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Chapter 4 
 

Sea surface current mapping with HF radar – A Primer 
 
 

Clifford R. Merz1*, Yonggang Liu1, Robert H. Weisberg1 
 
 

1University of South Florida, College of Marine Science, 830 First Street South, St. Petersburg, FL 33701 
 

 
*Corresponding author contact: cmerz@usf.edu 
 
Shore-based oceanographic High Frequency (HF) radars are frequently used to remotely sense and 
map coastal sea surface currents.  This chapter begins with a review of the development and 
utilization of HF radar sea-echo interactions and their relationship in the determination of the radial 
component of the sea surface current and vector coverage map, followed by a brief discussion of 
recent ongoing HF radar observations on the West Florida Shelf (WFS). Reported are HF radar 
performance and its complicated relationships with environmental factors. 
 
1. Introduction 

Ocean currents are the continuous movement of seawater.  In the coastal ocean, the currents are 
what deliver nutrients from the deep-ocean and the estuaries to the shelf, thereby fueling primary 
productivity and initiating the complex biological and chemical interactions resulting in the shelf 
ecology [1].  Commercial and recreational fisheries depend on this as do blooms of harmful algae 
[2]. Similarly, safe and efficient maritime commerce and missing boater search and rescue 
operations depend on our ability to specify currents, sea level, and sea state on the basis of the 
ocean and atmosphere interactions.   

Two different methods of current measurement are commonly in use: Lagrangian and Eulerian. 
The Lagrangian method tracks the path followed by the moving fluid and consists of placing a 
floating object in the water and allowing it to drift away from its initial position. This method has 
progressed from early efforts using floating coconuts and drifter bottles, a timer and the known 
distance traveled, to highly advanced instruments equipped with internal position logging and 
near- and real-time satellite transmission [3], and satellite-tracked surface drifters [4]. In the 
Eulerian method, a monitoring instrument is placed at a fixed location and the speed and direction 
of the moving fluid are measured with respect to that fixed location.  Trends can be determined by 
analysis of the time series generated at that given point.  Some examples of Eulerian measurements 
include: cable attached electro-mechanical current meters which measure the velocity at a single 
depth; bottom mounted upward looking and buoy mounted downward looking Acoustic Doppler 
Current Profilers (ADCP) which measure the velocity throughout the water column [5]. These in 
situ current observations are made at a single point at a time, which are very limited in spatial 
coverage.   
 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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In contrast to those traditional single-point current measurements, shore-based HF radars can map 
surface currents with large spatial coverages. They have become an important component of 
coastal ocean observing systems [6]. HF radar measured currents have been found in many 
oceanographic applications [7-9] as well as for assimilation in numerical ocean circulation models 
[10-12] because of their ability to remotely sense and map surface currents over large horizontal 
extents and at high sample resolution. Radiated by a vertically polarized shore-based antenna, 
transmitted HF electromagnetic (EM) radio waves (3-30 MHz) interact with ocean waves, 
resulting in Doppler shifted echoes backscattered by sea-surface gravity waves possessing a 
wavelength equal to one-half of the transmitted EM radar wave wavelength [13, 14].  The Doppler 
effect (also referred to as Doppler shift) is the change in frequency of a propagating wave in 
relation to an observer moving relative to the wave source and is named for Austrian physicist 
Christian Doppler who first described the phenomenon in 1842. Radar and sonar are but two of 
many successful examples where direct application of the Doppler principle is applied to measure 
the relative speed of a moving target.  
 
As discussed in Chapter 1 [15], HF radar EM waves can propagate via two operational modes: 1) 
ground wave; and 2) sky wave.  Here we consider the effects associated with ground wave 
propagation only to map sea surface currents using the concept of Bragg scattering at near-grazing 
incidence [16-20]. This chapter is written to serve as both a fundamental chapter on HF radar 
surface current mapping estimation as well as a companion to Chapter 5 [21].  
  
 
2. Theory behind radial and vector current derivation from HF radar Doppler spectrum   
 
Barrick [22] reported that HF radar sea echoes were first observed on air-defense nets around the 
English Channel during World War II where the resulting “clutter” periodically imposed 
limitations to the detection of aircraft.  Based on HF radar experimental observations at 13.5 MHz, 
Crombie [16] was the first to correctly deduce the physical mechanism producing sea scatter and 
identify the distinctive features of sea-echo Doppler spectra.  Crombie observed that the echo 
Doppler spectrum contained two dominant peaks symmetrically located about the transmitted EM 
radio carrier frequency. 
   
Crombie reasoned that since there were two dominant peaks in the Doppler echo, the source of the 
originating scatter must be from two targets moving at a given velocity and that these “targets” 
were ocean wave trains with radial wave phase velocity components along the radar look direction.  
He further calculated the wavelength of the ocean wave train seen by the HF radar using the deep 
water gravity-wave dispersion relationship.  Finally upon equating these two relationships, the 
wavelength of the backscattering ocean wave train, λOcean, was found to equal one-half of the 
transmitted EM radar frequency wavelength, λEM.   
 
The “resonant” effect often mentioned during HF radar operational discussions shares similar 
characteristics with Bragg backscatter, the same backscatter diffraction-grating mechanism 
associated with Braggs’ law, which is widely applied to X-ray crystallography and laser 
holography [23, 24]. The λOcean backscattered signal is in phase with the backscattered signal from 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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the next λOcean wave of the wave train. With the result being an “amplified” signal strength when 
all the in-phase backscattered signals that reach the shore base receiver are summed together [25].  
 
An important property of the HF sea echo is its random Gaussian nature.  Since the heights of the 
Bragg-scattering waves are random variables, the sea echo must also be a random variable [26]. 
Through constructive interference of these backscattered EM waves, an energy peak can be 
detected in the HF radar spectra, from which the ocean variance density spectrum can be 
determined (Figure 4.1). The 1st order spectral maxima region (observed peak) is dependent solely 
on the Bragg  resonant  scattering effect and the surrounding 2nd order spectral return regions are 
caused by double scattering or non-linearities in the wave field [27, 28]. Barrick and Peake [29] 
and Barrick [23, 30] showed that to first and second order, the average sea-echo Doppler spectrum 
is related to the average sea wave height directional spectrum evaluated at the required first- and 
second-order Bragg wavenumbers [26]. While examining a sinusoidal sea wave-train, Wait [31] 
related the strength of the signal voltage at the Doppler-echo peak to the height of the Bragg-
resonant wave train. Even though over 65 years have passed since these transformational 
contributions occurred, it’s important to not let the many technical advances that have occurred 
since reduce these observation-based achievements to a mere footnote or passing reference and it 
is for this reason that the historical and albeit time-dated Figure 4.1 is included herein.  
 
Although all of the sea wave trains on the sea surface interact with the transmitted EM radar wave, 
as noted above, the waves that can produce strong backscatter energy toward the radar are those 
that have wavelengths equal to half wavelengths of the EM waves, λOcean = λEM/2, and are moving 
either toward (resulting in a positive Doppler shift in frequency [+ peak]) or away from the radar 
(resulting in a negative Doppler shift in frequency [- peak]).  In the absence of any sea surface 
current, the Doppler positions of these peaks are proportional to the phase velocity of these waves. 
In the presence of any underlying radial component of the surface current at the point of scatter, 
the received signal frequency will be Doppler shifted from the transmitted frequency in accordance 
with the velocity of the sea surface current field within which the moving ocean wave is 
propagating [18, 19, 32]. 
 
The backscattered Doppler shift of the Bragg peak from the carrier frequency due to Bragg 
resonant scattering along a non-moving sea surface is given by the expression: 
 

fBP = ±  √� 𝑔𝑔𝑔𝑔
𝜋𝜋𝐶𝐶𝑜𝑜

�                                                           (1)  
    

where g is the acceleration due to gravity (9.8 m/s2), f is the transmitted EM radar carrier frequency, 
and co is the vacuum speed of light (3.0 x 108 m/s) [33].  In the presence of non-zero sea surface 
current, both Bragg peaks are shifted in the same direction by a frequency amount Δ given by  
 

Δ = 2Vrf/co                                                                   (2) 
 

where Vr is the radial speed of the sea surface current along the look direction of the radar.  By 
measuring Δ, the radial component (Vr) of the sea surface current can be calculated [34].  

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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Figure 4.1. Example surface-wave sea-echo Dopler spectrum from a 13.4 MHz radar (Reprinted by permission from 
Springer Nature, Boundary-Layer Meteorology, HF Radio Oceanography – A Review, Barrick, D.E., Copyright 
1978). The Doppler frequency units of the abscissa are normalized such that 0 corresponds to the transmitted EM 
carrier frequency (λEM) position, and ±1 refers to the predicted positions of the first-order Bragg echo peaks.  Δ is the 
normalized frequency shift of the record due to the presence of a moving sea-surface current [22, 26].  
 
A single HF radar only measures the radial component of the sea surface current by analyzing the 
Doppler spectra of the received backscattered signal.  When two or more spatially separated HF 
radar sites are used, the calculation of a two-dimensional current vector surface coverage map can 
be made.  In order for this to happen, the two sites must be adequately spaced and must overlook 
the same area of ocean from two different angles. The geometry for vectorization of the radial 
components of the sea surface current velocities measured by a two-site (master/slave) HF radar 
system in the overlap scattering area is shown in Figure 4.2 [35].  

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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Figure 4.2. Cartesian geometry for vectorization of the radial components of the sea surface current velocities 
measured by a two-site HF radar system. Location O is the observed offshore sea surface within the overlap area. 
Source: Adapted from [35]. 
 
The vector current in the HF radar overlap observation area can be calculated from current radial 
components measured by two radars using the following expressions [33, 35]: 
  

u = (Vr1 cos ϴ2 - Vr2 cos ϴ1) / sin (ϴ1 - ϴ2)                                        (3) 
 

v = (-Vr1 sin ϴ2 + Vr2 sin ϴ1) / sin (ϴ1 - ϴ2)                                       (4) 
 

where u and v are the eastward (or across-shelf) component and northward (or along-shelf) 
component of current, Vr1 and Vr2 are the radial components of the current vector measured by 
radars 1 (master) and 2 (slave), and ϴ1 and ϴ2 are referenced clockwise from the north are the 
beam directions for HF radars 1 and 2, respectively.  The vector current shown in Figure 4.2 is V 
=  𝑢𝑢 + i 𝑣𝑣.  Due to the different values of observation direction and range, radars located at different 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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site locations can have different backscattered echo intensities for the same portion of observed 
sea surface scattering area.  
 
3. Factors Affecting Current Measurements 
 
HF radar system current measurements depend upon many factors including the type of HF radar 
system used affecting radial current azimuthal resolution, range resolution, geometrical dilution of 
precision, signal propagation and sea state.   
 
3.1 HF Radar System Types 
 
Currently, two types of oceanographic HF radars are in frequent use worldwide: direction-finding 
HF radars such as the commercially available Seasonde developed by CODAR Ocean Sensors, 
Ltd, and phased array HF radars, such as the commercially available WERA developed by the 
University of Hamburg and manufactured by Helzel Messtechnik GmbH (Helzel).  Other HF radar 
systems comprising these two types found in the technical literature include: COSRAD (James 
Cook University), LERA (University of Hawaii at Manoa), and OSMAR (Wuhan University, 
China).  
 
The CODAR Seasonde direction-finding HF radar utilizes a compact directional receive antenna 
consisting of three collocated antenna elements (two orthogonally mounted loops and a vertical 
dipole or monopole element) in a single antenna housing.  A single, omnidirectional antenna is 
used to transmit a pulsed, gated frequency modulated continuous wave (FMCW) waveform. The 
WERA phased array HF radar utilizes two separate, simultaneously operated antenna arrays: one 
for receiving and the other for transmitting FMCW chirps. WERAs utilize a 1-4 element array to 
transmit and a 12-16 element linear array to receive and record the backscattered radio wave 
signals. By virtue of the increased number of antennas, it can operate both in a direction-finding 
and directional beam-forming mode.  
 
All HF radars resolve the target range and radial current speed to a high degree, however, system 
limitations exist in the ability to accurately determine the bearing of the specific surface scattering 
point.  The Bragg region is taken to be a region of spread around the Bragg peaks whose energy 
and position are caused by Bragg-resonant waves and the underlying current velocity. Although 
the external factors affecting the strength of the received Bragg backscattered sea-echo signal may 
be the same, the mechanics of the reception and signal processing is different depending upon the 
HF radar system type used – phased array or direction-finding.  

Phased array HF radars (such as the WERA) use multiple receive antennas and resolve signal 
arrival bearings using beamforming techniques. After fast Fourier transformation of the received 
signal, the time delays between antenna elements become phase shifts.  The weighted signals at 
all the elements are summed in software to sweep a narrow beam across a series of desired 
azimuthal directions in which signals from particular arrival directions sum constructively, 
whereas signals for other arrival directions sum destructively, ultimately forming a steered beam 
across the radar footprint [34, 36, and 37]. On the other hand, in direction-finding HF radars (such 
as the CODAR SeaSonde), signal arrival bearings are resolved in software by fitting the data from 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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all 3 elements of the compact receive antenna to either a measured or modeled antenna response 
function consisting of relative phase and amplitude versus bearing with the direction of arrival 
(DOA) determined using the Multiple Signal Classification (MUSIC) algorithm [38-41]. The 
Doppler shift (or radial current velocity) is calculated for each frequency bin in the region followed 
by a determination of the ultimate DOA for that radial current velocity [42]. While MUSIC has 
advantages, attention must be paid during operational times of low signal-to-noise ratio (SNR) (the 
general SNR cut-off threshold is 6 dB) and if variations occur in the measured receive antenna 
beam pattern in order to minimize observational errors [43].   

In both system types, the antenna pattern distortion and DOA algorithms will affect the azimuth 
accuracy and resolution of current radial component and vector accuracies.  It should also be noted 
that the coherent integration (or dwell) time used for Fourier transformation will affect the Doppler 
resolution of the spectrum and, thus, the current speed accuracy. 
 
3.2 Range Resolution  
 
As discussed in Chapter 1 [15], range resolution is an important parameter affecting spatial 
resolution of HF radar current measurements. The relationship between FMCW bandwidth and 
range cell resolution (cell depth) for some typical settings is presented in Table 4.1 [44].   
 

Table 4.1. Relationship between bandwidth and range cell resolution (depth) for a FMCW chirp. 
 

Bandwidth (kHz) Range Resolution  (km) 
25 6.0 
50 3.0 

100 1.5 
150 1.0 
250 0.6 

 
 

The maximum bandwidth available, and therefore the range resolution used, is usually set by the 
local or regional frequency licensing authority, for example the Federal Communications 
Commission (FCC) in the United States of America.  

 
3.3 Geometrical Dilution of Precision 
 
The HF radar site-to site separation distance and transmit frequency control the size and shape of 
the domain where currents can be resolved through the geometry of the intersection angles of the 
radial component of the sea surface currents.  This influence of the geometry on the surface current 
measurement errors is known as the Geometrical Dilution of Precision (GDOP). GDOP describes 
the reduction of accuracy caused solely by geometry and does not take into account the effects of 
reduced SNR that might be expected to decrease the accuracy of the current estimates in the 
farthest range bins [45]. 
 
Chapman et al. [45] derived the GDOP for the Cartesian current components based on the radar’s 
mean look direction and the half angle between the intersecting beams.  The GDOP is defined as 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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the variance ratio of (σu/σ) and (σv/σ) where σ is the total root mean square (RMS) variance of 
current differences [34].  When the azimuthal difference between the two HF radar beams is a right 
angle (90°), the current vector measurement error is at its minimum value.  When the azimuthal 
difference becomes very different from a right angle, the aspect ratio of the contour changes from 
unity and the measurement error increases [35] with major variations occurring within the radar’s 
near and far fields.  For each grid point the X- and Y- components of GDOP are calculated 
depending upon the angular positions relative to each other, with radial velocity data from GDOP 
regions that exceed specified input criteria excluded from vector current estimation. 
 
3.4 Signal Propagation and Sea State 
 
For a given radar system, the broadness of the Doppler spectrum and the noise level are dependent 
on the sea state [46].  Regardless of the HF radar system used, successful current measurement 
depends upon the quality and magnitude of the received signal relative to noise level. The extent 
of the offshore working range is ultimately determined by the SNR, which in turn depends upon 
the sea surface roughness (or sea state), the radar’s operating frequency and corresponding 
propagation loss, and the background noise level at the receive antenna. 
 
Depending upon the frequency, EM waves can be affected by parameters relevant to both the sea 
and the atmosphere; two such possible sources include: 
 

1) Variations in the viscosity and complex relative dielectric constant (ϵ) of the seawater.  
The attenuation of HF propagation is dependent on the imaginary part of ϵ, frequency and 
conductivity, where the conductivity is a function of the salinity and temperature [37, 47].  

2) The atmospheric radio refractivity (N), which is dependent upon variations in the 
atmospheric humidity, temperature, and air pressure [48, 49]. However, it is well-known 
these effects are considered minimal within the HF frequency band. 

 
The backscattered signal can be strongly affected by the sea state.  A well-defined statistic to 
denote the characteristic height of the random waves in a sea state is the significant wave height 
(Hs), defined as the mean wave height, trough to crest, of the highest 1/3 of the waves measured.  

As reported by Maresca et al. [50], for high sea states, the backscattered power is larger than for 
smaller sea states.  Liu et al. [51] reported that the radial offshore coverage on the WFS decreased 
rapidly once Hs dropped below 1 m and decreased to about 60% of its peak value when Hs 
decreased to 0.5 m.  However, the HF radar data quality remained satisfactory until Hs decreased 
below 0.3m corresponding to a RMS wind speed of <3 m/s. 
 
4. HF Radar Current Observations on the West Florida Shelf 
 
The University of South Florida (USF) Coastal Ocean Monitoring and Prediction System 
(COMPS) HF radar network consists of six operational sites: four long-range CODAR Seasonde 
direction-finding systems operating at 4.9 MHz and two 12-element WERA phased array systems 
operating between 12.275 and 13.20 MHz, all overlooking an array of moored instrumentation 
(surface meteorology and water column ADCP velocity, temperature and salinity), which together 
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comprise a unique HF radar testbed along the WFS and lower Florida Keys region.  The combined 
HF radar network provides real-time sea surface current measurements on the WFS with footprints 
of the network coverage shown in Figure 4.3.  Detailed operational specifications and performance 
measurements covering these specific sites along with detailed discussion of the combined USF 
HF radar network, overall system layout, remote site design, and general COMPS program can be 
found in [52 – 55].  The CODAR radial current velocity (radials) and vector totals are processed 
using standard CODAR software with a nominal range and bearing of 5.8 km and 5°, respectively 
and a transmit bandwidth of 25.734 kHz.  WERA radial current velocity (radials) and vector totals 
are processed using standard WERA software with a nominal range and bearing of 1.5 km and 
10°, respectively, but at broadside (90°) changing to 1.5 km and 20° at +/- 60°.  The WERA 
systems provide the ability to set the measurement bandwidth or utilize an adaptive noise reduction 
algorithim to dynamically adapt the HF radar center transmit frequency and measurement 
bandwidth to locally varying Radio Frequency Interference (RFI) conditions. 
 
As previously mentioned, a single radar site can only measure the radial velocity component of 
the sea surface current.  Thus, radial currents from two or more sites are required to calculate two-
dimensional vector surface currents. Figure 4.4 presents an example of a measured sea surface 
radial component velocity field from the USF COMPS CODAR Venice HF radar site.  Figures 4.5 
and 4.6 show typical measured sea surface vector current field maps using radial velocities from 
USF COMPS CODAR and WERA HF radar sites, respectivily.   
 

 
 
Figure 4.3.  Theoretical coverages of the USF COMPS HF radars on the WFS (Redington Shores, Ft. De Soto, Venice, 
and Naples, Florida) and in the Florida Keys (Marathon, Florida) overlooking the Straits of Florida.  Also shown are 
the locations of the real- time moorings (C10, C12, C13, C21 and C22) on the WFS. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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Figure 4.4.  Example of measured CODAR sea surface radial component velocity field from the USF COMPS Venice 
Site. Dual colors signify radial vectors coming either toward the radar (red) or moving away (blue). 

 

Figure 4.5.  Example of measured CODAR sea surface current field using radial velocities from the USF COMPS 
WFS Redington Shores, Venice, and Naples HF radar sites. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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Figure 4.6.  Example of measured WERA sea surface current field using radial velocities from the USF COMPS WFS 
Ft De Soto and Venice HF radar sites. 

Hourly data from each remote HF radar site are pulled via scripting to a central processing station 
located at the USF College of Marine Science in St Petersburg, Florida, where the data are 
processed and web served in near real-time through the COMPS Website 
http://comps.marine.usf.edu, the Southeast Coastal Ocean Regional Association (SECOORA) 
Website http://secoora.org, and the U.S. Integrated Ocean Observing System (IOOS) National HF 
Radar Network’s Coastal Observing Research and Development Center (CORDC) Website 
http://cordc.ucsd.edu/projects/mapping/stats, where they are ultimately integrated into ocean 
models for various uses such as improved boater safety, supporting U.S Coast Guard Search and 
Rescue (SAR) operations, and oil spill tracking within the Gulf of Mexico. An evaluation of 
observed radial surface currents in the Straits of Florida using the Marathon HRF site data is 
provided in Chapter 5. 
 
5. Ongoing HF Radar Investigations on the West Florida Shelf  
 
CORDC provides useful individual HFR site diagnostic pages with specific performance 
parameters and time series for near real-time monitoring.  One particularly useful operational 
parameter is the offshore working range and the observance of periodic variations.  One possible 
cause of these offshore range variations is the low sea state conditions typically found on the WFS 
during various times of the year which can result in low backscatter.  Reduced backscatter does 
not necessarily produce higher current measurement errors, but it reduces the SNR and 
corresponding offshore working range.  The SNR can be reduced further by increases of the 
ambient background noise through changes in the local electromagnetic RFI environment (i.e., 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
http://cordc.ucsd.edu/projects/mapping/stats
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diurnal ionospheric variations, weather-related lightning, local radio stations, near-shore 
manufacturing centers, airports, and ship traffic) [46].  
 
5.1 An Event of Offshore Working Range Drop 
 
Observance of the CORDC offshore working range time series data during the 
November/December 2020 time period revealed, to varying degrees, a several-day range level 
drop at all 5 WFS HF radar sites.  According to a previous study on HF radar data returns on the 
WFS, the 4.9 MHz CODAR system’s data return was closely related with the conditions of sea 
state, while the ~12.7 MHz WERA system’s performance did not exhibit an obvious sea state 
relationship [55]. Thus, we focus herein on the WERA system for the remainder of this chapter.  
This low data return event is analyzed using the coastal ocean observations available during those 
days.  Real-time data from the Ft. De Soto HF radar and C12 air-sea interaction buoy were selected 
for discussion because of their relative proximity and the C12’s near-broadside location within the 
Ft De Soto HF radar offshore coverage area (Figure 4.3).  
 
Figure 4.7 presents the 31-day (November 11 – December 11, 2020 offshore working range real-
time data measured by the Ft. De Soto WERA HF radar operating between 13.1 and 13.2 MHz.  A 
drop in offshore range is observed during the 4-day (November 26 – 29, 2020) time period.   
 

 
 
Figure 4.7.  USF COMPS Ft De Soto WERA HF radar offshore working range covering the 31-day period between 
November 11 to December 11, 2020.  Real-time data downloaded from CORDC’s FDS site diagnostic page.  
Highlighted 4-day period of interest covers November 26 to 29, 2020. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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As mentioned, the extent of the offshore working range is ultimately determined by the SNR, 
which, in turn, depends upon several environmental variables including the background noise level 
at the receive antenna, the radar’s operating frequency and corresponding propagation loss, and 
sea surface roughness. Investigations into several of these variables were conducted and are 
presented herein while other variables are currently under examination. 
 
5.2 Average Background Noise and RFI Effect 
 
Both of the COMPS WFS WERA HF radar systems utilize the “Listen-Before-Talk” (LBT) 
adaptive noise reduction algorithm to dynamically adapt the HF radar center transmit frequency 
and measurement bandwidth to varying local RFI conditions. Performing like a spectrum analyzer 
using 32 linear frequency chirps with the transmitter turned off, prior to each full acqusition a 1-
minute pre-scan measurement is made across the entire anticipated frequency band.  Real-time 
analysis of the pre-scan data reveals regions of varying external noise with the quietest allowable 
bandwidth determined and the corresponding mid span transmit frequency selected for subsequent 
use in the following full measurement. If the frequency pre-scan detects too much external noise, 
the measurement bandwidth is reduced, which, in turn, increases the individual range cell size [44, 
56, and 57] as shown in Table 4.1. 
 
Storage and plotting of the pre-scan values allow for the generation of a time-series of 1-minute 
“snapshots” of the average noise power level calculated across approximately the center frequency 
and bandwidth used in the actual follow-on measurements. The pre-scan measurement value 
contains background noise (e.g., atmospheric such as thunderstorms, local wide-band sources) and 
varying signals from other radio transmitters, including those very far away reflected by the 
ionosphere, which appear as RFI.  Much of the RFI clutter present in the pre-scan is 
reduced/mitigated during subsequant WERA processing so it is not the actual value the WERA 
“sees” during later processing. However, examination at this stage is useful in looking at the 
variation and magnitude of the RFI present as compared to the characteristic shape and median 
value of the average sum of the background noise and RFI data. 
 
Figure 4.8 presents the average sum of the background noise and RFI pre-scan data as measured 
by the Ft De Soto WERA HF radar system under the application of WERA’s LBT adaptive 
algorithm during the 31-day period.  The transmitted operational central frequency was between 
13.1 and 13.2 MHz with bandwidths varying between 25 to 100 kHz.  There is no significant 
change observed in the average background noise during the 4-day (November 26 – 29, 2020) 
period as opposed to the entire 30-day period.  This indicates that the drop in offshore range is 
related to a reduction in backscattered signal and not a increase in local background noise.  
 
The distance between the Venice and Ft. De Soto WERA sites shown in Figure 4.3 is ~68.5 km.  As 
expected graphical results for the Venice WERA HF radar pre-scan data reveal similar results to 
that presented for Ft. De Soto in Figure 4.8, with many of the same RFI signals but differing 
slightly in strength due to the separation distance.  Table 4.2 summarizes the background noise 
levels for both the Ft De Soto and Venice WERA HF radar sites. 
 
 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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Table 4.2. Pre-scan summary of the median value of the average sum of measured background noise and radio 
frequency interference 

 
Days/Date Ft DeSoto WERA Venice WERA 

31-day (Nov 11 – Dec 11, 2020) -82.3 dB -82.7 dB 
4-day (Nov 26 – Nov 29, 2020) -82.0 dB -82.3 dB 

 

 
Figure 4.8.  USF COMPS Ft De Soto WERA HF Radar average sum of background noise and radio interference 
during the 31-day period November 11 to December 11, 2020.  Highlighted 4-day period of interest covers November 
26 to 29, 2020. 
 
5.3 Atmospheric Radio Refractivity (N) Effect 
 
Figure 4.9 presents the computed Atmospheric Radio Refractivity [N] for the period November 11 
through December 11, 2020 using data obtained from the COMPS C12 air/sea interaction buoy.   
 
The value of N is computed according to the ITU-R [48] as: 
 

𝑁𝑁 =  77.6
𝑇𝑇

 (𝑃𝑃 +  4810 𝐸𝐸
𝑇𝑇

)                                                                 (5) 
 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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where P = atmospheric pressure (hPa), E = water vapor pressure (hPa), T = absolute temperature 
(K). The relationship between water vapor pressure (E) and relative humidity (H) is given by: 

 
E = (H)(Es)/100                                                                       (6)   

 
Es = a exp (bt/(t+c))                                                                (7)  

 
where H = relative hunidity (%), t = temperature (°C), Es = saturation vapor pressure (hPa) at the 
temperature t (°C) and the coefficients a, b, c for water are: 
 

a = 6.1121, b = 17.502, c = 240.97 (valid between -20° to +50° with a ±0.20% accuracy). 
 
As expected, no significant change was observed in the Atmospheric Radio Refractivity values 
during November 26 – 29, 2020, thus, confirming and quantifying prior well-known expressed 
comments that the strength of the first-order echo returns is not dependent upon air temperature, 
relative humidity or barometric pressure within the HF frequency band.  
 
 

 
 
Figure 4.9.  USF COMPS C12 Meteorological Buoy Computed Atmospheric Radio Refractivity covering the 31-day 
period November 11 to December 11, 2020.  Highlighted 4-day period of interest covers November 26 to 29, 2020. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0


 

 
Archived with permission from Ocean Remote Sensing Technologies: High frequency, marine and GNSS-based 

radar, Weimin Huang & Eric W. Gill, published by The Institution of Engineering and Technology, 2021. 
 DOI: 10.1049/SBRA537E 

Page 16 of 21 

5.4  Wind Speed Effect 
 
Figure 4.10 presents the wind speed for the same 31-day period using wind data converted to 10m 
height obtained from the COMPS C12 air/sea interaction buoy.  There is a similiar drop in the 
wind speed during the same 4-day time period.  Superimposed on Figure 4.10 is the computed 
wind speed RMS during the 4-day low wind (~3.4 m/s) event and the remaining 27 days (9.0 m/s). 
While the computed 4-day 3.4 m/s wind speed RMS compares favorably to the <3 m/s wind speed 
RMS previously observed on the WFS by Liu et al. [53] and briefly discussed in Section 3.4, close 
examination of Figure 4.10 reveals other periods in the record of equally low wind speed RMS 
values without a corresponding drop in the offshore working range of the Ft De Soto WERA HF 
radar (Figure 4.7).   
 
Although a telling clue in itself, the wind speed is but a contributor to the underlying cause.  Wave 
height is affected by wind speed, wind duration (or how long the wind blows), and fetch (the 
distance over water that the wind blows in a single direction). If the wind speed is low, only 
small waves appear, regardless of wind duration or fetch.  Weakening winds may result in the 
reduction of the sea state and corresponding scattering strength of the rough sea surface which, in 
turn, increases the backscattered signal’s propagation loss.   Work is continuing on examining the 
interaction of energy loss and backscattering strength in terms of sea state and seawater physical 
conditions (e.g., water temperature and salinity) as they may relate to attenuation of the EM wave 
propagation along the sea surface. 
  

 
 
Figure 4.10.  USF COMPS C12 meteorological  buoy wind speed at 10m height covering the 31-day period November 
11 to December 11, 2020.   Highlighted 4-day period of interest covers November 26 to 29, 2020. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1049%2FSBRA537E&data=05%7C01%7Ccmerz%40usf.edu%7Cf2fafce735c740e0ce3808da2216b9c5%7C741bf7dee2e546df8d6782607df9deaa%7C0%7C0%7C637859778251965904%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=feWIfONX6q8sxyOTeD0Ts5dP5v33JxUJ2QmgDujeD8E%3D&reserved=0
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6.  Summary  
 
Sea surface current measurements using oceanographic HF radar systems are reviewed followed 
by a brief discussion of recent on-going HF radar observations on the WFS. Overall HF radar 
system performance of current measurement depends upon many external factors including: 
oceanic conditions, type of HF radar system used, SNR of the signal received at the shore based 
radar antennas, frequency resolution of the Doppler spectrum, and the accurate identification of 
the Bragg peaks.  Challenges of HF radar current observation on the WFS are often manifested in 
low SNR, reduced data returns and offshore range. A careful review of these factors along with a 
thorough evaluation of the unique environmental characteristics surrounding the site location 
under consideration for use is required in order to achieve a successful measurement outcome.  
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