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Ventilation time scales of the North Atlantic
subtropical cell revealed by coral radiocarbon
from the Cape Verde Islands
Alvaro Fernandez1, Thomas J. Lapen2, Rasmus Andreasen2, Peter K. Swart3, Christopher D. White1,
and Brad E. Rosenheim4

1Department of Earth and Environmental Science, Tulane University, New Orleans, Louisiana, USA, 2Department of Earth
and Atmospheric Sciences, University of Houston, Houston, Texas, USA, 3Rosenstiel School of Marine and Atmospheric
Science, University of Miami, Miami, Florida, USA, 4College of Marine Sciences, University of South Florida, St. Petersburg,
Florida, USA

Abstract We present coral- and sclerosponge-based reconstructions of the 14C content in North Atlantic
dissolved inorganic carbon (DIC) during the last ~100 years from the subtropical cells (STCs). These waters
are sensitive to the dynamics of the shallow overturning meridional circulation that transports heat and
water masses from the subtropics to the tropics. We use these records to investigate the circulation
patterns of the off-equatorial upwelling regions of the STCs, which are not well understood. Coral and
sclerosponge skeletons provide long time series of ocean DIC 14C content, a tracer of oceanic circulation,
effectively extending the observational record back in time. Sclerosponge data from the Bahamas were
used to extend the existing subtropical 14C time series to the 21st century. Coral 14C data from the Cape
Verde Islands (1890–2002) captured the 14C signature of water brought to the surface in the off-equatorial
regions of the STC present near the West African coast. We observe a unique postbomb trend at Cape
Verde that is similar to theupwelling regions in the Pacific, andwe interpret this trend as the result of the slow
penetration of bomb 14C into the interior ocean as part of the STC circulation. Using amultiboxmixingmodel
we constrain the time history of bomb 14C in the eastern tropical Atlantic, and we estimate a 20 year time
scale for ventilation of the thermocline in this area of the ocean. The similarity between the Atlantic and
Pacific 14C-based records of upwelling suggests that both are caused by bomb 14C penetration rather than
more complex explanations that invoke changes in thermocline depth (e.g., related to El Niño–Southern
Oscillation variability) or changes in the strength of the subtropical cells. Our results offer constraints for
models of tropical ocean circulation and anthropogenic CO2 uptake that attempt to reproduce the
characteristics of the shallow wind-driven circulation in the Atlantic.

1. Introduction

Atlantic subtropical cells (STCs) are shallow wind-driven circulations that connect the tropics and the
subtropics through subduction in the subtropical gyres and subsequent upwelling along the equator and
into eastern boundary upwelling regions [McCreary and Lu, 1994; Schott et al., 2004; Talley, 2003]. Changes
in the strength of the STCs have important implications for the amount of heat and water that are
exchanged between the tropical and the subtropical oceans. However, the observational record is too
short to characterize multidecadal variations that are likely present in the strength of the STCs [Feng et al.,
2010; Rosenheim et al., 2005] or to attribute secular trends to forcing by greenhouse gases [Bryden et al.,
2005; Cunningham and Alderson, 2007; Curry et al., 2003]. Corals and sclerosponges can augment the
spatially rich but temporally poor observational record by providing long time series of ocean dissolved
inorganic carbon Δ14C values (i.e., the per mil deviation from the 12C/14C ratio in 1950’s wood), a sensitive
tracer of oceanic circulation processes [Druffel, 2002; Grottoli and Eakin, 2007].

Coral 14C is particularly useful in the upwelling regions of the STCs as a result of the large gradient in Δ14C
values between surface and subsurface waters [Guilderson and Schrag, 1998; Grottoli et al., 2003; Druffel
et al., 2014]. For instance in the Pacific, Druffel et al. [2014] observed a shift in cool season Δ14C values in a
coral from the Galapagos Islands that occurred after the 1940’s shift in the phase of the Pacific Decadal
Oscillation (PDO). They argued that the shift in Δ14C values was the result of an increase in the amount

FERNANDEZ ET AL. ATLANTIC CORAL AND SCLEROSPONGE 14C 938

PUBLICATIONS
Paleoceanography

RESEARCH ARTICLE
10.1002/2015PA002790

Key Points:
• Coral

14
C data were used to constrain

the dynamics of the subtropical cell
• Cape Verde

14
C trend is the result of

bomb
14
C penetration

• We find a 20 year time scale for the
ventilation of the eastern equatorial
Atlantic thermocline

Supporting Information:
• Texts S1–S4
• Equations (S1)–(S6)
• Figures S1 and S2, Tables S1 and S2,
and Data sets S1 and S2

Correspondence to:
A. Fernandez,
afernan4@tulane.edu

Citation:
Fernandez, A., T. J. Lapen, R. Andreasen,
P. K. Swart, C. D.White, and B. E. Rosenheim
(2015), Ventilation time scales of the
North Atlantic subtropical cell revealed
by coral radiocarbon from the Cape
Verde Islands, Paleoceanography, 30,
938–948, doi:10.1002/2015PA002790.

Received 12 FEB 2015
Accepted 11 JUN 2015
Accepted article online 12 JUN 2015
Published online 23 JUL 2015

©2015. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9186
http://dx.doi.org/10.1002/2015PA002790
http://dx.doi.org/10.1002/2015PA002790


of Subantarctic Mode Water to the
Equatorial Undercurrent (EUC) relative
to water from the northern subpolar
Pacific. Thus, their coral measurements
constrained the sources of 14C-depleted
water to the Pacific STC and their relation-
ship to an index of Pacific climate. In the
Atlantic, coral records from off-equatorial
upwelling regions may provide the same
opportunity for reconstructing Atlantic
STCs, which are currently not well under-
stood [Schott et al., 2004; Hüttl-Kabus and
Böning, 2008].

Here we present a coral Δ14C record
from the Cape Verde Islands that
receives water from the off-equatorial
upwelling regime of the Atlantic STC
(Figure 1) and a sclerosponge from
the Bahamas that grew in waters
subducted into the North Atlantic STC.
The locations of our records allow

comparison between records of postbomb Δ14C values in Cape Verde and upwelling regions of the Pacific.
Thus, our results have important implications for the interpretation of other coral upwelling records and
provide a test data set for models of tropical ocean circulation and anthropogenic CO2 uptake.

2. Methods
2.1. Coral and Sclerosponge Specimens

Radiocarbon measurements were obtained from a coral (Siderastrea radians) collected on the Island of São
Vicente in the Cape Verde Islands (16°45.6′N, 22°53.3′E; annual average mixed layer depth 36m [Johnson
et al., 2012]) at a depth of 4–6m. Oxygen isotope data from this coral specimen have appeared in two
previous studies [Moses et al., 2006a, 2006b]. The coral was cut into ~5mm thick slabs and X-rayed to
observe density banding. Radiocarbon measurements were also made from a sclerosponge (Ceratoporella
nicholsoni) that was collected alive from the slope offshore of San Salvador Island in the Bahamas at a
depth of 32m (24°4′N, 74°25′E; annual average mixed layer depth 41.4m [Johnson et al., 2012]).

The coral chronology was constructed using a combination of U/Th age determinations (n=8; see supporting
information for analytical details) and the seasonal signal present in δ18O values reported by Moses et al.
[2006b] for the same coral slab that we used herein. This was necessary because of poorly defined annual
density bands that make traditional sclerochronology methods unreliable [Moses et al., 2006b]. Although
U/Th ages alone produced an accurate age model comparable to the oxygen isotope time series, we use
the oxygen isotope chronology where data were available (1955–2002) because it is based on a more
continuous measurement than the eight U/Th dates and records subtle changes in growth rate of the
coral over its lifespan. Otherwise, Bayesian interpolation between U/Th age determinations was used
(1890–1955) [Blaauw and Christen, 2011]. In any case, both methods produce ages that are statistically
indistinguishable (Figure S1 in the supporting information), and the choice of chronology does not affect
our interpretations of the coral record.

For the sclerosponge, the chronology was derived solely from U/Th ages, which were measured at nine
different locations in the sclerosponge skeleton and corrected for initial 230Th incorporation following
Rosenheim et al. [2007]. The amount of initial 230Th incorporation was estimated with the aid of two
chronological constraints present in the sclerosponge skeleton: (1) the known age at the surface (2003)
and (2) the location where bomb 14C was initially present in the skeleton, which must have occurred
after 1955 (when bomb 14C was initially present in the atmosphere). An error-weighted linear age model

CC

NEC

GD

SEC

EUC

NBC

NEUC
NECC

Gulf Stream

Cape Verde

Bahamas

Subduction

Upwelling

Bermuda

Puerto Rico

Figure 1. Map of sampling locations (red stars) showing general circulation
patterns. The subducting (purple) and upwelling areas (green) of the
Atlantic STCs are shown (drawn after Schott et al. [2004]). CC =Canary Current;
NEC=North Equatorial Current; NECC=North Equatorial Countercurrent;
GD=Guinea Dome; NEUC=North Equatorial Undercurrent; EUC= Equatorial
Undercurrent; SEC = South Equatorial Current; NBC = North Brazil
Current. The blue stars are the locations of previously published coral
Δ14C records discussed in the text.

Paleoceanography 10.1002/2015PA002790

FERNANDEZ ET AL. ATLANTIC CORAL AND SCLEROSPONGE 14C 939



was constructed to estimate the
growth rate of the sclerosponge, and
its uncertainty was propagated into
the final age estimates of different
samples (see supporting information
for additional details).

The coral skeleton was initially sampled
at a resolution of approximately every
5 years in a direction parallel to the axis
of growth using a handheld Dremel®
tool fitted with a 1.6mm diameter
diamond bur. Subsequently, annual
resolution samples were obtained for
the postbomb period using a high-
precision micromill by continuously
sampling the skeleton every 987μm,
which is the average growth rate
estimated from the oxygen isotope
chronology [Moses et al., 2006a]. In the

case of the sclerosponge, the skeleton was sampled continuously using a computerized micromill cutting
a raster pattern every 1mm or approximately one sample for every 3 years.

Powdered samples were digested using orthophosphoric acid, and the resulting CO2 gas was cryogenically
purified, quantified, and sealed in a borosilicate glass tube. The CO2 was analyzed at the National Ocean
Sciences Accelerator Mass Spectrometer Facility for 14C analyses where the ratio of 14C/12C was reported
relative to the oxalic acid standard in per mil (‰). Raw 14C data from the Cape Verde Coral were corrected
for isotopic fractionation using the δ13C values reported by Moses et al. [2006a], and 14C data from the
Bahamas were corrected using δ13C values obtained at Tulane University using an Isoprime dual inlet
isotope ratio mass spectrometer equipped with an automated carbonate preparation device. Raw data
were also corrected for blank contamination that was estimated using eight separate measurements of
two radiocarbon standards (see supporting information for more details). External reproducibility was
estimated using repeat measurements of an internal coral standard (n=6, 3.8‰, 1σ), which is similar to
the average reported analytical error for the individual radiocarbon measurements (3.4‰, 1σ). All
radiocarbon measurements are reported as age-corrected Δ14C values as described by Stuiver and
Polach [1977].

3. Results
3.1. Bahamas Sclerosponge

Sclerosponge radiocarbon values are consistent with the values observed in surface corals from Bermuda
(Figure 2) [Druffel, 1989, 1997], although the Bahamas sclerosponge adds ~20 years to the existing record
of Δ14C variability in the subtropical North Atlantic. Both records show similar responses to the input of
bomb radiocarbon to the atmosphere and have comparable amplitudes in Δ14C fluctuations with time.
Prebomb Δ14C values, however, are somewhat more depleted than contemporary measurements at
Bermuda, and they are similar to values observed in Puerto Rico. For instance, the Bahamas had average
Δ14C values during 1905–1955 of �50± 2‰ SE (n= 16) with a total range of �63 to �28‰ while
Bermuda showed an average value of �45 ± 1‰ SE (n= 25) with a range of �53 to �34‰ [Druffel, 1997],
and Puerto Rico showed an average value of �52± 1‰ SE (n= 13) with a range of �56 to �43‰
[Kilbourne et al., 2007].

3.2. Cape Verde Coral

Throughout the 20th century, waters surrounding the Cape Verde Islands were generally more depleted in
14C than other locations in the Atlantic (Figure 3). These results confirm previous limited observations from
the islands [Druffel, 1996], showing that Cape Verde DIC is characterized by more negative Δ14C values than

Florida
Bermuda
Puerto Rico
Bahamas

Δ

Year

Figure 2. Sclerosponge Δ14C from San Salvador, Bahamas, compared to
published data from the Atlantic. Bermuda data are from Druffel [1989,
1997] and Goodkin et al. [2012], Florida data are from Druffel [1989], and
Puerto Rico data are from Kilbourne et al. [2007]. The error ellipses on
Bahamas data are the 2σ uncertainties from the U/Th age model.
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DIC from other locations post-1960. The
difference between the Cape Verde and
the other Atlantic records was greatest
around 1980 at ~50‰. Before the
1960s the differences between the var-
ious records are muted, and average
values fall within the reported uncer-
tainties. For instance, the Cape Verde
coral is clearly depleted in 14C relative
to the Puerto Rico coral during the post-
bomb period (Figure 3), but the average
prebomb Δ14C value at Cape Verde
(1890–1950; �52 ± 2‰ SE, n=8) is
within the analytical precision of the
average value observed at Puerto Rico
during the same period (�52± 1‰
SE, n= 13).

The initial response of the Cape Verde
coral to bomb 14C was similar to other
Atlantic records; however, the Cape
Verde data show distinct features that
are not observed in the other Atlantic

records. For instance, in ~1964 there was a large decrease in the rate of Δ14C change in Cape Verde,
whereas in the other records the change is more gradual (Figure 3). Additionally, the overall shape of the
bomb curve and the peak in maximum 14C concentrations are decidedly different in Cape Verde relative
to records from other parts of the Atlantic. The other coral records show peak Δ14C values in the mid-
1970s (1974 is the average time of peak Δ14C for published Atlantic records; see Figure 3) or
approximately 10 years after the peak in atmospheric radiocarbon concentrations [Hua et al., 2013]. At
Cape Verde, on the other hand, peak Δ14C values do not occur until approximately 1993, which is nearly
20 years after the other records peak. Additionally, the interannual variability at Cape Verde is larger than
other Atlantic records during the postbomb period. This was particularly true during the 1970s when inter-

annual Δ14C values varied by as much
as 25‰. Finally, in 1980 there was an
~12‰ shift in Δ14C values toward more
enriched compositions followed by a
decrease in the magnitude of inter-
annual variability. The jump can be more
clearly seen in Figure 4 where we plot
two parallel trend lines that have signif-
icantly different intercepts (P= 0.022),
one before and one after 1980.

4. Discussion
4.1. Bahamas Sclerosponge

The source of water entering into the
subsurface Caribbean and the Bahamas
explains the close agreement between
the Bermuda record and the Bahamas
sclerosponge. Corals from Bermuda
record the 14C signature of the western
subtropical North Atlantic before the
water is transported to the eastern side

Year

Δ

Florida
Bermuda

Puerto Rico
Cabo, Brazil

low resolution
 high resolution

Cape Verde

Figure 3. Radiocarbon data from Cape Verde compared to other published
records from the Atlantic. Age errors in the prebomb Cape Verde data
represent 95% confidence intervals from the U/Th agemodel. Errors inΔ14C
values are the reported 1σ uncertainties. Florida data are fromDruffel [1989];
Bermuda includes data from Druffel [1989, 1997] and Goodkin et al. [2012].
Puerto Rico data are from Kilbourne et al. [2007], and Brazil data are from
Druffel [1996]. High-resolution data incorporate ~1 year of growth per
sample, and low-resolution data incorporate ~2 years of growth per sample
(see Methods section for details).

Year

Δ

Figure 4. High-resolution data from Cape Verde showing the 12‰ shift
in Δ14C values that occurred in 1980. The linear regressions were
constrained to have the same slope (parallel lines), and an analysis of
covariance (ANCOVA, MATLAB® aoctool) was used to test the significance
of the intercepts. In this case, the intercepts of the two trend lines are
significantly different (P = 0.022). Also note the decreased interannual
variability after 1980.
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of the basin as part of the gyre circulation [Druffel, 1989; Druffel, 1997; Goodkin et al., 2012]. In the eastern
subtropical Atlantic, the water meets the seasonal outcrops of the isopycnals that ventilate the interior
Caribbean and subducts along these isopycnals toward the equator as part of the lower limb of the STC
(see Figure 1) [Schott et al., 2004; Hazeleger and Drijfhout, 2006]. The Bermuda corals and the Bahamas
sclerosponge show higher Δ14C values relative to other locations because subtropical water spends longer
amounts of time at the surface and does not routinely receive substantial amounts of older subsurface
waters due to lack of upwelling.

During the prebomb period, Bahamas sclerosponge Δ14C values are more variable and depleted in 14C than
contemporaneous coral samples at Bermuda. We interpret this as the result of local changes in the 14C
composition of dissolved inorganic carbon rather than changes in the Δ14C values of the surface waters of
the subtropical gyre. We base this interpretation on recent coral evidence for constant ventilation of the
subtropical North Atlantic during the prebomb period covered by our record [Goodkin et al., 2012].
Possible sources for local waters with depleted 14C composition that may be responsible for the variability
are episodic high-density plumes that cascade over the shelf and spread laterally at depths below the
mixed layer [Hickey et al., 2000] or groundwater with mixed ocean/meteoric origin that is discharged into
the ocean after interaction with the carbonate platform [Whitaker and Smart, 1990]. With either source, the
sclerosponge might record more depleted Δ14C when the residence time of subsurface waters within the
deep channels of the Bahamas bank is longer and thus has a longer time to interact with the carbonate
platform-derived DIC. There are some published data that support this interpretation. For instance,
prebomb data from another sclerosponge specimen (C. nicholsoni) that was collected from Exuma Sound
in the Bahamas, one of the Bahamas’ deep channels, show significantly more depleted Δ14C compositions
than the San Salvador sclerosponge [Rosenheim and Swart, 2007]. The more restrictive environment at this
location results in the incorporation of a local signal into the Δ14C record rather than the more regional
signal recorded in our sclerosponge, which was collected outside of the channels in an open ocean
environment. The postbomb period at the Bahamas, though, closely follows the Bermuda trend and
agrees well with a record from Puerto Rico (Figure 2), a location that receives substantial amounts of
subtropical water [Kilbourne et al., 2007]. Thus, the sclerosponge record can be used to extend the Δ14C
time history of the subtropical North Atlantic, and we use the last 20 years to aid in the interpretation of
the Cape Verde record.

4.2. Cape Verde Coral

The Cape Verde Islands are located in an area prone to strong regional upwelling associated with the dominant
northeasterly trade winds. These winds force offshore Ekman transport and result in the upwelling of cool,
nutrient-rich, and 14C-depleted waters [Mittelstaedt, 1991]. The islands also receive water with higher Δ14C
values in the form of the southward flowing Canary Current and the westward flowing North Equatorial
Current. Thus, the Cape Verde record can be interpreted as a mixture between young subtropical water
and older thermocline waters. It possesses the lowest Δ14C values in the Atlantic because it is the only
location measured thus far that receives substantial amounts of upwelled water.

To aid in the interpretation of the postbomb trend we use a four-box mixing model that depicts the various
sources of 14C to surface waters around the Cape Verde Islands (Figure 5a). Our model is a modified version of
the multibox isopycnal mixing model developed by Druffel [1989] and later used by various other workers
[Grumet et al., 2004; Zaunbrecher et al., 2010; Goodkin et al., 2012]. In this case, the model has boxes that
represent horizontal and vertical seawater sources into Cape Verde as well as an atmospheric box for air-
sea gas exchange between the Cape Verde box and the atmosphere. Using these constraints, the rate of
change of 14C in Cape Verde can be calculated with the following mass balance equation:

dC
dt

¼ K_A � A� KA � C þ KU U � Cð Þ þ KS S� Cð Þ (1)

where A (atmosphere), C (Cape Verde), U (subsurface), and S (subtropical) are the Δ14C values of the boxes.
K_A is the exchange rate between the atmosphere and ocean surface, which is a function of dissolved CO2

(0.013molm�3 [Alvarez et al., 2007]), mixed layer depth (36 m [Johnson et al., 2012]), wind speed (6.89m/s;
Prediction and Research Moored Array in the Tropical Atlantic 13002), and total dissolved inorganic carbon
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(2.09molm�3 [Alvarez et al., 2007]), and KA is the rate of input of
14CO2 to the atmosphere (see supporting

information for details of how K_A and KA were calculated). Similarly, Ks and Ku represent the rates of
exchange between the Cape Verde surface water and the subtropical surface water and upwelled
subsurface waters, respectively. The contribution of advected subtropical surface water relative to
upwelled subsurface water at this location is poorly constrained by observations. As a first
approximation, we assume that these rates were equal to each other and calculate their steady state
values using the Δ14C values from the preindustrial period (1900–1910). Tree ring values were used for
the atmospheric Δ14C (�10.3‰ [Reimer et al., 2013]), Bermuda coral data for the subtropical surface
waters (�40.1‰ [Goodkin et al., 2012]), mollusk shell measurements from the Mauritania-Senegal coast
for the upwelled subsurface waters (�77.33‰ [Ndeye, 2008]), and coral data from this work for the Cape
Verde surface waters (�54.4‰).

The steady state K values were used along with a numerical solution of equation (1) (see supporting
information) to estimate the variability in Δ14C of the Cape Verde surface waters (Figure 5b). This model
uses the Δ14C histories of the atmosphere [Hua et al., 2013; Reimer et al., 2013] and the subtropical surface
waters [Druffel, 1989; Goodkin et al., 2012; this work] and a constant Δ14C value for the upwelling water
(�77.33‰ [Ndeye, 2008]). The model accurately predicts prebomb Δ14C values, the initial response of
Cape Verde to bomb radiocarbon, the timing of the largest rates of Δ14C change, and the overall
magnitude of the bomb spike. However, the model and the Cape Verde data do not agree after 1980
when the model shows a relaxation of Δ14C values that differs from the observations recorded in the coral
(Figure 5b). At this point, the system is clearly not at steady state with one or more of the constraints used
in the forward calculation; therefore, to explain the postbomb trend we must invoke either (1) changes in
the 14C signature of the water that upwells in Cape Verde or (2) changes in oceanic circulation.

We ran inverse models to explore both possibilities. The first model estimates the varying Δ14C values of
the upwelled water that are necessary to reproduce the Cape Verde coral observations (Figure 5c),
whereas the second model calculates relative changes in the upwelling rate of waters of constant Δ14C
(Figure 5d). The two models represent the two possible end-member scenarios that can explain our
observations. In other words, the first model estimates the 14C signature of the subsurface box without
taking into consideration any changes in oceanic circulation, and the second model ignores changes
in subsurface 14C concentrations and focuses only on oceanic circulation (details for the solutions are
given in the supporting information).

C)

D)

Subtropical
Cape Verde
Steady state 
model 
± 1σ

Cape Verde (C)

Atmosphere (A)

Subsurface (U)

Subtropical (S) 

K

Ku

Ks

K
A)

K
s/

K
u

± 1σ
Ks/Ku

A A

B)

Figure 5. (a) Schematic of the box model used to interpret the postbomb trend in Cape Verde. (b) Forward model under preindustrial steady state conditions.
(c) Inverse estimate of the 14C signature of the subsurface box. (d) Inverse estimate of upwelling rates. In all three cases, 1σ error envelopes were obtained by
independent simulations that take into account the analytical errors in the 14C time series, age model errors, the variables used to calculate KA and K_A, and the
preindustrial Ks/Ku ratio, which was allowed to vary by ±45% (details are given in the text and supporting information). The vertical grey line in Figures 5c and 5d
shows the sudden jump in Δ14C values in the coral data.
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4.3. Implications for Other Coral Upwelling Records

A previously published Δ14C record from a Galapagos Islands’ coral [Guilderson and Schrag, 1998] shows a
similar response to bomb 14C as Cape Verde (Figures 7a and 7b). This is not entirely surprising given the
broadly similar oceanographic conditions at both locations. In the Pacific, old 14C-depleted waters from
the Equatorial Undercurrent (EUC) are brought to the surface in the eastern part of the basin as part of the
STC circulation. Changes in upwelling strength are captured in the Galapagos coral as seasonal and
interannual variations in Δ14C values. The coral displays minimum Δ14C values during the cool season
when upwelling was stronger and year-round elevated Δ14C values during El Niño–Southern Oscillation
(ENSO) years when upwelling was muted. Much like the Cape Verde record, the Galapagos shows an
abrupt jump in Δ14C values in 1977 followed by an immediate decrease in seasonal/interannual variability
(Figure 7b).

The timing of the Δ14C jump is interesting because it corresponds to a period when there was a change
in the phase of the Pacific Decadal Oscillation (PDO) toward a positive or warm regime [Mantua and
Hare, 2002]. Guilderson and Schrag [1998] argued that the shift in coral Δ14C values was the result of
a permanently deeper thermocline in the eastern equatorial Pacific with a consequent reduction of
older, cooler, and deeper thermocline waters upwelling to the surface. Moreover, they raised the
possibility that a permanently deeper thermocline may be responsible for the intensification in ENSO
events observed after 1976. Our results from Cape Verde potentially offer a more parsimonious expla-
nation for the rapid increase in Δ14C values of the Galapagos coral that does not invoke a response of
the upwelling system to changes in the climate of the Pacific. The rapid increase in Δ14C, and the
decrease in seasonal/interannual variability afterward, may be the results of the slow penetration of
bomb radiocarbon into the thermocline. Thus, the presence of bomb 14C alone may explain the two dis-
tinctive features of the postbomb trend in the Galapagos reconstruction that closely mirror our obser-
vations from the Cape Verde Islands. This alternative explanation, however, is too unconstrained to
model as we have done for the Cape Verde record without a longer record including the peak in bomb
14C concentration.

Our interpretation for the increase in Δ14C from the Galapagos Islands’ coral record does not mean that
corals, in general, are unable to capture the PDO signal. Other prebomb coral records from the Galapagos
do show a Δ14C response to changes in the phase of the PDO [Grottoli et al., 2003; Druffel et al., 2014]. The
Δ14C response in these records, however, is in the opposite direction of what is observed for the
Guilderson and Schrag’s [1998] coral. For instance, Druffel et al. [2014] found an increase in average
Δ14C values after the mid-1940s change in the phase of the PDO, which changed from positive to
negative phase. They interpreted this observation as the result of variations in the sources of water to
the EUC. It is possible that a similar change between sources to the EUC occurred in the mid-1970s;
however, the presence of bomb 14C in the subtropical regions, the EUC, and the eastern equatorial
Pacific thermocline complicates the coral Δ14C versus PDO relationship.

Year

B)A)

Year

Figure 7. (a) Coral records from the subtropical Atlantic [Druffel, 1989; Goodkin et al., 2012; this work], Cape Verde, and the
Galapagos [Guilderson and Schrag, 1998]. (b) Data from the Galapagos showing a 14.4‰ shift in Δ14C values that occurred
in 1977. The linear regressions were constrained to have the same slope, and an analysis of covariance (ANCOVA, MATLAB®
aoctool) was used to test the significance of the intercepts (P = 0.017).
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4.4. Implications for the Ventilation
Time Scales of the Subtropical Cells

There is an ~20 year lag in the arrival of
bomb 14C to the thermocline of the
eastern tropical Atlantic relative to the
subtropical ocean. This can be observed
in Figure 8, which shows the recon-
structed history of bomb 14C penetra-
tion from the inverse model presented
in section 4.2. The lag, however, can also
be estimated directly with the Cape
Verde 14C data. For instance, maximum
Δ14C values occurred in Cape Verde
~21 years after the highest values were
reached in the mixed layer of the
subtropical Atlantic. Similarly, the shift
in Δ14C values happened ~20 years

after bomb 14C was initially present in the subtropics. The slight disagreements between the two
estimates (20 versus 21 years) are likely due to uncertainty within the age models of both time series.
Using this rationale, we can estimate a lag for the arrival of bomb 14C into eastern equatorial upwelling
system relative to the subtropical Pacific. In this case, the abrupt jump in Δ14C values observed by
Guilderson and Schrag [1998] occurred ~18 years after bomb 14C was present in the subtropical
Pacific. Maximum Δ14C values had yet not occurred in the Galapagos coral when it was collected
(Figures 7a and 7b); however, based on the observed 18 year lag we can predict that maximum values
occurred around 1991. In both cases, similar lags between these different points in the Δ14C bomb
curve suggest that any changes in the vigor or pathway of the STC are not sufficient to change the
lag time over this time period of several decades. This is confirmed in the Cape Verde Islands with both
lags differing only within the uncertainties of the age models, but it has yet to be confirmed in the
Pacific because another coral sampled after the peak in Δ14C would have to be measured from the
same location.

The lags presented above can be interpreted as an estimate of the average age of the water that
participates in the eastern boundary upwelling systems of both ocean basins. In the Atlantic the 20 year
travel time is consistent with estimates of the mean ages of water parcels in the eastern tropical
Atlantic calculated using transient tracer distributions. For instance, Schneider et al. [2012] measured a
suite of water samples for CFC-12 and SF6 concentrations and determined a mean age of 15–20 years
in the upper thermocline of the Guinea Dome (40–80m) south of the Cape Verde Islands where
off-equatorial upwelling in the North Atlantic STC occurs (their Figure 11). Similarly, CFC ages calculated
by Fine et al. [2001] for the Pacific are consistent with the lag that we interpret from the Galapagos
coral Δ14C reconstruction. Specifically, Fine et al. [2001] estimate ventilation time scales of 15–20 and
20–25 years for the σθ = 25 and σθ = 26.2 density surfaces in the Pacific east of the Galapagos Islands
(their Figure 4).

5. Conclusions

Overall, our observations and modeling effort provide constraint for models of tropical ocean circulation and
anthropogenic CO2 uptake. Effectively, our interpretations of the unique Δ14C record from the Cape Verde
Islands offer an independent estimate of the ventilation time scale for tropical Atlantic thermocline waters.
These interpretations lead to a similar estimate for the Pacific thermocline waters using previously
published coral Δ14C records [Guilderson and Schrag, 1998]. Models attempting to constrain anthropogenic
CO2 uptake as well as circulation models should reproduce the unique shape of the Cape Verde (and
Galapagos) Δ14C records if parameterized to do so. Furthermore, these curves can simply result from a
slower ventilation time of bomb 14C rather than more complex explanations of changes in thermocline
depth (related to ENSO variability) or changes in the strength of the subtropical cells.

Δ

Year

Figure 8. 14C in the atmosphere [Hua et al., 2013; Reimer et al., 2013], the
subtropical Atlantic (Figure 7a), and the eastern Atlantic thermocline
(inverse model output; Figure 5c, the dashed line is the 10 year moving
average).
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