anisotropic, 3D diffusion, fuzzy c-means, spatial fuzzy c-means 
 

© Copyright 2006, Ravi K. Samala 
 



 

 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to, my supervisor, Dr. Xuejun Sun 

for giving me the opportunity to work within the Digital Medical Imaging Program, 

(DMIP), at the Moffitt Research Center, (MRC).  Dr. Sun has been a constant guiding 

force for my research. 

I would like to express my gratitude to Dr. Wei Qian.  Dr. Qian assumed the 

responsibility for directing my research efforts during the final phases, which involved 

the two crucial events of defending my research efforts and the writing of my thesis. 

I would like to express my sincere thanks to, my major professor, Dr. Moreno for 

showing his confidence in me right from the beginning and constantly reminding me of 

my goals.  It was Dr. Wei Qian’s and Dr. Moreno’s joint efforts that paved the way for 

the successful completion of my thesis. 

Special thanks to Dr. James T. Leffew for volunteering his time and effort to be in 

my committee and review my thesis. 

I thank my colleagues.  Anand and Vidhya provided support unselfishly and 

offered valuable hints.  Raghav, Praveen, Ann and Darshan, my friends, provided moral 

support and were always there for me.  I am grateful to Dinesh Divakaran for his 

encouragement and valuable suggestions throughout my masters’ studies at USF. 

Last but certainly not least, I thank my parents and my brothers for constantly 

encouraging me and reminding me that nothing is impossible to achieve.



 i

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES                 iii 

LIST OF FIGURES                 iv 

LIST OF ABBREVIATIONS              viii 

ABSTRACT                    x 

CHAPTER 1 INTRODUCTION                 1 
1.1 Motivation                  1 
1.2 Thesis Goals                  3 

CHAPTER 2 BREAST CANCER                 5 
2.1 Anatomy                  5 
2.2 Breast Cancer Facts                 6 
2.3 Mammography                 8 
2.4 Tomosynthesis                 9 

2.4.1 Acquisition Principal              10 

CHAPTER 3 BACKGROUND               14 
3.1 Overview of Past Research              14 
3.2 Filtering                18 
3.3 Segmentation                19 
3.4 Proposed Methodology              19 

CHAPTER 4 FILTERING                26 
4.1 Image Pre-processing               26 

4.1.1 Background and Artifact Removal            26 
4.1.2 Inversing               29 
4.1.3 Histogram Equalization             30 

4.2 Perona-Malik, (PM), Anisotropic Filtering            31 
4.2.1 Choosing the Value of the Learning Coefficient, (λ)          32 
4.2.2 Choosing the Value for K             36 
4.2.3 2 Dimensional Diffusion             43 
4.2.4 3 Dimensional Diffusion             47 



 ii

CHAPTER 5 SEGMENTATION               52 
5.1 Clustering                52 
5.2 Fuzzy Clustering               53 
5.3 Cluster Validity Functions              56 
5.4 Spatial Fuzzy C-means Clustering             57 
5.5 Qualitative Analysis               59 
5.6 Quantitative Analysis               64 

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS           67 
6.1 Conclusions                67 
6.2 Recommendations               68 

REFERENCES                 69 



 iii

 

 

LIST OF TABLES 

 

Table 2.1: Probability of Invasive Breast Cancer Within Selected Age Intervals        7 

Table 5.1: Variation of the Validity Functions with the Number of 
Clusters and Type of Clustering             64 



 iv

 

 

LIST OF FIGURES 

 

Figure 1.1: Block Diagram of the Effective Suspicious Region Segmentation           4 

Figure 2.1: Anatomy of the Breast                5 

Figure 2.2: Anatomy of the Breast with Lobules and Ducts             6 

Figure 2.3: A. Standard 2D Left Medio-Lateral Oblique, (LMLO), View with 
Obscure Lesion.  B. Tomosynthesis Slice with Patient Lesion         10 

Figure 2.4: Motion Parallax               11 

Figure 2.5: Tomosynthesis Acquisition Principal             12 

Figure 3.1: Representative Images of a Spiculated Lesion Using a MRC 
CAD Method                16 

Figure 3.2: Representative Sub-Images of Three Spiculated Lesions with 
Varying Levels of Subtle and Parenchyma Tissue Density 
Backgrounds                17 

Figure 3.3: Plots of the Diffusion Coefficient with Respect to the Ratio of the 
Gradient and K               21 

Figure 3.4: Plots of the Flow Function with Respect to the Ratio of the 
Gradient and K               21 

Figure 4.1: (a) Typical Tomosynthesis Slice (b) Histogram           27 

Figure 4.2: Segmentation of the Breast Region Using (a) Canny Edge Detection 
(b) Fuzzy C-means Clustering (c) Histogram of the Segmented 
Tomosynthesis Slice of the Breast             28 

Figure 4.3: 3D Tomosynthesis Volume Views (a) Breast Volume with the  
Artifacts and Background (b) Breast Volume After Removal of  
the Artifacts and Background              29 

Figure 4.4: (a) Inversed Segmented Tomosynthesis Breast Slice (b) Histogram         30 



 v

Figure 4.5: (a) Histogram Equalized Inversed Segmented Tomosynthesis 
Breast Slice (b) Equalized Histogram             31 

Figure 4.6: Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 500 and K = 500            32 

Figure 4.7: Images and Line Profile of the ROI for λ = 0.01           33 

Figure 4.8: Images and Line Profile of the ROI for λ = 0.05           33 

Figure 4.9: Images and Line Profile of the ROI for λ = 0.1           34 

Figure 4.10: Images and Line Profile of the ROI for λ = 0.15           34 

Figure 4.11: Images and Line Profile of the ROI for λ = 0.2           35 

Figure 4.12: Variation of the SDNR with λ             36 

Figure 4.13: Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50 and L = 0.01            37 

Figure 4.14: Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50, L = 0.01 and K = 50           37 

Figure 4.15: Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50, L = 0.01 and K = 500           38 

Figure 4.16: Tomosynthesis Breast Slice Chosen for the 
Investigation of the Optimum Value for K            38 

Figure 4.17: (a) Filtered Horizontal Slice (b) Variation of SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; Iterations = 500, L = 0.5, K = 400          39 

Figure 4.18: (a) Filtered Horizontal Slice (b) Variation of SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; Iterations = 500, L = 0.5, K = 500          40 

Figure 4.19: (a) Filtered Horizontal Slice (b) Variation of SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; Iterations = 500, L = 0.5, K = 600          41 

Figure 4.20: (a) Filtered Horizontal Slice (b) Variation of SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; Iterations = 500, L = 0.5, K = 700          42 



 vi

Figure 4.21: Variation of SDNR with Variation of K            43 

Figure 4.22: (a) 4 Adjacent Pixels (b) 8 Adjacent Pixels            44 

Figure 4.23: (a) Original ROI (b) Filtered ROI with 4 point PM Diffusion         44 

Figure 4.24: Normalized Line Profile for 4 Point PM Diffusion           45 

Figure 4.25: Filtered ROI with 8 Point PM Diffusion            45 

Figure 4.26: Normalized Line Profile for 8 Point PM Diffusion           46 

Figure 4.27: Quantitative Difference for PM Diffusion Using 
(a) 4 Adjacent Pixels (b) 8 Adjacent Pixels            46 

Figure 4.28: (a) 4 In-Plane Pixels (b) 8 In-Plane Pixels 
(c) 8 In-Plane Pixels and 2 In-Depth Pixels            47 

Figure 4.29: (a) Filtered Horizontal Slice (b) Variation of the SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; 2D, [4, 0, 0], Window           48 

Figure 4.30: (a) Filtered Horizontal Slice (b) Variation of the SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; 2D, [4, 2, 2], Window           49 

Figure 4.31: (a) Filtered Horizontal Slice (b) Variation of the SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; 3D, [8, 0, 0], Window           50 

Figure 4.32: (a) Filtered Horizontal Slice (b) Variation of the SDNR with 
Iterations (c) Original Vertical Slice (d) Filtered Image of the 
Original Vertical Slice; 3D, [8, 2, 2], Window           51 

Figure 5.1: Flow Chart of the Fuzzy C-Means Clustering Algorithm          54 

Figure 5.2: FCM of the Tomosynthesis Volume for 3 Clusters 
(a) In-Plane Tomosynthesis Slice (b) Cluster 1 (c) Cluster 2 
(d) Cluster 3                55 

Figure 5.3: Segmented Tomosynthesis Volume for an In-Plane Slice          56 

Figure 5.4: Spatial Function of the SFCM             58 

 



 vii

Figure 5.5: (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and 
  Clusters = 3                60 

Figure 5.6: (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and 
  Clusters = 4                60 

Figure 5.7: (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and 
  Clusters = 5                61 

Figure 5.8: 3D Clustering of a Single Slice (a) FCM (b) SFCM with a 
5x5x3 Window (c) SFCM with a 5x5x5 Window           61 

Figure 5.9: (a) FCM Clustered In-Plane Slice, (b) Filtered FCM Clustered 
In-Plane Slice, (c) Slice Along the In-Depth Direction of (a) 
(d) Slice Along the In-Depth Direction of (b)           62 

Figure 5.10: (a) FCM Clustered In-Plane Slice, (b) Filtered SFCM Clustered 
In-Plane Slice, (c) Slice Along the In-Depth Direction of (a) 
(d) Slice Along the In-Depth Direction of (b)           63 

Figure 5.11: 2D Comparison Between FCM and SFCM for 26 Slices          65 

Figure 5.12: Variation Validity Functions Vpc and Vpe for 
SFCM and FCM Algorithms              66 



 viii

 

 

LIST OF ABBREVIATIONS 

 

DBT  Digital Breast Tomosynthesis 

FFDM  Full-field Digital Mammography 

FN  False Negative 

FP  False Positive 

MGH  Massachusetts General Hospital 

BCDDP Breast Cancer Detection Demonstration Project 

MLM  Maximum Likelihood Method 

PM  Perona-Malik 

FCM  Fuzzy C-means Clustering 

SFCM  Spatial Fuzzy C-means Clustering 

SDNR  Signal Difference to Noise Ratio 

MQSA  Mammography Quality Standards Act 

LMLO  Left Medio-Lateral Oblique View 

DMIP  Digital Medical Imaging Program 

MRC  Moffitt Research Center 

CAD  Computer-Aided Diagnosis 

ACS  American Cancer Society 

NN  Neural Networks 

SAA  Shift-and-Add 



 ix

BP  Back Projection 

PDE  Partial Differential Equations 

CT  Computed Tomography 



 x

 

 

EFFICIENT SUSPICIOUS REGION SEGMENTATION ALGORITHM FOR 

COMPUTER AIDED DIAGNOSIS OF 

BREAST CANCER BASED ON TOMOSYNTHESIS IMAGING 

 

Ravi K. Samala 

 

ABSTRACT 

 

Computer aided diagnostic tool can aid the radiologist in the early detection of 

breast cancer.  Even though mammography is considered to be the gold standard for 

breast cancer detection, it is limited by the spatial superposition of tissue.  This limitation 

is the result of a using a two dimensional, (2D), representation of a three dimensional, 

(3D), structure.  The limitation contributes to and results in misclassification of breast 

cancers.  Tomosynthesis is a limited-angle 3D imaging device that overcomes this 

limitation by representing the breast structure with 3D volumetric data. 

This research, on tomosynthesis imaging, was a critical module of a larger 

research endeavor for the detection of breast cancer.  Tomosynthesis is an emerging state-

of-the-art 3D imaging technology.  The purpose of this research was to develop a 

tomosynthesis based, efficient suspicious region segmentation, procedure for the breast to 

enhance the detection and diagnosis of breast cancer.  The 3D breast volume is 

constructed to visualize the 3D structure of the breast region.  Advanced image 



 xi

processing and analysis algorithms were developed to remove out-of-plane artifacts and 

increase the Signal Difference to Noise Ratio, (SDNR), of tomosynthetic images.  

Suspicious regions are extracted from the breast volume using efficient and robust 

clustering algorithms. 

A partial differential equation based non-linear diffusion method was modified to 

include the anisotropic nature of tomosynthesis data in order to filter out the out-of-plane 

artifacts, which are termed “tomosynthetic noise”, and to smooth the in-plane noise.  

Fuzzy clustering algorithms were modified to include spatial domain information to 

segment suspicious regions.  A significant improvement was observed, both qualitatively 

and quantitatively, in segmentation of the filtered data over the non-filtered data.  The 3D 

segmentation system is robust enough to be used for statistical analysis of huge 

databases. 
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CHAPTER 1 

INTRODUCTION 

 

Breast cancer is the second leading mortality cause in the United States, [ACS 

2006].  The key to surviving breast cancer is early detection and treatment, [Yankaskas 

2001].  It has been estimated that in 2006, 214,640 new cases of invasive breast cancers 

will be diagnosed, with 212,920 in women and 1,720 in men.  Approximately 40,970 

women and 460 men are expected to die of breast cancer in the year 2006.  Additionally, 

61,980 new cases of in-situ breast cancer are expected to occur in women in 2006 in 

addition to invasive breast cancer, [CFF 2006].  Excluding cancer related to skin, breast 

cancer is considered to be the most common cancer and occurs in approximately one in 

three women in the United States, [ACS 2006].  Digital Breast Tomosynthesis, (DBT), is 

expected to overcome the inherent limitations of Full-Field Digital Mammography, 

(FFDM), which uses a 2 dimensional projection of a 3-dimensional object for early 

cancer diagnosis. 

 

1.1 Motivation 

Even though mammography is considered to be the most cost-effective diagnostic 

method for breast cancer detection, it possesses serious limitations, which arise due to 

false negative and false positive interpretations.  The sensitivity of mammography is 

affected by the overlapping of dense fibroglandular tissue and parenchyma, which 
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obscure lesions in dense breasts, [Chan 2005].  The rate of diagnosis of smaller tumors, 

(≤2.0cm), increased by 2.1% per year from 1988 to 1999 and remained fairly constant.  

This statistic indicates the need for the replacement of mammography with a better 

diagnostic method, which can increase the incidence of detection of small tumors. 

 

False Negative Diagnosis 

One of the primary reasons for a false negative diagnosis in mammography, 

which misses breast cancer, is due to the super-imposition of normal breast tissue on the 

cancerous region.  Approximately 30% of breast cancers are missed in conventional 

mammography, [Yankaskas 2001].  False negatives also occur because of the small size 

of the cancerous growth. 

 

False Positive, (FP), Diagnosis 

False positives result in the classification of normal breast tissue as cancerous 

because of the spatial super-imposition of tissue.  It was reported by Wu et al, at 

Massachusetts General Hospital, (MGH), that approximately 25% of FPs occurs.  

Additionally, it has been reported that close to three-fourths of all post-mammogram 

biopsy results turn out to be benign lesions by Yankaskas.  Super-imposition of normal 

tissue sometimes causes irregular architectural distortion leading to a false classification 

of breast cancer. 

Mammograms do not provide spatial relationship of structures such as location 

and depth within the breast region.  However, tomosynthesis does provide the important 

spatial relationships.  Spatial relationships of tissue structures are important for diagnosis 
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or analysis of the cancerous region.  After 25 years of data collection by the Breast 

Cancer Detection Demonstration Project, (BCDDP), with 280,000 volunteers, it was 

concluded that mammograms missed 10% of cancers in women younger than 50 and 5% 

in women older than 50, [Cunningham 1997].  The false negative rate of mammography 

is approximately 8-10%, which accounts for the improvements in breast cancer diagnosis 

standards. 

Tomosynthesis is the new diagnostic x-ray imaging system, which overcomes the 

inherent limitation of mammography. 

 

1.2 Thesis Goals 

Tomosynthesis slices, obtained from 11 projections over a 50° angle, were 

reconstructed using the Maximum Likelihood Method, (MLM), to form 40-60 

tomosynthesis slices with 0.1mm x 0.1mm x 1mm resolution along X, Y and Z axes.  The 

Z axis represented the in-depth direction and the X and Y axes represented the in-plane 

resolution.  Figure 1.1 presents a block diagram of the effective suspicious region 

segmentation. 
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Figure 1.1:  Block Diagram of Effective Suspicious Region Segmentation 

 

Perona-Malik anisotropic diffusion was used to filter out the ‘tomosynthetic 

noise’ or the structured noise.  It was also used to smooth the volumetric image in order 

to remove noise from the low frequency range.  Image pre-processing was performed to 

remove artifacts and background.  In addition, histogram equalization and inversion was 

used to modify the dynamic range and contrast of the tomosynthesis volume.  

Segmentation of suspicious regions was achieved using robust fuzzy c-means clustering, 

(FCM), and spatial fuzzy c-means, (SFCM), clustering. 
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CHAPTER 2 

BREAST CANCER 

 

2.1 Anatomy 

The major anatomical structures of the breast are lobules, ducts, connective tissue, 

fatty tissue and lymphatic tissue.  Lobules are where milk producing glands exist and 

ducts are passages from lobules to the nipple.  Breast cancer, which occurs in lobules, is 

termed “lobular carcinoma in-situ” and breast cancer, which occurs in ducts, is termed 

“ductal carcinoma in-situ”.  Figure 2.1 pictures the breast and its anatomical features. 

 

 
Figure 2.1:  Anatomy of the Breast 

Source: Massachusetts General Hospital Cancer Resource Room, Boston, MA 

 

Breast cancer is classified as benign, in situ or invasive.  The classification 

depends upon the nature and location of the cancer cells.  If the abnormality does not 

grow uncontrollably then it is benign in nature.  In-situ breast cancer is confined within 
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the lumps or the lobules and has not spread to other areas.  Invasive breast cancer is a 

type that spreads to other areas.  Figure 2.2 pictures the areas of the breast where lobular 

carcinoma and ductal carcinoma originate. 

 

 
Figure 2.2:  Anatomy of the Breast with Lobules and Ducts 

Source: Massachusetts General Hospital Cancer Resource Room, Boston, MA 

 

2.2 Breast Cancer Facts 

A huge amount of statistical analysis has been performed in the area of breast 

cancer diagnosis.  In particular, the relationship between early diagnosis and survival rate 

has been analyzed extensively.  These analyses have produced critical information.  For 

example: 

• It was estimated that in the year 2005, 211,240 new cases of invasive breast 

cancers, and an estimated 58,490 cases of in-situ breast cancer would be 

diagnosed in women.  Approximately 40,410 women were expected to die of 

breast cancer in the year 2005, [Imaginis 2006]. 
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• The incidence of breast cancer and the associated mortality rate increases with 

age.  Women over the age of 40 are considered to be highly vulnerable and 

represent potential candidates for frequent checkup.  During 1998 - 2002, 95% of 

new cases and 97% of deaths associated with breast cancer occurred in women 

over the age of 40, [ACS 2006]. 

• The probability of developing invasive breast cancer, within selected age 

intervals, is presented in Table 2.1[CFF 2006]. 

 

Table 2.1:  Probability of Invasive Breast Cancer Within Selected Age Intervals 
Age Interval Percentage

Birth – 39 0.48%

40 – 59 4.11%

60 – 69 3.82%

70 – Older 7.13%

Birth – Death 13.22%

 

• Even though men are considered to be at low risk of acquiring breast cancer, 

approximately 1690 cases of breast cancer were expected to occur in 2005, which 

was 1% of all breast cancers in 2005.  Approximately 460 men were expected to 

die of breast cancer in 2005, [ACS 2006]. 

• Between 1975 and 1990 the death rate increased by 0.4% annually.  However, 

between 1990 and 2002, the death rate decreased by 2.3% annually.  The decrease 

was due to early detection improvements in the treatment of breast cancer. 
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2.3 Mammography 

Mammography is an x-ray imaging device, which uses a rotating anode to project 

x-rays onto the targeted area.  Depending upon the density of the tissue, the absorption of 

x-rays varies.  A detector, which either a screen film or a digital device, is used to capture 

the x-rays after passing through the target. 

Regular mammography screening and follow-up examinations have produced a 

significant decrease in the mortality due to breast cancer.  The principal reason for the 

death rate decrease is attributed to the early detection of the carcinoma prior to the 

occurrence of any physical symptoms, [CDC 2005].  With the introduction of 

mammography from 1980 to 1987, incidence of detection of smaller tumors, (≤2.0cm), 

more than doubled.   During the same time period, the incidence of detection of   large 

tumors, (≥3.0cm), decreased by 27%, this was directly related to earlier detection of the 

cancer.  In-situ breast cancer is considered to be the initial stage of the disease.  Detection 

of the cancer at this stage increases the survival rate.  Mammography, as a detection 

mechanism, has proven to be an effective tool since its introduction in 1980. 

Digital mammography, which is also called Full field digital mammography, 

(FFDM), is different from screen-film mammography.  The screen used to capture the x-

rays in the screen-film device is replaced by digital detectors, which convert the x-rays 

into electrical signals in the FFDM device.  The electrical signals, of the FFDM device, 

are converted and saved in digital format.  The digitized data can be viewed on a 

computer or printed on a similar film as that related to screen-film mammography. 
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2.4 Tomosynthesis 

In contrast to Mammography, tomosynthesis is a 3D x-ray imaging system.  

Typically tomosynthesis acquires 11 projection images over a 500 angular range.  The 

imaging system uses an a-Si, (CsI:Tl), flat-panel detector, which possesses an acquisition 

time of less than 7 seconds.  The detector and breast positions are fixed during the image 

acquisition and while the x-ray source is being rotated. 

Mammography is the 2D representation of the 3D breast structure.  

Tomosynthesis is a 3D, volumetric, representation, which is absent of morphological 

information.  As Dobbins points out, the advantages of tomographic imaging over 

conventional projection radiography are 3D visualization of anatomical structures and 

improved contrast of local structures. 

Breast tissue is extremely dense, which could obscure a lesion on mammography.  

The existence of this inherent spatial superposition of tissue in mammograms increases 

the difficulty for cancer detection.  In most cases the tumor does not have a significant 

difference in intensity, color or texture from the surrounding tissue to be distinguishable.  

Thus, a lesion could be well hidden within the normal tissue, [Chen 2003].  Figure 2.3 

illustrates the difference between the imagery of a lesion produced by mammography and 

tomosynthesis. 
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Figure 2.3:  A. Standard 2D Left Medio-Lateral Oblique, (LMLO), View with 

Obscure Lesion.  B. Tomosynthesis Slice with Patent Lesion 
Photo Courtesy of Mercury Computer Systems Life Sciences. 

 

Even though tomosynthesis was introduced before Computerized Tomography, it 

did not attract very much attention.  Currently, due to advances in x-ray detector devices 

with respect to large detection area, low noise and fast acquisition time, tomosynthesis 

has attracted renewed interest. 

 

2.4.1 Acquisition Principal 

Tomosynthesis takes advantage of motion parallax.  Motion parallax produces an 

apparent shift in the position of an object against a background as a result of a change in 

the observer position, [Parallax 2006].  Figure 2.4 illustrates the concept of motion 

parallax. 
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Figure 2.4:  Motion Parallax 

 

Viewing from (a) the triangular object appears to be in front of the background 1.  

However, viewing from (b) the object appears to be in front of background 3. 

The image presented in Figure 2.5 illustrates the methodology associated with a 

tomosynthesis imaging device.  Instead of 11 x-ray sources only 3 x-ray sources are 

considered for simplicity.  A basic shift-and-add reconstruction method is used to 

reconstruct the image at the plane of interest. 

(a) 

(b) 

View from (a) View from (b) 

1 

2 

3 
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Figure 2.5:  Tomosynthesis Acquisition Principal 

 

Even though the in-plane resolution of the reconstructed tomosynthesis volume is 

comparable with that of mammography, the in-depth resolution is low.  Thus the 

volumetric image is anisotropic in nature. 

According to the Mammography Quality Standards Act, (MQSA), regulations, a 

single view dose of mammography cannot exceed 0.3 rad.  The average dose currently 

used is 1.6 rad.  The radiation dose for tomosynthesis images, at each angle, is equal to or 

slightly greater than the radiation dose associated with standard single-view 

mammography, [Niklason 1997], [Wu 2003].  The breast is the second most 

radiosensitive organ in human body, [Rozhkova 2000].  Therefore, radiation dosage level 

1 2 3

Not shifted Shifted 

s1 

s2 

s3 

Slices 
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is an important parameter, which must be considered, when designing a diagnostic 

imaging device. 
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CHAPTER 3 

BACKGROUND 

 

In the past 15 years, the laboratory at the Moffitt Research Center, (MRC), which 

is concerned with the Digital Medical Imaging Program, (DMIP), has developed a series 

of robust procedures.  These procedures have been mainly applied for microcalcification 

cluster detection and mass detection in digital mammograms.  Successes associated with 

the procedures have been demonstrated in many reported clinical evaluations and through 

the issuance of U.S. Patents, [Qian W. US Patents 1996, 1998a-b, 1999a-b], [Qian, 1993, 

1994a-b, 1995a-c, 1996, 1997, 1998a-b, 1999a-b, 2000, 2001, 2002a-b, 2003, 2004 and 

2005], [Sun, 2004].  All of research associated with the DMIP forms a strong foundation 

for the tomosynthesis suspicious region segmentation paradigm. 

 

3.1 Overview of Past Research  

The computer-aided diagnosis, (CAD), of mammography, screen film and digital, 

has been vigorously studied by Dr. Wei Qian and a large number of other investigators 

over the past decade.  The use of current CAD methods for mass detection, when applied 

to Retrospective Case Analysis, has been widely reported.  These methods demonstrate a 

sensitivity of in the range of 80-90% and an average false positive, (FP), detection rate of 

(2-4)/image [Petrick 1996, Mendez 1998, Polakowski 1997, Giger 1998].  CAD methods 

using Retrospective Case studies have proven to be useful for the reduction of the the 
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variability of reading mammograms when used as a second opinion strategy.  The use of 

current CAD methods for mass detection, when applied to Prospective Case Analysis, 

have also been studied,  Studies of these methods report a significant drop in sensitivity 

to less than 70% and a similar FP detection rate, [Nishikawa 1998].  However, despite the 

sensitivity reduction, these methods, when applied to Prospective Case Analysis, have 

proven to be useful for detection of missed interval cancers.  In past years, despite 

considerable effort by many researchers, the study of CAD procedures has not been able 

to produce acceptable levels of both detection sensitivity and FP rate for clinical 

requirements, [Sahiner B., Chan H. P., 1999 and Hadjiiski L. M., 1999].  The drawbacks 

of CAD methods can be attributed to the lack of a full optimization mechanism.  

However, a novel, fully automatic and highly efficient method was developed by the 

MRC during prior research sponsored by the American Cancer Society, (ACS).  The 

ACS sponsored project was concerned with parameter optimization using FROC 

experiments, which reveals the future of CAD design. 

The preliminary work on CAD for the detection and diagnosis of breast cancer 

was concerned with the search for optimized solutions that have more realistic success in 

clinical trials.  These preliminary efforts focused on iterative and systematic 

improvements of CAD modules, which employed sound signal processing and 

engineering principles.  Dr. Qian, at the MRC, has developed over several years a novel 

nonlinear, multistage and adaptive filtering algorithm for image noise suppression and 

artifact reduction.  These types of filtering capabilities are required for implementation of 

high order wavelet transforms, which are sensitive to noise, [Qian 1993 and 1994a].  Dr. 

Qian has also employed multi-resolution and multi-orientation wavelets for improved 
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feature extraction using the unique properties of wavelet transforms.  The wavelet 

transforms were utilized in standard and tree-structured forms, which were implemented 

on filter banks to preserve image details that inherently allow adaptive approaches, [Qian 

1997a, b and 1998a, b].  Additionally, single and multistage Neural Networks, (NN), with 

significantly increased convergence speed, for more efficient classification and use of 

features, were investigated as input at different NN stages, [Zheng and Qian, 1994, Qian 

2002].  Figure 3.1 presents representative images of the results achieved by the 

application of a MRC CAD method for analyzing a Spiculated lesion. 

 
Figure 3.1:  Representative Images of a Spiculated Lesion Using a MRC CAD Method 

 

The various images of Figure 3.1 represent: 

• a:  A raw image at 180μm, 

• b:  Directional features from a directional wavelet transform, (DWT), using N=8 

directions, 
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• c:  segmented image using the multi-resolution tree structured wavelet 

transform, (TSWT), for enhancement and an adaptive clustering, (AC), 

module for segmentation of the suspicious area, 

• d:  Suspicious areas detected with spiculations.  An obvious lesion is presented, 

which allows the shape of the mass and the extent of the spiculation to be 

visually identified. 

The MRC research has been applied to mass detection, which led to the awarding 

of five United States patents for Dr. Wei Qian and several journal publications and 

proceedings, [Qian 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 and 2002].  

Figure 3.2 presents representative results obtained by applying CAD methods to three 

Spiculated Lesions with varying levels of subtle and parenchyma tissue density 

backgrounds. 

 
Figure 3.2:  Representative Sub-images of Three Spiculated Lesions with Varying 

Levels of Subtle and Parenchyma Tissue Density Backgrounds 
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The top row of images in Figure 3.2 presents the raw image data.  The bottom row 

of images in Figure 3.2 presents the segmented lesion with spiculations. 

 

3.2 Filtering 

Image processing is generally used to enhance the image for human viewing and 

to process the image for feature measurement, [Russ 1995].  The current research was 

more concerned with image enhancement for feature enhancement.  Noise can be 

introduced at image formation, recording or at the transmission stage.  Noise is typically 

present in the form of sharp transitions in the image.  Therefore, image smoothing 

eliminates noise but also introduces blurring, which reduces the contrast of the tissue in 

the case of medical images.  Image enhancement increases the contrast of the images but 

does not eliminate noise.  Therefore, an ideal filtering process must be employed if both 

image smoothing and enhancement are to be achieved at the same time. 

Tomosynthesis is a limited angle image formation technique.  Therefore, the most 

basic reconstruction algorithms of “shift-and-add”, (SAA), and “back projection”, (BP), 

suffer from out-of-plane, (OP), artifacts along the depth axis of the tomosynthesis 

volume.  This is an inherent disadvantage of tomosynthesis reconstruction method.   

Therefore, objects from other planes get superimposed on the plane of interest 

after getting blurred out, which results in lower contrast of the objects in the plane of 

interest.  Several methods have been suggested to reduce the impact of this property, 

[Chakraborty 1984], [Roy 1985], [Badea 1998], [Kim 2005], [Kolitsi 1993].  Badea 

implemented a wavelet based transformation method to separate noise and in-plane 

structures and used selective suppression of unwanted structures. 
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PM diffusion has been used successfully in medical/non-medical imaging fields 

for noise reduction, image enhancement and segmentation, [Voci 2004], [Gerig 1992].  

Gerig discusses the importance of anisotropic filtering of MRI data for reducing the blur 

of object boundaries and the enhancement of fine structural details. 

 

3.3 Segmentation 

One of the primary reasons why FCM was considered to be better than other 

clustering methods is that one pixel can belong to different clusters at the same time with 

different degrees.  This feature can be exploited to increase the sensitivity of the medical 

diagnostic system.  A number of fuzzy c-means clustering methods were developed with 

main emphasis placed on modification of the objective function.  The objective function 

was modified to either introduce the spatial information or to use the kernel induced 

distance metric.  FCM with spatial information is less sensitive to noise, [Chuang 2006].  

FCM with a kernel induced distance metric, for the objective function, is less sensitive to 

inhomogeneities in spatial intensity, [Zhang 2004].  Wang implemented a feature-weight 

learning procedure, which depends on a gradient descent technique to improve the 

performance of fuzzy c-means clustering. 

 

3.4 Proposed Methodology 

Depending on the pixel grey level, directly segmenting the suspicious region 

gives rise to higher FP detections.  Filtering the volumetric data for artifacts removal and 

image enhancement for better suspicious region segmentation can be achieved through 

the use of a Perona-Malik, (PM), Anisotropic Diffusion filter.  Image processing based on 
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partial differential equations.  A partial differential equation, (PDE), possess the inherent 

advantage of being easily extended to higher dimensions, allow the use of finite 

difference methods for solution and provide stable solutions, [Suri 2001].  The breast 

consists of a complex distribution of tissue.  Therefore, a linear filter cannot be used for 

image enhancement or image restoration.  The anisotropic filter is a non-linear filter, 

which uses the image gradient as the criteria for smoothing or enhancing low, medium 

and high range frequencies.  The anisotropic nature of the volumetric data was considered 

during the filtering process. 

The PM anisotropic diffusion is based on a PDE framework.  Therefore, the 

degree of diffusion can be controlled in any dimension and the control process can be 

extended to higher dimensions.  As a result of this pivotal characteristic, PM diffusion 

was chosen to smooth tomosynthesis images by removing noise and the blurring along 

the in-depth direction.  PM diffusion was also utilized to enhance images of tissue 

structures. 

The use of a Perona-Malik anisotropic diffusion filter encourages intra-region 

smoothing while inhibiting inter-region smoothing.  PM diffusion satisfies the basic 

requirement of filtering medical data.  These requirements consist of actions to: 

• Preserve object boundaries and detail structures, 

• Remove noise in the regions of homogeneous physical properties. 

Figure 3.3 presents plots of the diffusion coefficient with respect to the ratio of the 

the Gradient and K.   
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Figure 3.3:  Plots of the Diffusion Coefficient with Respect to the Ratio of the 

Gradient and K 

Figure 3.4 presents plots of the flow function with respect to the ratio of the Gradient and 

K. 

 
Figure 3.4:  Plots of the Flow Function with Respect to the Ratio of the 

Gradient and K 

The plots of Figures 3.3 and 3.4 are typical PM Anisotropic Filtering Curves. 

The process is defined in Equation 1 by: 
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Where, ),( txI is the tomosynthesis image, x is the image axis and t refers to the iteration 

step.  The function, ),( txλ , refers to the diffusion function, which is defined as a function 

of the image gradient by: 

|)),((|),( txIftx ∇=λ .     (2) 

 

The diffusion function: 
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The parameter, K, is defined as the diffusion constant and the behavior of the 

filter depends upon the value of K.  The value of K, determines the amount of smoothing 

that can be controlled.  The flow function is defined as: 
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A 3 dimensional based anisotropic diffusion equation can be written as: 
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In an 8–1–1 diffusion configuration, 8 pixels are used from the in-plane slice, 1 

pixel is used from the top slice and 1 pixel is used from the bottom slice.  The calculation 

is defined by: 
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where, Δ is the horizontal or vertical distance between the pixels.  Diagonal distance is 

given by: 

 

( ) ( ) Δ=Δ+Δ=Δ 222 yxd      (8) 

 

and the in-depth distance, zΔ , depends on the resolution along the in-depth direction.  

The calculations for the various cardinal and inter-cardinal directions as well as the top 
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and bottom calculations are defined by Equations 10, 11 and 12 respectively.  These 

equations are given by 
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Suspicious regions were extracted through fuzzy clustering, which depends on the 

pixel grey level.  Further clustering improvement was achieved by introducing a spatial 

factor.  Spatial Fuzzy C-Means, (SFCM), uses information from both the feature and 
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spectral domains.  The use of data from two domains provides an ability to achieve a 

reduction in sensitivity to noise and better clustering. 
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CHAPTER 4 

FILTERING 

 

Tomosynthesis is a limited-range 3D imaging modality system, which is different 

from a complete 3D imaging system such as Computed Tomography.  Tomosynthesis 

possesses a limited angular range.  Therefore, a slice at a particular focal point of interest 

is constructed by blurring out-of-plane structures and keeping the in-plane structures 

intact along the in-depth direction of the volumetric data.  The out-of-plane artifacts are 

inherent and must be removed before segmentation to avoid false positive detections. 

 

4.1 Image Pre-processing 

The objective of image pre-processing is to remove unwanted artifacts and 

enhance the image for further image processing.  Image pre-processing is applied prior to 

filtering the tomosynthesis data for blurring and noise removal. 

 

4.1.1 Background and Artifact Removal 

Tomosynthesis results in 14-bit, grey level, images.  The dynamic range of the 

image encompasses (0 – (214 – 1)) or (0 – 16,383).  However, a limited dynamic grey 

level range is used for the breast region.  The limited dynamic range for the breast region 

is necessary due to the presence of artifact and background regions, which result in lower 
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contrast. Figure 4.1, presents a typical tomosynthesis slice with image, artifacts, 

background and breast region along with the histogram spread. 
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      (a)             (b) 

Figure 4.1:  (a) Typical Tomosynthesis Slice 
(b) Histogram 

 

Two edge-detection methods were used to extract the breast region, which is the 

region of interest.  The canny edge detection method combines Gaussian smoothing, 

gradient calculation and a non-maximum suppression technique followed by hysteresis to 

detect the breast region edge.  The other edge detection method utilized was fuzzy c-

means, (FCM), clustering.   In FCM the number of clusters was chosen as a function of 

the histogram spread.  Figure 4.2 presents a comparison of both edge-detection methods.  

FCM clustering provided a better classification of the breast region than the canny edge 

detection method. 

 



 28

  
           (a)           (b) 

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0

0.5

1

1.5

2

2.5
x 104 Histogram of breast segmented Tomosynthesis Slice

Pixel Intensities
Max = 8813
Min = 4478

 
   (c) 

Figure 4.2:  Segmentation of the Breast Region Using 
(a) Canny Edge Detection 

(b) Fuzzy C-means Clustering 
(c) Histogram of the Segmented 

Tomosynthesis Slice of the Breast 

In order to emphasize the advantages of tomosynthesis imaging it is useful to 

observe the 3D tomosynthesis volume before and after breast segmentation.  Figure 4.3 

presents the 3D tomosynthesis volume before and after breast segmentation 
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    (a)    (b) 

Figure 4.3:  3D Tomosynthesis Volume Views 
(a) Breast Volume with Artifacts and Background 

(b) Breast Volume After Removal of the 
Artifacts and Background 

 

4.1.2 Inversing 

The objective of inversing the image is to shift the histogram of the image to the 

right side, which is in the direction of a higher dynamic range.  Figure 4.4 presents an 

image of the inversed segmented breast slice and the resulting histogram.  A comparison 

of Figures 4.2 and 4.4 clearly depicts the movement of the histogram to a higher dynamic 

range. 
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  (a)     (b) 

Figure 4.4:  (a) Inversed Segmented Tomosynthesis Breast Slice 
(b) Histogram 

 

4.1.3 Histogram Equalization 

Histogram equalization enhances the contrast of the tissue structure and aids in 

improved segmentation.  In the inversed image the pixel range was (7,570 – 11,905).  

The actual image pixel range was (0 – 16383), which encompassed the entire available 

dynamic range of the 14 bit image.  Figure 4.5 presents the inversed, equalized 

histogram, segmented breast slice and equalized histogram. 
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       (a)      (b) 

Figure 4.5:  (a) Histogram Equalized Inversed Segmented 
Tomosynthesis Breast Slice 

(b) Equalized Histogram 

A comparison of Figure 4.4(a) and Figure 4.5(a) reveals that, after equalization, 

the structural detail can be seen more clearly. 

 

4.2 Perona-Malik, (PM), Anisotropic Filtering 

It was pointed out in section 3.4 that PM diffusion can be extended to higher 

dimensions.  In addition, the anisotropic nature of the data can be included in the filtering 

process.  Different 2D and 3D windows were tested to compare and establish an efficient 

window to remove out-of-plane artifacts.  Experiments with the various windows were 

required in order to establish appropriate values for the K parameter and the learning 

coefficient, λ. 
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4.2.1 Choosing the Value of the Learning Coefficient, (λ) 

The stability of the filter and the rate at which diffusion is performed is controlled 

by the learning coefficient, (λ).  In order to evaluate the best suitable value, for the 

learning coefficient, for tomosynthesis data, filtering was performed on a phantom while 

the value of K and the number of iterations was held constant.  The images and the line 

profile for the chosen Region of Interest, (ROI), is presented in Figure 4.6. 
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Figure 4.6:  Images and Normalized Line Profile for the Chosen 

ROI with the Iterations = 500 and K = 500 

The value of K and the number of iterations was maintained at 500.  The value 

chosen for the learning coefficient was varied.  The values chosen for the learning 

coefficient were 0.01, 0.05, 0.1, 0.15 and 0.2.  Four, (4), adjacent pixels were chosen in 

the filtering process.  In order to construct the line-profile, the average background pixel 

intensity was subtracted from the ROI, [Wu 2004].  Ten consecutive rows, with 60 pixels 

per row, were averaged.  The profile was then divided by the number of pixels.  The 
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results for the images and line profile of the ROI for the various values of the learning 

coefficient are presented in Figures 4.7, 4.8, 4.9, 4.10 and 4.11. 
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Figure 4.7:  Images and Line Profile of the ROI for λ = 0.01 
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Figure 4.8:  Images and Line Profile of the ROI for λ = 0.05 
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Figure 4.9:  Images and Line Profile of the ROI for λ = 0.1 
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Figure 4.10:  Images and Line Profile of the ROI for λ = 0.15 
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Figure 4.11:  Images and Line Profile of the ROI for λ = 0.2 

A learning curve value for λ of 0.05 yielded the largest normalized contrast range.  

This result is displayed in Figure 4.8. 

The Signal Difference to Noise Ratio, (SDNR), which was introduced by Wu, 

yields a measure for the ability to detect a feature in the reconstructed plane.  The in-

plane resolution of a tomosynthesis slice can be evaluated using the SDNR.  The SDNR 

is evaluated in Equation 1 by: 
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where, featureμ  is the average pixel intensity of the feature, BGμ  is the average intensity of 

the background region and BGσ  is the standard deviation of the background pixel 

intensity.  Figure 4.12 presents a histogram of the variation of the SDNR with respect to 

λ. 
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Figure 4.12:  Variation of the SDNR with λ 

The best SDNR was achieved with a value for the learning coefficient λ of 0.05. 

Qualitatively, from Figures 4.6 – 4.11, and quantitatively, from Figure 4.12, the best 

value for the learning coefficient was 0.05.  When λ = 0.05, better contrast was observed 

between the sphere and the background and the highest SDNR was achieved. 

 

4.2.2 Choosing the Value for K 

The magnitude of the flow function is highest when the image gradient is close to 

the value of K.  Therefore, it is important, when choosing the optimum value of K, to 

choose a value that corresponds closely to the gradient values of the out-of-plane 



 37

artifacts.  Both tomosynthesis phantom and breast data were used to evaluate the value of 

K.  The results for the phantom data investigations are presented in Figures 4.13 – 4.15. 
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Figure 4.13:  Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50 and L = 0.01 
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Figure 4.14:  Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50, L = 0.01 and K = 50 
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Figure 4.15:  Images and Normalized Line Profile for the Chosen 
ROI with the Iterations = 50, L = 0.01 and K = 500 

Based on the data presented in Figures 4.13 – 4.15 the best value for K is 500.  

The results for the breast data investigations are presented in Figures 4.16 – 4.20 
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Figure 4.16:  Tomosynthesis Breast Slice Chosen for the 
Investigation of the Optimum Value for K 
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SDNR of filtered slice = 1.5649

pm1 (exp), (4), Iter = 1000, K1 = 400, L = 0.5
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Figure 4.17:  (a) Filtered Horizontal Slice (b) Variation of SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

Iterations = 500, L = 0.5, K = 400 
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SDNR of filtered slice = 1.6127

pm1 (exp), (4), Iter = 1000, K1 = 500, L = 0.5
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   (a)      (b) 

 
          (c)            (d) 

Figure 4.18:  (a) Filtered Horizontal Slice (b) Variation of SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

Iterations = 500, L = 0.5, K = 500 
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SDNR of filtered slice = 1.4628

pm1 (exp), (4), Iter = 1000, K1 = 600, L = 0.5
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   (a)      (b) 

 
          (c)            (d) 

Figure 4.19:  (a) Filtered Horizontal Slice (b) Variation of SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

Iterations = 500, L = 0.5, K = 600 
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SDNR of filtered slice = 1.4164

pm1 (exp), (4), Iter = 1000, K1 = 700, L = 0.5
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   (a)      (b) 

 
          (c)            (d) 

Figure 4.20:  (a) Filtered Horizontal Slice (b) Variation of SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

Iterations = 500, L = 0.5, K = 700 
 

A value for K of 500 yielded the largest SDNR.  This result is displayed in Figure 

4.18.  An additional check was performed, during the investigation of the optimum value 

for K, by constructing a histogram of the variation of the SDNR with respect to a 

variation in K.  The results are presented in Figure 4.21. 
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Figure 4.21:  Variation of SDNR with Variation of K 

 

Qualitatively the optimum value for K was found in Figure 4.18 to be 500.  

Quantitatively the highest SDNR was achieved for K = 500 as displayed in Figure 4.21.  

Additionally, qualitatively the out-of-plane artifacts were best eliminated for K = 500 for 

both in-plane and in-depth images. 

 

4.2.3 2D Diffusion 

In the 2D diffusion case, only pixels in the in-plane direction are considered 

during the filtering process.  Two different windows, which consisted of 4 and 8 adjacent 

pixels, were considered for comparison.  These 2D windows are depicted in Figure 4.22. 
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    (a)         (b) 

Figure 4.22:  (a) 4 Adjacent Pixels (b) 8 Adjacent Pixels 

 

Pixels from the north, south, east and west directions were considered in the 4 

adjacent pixels window.  Pixels from northeast, northwest, southeast and southwest 

directions were considered in the 8 adjacent pixels window.  An ROI was chosen for the 

4 and 8 adjacent pixel analysis comparison.  In each case the region was filtered with PM 

diffusion and the normalized line profile constructed. 

The results of the analysis for the window containing 4 adjacent pixels are 

presented in Figures 4.23 and 4.24.  Figure 4.23 presents the images before and after 

filtering and the associated line profiles. 
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(a)     (b) 

Figure 4.23:  (a) Original ROI (b) Filtered ROI with 4 point PM Diffusion 
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Figure 4.24 presents the data, in a comparison format, for the normalized original 

and filtered line profiles.  The smoothing effect of the PM diffusion is clearly displayed 

in Figure 4.24. 
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Figure 4.24:  Normalized Line Profile for 4 Point PM Diffusion 

 

The results of the analysis for the window containing 8 adjacent pixels are 

presented in Figures 4.25 and 4.26.  Figure 4.25 only presents the images after filtering 

and the associated line profiles since the ROI did not change. 
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Figure 4.25:  Filtered ROI with 8 Point PM Diffusion 



 46

Figure 4.26 presents the data, in a comparison format, for the normalized original 

and filtered line profiles for the window containing 8 adjacent pixels.  The smoothing 

effect of the PM diffusion is clearly displayed in Figure 4.26. 
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Figure 4.26:  Normalized Line Profile for 8 Point PM Diffusion 

 

 A comparison of the SDNRs achieved as a function of the number of iterations is 

for the 4 and 8 adjacent pixel windows is presented in Figure 4.27. 
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Figure 4.27:  Quantitative Difference for PM Diffusion Using 
(a) 4 Adjacent Pixels (b) 8 Adjacent Pixels 

 



 47

Figure 4.27 demonstrates the relative similarity of the SDNR for both windows.  

The maximum SDNR achieved for the PM diffusion of the window containing 4 adjacent 

pixels occurred later than the highest SDNR achieved for the PM diffusion of the window 

containing 8 adjacent pixels.  Therefore, the 8 adjacent pixel window was used to achieve 

a faster PM diffusion solution. 

 

4.2.4 3D Diffusion 

Instead of only considering pixels in the in-plane direction, pixels from the in-

depth direction were also used in the filtering process.  Diagrams for pixel selection 

involving in-plane and in-plane combined with in-depth pixels are presented in Figure 

4.28. 
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Figure 4.28:  (a) 4 In-Plane Pixels (b) 8 In-Plane Pixels 
(c) 8 In-Plane Pixels and 2 In-Depth Pixels 

 

Four different windows were compared.  Two of the windows were 2D based, 

([4,0,0], [8,0,0]).  The other two were 3D based, ([4,2,2], [8,2,2]).  The horizontal slice, 
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window considered in Figures 4.29 – 4.32.  The extracted vertical slice was 200x52, 

where 52 equals the number of slices.  The value for K was chosen to be 500 and the 

learning coefficient was chosen to be 0.5 in order to achieve a faster solution. 

 

SDNR of filtered slice = 1.6358

pm1 (exp), (4), Iter = 2000, K1 = 500, L = 0.5
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          (a)            (b) 

 
          (c)           (d) 

Figure 4.29:  (a) Filtered Horizontal Slice (b) Variation of the SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

2D, [4, 0, 0], Window 
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SDNR of filtered slice = 1.7788

pm1 (exp), (4 - 2 - 2), Iter = 2000, K1 = 500, L = 0.5
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          (a)             (b) 

 
          (c)            (d) 

Figure 4.30:  (a) Filtered Horizontal Slice (b) Variation of the SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

2D, [4, 2, 2], Window 
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SDNR of filtered slice = 6.1736

pm1 (exp), (8 - 0 - 0), Iter = 2000, K1 = 500, L = 0.5
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             (a)              (b) 

 
          (c)             (d) 

Figure 4.31:  (a) Filtered Horizontal Slice (b) Variation of the SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

3D, [8, 0, 0], Window 
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SDNR of filtered slice = 4.2367

50 100 150 200

20

40

60

80

100

120

140

160

180

200
0 200 400 600 800 1000 1200 1400 1600 1800 2000

1

1.5

2

2.5

3

3.5

4

4.5
Variation of SDNR PM1 (exp) (8 - 2 - 2), Iter = 2000, K1 = 500, L = 0.5

Iterations --->

S
D

N
R

 
          (a)             (b) 

 
          (c)            (d) 

Figure 4.32:  (a) Filtered Horizontal Slice (b) Variation of the SDNR with Iterations 
(c) Original Vertical Slice (d) Filtered Image of the Original Vertical Slice 

3D, [8, 2, 2], Window 

 

The data from the four windows, clearly indicates that the [4, 2, 2] window 

yielded the best results with respect to removal of out-of-plane artifacts.  In addition, it is 

also clear that the in-plane SDNR for the [4, 2, 2] window was less than the in-plane 

SDNR for the [8, 0, 0] or [8, 2, 2] windows.  The SDNR only provides image quality 

along the in-plane direction rather than the in-depth direction.  However, the main 

objective of the anisotropic diffusion was removal of out-of-plane artifacts.  Therefore, 

the [4, 2, 2] window was chosen as the proper window for the filtering. 
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CHAPTER 5 

SEGMENTATION 

 

After image pre-processing the next important step is detection of suspicious 

regions.  Lesions associated with a tomosynthetic image appear more isolated than they 

would in a comparable mammographic image.  This phenomenon is the result of less 

overlaying of the parenchyma tissue in the tomosynthesis procedure.  Segmentation of 

suspicious regions is achieved through clustering, which consists of a procedure for 

finding a structure within the unlabelled data. 

 

5.1 Clustering 

Clustering is defined as finding a structure in unlabelled data, [Tutorial 2006].  

Clustering is considered to be an unsupervised problem since the process lacks any a 

priori input.  Clustering is also defined as a collection of objects, which can be placed, 

according to their correspondence to a descriptive concept, into groups or clusters.  There 

is no absolute measure, which can be applied to determine the best clustering method.  

The best measure will vary as a function of the criteria established by the specific need to 

design a clustering procedure.  Therefore, the effectiveness of the clustering method 

depends on the definition created by the criterion.  The different types of clustering 

algorithms are: 
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• Exclusive clustering, 

• Overlapping clustering, 

• Hierarchical clustering, 

• Probabilistic clustering. 

 

5.2 Fuzzy Clustering 

Developed by Dunn in 1973 and modified by Bezdek in 1981, fuzzy clustering is 

a very popular overlapping clustering algorithm.  Fuzzy clustering is used extensively for 

image segmentation in medical field due to the sensitivity associated with assigning each 

data value to different clusters with closely associated degrees of sensitivity. 

An image can be represented in various feature spaces.  The FCM algorithm 

classifies the image by grouping similar data points in the feature domain into clusters.  

The clustering is achieved iteratively by maximizing the cost function that is dependent 

on the distance of the pixels to the clusters centers in the feature domain, [Chuang 2006]. 

Figure 5.1 presents a flow chart for the FCM algorithm. 
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Figure 5.1:  Flow Chart of the Fuzzy C-Means Clustering Algorithm 

 

Figure 5.2(a) presents an unfiltered tomosynthesis image of an in-plane slice.  

Images (b), (c) and (d) present the results of the application of the FCM algorithm for 

three clusters.  The lesion of interest lies in the southeast region at approximate horizontal 

and vertical coordinates of (165, 170).  The presence, configuration and extent of the 

lesion has been dramatically enhanced by the application of the FCM algorithm. 
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Original Slice
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      (c)         (d) 

Figure 5.2:  FCM of the Tomosynthesis Volume for 3 Clusters 
(a) In-Plane Tomosynthesis Slice (b) Cluster 1 

(c) Cluster 2 (d) Cluster 3 
 

Figure 5.3 presents a segmentation of the same in-plane slice presented in Figure 

5.2.  It is clear that segmentation, by itself, does not provide the results that are possible 

with filtering and provides another example of the need for filtering. 
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Segmented slice
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Figure 5.3:  Segmented Tomosynthesis Volume for an In-Plane Slice 

 

5.3 Cluster Validity Functions 

Cluster validity functions are used to evaluate the performance of clustering.  

There are two important types of validity functions, [Wang 2004].  One type is based on 

the fuzzy partition of the sample set and the other type is based on the geometric structure 

of the sample set. 

The functions representing the validity functions based on a fuzzy partition are 

labeled Vpc and Vpe.  Less fuzziness of the partition indicates better performance. 

The validity functions for a fuzzy partition are defined by: 
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The optimal partition should generate a maximum for Vpc and a minimum for Vpe. The 

geometric structure of the sample set indicates that the samples within a particular cluster 

should exhibit more compactness and samples within different clusters should be 

separate.  The functions representing the validity functions based on a geometric partition 

are labeled Vfs and Vxb, [Xie 1991].  The validity functions for a geometric partition are 

defined by: 
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Minimum values for Vfs and Vxb infer good clustering. 

 

5.4 Spatial Fuzzy C-means Clustering 

A conventional FCM algorithm does not fully utilize the spatial information in the 

image.  SFCM incorporates spatial information into the objective function for clustering.  

The advantages of SFCM over conventional FCM are reduction of spurious blobs, noisy 

spots are removed and the procedure is less sensitive to noise. [Chuang 2006]. 

The pixels on an image are highly correlated, which means that the pixels in the 

immediate neighborhood possess nearly the same feature data.  Therefore, the spatial 
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relationship of neighboring pixels is an important characteristic that can be of 

considerable aid in image segmentation. 

The standard FCM procedure, wrongly classifies a noisy pixel due to its abnormal 

feature data.  The SFCM technique incorporates spatial information and the membership 

weighing of each cluster is altered after the cluster distribution in the neighborhood is 

considered.  The SFCM reduces the effect of noise considerably and biases the algorithm 

toward homogeneous clustering.  Figure 5.4 presents the functions related to SFCM. 

 
Figure 5.4:  Spatial Function of the SFCM 

The spatial function is given by: 

 

 

 

where NB(xj) represents a square window centered on pixel xj in the spatial domain.  The 

spatial function hij represents the probability that the pixel xj belong to ith cluster.  The 
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belongs to the same cluster.  The spatial function is incorporated into the membership 

function as: 

 

 

 

where p and q are parameters used to control the relative importance of both the 

membership functions.  In a homogeneous region, the spatial function adds extra strength 

to the membership function and the clustering result remains unchanged.  In the case of a 

noisy pixel, the spatial function reduces the weighting of a noisy cluster by the labels of 

its neighborhood pixels.  Therefore, misclassified pixels from noisy regions or spurious 

blobs can be easily corrected. 

The SFCM algorithm consists of a two-pass process during each iteration.  The 

first pass is the same as the conventional FCM algorithm in order to calculate the 

membership function in the feature domain.  During the second pass, the membership 

information of each pixel is mapped to the spectral domain and the spatial function is 

computed.  The SFCM algorithm proceeds with the new membership that is incorporated 

by the spatial function. 

 

5.5 Qualitative Analysis 

Domain knowledge of the tomosynthetic data is used to calculate the number of 

clusters.  Three cases are considered with 3, 4 and 5 numbers of clusters.  It can be 
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not contribute to the enhancement of the presence of the lesion.  In fact, the increase to 

five clusters degraded the capability to definitively define the presence of the lesion 

 

Case #1: Number of clusters = 3 

  
   (a)      (b) 
Figure 5.5:  (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and Clusters = 3 

 
Case #2: Number of clusters = 4 

  
   (a)      (b) 
Figure 5.6:  (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and Clusters = 4 

 
Case #3: Number of clusters = 5 



 61

  

 (a)      (b) 
Figure 5.7:  (a) FCM (b) SFCM with a 5x5 Window Where p = 1, q = 1 and Clusters = 5 

3D clustering involves the use of a 3D window in case of SFCM.  Two windows, 

with dimensions of 5x5x3 and 5x5x5 were used to perform the qualitative comparison.  

The 5x5x5 window was less sensitive to out-of-plane artifacts when compared to the 

5x5x3 window.  Hence the 5x5x5 window was the window used for the SFCM algorithm.  

Figure 5.8 presents the results of the 3D clustering experiment for different window sizes. 

 

   
(a)          (b)           (c) 

Figure 5.8:  3D Clustering of a Single Slice 
(a) FCM (b) SFCM with a 5x5x3 Window 

(c) SFCM with a 5x5x5 Window 
 

A comparison between fuzzy and spatial fuzzy clustering of the original volume 

and the filtered volume are presented in Figures 5.9 and 5.10. 
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(a)      (b) 

 
(c)      (d) 
Figure 5.9:  (a) FCM Clustered In-Plane Slice 

(b) Filtered FCM Clustered In-Plane Slice 
(c) Slice Along the In-Depth Direction of (a) 
(d) Slice Along the In-Depth Direction of (b) 
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(a)      (b) 

 
(c)      (d) 
Figure 5.10:  (a) FCM Clustered In-Plane Slice 

(b) Filtered SFCM Clustered In-Plane Slice 
(c) Slice Along the In-Depth Direction of (a) 
(d) Slice Along the In-Depth Direction of (b) 

 

The SFCM algorithm provided a better classification when compared to the FCM 

algorithm for both the original volume and the filtered volume. 

 

 



 64

5.6 Quantitative Analysis 

The validity functions Vpc and Vpe were used to evaluate the performance 

difference between the FCM and the SFCM algorithms for 26 slices.  The SFCM 

algorithm utilized a 5x5x5 window size.  Table 5.1 presents the data for the validity 

functions associated with fuzzy and geometric clustering for the FCM and the SFCM 

algorithms.  The data are consistent with the theory.  The data demonstrate the superiority 

of the SFCM algorithm over the FCM algorithm. 

 

Table 5.1:  Variation of the Validity Functions with the Number of Clusters and the 
Type of Clustering 

Number 
of  

Clusters 

  Vpc Vpe Vxb 

    With 
b/g 

Without 
b/g 

With 
b/g 

Without 
b/g  

With 
b/g 

Without 
b/g 

3 FCM 0.97361 0.90005 0.01942 0.07357 0.01688 0.02111
3 SFCM 0.98294 0.93537 0.01211 0.04586 0.01858 0.02327

                
4 FCM 0.97162 0.89249 0.02116 0.08017 0.01672 0.01576
4 SFCM 0.98122 0.92885 0.01337 0.05065 0.18842 0.17772

                
5 FCM 0.97053 0.88884 0.02214 0.08388 0.01669 0.01261
5 SFCM 0.97973 0.9232 0.01448 0.05485 0.01891 0.01429

 

Figure 5.11 presents a graphical comparison of the validity functions.  The 

functions were compared on both original and filtered slices and for both algorithms.  

The results are consistent with theory and confirm the superiority of the SFCM algorithm 

over the FCM algorithm.  The results presented in Figure 5.11 correspond to the presence 

of background effects in the left graphs and the absence of background effects in the right 

graphs for each validity function presented.  Table 5.1 data and the graphs of Figure 5.11 
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indicate a distortion in the Vxb validity function since it should provide the least 

minimums when compared to Vpe.  The SFCM algorithm works on the spatial domain.  

Therefore, the compactness of the clusters in the feature domain get distorted, which 

results in an abnormal variation of Vxb for both the FCM and SFCM algorithms. 
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Figure 5.11:  2D Comparison Between FCM and SFCM for 26 Slices 

 

A quantitative histogram comparison of the validity function for fuzzy clustering 

is presented in Figure 5.12.  The histogram also demonstrates the superiority of the 

spatial fuzzy clustering of filtered volume over spatial fuzzy clustering of unfiltered and 

fuzzy clustering of filtered and unfiltered volumes. 
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Figure 5.12: Variation Validity Functions Vpc and Vpe for SFCM and FCM Algorithms 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

Image pre-processing was performed to remove the background region and 

unwanted artifacts, which occur during image acquisition.  The segmented breast volume 

was inversed and the histogram equalized in order to improve the contrast and to 

effectively use the available dynamic range of the image.  Filtering, required values to be 

established for two critical parameters K and λ.  The K and λ parameters are unique to 

tomosynthesis data and were calculated using phantom tomosynthesis and breast 

tomosynthesis volumes.  The SDNR and line profiles were used to derive an effective 

conclusion for both the parameters.  2D anisotropic diffusion was implemented with 

different windows in order to determine an optimum window for in-plane filtering.  

Similarly, 3D anisotropic diffusion was used with different windows to remove the out-

of-plane artifacts and increase the SDNR parameter. 

Fuzzy C-means and Spatial Fuzzy C-means clustering methods were implemented 

in order to segment the suspicious regions.  When employing the Spatial FCM algorithm, 

the anisotropic nature of the tomosynthetic data was included by modifying the 

multiplying parameter of the window, which was used.  Comparison between the FCM 

and the SFCM algorithms was performed qualitatively using the visual representation of 

tomosynthesis horizontal and vertical slices and quantitatively using validity functions 
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such as the partition coefficient, the partition entropy and the Xie - Beni functions.  In 

addition, a comparison of clustering between filtered and non-filtered tomosynthesis 

volumes was presented. 

 

6.2 Recommendations 

Classification of suspicious region by extending the 2D BIRADS system for 3D 

volumetric tomosynthesis data will be the next critical module for computer aided 

diagnosis of breast cancer.  Application of contemporary pattern recognition algorithms, 

such as the support vector machine, (SVM), to enhance procedures that differentiate 

between abnormal breast lesions and normal breast tissues and further classify the 

abnormal objects as malignant or benign lesions should prove to be extremely beneficial.  

The essential requirement for a good classification analysis is a huge database.  

Therefore, acquiring data will play an important role in the success of diagnostic analysis.  

Since the existing module, which was the object of this research, was tested on a small 

database, it needs to be enhanced and, possibly, modified for a huge database set in order 

to be confidently used as a versatile tool for diagnosis. 

The existing evaluation methods for good classification techniques are ROC and 

FROC curves which are based on 2D data.  They need to be modified for analysis of 3D 

tomosynthesis classification. 
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