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Optical Imaging of Radiolabeled Drugs in Tissue Sections Using the MicroImager 

 
Paul Dungel 

 
ABSTRACT 

 
The MicroImager is a fast, high resolution, real time, digital autoradiographic 

imaging tool with broad applications.  This study utilizes the MicroImager to evaluate 

radiolabeled drug behavior in subcutaneous tissue.  Experiments were conducted in 

conjunction with mathematical models to determine the diffusion coefficient (D) and 

elimination constant (k) for radiolabeled dexamethasone.   

Osmotic pumps containing [3H]dexamethasone were implanted into rat 

subcutaneous tissue over 6h, 24 h, and 60 h.  Local tissue was explanted and slides were 

prepared for imaging.  The MicroImager was then used to quantify the local 

concentration of 3H-dexamethasone in the tissue surrounding the tip of the osmotic pump.  

Betavision+ software was used to obtain local concentration profiles.  These were then 

compared to a mathematical model to determine the diffusion coefficient and elimination 

constant for the radiolabeled drug.  The diffusion coefficient for dexamethasone in rat 

subcutaneous tissue is 4.11 ± 1.77 x 10-10 m2/s.  The elimination constant is 3.65 ± 2.24 x 

10-5 s-1. 

A similar experiment was conducted to determine the diffusion coefficient 

through different means.  [3H]dexamethasone was injected into the rat subcutaneous 



 vii

tissue for a 2.5 min and a 20 min period.  A different mathematical model was applied 

and the diffusion coefficient was found to be 4.01 ± 2.01 x 10-10 m2/s. 
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Chapter One 

 
MicroImager 

Background of Radioimaging 

 The use of radioactive isotopes to investigate biological phenomenon is important 

for several reasons.  Radioactive tracers are incorporated into the substance being studied 

and rarely inhibit the molecules motion or binding characteristics. Also, degradation of 

the signal does not decrease over time when using an appropriate isotope.  This provides 

for long term storage and analysis without loss of data.  This valuable tool in 

contemporary medicine had its beginnings over 80 years ago.  Autoradiography was first 

applied to systemic biological investigation in 1924 by Lacassagne (1).  Using 

photographic emulsions, Lacassagne studied Polonium distribution in tissues.  

Photographic emulsions have been used to evaluate the presence and location of radiation 

in tissues ever since.   

 

Radiation 

 Elements (Hydrogen, Carbon, Iodine, etc) can exist naturally as unstable isotopes 

of stable atoms.  They can regain their stability by emitting energy in the form of 

radiation.  This radiation can have different forms and different energies.  Alpha, gamma, 

and beta radiation have different characteristics and are associated with specific decay 

activities (2). 
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 Alpha decay occurs when an alpha particle is emitted from the nucleus of an atom.  

An alpha particle is defined as 4
2 He.  Gamma radiation has no mass and is capable of the 

greatest penetrative distance.  This type of radiation is commonly used in X-ray imaging. 

 Beta radiation can have two forms.  A β- particle is an electron while a β+ particle 

is a positron.  Each of these has a mass 1/1840 that of a proton.  If a β- particle is emitted 

from the nucleus, the transformation that occurs is that a neutron changes to an electron 

and a proton.  On the other hand, if a β+ particle is emitted, a proton splits into a positron 

and a neutron.  The type of decay that occurs is dependant on the specific element (2).  

Tritium, the radiolabel used in my experiments, emits β- particles that are then detected 

and analyzed. 

 

Emulsion Film Autoradiography    

 The traditional method for visualizing radiation has been photographic emulsions.  

A photographic emulsion incorporates Silver Bromide (AgBr) crystals in a gelatin 

suspension.  Upon exposure of the emulsion to a radioactive sample, areas of the crystal 

that are irradiated undergo a transformation.  The free electron (β- particle) oxidized the 

silver and creates metallic silver at these locations.  After the “latent image” is processed, 

the results can be visualized.  This process can be time consuming and cumbersome (3). 

 

Phosphor Imaging 

Another modality has been developed that operates similarly to emulsion film 

autoradiography.  A sheet with a coating of excitable phosphor crystals is placed atop the 

sample.  Upon exposure, low energy electron-hole pairs are created by the interaction of 



 3

the phosphor with the incident radiation.  Most recombine and luminescence can be 

observed locally.  However, some of the new electrons become trapped and do not 

recombine.  Upon stimulation with a He-Ne (red) laser, these trapped electrons are freed 

and find available holes.  This creates a violet glow that is observed using fiberoptics.  

The signal from this system is then amplified by a photomultiplier and then digitized 

using a scanner (4).  Upon review, Kamarainen et al. (2006) found that compared to 

photostimulated luminescence, “…film autoradiography requires more time for 

optimizing, preparing, and analyzing films because of poor sensitivity and low 

linearity” (5). 

 

MicroImager Information 

Operating Principles 

 

 

 

Figure 1.  MicroImager with associated PC 
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 The recently developed MicroImager builds on previously developed imaging 

technology.  As the MicroImager is fully digital, no film or phosphor screen is necessary.  

The sample is placed on a slide and covered with a thin sheet of scintillating paper.  This 

paper converts beta particles to photons.  These photons are amplified in an Image 

Intensifier Tube and enter a CCD Camera.  The computer then assimilates the data into 

an observable image that is displayed to the user.  This system has several advantages 

over traditional imaging modalities.  Digital storage of data is more compact, easier to 

transport, and easier to view than photographic film or phosphor screens.  The high-

resolution (~20µm) and high speed of data acquisition (on the order of hours) is 

advantageous compared to previous technology.  Additionally, this system can be 

automated to process up to four samples in one run.  High throughput data analysis is 

valuable because it provides the investigator with time to focus on other tasks while 

acquiring important data. 

 The MicroImager also has the unprecedented ability to distinguish two different 

isotopes in one sample.  If isotopes emitting radiation at different energy levels are used 

(i.e. 3H and 14C), the software can differentiate between the two.  Each beta particle will 

have a different size “light spot” on the screen dependant on its energy.  After user 

standards are prepared, the software can determine the source of each “spot” and assign it 

to a specific isotope.  This can not be done using film emulsions or phosphor imaging. 
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Hardware Components of MicroImager 

Scintillating Sheet 

 

 

 A small, thin sheet of scintillating paper is placed over the sample in order to 

properly image the sample.  The MicroImager employs scintillating sheets made of 

SiY2O5 due to its desired properties (6).  The 10 micron thick sheet transforms beta decay 

from the sample into photons that then move through the image intensifier tube (IIT) on 

the way to the CCD camera.   

 

Image Intensifier Tube 

 After the photons are released from the scintillating sheet, they enter the image 

intensifier tube.  This double microchannel plate tube is an optoelectronic device that 

amplifies the intensity of the incoming light by a factor of 30000 (6).  The amplified 

image is then transferred to a phosphor screen that is lined with an 800 Angstrom 

aluminized layer.  This creates a polarizing current that is picked up by the CCD camera. 

Figure 2.  Scintillating sheet on slide 
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CCD Camera 

 The Charge Coupled Device (CCD) Camera incorporated into the MicroImager 

has a 576 x 384 pixel screen to integrate incident light.  The matrix structure of the CCD 

camera allows high speed, high resolution images to be acquired.  An optical spot is 

detected by the CCD and then analyzed by an imbedded chip to determine the spot’s 

center of gravity (7).  This enables the MicroImager to have a spatial resolution of 15-20 

µm.  The digital signal created is displayed on the PC screen and can then be processed 

using Betavision+ software.  

 

Software Components of MicroImager 

The images acquired with the MicroImager can then be processed using a 

dedicated software package called Beta Vision+.  This software has broad applications 

for data analysis and visual interpretation.  

Quantification of the data can be conducted in various ways.  The final image is a 

composite of acquisitions done at numerous time points.  One can view the entire set of 

data, or observe only a specific time segment of the acquisition.  For example, if the 

sample was run for 10 hours, one can observe the final image with 10 hours of decay 

events.  On the other hand, one can view the first or last 3 hours of acquisitions.  

Furthermore, one can observe the middle 5 hours of acquisition.  This feature can be 

valuable for several reasons.  First, if decay events should remain constant over time, this 

can be confirmed by comparing initial acquisition with final acquisition.  Secondly, if the 

radioactive tracer used has a short half-life, one can run the sample and observe the 

decrease in decay over time.  This method enables one to focus on data based on the time 
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it was obtained.  In addition to the temporal distribution, more important data analysis is 

conducted on the spatial distribution of the signal.   

There are several different tools available in Beta Vision+ to aid in spatial 

analysis of the image.  The image of the decay events is acquired using a monochrome 

camera, yielding a black and white image.  The intensity of different locations can be 

difficult to observe in grayscale images, so pseudocolor can be applied using a preset 

look-up-table (LUT) or a custom LUT.  The range of this scale can be adjusted per user 

inputs. 

 

 
 

 

Additionally, there are many other processing and quantitative tools available in 

the Beta Vision+ software.  Among those that will be discussed are the Grid ROI, Circle 

ROI, Line Profile tool and other tracing tools. 

 

 

 

Figure 3.  The original autoradiogram of [3H]dexamethasone as acquired by the 
MicroImager (left) and the same image with a psuedocolor LUT applied (right).  
The image on the right more clearly shows the variation in intensity 
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Grid ROI 

The Grid Region of Interest (ROI) 

tool is useful to iteratively analyze a 

region of the image.  After clicking on the 

Grid ROI icon, the user can input the 

number of rows and columns desired in 

the rectangular region.  Then, using the 

mouse, one can draw a grid on the desired  

area of the image.  After this, the Result 

Viewer can be enabled to display information 

 about each grid square.  The data displayed includes the area of each grid and counts 

within each gridsquare. This data can be exported to other programs such as Excel or 

Matlab for further analysis.   

 

Circle ROI 

The Circle Region of Interest (ROI) 

tool can also be used to gather data in specific 

locations on the image.  Several Circle ROI’s 

can be made to radiate from a central point.  

This is convenient when investigating the 

radial symmetry of the radioactive tracer.  The 

data attained from individual Circle ROI’s 

can be exported to Excel and processed further. 

Figure 4.  Grid overlay on 
autoradiogram 

Figure 5.  Circle ROI overlay on 
autoradiogram 



 9

Line Profile 

Linear characterization of counts 

can be done using the Line Profile Tool.  

Upon clicking on the Line Profile tool 

icon, the user can draw a line of desired 

length along the image and obtain counts 

information along this line.  The Beta 

Vision + software measures the counts 

within a 1 mm width at 0.02 mm intervals 

 along the drawn line.  Alternatively, there is another tool available which will measure 

the counts along a line.  This PolyLine tool, however, allows the user to adjust the width 

of the area being analyzed.  These line profile tools are useful for investigating linear 

distribution of isotope in the sample.   

 

Tracing 

 Spatial correspondence to the actual sample is important in order to determine the 

validity of the data.  An optical image can be acquired either prior to, or after 

radioimaging.  This is done by shining an LED light on the sample to obtain an optical 

density image of the sample.  This image is spatially aligned with the autoradiogram 

because they are both acquired with the same camera without moving the stage or the 

slide.  With the standard package Betavision+ software, one can not directly overlay an 

optical image with an autoradiographic image.  However, using the tracing tools in the 

measurement toolbar, one can correlate the two images.  One can trace an ouline of the 

Figure 6.  Line Profile on 
autoradiogram 
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optical image in one window and then “unlink” the trace.  After this, one can select the 

autoradiograph, and the trace will transfer to the other image and be spatially 

representative of the sample in this image.  This is essential for determining the location 

of isotope in a tissue sample. 

 

 

 

Previous Applications 

 The MicroImager is a versatile imaging modality that has been used for a wide 

array of investigations.  Salin et al. (2000) has used the MicroImager to quantitatively 

analyze the expression of two mRNA species using double isotope in situ hybridization 

(8).  They labeled one oligonucleotide with 3H and another with 35S.  Their results 

indicate the MicroImager is capable of accurately discriminating between two different 

isotopes when used to investigate mRNA expression. 

 In a different study, Salin et al. (2002) applied the MicroImager to conduct a 

microarray investigation using 3H and 35S.  This study confirmed the high dynamic range 

and high resolution of the MicroImager are ideal for high density microarray analysis (9). 

Figure 7.  An optical image of rat subcutaneous tissue (left) and the 
[3H]dexamethasone autoradiogram (right) with a manual trace of the optical image 
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Our Applications 

The investigations conducted in this study evaluate transport characteristics of 

[3H]dexamethasone in rat subcutaneous tissue.  Several experiments were done to 

determine the elimination constant and diffusion coefficient of dexamethasone in tissue.  

Different methods were investigated that can be applied to different tissue types in the 

future.  The high speed and high resolution of the MicroImager were critical for the 

success of these investigations.  
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Chapter Two 
 

Distribution of [3H]Dexamethasone in Rat Subcutaneous Tissue After Delivery 
from Osmotic Pumps 

 
Introduction 

 

Several recent reports suggest that controlled local release of dexamethasone may 

be useful for preventing inflammation around an implantable glucose sensor (10-12). 

This decrease in inflammation is expected to increase glucose sensor function and 

lifetime. Local drug delivery may be achieved using biodegradable polymer implants 

(13), hydrogels (14) and osmotic pumps (15).  Local delivery of dexamethasone would 

permit high interstitial drug concentrations at the site of glucose sensor implantation 

without producing high systemic drug levels.  

 For successful local treatment, dexamethasone must be released and penetrate 

through the tissue surrounding the implanted glucose sensor. Additionally, the 

concentration of dexamethasone in the subcutaneous tissue surrounding the implanted 

glucose sensor must be high enough to prevent inflammation to an implant. In a previous 

study using dexamethasone to suppress inflammation to an implant, local distribution of 

the drug in subcutaneous tissue was not determined (10). Although dexamethasone is a 

commonly used anti-inflammatory agent, its local concentration, diffusion coefficient and 

rate of elimination have not been reported following subcutaneous release. The ability of 

dexamethasone to penetrate subcutaneous tissue can be measured and quantified by 
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comparison to mathematical models (13). This method allows a reliable estimate of the 

drug concentration in the tissue near the implanted glucose sensor.  

 Experiments were set up to examine the controlled delivery of dexamethasone in 

normal rat subcutaneous tissue in order to develop a fundamental understanding of how 

the drug is transported in the subcutaneous tissue.  Because the efficacy of controlled 

interstitial delivery depends on the distance the drug can penetrate into the tissue 

surrounding the implantable glucose sensor, [3H]dexamethasone was delivered from 

osmotic pumps that were implanted into the subcutaneous tissue of rats. Digital 

autoradiographic imaging was used to quantify the spatial distribution of radioactivity in 

the subcutaneous tissue at 6 hr, 24 hr and 60 hr after subcutaneous implantation. We 

investigated both the extent of penetration of dexamethasone and the effectiveness of 

simple transport models for quantification of penetration. From this quantification, the 

diffusion coefficient of dexamethasone in subcutaneous tissue and the rate of elimination 

of dexamethasone from the subcutaneous tissue were determined. This information is 

necessary for the future development of an optimal local delivery system of 

dexamethasone to reduce the inflammatory response and enhance in vivo sensor function 

and lifetime. 

 
Materials and Methods 

Materials 

 [3H]dexamethasone (392.46 MW), specifically [1,2,4,6,7-3H]dexamethasone, 

was obtained from Amersham Biosciences Corp. (Piscataway, NJ). The specific activity 
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was 88.0 Ci/mmol. Alzet osmotic pumps (1003D model) were obtained from Durect 

Corp. (Cupertino, CA). 

 

Preparation of Osmotic Pumps 

A solution of [3H]dexamethasone and sterile 0.9% (w/v) saline was loaded into 

the osmotic pumps (total volume 114 µl) using the protocol provided by the 

manufacturer. Each pump contained a total activity of 127 µCi. The pumps provided a 

controlled delivery at a rate of 1.0 µL/hr. To prevent the pump from causing a tissue 

reaction at the site of drug delivery, drug delivery was achieved via a 4 cm length of 

polyethylene tubing connected to the body of the pump. 

 

Subcutaneous Implantation 

Six male Sprague Dawley rats (Harlan, Indianapolis, IN, 375-399 g) were used 

for our studies. The rats were initially anesthetized by placing each rat in an induction 

chamber filled with a 5% mixture of isoflurane in oxygen. During surgery anesthetization 

of the rats was maintained using a 2.5% mixture of isoflurane in oxygen. Two pumps 

containing radiolabeled dexamethasone were implanted subcutaneously on either side of 

the shoulders of the rat. A 3-4 cm incision was made between the shoulder blades. A 

hemostat was inserted into the incision on the lateral aspect. By opening and closing the 

jaws of the hemostat a pocket in the subcutaneous tissue just large enough for the pump 

was created. A tunnel to insert the tubing was made using a blunt probe. Excess bleeding 

was removed with sterile cotton gauze. The osmotic pump was implanted tubing end 

first. The wound was closed with 4-6 surgical staples. 
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Two rats were euthanized at 6 hr, 24 hr, and 60 hr after implantation using CO2. 

The tissue around the tip of the catheter was removed, quickly frozen on dry ice and 

stored at -80°C to immobilize the tracers within the tissue sample. The frozen tissue 

samples were mounted on a cryostat chuck and cut in 10 µm sections. Sections taken at 

every 200 µm were used for autoradiographic imaging. In addition, sections 50 µm from 

those sections used for autoradiographic imaging were collected for hematoxylin-eosin 

(H&E) staining. 

All animal experiments were performed under the approval of the University of 

South Florida Animal Care and Use Program. 

 

Autoradiographic Imaging and Analysis 

Autoradiographic images of the tissue sections were obtained using a recently 

developed real-time digital radioactivity-detection system, the MicroImager (Biospace 

Mesures, Paris, France) (16, 17). With the MicroImager, acquisition of events can be 

visualized in real-time on a monitor screen. Each event is individually analyzed by the 

computer. An event is a radioactivity decay event (16). The acquisition of events need 

only proceed for as long as is necessary to obtain a good image. In our case, 

autoradiographic images with between 380,715 to 686,390 events were acquired over 24 

to 45 hours to obtain good images. An optical image of the same tissue sample using the 

MicroImager was also obtained.  

The spatial variation in drug concentration from the osmotic pumps was 

quantified in the following way. The areas of subcutaneous tissue were identified on the 

optical image and then superimposed onto the corresponding autoradiographic image. 
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The concentration profiles in the subcutaneous tissue surrounding the catheter tip were 

determined directly from the autoradiographic images using Beta Vision+ software 

(Biospace Mesures, Paris, France). A line profile tool (1 mm wide) was used from the 

center of the catheter tip to the periphery of the subcutaneous tissue to obtain a number of 

events versus distance profile. The background number of events was subtracted from the 

number of events acquired. A number of events versus distance profiles were performed 

at 15° increments around the catheter tip on each section selected for analysis. The 

number of events at the catheter tip opening was calibrated to the known concentration of 

the agent in the pump to obtain concentration versus distance profiles at 6 hr, 24 hr and 

60 hr after implantation. 

 

Mathematical Model 

The concentration profiles of [3H]dexamethasone obtained using the MicroImager 

were compared to a mathematical model of drug diffusion and elimination. The model 

assumed: 1) constant drug concentration at the catheter tip/tissue interface; 2) first-order 

elimination of drug; 3) isotropic diffusional transport of drug through the subcutaneous 

tissue; 4) negligible fluid convection; and 5) spherical symmetry. The governing equation 

for the diffusion and elimination of a drug in subcutaneous tissue is: 
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       (eq 1) 

where C is the concentration of the drug in the subcutaneous tissue, D is the diffusion 

coefficient of the drug in subcutaneous tissue, r is the radial distance from the center of 

the catheter tip, k is the first-order elimination constant for the drug from the 
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subcutaneous tissue and t is the time after implantation. The boundary and initial 

conditions are: 

C = 0    at t = 0;  r ≥ a  

 C = C0    at t > 0; r = a    (eq 2) 

 C = 0    at t > 0;  r → ∞ 

where a is the radius of the catheter and C0 is the concentration at the catheter tip. The 

solution of eq 1 using the boundary and initial conditions of eq 2 is (22):  
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 (eq 3) 

Assuming steady state, and applying the two boundary conditions from eq 2, eq 1 

can be solved using a series solution. Alternatively, the steady state solution can also be 

found from eq 3 by applying the limit t→∞: 

⎥
⎦

⎤
⎢
⎣

⎡
−−=

D
kar

r
a

C
C )(exp

0

       (eq 4) 

The Brownian diffusion coefficient for dexamethasone in water was estimated 

from the Stokes-Einstein equation: 

As Nr
TD

πµ
κ

6
=         (eq 5) 

where rs = 0.657 M1/3 [x10-10 m] is the equivalent spherical solute radius, M is the 

molecular weight of dexamethasone (392.46 MW), κ is the ideal gas constant 8.314  

JK-1mol-1, T is temperature, µ dynamic viscosity and NA is Avogadro’s number. The 

calculated diffusion constant of dexamethasone in water at 37°C is D = 6.82x10-10 m2/s. 

The Stokes-Einstein equation underpredicts the actual diffusion coefficient for small 
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solutes of molecular weight less than several hundred, and overpredicts it for large 

solutes of molecular weight greater than several thousand (19).  

Measured concentration profiles for [3H]dexamethasone at t = 6 hrs, t = 24 hrs 

and t = 60 hrs were compared to the transient equation (eq 3). Typical concentration 

profiles predicted by eq 3 for two values of φ for various times are shown in figures 8a 

and 8b. The dimensionless parameter φ, where φ= Dka / , is analogous to the Thiele  

 

 

 

 

Figure 8.  Concentration versus distance profiles obtained by solving the transient 
diffusion and elimination equation (eq 3) for various times until steady state is 
reached are shown. Panels a and b demonstrate the dependence of the penetration 
depth with the modulus φ = k/Da . Panel a (φ = 0.2) has a larger penetration 
depth than panel b (φ = 1) 
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modulus obtained in analysis of heterogeneous catalysis (13) and is a predictor of the 

extent of drug penetration from the catheter tip. 

The radius of the catheter was approximated at 0.6 mm. Values for D and k were 

found in the following manner. First, initial estimates for D and k were found. For the 

initial estimate of D, the diffusion constant for dexamethasone in water was used, D = 

6.82x10-10 m2/s. This D was used in the steady-state solution of the diffusion equation (eq 

4) to find an initial estimate for k. k was found by using the Marquardt-Levenberg 

technique (20) with two independent variables, k and C0, to minimize the residual of the 

sum-squared-error between the predicted and experimental concentrations. Second, these 

initial estimates for the k and D values were then used as the starting points for the 

Marquardt-Levenberg algorithm using the transient equation (eq 3) with the k, D, and C0 

being the three independent variables over which the residual of the sum-squared-error 

between the predicted and experimental concentrations was to be minimized.  The initial 

value for C0 was always the maximum concentration in the measured data set.  The 

Marquardt-Levenberg algorithm efficiently searched over the k, D, and C0 space to find 

the point which best fits the data (21).  This technique was repeated to find k and D for 6 

hr, 24 hr, and 60 hr.  For each of these times, the calculations were repeated for the 

autoradiographic scans at various angles. The Marquardt-Levenberg algorithm was 

written in MATLAB. 
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Results 

Radiolabeled dexamethasone spread through the subcutaneous tissue after 

implantation of the osmotic pump (fig. 9). The local concentration of drug within the 

tissue was quantified from the autoradiographic images using the Beta Vision+ software. 

The Beta Vision+ software was used to construct the number of events as a function of 

distance profiles. An event is a radioactivity decay event (16). The number of events was 

greatest at the tip of the catheter. A high number of events on the autoradiographic image 

represents a high drug concentration. The number of events at the tip of the catheter can 

be calibrated to the known concentration in the pump. Hence, the local concentration of 

the drug in the subcutaneous tissue surrounding the catheter can be estimated by 

comparing the local number of 

events to the number of events at 

the catheter tip. In general, at 

distances more than a few 

millimeters from the catheter tip, 

the radioactivity was not 

significantly different from 

background. Figure 9 is 

representative of the 

autoradiographic images obtained 

using the MicroImager after 

implantation of the osmotic pumps 

for 6 hr, 24 hr, or 60 hr.  

Figure 9.  Autoradiographic image from rat 
subcutaneous tissue obtained using the MicroImager 
after implantation of an osmotic pump containing 
[3H]dexamethasone for 6 hrs. The location and 
direction of the catheter tip is shown by the arrow. 
Each red dot represents a radioactivity decay event. 
Lighter shades indicate higher activity. The bar 
represents a distance of 1 mm. 
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Concentration profiles obtained from the autoradiographic images of the 

subcutaneous tissue surrounding the catheter tip were examined and compared to the 

mathematical model of diffusion and first-order elimination to find the best estimates for 

D and k. 

The best estimates obtained for D and k are given in Table 1. A single-factor 

analysis of variance (ANOVA) indicated that there was no significant difference between 

the 6 hr and 24 hr data for k (p > 0.05) or for D (p > 0.05). There was not enough data at 

60 hr for comparison. The average, based on the 6 hr, 24 hr and 60 hr data, for the 

diffusion coefficient is D = 4.11 ± 1.77 x10-10 m2/s and for the elimination constant is k = 

3.65 ± 2.24 x10-5 s-1. 

Table 1. Estimated D and k 

The diffusion coefficient and elimination constant was determined by fitting a 
model of diffusion and elimination to the concentration profiles measured near the tip of 
a catheter attached to an osmotic pump. 

Time after 
implantation 

n k [1/s] x 10-5 D [m2/s] x 10-10 

6 hr 5 4.80 ± 2.56 3.63 ± 1.06 

24 hr 6 2.52 ± 1.65 4.92 ± 1.97 

60 hra 1 4.70 1.73 

a Only one scan was suitable for analysis in this case, as the subcutaneous tissue 
was very thin, allowing measurement without boundary effects only in one case. 

 

To quantify differences in drug penetration with time after release from the 

osmotic pump, the best fit concentration profiles were used to find the distance where the 

local concentration drops to 10% of its maximum value (figs. 10a, b, c). For the 6 hr case, 
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the majority of the drug was confined to a region within 2.22 ± 0.42 mm from the tip of 

the catheter (table 2). For the 24 and 60 hr cases, the majority of the drug was confined to 

a region within 2.70 ± 0.38 mm and 1.80 mm from the tip of the catheter, respectively. 

The penetration distance of [3H]dexamethasone increased from 6 hr to 24 hr, but 

decreased from 24 hr to 60 hr. 

  

 

Figure 10.  Typical concentration profiles in the vicinity of the catheter tip at (a) 
6 hr, (b) 24 hr and (c) 60 hr after implantation. Data from only one angle per 
time period is shown. Combining data from all. 9other scans would make the 
figure unreadable. The solid lines show the transient diffusion and elimination 
model (which reduces to the steady state model as t→∞) in which k, D and C0 
was varied to minimize the residual of the sum-squared-error between the 
predicted and experimental values. The ordinate represents the location of 
catheter tip/tissue interface 
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Table 2. Penetration distance of radioactivity from the tip of the catheter 

The penetration distance is the distance where the local concentration drops to 
10% of the concentration at the catheter tip. This radial distance was found using the best 
fit curve through the data and corresponds to the location where C/C0 = 0.1. The 
dimensionless parameter, φ= Dka / , determines the extent of drug penetration and was 
found using the corresponding k and D values in Table 1. 

Time after 
implantation 

Penetration 
Distance [mm] φ = Dka /  

6 hr 2.22±0.42 0.22 

24 hr 2.70±0.38 0.14 

60 hr 1.80a 0.31 

a See note on table 1. 

 

Discussion 

Radiolabeled dexamethasone was introduced into the subcutaneous tissue by 

implantation of osmotic pumps. There was constant delivery of the agent from the pump 

via an attached catheter. High concentrations of the agent were located near the tip of the 

catheter. The local distribution of the agent in the subcutaneous tissue surrounding the 

catheter tip was measured and analyzed. The distribution of the agent within the 

subcutaneous tissue near the catheter tip was consistent with the mathematical model of 

diffusion and first-order elimination (figs. 10a, b, c). The mathematical model was 

compared to the experimental data in order to obtain values for the diffusion coefficient 

D, and the elimination constant k at 6 hr, 24 hr and 60 hr after implantation. The 

experiment was terminated at the end of 60 hr as the concentration profile reached steady 

state at 60 hr (fig. 8a) (further discussion below). 
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The diffusion coefficient, D, of dexamethasone in subcutaneous tissue at 6 hr and 

24 hr after implantation was 3.63 ± 1.06 x10-10 m2/s and 4.92 ± 1.97 x10-10 m2/s, 

respectively. The 60 hr data suggests a D of 1.73 x10-10 m2/s. There was no significant 

difference between the 6 hr and 24 hr data for D (p > 0.05). A comparison with the 60 hr 

data was not made as the sample size was too small. Even though the concentration 

profile at 6 hr has not yet reached steady state (fig. 8a), the value found for D should not 

be different from that found for the 24 hr case which is very close to steady state. (Note 

that at 6 hr, φ = 0.22 (table 2) and fig. 8a shows concentration profiles for φ = 0.2 for 

various times.) The concentration profile at 60 hr has reached steady state (fig. 8a). D 

should have similar values at 6 hr, 24 hr and 60 hr because the best estimate for D and k 

for all cases was achieved using the transient diffusion and elimination equation (eq 3). 

Since the transient equation takes time into account, be it for a short time period or for a 

long time period, the D and k values for the same agent in the same tissue should be the 

same. D and k are assumed to be constants. As time becomes large, the transient equation 

(eq 3) reduces to the steady equation (eq 4). Hence, the average diffusion coefficient D = 

4.11 ± 1.77 x10-10 m2/s based on the 6 hr, 24 hr and 60 hr data, results in a reasonable 

value for dexamethasone in subcutaneous tissue. The diffusion coefficient of 

dexamethasone in subcutaneous tissue is slightly less than in water but slightly greater 

than in brain tissue (table 3). Our diffusion coefficient for dexamethasone in rat 

subcutaneous tissue is slightly greater than the diffusion coefficient of sodium fluorescein 

(molecular weight 376) in rat subcutaneous tissue D = 2.35 ± 0.24 x 10-10 m2/s (24). 

Sodium fluorescein has a similar molecular weight as dexamethasone (molecular weight 

392). 
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Table 3. Diffusion coefficients for dexamethasone in various media 
 

The diffusion coefficient of dexamethasone in subcutaneous tissue was compared 
to the diffusion coefficient for dexamethasone in other media from the literature. 

Medium D [m2/s] Reference 

water 6.82 x 10-10 Stokes-Einstein equation 

subcutaneous tissue 4.11±1.77 x 10-10 This study 

brain tissue 2.0 x 10-10 Saltzman and Radomsky, 1991 (22) 

cellulose acetate membrane 3.15 x 10-11a Barry and Brace, 1977 (23) 

a Interpolated for 37°C 

The elimination constant, k, at 6 hr and 24 hr was 4.80 ± 2.56 x10-5 s-1 and 2.52 ± 

1.65 x10-5 s-1, respectively. The 60 hr data suggests a k of 4.70 x10-5 s-1. There was no 

significant difference between the 6 hr and 24 hr data for k (p > 0.05). A comparison with 

the 60 hr data was not made as the sample size was too small. The average, based on the 

6 hr, 24 hr and 60 hr data, for the elimination constant is k = 3.65 ± 2.24 x10-5 s-1. This 

value is quite reasonable despite the fact that the 6 hr case has not yet reached steady 

state for the reasons given in the paragraph above. Table 4 shows values for k of other 

agents in subcutaneous tissue. Our elimination constant for dexamethasone in rat 

subcutaneous tissue is slightly greater than that of dexamethasone in rat brain 

k = 1.19 x 10-5 s-1 (26). 

Although only two rats were used for each time point, we did not observe any 

variation between the two rats as they were the same age, sex, size, and strain and were 

all from the same vendor. A detailed study would be useful to demonstrate that the age, 

sex, size, strain and vendor have no significant effect on the values of D and k. However, 

this extensive work is beyond the scope of this paper. 
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Table 4. Elimination constants of various agents in subcutaneous tissue 

The elimination constant of dexamethasone in subcutaneous tissue was compared 
to the elimination constant of other agents in subcutaneous tissue from the literature. 

Agent k [1/s] Reference 

RSAa 6.42±1.19 x 10-5 Kim and Burgess (2002) (16) 

Dexamethasone 3.65±2.24 x10-5 This study 

VEGFb 3.50±1.03 x 10-5 Kim and Burgess (2002) (16) 
a rat serum albumin 
b vascular endothelial growth factor 
 

Dexamethasone penetrated an average distance of 2.22 ± 0.42 mm at 6 hr, 2.70 ± 

0.38 mm at 24 hr and 1.80 mm at 60 hr into the subcutaneous tissue near the implant 

(table 2). The difference between the penetration distances at 6 hr and 24 hr is most likely 

due to the fact that at 6 hr steady state has not yet been reached and hence, the furthest 

extent of drug penetration has not yet been reached (fig. 8a). The reduction in penetration 

distance at 60 hr compared to that at 24 hr may be explained from an analysis of the H&E 

stained slides. Histopathological evaluation of the slides revealed that there were more 

inflammatory cells at 60 hr than for 24 hr after implantation. It should be noted that the 

actual amount of [3H]dexamethsone used for this study was very small. This amount of 

[3H]dexamethasone after 60 hr of delivery resulted in slightly less than the maximum 

amount of radioactivity allowed in an animal for normal disposal. This small amount of 

dexamethasone would not have had a significant effect on the number of inflammatory 

cells. The number of inflammatory cells may have affected the transport characteristics. 

Kim et al. (25) also suggested that the body’s inflammatory response to local delivery 

devices located at a subcutaneous site may complicate drug release. 
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The average φ, based on the average values for D and k, is φ = 0.18.  Since D and 

k values for the same agent in the same tissue are assumed to be constants, then 

φ= Dka /  must also be a constant. Although the modulus φ determines the extent of 

drug penetration, the penetration distance for a given φ may be different at different times 

(figs. 8a, b). The maximum extent of drug penetration is not reached until steady state is 

reached. At times prior to steady state, the penetration distance is less then maximum. In 

general, the penetration distance increases as φ decreases (figs. 8a, b) because the rate of 

diffusion is greater than the rate of elimination. The modulus φ is useful in predicting the 

extent of drug penetration between different drugs at steady state. 

The model also assumed isotropic 

diffusional transport of drug through the 

subcutaneous tissue. Figure 11 shows a typical 

H&E stained tissue section from our study. 

The subcutaneous tissue was homogeneous. 

Hence, the assumption that the tissue would 

be isotropic for diffusional transport seems 

reasonable. 

Our model of drug distribution within 

the subcutaneous tissue assumes that drug 

transport occurs predominately by diffusion.  

The Peclet number (Pe = va/D), where v is the velocity of the dexamethasone solution in 

the tissue and a is the radius of the catheter, was 0.18. Hence, this assumption is 

acceptable. 

Figure 11.  A typical H&E stained 
tissue section from our study. The bar 
represents a distance of 100 µm   
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The model assumed spherical symmetry, although the delivery of drug was from a 

pipe. As the model was consistent with the data (figs. 10a, b, c), this assumption appears 

to be acceptable. 

From other experiments in our laboratory, we have determined the minimum 

dosage of dexamethasone that would prevent inflammation to a glucose sensor implanted 

subcutaneously. This dosage was found to be 0.12 mg per day (unpublished data). 

Knowledge of this minimum value along with the values of the diffusion coefficient and 

elimination constant found in this study, one can design an effective and efficient local 

drug delivery system around any implantable glucose sensor or implant whose function is 

affected by inflammation.  
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Chapter Three  

 
Diffusion of [3H]Dexamethasone in Rat Subcutaneous Slices after Injection 

Measured by Digital Autoradiography 
 

Introduction 

Many transport experiments are based on the injection of a finite volume of 

substance into the tissue of interest which then diffuses away. Some examples of 

injection based diffusion experiments are: the determination of the diffusion coefficient 

of small molecules in the brain (27); the determination of the diffusion coefficient of 

growth factors in the brain (28); and the determination of the diffusion coefficient of 

drugs in tumors (29, 30). Knowledge of the diffusion of a substance of interest in the 

tissue of interest is important for treatment efficacy. In this paper, we will derive a 

method in which the diffusion coefficient of an injected substance in tissue can be 

determined in a relatively simple manner. We will illustrate this technique by finding the 

diffusion coefficient of [3H]dexamethasone in rat subcutaneous slices after an injection. 

 

Materials and Methods 

Materials 

[3H]dexamethasone (392.46 MW), specifically [1,2,4,6,7-3H]dexamethasone, was 

obtained from Amersham Biosciences Corp. (Piscataway, NJ). The specific activity was 

88.0 Ci/mmol.  
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Subcutaneous Injection 

Three male Sprague Dawley rats (Harlan, Indianapolis, IN, 375-399 g) were used 

for our studies. The rats were euthanized using CO2 prior to the experiment. 

The 20 minute experiment: Three 40 µl solutions of [3H]dexamethasone in sterile 

0.9% (w/v) saline were used. Injections were made into subcutaneous tissue. Each 

solution contained a total activity of 0.65 µCi. The tissue around the injection site was 

removed and frozen on dry ice. The average time from injection to when the tissue froze, 

as measured using a surface thermometer (Mannix Testing & Measurement, Lynbrook, 

NY), was approximately 20 minutes after injection.  

The 157 second experiment: Three subcutaneous sections were harvested. Each 

section was injected with 40 µl solutions of [3H]dexamethasone in sterile 0.9% (w/v) 

saline and then frozen on dry ice. The average time from injection to when the tissue 

froze was approximately 157 seconds after injection.  

All tissue samples were then stored at -80°C to immobilize the tracers within the 

tissue sample. The frozen tissue samples were mounted on a cryostat chuck and cut in 10 

µm sections. Sections taken at every 200 µm were used for autoradiographic imaging.  

All animal experiments were performed under the approval of the University of 

South Florida Animal Care and Use Program. 

 

Autoradiographic Imaging and Analysis 

Autoradiographic images of the tissue sections were obtained using a real-time 

digital radioactivity-detection system, the MicroImager (Biospace Mesures, Paris, 

France) (16, 17). With the MicroImager, acquisition of events can be visualized in real-
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time on a monitor screen. The acquisition of events needs only to proceed for as long as 

is necessary to obtain a good image. In our case, autoradiographic images with between 

1,593,815 to 1,918,869 events were acquired over 71 h 32 min to 72 hr 43 min to obtain 

good images.  

The spatial variation in drug concentration from the injection was quantified as 

follows. A grid was placed over the autoradiographic image using the Beta Vision + 

software (Biospace Mesures, Paris, France) to determine the number of events in each 0.3 

x 0.33 mm grid area. The grid area that contained the highest number of events (or 

greatest radioactivity) was taken to be the center of the injection. The concentration 

profiles versus distance in the subcutaneous tissue surrounding the center of injection 

were determined directly from the autoradiographic images using the Beta Vision+ 

software (Biospace Mesures, Paris, France). A line profile tool (1 mm wide) was used 

from the center of the injection to the periphery of the subcutaneous tissue to obtain a 

number of events versus distance profile. The background number of events was 

subtracted from the number of events acquired. The number of events can be calibrated to 

concentration. 

Mathematical Model 

The concentration profiles of [3H]dexamethasone obtained using the MicroImager 

were compared to a mathematical model of drug diffusion. The model assumed 1) that 

the diffusing substance is deposited within a sphere of radius a at t = 0; 2) isotropic 

diffusional transport of drug through the subcutaneous tissue; 3) negligible fluid 

convection; and 4) negligible elimination. Assuming that the elimination is negligible is 

justified as tissue samples were obtained from a sacrificed rat. That is, the absence of 
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blood flow eliminates most clearance mechanisms normally present in vivo (28). Hence, 

the governing equation for diffusion of a drug in the subcutaneous tissue is: 
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where C is the concentration of the drug in subcutaneous tissue, D is the diffusion 

coefficient of the drug in subcutaneous tissue, r is the radial distance from the center of 

the injection and t is the average time from injection to when the tissue froze. The initial 

concentration is Co in the sphere, 0 ≤ r < a and zero for r > a. The boundary conditions is 

C( ∞, t) = 0. The analytic solution for eq 6 using the above initial and boundary 

conditions is (18, 31): 
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where a is the radius of the sphere. 

If r >> a, then expression (eq 7) becomes (18): 
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where m = VCo = 4/3πa3Co, and V is the injected volume. 

If the radius of the sphere tends to zero, a→0, with m remaining constant (18): 
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 Equation 9 is the same solution as for the instantaneous point source in 3D (32). 

However, Nicholson (33) suggests that at measurement locations sufficiently far from the 

source, eq 9 (or eq 10) will provide a useful approximation. Moreover, Thorne et al. (28) 

suggest that when the injection time is very brief compared to the time of the subsequent 

diffusion measurements, the concentration can be described by eq 9 (or eq 10). 

Typical concentration profiles for 

[3H]dexamethasone predicted by eq 10 at t 

= 2.5 min, t = 5 min, t = 10 min, and t = 20 

min are shown in Figure 12.  

The radius of the injected spherical 

volume was 2.1 mm. For eq 5 to be a 

useful approximation, data away from the 

source was used (33). For the 20 min experiment, 

a portion of the concentration profile from the 

tail-end was used in the mathematical model. 

This portion ranged from the tail-end to a 

position 3 mm towards the source from the first zero event value. For the 157 s 

experiment, first zero event value could not be used as reference point. Instead, a location 

on the profile where the profile “bends” from a steep curve to a plateau region was used 

as a reference.  This “bend” was defined to occur at a position where the number of 

events was 100. Therefore, the portion of the concentration profile used in the 

mathematical model was from the tail-end to a distance 0.7 mm towards the source after 

the “bend”. The reason that the first zero event value could not be used as a reference 

Figure 12.  Concentration profiles for 
diffusion when a concentrated bolus 
of solute is deposited within a small 
region. The curves shown are a 
realization of eq 5 with  
D = 4.11 x 10-10 m2/s, a = 0.21 cm, 
and t = 2.5 min, 5 min, 10 min, and 
20 min
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point will be discussed further in the discussion section below. The value for D was 

found in an iterative manner. First, an initial estimate for D was needed. The diffusion 

constant for dexamethasone in water was used, D = 6.82x10-10 m2/s (34). This initial 

estimate for D was then used as the starting points for the Marquardt-Levenberg 

algorithm (20) with the D, and C0 being the two independent variables over which the 

residual of the sum-squared-error between the predicted and experimental concentrations 

was to be minimized.  The initial value for C0 was always the maximum concentration in 

the measured data set.  The Marquardt-Levenberg algorithm efficiently searched over the 

D, and C0 space to find the point which best fits the data (21).  This technique was 

repeated to find D for 157 s and 20 min.  For each of these times, the calculations were 

repeated for the autoradiographic scans at various angles. The Marquardt-Levenberg 

algorithm was written in MATLAB. 

 

Results 

Radiolabeled dexamethasone spread through the subcutaneous tissue after 

injection. Figure 13 is representative of the autoradiographic images obtained using the 

MicroImager after injection of a radiolabeled drug. The local concentration of drug 

within the tissue was quantified from the autoradiographic images using the Beta Vision+ 

software. The Beta Vision+ software was used to construct the number of events as a 

function of distance profiles. Figure 14 is representative of the number of events versus 

distance profiles obtained from the autoradiographic images. An event is a radioactivity 

decay event (16). The number of events was greatest at the center of the injection. A high 

number of events on the autoradiographic image represent a high drug concentration. The 
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number of events can be calibrated to concentration to obtain concentration versus 

distance profiles. 

 

 

 

 

 

 
 
 
 
 
 
 

a b

Figure 13. Image a shows a typical autoradiographic image obtained using the 
MicroImager 157 s after injection of [3H]dexamethasone. Image b shows an 
autoradiographic image 20 min after injection of [3H]dexamethasone. Red indicates 
higher activity than green. The bar represents a distance of 2 mm 

Figure 14.   Typical number of events versus distance profiles obtained using the 
MicroImager at (a) 157 s and (b) 20 min after implantation. Data from only one 
scan is shown. Combining data from all other scans would make the figure 
unreadable. The ordinate represents the location of the center of injection 
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For the 20 min case, the concentration profile from the tail-end to 3 mm towards 

the source was compared to the mathematical model of diffusion to find the best estimate 

for D. For the 157 s case, the concentration profile from 0.7 mm towards the source from 

the “bend” to the tail-end was compared to the mathematical model of diffusion to find 

the best estimate for D. The best estimates obtained for D are given in Table 5.  

Table 5. Estimated diffusion coefficient 

The diffusion coefficient was determined by fitting a model of diffusion to the 
concentration profiles from the tail-end of the profiles. 

Time after Injection n D [m2/s] x 10-10 

157 s 18 2.68 ± 1.08 

20 min 22 4.01 ± 2.01 

 

Discussion 

When a substance is injected into tissue in a period that is effectively 

instantaneous it may exhibit two distinct behaviors: 1) form a fluid-filled cavity; or 2) 

infiltrate the extracellular space of the tissue (33).  The subsequent diffusion from each 

case can be described by its own set of expressions (33). In this study, we have assumed 

that the substance does not form a cavity but infiltrates the extracellular space and then 

diffuses away and hence, have used the appropriate solutions and their approximations 

for this case.  

The approximations to the case where substance infiltrates the extracellular space 

lead to eq 10. The two criteria for eq 10 to provide a useful approximation are: 1) that the 

measurement locations be sufficiently far from the source (33); and 2) that the injection 
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time is very brief compared to the time of the subsequent diffusion measurements (28). 

To comply with criteria 1, the data near the tail-end of the concentration profiles was 

used as described below. The measurement distance was kept as small as possible while 

large enough to provide meaningful data. To investigate criteria 2, two diffusion times 

were chosen t = 157 s and t = 20 min. 

For our study, radiolabeled dexamethasone was introduced into the subcutaneous 

tissue by injection. Highest concentrations of the agent were assumed to be the location 

of the center of the injection. This assumption is supported by our theoretical curves 

(Figure 12). The local distribution of the agent in the subcutaneous tissue surrounding the 

center of injection was measured (Figure 14).  

The local distribution of the agent at the tail end of the distribution was compared 

to the mathematical model of diffusion. For the 20 min case, the mathematical model was 

compared to the local distribution from the tail-end to a distance 3 mm towards the center 

of the injection from the first zero event value.  For the 157s case, the mathematical 

model was compared to the local distribution from the tail-end to a distance 0.7 mm 

towards the center of the injection from a “bend”.  The concentration profile “bends” 

from a steep curve to a plateau region.  The “bend” was defined to be the position where 

the number of events had a value of 100 (see Figure 14a). The plateau region was defined 

as having a relatively flat profile where the events values where between 0 and 100.  The 

position of the first zero event value could not be used as a reference as the plateau region 

varied greatly in length. Hence, it would not be possible to set a specified measurement 

distance from the first zero event value. A plateau region was not seen with the 20 min 

data. 
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The distribution of the agent within the subcutaneous tissue at the tail-end of the 

concentration profile was consistent with the mathematical model of diffusion (Figure 

15). The mathematical model was compared to the experimental data in order to obtain 

values for the diffusion coefficient D at 157s and 20 min after injection.  

 

 
 
 
 
 
 
 

The diffusion coefficient, D, of dexamethasone in subcutaneous tissue slices at 

157 s and 20 min after injection was 2.69 ± 1.08 x 10-10 m2/s and 4.01 ± 2.01 x 10-10 m2/s, 

respectively.  

As mentioned above, there were two criteria for eq 10 to provide a useful 

approximation. To comply with criteria 1, the data near the tail-end of the concentration 

profiles was used. However for a few of the concentration profiles for the t = 157 s case, 

using data 0.7 mm towards the source from the “bend” meant using all the data as the 

profile was very steep (Figure 15a). Hence, criteria 1 for t = 157 s could not be complied 

with. For the 20 min case, there was an offset ranging from 0.77 mm to 2.25 mm from the 

Figure 15. Concentration profiles at the tail-end at (a) 157 s and (b) 20 min 
after injection. Data from only one angle per time period is shown. 
Combining data from all other scans would make the figure unreadable. 
The solid lines show the diffusion model in which D and C0 was varied to 
minimize the residual of the sum-squared-error between the predicted and 
experimental values 
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center of the injection. Although this offset is not large, it may be sufficient enough to 

comply with criteria 1. In addition, data in Nicholson (33) show that the accuracy of eq 

10, at measurement distances close to the source, increases with time. 

Criteria 2 required that the injection time be very brief compared to the time of 

the subsequent diffusion measurements. Although the injection time was not measured, 

the injection of 40 µl of substance was very brief.  The two diffusion times were t = 157 s 

and t = 20 min. The t = 157 s concentration profile had a plateau region that was not seen 

in the t = 20 min concentration profile. It could be that at t = 157 s, the injected substance 

formed both a fluid-filled cavity and infiltrated the extracellular space to some degree 

producing the plateau region. If this is the case, then eq 10 would not be the appropriate 

expression. This is a phenomenon that needs to be investigated further and is beyond the 

scope of this study. The concentration profile at t = 20 min is similar in shape to the 

theoretical curves realized by using eq 10 (Figure 12), whereas the concentration profile 

for the t = 157 s is not similar due to the plateau region. Hence, we will assume that for t 

= 157 s the diffusion time was not long enough and that eq 5 does not provide a useful 

approximation in this case.  A diffusion time of t = 20 min probably provides an adequate 

diffusion time and hence, eq 10 does provide a useful approximation.  

Therefore, the best estimate for the diffusion coefficient of dexamethasone in 

subcutaneous tissue slices based on the t = 20 min data is D = 4.01 ± 2.01 x10-10 m2/s. 

We previously found a diffusion coefficient, D = 4.11 ± 1.77 x10-10 m2/s, for 

dexamethasone in subcutaneous tissue using different experimental and mathematical 

techniques (34).  The diffusion coefficient was determined by fitting a model of diffusion 

and elimination to the concentration profiles measured near the tip of a catheter attached 
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to an osmotic pump containing [3H]dexamethasone that was implanted in rats for 6 h, 24 

h and 60 h (34). These values for D are very similar suggesting that eq 10 provide an 

adequate approximation as long as the two criteria are met.  

Our mathematical model assumed that the diffusing substance was deposited 

within a sphere at t = 0. Figure 13a shows the shape of the injection at 157 s is relatively 

spherical. Hence, the assumption that the injected volume at t = 0 was spherical is 

acceptable.  

The mathematical model also assumed isotropic diffusional transport of drug 

through the subcutaneous tissue. Figure 13b shows the diffusion of the drug at t = 20 min 

and diffusion is relatively spherical away from the site of injection. Hence, our 

assumption of isotropic diffusional transport is reasonable. 

The elimination constant was assumed to be negligible as the injections were 

made in either harvested subcutaneous tissue or in a euthenized rat so that the normal 

clearance processes that depend on circulation of blood was eliminated (33). In vivo 

concentration distributions are more complex and neither diffusion nor elimination can be 

neglected. 

In conclusion, eq 10 provides an adequate approximation for measurement 

locations sufficiently far from the source and for diffusion times much longer than the 

injection time (28, 33). The main advantages of this injection technique to determine an 

approximation for the diffusion coefficient are that it is relatively simple technique, and 

can be applied to any radiolabeled substance of interest injected into any tissue of 

interest. 
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Chapter Four 

 
Summary and Future Work 

MicroImager 

  The MicroImager is a highly sensitive autoradiographic imaging modality 

open to various applications.  While the machine is expensive, the cost of obtaining each 

image is low and can be done quickly.  A tissue sample is placed on a slide and covered 

with a sheet of scintillating paper.  This is placed in the machine then autoradiography is 

performed.  The PC associated system stores the data digitally and is easily accessible for 

storage and processing.  This autoradiographic machine can also be used to evaluate the 

distribution of two different isotopes in a sample. 

 

Osmotic Pump 

 Tritium labeled dexamethasone was placed within osmotic pumps and implanted 

into several Sprague Dawley rats.  The implants were removed at several time intervals 

and surrounding tissue was obtained for evaluation.  Samples were imaged using the 

MicroImager and spatial distribution of the radiolabeled dexamethasone was obtained.  

Mathematical models were created and best fit to experimental results.  Using curve 

fitting, the diffusion coefficient and elimination constant of dexamethasone in 

subcutaneous tissue were obtained.   
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Injection Study 

 Tritium labeled dexamethasone was injected into rat subcutaneous tissue to 

determine its behavior.  After injection, the tissue was explanted and frozen very quickly.  

Two time points were tested as 2.5 min and 20 min.  Mathematical models were obtained 

and matched to the experimental distribution curves.  This study developed a new method 

to obtain the diffusion coefficient of dexamethasone in any rat subcutaneous tissue.  This 

method can also be applied to different drugs in different tissues.   

 

Possible Future Work 

The MicroImager is a versatile imaging modality with many possible applications.  

Building on this research, experiments can go forward to evaluate receptor-ligand 

interactions in the brain.  For example, [3H]nicotine can be used to label nicotine 

receptors in the brains of adult and adolescent rats to investigate adolescent vulnerability 

to nicotine addiction ( Moussy and Wecker, personal communication).  In addition, future 

work can also investigate the dual imaging capability of this machine.  Some work has 

already been done investigating this capability.  [3H]glucose and 14[C]dextran were used 

to investigate the permeability of blood vessels (not published).  While minimal results 

were obtained, this study will be useful in preparing future investigations using dual 

labeling.  Future work may include using radiolabeled drugs for the treatment of brain 

tumors while simultaneously monitoring the metabolism at this site using radiolabeled 

glucose. 
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