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A B S T R A C T

The Southern Ocean is the largest high-nutrient low-chlorophyll environment in the global ocean, and represents
an important source of intermediate and deep waters to lower latitudes. Constraining Southern Ocean trace
metal biogeochemical cycling is therefore important not just for understanding biological productivity and
carbon cycling regionally, but also for understanding trace metal distributions throughout the lower latitude
oceans. We present dissolved Fe, Ni, Cu, Zn, Cd, Pb and macronutrient concentrations in the Indian and Pacific
sectors of the Southern Ocean from the Antarctic Circumnavigation Expedition (austral summer 2016-17), which
included the first opportunities to study trace metal cycling at the Mertz Glacier Polynya and the Balleny Islands,
as well as two meridional cross-frontal transects. Dissolved Ni, Cu, Zn, Cd and macronutrient concentrations
show similar or greater variability latitudinally within surface waters than vertically through the water column,
reflecting the combined influence of circulation and biological drawdown in shaping the distributions of nu-
trient-type elements in the Southern Ocean. Slopes of Cu-Si(OH)4 and Cd-PO4 increase from the Polar Frontal
Zone to south of the Southern ACC Boundary (Cu-Si(OH)4) and from the Subantarctic Zone to the Antarctic Zone
(Cd-PO4). Latitudinal differences are also observed for Ni-Si(OH)4 and Zn-PO4, with distinct Subantarctic Zone
trends relative to those south of the Polar Front. Similarities between our Zn-Si(OH)4 and Cd-PO4 correlations
and global compilations reflect the importance of exported Southern Ocean waters in setting these metal-
macronutrient couples globally. Distinct Ni-macronutrient correlations are observed in this dataset relative to
the global ocean, which supports a distinct cycling of Ni in the Southern Ocean compared to other basins.
Concentrations of Pb are among the lowest observed in the global ocean; however, a local maximum is seen
along the density level corresponding with Antarctic Intermediate Water. Concentrations within this isopycnal
decrease with increasing latitude, which can be explained by decreasing atmospheric Pb input to more recently
subducted waters.

Substantial biological uptake of metals and macronutrients is observed at the Mertz Glacier Polynya. Here,
inferred metal:macronutrient uptake ratios are comparable to those found in the Amundsen Sea Polynya, in
Southern Ocean phytoplankton, and to metal-macronutrient correlations in our data set as a whole, highlighting
the potential of Southern Ocean polynyas as natural systems for trace metal uptake and export studies. The
Balleny Islands are a source of Fe to surface waters and the islands also appear to influence distributions of Zn,
Cu and macronutrients, which may reflect the combined impact of Fe supply on biological uptake, mixing, and
scavenging in deeper waters. The Kerguelen Plateau is also a source of Fe, as previously identified. Throughout
our dataset, the ferricline is found deeper than the nitricline, in agreement with existing data and indicating that
Fe is less easily entrained into the surface ocean than NO3. Additionally, Fe:NO3 ratios in most samples
throughout the water column are Fe-limiting (<0.01 mmol mol−1). Therefore deep mixing, identified pre-
viously as the main Fe source to much of the Southern Ocean, would ultimately act to maintain Fe limitation.
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1. Introduction

Surface waters of the Southern Ocean are characterized by high
macronutrient concentrations (Garcia et al., 2014), partly due to the
upwelling of nutrient-rich waters around Antarctica and partly to Fe, Si
and light (co-)limitation leading to incomplete utilisation of nutrients in
surface waters, denoted as a high-nutrient, low-chlorophyll (HNLC)
state (e.g. Martin et al., 1990a; Coale et al., 2004; Boyd et al., 2007 and
references therein; Hoffmann et al., 2008). The Southern Ocean is the
largest Fe-limited, HNLC region in the world ocean (Moore et al., 2001,
2013; Mahowald et al., 2018). Changes in the supply of atmospheric Fe
to this region over glacial-interglacial cycles, and even at millennial
timescales, have been suggested to drive fundamental changes in the
biological pump and carbon cycle in this region (Martin, 1990;
Martínez-García et al., 2011; Jaccard et al., 2013), motivating much
work focusing on the details of Fe cycling in the Southern Ocean.
However, uncertainties remain regarding Fe inputs to the region and
the relative role of upwelling supply versus episodic and localized Fe
sources in driving biological export of carbon and, subsequently, the
region's importance in the global carbon cycle (e.g. Boyd et al., 2007;
Blain et al., 2007; Pollard et al., 2009; Lancelot et al., 2009; Lannuzel
et al., 2011a; Tagliabue et al., 2014; Ardyna et al., 2019).

The Southern Ocean also plays an important role in driving biolo-
gical productivity and biogeochemical cycling throughout the whole
ocean system, with biological and physical surface processes in the
Southern Ocean setting the characteristics of northward-moving water
masses. The subduction of nutrient-rich Southern Ocean surface waters
provides an important source of macronutrients to lower-latitude
thermocline waters (e.g. Sarmiento et al., 2004). Additionally, differ-
ential biological uptake of trace metals and nutrients in different re-
gions of the Southern Ocean, coupled with physical forcings, acts to
partition elements between different northward-moving water masses,
leaving intermediate waters with macronutrient:macronutrient, trace
metal:macronutrient and isotope ratios that are distinct from deep
waters (e.g. Sigman et al., 2000; Sarmiento et al., 2004; de Souza et al.,
2012; Abouchami et al., 2014; Vance et al., 2017; Xie et al., 2017;
Sieber et al., 2019a). Such processes have recently been shown to be
pivotal in shaping the global Zn-Si relationship, as well as shaping the
vertical profiles of dissolved Zn throughout the oceans (Vance et al.,
2017; de Souza et al., 2018; Roshan et al., 2018; Weber et al., 2018).
Similarly, the Southern Ocean plays an important role in driving the
strong global correlation between Cd and PO4 (Frew and Hunter, 1992;
Frew, 1995; Baars et al., 2014; Quay et al., 2015; Middag et al., 2018;
Sieber et al., 2019b), which has been explained by Fe-limitation in the
Southern Ocean resulting in elevated uptake of Cd relative to PO4

(Cullen et al., 2003; Quay et al., 2015). The importance of the Southern
Ocean in driving nutrient and metal distributions, and the role of Fe in
influencing both patterns of primary productivity and uptake of other
trace metals and macronutrients in the Southern Ocean (Franck et al.,
2000; Cullen et al., 2003; Twining et al., 2004; Boyd et al., 2007),
highlight the need to better understand trace metal delivery, biogeo-
chemical cycling, and export within the Southern Ocean.

Broadly speaking, the Southern Ocean can be subdivided into three
zonal sectors based on connections to other major ocean basins – the
Atlantic, Indian and Pacific sectors. Among these sectors, the Atlantic
sector is the best characterized for trace metal distributions thanks to
the efforts of the GEOTRACES program (Schlitzer et al., 2018) and
other expeditions. Additional regional studies have investigated trace
metal distributions and cycling in areas of the Indian sector of the
Southern Ocean (e.g. seasonal ice zones near the Antarctic Continent:
SIPEX and SIPEX-2; the Kerguelen Plateau: KEOPS and KEOPS-2;
Crozet: CROZEX; Heard & Macdonald Islands: HEOBI) and in mer-
idional transects from South Africa (GEOTRACES section GIPY05;
CLIVAR section I06S), Australia (GEOTRACES section GIPY06) and the
Indian Ocean (CLIVAR section I08S/I09N) to the Antarctic continent.
Data from these and similar studies have helped to build an

understanding of Southern Ocean trace metal distributions and the role
of the Southern Ocean in global distributions of trace metals and their
isotopes (e.g. Abouchami et al., 2014; Baars et al., 2014; Echegoyen
et al., 2014; Roshan et al., 2018; Barrett et al., 2018) as well as an
understanding of the impacts of regional features, especially localized
lithogenic iron sources, on biological productivity and the bio-
geochemistry of other trace metals (e.g. Blain et al., 2001; Bakker et al.,
2007; Lannuzel et al., 2011a; Grand et al., 2015; Sherrell et al., 2015;
Ardyna et al., 2019; Holmes et al., 2019; Wang et al., 2019). However,
the Pacific sector generally remains under-represented in trace metal
data coverage of the Southern Ocean (Schlitzer et al., 2018).

Here, we present dissolved macronutrient (NO3, PO4, Si(OH)4), Fe,
Ni, Cu, Zn, Cd and Pb data covering the Indian and Pacific sectors of the
Southern Ocean in the Austral summer of 2016–2017 from Legs 1 and 2
of the Antarctic Circumnavigation Expedition (ACE) (Walton and
Thomas, 2018). This expedition, which sailed Cape Town – Hobart (Leg
1), Hobart – Punta Arenas (Leg 2) and Punta Arenas – Cape Town (Leg
3), provided the unique opportunity for near-contemporaneous char-
acterization of multiple sectors of the Southern Ocean of trace metals at
high depth resolution over the upper 1000 m, including meridional
transects across frontal zones and the first trace metal sampling op-
portunities in two distinct Antarctic environments with potential con-
tinental influence: the Mertz Glacier Polynya and the Balleny Islands.
Dissolved concentrations and stable isotope ratios from the ACE ex-
pedition have been published previously for Cr (Legs 1–2, Rickli et al.,
2019), Zn (Legs 2–3, Sieber et al., 2020), and Cd (Legs 2–3, Sieber et al.,
2019b).

2. Study area and oceanographic context

The Southern Ocean is characterized by the strong, eastward
flowing Antarctic Circumpolar Current (ACC) and is separated from the
lower latitude oceans by the strong gradients in temperature and sali-
nity that define the subtropical front (STF) (e.g. Orsi et al., 1995). South
of the STF, an additional series of fronts are found within the ACC (from
N to S: the Subantarctic Front, SAF; the Polar Front, PF; and the
Southern ACC Boundary, SACCB; Orsi et al., 1995). These divide the
Southern Ocean into different zones: the Subantarctic Zone (SAZ, be-
tween the STF and SAF), the Polar Frontal Zone (PFZ, between the SAF
and PF) and the Antarctic Zone (AZ, between the PF and SACCB). Re-
presentative positions of the STF, SAF, PF and SACCB from Orsi et al.
(1995) are shown in Fig. 1, along with surface macronutrients from the
World Ocean Atlas (Garcia et al., 2014).

These surface macronutrient concentrations highlight natural dif-
ferences in nutrient regimes within the Southern Ocean, which come
about as a consequence of its physical oceanography: wind-driven up-
welling supplies nutrient-rich deep waters to the surface south of the PF
in the ACC; once upwelled, these waters are transported laterally in the
surface by Ekman transport, with nutrients being drawn down by bio-
logical uptake towards the north. The water upwelling within the ACC
is predominantly Upper Circumpolar Deep Water (UCDW; e.g. Lumpkin
and Speer, 2007; Talley, 2013), while Lower Circumpolar Deep Water is
found just below the surface south of the SACCB (e.g. Orsi et al., 1995).
In the northern reaches of the ACC, deep winter convection and sub-
duction lead to the formation of the intermediate-depth, low-salinity
water mass Antarctic Intermediate Water (AAIW), which exists as a
salinity minimum at a water depth of ~1000 m north of the ACC (e.g.
Hanawa and Talley, 2001).

Surface waters between the SAF and STF are characterized by a
meridional gradient in NO3 and PO4 concentrations, with higher NO3

and PO4 concentrations found close to and south of the SAF and with
concentrations decreasing to the north (see also, Fig. 1). In this region,
biological productivity is limited by Fe (e.g. Boyd et al., 2007; Moore
et al., 2013 and references therein). Low levels of Si(OH)4 north of the
SAF can also limit production by silicifying phytoplankton such as
diatoms (Coale et al., 2004), and thus calcifiers such as
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coccolithophores typically play a larger role in surface phytoplankton
community structure and in the export of organic matter to depth (Trull
et al., 2001; Gibberd et al., 2013; Borges Mendes et al., 2015; Barrett
et al., 2018). Surface NO3 and PO4 concentrations remain elevated
while Si(OH)4 concentrations remain low between the SAF and PF;
however, diatom contributions to the surface community and to organic
matter export increase near the SAF and in the PFZ (Trull et al., 2001;
Kopczynska et al., 2001; Gibberd et al., 2013; Borges Mendes et al.,
2015; Barrett et al., 2018). High macronutrient (NO3, PO4, Si(OH)4)
concentrations are found near to and south of the SACCB (Garcia et al.,
2014), with Fe again acting to limit biological productivity (e.g. Martin
et al., 1990a; Boyd et al., 2007). Within and south of the SACCB the
phytoplankton community is dominated by diatoms, or by Phaeocystis
near the ice edge (Gibberd et al., 2013; Borges Mendes et al., 2015).

In addition to these basin-wide gradients, mesoscale features in-
cluding eddies (Jones et al., 2017), terrestrial input (e.g. Martin et al.,
1990a; Ardelan et al., 2010; Gerringa et al., 2012) and polynya systems
(e.g. Arrigo and van Dijken, 2003; Sambrotto et al., 2003) near the
Antarctic continent, as well as Fe input and vertical mixing downstream
of islands such as Kerguelen and Crozet (Blain et al., 2001; Bakker et al.,
2007, respectively) are known to alter nutrient limitation dynamics and
induce phytoplankton blooms. While localized Southern Ocean features
impact the biological community and the biogeochemical cycles of
certain elements, recent data identify that the distributions of some
biologically-cycled elements may not show clear alteration due to such
features (e.g. Zn, Ni; Wang et al., 2019). As part of ACE, we were able to
sample downstream of both the Kerguelen Plateau and the Balleny Is-
lands, as well as within the Mertz Glacier Polynya.

3. Methods

3.1. Sampling

Seawater samples were collected from the first two legs of the
Antarctic Circumnavigation Expedition – Cape Town to Hobart (Leg 1,
20-December-2016 to 19-January-2017, stations 3–7) and Hobart to
Punta Arenas (Leg 2, 22-January-2017 to 22-February-2017, stations
8–20) – onboard the R/V Akademik Tryoshnikov, organized by the
Swiss Polar Institute.

Samples for trace metal measurements were collected using an au-
tonomous rosette (Model 1018, General Oceanics, USA) on a Dyneema
line equipped with acid-cleaned Teflon-coated 10 L Niskin bottles with
external springs. Sampling from Niskin bottles was carried out onboard
in a clean container with HEPA-filtered air. Samples were gravity-fil-
tered through 0.2 μm acid-cleaned capsule filters (Acropak 200, Pall).

We report concentrations from two different analytical methods and
sample sets: 1) 250 mL samples collected for trace metal analysis and
analyzed at Australian National University (ANU), and 2) 1–4 L samples
collected for metal stable isotope analysis, processed at ETH Zurich
(ETHZ) and analyzed at either ETHZ or the University of South Florida
(USF).

Filtered samples for macronutrient analyses were also collected
from trace metal rosette casts into 15 mL tubes and stored frozen until
analysis ashore. CTD data (Fig. 2) are from a conventional CTD-rosette
and are presented in Henry et al. (2019). Neutral density (γn) was
calculated using Ocean Data View (Schlitzer, 2018).

3.2. Macronutrient analyses

Dissolved NOx (NO3 + NO2), PO4 and Si(OH)4 were determined by
flow-injection analysis (QuAAtro Seal Analytical auto-analyzer fol-
lowing Seal analytical methods) at the Alfred Wegener Institute
(Germany). Calibration was performed using Certipur solutions (stan-
dard reference materials from the National Institute of Standards and
Technology) and limits of detection were 0.16, 0.013, 0.07 μmol L−1

for NOx, PO4 and Si(OH)4, respectively. Analytical accuracy was ver-
ified using certified reference materials (KANSO LTD, Japan) and
measurements were within at least 90% of the certified values (not
shown). Dissolved NO2 was minimal (maximum 2.1% of NOx, typically
<1%, not shown), and therefore NOx is presented here as NO3.
Macronutrient data for the ACE voyage are available from Hassler and
Ellwood (2019), and have been previously published in Rickli et al.
(2019), Sieber et al. (2019b) and Sieber et al. (2020).

3.3. ANU samples, processing and analysis

Samples for trace metal concentrations were collected into 250 mL
LDPE bottles acidified with HNO3 to pH <1.8 and stored for at least
6 months before analysis. All ANU sampling bottles were acid-cleaned
prior to use with 10% w/w aqua regia for one week followed by a
second week in 1% w/w HNO3. Bottles were stored full with 0.1% w/w
HNO3 until use. All onshore work was carried out under trace-metal
clean conditions in ISO 5 clean hoods, using ultrapure reagents.
Dissolved trace metal concentrations for Leg 1 (Fe, Ni, Cu, Zn, Cd) and
Leg 2 (Ni, Cu, Cd, Pb) were determined at ANU by isotope dilution.
Samples were pre-concentrated and the seawater matrix was removed
offline using a home-built, automated pre-concentration system
(Ellwood et al., 2018). Weighed sample aliquots were spiked with en-
riched isotopes (57Fe, 61Ni, 65Cu, 67Zn, 110Cd, 206Pb) and internal
standards (Sc, In, Yb). Equilibrated samples were buffered to pH ≈ 5

Fig. 1. (a) Sampling locations on Antarctic Circumnavigation Expedition Legs 1 and 2 in Austral Summer 2016–2017, and (b) & (c) surface macronutrients
in the Southern Ocean. Representative positions of the STF, SAF, PF and SACCB (Orsi et al., 1995) are shown in white, light grey, dark grey and black dashed lines
respectively. Station locations are shown as black circles and are numbered (a). Surface Si(OH)4 (b) and NO3 (c) are taken from the World Ocean Atlas, 2013 (Garcia
et al., 2014).
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using an ammonium acetate buffer or to pH ≈ 7 with MOPS buffer (3-
(N-morpholino)propansulfonic acid) and loaded onto a column filled
with Nobias Chelate PA1 resin (Sohrin et al., 2008). After removal of
the seawater matrix, samples were eluted in 1 M HNO3 and analyzed by
inductively coupled mass spectrometry (ICP-MS) on either a Neptune or
Element XR instrument (both ThermoScientific).

3.4. ETHZ and USF samples, processing and analysis

Seawater samples (1–4 L) collected for Fe, Zn and Cd concentrations
and isotopic composition, from which data for dissolved Fe and Zn
concentration from Leg 2 are reported here, were acidified with 12 M
Teflon-double-distilled HCl to pH ≈ 2, and stored for at least 3 months
prior to processing. LDPE bottles for metal isotope samples were
cleaned using standard trace metal cleaning methods following Conway
et al. (2013).

Seawater dissolved Fe and Zn concentrations for Leg 2 were mea-
sured on samples taken for metal stable isotope composition and were
processed at ETH Zurich in a Class 100 clean environment: acidified
1–4 L samples were amended with Fe and Zn double spikes, metal ex-
tracted by Nobias PA1 resin and metals purified using AG-MP1 resin,

following previously published methods (Conway et al., 2013; Sieber
et al., 2019a). Zn concentrations and isotope ratios were analyzed at
ETHZ using a Neptune Plus MC-ICP-MS instrument (ThermoScientific),
using an Aridus II desolvating system, and H-type sampler and skimmer
Ni cones, following Archer et al. (2017). Fe concentrations and isotope
ratios were analyzed at the University of South Florida using a Neptune
Plus, with Apex-Omega desolvating system, a Jet Ni sampler cone and
an X-type Al skimmer cone. Concentrations and isotope ratios for Zn
and Cd from these samples are reported elsewhere (Sieber et al., 2019b;
Sieber et al., 2020).

3.5. Accuracy and analytical metrics

Analyses of Cu, Ni, Cd and Pb in standard reference materials for the
ANU concentration method (Legs 1 and 2) are shown in Table 1. Ac-
curacy of Fe and Zn from the ANU concentration method (Leg 1) are
demonstrated by the good agreement with previously published con-
centration data from the Southern Ocean Time Series (SOTS) site,
which was sampled as station 7 during the ACE expedition (Supple-
mental Fig. 1, Ellwood et al., 2020). For Leg 2 Fe and Zn data (ETHZ/
USF method), dissolved Fe (Table 1) and Zn (Table 1, from Sieber et al.,

Fig. 2. ACE Legs 1 and 2 CTD data. Salinity (a), neutral density (γn) (b), temperature (c), and % oxygen saturation (d) are shown to 1000 m. Panel (e) shows salinity
to 200 m depth. Positions of fronts (SAF, PF and SACCB; labelled) are shown as solid lines with colors matching the fronts in Fig. 1. Plots are broken by white bars to
differentiate primarily zonal sections (stations 3–7, 12–18) and primarily meridional sections (stations 8–12, 18–20). Trace metal sample depths are shown as black
circles. A map, with the ACE TM stations (blue circles, numbered) and the section for which CTD data are shown (red box) is at the bottom right, with dashed lines
indicating front positions as in Fig. 1. The Kerguelen Plateau and the Antarctic Slope are labeled in plot (a). Salinity, temperature and oxygen data are from a
conventional CTD-rosette, and neutral density was calculated using Ocean Data View (Schlitzer, 2018). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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2020) concentrations measured on SAFe samples prepared during the
same time as the ACE samples agree with consensus values. Uncertainty
is estimated to be ~2% for the ETHZ/USF method (Conway et al.,
2013). Additionally, Cd concentration data presented here for Leg 2
(ANU method) compare excellently with Cd concentrations measured
on the Cd stable isotope samples for Leg 2 (ETHZ/USF method) and
reported elsewhere (Sieber et al., 2019b; Supplemental Fig. 2).

4. Results & discussion

4.1. Macronutrients

Consistent with previous studies, distributions of dissolved PO4,
NO3 and Si(OH)4 in our dataset are typical of Fe-limited HNLC condi-
tions throughout the Southern Ocean and consistent with the differing
biogeochemical regimes in different Southern Ocean zones (e.g.
Sarmiento et al., 2004; Coale et al., 2004; Garcia et al., 2014). Surface
dissolved NO3 and PO4 concentrations increase in the SAZ approaching
the SAF (from <10 to ~19 μmol kg−1 and <0.8 to ~1.2 μmol kg−1,
respectively), and continue to increase to the south of the PF, where
surface concentrations stabilize at around 25 μmol kg−1 and
1.7 μmol kg−1, respectively. In contrast, surface Si(OH)4 concentrations
are elevated in surface waters only south of the SACCB (Fig. 3). With
the exception of stations 11 and 12, which are in the Mertz Glacier
Polynya, all stations south of the SACCB show minimal NO3 and PO4

differences within depth profiles (surface:subsurface concentrations
≥0.8), suggesting limited surface biological drawdown at the time of
sampling.

The most northerly stations, stations 7 and 8 in the SAZ, show low
macronutrient concentrations at depth compared to other stations. South
of the PF at ≥400 m, NO3 and PO4 concentrations are similar across all
stations (NO3 ~30–33 μmol kg−1; PO4 ~1.8–2.2 μmol kg−1), though
concentrations are slightly higher downstream of the Kerguelen Plateau
and in the Drake Passage (up to NO3 ~35 μmol kg−1 and PO4

~2.4 μmol kg−1) (Fig. 3). This may reflect the impact of subsurface
waters from the Pacific and Indian Oceans and greater total respiration of
biogenic material as these stations correspond with lower O2 (Fig. 2, see
also apparent oxygen utilization in Supplemental Fig. 3). Dissolved Si
(OH)4 is highest in deep waters near the Balleny Islands (stations 13 and
15, up to 120 μmol kg−1) (Fig. 3, Supplemental Fig. 7). These samples
are enriched in Si(OH)4 relative to other samples from similar isopycnals

in the Pacific sector south of the SACCB, and may reflect a local circu-
lation feature. A similar local Si(OH)4 maximum is seen downstream of
the Kerguelen Plateau at station 4, and has been reported previously
(Fripiat et al., 2011). The Mertz Glacier Polynya shows relative Si(OH)4
enrichment at stations 11 and 12 compared to the Si(OH)4-NO3 re-
lationship observed elsewhere on the transect (Fig. 4), which may be due
to Fe supply altering biological uptake ratios (e.g. Hutchins and Bruland,
1988) and/or to a local Si source (see Section 5.1). Si*, defined as the
difference between observed Si(OH)4 and NO3 concentrations, generally
follows Si(OH)4 concentration trends. Si* ≤ −10 μmol kg−1 is in-
dicative of SAMW (Sarmiento et al., 2004) and reflects the presence of
this water mass in surface waters of Station 6 as well as below 100 m at
stations 7 and 8. Si* is >20 μmol kg−1 below 400 m for all stations
except 7 and 8, with maxima found in deeper samples on the Kerguelen
Plateau, south of the SACCB near the Balleny Islands (Stations 14 and
15), and at station 16 (Fig. 3).

4.2. Iron

Dissolved Fe concentrations were below ~0.2 nmol kg−1 in the
upper 100 m at most stations (Fig. 3), and reach as low as
<0.05 nmol kg−1, suggestive of Fe-limitation and in agreement with
previously reported dissolved Fe distributions in the open Southern
Ocean (e.g. de Baar et al., 1999; Measures and Vink, 2001; Ellwood
et al., 2008; Sedwick et al., 2008; Bowie et al., 2009; Klunder et al.,
2011; Grand et al., 2015). The Fe:NO3 ratio, which remains
≤0.01 mmol mol−1 at most stations away from local Fe sources, also
suggests Fe-limiting conditions. The Fe:NO3 trends are discussed in
detail in Section 5.4. Dissolved Fe concentrations above 0.25 nmol kg−1

are found at all stations at ≥400 m, except for stations 7 and 8 in the
SAZ, where Fe concentrations generally remained around or below
0.2 nmol kg−1 to the bottom of the sampled profile at 1000 m. Dis-
solved Fe depth profiles are punctuated by local subsurface Fe sources
on the Kerguelen Plateau, Balleny Islands, the Mertz Glacier Polynya
and near the Antarctic Peninsula south of the Drake Passage.

Higher surface or near-surface (~100–300 m) Fe concentrations
(0.4–0.7 nmol kg−1) are found at stations on the Kerguelen Plateau
(Stations 3 and 4) and near the Balleny Islands (Stations 13–15), with
enrichments up to 0.8 nmol kg−1 also apparent in deeper samples at
these stations (Fig. 3). Elevated Fe near these islands is indicative of
local Fe sources, as has been well documented previously at the

Table 1
Analyses of GEOTRACES standard reference materials. Measured SAFe values for the ANU and ETHZ/USF methods are compared to consensus values (from www.
geotraces.org). Data from GT09–17 bottle #2671 (3500 m depth, 2008 GEOTRACES IC1 cruise at BATS) compare well with previously published values (e.g. Cu, Cd,
Pb - Lee et al., 2011; Cd, Pb - Boyle et al., 2012; Pb - Anderson et al., 2014). On the analytical day for the third SAFe D1 407 sample as well as the SAFe S and SAFe D2
samples, problems were encountered for Cd. No Cd data are used from this day. However, the other SAFe D1 #407 values, the GT09–17 values and the inter-
comparison shown in Supplemental Fig. 2 (with data from Sieber et al., 2019b) confirm that Cd values from other analytical days are accurate. Because SAFe standard
data are not available, a comparison of Leg 1 Fe and Zn data (ANU method) with literature data at a crossover station is shown in Supplemental Fig. 1 for
intercalibration purposes.

ANU (Legs 1 & 2: Cu, Ni, Cd, Pb) ETHZ/USF (Leg 2: Fe & Zn)

Cu Ni Cd Pb Fe Zn

nmol kg−1 nmol kg−1 pmol kg−1 pmol kg−1 nmol kg−1 nmol kg−1

SAFe D1 2.10 8.77 1008 24.1 SAFe D1 NA 7.724
2.14 8.76 1031 25.3
2.29 8.99 NA 24.3 7.461

Average 2.17 ± 0.10 8.84 ± 0.13 1043 ± 42 24.8 ± 0.8 Average 7.59 ± 0.19
Consensus 2.27 ± 0.11 8.58 ± 0.26 991 ± 31 27.7 ± 2.6 Consensus 7.40 ± 0.35

SAFe S 0.53 2.52 NA 42.2 SAFe D2 0.95 7.556
SAFe S Consensus 0.52 ± 0.05 2.28 ± 0.09 1.1 ± 0.03 48 ± 2.2 7.489

SAFe D2 2.78 8.99 NA 27.0 Average 7.52 ± 0.05
SAFe D2 Consensus 2.28 ± 0.15 8.63 ± 0.25 986 ± 23 27.7 ± 1.5 Consensus 0.933 ± 0.023 7.43 ± 0.25

GT09–17 1.87 4.52 311 16.6 NA NA NA
1.83 4.59 300 18.1
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Kerguelen Plateau and other Southern Ocean islands (e.g. Blain et al.,
2001; Bakker et al., 2007; Blain et al., 2008; Holmes et al., 2019).
Elevated Fe concentrations (~0.5 nmol kg−1) are also found below
100 m at station 18. This station is in shallower waters near the shelf
break of the Antarctic Peninsula, and likely reflects local sedimentary
input on the West Antarctic Peninsula, which has been documented
previously (e.g. Ardelan et al., 2010; de Jong et al., 2012; Hatta et al.,
2013). The importance of localized shelf and island Fe sources to the
wider region remains poorly constrained, although studies suggest po-
tential long-distance Fe transport (e.g. Bucciarelli et al., 2001; de Jong
et al., 2012; Measures et al., 2013; Grand et al., 2015; Schallenberg
et al., 2018). Finally, the Mertz Glacier Polynya shows enriched Fe from
200–500 m (up to 0.4 nmol kg−1), though to a lesser degree than the
stations discussed above. The influence of the Mertz Glacier Polynya,
and of the Kerguelen & Balleny Islands, on all the nutrients and trace
metals is discussed in more detail in sections 5.1 and 5.2, respectively.

4.3. Zinc and cadmium

Dissolved Zn and Cd distributions correlate strongly with the mac-
ronutrients Si(OH)4 and PO4, respectively (Figs. 3 & 4), as described in
the first oceanic profiles of these metals, as well as in more recent
GEOTRACES data (e.g. Boyle et al., 1976; Bruland et al., 1978; Bruland,
1980; Baars et al., 2014; Wyatt et al., 2014; Middag et al., 2018;
Schlitzer et al., 2018; Middag et al., 2019). Strong latitudinal variability

in dissolved Zn and Cd concentrations is observed in surface waters
from the SAZ to the PF, as seen previously in the Southern Ocean (e.g.
Löscher, 1999; Ellwood et al., 2008; Croot et al., 2011; Boye et al.,
2012; Baars et al., 2014; Cloete et al., 2018), reaching a similar mag-
nitude to the surface-to-1000 m concentration gradients. In the SAZ, the
minimum dissolved Zn and Cd concentrations are <0.1 nmol kg−1 and
<10 pmol kg−1, respectively. Similar Zn concentrations have pre-
viously been found to be limiting or co-limiting in the open ocean
(Chappell et al., 2016). Elevated surface Zn and Cd concentrations are
found south of the PF, as observed previously (e.g. Croot et al., 2011;
Boye et al., 2012; Baars et al., 2014; Cloete et al., 2018), extending up
to maxima of ~2 nmol kg−1 and ~0.5 nmol kg−1, respectively. This is
roughly half of the global deepwater Cd maximum but only ~20% of
the global deepwater Zn maximum (Figs. 3 & 4). This contrast between
Zn and Cd mirrors the differing distributions of Si(OH)4 versus PO4 and
NO3 in the Southern Ocean (Sarmiento et al., 2007), and reflects the
unique cycling of Zn and Si(OH)4 in the Southern Ocean relative to
other nutrient-type elements, perhaps due to the influence of high Zn
uptake during Fe-limited diatom growth (see also Sarmiento et al.,
2004; Vance et al., 2017; de Souza et al., 2018; Roshan et al., 2018).
Stations 11 and 12, near Mertz Glacier, have lower surface dissolved Zn
and Cd concentrations than other stations south of the PF (see Section
5.1).

Depth profiles in the SAZ show low Zn concentrations
(<1 nmol kg−1) in the upper 1000 m, in agreement with previous data

Fig. 3. ACE Leg 1 and 2 dissolved trace metal and macronutrient concentrations. Section plots are shown for trace metal and macronutrient concentrations to
1000 m along the cruise track. Sample locations are denoted in the section plots as black circles, and stations are numbered above the plots. Section plots are as
follows: NO3 (a), Si(OH)4 (b), Fe (c), PO4 (d), Si* (e) (Si(OH)4 – NO3, Sarmiento et al. (2004)), Pb (f), Cd (g), Zn (h), Ni (i), Cu (j). Positions of fronts (SAF, PF and
SACCB; labelled) are shown as solid lines with colors matching the fronts in Fig. 1. Plots are broken by white bars to differentiate primarily zonal sections (stations
3–7, 12–18) and primarily meridional sections (stations 8–12, 18–20). The map at the bottom right shows the plotted section (red box) with stations as blue circles
and numbered. Dashed lines indicate front positions as in Fig. 1. Lead data are not available for Leg 1 (stations 3–7). The Kerguelen Plateau and the Antarctic Slope
are labeled in plot (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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from the Indian sector (Ellwood, 2008); however, Zn concentrations ~4
times higher have been reported in the Atlantic sector (Croot et al.,
2011; Cloete et al., 2018). Depth profiles for dissolved Cd in the SAZ
span a much larger range (up two orders of magnitude), as reported
previously (e.g. Ellwood, 2008; Baars et al., 2014; Sieber et al., 2019a).
The highest subsurface dissolved Cd concentrations are found near the
γn = 27.8 kg m−3 isopycnal between the PF and the SACCB in the
Pacific sector and the Drake Passage (Stations 10, 17, 19; Figs. 2 & 3), in
good agreement with data from the Atlantic sector (Baars et al., 2014).
Dissolved Cd maxima in the Pacific Sector between the PF and SACCB
are higher than the maxima between these fronts in the Indian sector,
even at similar γn and O2. The reason for this difference remains

unclear; however, we find the same trend for Cu and Zn, and therefore
there may be a basin-scale, hydrographic control. We find slightly
higher Zn on the shelf break to the south of the Drake Passage (station
18) and within it (stations 19–20) – up to 7 and ~6.3 nmol kg−1, re-
spectively – than reported previously in the upper 1000 m in this area
(up to ~5.5 nmol kg−1, Martin et al., 1990b; ~5 nmol kg−1, Croot
et al., 2011). This may be related to the station locations, e.g. proximity
to the Antarctic Peninsula, or to methodological differences resulting in
the underreporting of values (in Croot et al., 2011; as noted in Zhao
et al., 2014). The highest subsurface Zn concentrations in our dataset
are found near to, and downstream of, the Balleny Islands (Figs. 3 & 4),
which may reflect a lithogenic source, changes to biological cycling, or

Fig. 4. Dissolved metal-macronutrient relationships in the ACE dataset. Relationships between trace metals and macronutrients (Me-PO4 and Me-Si(OH)4 for Zn,
Cu and Ni; only Me-PO4 for Cd) are shown for the ACE transect (first and third columns and panel o) and for the global ocean (second and fourth columns, except
panel o), based on paired metal-macronutrient measurements from this study and the GEOTRACES Intermediate Data Product, 2017 (Schlitzer et al., 2018). For the
ACE data, Stations 7 and 8 (in the SAZ) are shown in blue, station 9 and 20 (near the SAF) are shown in green, stations 11 and 12 (Mertz Glacier Polynya) are shown
in grey, and stations 14 and 15 (near the Balleny Islands) are shown as open symbols. All other stations are in black. For the global compilation plots, the Southern
Ocean data are shown in red, Atlantic Ocean in blue, Pacific Ocean in black and Indian Ocean in grey. Plotted elements and scaling are consistent between all x-axes
for one column, and for all y-axes for one row except in panel (o), and therefore not every axis is labeled. Panel (o) shows Si(OH)4-NO3 from this study. A full
reference list from the GEOTRACES Intermediate Data Product is shown in Supplemental Table 4. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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local circulation (see also Section 5.2).
The Zn-Si(OH)4 correlation in our data

(0.060 ± 0.002 mmol mol−1) corresponds very well with the global Zn-
Si(OH)4 relationship from paired Zn and Si(OH)4 measurements in the
GEOTRACES intermediate data product (0.059 mmol mol−1, Schlitzer
et al., 2018) (Table 2, Fig. 4c and d), with data from the Drake Passage
(Martin et al., 1990b), and with some data from the Atlantic sector
(Zhao et al., 2014; Cloete et al., 2018 wintertime data), but our ob-
served slope is higher than reported in other datasets from the Atlantic
sector of the Southern Ocean (0.033–0.048 mmol mol−1, Löscher,
1999; Croot et al., 2011; Cloete et al., 2018 summer data). Stations 5
and 6, near to but south of the PF in the Indian sector, fall above the Zn-
Si(OH)4 trend found at the rest of the stations (Fig. 4(c)). This is only
apparent in the upper 300 m (Si(OH)4 < 40 μmol kg−1), and was not
observed at stations 3 and 4 or in previous data in the Indian sector
(Wang et al., 2019). In contrast, Ni-Si(OH)4 and Si(OH)4-NO3 trends for
these samples do not diverge from the rest of the data (Fig. 4g and o),
suggesting that this Zn-Si(OH)4 divergence is caused by additional Zn.
The reason for this is unclear. In contrast to these high-Zn samples,
samples near Mertz Glacier (stations 11 and 12) fall below the Zn-Si
(OH)4 trend. This may reflect different metal and macronutrient cy-
cling, including increased biological uptake of Zn relative to Si(OH)4, or
possible continental input of Si(OH)4. The Si(OH)4-NO3 relationship at
these stations is also distinct from that in the rest of our data (Fig. 4o),
supporting either differences in biological uptake ratios here or local
sources.

The Zn-PO4 trend shows strong latitudinal differences, with low Zn-
PO4 slopes at low PO4 concentrations (0.31 ± 0.20 mmol mol−1, pri-
marily based on waters in the SAZ) and elevated slopes at higher PO4

concentrations (5.1 mmol mol−1, primarily based on waters south of
the PF) (Table 2, Fig. 4a and b). This has been described previously and
relates to the elevated biological uptake of Zn relative to PO4 and the

coupled biogeochemical cycling of these elements in the Southern
Ocean (Vance et al., 2017; de Souza et al., 2018; Roshan et al., 2018).
The high-slope trend (5.08 ± 0.34 mmol mol−1) is similar to that
previously described in the Atlantic Ocean and attributed to advected
Southern Ocean waters (4.6 mmol mol−1, Wyatt et al., 2014) (Fig. 4a
and b). A kink is observed in the Zn-PO4 relationship at stations 11 and
12 in the Mertz Glacier Polynya, which may reflect changes in biolo-
gical productivity and the degree of Fe limitation at these sites (see
section 5.1) as well as the mixing between Zn-depleted surface waters
with Zn and PO4-rich subsurface waters.

Our Southern Ocean data demonstrate a strong linear Cd-PO4 re-
lationship with a much higher slope (0.53 ± 0.02 mmol mol−1) than
the global average trend (0.35 mmol mol−1) (Table 2; Fig. 4m and n).
Indeed, the Cd-PO4 trends we observe are among the steepest found in
any ocean basin (Fig. 4n), in agreement with previously reported high
slopes for the Southern Ocean (e.g. Nolting et al., 1991; Frew and
Hunter, 1992; de Baar et al., 1994; Frew, 1995; Baars et al., 2014; Quay
et al., 2015). High Cd-PO4 slopes are also consistent with biological Cd
uptake, export and remineralization in chronically Fe-limited regions
such as the Southern Ocean, where high Cd:PO4 uptake ratios are ob-
served (e.g. Cullen et al., 2003; Cullen, 2006; Quay et al., 2015). While
there is a good correlation for the single Cd-PO4 trend including all our
data, latitudinal variability is also apparent. Stations 7 and 8, in the
SAZ, have a lower slope (0.41 ± 0.04 mmol mol−1) than zones to the
south and than the composite trend (Table 2). Differences in regression
slopes between the PFZ, AZ and south of the SACCB are not observed
considering regression uncertainty; however, distinct regression slopes
have been reported in water masses originating in the Southern Ocean
(Baars et al., 2014; Middag et al., 2018; Sieber et al., 2019b) and more
robust zonal differences observed within the Southern Ocean may be
apparent as more data become available. Stations near the Mertz Gla-
cier Polynya demonstrate a slight kink near PO4 = 1.5 μmol kg−1

Table 2
Metal-macronutrient regressions. Metal-macronutrient regression slopes and intercepts, r2 values and number of samples used in the regression (n) are presented
for this study and for the global ocean. Regression slopes for this study are presented with 1 standard error. Global data are from paired metal and macronutrient
measurements from this study and the GEOTRACES 2017 Intermediate Data Product (Schlitzer et al., 2018). Regression data under multiple station subsets are
presented when Me-macronutrient distributions are not uniform across different zones (e.g. the SAZ, PFZ, AZ and south of the SACCB) or stations with deviations
from the general trend were observed (e.g. surface samples at stations 11 and 12 – see Section 5.1, stations 7 and 8). Data are shown in Fig. 4. A full reference list from
the GEOTRACES Intermediate Data Product is shown in Supplemental Table 4.

Me-Macronutrient This study Global Ocean

Slope r2 b n Slope r2 b n

nmol μmol−1 nmol nmol μmol−1 nmol

Zn-Si(OH)4 0.060 ± 0.002 0.77 0.66 191 0.059 0.97 0.26 3963
Zn-Si(OH)4, not stns 11–12 0.061 ± 0.002 0.83 0.78 170
Zn-PO4 (PO4 ≤ 1.2 μmol kg−1) 0.31 ± 0.20 0.08 −0.05 29 0.95 0.67 0.00 1212
Zn-PO4 (PO4 ≥ 1.2 μmol kg−1) 5.08 ± 0.34 0.58 −5.52 162 3.17 0.61 −2.53 2493
Cd-PO4 0.53 ± 0.02 0.84 −0.36 189 0.354 0.96 −0.113 3657
Cd-PO4, stns 7 & 8 0.41 ± 0.04 0.85 −0.22 22
Cd-PO4, PFZ 0.57 ± 0.07 0.74 −0.59 23
Cd-PO4, AZ 0.65 ± 0.04 0.79 −0.56 58
Cd-PO4, South of SACCB⁎ 0.57 ± 0.05 0.65 −0.41 68
Ni-PO4 2.13 ± 0.07 0.83 2.30 194 2.19 0.91 1.78 2945
Ni-PO4, stns 7–8 only 1.21 ± 0.36 0.35 2.49 22
Ni-Si(OH)4, not stns 7–8 0.018 ± 0.001 0.71 5.33 172 0.044 0.92 3.28 3201
Ni-Si(OH)4, not stns 7–8, 11–12 0.018 ± 0.001 0.77 5.40 150
Ni-Si(OH)4, stns 7–8 0.12 ± 0.03 0.47 3.12 22
Cu-Si(OH)4 0.016 ± 0.000 0.90 0.69 191 0.019 0.9 0.68 2506
Cu-Si(OH)4, stns 7 & 8 0.028 ± 0.004 0.75 0.41 21
Cu-Si(OH)4, not stns 7 & 8 0.015 ± 0.000 0.89 0.80 170
Cu-Si(OH)4, PFZ 0.010 ± 0.001 0.93 0.90 23
Cu-Si(OH)4, AZ 0.012 ± 0.001 0.80 0.91 61
Cu-Si(OH)4, South of SACCB⁎ 0.015 ± 0.001 0.76 0.83 68

PFZ = station 6, 20.
AZ = Stations 3–5, 10, 17, 19.
South of the SACCB = Stations 11–16, 18.

⁎ Does not include station 11 ≤ 25 m, station 11 ≤ 50 m.
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(Fig. 4), which likely reflects changes in biological uptake and/or dif-
ferences between nutrient-depleted surface waters and subsurface wa-
ters, as for Zn-PO4 trends. Cadmium and Zn data are discussed further,
including with stable isotope composition, in Sieber et al. (2019b,
2020), respectively.

4.4. Copper and nickel

Both dissolved Cu and Ni show typical nutrient-type depth profiles
as seen in other basins, with surface depletion and enrichments at
depth; however, the dynamic range (i.e. surface-to-deep concentration
gradients) is more limited compared to macronutrients and other nu-
trient-type metals like Zn and Cd, as in other parts of the global ocean
(e.g. Sclater et al., 1976; Bruland, 1980; Schlitzer et al., 2018) (Fig. 3).
Surface dissolved Ni concentrations range from 2 to 6 nmol kg−1, while
surface dissolved Cu concentrations range from 0.4–2.0 nmol kg−1,
with the lowest concentrations of both metals found at the northern-
most stations in the SAZ (stations 7 and 8). The ratios of ‘deep’ (max-
imum depth of 1000 m in this study) to surface concentrations always
remain <2 for Ni and Cu, while ratios for other nutrient-type metals
and macronutrients are generally >2 and can, in some cases, reach
>10–100. Consequently, a greater concentration range is observed
spatially in surface waters for dissolved Ni and Cu than within single
depth profiles, highlighting the contrast between Ni- and Cu-depleted
surface waters north of the SAF and enriched waters south of the SAF.
This is similar to dissolved Cr concentration data from the same transect
(Rickli et al., 2019). Dissolved Ni and Cu concentrations in the SAZ and
south of the PF compare well with previous data in the Atlantic and
Indian sectors of the Southern Ocean (Westerlund et al., 1986; Löscher,
1999; Ellwood, 2008; Cameron and Vance, 2014; Heller and Croot,
2015; Cloete et al., 2018; Wang et al., 2019). Dissolved Ni concentra-
tions are slightly elevated in subsurface samples on the Kerguelen
Plateau relative to samples off the plateau, as found in previous data
from the region (Wang et al., 2019). This may reflect changes in cir-
culation, enhanced regeneration from organic matter or a lithogenic
source.

Dissolved Ni distributions are correlated with dissolved NO3 and
PO4 as well as with Si(OH)4, as described previously in other basins
(e.g. Sclater et al., 1976). The correlation between Ni and organic-as-
sociated macronutrients (PO4, NO3) follow a more consistent single
slope (2.13 ± 0.07 mmol mol−1 for Ni-PO4, r2 = 0.83; Table 2, Fig. 4 e
and g), similar to that observed previously in the SAZ
(1.81 mmol mol−1; Ellwood, 2008). However, our SAZ samples alone
do not show a strong linear Ni-PO4 correlation (Table 2). Dissolved Ni-
Si(OH)4 demonstrates a bimodal distribution. Stations north of the
Subantarctic Front (stations 7 and 8) have low Si(OH)4 and Ni con-
centrations, and a somewhat scattered Ni-Si(OH)4 relationship with a
high slope (0.12 ± 0.03 mmol mol−1, r2 = 0.47). The remaining sta-
tions, except for the terrestrially-influenced stations 11 and 12, cluster
along a low-slope trend (0.018 ± 0.001 mmol mol−1, r2 = 0.77) with a
much higher Ni intercept (Table 2), and both the slope and intercept
agree well with previous reports from the Southern Ocean (Löscher,
1999; Wang et al., 2019); see Section 5.1 for a discussion of continental
influence at stations 11 and 12. Our Ni-macronutrient relationships are
clearly different from trends reported for a meridional section in the
Atlantic sector of the Southern Ocean, where Ni-macronutrient trends
showed less robust relationships and lower slopes (Cloete et al., 2018).

A global compilation suggests that the two-part Ni-Si(OH)4 dis-
tribution is better described as a non-linear, curved Ni-Si(OH)4 trend at
0 < Si(OH)4 < 50 μmol kg−1 followed by a linear, low Ni-Si(OH)4
slope at higher Si(OH)4 concentrations, as we observe in the Southern
Ocean. However, the exact trends differ between the Atlantic, Indian
and Pacific Oceans. Global compilations for Ni-PO4 do not yield as
uniform a linear trend as we observe in the Southern Ocean (Fig. 4f and
h). Our data, which highlight different Ni-macronutrient trends in dif-
ferent Southern Ocean regimes and a robust, singular Ni-PO4

correlation not found in the global ocean, suggest that there is distinct
Ni cycling in this region. This is supported by similarities in other Ni-
macronutrient datasets in the Southern Ocean (Löscher, 1999; Wang
et al., 2019; Archer et al., 2020), suggesting that the observed Ni-
macronutrient features may be found throughout the Southern Ocean.
A better understanding of these unique Southern Ocean Ni-macro-
nutrient trends could improve our understanding of controls on the Ni
biogeochemical cycle.

Stations from the SAZ show a linear Cu-PO4 relationship, in agree-
ment with previous data from the SAZ (Ellwood, 2008), though the
relationship becomes non-linear when incorporating data from south of
the PF (Table 2, Fig. 4i). Copper shows a better linear correlation with
Si(OH)4 over our whole data set (m = 0.016 ± 0.000 mmol mol−1,
r2 = 0.90), though latitudinal differences in the exact slope remain. We
find higher Cu-Si(OH)4 slopes at stations 7 and 8
(0.028 ± 0.004 mmol mol−1, r2 = 0.75), and increasing slopes from
the PFZ to south of the SACCB (from 0.010 ± 0.001 mmol mol−1 to
0.015 ± 0.001 mmol mol−1, respectively), as described previously
(Löscher, 1999; Boye et al., 2012) (Table 2). The slope for all our data is
similar to that observed previously in the PFZ (Löscher, 1999) and in
the global ocean as a whole (Table 2, Fig. 4 k and l).

4.5. Lead

Dissolved Pb distributions show either a surface minimum or rela-
tively uniform concentrations within the upper 1000 m (Fig. 3). The
highest dissolved Pb concentrations are observed at the northernmost
station (station 8), in the SAZ, which likely reflects Pb enrichment in
the Indian Ocean due to anthropogenic input (Echegoyen et al., 2014;
Lee et al., 2015). Lead distributions at the lower latitude stations 8 and
9 are similar to those observed previously in this region (Ellwood,
2008); however, the absolute concentrations we find in our samples,
collected in January 2017, are about 3–5 pmol kg−1 lower than in
samples collected in the same region in July 2006. This is a difference of
~20–33% (cf. this study and Ellwood, 2008), which may reflect sam-
pling season and/or the phasing-out of leaded fuels in New Zealand by
1996 (Wilson and Horrocks, 2008) and in Australia from the 1970s to
early 2000s (Kristensen, 2015), as well as more generally in Africa,
India, and Southeast Asia in the late 1990s through the 2000s (Thomas
and Kwong, 2001; Lee et al., 2014).

Lead concentrations decrease southward both in surface and sub-
surface waters, and enrichments the subsurface waters in the SAZ and
PFZ are observed relative to similar water masses at higher latitudes
(Fig. 3, Supplemental Fig. 4). Concentrations of Pb are below
10 pmol kg−1 south of the PF in the Pacific sector of the Southern
Ocean, in agreement with observations in the Indian sector (Echegoyen
et al., 2014). These concentrations are among the lowest found in the
upper 1000 m in the global ocean (Supplemental Fig. 5). This likely
reflects the isolation of the Southern Ocean from natural and anthro-
pogenic aerosol sources, limiting surface input (e.g. Duce et al., 1991),
as well as a continued regional decrease in leaded fuel combustion
(Thomas and Kwong, 2001; von Storch et al., 2003; Lee et al., 2014). A
slight enrichment of Pb is observed from 50–200 m at stations 18 and
19, south of and in the Drake Passage, relative to the adjacent sampling
sites, though the reason for this is unclear.

North of 50° S, we observe a Pb enrichment along the isopycnal
associated with AAIW (γn ≈ 27.3 kg m−3) relative to surface waters, as
described previously (Boye et al., 2012; Echegoyen et al., 2014; Lee
et al., 2015). Lower dissolved Pb are found at higher latitude along this
isopycnal (Supplemental Fig. 4), which previous studies in the Indian
Ocean have attributed to lower atmospheric Pb deposition in water
more recently at the surface (Echegoyen et al., 2014; Lee et al., 2015).
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5. Discussion of regional features and nutriclines

5.1. The Mertz Glacier Polynya

Surface concentrations for macronutrients and most trace metals at
the Mertz Glacier Polynya (Stations 11 & 12) are substantially lower
than in surface waters of nearby stations south of the SACCB (e.g.
Station 13), and correlations between trace metals and macronutrients
show divergences at these stations (grey symbols in Fig. 4) compared to
the rest of our data. Trace metal depletion is most pronounced for Zn
and Cd, with surface concentrations in the Mertz Glacier Polynya as low
as 0.19 nmol kg−1 and 0.050 nmol kg−1 respectively, an order of
magnitude lower than at surface water in nearby stations. For Zn,
concentrations approach values found to be co-limiting in the open
ocean (Chappell et al., 2016). The high degree of Zn depletion may
explain the extent of Cd depletions through cambialistic substitution for
Zn or limited specificity in upregulated metal transport systems, as
inferred in culture studies (Lee and Morel, 1995; Sunda and Huntsman,
2000) and suggested previously in the Southern Ocean (Abouchami
et al., 2014).

Salinity data from the Mertz Glacier Polynya show an influence of
meltwater input; however, the salinity difference is relatively small
(~3%) compared to the observed trace metal and macronutrient de-
pletions. Consequently, mixing of seawater with potential freshwater
sources (snow, landfast ice, and pure freshwater) with their own re-
spective trace metal concentrations to yield a 3% decrease in salinity
cannot explain the observed trace metal depletions (up to 1 order of
magnitude). Dilution of 3% from the different freshwater sources re-
sults in similar expected surface metal concentrations when considering
single endmember mixing (seawater-snow, seawater-ice, seawater-pure
freshwater). The calculations are described further in the supplemental
material and Supplemental Tables 2 and 3. High CTD fluorescence at
these sites (Supplemental Fig. 6) suggests that the strong metal and
macronutrient deficits observed are most likely due to biological up-
take, or, in the case of Pb, due to scavenging by biogenic particles.
Polynyas elsewhere near the Antarctic continent are known to have
substantial Fe sources (e.g. Sherrell et al., 2015), and therefore input of
Fe at the Mertz Glacier Polynya may be relieving Fe-limitation and
fueling biological productivity. While such an Fe enrichment is not
easily identifiable in our data, as surface Fe concentrations at these
stations are uniformly low, this may be explained by biological uptake
and Fe removal (together with other trace metals) at the edges of the
system, as observed in the Amundsen Sea (Sherrell et al., 2015).

Biological uptake ratios of metals to phosphate (Me:PO4) can be
calculated from the observed surface depletion of metals and macro-
nutrients relative to expected surface concentrations from freshwater
dilution, and are shown in Table 3 along with comparisons to literature
data. We calculate an average Me:PO4 uptake ratio for Zn:PO4 of
3.1 ± 0.4 mmol mol−1, Cu:PO4 of 0.69 ± 0.10 mmol mol−1, Ni:PO4 of
1.3 ± 0.2 mmol mol−1, and Cd:PO4 of 0.53 ± 0.07 mmol mol−1. These
uptake ratios compare well with Me:P ratios in natural phytoplankton
assemblages from the Southern Ocean (Twining and Baines, 2013) and
are similar to inferred Cu:PO4 and Zn:PO4 uptake reported by Sherrell
et al. (2015) (Table 3). Furthermore, our calculated ratios match ob-
served Cd:P (Cullen et al., 2003; Lane et al., 2009) and Ni:P (Twining
et al., 2004) in Fe-limited phytoplankton, and correspond with Zn:P
observed in incubation experiments with partial, but incomplete, relief
of Fe-limitation (+0.2 nmol L−1 Fe, partial limitation reflected in
growth rate, Cullen et al., 2003). The agreement between the metal
uptake we calculate for the Mertz Glacier Polynya and natural Fe-lim-
ited phytoplankton (Cullen et al., 2003; Twining et al., 2004; Lane
et al., 2009; Twining and Baines, 2013) suggests that phytoplankton in
the Mertz Glacier Polynya still experience some degree of Fe-limitation.

Our inferred Ni:PO4 uptake (1.3 ± 0.2 mmol mol−1) is much higher
than that inferred by Sherrell et al. (2015) (0.29 mmol mol−1); how-
ever, it is similar to the Ni-PO4 slope we find in all our samples when

omitting stations 7 and 8 (1.56 ± 0.08 nmol μmol−1). While surface
waters in the Mertz Glacier polynya have dissolved Zn and PO4 con-
centrations in the range where a low-slope Zn-PO4 trend is observed in
the global ocean, it is the high-slope section (5.08 ± 0.34 mmol mol−1)
which better corresponds to the Zn:PO4 uptake ratio we infer
(3.1 ± 0.4 mmol mol−1) (Fig. 4, Table 2). This may reflect coupling
between Zn and PO4 uptake, export and regeneration in these samples
at high Zn:PO4 ratios, as previously described in the Southern Ocean
(Twining et al., 2014; Vance et al., 2017; de Souza et al., 2018; Roshan
et al., 2018). The Cd:PO4 uptake we infer agrees well with the Cd-PO4

trend observed in our data. The NO3:PO4 we calculate (14.5 mol mol−1)
is between the Redfield ratio of 16 and the N:P previously observed in
high-latitude phytoplankton (N:P = 13, Martiny et al., 2013), and in
agreement with trends previously reported in the Atlantic sector
(Nolting and de Baar, 1994; Weber and Deutsch, 2010).

The strong general agreement in observed metal depletions and
inferred metal:macronutrient uptake ratios between the Amundsen Sea
Polynya (Sherrell et al., 2015) and the Mertz Glacier Polynya (this
study) highlights the importance of polynya systems in highly localized
removal and subsequent biological export of trace metals and macro-
nutrients to depth. This stands in stark contrast to surrounding waters
with persistently elevated Ni, Cu, Zn, Cd and macronutrient con-
centrations in surface waters (e.g. Croot et al., 2011; Baars et al., 2014;
Garcia et al., 2014; Sherrell et al., 2015; Cloete et al., 2018; this study).
These coastal polynya systems, which have been characterized in terms
of extent and seasonality of biological productivity (Arrigo and van
Dijken, 2003) but for which trace metal data are limited, are a pro-
mising region to better understand biological export of metals and
metal-macronutrient coupling in the Southern Ocean.

5.2. The impact of the Kerguelen and Balleny Islands on the distributions Fe,
macronutrients and other trace metals

The supply of Fe from Antarctic and Subantarctic island margins to
surface Fe-limited phytoplankton communities in the Southern Ocean
has been well documented (e.g. Blain et al., 2001; Bakker et al., 2007;
Gerringa et al., 2012; Hatta et al., 2013; Holmes et al., 2019). Con-
sistent with these studies, we find elevated Fe concentrations down-
stream of the Kerguelen Islands (stations 3 and 4). Without a pre-Ker-
guelen endmember for comparison, it is difficult to precisely constrain
the impact of the islands. However, we do find elevated subsurface
concentrations of Ni, Cu, NO3 and PO4, as well as elevated Si(OH)4 in
the deepest samples, at stations 3 and 4 downstream of the Kerguelen
Plateau relative to the more distal station 5 (Fig. 3).

The strong role that frontal systems play in regulating metal and
macronutrient distributions near the Kerguelen Islands has been high-
lighted previously (Wang et al., 2019). Therefore, other island systems
away from strong frontal gradients, such as the Balleny Islands, may
prove useful for better constraining the local impact of Subantarctic and
Antarctic islands on biogeochemical cycling. Surface Fe concentrations
at station 14, downstream of the Balleny Islands, are higher than those
immediately upstream of the islands (station 15) as well as further
downstream and upstream (stations 13 and 16, respectively) (Fig. 3,
Supplemental Fig. 7). Station 13 also shows elevated Fe near 100 m
(γn ≈ 27.9 kg m−3), within the winter mixed later. Near-surface waters
of station 15, upstream of the islands, are also enriched in Fe
(100–300 m, 28.0 < γn< 28.1 kg m−3), indicating subsurface Fe in the
region may have another source in addition to the islands. Nevertheless,
the prominent elevated surface and near-surface concentrations seen at
stations 14 and 13, respectively, indicate that the islands are a local Fe
source for surface phytoplankton communities, and that this may be
enhanced following deep mixing events.

The Balleny Islands, whether due to changes in mixing and circu-
lation, potential benthic and land input, or changes in biological uptake
following Fe addition, also appear to influence the distributions of
macronutrients and other trace metals. Concentrations of PO4, NO3, Zn
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and Cd are elevated in surface samples downstream of the islands, while
surface Si concentrations are depleted downstream of the islands (sta-
tions 14 and 13), relative to waters upstream (station 15). Cadmium
and Zn isotope studies have suggested that elevated surface con-
centrations are the result of lower utilisation of Cd and Zn by phyto-
plankton due to the natural Fe fertilization (Sieber et al., 2019b; Sieber
et al., 2020). Below the surface, elevated Si and Zn concentrations are
found at station 15 below γn = 28.0 kg m−3 (~100 m depth) compared
to similar isopycnals downstream of the islands. In deeper waters at
station 14, immediately downstream of the islands, low concentrations
of Si and, to a lesser extent, Cu are found relative to other stations. The
reason for these differences is unclear at present, and may reflect
complex changes in hydrography near the islands as well as the impact
of Fe input on biological uptake, as well as potential metal scavenging
in deeper waters (e.g. John and Conway, 2014; Roshan et al., 2018;
Weber et al., 2018).

5.3. The nutriclines of macro- and micronutrients

Nutriclines, defined as the maximum of the derivative of the nu-
trient concentration depth profile (∂/∂z), are shown for PO4, NO3, Si,
Fe, Zn and Cd in Fig. 5, along with the oxycline (∂O2/∂z minimum),
pycnocline (∂γn/∂z maximum) and γn in the upper 500 m. Nutriclines
provide information on how species are removed from surface waters,
regenerated at depth, redistributed by subsurface circulation, and how
the mixing of subsurface water into the surface ocean would impact the
supply of macro- and micronutrients. Low surface-to-deep dynamic
ranges for Cu and Ni (surface:deep >0.5, see section 4.4) result in weak
or ambiguous nutriclines (not shown). Low metal and macronutrient
concentrations throughout the upper 1000 m in the SAZ (stations 7 and
8), along with the absence of a strong oxycline and more uniform po-
tential density throughout the upper 500 m, result in minor to no nu-
triclines for most elements in this zone (Figs. 3 & 5).

The pycnocline is found within the upper 100 m. The oxycline is
generally found between 50 and 300 m and is often associated with the
transition from AAIW (γn= 27.3 kg m−3) to UCDW (γn= 27.8 kg m−3)
where these water masses are present. Nutriclines for NO3 (the nitri-
cline) and PO4 (the phosphocline), which generally co-occur, are mostly
found within the upper 100 m (Fig. 5). These shallow depth horizons
indicate that NO3 and PO4 can be made more readily available to sur-
face communities with the seasonal deepening of the mixed layer (see
also Dong et al., 2008). The nutricline for Si(OH)4 is found slightly
deeper than the phosphocline at approximately half of the stations (e.g.
5–6, 10, 15–17, 19–20), which can help to isolate Si(OH)4 from surface

waters relative to other macronutrients. This is in agreement with
distributions of Si(OH)4 in the surface ocean (Sarmiento et al., 2004;
Garcia et al., 2014) and with comprehensive studies of preferential Si
export from regions of the Southern Ocean (e.g. Brzezinski et al., 2003;
Sarmiento et al., 2004). However, these differences are generally minor.
The nutricline for Cd corresponds with the phosphocline, demon-
strating a coupling of Cd and PO4. Nutriclines for Zn show similarities
to both PO4 and Si(OH)4, with some stations better correlating with PO4

(e.g. station 16) and some more similar to Si(OH)4 (stations 10, 17,
19–20). Though, differences between macronutrients are minor and the
nutricline for Zn corresponds well to both macronutrients.

5.4. The ferricline and implications for (micro-)nutrient supply to the
euphotic zone

As the Southern Ocean is Fe-limited, Fe supply to the surface ocean
and the relative Fe supply compared to macronutrients is a topic of keen
interest. Multiple methods of comparing the relative availability of Fe
and macronutrients have been employed in the Southern Ocean, in-
cluding Fe:PO4 (e.g. Sohrin et al., 2002), Fe:NO3 (e.g. Croot et al., 2007;
Ellwood et al., 2008; Bowie et al., 2009), Fe* calculated relative to PO4

(e.g. Parekh et al., 2005; Boyd et al., 2007; Bowie et al., 2009; Lannuzel
et al., 2011b) and relative to Si(OH)4 (Bowie et al., 2009), and the
depth of the ferricline (e.g. Tagliabue et al., 2014). These studies of
relative Fe supply in the Southern Ocean indicate that subsurface wa-
ters, should they reach the surface ocean, supply insufficient Fe relative
to macronutrients compared to phytoplankton growth requirements.
Here we add to this potential subsurface Fe supply discussion with our
new Southern Ocean dataset.

The nutricline for Fe (the ferricline) generally falls between 100 and
300 m depth (Fig. 5), in agreement with ferricline isopycnal horizons
(γn ≥ 27.5 kg m−3) previously reported in the Southern Ocean
(Tagliabue et al., 2014). The ferricline depths we observe can still ex-
tend below the maximal winter mixed layer (Dong et al., 2008),
therefore isolating subsurface Fe-enriched waters from the surface
ocean. At stations with potential continental or near-surface marine
sediment sources, for example near the Kerguelen Plateau (stations 3–4)
and near the Balleny Islands (stations 14–15), the ferricline depth is
more shallow, as described previously near Kerguelen (Blain et al.,
2008; Schallenberg et al., 2018), and is comparable to that of macro-
nutrients. This likely reflects subsurface sources of Fe, highlighting the
well-documented importance of Subantarctic and Antarctic islands in
supplying Fe (Blain et al., 2001; Blain et al., 2008; Schallenberg et al.,
2018), as well as altering deepwater flow to bring (micro-)nutrient-rich

Table 3
Inferred biological uptake at the Mertz Glacier Polynya. Uptake magnitudes and metal:PO4 uptake ratios are inferred for biological uptake by the difference
between observed and expected concentrations in surface waters of the Mertz Glacier Polynya. Inferred Me:PO4 uptake ratios are compared to Me:P measured in
Southern Ocean phytoplankton (Bulk phytoplankton composition before (1) and after (2) Fe addition incubations, Cullen et al., 2003; Synchrotron X-Ray Fluorescence
data from single phytoplankton cells from south of the PF (3), Twining and Baines, 2013) and Me:PO4 uptake ratios inferred from dissolved distributions in the
Amundsen Sea (4) (Sherrell et al., 2015). Calculations are described in more detail in the supplemental material and Supplemental Tables 2 and 3.

Zn Cu Ni Cd Pb PO4 Si NO3

nmol kg−1 nmol kg−1 nmol kg−1 nmol kg−1 pmol kg−1 μmol kg−1 μmol kg−1 μmol kg−1

Inferred biological uptake (non-dilution metal deficit) 3.00 0.65 1.24 0.51 3.13 1.07 16.8 15.1
Inferred biological uptake (non-dilution metal deficit) 2.88 1.65 1.29 0.49 5.29 0.85 18.8 12.6

Zn:P Cu:P Ni:P Cd:P N:P

nmol μmol−1 nmol μmol−1 nmol μmol−1 nmol μmol−1 mol mol−1

Me:PO4 Uptake, Station 11 2.82 0.62 1.17 0.48 14.2
Me:PO4 Uptake, Station 12 3.40 0.76 1.51 0.58 14.8
Average Me:PO4, Stns 11 & 12 3.11 ± 0.41 0.69 ± 0.10 1.34 ± 0.24 0.53 ± 0.07 14.5 ± 0.05
Southern Ocean Lit. Me:P or

Me:PO4

11.09 ± 0.671, 2.02–4.052, ~3–203,
3.374

1.44 ± 0.111, 0.43–0.632,
0.694

~0.3–1.63, 0.294 1.29 ± 0.071, 0.34–0.632 NA
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deepwater closer to the surface (Sokolov & Rintoul, 2007; Grand et al.,
2015). However, the ferricline is found below the nitricline and phos-
phocline at most other stations, including at the Mertz Glacier Polynya.
With a ferricline found deeper than the nitricline and phosphocline, Fe
is more efficiently isolated from the surface ocean than macronutrients
and deepwater entrainment accesses macronutrient-enriched waters
before Fe-enriched waters, in support of previous studies in the
Southern Ocean (e.g. Tagliabue et al., 2014).

The limited supply of Fe relative to macronutrients is further illu-
strated by Fe:NO3 ratios throughout our transect, which remain
≤0.01 mmol mol−1, values characteristic of Fe-limited regions (Martin
et al., 1989; Ellwood et al., 2008), except at sites proximal to localized
Fe sources (subsurface waters near the Kerguelen Plateau, Balleny Is-
lands and Antarctic Peninsula) and at the macronutrient-depleted sta-
tions 7 and 8 (Fig. 6). Furthermore, Fe:NO3 ratios fall well below
minimum Fe:N in natural marine phytoplankton cells
(0.06 mmol mol−1, calculated from reported Fe:P assuming Redfield
N:P of 16; Twining and Baines, 2013) and are within ranges for Fe-
limited phytoplankton cultures growing at half of their Fe-replete
growth rates (0.003–0.015 mmol mol−1, calculated from Fe:C assuming
Redfield C:P of 106; Strzepek et al., 2011). Apart from localized sources
(e.g. lithogenic, dust, sea ice), deep mixing is the main Fe source to the
surface in the Southern Ocean (Tagliabue et al., 2014). Our observed
Fe:NO3 values indicate that deep mixing, regardless of the absolute
depths to which it reaches, will generally supply an excess of macro-
nutrients over Fe relative to requirements for non Fe-limited phyto-
plankton growth, as reported previously (Parekh et al., 2005; Croot
et al., 2007; Ellwood et al., 2008; Bowie et al., 2009; Lannuzel et al.,
2011a).

6. Conclusions

The distribution of trace metals in the regions of the Southern Ocean
studied here highlight the importance of biologically-driven cycles;
however, latitudinal differences were as large or larger than surface-to-
deep gradients, highlighting the interplay between biological draw-
down and circulation in the Southern Ocean. We find that Pb con-
centrations decrease from the SAZ to south of the SACCB, and that Pb
concentrations across all our data are among the lowest found in the
global ocean. This likely reflects the isolation of the Southern Ocean
from anthropogenic sources. Along the γn = 27.3 kg m−3 isopycnal

Fig. 5. Nutriclines for macronutrients and biologically cycled metals. First derivative plots (∂/∂z) for metals and macronutrients are shown to identify nu-
triclines (∂/∂z maxima), along with the oxycline (∂O2/∂z minimum, a) and pycnocline (∂γn /∂z maximum, b) and γn (c). Nutriclines are shown for NO3 (the nitricline,
d), PO4 (the phosphocline, e) and Si(OH)4 (f) and for Fe (the ferricline, g) Cd (h) and Zn (i). Warmer colors indicate high ∂/∂z, with the nutricline identified as the
warmest colors for each metal or macronutrient. Because oxygen consumption is associated with organic matter respiration and increases in macro- and micro-
nutrients, the color scale for the oxycline has been inverted such that warm and cool colors match the nutricline plots. Positions of fronts (SAF, PF and SACCB;
labelled) are shown as solid lines with colors matching the fronts in Fig. 1. Plots are broken by white bars to differentiate primarily zonal sections (stations 3–7,
12–18) and primarily meridional sections (stations 8–12, 18–20).

Fig. 6. ACE dissolved iron to nitrate ratios. A section plot of Fe:NO3 to
1000 m is shown for the same section as in Figs. 2, 3 & 5. Labelled contours
identify Fe:NO3 = 0.01, 0.015 and 0.02 nmol μmol−1. Positions of fronts (SAF,
PF and SACCB; labelled) are shown as solid lines with colors corresponding to
those used in Figs. 1. Plots are broken by white bars to differentiate primarily
zonal sections (stations 3–7, 12–18) and primarily meridional sections (stations
8–12, 18–20).
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surface, associated with AAIW, Pb concentrations are lower in waters
more recently in contact with the atmosphere, possibly reflecting de-
creases in atmospheric sources over time as leaded fuel use continues to
decrease both locally and globally.

Zinc distributions correlate well with those of Si(OH)4, with strong
surface depletion of both elements north of the SACCB during our
sampling in austral summer. The Zn-Si(OH)4 slope within our data
corresponds well with the global Zn-Si(OH)4 relationship, which re-
flects the role that exported Southern Ocean waters play in forming the
global Zn-Si(OH)4 relationship (Vance et al., 2017; de Souza et al.,
2018; Roshan et al., 2018; Weber et al., 2018; Sieber et al., 2020).
South of the PF, Zn is correlated with PO4, with a similar slope to that
found at elevated Zn and PO4 concentrations in the Atlantic Ocean
(Wyatt et al., 2014). Overall, our Cd-PO4 data are well correlated and
show high slopes, similar to previous findings for the Southern Ocean
(e.g. Baars et al., 2014). However, there are latitudinal differences in
Cd-PO4 slopes, with slopes increasing from the SAZ to the AZ. This may
reflect the importance of Fe limitation and metal-metal antagonisms for
Cd:PO4 uptake in the Southern Ocean, and highlights the impact that
exported Southern Ocean waters can have on the global Cd-PO4 cor-
relation, as indicated in previous studies (e.g. Frew and Hunter, 1992;
Quay et al., 2015; Middag et al., 2018). Latitudinal variability is also
observed for the Cu-Si(OH)4 relationship, as previously described in the
Southern Ocean (Löscher, 1999; Boye et al., 2012). We observe Ni-
macronutrient correlations for both PO4 and Si(OH)4 that differ from
the global relationships but are consistent with previous Southern
Ocean studies (Löscher, 1999; Wang et al., 2019). This may indicate
distinct Ni-macronutrient cycling in the Southern Ocean, and should be
explored further to build a mechanistic understanding of the process(es)
responsible for this.

We find that high productivity in the Mertz Glacier polynya drives
substantial metal and macronutrient removal from surface waters. Our
inferred metal:macronutrient uptake ratios correspond well with cel-
lular quotas in Southern Ocean phytoplankton (Ni:P, Cu:P, Zn:P, Cd:P)
and suggest that phytoplankton in the Mertz Glacier Polynya experi-
ence some degree of Fe limitation. Our study adds to the literature
addressing the importance of coastal Antarctic polynya systems in
driving high localized biological productivity in an Fe-limited region,
and the impact that this productivity has on trace metal and macro-
nutrient cycling and export. Such regions are a promising environment
for future process studies on metal and macronutrient cycling, espe-
cially considering the impact of changing climate on the Southern
Ocean and coastal ice dynamics (Tamura et al., 2008; Rignot et al.,
2008).

The Kerguelen Plateau is a local source of dissolved Fe, as pre-
viously identified (e.g. Blain et al., 2001), and we identify the Balleny
Islands as a previously-uncharacterized local source of Fe to surface
waters. At the Balleny Islands, the distributions of NO3, PO4 and Si
(OH)4, Zn and Cd in surface waters and of Si(OH)4, Cu and Zn in sub-
surface waters differ between stations upstream and downstream of the
islands. This may be due to Fe addition modifying biological uptake of
metals and macronutrients (Sieber et al., 2019b; Sieber et al., 2020), as
well as changes in circulation and potential scavenging in subsurface
waters. More detailed studies at these and other Antarctic islands away
from the influence of frontal systems can help to better constrain the Fe
input of such islands, and the influences of Fe input and circulation
changes on the distributions of macronutrients and other trace metals.

The ferricline was found deeper than the nitricline at most stations,
demonstrating the isolation of Fe, relative to macronutrients, from
surface phytoplankton communities. Additionally, Fe:NO3 ratios were
indicative of Fe limiting conditions (Fe:NO3 < 0.01 mmol mol−1) in all
samples except at locations near terrestrial or sediment sources (the
Kerguelen Plateau, Balleny Islands and the Antarctic Peninsula), or in
waters with very low macronutrient concentrations (stations 7 and 8).
Therefore, considering that deep mixing is the main source of Fe to
much of the Southern Ocean (Tagliabue et al., 2014), nutricline depths

and nutrient ratios in subsurface waters indicate that mixing would
ultimately act to maintain Fe limitation in the absence of other Fe
sources.

Research data

Data are available in the supplementary material as well as in the
Zenodo repository (metal data doi: https://doi.org/10.5281/zenodo.
3634411; macronutrient data (Hassler and Ellwood, 2019) doi: https://
doi.org/10.5281/zenodo.2616606; ctd data (Henry et al., 2019) doi:
https://doi.org/10.5281/zenodo.3247384).
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