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Electromagnetic Characterization of Miniature Antennas for Portable Devices 

Diana P. Aristizabal 

ABSTRACT 

Advances in technology have placed a great emphasis on the design of broadband 

antennas as well as antenna miniaturization to cope with the demands of making 

electronic and handheld communication devices smaller and more efficient. In this thesis, 

the design and fabrication of a frequency independent antenna and a narrow-band planar 

microstrip Balun are presented. An analysis of frequency selective surfaces is also 

introduced in order to demonstrate their capability to miniaturize antenna thickness. 

Lastly, s-parameters measurements and efficiency characterization are performed to 

determine the radiation properties of surface mount chip inductors in order to determine 

the feasibility of using them as electrically small antennas. 

Two types of frequency independent antennas are considered due to their planar 

geometries, the Equiangular and Archimedean spiral antennas. Frequency independent 

antennas are radiating devices that have frequency independent impedance and pattern 

properties because their shape is specified only in terms of angles. 

The Balun is designed to meet the need of a feeding element for the Archimedean 

spiral antenna. A Balun is a three port device that connects an unbalanced transmission 

line such as a coaxial line to a balanced feed line such as the one required by two-arm 

spiral antennas. The Balun discussed in this work is designed to operate at 2.4 GHz with 



 xi

a 200 MHz bandwidth and to transform the antenna input impedance to a 50-ohm 

reference impedance. The main characteristics from this device that distinguish it from 

commercially available structures are its low cost, planarity, and compact footprint. The 

balancing capability of this Balun is shown by the close agreement between the measured 

and simulated results. 

Antennas can be potentially miniaturized in the z-direction by replacing the PEC 

ground plane separated from the antenna by a λ/4 thick substrate with a frequency 

selective surface (FSS) structure that allows the ground plane conductor to be in close 

proximity to the antenna without affecting its radiation performance. The FSS layer 

operating at 2.4 GHz presented in this thesis is static (not tuned) and thus the overall 

bandwidth reduces approximately to the bandwidth obtained with the narrow-band Balun. 
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Chapter 1 

Introduction 

1.1 Overview 

Advances in technology have led to the design of antennas capable of transmitting 

and/or receiving radio frequency signals at a wide frequency band, which would simplify 

the complexity in a wireless network design by reducing the amount of antennas 

necessary to cover a wide frequency range of operation. Two types of inherently 

broadband antennas were considered in this research work due to their planar geometries, 

the Equiangular and Archimedean spiral antennas. These two types of antennas were 

designed as two-arm spirals. They were fed using a feed network that connects the 

antenna balanced input to an unbalanced feed line. Electromagnetic analysis of each of 

these antennas is presented in chapter 2 in order to establish the best working design at 

the frequency range of interest from 2 to 6 GHz. 

The optimum frequency independent antenna design as far as its fine quality 

radiation characteristics was constructed and integrated with a narrow-band feed network. 

Throughout chapter 3, electromagnetic and circuit level simulations were performed to 

investigate the effect on the antenna radiation performance when decreasing the substrate 

thickness from λ/4 (calculated at 2.4 GHz) to 31 mils. In order to feed the two-arm spiral 

antenna with a narrow-band feed network, it was necessary to access the antenna feed 

point with vias that go to the end of the substrate and twin-strip lines to connect the 
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balanced antenna input to the feed network. With the aim of electromagnetic simulations, 

the antenna performance was analyzed all the way to the point where it is connected to 

the balanced feed network. 

The designed narrow-band feed network consists of a Balun, which properly 

connects a balanced transmission line to an unbalanced transmission line. The unbalanced 

transmission line connects the antenna balanced feed line to an RF coaxial connector. 

Furthermore, the balun was measured with the antenna at the input of the connector as 

well as separate from the antenna in a back-to-back configuration. The RF coaxial 

connector was also simulated in HFSS in a two-port back-to-back configuration so as to 

investigate the performance of the transition from the unbalanced line to the input of the 

connector. 

In chapter 4, the background theory of operation for frequency selective surfaces 

is analyzed. A frequency selective surface (FSS) is a metal surface coated with resonant 

structures that do not support surface waves within a frequency band. They can serve as 

substrates for antennas allowing them to lie directly adjacent to the ground plane surface 

without being shorted out. A low-frequency structure operating at 2.4GHz is evaluated 

that could potentially miniaturize the spiral antenna designed in chapter 2 in the z-

direction. 

Advances in technology have placed a great emphasis not only on broadband 

antennas to cover an entire design application range but also on antenna miniaturization 

to cope with the demands of making electronic devices smaller. In chapter 5, the 

fundamental limits of electrically small antennas are studied as far as how small an 

antenna can be at a particular wavelength and still behave as an efficient radiating device. 
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In addition, research and measurement characterization were oriented to investigate the 

feasibility of using chip inductors mounted in a 1-port configuration as electrically and 

physically small helical antennas operating at the frequency range of 1 to 3 GH. The 

research focuses on reflection coefficient and radiation efficiency measurements in order 

to characterize their performance as electrically small antennas. 

1.2 Contributions 

The design of two self-complementary frequency independent spiral antennas and 

a planar narrow-band Balun has been presented. The electromagnetic simulations and 

measurement characterization of these antennas and feed network have provided an 

understanding of their capabilities and limitations. The main contributions from this work 

are the introduction of inherently broadband antennas achieving optimum operation, the 

design of a planar narrow-band Balun transformer operating as an efficient antenna feed 

network, the characterization of coil inductors as practical miniature antennas, and the 

study of FSS structures as potential ground planes structures allowing antenna 

miniaturization. 
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Chapter 2 

Frequency Independent Antennas 

2.1 Introduction 

An antenna is the structure associated with the transition region between a guided 

wave present in a waveguide, microstrip or transmission line and a free-space radiating 

wave. Thus, an antenna represents an interface where the conversion of electrons on 

conductors to photons in space takes place. Figure 2.1 illustrates this transition between a 

guided wave and a free space wave. It is desirable that this transmission of energy occurs 

with maximum efficiency. Once the transmission line separation approaches a 

wavelength or more, the guided wave or plane wave traveling along the transmission line 

in one dimension tends to be radiated so that the opened-out line acts like an antenna, 

which launches a free space wave or spherically expanding wave as illustrated on figure 

2.1. The currents on the transmission line flow out on the transmission line and end there, 

but the fields associated with them continue [1]. 

The demands for numerous applications of electromagnetics due to the advances 

in technology have led to the design of broadband antennas. In 1954, Victor H. Rumsey 

introduced a class of structures and suggested that their pattern and impedance properties 

should be independent of frequency [2]. Rumsey’s principle states that the impedance 

and pattern properties of an antenna are frequency independent if the antenna shape is 

specified only in terms of angles [1]. Therefore, frequency independent antennas 
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correspond to a type of structures that can be their own continuously scaled models since 

any characteristic length is replaced by specified angles.  

 

Figure 2.1  Antenna Defined as a Transition Region Between a Wave Guided by a Transmission Line and a 
Free-Space Wave [1] 
 

A successful frequency independent antenna must radiate most of the power in a 

finite active region so that it can be truncated with little effects on the pattern. Therefore, 

the currents must decay after the radiating active region. The finite active region is 

identified by truncation constants used to size the design. It must also be a transmission-

line structure to carry power to the lower frequency end when fed from the high 

frequency end. Furthermore, a true frequency independent antenna has a constant beam 

width over the designed frequency band of operation if the active region dimensions scale 

with wavelength [3]. 

Two types of frequency independent antennas were considered due to their planar 

geometries, the self-complementary planar Equiangular and Archimedean spiral 

antennas. A spiral antenna is a bidirectional radiating device, which consists of a thin 

metal foil spiral pattern etched on a substrate, usually fed from the center, and located 

over a backing cavity to either properly reflect or absorb the energy [3]. These two types 
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of antennas were designed as two-arm spirals since they can be fed using a fairly simple 

feed network that connects the antenna balanced input to an unbalanced feed line. 

Both the Equiangular and Archimedean spiral antennas share a particular feature 

of frequency independent antennas called the self-complementary structure. The 

complementary structure of a metal antenna with input impedance Zmetal is an antenna 

with input impedance Zair that can be formed with air replacing the metal and metal 

replacing the air of the original metal antenna. Therefore, complementary antennas are 

similar to a positive and negative in photography. [4]. Then, it can be shown from 

Babinet’s principle that the impedances of complementary antennas are related by 

equation 2.1, where η is the impedance of free space equal to 377 ohms.  

Zair Zmetal⋅
η

2

4   (2.1) 

If an antenna and its complement are actually the same, they are called self-

complementary and are defined by equation 2.2 [4].  

Zair Zmetal
η

2
188.5ohms

 (2.2) 

Throughout this chapter, electromagnetic analysis of each of these antennas is 

presented in order to establish the best working design at the frequency range of interest. 

Subsequently, the best antenna design is fabricated and tested with a narrow-band feed 

network. This procedure is presented in Chapter 3. 

2.2 Equiangular Spiral Antenna 

The self-complementary planar equiangular spiral antenna is considered a 

frequency independent antenna because it satisfies the requirement that its geometry is 

entirely defined by angles. Additionally, this type of antenna obeys the truncation 
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requirement that the currents decay after the radiating active region so that the structure 

can be stopped without adversely affecting the antenna properties [3].  

2.2.1 Background Theory 

An equiangular spiral antenna can be defined by the spiral curve given by 

equation 2.3 and also shown in figure 2.2 [1], where r is the radial distance to a point P on 

the spiral, θ is the angle sweep with respect to the x axis, and a is the spiral constant or 

flare rate which determines the tightness of the spiral winding [2]. The spiral curve on 

figure 2.2 is right-handed due to the positive value of the constant a. Likewise, left-

handed spiral curves can be obtained using negative values of a. 

r1 aθ     (2.3) 

 

Figure 2.2  Equiangular Spiral Curve 

Rotating the spiral curve r1 (equation 2.3) by a δ angle generates the spiral curve 

r2 (equation 2.4). Similarly, shifting the angle θ of equations 2.3 and 2.4 by 180 degrees 

(π) creates the spiral curves r3 and r4 (equations 2.5 and 2.6 respectively). 

r2 a θ δ−( )
   (2.4) 

r3 a θ π−( )
   (2.5) 
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r4 a θ π− δ−( )
   (2.6) 

By metalizing the areas between spiral curves r1 and r2 (equations 2.3 and 2.4 

respectively) and between spiral curves r3 and r4 (equations 2.5 and 2.6 respectively), 

with the other areas open, a two-arm equiangular spiral antenna is created as shown on 

figure 2.3. The arrows indicate the direction of the outgoing waves traveling along the 

conductors resulting in right-circularly polarized (RCP) radiation outward from the page 

and left-circularly polarized radiation into the page [1].  

The δ rotation angle can be defined by equation 2.7, where the gap/arm ratio is 

equal to 1 for a self-complementary structure and N is the number of spiral turns [3]. 

Spirals with one half to three turns have been found experimentally to be relatively 

insensitive to the parameters “a” and δ [4]. Another way of describing the spiral curves is 

through the expansion factor (EF), which is defined by equation 2.8 as the ratio of radius 

increase in one turn. 

δ
2 π⋅

N 1
gap
arm

+





⋅
  (2.7) 

EF a2 π⋅
   (2.8) 

The high-frequency limit of operation is determined by the spacing “d” of the 

input terminal [1]. The upper cutoff is limited to frequencies for which the spacing “d” of 

the input terminal cease to look like a point [5]. In the same way, the low-frequency limit 

of operation is determined by the overall diameter “D” [1], which denotes the point of 

truncation where the total arm length is comparable to the wavelength and where the 
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current becomes negligible [5]. Thus, for all frequencies above the lowest frequency of 

operation, the pattern and impedance characteristics are frequency independent [5]. 

 

Figure 2.3  Frequency-Independent Planar Self-Complementary Equiangular Spiral Antenna 

2.2.2 Design 

The frequency range of interest is from 2 to 6 GHz. The equiangular spiral was 

designed as a two-arm spiral with the number of turns N equal to 2. By setting the 

maximum radius of the spiral “R” equal to λL/4 (where λL is the wavelength at the lower 

band edge frequency) and the minimum radius of the spiral “r” to λU/4 (where λU is the 

wavelength at the upper frequency band edge), the antenna bandwidth is 3 to 1. This is 

the bandwidth we are looking for even though this type of antenna could provide much 

larger bandwidths. The flare rate “a” can be found from the maximum radius “R” as 

shown by equation 2.9, where 4π is the θ angle for two spiral turns, “c” equals 3x10^8 

m/s, fL equals 2 GHz, and ereff is the effective dielectric constant of the dielectric material 

backing up the antenna. We chose the Rogers 5880 RT Duroid substrate with er equal to 

2.2 for all calculations and simulations. The effective dielectric constant of this Rogers 

material is approximately equal to 1.61. By solving equation 2.9, we obtain a flare rate 

                                                 
1  The effective dielectric constant was approximated by the following formula ereff = (er+1)/2 
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“a” equal to 1.31. The expansion factor equals to 5.46, and a typical value for the 

expansion factor is 4. From equation 2.7, we find the δ rotation angle to be equal to π/2 

for a two-turn self-complementary structure consisting of two arms. 

R a4 π⋅ λL
4

c

4 fL⋅ ereff⋅  (2.9) 

Table 2.1 shows the calculated radius equations for the two-arm spiral antenna, 

where r1 through r4 corresponds to equations 2.3 to 2.6 respectively. Units are specified 

in mm. The physical dimensions of the equiangular spiral antenna are 50.5mm x 33.7mm. 

Table 2.1  Radius Equations Calculations for the Two-Arm Equiangular Spiral Antenna 
  θ (radians) r1 (mm) r2 (mm)   θ (radians) r3 (mm) r4 (mm) 
0 0.00 1.0 0.7 π 3.14 1.0 0.7 
π/2 1.57 1.5 1.0 3π/2 4.71 1.5 1.0 
π 3.14 2.2 1.5 2π 6.28 2.2 1.5 

3π/2 4.71 3.4 2.2 5π/2 7.85 3.4 2.2 
2π 6.28 5.0 3.4 3π 9.43 5.0 3.4 

5π/2 7.85 7.5 5.0 7π/2 11.00 7.5 5.0 
3π 9.43 11.3 7.5 4π 12.57 11.3 7.5 

7π/2 11.00 16.9 11.3 9π/2 14.14 16.9 11.3 
4π 12.57 25.3 16.9 5π 15.71 25.3 16.9 

 

2.3 Archimedean Spiral Antenna 

Similar to the equiangular spiral antenna, the self-complementary planar 

Archimedean spiral antenna is also considered a frequency independent antenna because 

it satisfies both the angle and truncation requirements. The properties of the Archimedean 

spiral antenna are similar to those of the equiangular planar spiral antenna. Their 

differences are in the equations defining their arms and the parameters used to achieve a 

self-complementary structure. 
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2.3.1 Background Theory 

An Archimedean spiral antenna can be defined by the spiral radius increasing 

uniformly with angle given by equation 2.10, where r1 is the inner radius of the spiral, ro 

is proportionality constant for the growth rate, and φ is the angle sweep with respect to 

the x axis [6]. 

ra ro φ⋅ r1+    (2.10) 

A rotation of the spiral curve of equation 2.10 generates the other edge of the 

spiral arm as shown by equation 2.11. Similarly, shifting the angle φ of equations 2.10 

and 2.11 by 180 degrees (π) creates the second arm given by equations 2.12 and 2.13.  

rb ro φ⋅ 2 r1⋅+    (2.11) 

rc ro φ π−( )⋅ r1+   (2.12) 

rd ro φ π−( )⋅ 2 r1⋅+   (2.13) 

In order to control the frequency of operation, the outer and inner radius r2 and r1, 

respectively, must be defined. The outer radius r2 determines the low-frequency of 

operation, and the inner radius r1 determines the high frequency limit of operation. 

Equations 2.14 and 2.15 show the relation between radius and frequency of operation, 

where fhigh and flow are the high and low end frequencies of the operating range, 

respectively, and “c” is the speed of light equal to  3x10^8 m/s. In practice, the low 

frequency point can be greater than predicted by equation 2.15 due to reflections from the 

end of the spiral, which could be minimized by using resistive loading at the end of each 

arm or by adding conductivity loss to some part of the outer turn of each arm [6]. 
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Likewise, the high frequency limit may be less than predicted by equation 2.14 due to 

feed region effects [6]. 

r1
c

2π fhigh⋅    (2.14) 

r2
c

2π flow⋅    (2.15) 

Moreover, the width of each arm and the spacing between each turn are set equal 

to obtain a self-complementary structure. The width and space of each arm are defined by 

equation 2.16. Since frequency independent behavior is best achieved when the inner 

radius is equal to the strip width or spacing between turns [6], r1 is established by 

equation 2.17. The proportionality constant for the growth rate ro is given by equation 

2.18. 

W
r2 r1−

4 N⋅    (2.16) 

r1
r2

4 N⋅ 1+    (2.17) 

ro
2 W⋅
π    (2.18) 

By metalizing the areas between spiral curves “a” and “b” (equations 2.10 and 

2.11 respectively) and between spiral curves “c” and “d” (equations 2.12 and 2.13 

respectively), with the other areas open, we obtain a two-arm Archimedean spiral antenna 

as shown on figure 2.4. 



 13

 

Figure 2.4  Frequency-Independent Planar Self-Complementary Archimedean Spiral Antenna 

The radiations from the nearly equal and opposite currents at the feed point 

separated by the growing spiral arms cancel in the far field. When the perimeter of the 

turn approaches one wavelength, the out-of-phase currents become in phase so that the 

currents no longer cancel in the far field. This condition continues for some distance after 

the 1λ perimeter point [3]. The spiral radiates RHC (Right Hand Circular) polarization on 

one side and LHC (Left Hand Circular) polarization on the other side [3]. One of these 

polarizations is eliminated when the antenna is mounted over a cavity. In order to 

determine the sense of the circular polarization, let your fingers roll in the direction of the 

spiral with the tips toward increasing radius and the thumb points to the pattern maximum 

[3]. The Archimedean spiral shown on figure 2.4 radiates RHC polarization. 

2.3.2 Design 

The frequency range of interest is from 2 to 6GHz. By plugging these frequencies 

of interest into equations 2.14 to 2.18, we obtain the parameters necessary to design the 

antenna. Table 2.2 shows the calculated parameters for the Archimedean spiral antenna. 

The number of turns “N” was set to two. Table 2.3 shows the calculated radius equations 

for the two-arm spiral antenna, where ra through rd corresponds to equations 2.10 to 2.13 
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respectively. Units are specified in mm. The physical dimensions of the equiangular 

spiral antenna are 53.1mm x 47.7mm. 

Table 2.2  Calculated Design Parameters for the Archimedean Spiral Antenna 
Parameter Value (mm)

r1 2.653 
r2 23.873 
W 2.653 
S 2.653 
ro 1.689 

 

Table 2.3  Radius Equations Calculations for the Two-Arm Archimedean Spiral 
  θ (radians) ra (mm) rb (mm)   θ (radians) rc (mm) rd (mm) 
0 0.00 2.7 5.3 π 3.14 2.7 5.3 
π/2 1.57 5.3 8.0 3π/2 4.71 5.3 8.0 
π 3.14 8.0 10.6 2π 6.28 8.0 10.6 

3π/2 4.71 10.6 13.3 5π/2 7.85 10.6 13.3 
2π 6.28 13.3 15.9 3π 9.43 13.3 15.9 

5π/2 7.85 15.9 18.6 7π/2 11.00 15.9 18.6 
3π 9.43 18.6 21.2 4π 12.57 18.6 21.2 

7π/2 11.00 21.2 23.9 9π/2 14.14 21.2 23.9 
4π 12.57 23.9 26.5 5π 15.71 23.9 26.5 

 

2.4 Electromagnetic Design and Simulations of Equiangular Spiral Antenna 

In order to perform an electromagnetic simulation of the antenna design, the 

program Ansoft HFSS (High Frequency Structure Simulator) was used. HFSS employs 

the Finite Element Method (FEM) for the EM simulations of arbitrary 3D volumetric 

passive devices [7]. Its basic mesh element is a tetrahedron, which allows solving 

arbitrary 3D geometries involving complex curves and shapes [7]. 

The two-arm equiangular spiral antenna was drawn in HFSS using the calculated 

radius equations presented on table 2.1. The substrate was defined as the Rogers 5880 RT 

Duroid with er equal to 2.2. The metal thickness was set to 1.7 mils. Additionally, the 

preliminary simulations of the spiral antenna utilize the traditional λ/4 cavity backed 

implementation, which introduces a fixed length in terms of λ limiting the frequency 
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independent characteristics of the antenna [8]. The λ/4 substrate thickness was calculated 

at 2.4 GHz to be equal to 24.7mm. 

In addition to generating a precise 3D drawing of the antenna to be characterized, 

boundary conditions represent a major area of concern with efficiently and correctly 

modeling an antenna in HFSS. Boundary conditions specify the field behavior on the 

surfaces of the problem region and object interfaces [7]. The wave equation that is solved 

by Ansoft HFSS is derived from the differential form of Maxwell’s equations [7]. For 

these expressions to be valid, it is assumed that the field vectors are single-valued, 

bounded, and have continuous distribution along with their derivatives [7]. Then, 

boundary conditions define the field behavior across discontinuous boundaries [7].  

There are two types of boundaries that need to be considered and defined properly 

in order to accurately simulate an antenna in HFSS. The first type of boundary is the 

excitation port that permits energy to flow into and out of a structure [7]. The second type 

of boundary is the radiation surface or absorbing boundary that enables modeling a 

surface as electrically open so that waves can radiate out of the structure and toward the 

radiation boundary [7]. When radiation boundaries are included in a structure simulation, 

calculated S-parameters include the effects of radiation loss [7]. In addition, the radiation 

boundary can be assigned to a 3D box enclosing the radiating structure (the spiral antenna 

in this case) at a radial distance λ/4 in every direction as shown by figure 2.5. 
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Figure 2.5  Radiation Boundary Assignment for the Equiangular Spiral Antenna 

There are two types of excitation boundaries in HFSS: one is external or wave 

port and the other one is internal or lumped port. Since spiral antennas are conventionally 

fed in the center of the spiral, an initial simple feeding was created with a lumped port 

assignment at the center of the spiral represented by a 2D rectangular surface as shown 

by figure 2.6. A terminal line was defined to create a voltage polarity reference in the port 

boundary. The arrow head is synonymous with “+” and the arrow base is synonymous 

with “-”.  

 

Figure 2.6  Lumped Port Assignment for the Equiangular Spiral Antenna 
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2.4.1 S-parameter Simulations 

The scattering matrix is used to provide a complete description of an N-port 

network as seen at its N ports [9]. Furthermore, the scattering [S] matrix relates the 

voltage waves incident on the ports to those reflected from the ports as stated by equation 

2.19, where Vn
- and Vn

+ are the amplitudes of the voltage waves reflected and incident on 

port n respectively [9]. For a 1-port network such as an antenna, the scattering parameter 

of interest is the reflection coefficient or S11 defined as the amplitude of the reflected 

voltage wave V1
- coming out of port 1 to the incident voltage wave V1

+ going into port 1 

when all other ports are terminated in matched loads as shown by equation 2.20 [9]. The 

reflection coefficient is also represented as Γ(1) (V2
+=0) [9]. 

[Vn
-] = [S] [Vn

+]  (2.19) 

S11 = V1
- / V1

+ (V2
+=0) (2.20) 

The return loss (RL) in dB defined by equation 2.21 describes the reduction in the 

amplitude of the reflected energy as compared to the forward energy due to the mismatch 

between the transmission line characteristic impedance and the load impedance. When Γ 

is equal to zero the load is matched to the line, so there is no reflected power and the 

return loss equals ∞ dB. When the magnitude of Γ is equal to 1 all incident power is 

reflected, so the return loss equals 0 dB [9]. 

RL 20− log Γ( ) dB⋅   (2.21) 

A flat metal sheet is used in many antennas as a ground plane. Therefore, 

simulations have been performed with a ground plane located approximately a quarter-

wavelength from the antenna, and without a ground plane, in order to compare the 

different and expected antenna performance. Figure 2.7 shows S11 in dB and phase for the 
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equiangular spiral antenna having a λ/4 thick substrate2 with and without a ground plane 

present. The equiangular spiral antenna has a return loss of less than 5dB for a frequency 

range from 2 to 6 GHz. The effect of backing the antenna with a ground plane is 

illustrated by the blue trace in both plots shown on figure 2.7. For instance, the highest 

resonance for the antenna backed by a λ/4 thick substrate occurs at 2.2 GHz where S11 

equals -18.6dB. Conversely, there are two distinctive resonances for the antenna backed 

by a λ/4 thick substrate and a ground plane occurring at 1.9 and 4.6 GHz where S11 

equals -17.61 and -17.73 dB respectively. 
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Figure 2.7  S-parameter Simulations for the Equiangular Spiral Antenna. Red Trace- Antenna Backed by a 
λ/4 Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane. Left Plot- 
Return Loss (dB). Right Plot- Return Loss (phase) 
 

Input impedance is defined as the impedance presented by an antenna at its 

terminals or the ratio of the voltage to current at a pair of terminals as demonstrated by 

equation 2.22, where ZA is the antenna impedance, RA is the antenna resistance, and XA is 

the antenna reactance at its terminals [5]. The resistive part of the antenna impedance 

(RA) consists of two components as shown by equation 2.23, where Rr is the radiation 

resistance and RL is the loss resistance of the antenna [5]. 

                                                 
2 The λ/4 thickness was calculated at 2.4 GHz for the Rogers 5880 material (dielectric constant equal to 
2.2) to be equal to 24.7 mm. 
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ZA RA j XA⋅+   (2.22) 

RA Rr RL+    (2.23) 

Figure 2.8 shows the simulated input impedance for the equiangular spiral 

antenna having a λ/4 thick substrate with and without a ground plane present. For a 

frequency-independent self-complementary spiral, the input impedance should be flat 

over a wide frequency range. This trend is better represented by the antenna design 

without the ground plane as shown by the red trace on both plots of figure 2.8, since the 

impedance follows a more constant flat trace between 3.5 and 6 GHz. 
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Figure 2.8  Input Impedance Simulations for the Equiangular Spiral Antenna. Red Trace- Antenna Backed 
by a λ/4 Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane. Left 
Plot- Input Impedance (real). Right Plot- Input Impedance (imaginary) 

 

The voltage standing wave ratio (VSWR) is a measure of the mismatch of a line 

and can be defined by equation 2.24 to be a real number such that 1 ≤ VSWR≤ ∞ [9]. 

Matched impedances give ideal power transfer that translates into a value of VSWR 

equal to 1. On the contrary, mismatched impedances represent reduced power transfer 

that translates into a high value of VSWR. 

VSWR
1 Γ+

1 Γ−   (2.24) 
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The voltage standing wave ratio is typically used to measure antenna bandwidth 

[6]. Figure 2.9 shows the simulated VSWR for the equiangular spiral antenna having a 

λ/4 thick substrate with and without a ground plane present. For the antenna without the 

ground plane present, the VSWR referenced to 50 ohms is less than 3 except for the 

frequency range between 2.6-3.1 GHz. On the other hand, for the antenna with a ground 

plane present, the VSWR referenced to 50 ohms is less than 3 except for two frequency 

ranges between 2.3-2.7 GHz and 4.9-6 GHz. 

1

2

3

4

5

2 2.5 3 3.5 4 4.5 5 5.5 6
Frequency (GHz)

V
S

W
R

No Ground Plane

Ground Plane

 

Figure 2.9  Simulated VSWR for the Equiangular Spiral Antenna. Red Trace- Antenna Backed by a λ/4 
Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane 
 

2.4.2 Radiation Pattern Simulations 

An antenna radiation pattern is a graphical representation of the radiation 

properties of the antenna, such as radiation intensity and directivity phase or polarization, 

as a function of space coordinates [5]. An amplitude field pattern is a graph of the spatial 

variation of the electric or magnetic fields along a constant radius [5]. In most cases, 

radiation and field patterns are determined in the far-field region, which is the region of 

the field of the antenna where the angular field distribution is essentially independent of 

the distance from the antenna [5]. The far-field region is commonly taken to exist at 
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distances greater than 2D2/λ from the antenna, where D is the antenna maximum overall 

dimension [5]. Moreover, the radiation pattern is represented as a function of the standard 

spherical coordinate system. The spherical coordinate system consists of a radial distance 

r that is maintained fixed, and two angular coordinates (θ,φ) as shown by figure 2.10. 

Two-dimensional planes are used to characterize an antenna radiation pattern, such as the 

elevation plane or principal E-plane that corresponds to the Theta angle and the azimuth 

plane or principal H-plane that corresponds to the Phi angle [5]. The E and H-planes are 

the planes containing the electric-field and magnetic-field vectors respectively as well as 

the direction of maximum radiation [5]. 

 

Figure 2.10  Coordinate System for Antenna Analysis 

The polarization of a radiated wave is defined as that property of an 

electromagnetic wave describing the time varying direction of the electric-field vector 

[5]. The polarization characteristics of an antenna can be represented by its polarization 
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pattern, which is the spatial distribution of the polarizations of a field vector excited 

(radiated) by an antenna taken over its radiation sphere [5]. At each point on the radiation 

sphere the polarization is usually resolved into a pair of orthogonal polarizations, the co-

polarization and cross polarization [5].  

There are three types of polarization; linear, circular, and elliptical polarizations. 

A time-harmonic wave is circularly polarized at a given point in space if the electric or 

magnetic field vector at that point traces a circle as a function of time [5]. The necessary 

and sufficient conditions to accomplish this type of polarization are that the electric or 

magnetic field vector must have two orthogonal linear components which must have the 

same magnitude and a time-phase difference of odd multiples of 90 degrees [5]. Spiral 

antennas exhibit circular polarization. The sense of the spiral wrap and the direction of 

current flow determine the circular polarization sense [3]. 

The mode number of a spiral refers to the number of 2π (radians) or 360° 

(degrees) cycles that occur in the feed phasing when processing through the arms CCW 

(counterclockwise) [3]. For instance, mode 1 phases in a two-arm spiral are 0° and 180°. 

Moreover, the phase difference moving CCW between arms is found from the mode 

number m and the number of arms N as shown by equation 2.25 [3]. We determine the 

mode radiating by the phase slope. RHC polarization produces a negative slope as φ 

increases (CCW rotation) [3]. We use the convention that positive modes radiate RHC 

and negative modes radiate LHC and place the negative sign in the mode expressions.  

phase
2 π⋅ m⋅

N
−

   (2.25) 
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“The number of arms equals the number of independent modes. An axially 

symmetrical antenna such as a spiral can radiate these modes when we phase the feeding 

of the ports to match the phase rotation of the mode [3]”. For Instance, a two-arm spiral 

antenna has modes +1 and -1, which produce the same phasing at the feed points of the 

spiral: 0° and 180°. The spiral wrap direction determines the polarization radiated [3]. 

Similarly, all odd-order (…, -3, -1, 1, 3, 5, …) modes have the same phasing on two 

feeds, which means that the two-arm spiral will radiate these modes efficiently if current 

flows on the arms where the spiral circumference is the same integer number of 

wavelengths [3]. Therefore, whenever the circumference of a two-arm spiral is an odd-

integer multiple of a wavelength the currents radiate. The two-arm spiral suppresses the 

even modes but allows radiation of odd modes [3]. 

Figure 2.11 shows the simulated total far-field radiation patterns versus Theta at 

2.4GHz for the equiangular spiral antenna backed by a λ/4 thick substrate with and 

without a ground plane present. The equiangular spiral antenna backed by a λ/4 thick 

substrate without the ground plane present shows an expected total gain pattern 

characterized by a major and a minor circular lobe. The maximum total gain at 2.4GHz is 

4dB and occurs at a Theta angle equal to 180° for both 0° and 90° Phi angles due to the 

dielectric backing the antenna. If the dielectric constant of the substrate backing the 

antenna is increased, then the maximum total gain gets re-directed to a Theta angle of 0° 

because the thickness of the substrate decreases and less energy tends to be stored in the 

substrate. On the other hand, the equiangular spiral antenna backed by a λ/4 thick 

substrate and a ground plane shows an expected total gain pattern characterized by a 

single major circular lobe and an almost non-existent minor lobe due to the presence of 
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the ground plane. Making the ground plane infinitely long would make the minor lobe 

disappear. The maximum total gain at 2.4GHz is 7dB and occurs at a Theta angle equal to 

0° for both 0° and 90° Phi angles. As it is shown by figure 2.11, the presence of a ground 

plane redirects one-half of the radiation into the opposite direction, improving the 

antenna gain by about 3dB [17]. Figures 2.12 and 2.13 show the side, front, and top 

views of the simulated radiation patterns in 3D at 2.4GHz for the equiangular spiral 

antenna backed by a λ/4 thick substrate without and with a ground plane present 

respectively. 
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Figure 2.11  Simulated Radiation Pattern Versus Theta at 2.4GHz for the Equiangular Spiral Antenna. Red 
Trace- Phi = 0deg. Blue Trace- Phi = 90deg. Left Plot- Antenna Backed by a λ/4 Thick Substrate. Right 
Plot- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane 
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Figure 2.12  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Equiangular Spiral Antenna Backed by a λ/4 Thick Substrate 
 

 

Figure 2.13  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Equiangular Spiral Antenna Backed by a λ/4 Thick Substrate and a Ground Plane 
 

2.4.3 Antenna Parameters Simulations 

Peak directivity or maximum directivity Do is a measure that describes only the 

directional properties of the antenna, and it is therefore controlled by the pattern [5]. Do is 

defined as the ratio of the maximum radiation intensity from the antenna to the radiation 

intensity averaged over all directions, where the averaged radiation intensity is equal to 

the total power radiated by the antenna divided by 4π [5]. In mathematical form, Do can 
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be expressed as equation 2.26, where Umax is the maximum radiation intensity (W/unit 

solid angle) and Prad is the total radiated power (W) [5]. 

Do
4 π⋅ Umax⋅

Prad (dimensionless) (2.26) 

Peak Gain Go is a measure of the antenna performance that takes into account the 

efficiency as well as the directional capabilities of the antenna as shown by equation 2.27, 

where ecd is the antenna radiation efficiency (dimensionless) [5]. The antenna radiation 

efficiency accounts for the conduction and dielectric efficiency, so gain does not include 

losses arising from impedance mismatches (reflection losses) and polarization 

mismatches (losses) [5]. Equation 2.28 converts gain from a dimensionless quantity to 

decibels. 

Go ecd Do⋅ (dimensionless) (2.27) 

Go dB( ) 10 log ecd Do⋅( )⋅  (2.28) 

Figure 2.14 shows the simulated total maximum gain (dB) versus frequency for 

the equiangular spiral antenna. The spiral antenna backed by a λ/4 thick substrate and 

without a ground plane present shows a total maximum gain increasing with frequency as 

expected. The gain increases from 3 to 12 dB between 2 to 5.4 GHz. Similarly, the spiral 

antenna backed by a λ/4 thick substrate and a ground plane shows the increasing trend of 

total maximum gain versus frequency except for the frequency range between 4 to 5 

GHz. The gain increases from 6.7 to 11.7 dB between 2 to 6GHz. The low gain response 

between 4 to 5 GHz for the antenna backed by a ground plane shown suggests that at Phi 

= 0° and Theta =0° there is a null in the radiation pattern. This distortion in the radiation 

pattern could be due to the fact that at this frequency range the substrate backing up the 
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antenna is λ/2 electrically long instead of λ/4, which will put the antenna closer to the 

ground plane electrically. Therefore, the image currents on the ground plane tend to 

cancel the currents in the antenna resulting in this low gain. 

Axial ratio is a very important parameter for spiral antennas since it indicates the 

type of polarization the antenna exhibits. Moreover, it is defined as the ratio of the major 

to the minor axis of the polarization ellipse. The axial ratio value range varies from 1 to 

infinity, where 1 (0 dB) indicates that the electric field is circularly polarized and a value 

of infinity indicates that the electric field is linearly polarized. For instance, spiral 

antennas should have an axial ratio less than 5dB to be considered a circularly polarized 

antenna with a bidirectional radiation pattern broadside to the plane of the spiral. The 

designed equiangular spiral antenna radiates RHC polarization based on the spiral wrap 

direction. 

Figure 2.15 shows the simulated axial ratio (dB) versus frequency at the Theta 

and Phi angle position where total gain is maximum for the equiangular spiral antenna. 

The spiral antenna backed by a λ/4 thick substrate and without a ground plane present has 

linear polarization from 2 to 3.5 GHz and from 4.5 to 6GHz. However, it has circular 

polarization from 3.5 to 4.5 GHz. Furthermore, the spiral antenna backed by a λ/4 thick 

substrate and a ground plane has linear polarization from 2 to 2.2 GHz and from 3.1 to 

5.3 GHz. It has circular polarization from 2.3 to 3GHz and from 5.4 to 6GHz. 
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Figure 2.14  Simulated Total Gain (dB) Versus Frequency for the Equiangular Spiral Antenna. Left Plot- 
Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and Theta = 180°. Right Plot- Antenna 
Backed by a λ/4 Thick Substrate and a Ground Plane Simulated at Phi = 0° and Theta = 0° 
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Figure 2.15  Simulated Axial Ratio (dB) Versus Frequency for the Equiangular Spiral Antenna. Left Plot- 
Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and Theta = 180°. Right Plot- Antenna 
Backed by a λ/4 Thick Substrate and a Ground Plane Simulated at Phi = 0° and Theta = 0° 
 

2.5 Electromagnetic Design and Simulations of Archimedean Spiral Antenna 

The two-arm Archimedean spiral antenna was drawn in HFSS using the 

calculated radius equations presented in table 2.2. The substrate was defined as the 

Rogers 5880 RT Duroid with er equal to 2.2. The metal thickness was set to 1.7 mils. 

Additionally, the preliminary simulations of the spiral antenna utilize the traditional λ/4 

cavity backed implementation. The λ/4 substrate thickness was calculated at 2.4 GHz to 

be equal to 21.07mm. 
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The radiation boundary was assigned to a 3D box enclosing the radiating 

structure (the spiral antenna in this case) at a radial distance λ/4 in every direction as 

shown by figure 2.16. Additionally, an initial simple feeding was created with a lumped 

port assignment at the center of the spiral represented by a 2D rectangular surface as 

shown by figure 2.17. A terminal line was defined to create a voltage polarity reference 

in the port boundary. 

 

Figure 2.16  Radiation Boundary Assignment for the Archimedean Spiral Antenna 

 

 

Figure 2.17  Lumped Port Assignment for the Archimedean Spiral Antenna 

2.5.1 S-parameter Simulations 

Figure 2.18 shows the return loss in dB and phase for the Archimedean spiral 

antenna having a λ/4 thick substrate with and without a ground plane present. The 
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Archimedean spiral antenna has a return loss of less than 5dB for a frequency range from 

2 to 6 GHz. The effect of backing the antenna with a ground plane is illustrated by the 

blue trace in both plots shown on figure 2.18. For instance, the highest resonance for the 

antenna backed by a λ/4 thick substrate occurs at 2.4 GHz where S11 equals -7.9 dB. 

Conversely, there are two high resonances for the antenna backed by a λ/4 thick substrate 

and a ground plane that occur at 2.25 and 3.05 GHz where S11 equals -12.18 and -16.56  

dB respectively. 
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Figure 2.18  S-parameter Simulations for the Archimedean Spiral Antenna with and without a Ground 
Plane. Red Trace- Antenna Backed by a λ/4 Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick 
Substrate and a Ground Plane. Left Plot- Return Loss (dB). Right Plot- Return Loss (phase) 
 

Figure 2.19 shows the simulated input impedance for the Archimedean spiral 

antenna having a λ/4 thick substrate with and without a ground plane present. For a 

frequency-independent self-complementary spiral, the input impedance should be flat 

over a wide frequency range. This trend is better represented by the antenna design 

without the ground plane as shown by the red trace on both plots of figure 2.19, since the 

impedance follows a more constant flat trace from 2 to 6 GHz. 
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Figure 2.19  Input Impedance Simulations for the Archimedean Spiral Antenna with and without a Ground 
Plane. Red Trace- Antenna Backed by a λ/4 Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick 
Substrate and a Ground Plane. Left Plot- Input Impedance (real). Right Plot- Input Impedance (imaginary) 
 

Figure 2.20 shows the simulated VSWR for the Archimedean spiral antenna 

having a λ/4 thick substrate with and without a ground plane present. For the antenna 

without the ground plane present, the VSWR referenced to 50 ohms is less than 3 except 

for the frequency range between 3.2 to 3.75GHz. On the other hand, for the antenna with 

a ground plane present, the VSWR referenced to 50 ohms is less than 5. 
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Figure 2.20  Simulated VSWR for the Archimedean Spiral Antenna with and without a Ground Plane. Red 
Trace- Antenna Backed by a λ/4 Thick Substrate. Blue Trace- Antenna Backed by a λ/4 Thick Substrate 
and a Ground Plane 
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2.5.2 Radiation Pattern Simulations 

The Archimedean and the equiangular spiral antennas share similar radiation 

pattern characteristics. For instance, they exhibit maximum gain peaks at a theta angle 

equal to 180 degrees for the configuration without a ground plane present and at a theta 

angle equal to 0 degrees for the configuration with a ground plane present, which 

indicates that the presence of a ground plane redirects the direction of maximum gain by 

180 degrees. Also, as it is shown by figures 2.11 and 2.21, the Archimedean spiral 

antenna has slightly higher gain peaks than the equiangular spiral. In addition, the 

presence of a ground plane improved the antenna gain of the Archimedean and 

equiangular spiral antennas by about 3dB at 2.4GHz. 

Figure 2.21 shows the simulated total far-field radiation patterns versus Theta at 

2.4GHz for the Archimedean spiral antenna backed by a λ/4 thick substrate with and 

without a ground plane present. The Archimedean spiral antenna backed by a λ/4 thick 

substrate without the ground plane present shows an expected total gain pattern 

characterized by a major and a minor circular lobe. The maximum total gain at 2.4GHz is 

4.26dB and occurs at a Theta angle equal to 180° for both 0° and 90° Phi angles. On the 

other hand, the Archimedean spiral antenna backed by a λ/4 thick substrate and a ground 

plane shows an expected total gain pattern characterized by a single major circular lobe 

and an almost non-existent minor lobe due to the presence of the ground plane. The 

maximum total gain at 2.4GHz is 7.11dB and occurs at a Theta angle equal to 0° for both 

0° and 90° Phi angles. Figures 2.22 and 2.23 show the side, front, and top views of the 

simulated radiation patterns in 3D at 2.4GHz for the Archimedean spiral antenna backed 

by a λ/4 thick substrate without and with a ground plane present respectively. 
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Figure 2.21  Simulated Radiation Pattern Versus Theta at 2.4GHz for the Archimedean Spiral Antenna with 
and without a Ground Plane. Red Trace- Phi = 0deg. Blue Trace- Phi = 90deg. Left Plot- Antenna Backed 
by a λ/4 Thick Substrate. Right Plot- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane 
 

 

Figure 2.22  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Archimedean Spiral Antenna Backed by a λ/4 Thick Substrate 
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Figure 2.23  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Archimedean Spiral Antenna Backed by a λ/4 Thick Substrate and a Ground Plane 
 

2.5.3 Antenna Parameters Simulations 

The Archimedean spiral antenna has similar gain versus frequency response to the 

equiangular spiral antenna. The increasing trend of total maximum gain with frequency is 

present for the equiangular and Archimedean spiral antennas regardless of the presence of 

a conductive ground plane. Additionally, the Archimedean spiral antenna holds the same 

low gain performance as the equiangular spiral antenna at a frequency range where the 

substrate backing up the antenna is λ/2 electrically long instead of λ/4. However, this 

distortion in the gain is more noticeable for the Archimedean spiral antenna as shown by 

figure 2.24, which could be due to the Archimedean spiral antenna arms being closer to 

the edge of the substrate so the image currents on the ground plane could cancel the 

currents in the antenna to a greater extent. 

Figure 2.24 shows the simulated total maximum gain (dB) versus frequency for 

the Archimedean spiral antenna. The gain increases from 3.66 to 7.75 dB between 2 to 

5.85 GHz. Similarly, the spiral antenna backed by a λ/4 thick substrate and a ground 

plane shows the increasing trend of total maximum gain versus frequency except for the 

frequency range between 3.7 to 4.455 GHz. The gain increases from 7.2 to 11.9 dB 
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between 2 to 5.7 GHz. The low gain response between 4 to 5 GHz for the antenna backed 

by a ground plane shown in figure 2.24 implies that at Phi = 0° and Theta =0° there is a 

null in the radiation pattern. 
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Figure 2.24  Simulated Total Gain (dB) Versus Frequency for the Archimedean Spiral Antenna with and 
without a Ground Plane. Left Plot- Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and 
Theta = 180°. Right Plot- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane Simulated at Phi = 
0° and Theta = 0° 
 

Figure 2.25 shows the simulated axial ratio (dB) versus frequency at the Theta 

and Phi angle positions where total gain is maximum for the Archimedean spiral antenna 

backed by a λ/4 thick substrate. The Archimedean spiral antenna achieves circular 

polarization through a wider frequency range than the equiangular spiral antenna without 

a ground plane present. For instance, the Archimedean spiral antenna has circular 

polarization from 2.4 to 6.0 GHz except for the frequency range between 5.75 to 5.9 GHz 

where the polarization is more linear. Moreover, it also has linear polarization from 2.0 to 

2.39 GHz. On the contrary, the equiangular spiral antenna has circular polarization from 

3.5 to 4.5 GHz. Below 3.5 GHz, the polarization is linear. The linear polarization at lower 

frequencies can be attributed to the reflections from the end of each spiral arm [6]. The 

reflected waves have opposite sense polarization than the outward traveling waves, which 

has a significant impact on the axial ratio at the lower cutoff frequencies. The reflections 
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from the end of each equiangular spiral arm might be greater than from the end of each 

Archimedean spiral arm since the equiangular spiral arms are wider at the point of 

truncation resulting in linear polarization through a wider low frequency range. 

Furthermore, the Archimedean and equiangular spiral antennas achieve linear 

polarization through a wider frequency range when backed by a λ/4 thick substrate and a 

ground plane than without a ground plane present. For instance, the Archimedean spiral 

antenna has mostly linear polarization from 2 to 6.0 GHz except for the frequency ranges 

from 5.05 to 5.45 GHz, from 5.65 to 5.8 GHz, and at 4.95 GHz where it has circular 

polarization. In this case, the reflections from the end of each spiral arm plus the 

interference caused when the surface waves traveling along the ground plane reach the 

substrate edges are the key factors accountable for the linear polarization through a wider 

frequency range. 
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Figure 2.25  Simulated Axial Ratio (dB) Versus Frequency for the Archimedean Spiral Antenna with and 
without a Ground Plane. Left Plot- Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and 
Theta = 180°. Right Plot- Antenna Backed by a λ/4 Thick Substrate and a Ground Plane Simulated at Phi = 
0° and Theta = 0° 
 

2.6 Summary and Conclusions 

Two types of frequency independent antennas were designed and simulated as 

two-arm spirals. Simulations have been performed with a ground plane located 
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approximately a quarter-wavelength from the antenna, and without a ground plane. The 

non-ground plane configuration is the reference configuration as it is the goal to obtain 

similar results to this when we miniaturize the most optimal design using a high 

impedance frequency selective surface (FSS). The FSS layer will be static (not tuned) and 

thus the overall bandwidth will reduce relative to the non-ground plane approach. 

The simulation results show that even though the Archimedean and the 

equiangular spiral antennas have different equations defining them, their performance 

characteristics are similar. For instance, the return loss, VSWR, total gain, and radiation 

characteristics follow similar and expected trends. Despite the fact that the simulations 

were performed using a substrate with a fixed electrical length of λ/4 at 2.4 GHz, both 

spirals showed a broadband response at the frequency range of interest. Also, as it was 

expected, the presence of a ground plane a distance equal to a quarter wavelength away 

from the antenna resulted in similar radiation responses for both spiral antennas. 

To conclude, the Archimedean spiral has a more flat input impedance response, as 

well as circular polarization over a greater bandwidth than the equiangular spiral. In 

addition, since the difference in physical size between both spirals is not significant, the 

Archimedean spiral appears to be the most optimal design to be miniaturized in the z-

direction using an FSS. In Chapter 3, the construction and testing of the Archimedean 

spiral antenna using a narrowband Balun is presented in order to validate the performance 

of the antenna at a chosen frequency of 2.4GHz. 
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Chapter 3 

Archimedean Spiral Antenna with a Narrow-Band Feed Network 

3.1 Introduction 

In Chapter 2, the Archimedean spiral antenna was found to be the optimum 

frequency independent design to be constructed and integrated with a narrow-band feed 

network due to its radiation characteristics. In order to fabricate the spiral antenna, it was 

necessary to use a thinner substrate than a λ/4 thick substrate at a chosen common 

wireless communication frequency of 2.4 GHz because the physical thickness of about 

24.7 mm is not commercially available. Throughout this chapter, electromagnetic and 

circuit level simulations were performed to investigate the effect on the antenna radiation 

performance when decreasing the substrate thickness to 31 mils (0.8 mm). 

The Archimedean spiral antenna was simulated using a different feed network 

than the ideal excitation at the antenna feed point used in Chapter 2. In order to feed the 

two-arm spiral antenna with a narrow-band feed network, it was necessary to access the 

antenna feed point with vias that go to the end of the substrate and twin-strip lines to 

connect the balanced antenna input to the feed network as shown in figure 3.1. 

Simulations of the antenna with feeding wires and twin-strip lines were performed using 

HFSS. 

The narrow-band feed network consists of a Balun, which connects a balanced 

transmission line to an unbalanced transmission line [3]. The unbalanced transmission 
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line serves as the interface between the antenna and an RF coaxial connector. The Balun 

was designed and simulated using the Agilent Advanced Design System (ADS) software. 

Furthermore, it was measured integrated with the spiral antenna as well as in a back-to-

back configuration. Finally, the RF coaxial connector was also simulated in HFSS in a 

two-port back-to-back configuration so as to investigate the performance of this 50-ohm 

unbalanced connection. 

 

Figure 3.1  Spiral Antenna Integrated with a Narrow-band Feed Network 

3.2 Archimedean Spiral Antenna Design 

The spiral antenna simulated in Chapter 2 used a substrate with a λ/4 thickness 

calculated at 2.4GHz. Nevertheless, this thickness translates into a physical dimension 

not available for commercial dielectric substrates such as Rogers. Therefore, new 

simulations were conducted with a 31 mil thick Rogers substrate, so that as to predict the 

antenna behavior on the substrate used for fabrication. 

Similarly, the spiral antenna simulations performed in Chapter 2 used a lumped 

port excitation at the antenna feed point. However, to maintain the symmetrical properties 

of the antenna, it is necessary to feed the antenna with an electrically and geometrically 

balanced line [5]. In addition, this balanced line can be connected to an unbalanced line 

using a Balun to be able to measure the antenna using a coaxial cable. 
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The designed transition between the antenna feed point and the Balun consists of 

two wires that go from the feed point of the spiral antenna down to the bottom of the 

substrate through via holes and two planar twin-strip lines that go from the feeding wires 

at the bottom of the substrate to one side of the substrate, as shown in figure 3.1. 

Microwave simulations in ADS were performed to examine the effect of adding a 

balanced feed line structure on the antenna performance. 

3.2.1 Electromagnetic Simulations of the Spiral Antenna on a Thinner Substrate 

The new substrate backing the spiral antenna was a 31-mil thick dielectric sheet 

manufacture by Rogers. This substrate was chosen because of its low dielectric constant 

and low-loss tangent. The spiral operates as a transmission line between the arms whose 

length becomes significant for tightly wrapped spirals [3]. This transmission could be 

analyzed as a coplanar strip transmission line for losses, and the equivalent dielectric 

constant of the transmission line loads the spirals and reduces the effective loop radiator 

size [3]. 

The spiral antenna simulations on a thinner substrate presented in this section use 

the same lumped port excitation feed structure used in Chapter 2, as well as the same 

radiation boundary assignment except for shorter dimensions in the z-direction due to the 

thinner substrate thickness, as shown in figure 3.2. Simulation results will corroborate 

expected changes in antenna performance as far as the return loss, VSWR, and input 

impedance. The antenna radiation pattern is expected to still follow the well-known spiral 

antenna behavior. 
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Figure 3.2  Radiation Boundary Assignment for the Archimedean Spiral Antenna on a 31-mil Thick 
Substrate 
 

3.2.1.1 S-parameter Simulations 

Figure 3.3 shows S11 in dB and phase for the Archimedean spiral antenna with a 

λ/4 and a 31-mil thick substrate without a ground plane present. The Archimedean spiral 

antenna has a return loss of less than 5dB for a frequency range from 2 to 6 GHz. The 

effect of backing the antenna with a thinner substrate is illustrated by the blue trace in 

both plots shown on figure 3.3. For instance, the highest resonance for the antenna 

backed by a λ/4 thick substrate occurs at 2.4 GHz where S11 equals -7.9 dB. Conversely, 

the highest resonance for the antenna backed by a 31-mil thick substrate occurs at 2.9 

GHz where S11 equals -7.13.  

The response of the antenna backed by the 31-mil thick substrate looks like the 

response of the antenna backed by a λ/4 thick substrate shifted by about 500 MHz. This 

shift in S11 over frequency is due to the fact that the 31-mil thick substrate has a lower 

effective dielectric constant than the λ/4 thick substrate, which in turn increases the 

resonant frequency. Similarly, this predictable shift is also present in the input impedance 

and VSWR responses as shown by figure 3.4 and 3.5. 

Figures 3.4 and 3.5 show the simulated input impedance and VSWR, respectively, 

for the Archimedean spiral antenna with a λ/4 and a 31-mil thick substrate without a 
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ground plane present. Both antenna simulations follow a similar trend with a flat 

impedance response from 2 to 6 GHz and a VSWR referenced to 50 ohms less than 3.5. 
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Figure 3.3  S-parameter Simulations for the Archimedean Spiral Antenna. Red Trace- Antenna Backed by a 
λ/4 Thick Substrate. Blue Trace- Antenna Backed by a 31-mil Thick Substrate. Left Plot- Return Loss (dB). 
Right Plot- Return Loss (phase) 
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Figure 3.4  Input Impedance Simulations for the Archimedean Spiral Antenna. Red Trace- Antenna Backed 
by a λ/4 Thick Substrate. Blue Trace- Antenna Backed by a 31-mil Thick Substrate. Left Plot- Input 
Impedance (real). Right Plot- Input Impedance (imaginary) 
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Figure 3.5  Simulated VSWR for the Archimedean Spiral Antenna. Red Trace- Antenna Backed by a λ/4 
Thick Substrate. Blue Trace- Antenna Backed by a 31-mil Thick Substrate 
 

3.2.1.2 Radiation Pattern Simulations 

Figure 3.6 shows the simulated far-field radiation patterns versus Theta at 2.4GHz 

for the Archimedean spiral antenna with a λ/4 and a 31-mil thick substrate without a 

ground plane present. The Archimedean spiral antenna backed by a 31-mil thick substrate 

shows an expected total gain pattern characterized by two major circular lobes. The 

maximum total gain at 2.4GHz is 2.98dB and occurs at a Theta angle equal to 180° for 0° 

and 90° Phi angles. As expected, the maximum gain is lower for the antenna simulated on 

the thinner substrate, but it still occurs at the same Theta angle as the antenna with a λ/4 

thick substrate. The thicker substrate suppresses one of the major lobes into minor lobes, 

which eventually disappear when a ground plane is present as shown by the pattern 

simulations in Chapter 2. Figure 3.7 shows the side, front, and top views of the simulated 

radiation patterns in 3D at 2.4GHz for the Archimedean spiral antenna backed by a 31-

mil thick substrate without a ground plane present. 
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Figure 3.6  Simulated Radiation Pattern Versus Theta at 2.4GHz for the Archimedean Spiral Antenna. Red 
Trace- Phi = 0deg. Blue Trace- Phi = 90deg. Left Plot- Antenna Backed by a λ/4 Thick Substrate. Right 
Plot- Antenna Backed by a 31-mil Thick Substrate 
 

 

Figure 3.7  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Archimedean Spiral Antenna Backed by a 31-mil Thick Substrate 
 

3.2.1.3 Antenna Parameter Simulations 

Figure 3.8 shows the simulated total maximum gain (dB) versus frequency for the 

Archimedean spiral antenna. The spiral antenna backed by a 31-mil thick substrate and 

without a ground plane present shows a total maximum gain increasing with frequency as 

expected. The gain increases from 2 to ~10 dB between 2 to 5.4 GHz. From 2 to 3GHz, 

the total maximum gain is lower than the gain obtained with the antenna backed by a λ/4 
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thick substrate. However, from 3 to 5.4GHz, the total maximum gain is higher than the 

gain obtained with the antenna backed by a λ/4 thick substrate. 

Figure 3.9 shows the simulated axial ratio (dB) versus frequency at the Theta and 

Phi angle position where total gain is maximum for the Archimedean spiral antenna. The 

spiral antenna backed by a 31-mil thick substrate and without a ground plane present has 

circular polarization from 3.15 to 5.9 GHz. On the contrary, from 2 to 3.1 GHz the 

polarization is more linear. Furthermore, from 2 to 3.5 GHz, the axial ratio is higher than 

the axial ratio obtained with the antenna backed by a λ/4 thick substrate. However, from 

3.6 to 6.0 GHz, the axial ratio follows a close trend to the axial ratio obtained with the 

antenna backed by a λ/4 thick substrate. 
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Figure 3.8  Simulated Total Gain (dB) Versus Frequency for the Archimedean Spiral Antenna. Red Trace - 
Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and Theta = 180°. Blue Trace- Antenna 
Backed by a 31-mil Thick Substrate Simulated at Phi = 0° and Theta = 180° 
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Figure 3.9  Simulated Axial Ratio (dB) Versus Frequency for the Archimedean Spiral Antenna. Red Trace- 
Antenna Backed by a λ/4 Thick Substrate Simulated at Phi = 0° and Theta = 180°. Blue Trace- Antenna 
Backed by a 31-mil Thick Substrate Simulated at Phi = 0° and Theta = 180° 
 

3.2.2 Electromagnetic Simulations of the Effect of Adding a Narrow-Band Feed 

Structure to the Spiral Antenna 

The effect of adding a narrow-band feed network to the spiral antenna was 

analyzed in HFSS in two stages. The first stage consists of feeding the antenna using two 

wires that go from the feed point of the spiral antenna down to the bottom of the substrate 

(31 mils away from the antenna) through via holes. Figure 3.10 illustrates this first 

feeding used that it is referred to as “bottom feeding.” The second stage consists of 

feeding the antenna using two planar twin-strip lines that go from the feeding wires at the 

bottom of the substrate over to one side of the substrate. Eventually, a Balun will be 

connected to these lines with the purpose of fabricating and testing the spiral antenna. 

Figure 3.11 illustrates this second feeding used that it is referred to as “side feeding.” 
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Figure 3.10  Wave Port Assignment at the Bottom of the 31-mil Thick Substrate for the Archimedean 
Spiral Antenna with Feeding Wires  
 

 

Figure 3.11  Wave Port Assignment to One Side of the 31-mil Thick Substrate for the Archimedean Spiral 
Antenna with Feeding Twin-Strip Lines  
 

These simulations were performed using a wave port assignment instead of a 

lumped port because it calculates additional information regarding the port-cross section, 

such as characteristic impedance and complex propagation constant, that will be later 

needed for the microwave simulations in ADS. Wave ports are external excitations 

assumed to be connected to a semi-infinitely long waveguide that has the same cross-

section and material properties as the port [7]. The field patterns of the traveling waves 

entering and exiting the port are computed at every frequency point of interest using 

Maxwell’s equations [7]. 
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The generalized s-parameters calculated by HFSS must be renormalized to a 

constant characteristic impedance such as 50 ohms in order to match the results obtained 

in laboratory measurements and circuit simulators, which use a constant reference 

impedance so the ports are not perfectly matched at every frequency. 

The wave ports must be calibrated in order to determine direction and polarity of 

fields, to make voltage calculations, and to be able to duplicate the results of laboratory 

measurements in which the setup is calibrated by removing the structure and connecting 

two ports together [7]. They are calibrated using integration lines, which serve as the path 

over which HFSS integrates the E-field to obtain the voltage at a wave port [7]. In [7], the 

procedure used by HFSS to calibrate the ports is explained in more detail. 

The simulations used the same radiation boundary assignment used in previous 

simulations, except for shorter dimensions in the z and x directions for the bottom and 

side feeding respectively, since the wave port can not be inside the radiation boundary 

but on the interface instead. Figures 3.12 and 3.13 show the radiation boundary 

assignment for the spiral antenna with a bottom and a side feeding configuration 

respectively.  

The radius of the wires feeding the antenna was defined as one quarter the desired 

strip width, since it represents an appropriate transformation from strip width to wire 

diameter [6]. The strip width of the Archimedean spiral antenna is equal to 2.653 mm, so 

the wire radius is equal to 0.663 mm. The twin strip lines feeding the antenna had a 

characteristic impedance of 215.96 ohms and were 33.979 and 26.021 mm long, 0.663 

mm wide, and with a gap width equal to 1.326 mm. 



 49

 

Figure 3.12  Radiation Boundary Assignment for the Archimedean Spiral Antenna with Feeding Wires and 
a 31-mil Thick Substrate 
 

 

Figure 3.13  Radiation Boundary Assignment for the Archimedean Spiral Antenna with Feeding Twin-Strip 
Lines and a 31-mil Thick Substrate 
 

3.2.2.1 S-parameter Simulations 

Figure 3.14 compares the return loss in dB and phase of the Archimedean spiral 

antenna backed by a 31-mil thick substrate with three different types of feeding 

configurations. The effect of feeding the antenna with wires is illustrated by the blue 

trace in both plots shown on figure 3.14. For instance, from 2 to 5 GHz, the return loss of 

the antenna is less than 5 dB with feeding wires. On the other hand, the return loss of the 

antenna with feeding twin-strip lines is greater than 5 dB from 2.2 to 3.1GHz and from 5 

to 6GHz as shown by the magenta trace in both plots of figure 3.14. The differences 

between the three simulations are expected as a result of adding transmission line with a 

characteristic impedance that is not matched to the load impedance. At the frequency 
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ranges where S11 is low for the antenna simulated with feeding wires and with twin-strip 

lines, the real part of the input impedance, shown in figure 3.15, is much greater than the 

respective characteristic impedance of the feeding wires (247.2 ohms) and twin-strip lines 

(215.96 ohms) resulting in a greater mismatch. 

Figure 3.15 compares the simulated input impedance for the Archimedean spiral 

antenna backed by a 31-mil thick substrate with three different types of feeding 

configurations. The antenna with feeding wires has a peak on the impedance from 2 to 

4GHz, and then it has a flat trace characterized by a lower impedance as compared to the 

antenna simulated directly at the spiral feed point. Similarly, the antenna with feeding 

twin-strip lines has a peak on the input impedance from 3.6 to 4.2 GHz, and then it has a 

flat trace characterized by a higher impedance as compared to the antenna simulated 

directly at the spiral feed point. Changes in input impedance were expected after adding 

feeding wires and twin-strip lines to the antenna, since we are adding extra transmission 

lines. 
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Figure 3.14  S-parameter Simulations for the Archimedean Spiral Antenna Backed by a 31-mil Thick 
Substrate. Red Trace- Antenna Simulated at the Antenna Feed Point. Blue Trace- Antenna Simulated with 
Feeding Wires. Magenta Trace – Antenna Simulated with Feeding Twin-Strip Lines Left Plot- Return Loss 
(dB). Right Plot- Return Loss (phase) 
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Figure 3.15  Input Impedance Simulations for the Archimedean Spiral Antenna Backed by a 31-mil Thick 
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3.2.2.2 Radiation Pattern Simulations 

Figure 3.16 shows the simulated total far-field radiation patterns versus Theta at 

2.4GHz for the Archimedean spiral antenna backed by a 31-mil thick substrate with two 

different types of feeding configurations. Both antenna feeding configurations (wires and 

twin-strip lines) show the expected total gain pattern characterized by two major circular 

lobes. However, the antenna with feeding wires shows a much lower gain versus Theta at 

both 0° and 90° Phi angles as compared to the antenna with feeding twin-strip lines. For 

instance, the maximum total gain at 2.4GHz for the antenna simulated with feeding wires 

is -5.09 dB and occurs at a Theta angle equal to 0° for both 0° and 90° Phi angles. The 

maximum total gain at 2.4GHz for the antenna simulated with feeding twin-strip lines is 

2.6 dB and occurs at a Theta angle equal to 30° and at a Phi angle equal to0°. Figures 

3.17 and 3.18 show the side, front, and top views of the simulated radiation patterns in 

3D at 2.4GHz for the Archimedean spiral antenna backed by a 31-mil thick substrate with 

feeding wires and twin-strip lines respectively. 



 52

30
0

60

90

120

150
180

210

240

270

300

330

-12

-10

-8

-6

-4

-2

0 Phi=0deg
Phi=90deg

330

300

270

240

210

180

150

120

90

60

0

30

-10
-8

-6

-4
-2

0

2

4
Phi=0deg
Phi=90deg

Figure 3.16  Simulated Radiation Pattern Versus Theta at 2.4GHz for the Archimedean Spiral Antenna 
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Figure 3.17  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Archimedean Spiral Antenna Backed by a 31-mil Thick Substrate and Simulated with Feeding Wires 
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Figure 3.18  Side, Front, and Top Views of Simulated Radiation Pattern in 3D at 2.4GHz for the 
Archimedean Spiral Antenna Backed by a 31-mil Thick Substrate and Simulated with Feeding Twin-Strip 
Lines 
 

3.2.2.3 Antenna Parameter Simulations 

Figure 3.19 shows the simulated total maximum gain (dB) versus frequency for 

the Archimedean spiral antenna backed by a 31-mil thick substrate with two different 

types of feeding configurations. Both antenna feeding configurations (wires and twin-

strip lines) show a total maximum gain increasing with frequency as expected. However, 

the antenna with feeding wires (blue trace on figure 3.19) has considerably lower gain 

than the antenna simulated directly at the spiral feed point (red trace on figure 3.19). On 

the contrary, the gain of the antenna with feeding twin-strip lines (green trace on figure 

3.19) follows a closer trend to the gain of the antenna simulated directly at the spiral feed 

point except for the frequency range from 2.45 to 3GHz. The peak gain variation at lower 

frequencies can be attributed to the reflections from the end of each spiral arm. 

Based on return loss and maximum gain results, it is better to feed the antenna 

with wires and twin-strip lines than just with wires in order to obtain an S11 greater than 5 

dB and a gain response closer to the one achieved by the antenna fed directly at the spiral 

feed point. 
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Figure 3.20 shows the simulated axial ratio (dB) versus frequency for the 

Archimedean spiral antenna backed by a 31-mil thick substrate with two different types 

of feeding configurations. The spiral antenna with feeding wires has circular polarization 

from 2 to 4.5 GHz. On the contrary, the antenna with feeding twin-strip lines has linear 

polarization for almost the entire frequency range except for some narrow frequency 

ranges. 
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Figure 3.19  Simulated Total Gain (dB) Versus Frequency for the Archimedean Spiral Antenna Backed by 
a 31-mil Thick Substrate. Red Trace - Antenna Simulated at the Antenna Feed Point at Phi = 0° and Theta 
= 180°. Blue Trace- Antenna Simulated with Feeding Wires at Phi = 0° and Theta = 0°. Green Trace – 
Antenna Simulated with Feeding Twin-Strip Lines at Phi = 0° and Theta = 30° 
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Figure 3.20  Simulated Axial Ratio (dB) Versus Frequency for the Archimedean Spiral Antenna Backed by 
a 31-mil Thick Substrate. Red Trace - Antenna Simulated at the Antenna Feed Point at Phi = 0° and Theta 
= 180°. Blue Trace- Antenna Simulated with Feeding Wires at Phi = 0° and Theta = 0°. Green Trace – 
Antenna Simulated with Feeding Twin-Strip Lines at Phi = 0° and Theta = 30° 
 

3.2.3 Microwave Simulations of the Effect of Adding a Narrow-Band Feed 

Structure to the Spiral Antenna  

The spiral antenna response obtained with the HFSS simulations was analyzed 

and approximated using ADS in order to corroborate that adding feeding wires and twin-

strip lines to the antenna feed point does not influence the performance by the existence 

of coupling effects between the spiral arms and the feeding structure. The expected 

results will support the presumption that the narrow-band balanced feed line structure 

will have an effect on the antenna operation only because of the fact that further 

transmission line is present.  

The first step was to approximate with circuit-level simulations the response of 

the antenna when feeding wires are added to the spiral antenna feed point. In order to 

approximate the antenna’s return loss response in ADS, the physical transmission line 

parameters of the feeding wires were introduced into an ideal transmission line model, 

and the s-parameter response of the spiral antenna simulated at the feed point with a 
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lumped port assignment was added to this transmission line model. The schematic 

representation of this procedure is shown on figure 3.21. 

In HFSS simulations, each port is assumed to be connected to a transmission line 

structure that has the same cross-section as the port [7]. Then, the complex propagation 

constant “γ” and the characteristic impedance of this transmission line “Zpi” are 

computed by HFSS. The additional physical transmission line parameters of the feeding 

wires needed for the model in ADS are physical length “L” equal to 0.8738 mm, effective 

dielectric constant “k”, attenuation constant, dielectric loss tangent “TanD” equal to 

0.0009 for the Rogers material used in the simulations, and relative permeability “Mu” 

equal to 1 for the Rogers material used in the simulations. 

 

Figure 3.21  ADS Approximation of the Spiral Antenna Response when Simulated with Feeding Wires 

The complex propagation constant “γ” is given by equation 3.1, where α 

(nepers/meter) is the attenuation constant of a signal in the transmission structure and β 

(radians/meter) is the phase constant associated with the wave [7]. Equation 3.2 converts 

the attenuation constant from nepers per meter to dB per meter. 
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The effective dielectric constant “k” is given by equation 3.3, where ko is the free 

space wave number, and β is the imaginary component of the complex propagation 

constant [9]. 
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Figure 3.22 shows the comparison between the spiral antenna simulated with 

feeding wires and the approximation to this response using transmission line simulations 

in ADS. The differences among the simulations in HFSS and the approximation in ADS 

can be explained by the fact that the simulations were obtained using two different types 

of excitations (wave and lumped port). 

The second step was to approximate with circuit-level simulations the response of 

the spiral antenna when twin-strip lines are added from the feeding wires at the bottom of 

the substrate all the way to one side of the substrate. In order to approximate the 

antenna’s return loss response in ADS, the physical transmission line parameters of the 

twin-strip lines were introduced into an ideal transmission line model, and the s-

parameter response of the spiral antenna simulated with two feeding wires was added to 
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this transmission line model. The schematic representation of this procedure is shown on 

figure 3.23. 
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Figure 3.22  S-parameters Simulations of Spiral Antenna Feeding Wires. Red Trace-Spiral Antenna 
Simulated in HFSS with Two Feeding Wires. Blue Trace- Approximation Simulations in ADS of this 
Response. Left Plot- Return Loss (dB). Right Plot- Return Loss (phase) 
 

Besides the complex propagation constant “γ” and the characteristic impedance 

“Zpi” of the twin-strip transmission lines computed by HFSS, the additional physical 

transmission line parameters of the feeding twin-strip lines needed for the model in ADS 

are physical length “L” equal to 33.979 mm, effective dielectric constant “k” calculated 

using equation 3.3, attenuation constant calculated in dB per meter by equation 3.2, 

dielectric loss tangent “TanD” equal to 0.0009 for the Rogers material used in the 

simulations, and relative permeability “Mu” equal to 1 for the Rogers material used in the 

simulations. 
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Figure 3.23  ADS Approximation of the Spiral Antenna Response when Simulated with Twin-Strip Lines 

Figure 3.24 shows the comparison between the spiral antenna simulated with 

feeding twin-strip lines and the approximation to this response using transmission line 

simulations in ADS. The approximation follows the same trend as the HFSS simulation, 

and at 2.4, 3.5, and 4.8 GHz they are an exact match. These results confirm that adding 

feeding wires and twin-strip lines to the antenna feed point does not influence the 

performance by the existence of coupling effects between the spiral arms and the feeding 

structure. The microwave simulations in ADS support the presumption that the narrow-

band balanced feed line structure has an effect on the antenna operation only because 

further transmission line is present. 

 



 60

3 4 52 6

-15

-10

-5

-20

0

Frequency (GHz)

S
11

 a
nd

 S
22

 (d
B

)

p p

3 4 52 6

-50

0

50

-100

100

Frequency (GHz)

S1
1 

an
d 

S
22

 (p
ha

se
)

Figure 3.24 S-parameters Simulations of Spiral Antenna Feeding Twin-Strip Lines. Red Trace-Spiral 
Antenna Simulated in HFSS with Feeding Twin-Strip Lines. Blue Trace- Approximation Simulations in 
ADS of this Response. Left Plot- Return Loss (dB). Right Plot- Return Loss (phase) 
 

3.3 Balun Design 

In order to fabricate the antenna to corroborate the HFSS simulations at a 

frequency of 2.4 GHz, we designed a microstrip feed that consist of a matching network 

and a Balun. The purpose of the Balun is to provide a balanced feed to the antenna 

necessary for optimum performance as well as a transition to an unbalanced feed 

characteristic of a microstrip design. Prior to the microstrip feed design, antenna 

simulations using feeding wires and twin-strip lines were performed in HFSS to establish 

a suitable feeding configuration to connect the spiral antenna to the microstrip design.  

In addition, the antenna simulations served to determine the input impedance 

looking into the antenna, which will be transformed to a purely real impedance using a 

matching network. Then, the impedance looking into the matching network will be 

transformed to 50 ohms by the Balun. This procedure is illustrated in figure 3.25. 

 

Figure 3.25  Integration of Spiral Antenna and Narrow-band Feed Network 
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The Balun was designed in two phases. The first phase was to design the Balun to 

appropriately connect the balanced antenna input to an unbalanced output. The second 

phase was to design the Balun as an impedance transformer to convert Zmatched to Zo (50 

ohms) as shown on figure 3.25. Moreover, a back-to-back configuration of the Balun was 

simulated in ADS and HFSS in order to investigate possible effects from stopping the 

ground plane of the microstrip narrow-band feed network at the input of the antenna. 

3.3.1 Background Theory 

The term Balun is a combination of the words balance and unbalanced. It is a 

device that connects a balanced two-conductor line to an unbalanced coaxial line [1]. A 

twin-lead transmission line (two parallel-conductor line) is a symmetrical line whereas a 

coaxial cable is inherently unbalanced [5]. A device such as a Balun can be used to 

balance inherently unbalanced systems by canceling or choking the net current flow to 

ground on the outside part of the outer conductor of the coax line [5]. 

The Balun operation can be explained by the balanced and unbalanced modes of 

the three-wire transmission lines. A balanced three-wire transmission-line mode carries 

equal and opposite currents in the feeder lines, where the capacitances per unit length of 

the two lines to ground are the same [3]. Coax is an example of an unbalanced line 

structure, where the inner conductor has no direct capacitance to ground [3]. 

Figure 3.26 shows circuit representations of the fundamental modes of a three-

wire transmission line without showing the ground conductor. Equal loads terminate 

ports 3 and 4. The unbalanced mode (equal current directions) is associated with the even 

mode, which applies equal voltages on ports 1 and 2 and forms a magnetic wall between 

the conductors becoming a virtual open circuit [3]. On the contrary, the balanced mode 
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(equal and opposite currents) is associated with the odd mode, which applies equal and 

opposite voltages on port 1 and 2 and set up an electric wall between the conductors 

becoming a virtual short circuit [3]. 

 

Figure 3.26  Balanced and Unbalanced Modes on a Three-Wire Transmission Line [3] 

A balun also blocks the un-wanted far-field radiation components produced by the 

feeder line, whose polarizations redirect the beam peak of the antenna [3]. Only closely 

spaced equal and opposite currents, the balanced mode, cancel the far-field radiation from 

the currents on the feed lines [3]. 

3.3.2 Microwave Design and Simulations 

It was desired to match the input impedance of the spiral antenna to a real value 

that would make the Balun easier to design. A matching network was used to eliminate 

the capacitive imaginary part of the input impedance looking into the antenna at 2.4 GHz. 

Figure 3.27 shows this input impedance. 
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Figure 3.27  Input Impedance of the Spiral Antenna with Feeding Twin-Strip Lines. Red Trace- Zin (real). 
Blue Trace- Zin (imaginary) 
 

A lumped-element matching network was chosen for its simplicity and ease to 

manufacture in order to match Zant equal to 61.5-j79.8 to Zmatched equal to 200 ohms. 

Figure 3.28 shows the network topology necessary to match this type of load since the 

normalized load impedance lies outside the 1+jx circle on the smith chart. Equations 3.5 

and 3.6 were used to calculate the series reactance X and shunt susceptance B for the 

marching network [9], where RL is equal to 61.5 ohms, XL is equal to -79.8, and ZO is 

equal to 200 ohms. One of the possible solution networks was found based on these 

equations consisting of a 5.3pF series capacitor and an 8.8nH shunt inductor. The 

matching network was first simulated in ADS using ideal components as shown by figure 

3.29. 
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Figure 3.28  Matching Network Topology Needed to Match the Antenna Input Impedance to 200 Ohms 
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Figure 3.29  Ideal Lumped Element Matching Network Solution 

The Johanson 0201 surface mount chip inductors and capacitors were chosen to 

fabricate the matching network. Therefore, the matching network was also analyzed by 

replacing the ideal lumped element components by the Modelithics ADS models of the 

Johanson 0201 surface mount chip inductors and capacitors in the ADS simulations. The 

lumped component values in the Johanson models were tuned to match the response of 

the matching network using ideal components as shown by figure 3.30. The final inductor 

and capacitor values were 2.6pF and 6.9nH respectively. Because of samples availability, 

the actual components used in the fabricated matching network were a 2.7pF capacitor 

and a 6.8nH inductor. Figure 3.31 compares the response of the matching networks using 

ideal components and Modelithics models. 
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Figure 3.30  Ideal Versus Modelithics Johanson Models Matching Network Solution 
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3.3.2.1 Balanced Input to Unbalanced Output Transition Simulations 

Figure 3.32 shows the Balun design that will connect the spiral antenna to a 

coaxial 50-ohm RF connector as shown by figure 3.40. This type of Balun was chosen 

among many available designs due to its planar geometry and impedance transformation 

capabilities that will provide a balanced to unbalanced feed reference to 50 ohms without 
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excessively increasing the design size in the Z-direction. In order to connect the balanced 

spiral antenna arms to an unbalanced line, the Balun balanced lines need to be a distance 

λ/4 apart from each other.  

Figure 3.33 shows the ADS simulation schematic used to optimize the lengths (L1 

and L2) of the Balun, so that the phase difference between S12 and S13 is 180 degrees 

required for a balanced feed. The lengths L1 and L2 that provided a 180 degree phase 

difference between S12 and S13 were 22.5 and 23 mm respectively. Figure 3.34 shows 

the insertion loss (phase) after the optimization. The exact phase difference between S12 

and S13 is 180.83 degrees at 2.4 GHz. 

 

Figure 3.32  Balun Design 
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Figure 3.33  Balun Design Optimization in ADS to Connect a Balanced Input to an Unbalanced Output 
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Figure 3.34  S12 (phase) of Balun Design. Red Trace- S13 (phase). Blue Trace- S12 (phase) 

3.3.2.2 Impedance Transformation Simulations 

In addition to providing a balanced feed to the self-complementary spiral antenna, 

the Balun design also includes a step change in impedance from 200 ohms (impedance 

looking into the matching network) to a 50-ohm transmission line. A 100 ohm resistor 
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was placed between ports 2 and 3 of the Balun on the ADS simulation to emulate the 

200-ohm impedance seen looking into the matching network. In order to perform the 

impedance transformation, the transmission line length L3 needs to be λ/4. Figure 3.35 

shows the ADS simulation schematic used to optimize the length L3 in order to transform 

the impedance from 200 to 50 ohms. Figure 3.36 shows the real and imaginary input 

impedance looking into the Balun after the length optimization. The final length L3 that 

provided the impedance transformation was 23 mm. The width of the Balun transmission 

lines was optimized to 0.66 mm. The final input impedance looking into the narrow-band 

feed network and the spiral antenna is 51.428 + j1.34. 
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Figure 3.35  Impedance Transformation Design in ADS 
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Figure 3.36  Balun Input Impedance. Left Plot- Zin (real). Right Plot- Zin (imaginary) 

3.3.3 Ground Effects Microwave and Electromagnetic Simulations 

Additional simulations were performed in order to investigate the effect of 

stopping the ground plane conductor at the balanced input of the Balun just where the 

balanced twin-strip lines connect. A back to back design was simulated in ADS and 

HFSS as shown by figure 3.37. This design consists of a Balun and its mirror image 

connected to each other through a twin-strip line. A short piece of twin-strip lines was 

used instead of the real twin-strip line connecting the antenna to the Balun so that the 

design would not become extremely long since we just wanted to check the ground 

effects. The design in HFSS was simulated using wave ports at both ports. 

The short piece of twin-strip line was designed with a characteristic impedance of 

200 ohms and to be approximately 20 degrees long at 2.4GHz. In order to calculate the 

physical length and width of the twin-strip line for the HFSS simulation, a coplanar 

waveguide structure was used to approximate a twin-strip line structure as shown by 

figure 3.38. Then, Babinet’s principle was used to approximate the characteristic 

impedance of the coplanar waveguide structure, and the ADS LineCalc tool was used to 

calculate its physical parameters. Equation 3.7 shows Babinet’s principle formula, where 
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ηo is the characteristic impedance of free space equal to 377 ohms, εreff is the effective 

dielectric constant, Zcpw corresponds to the strip conductor impedance of the CPW 

structure, and Zslot corresponds to the slot impedance of the twin-strip line structure equal 

to 200 ohms. The effective dielectric constant was approximated by equation 3.8 to be 

equal to 1.6, where εr is the dielectric constant of the RT/Duroid 5880 substrate equal to 

2.2. Therefore, the approximated strip conductor impedance of the CPW structure was 

calculated to be equal to 111.04 ohms. The calculated physical parameters of the twin-

strip line structure were as follows: slot width was equal to 1.01 mm, strip conductor 

width was equal to 1.33 mm, and the length of the twin-strip line was equal to 5.9 mm. 

 

Figure 3.37  Ground Effects Microwave and Electromagnetic Simulations of the Balun Design 
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Zslot Zcpw⋅
η

2

4 εreff⋅   (3.7) 
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εr 1+

2    (3.8) 

 

Figure 3.38  Babinet’s Principle Approximation Between the Twin-Strip Line and CPW Structures 

The ADS simulation represents an ideal transmission line model of the back-to -

back Balun design as opposed to the HFSS simulation that represents the actual design. 

Figure 3.39 shows the comparison between the ADS and HFSS Balun design simulations. 

The differences among the two design simulations at other frequencies other than 2.4 

GHz could be caused by the accuracy of the calculations used to determine the width and 

length of the twin-strip line for the HFSS simulation. 

These results give us confidence that stopping the ground plane at the twin-strip 

line will not affect the performance of the microstrip narrow-band feed network at the 

design frequency of 2.4GHz. This design was fabricated and tested to confirm the 

simulation results. 
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Figure 3.39  S-parameter Simulations for the Back-to-Back Balun Design. Red Trace- ADS Simulation. 
Blue Trace- HFSS Simulation. Left Plot- S11 (dB). Right Plot S21 (dB) 
 

3.4 Fabrication 

The self-complementary Archimedean spiral antenna design was etched on a 31-

mil thick Rogers RT/Duroid 5880 substrate (er=2.2). Figure 3.40 shows the fabricated 

design implemented with the narrow-band feed network. The antenna feed point was 

connected to the twin-strip lines at the bottom of the substrate through via holes filled 

with conductive silver epoxy. The Johanson surface mount components for the matching 

network (series capacitor-shunt inductor) were bonded between the twin-strip lines and 

the balanced output of the Balun using a re-flow process with solder paste. Finally, an RF 

connector was soldered to the unbalanced input of the Balun.  

The back-to-back Balun design shown on figure 3.37 was milled on a 31-mil thick 

Rogers RT/Duroid 5880 substrate (er=2.2). The ground plane under the twin-strip line 

that connects the two Baluns was also milled. Figure 3.41 shows the fabricated design. 

Two RF connectors were soldered to the unbalanced inputs of each Balun. 
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Figure 3.40  Fabricated Self-Complementary Archimedean Spiral Antenna with a Narrow-band Feed 
Network 
 

 

Figure 3.41  Fabricated Back-to-Back Balun Design 

3.5 Measurements 

In Chapter 2 and previous sections of Chapter 3, analytical methods were 

implemented to analyze and numerically compute the radiation characteristics of the 

Archimedean spiral antenna. S-parameters and radiation pattern measurements were 

performed in order to corroborate the results obtained in the simulations. Moreover, s-

parameter measurements of the back-to-back Balun design were also performed to 

support the ground effects simulation results. 
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3.5.1 S-parameters Measurements 

A vector network analyzer (VNA) was used to measure the s-parameters of the 

spiral antenna. A 1-port calibration was performed at the end of a coaxial RF cable 

connected to port 1 of the network analyzer. The 1-port SOL (Short-Open-Load) 

calibration consists of connecting a short, an open, and a load calibration standards to the 

end of the coaxial cable. Then VNA computed the calibration coefficients to account and 

correct for the loss of the path. Once the measurement setup was calibrated, the device 

under test (spiral antenna) was connected to the coaxial cable through the RF connector at 

the unbalanced input of the Balun, and the s-parameters of the antenna were recorded on 

the network analyzer. Figure 3.42 shows the comparison between simulated and 

measured S11 (dB) of the fabricated spiral antenna. At the designed frequency of 2.4 

GHz, there is a 19dB of return loss with a 200 MHz 10-dB return loss bandwidth. The 

differences between the simulation and measurement could be explained by the fact that 

the simulated spiral antenna is not matched to the feed line, but the measured spiral 

antenna is matched to a 50-ohm feed line. The spiral antenna simulations do not include 

the lumped-element matching network, the Balun, and the coaxial RF connector. 
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Figure 3.42  Comparison Between Simulated and Measured S-parameters of Archimedean Spiral Antenna. 
Red Trace- Simulated. Blue Trace- Measured 
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3.5.2 Radiation Pattern Measurements 

Far-field radiation characteristics are measured by illuminating the test antenna by 

plane waves, that is waves with uniform amplitude and phase [5]. In order to approximate 

this ideal condition, the test antenna is separated from the source antenna or illumination 

source by a distance equal to the inner boundary of the antenna’s far-field region [5]. This 

inner boundary is equal to 2D2/λ, where D is the antenna overall maximum dimension 

and λ is the antenna operating wavelength [5]. 

Radiation patterns are measured on the surface of a constant radius sphere [5]. 

The standard spherical coordinate system (r, θ, φ) is used to identify any particular 

position on the sphere. However, only the two angular coordinates are needed for 

positional identification since the radial distance is maintained fixed. For the reason that 

it is impractical to measure a three-dimensional pattern, the minimum number of two-

dimensional patterns needed to accurately represent the antenna radiation pattern is two 

[5]. A two-dimensional pattern is obtained by fixing one of the angles (θ or φ) while 

varying the other [5]. For instance, elevation or E-plane patterns are obtained by fixing φ 

(0≤φ≤2π) and varying θ (0≤θ≤π), and azimuthal or H-plane patterns are obtained by 

fixing θ (0≤θ≤π) while φ is varied (0≤φ≤2π) [5]. 

The Archimedean spiral antenna was tested in an indoor free-space antenna range 

or anechoic chamber. The anechoic chamber has walls covered with RF absorbers to 

suppress electromagnetic interference and is protected from environmental conditions [5]. 

The source antenna was chosen to be a Yagi antenna operating at 2.4 GHz. The Yagi 

antenna is connected to a signal source, such as a vector network analyzer. The spiral 

antenna was mounted to a rotational pedestal using a short semi-rigid RF coaxial cable. 
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The rotational pedestal has the capability of rotating in various planes. The recording 

system is connected to the rotational mount, so that position references can be recorded 

simultaneously with measurements for angular positional identification [5]. 

Figures 3.43 and 3.44 show the radiation pattern measurements for the fabricated 

antenna characterized by two major circular lobes. The differences between the 

simulation and measurement could be explained by the fact that the spiral antenna 

simulations do not include the lumped-element matching network, the Balun, and the 

coaxial RF connector. The Balun ground plane could have caused interference in the 

pattern measurement. Also, there could be sources of error in the pattern measurement 

caused by the accuracy of directing the source antenna beam directly to the spiral antenna 

under test. 
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Figure 3.43  E-Plane Radiation Pattern Simulation and Measurement of Fabricated Spiral Antenna. Top- E 
Plane Pattern. Bottom- Antenna E-Plane Orientation. Red Trace- Simulation. Blue Trace- Measurement 
 

 



 78

180

90270

0

-20

-15

-10

-5

0

5

Measured
Simulated

 

 

Figure 3.44  H-Plane Radiation Pattern Simulation and Measurement of Fabricated Spiral Antenna. Top- H 
Plane Pattern. Bottom- Antenna H-Plane Orientation. Red Trace- Simulation. Blue Trace- Measurement 
 

3.5.3 Balun Measurements 

A vector network analyzer (VNA) was used to measure the s-parameters of the 

back-to-back Balun design. A 2-port SOLT (Short-Open-Load-Thru) calibration was 

performed at the end of two coaxial RF cables connected to port 1 and port 2 of the 

network analyzer by connecting a short, an open, and a load calibration standards to the 

end of each coaxial cable. Next, a thru connection was made between ports 1 and 2 

through the coaxial cables. Then VNA computed the calibration coefficients to account 

and correct for the loss of the paths. Once our measurement setup was calibrated, the 

device under test (back-to-back Balun design) was connected through the RF connectors 
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at the unbalanced input of each Balun in between ports 1 and 2 of the VNA at the end of 

the coaxial cables. Then, the S-parameters were recorded on the VNA.  

Figure 3.45 shows the measured s-parameters of the back-to-back Balun design 

compared to the simulation results obtained with ADS. At 2.4 GHz, The S11 and S21 in 

dB from both simulation and measurements are close. For instance, S11 (dB) at 2.4GHz 

for the ADS design is -22.08 dB and for the measured design is -21.11 dB. S21 (dB) at 

2.4 GHz for the ADS design is -0.3 dB and for the measured design is -0.7 dB. However, 

there is a shift in the response between measured data and simulations of about 50 MHz 

approximately. This frequency response shift between the simulation and the measured 

data could be explained by the inductance added by the RF coaxial connectors. 
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Figure 3.45  Measured S-parameters of Fabricated Back-to-Back Balun Design. Red Trace- ADS 
Simulation. Blue Trace- Measured Data. Left Plot- S11 (dB). Right Plot S21 (dB) 
 

3.6 RF Coaxial Connector Electromagnetic Simulations 

The purpose of this section was to investigate how RF coaxial connectors, such as 

the ones used for our fabricated designs, perform at the frequency range of interest. 

Therefore, the PSF-S01 end launch connector was chosen to be studied by means of 

electromagnetic simulations.  

The connector was drawn in HFSS using available dimensions from vendor’s 

datasheet. Dimensions that were not available in the vendor’s datasheet, such as the 
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diameter of the dielectric present between the inner and outer conductors and the 

diameter of the inner conductor, were measured using a micrometer. The dielectric 

present between the inner and outer conductors was assumed to be a dielectric core 

material with a dielectric constant equal to 3.255. 

The connector was simulated in a back-to-back configuration using a microstrip 

transmission line. The width of the microstrip line was designed to be 50 ohms at 2.4 

GHz, and the length was designed to be 64 degrees at 2.4 GHz. The calculated width and 

length were equal to 18.3 and 540 mils respectively. The substrate used for the 

simulations was an 8-mil thick RO4003 Rogers material with a dielectric constant equal 

to 3.38. Wave port assignments were used as the excitations at the input of each 

connector as shown by figure 3.46. 

We expect for a good RF connector to have a return loss of 20dB or better and an 

insertion loss of 0.2 dB or better at the designed frequency range of operation. Figure 

3.47 shows the simulation results of the back-to-back connector design. The connector 

shows acceptable return and insertion loss performance to 3GHz based on the expected 

standards of operation for RF coaxial connectors. At our frequency of interest of 2.4 

GHz, the return and insertion loss are equal to 23.4 and 0.08 dB respectively. 
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Figure 3.46  Back-to-Back Connector Design. Top Left- Connector Design in HFSS. Top Right- Air 
Boundary Assignment. Bottom Left- Wave Port 1 Reference Plane. Bottom Right- Wave Port 2 Reference 
Plane 
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Figure 3.47  S-parameter Simulations of Back-to-Back Connector Design. Left Plot- Return Loss (dB). 
Right Plot- Insertion Loss (dB) 
 

3.7 Summary and Conclusions 

With the aim of electromagnetic and circuit-level simulations, the Archimedean 

spiral antenna performance was successfully analyzed to the point where it is connected 

to the balanced feed network. It was shown that the twin-strip line feeding configuration 

does not affect the radiation characteristics of the antenna. It was also demonstrated that 

there is a trade-off in the antenna performance when the substrate backing up the antenna 

is reduced in thickness from an ideal λ/4 thickness. 
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A narrow-band feed network involving a planar Balun was designed and 

simulated using the Agilent Advanced Design System (ADS) software in order to connect 

the antenna balanced input to an unbalanced line for fabrication and measurement 

purposes. Furthermore, the Balun was measured with the antenna as well as separate 

from the antenna in a back-to-back configuration. Both the Archimedean spiral antenna 

and Balun measurements agreed with the simulations. 

The RF coaxial connector was also simulated in HFSS in a two-port back-to-back 

configuration so as to investigate its performance at the frequency range of interest of 2.4 

GHz. Based on the expected standards of operation for RF coaxial connectors, the 

connector showed acceptable return and insertion loss performance to 3GHz. 



 83

 
 
 
 
 

Chapter 4 

Frequency Selective Surfaces 

4.1 Introduction 

As it was shown on chapters 2 and 3, the radiation properties of an antenna are 

affected by the presence of a perfect electric conducting (PEC) ground plane. Moreover, 

if the antenna is placed too close to this conducting surface, the image currents cancel the 

currents in the antenna resulting in poor radiation efficiency [17]. In order to prevent poor 

radiation efficiency due to the close proximity of a ground plane to the antenna, a quarter-

wavelength space can be included between the radiating element and the ground plane. 

However, this design approach brings a fixed thickness of λ/4 into the backing 

configuration that not only increases the overall physical dimensions of the antenna but 

also limits the performance of inherently broad-band antennas such as the spiral antennas 

discussed in chapter 2 and 3. 

Metals support electromagnetic surface waves that bond to the interface between 

metal and free space and do not couple to external plane waves if the surface is smooth 

and flat [17]. By incorporating a special texture on a conducting surface, it is possible to 

alter its radio-frequency electromagnetic properties as well as its surface impedance [17]. 

This type of metal surfaces coated with resonant structures is known as frequency 

selective surfaces (FSS) and can serve as a substrate for antennas allowing them to lie 

directly adjacent to the ground plane surface without being shorted out [18]. 
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In this chapter, the background theory of operation for frequency selective 

surfaces is analyzed, and a low-frequency structure operating at 2.4GHz is evaluated that 

could potentially be used to miniaturize an antenna in the z-direction. 

4.2 Theory of Operation 

A frequency-selective surface is a surface which exhibits different reflection 

and/or transmission properties as a function of frequency [1]. Two basic types of FSS are 

an array of dipoles and an array of slots both followed by a dielectric slab. An array of 

resonant dipoles acts as a band-stop filter by passing waves above and below the dipole 

resonant frequency but not at the resonant frequency. On the other hand, the 

complementary array of slots acts as a band-pass filter by passing waves at the resonant 

frequency of the slots but rejecting them at higher and lower frequencies. As shown by 

figure 4.1, the action of the dipoles is equivalent to that of a series-tuned circuit on a 

transmission line and that of the slots is analogous to a parallel tuned circuit. Therefore, 

the inductor and capacitor resonate at the pass or stop frequencies. 

Surface waves travel on a flat metal conductor until they reach an edge where 

they can radiate into free space translating into a multi-path interference that can be seen 

as ripples in the radiation pattern [17]. On the contrary, surface waves will radiate 

vertically if scattered by a surface texture. Smooth conducting sheets have low surface 

impedance, but a textured surface or FSS can have high surface impedance (greater than 

377 ohms). 
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Figure 4.1  Basic Frequency Selective Surfaces [1] 

The type of FSS described in this chapter consists of a lattice of small mushroom-

shaped protrusions made of metal plates, connected to a common ground plane by 

vertical metal pins as shown by figure 4.2 [18]. The surface impedance of this structure is 

characterized by an equivalent parallel resonant LC circuit and is given by equation 4.1. 

At low frequencies it is inductive and supports transverse magnetic (TM) waves. At high 

frequencies it is capacitive and supports transverse electric (TE) waves. Near the LC 

resonance frequency (equation 4.2), the surface impedance is very high and 

electromagnetic waves are reflected with zero phase shift. In this region, waves are not 

bound to the surface but radiate readily into the surrounding space. The fractional 

bandwidth of the gap between the TM and TE bands is given by equation 4.3 where t is 

the thickness of the surface and λo is the wavelength at resonance. 
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Figure 4.2  Cross Section and Top View of a High-Impedance Surface [17] 
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As the structure shown on figure 4.2 interacts with electromagnetic waves, 

currents are induced in the top metal plates [17]. A capacitance is built up on the ends of 

the plates as a voltage is applied to the top surface. An inductance is formed by the 

magnetic field associated with the currents that flow around a path through the vias and 

bottom plate. Therefore, in a two-layer design such as the one shown on figure 4.2, the 

capacitors are formed by the fringing electric fields between adjacent metal patches, and 

the inductance is fixed by the thickness of the structure. 
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The three-layer design structure shown on figure 4.3 achieves a lower resonance 

frequency for a given thickness by using capacitive loading that consists of parallel-plate 

capacitors formed by the top two overlapping layers [17]. This low-frequency structure 

would work perfectly for the spiral antennas described on chapter 2 operating at 2.4 GHz. 

This design can maintain a thickness of a few millimeters with a corresponding 

inductance of a few nanohenrys and a capacitance of several picofarads. However, by 

forcing a thin structure to have a low resonance frequency, the bandwidth is also reduced. 

Operating bandwidths of 6 GHz are common for two-layer FSS structures at a design 

frequency of 14 GHz. Moreover, operating bandwidths of 400 MHz are common for 

three-layer FSS structures at a design frequency of 2.4 GHz. The overall thickness of a 

low-frequency FSS structure operating at 2.4 GHz can be about 4 mm, which is 

considered a miniature backing design for an antenna compared to the λ/4 thick substrate 

approach with a thickness of about 21 mm at 2.4 GHz. 

 

Figure 4.3  Three-Layer High-Impedance Surface [17] 

The high-impedance surface is particularly applicable to the field of portable 

hand-held communications, in which the interaction between the antenna and the user can 

have a significant impact on antenna performance. Moreover, using this ground plane 

structure as a shield between the antenna and the user in portable communications 

equipment can lead to higher antenna efficiency, longer battery life, and lower weight 

[17]. 
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As shown in [8], by placing a spiral antenna over a FSS structure rather than a 

PEC ground plane, a reduction of more than 69% in antenna height can be obtained. 

Furthermore, in order to maintain the inherent frequency-independent characteristics of a 

spiral antenna, varactor diodes or reversed-biased diodes can be connected between each 

unit cell in the periodic surface texture and its four neighbors to tune the resonance 

frequency by changing the voltage of the diodes which adjusts the capacitance between 

neighboring cells as shown in [19]. 

4.3 Summary and Conclusions 

Antennas can be potentially miniaturized in the z-direction by replacing the PEC 

ground plane separated from the antenna by a λ/4 thick substrate with a FSS structure that 

allows the ground plane conductor to be in close proximity to the antenna without 

affecting its radiation performance. This type of high impedance structure not only makes 

it possible to reduce the antenna height by at least 69%, but also provides the opportunity 

of maintaining broad-band antenna responses by means of including tunable varactor 

diodes to the structure that adjusts the resonance frequency of the FSS. Lastly, a two-

layer FSS structure operating at 2.4 GHz was presented that could serve as the substrate 

for the spiral antenna designs introduced in chapters 2 and 3 to make them miniature in 

the z-direction. 
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Chapter 5 

Miniature Coil Antennas 

5.1 Introduction 

Advances in technology have placed a great emphasis not only on broadband 

antennas to cover an entire design application range but also on antenna miniaturization 

to cope with the demands of making electronic devices smaller. There are fundamental 

limits to how small an antenna can be at a particular wavelength and still behave as an 

efficient radiating device. In this chapter, the fundamental limits of electrically small 

antennas are studied to distinguish and examine the restrictions of miniature coil 

antennas. 

Research and measurement characterization were oriented to investigate the 

feasibility of using chip inductors mounted in a 1-port configuration as electrically and 

physically small helical antennas operating at the frequency range of 1 to 3 GH. The 

research focuses on reflection coefficient and radiation efficiency measurements in order 

to characterize coil performance as electrically small antennas. 

5.2 Background Theory 

Antenna size with respect to the wavelength is the parameter that will have the 

major influence on the radiation characteristics such as gain, efficiency, and polarization 

purity [16]. An antenna is considered to be electrically small when its maximum physical 

dimension is small compared to the operating wavelength [14]. Therefore, the coil 
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inductors used for this investigation are considered to be electrically small based on the 

physical dimensions and operating wavelengths shown on tables 5.1 and 5.2. 

A coil inductor can be analyzed as a helical antenna, which is a conductor that is 

wound into a helical shape and properly fed at the input of the helix [4]. Figure 5.1 shows 

the typical geometry for a helix with N turns, where D is the diameter of helix calculated 

between centers of coil material, d is the diameter of helix conductor, S is the spacing 

between turns, and L is the length of one turn. The length of one turn is given by equation 

5.1, where C is the circumference of helix equal to πD [4]. Another important parameter 

of the helical antenna is the pitch angle α defined by equation 5.2, which is the angle 

formed by a line tangent to the helix wire and a plane perpendicular to the helix axis [5].  

 

Figure 5.1  Typical Geometry for a Helix 

L C2 S2
+    (5.1) 

tan α( ) S
C   (5.2) 

A helix of fixed diameter collapses to a loop as the spacing between turns 

approaches zero (α=0°) [15]. On the other hand, a helix of fixed spacing between turns 

straightens out into a linear conductor as the diameter approaches zero (α=90°) [15]. 
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Therefore, a true helix is formed when the pitch angle is between 0 and 90 degrees 

(0°<α<90°) with a circumference greater than zero but less than the circumference when 

the helix is reduced to a loop [5]. The radiation characteristics of the antenna can be 

varied by controlling the size of its geometrical properties compared to the wavelength 

[5]. Moreover, the input impedance is critically dependent upon the pitch angle and the 

size of the conducting wire [5]. 

The coil inductors used for this investigation can be compared to helical antennas 

operating in the normal mode of radiation that occurs when the dimensions of the helix 

are small compared to the operating wavelength, and hence they have neither a wide-

band nor a high efficiency [15]. This normal mode of operation is related to the lowest 

transmission mode of operation To used to describe how an electromagnetic wave 

propagates along an infinitely long helix [15]. In this mode, a helix has adjacent regions 

of positive and negative charge separated by many turns. This is the mode that occurs on 

low frequency inductances [15]. 

A helical antenna operating in the normal radiation mode exhibits maximum 

radiation broadside to the plane of the antenna, and the current is assumed to be uniform 

in magnitude and in-phase over the entire length of the helix [15]. For a small helix 

(L<<λ), the far-field is independent of the number of turns. Therefore, the axial ratio of 

the polarization ellipse can be defined as the ratio of the far-field Eθ component of the 

short dipole to the far-field Eφ component of the small loop [15]. Eθ and Eφ are 90 degrees 

out of phase. Helical antennas could have circular polarization instead of elliptical 

polarization if the magnitudes of the Eθ and Eφ components are equal. 
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5.3 Measurement Characterization 

The inductors used for this investigation were 0402 and 0603 Coilcraft surface 

mount chip inductors with inductances of 47 and 270nH respectively. The radiation 

efficiency varies depending upon the direction the inductor is bonded [10]. Consequently, 

the responses of six 1-port configurations were analyzed to determine the most efficient 

design pattern. The 0402 inductors have a remarkable difference in the wire windings 

across them. The spacing between each wire turn changes across the inductor length, so 

the wire windings look more closely spaced towards one end of the coil wrap-up. Thus, 

this difference was taken as the reference point to bond the 0402 inductors in six different 

1-port orientations. On the other hand, the 0603 inductors have a polarity dot marked on 

one side of the plastic cap covering the top of the surface mount chip, which was taken as 

the reference point to bond these inductors in the six different 1-port orientations, as 

shown by figure 5.2. 

 

Figure 5.2  Six 1-Port Bonding Configurations Used to Characterize Surface Mount Chip Inductors as 
Miniature Antennas 
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Based on preliminary s-parameter measurements, the 0402 and 0603 inductors 

showed a lower reflection response when bonded vertically on the side of the reference 

point looking away from the feed line. Also, the inductors bonded horizontally on the 

reference point side showed a promising reflection response. The best vertical and 

horizontal orientations were chosen for the subsequent measurements and calculations 

(figure 5.3). 

 
Figure 5.3  Surface Mount Chip Inductor. Left- Vertical Configuration. Middle- Horizontal Configuration. 
Right- Inductor Parameters 
 

Total wire length and diameter of electrically small antennas are two of the 

physical properties that influence their electromagnetic behavior. Therefore, we estimated 

these resonant properties based on the number of turns, effective length, width, and 

height of the inductors provided on the Coilcraft datasheets (figure 5.3). Estimated values 

for total wire length and diameter were obtained using formulas 5.3 and 5.4 respectively, 

where “N” is the number of turns, “E” is the effective length, “C” is the effective width, 

and “G” is the effective height. The estimated values are summarized on table 5.1. 

Moreover, the pitch angle α was estimated for the 47nH 0402 and 270nH 0603 chip 

inductors to be equal to 6.9 and 7.7 degrees respectively. 

L E N⋅ 2⋅( ) C N⋅ 2⋅( )+   (5.3) 

d
G
N    (5.4) 
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Table 5.1  Calculation of Inductor Parameters 

Inductor / Parameters E (mm) C (mm) G (mm) N d (mm) L (mm) 
47nH (0402) 0.51 0.66 0.56 13 0.043 30 
270nH (0603) 0.76 1.07 0.86 23 0.037 84 

 

Strong radiation is observed when the inductor’s wire length is approximately 

0.45λo [10]. According to the calculations shown in table 5.2, the wavelengths were 

corrected to account for the inductor’s geometry, which essentially consists of the wire 

being wrapped around a Teflon core. Thus, the wavelengths (λo) were divided by the 

square root of the dielectric constant of Teflon that is equal to 2.1. The Teflon-corrected 

wavelength (λg) and optimal wire length (0.45λg) values are summarized in table 5.2.  

By comparing the optimal 0.45λg wire lengths calculated at the radiation 

frequencies to the actual stretched lengths, we concluded that they match well. For 

instance, in the case of the 47nH 0402 inductor, the total estimated wire length is 30 mm 

(table 5.1), and the 0.45λg values for the vertical and horizontal 1-port configurations are 

33 and 44 mm, respectively (table 5.2). Similarly, for the 270 nH 0603 inductor, the 

estimated wire length is 84 mm (table 5.1), and the 0.45λg values for the vertical and 

horizontal 1-port configurations are 87 and 83 mm, respectively (table 5.2). Since we did 

not find an equation that relates bonding orientation to radiation efficiency, we used the 

best vertical and horizontal orientations found in the preliminary s-parameter 

measurements for subsequent measurements and radiation parameters calculations. 
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Table 5.2  Calculation of Wire Length for Optimal Radiation Performance 

Inductor 
Bonding 

Configuration 
fo 

(GHz) 
λo 

(mm) 
λg Teflon 

(mm) 
0.45*λg 
(mm) 

47nH (0402) 1-port Vertical 2.861 105 72 33 
47nH (0402) 1-port Horizontal 2.14 140 97 44 

270nH 
(0603) 1-port Vertical 1.07 280 193 87 
270nH 
(0603) 1-port Horizontal 1.12 268 185 83 

 

5.3.1 S-parameter Measurements 

S-parameter measurements were performed using the best vertical and horizontal 

1-port configurations with the samples radiating into free space (figure 5.4). Samples 

were mounted on 59 mil thick FR4 test fixtures, which were also used for efficiency 

measurements. These S-parameter measurements were also repeated with the samples 

inside a conducting sphere for efficiency calculation purposes. The loss factor or 

mismatch loss for these 1-port measurements was calculated using equation 5.5. 

Moreover, the loss factor of the miniature coil antennas (inductors bonded in a 1-port 

configuration), when radiating into free space as well as inside a conducting sphere 

(Wheeler cap), provides an insight into the radiation efficiency of the antennas. 

LF 1 S11( )2−   (5.5) 
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Figure 5.4  S-parameters of 270 nH 0603 Coil Inductor Bonded in a 1-Port Configuration Radiating into 
Free Space. Top Left- Broad-band S11 (dB) Response. Top Right- Broad-band Loss Factor. Bottom Left- 
Narrow-band S11 (dB) Reponse. Bottom Right- Narrow-band Loss Factor. Red Trace- Inductor Bonded in 
a Vertical Configuration. Blue Trace- Inductor Bonded in a Horizontal Configuration 
 

5.3.2 Efficiency Measurements 

An electrically small antenna can be represented by a lumped element circuit 

whose input impedance is given by equation 5.6, where RA is the real part of the 

antenna’s input impedance and XA is the antenna’s reactance [5]. The real part of the 

antenna’s input impedance is defined by equation 5.7, where Rr is the radiation resistance 

and RL is the loss resistance of the antenna [5]. 

ZA RA j XA⋅+   (5.6) 

RA Rr RL+    (5.7) 
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The radiation resistance accounts for the radiated power and the loss resistance 

accounts for the dissipated power. The total antenna efficiency eo is given by equation 

5.8, where er is the reflection efficiency and ecd is the conduction and dielectric 

efficiency. Reflection efficiency represents the mismatch between the transmission line 

and the antenna, and conduction and dielectric efficiency represent dissipative losses [5]. 

Reflection and conduction efficiency are defined by equations 5.9 and 5.10 respectively. 

eo er ecd⋅    (5.8) 

er 1 Γ( )2−    (5.9) 

ecd
Rr

RL Rr+    (5.10) 

Efficiency measurements are performed to experimentally find the loss resistance 

of the antenna by using the principles of the Wheeler Cap method. This method consists 

of placing the antenna inside a conducting shell, which effectively eliminates Rr [11]. 

Therefore, the resistive term of the antenna’s input impedance given by equation 5.7 will 

be only determined by loss resistance RL when the antenna is measured inside the 

conducting shell environment. Then, the radiation resistance can be experimentally 

determined by subtracting the input impedance of the antenna measured with the antenna 

inside the shell from the input impedance of the antenna radiating into an anechoic 

environment [12]. 

The conducting shell or Wheeler cap used for efficiency measurements is shown 

in figure 5.5. This Wheeler cap consists of a rectangular cavity milled in the center of a 

piece of aluminum carrier. The chip inductor sample mounted on a FR4 test fixture is 
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placed inside this cavity with the RF coaxial connector sticking out of the cavity. The size 

of this cavity is 3.1 cm long, 1 cm wide, and 0.5 cm deep. An RF coaxial cable was used 

to connect the chip inductor sample to port 1 of the Vector Network Analyzer to perform 

S-parameter measurements. 

 

Figure 5.5  Efficiency Measurements 

S-parameter measurements were performed with the samples inside the Wheeler 

cap (figure 5.5). Then, radiation efficiency was calculated using equation 5.11, where 

S11wc refers to the measurements when the antennas are inside the Wheeler cap, and 

S11fs refers to the measurements when the antennas are radiating into free space. Figure 

5.6 shows the s-parameter measurements of the inductor antennas radiating inside the 

Wheeler Cap, and Figure 5.7 shows radiation efficiency calculations. 

Equation 5.11 describes the constant power loss method to calculate radiation 

efficiency for small antennas (i.e., < λ/10). Equation 5.11 is proven to be mathematically 

equivalent to equation 5.10 [13]. This method assumes a constant power loss for a small 

antenna, with and without the Wheeler cap, whose radiation resistance is typically small 

in comparison to the 50-ohm measuring system source resistance [13]. The constant 

power loss method follows the same measurement principles as the Wheeler Cap method 

and defines radiation efficiency as the ratio of total power radiated by total power 

accepted by the antenna at its input terminals during radiation [5]. 
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η
S11wc( )2 S11fs( )2−

1 S11fs( )2−  (5.11) 

 

Figure 5.6  S-parameters of 270 nH 0603 Coil Inductor Bonded in a 1-Port Configuration Radiating Inside 
the Wheeler Cap. Top Left- Broad-band S11 (dB) Response. Top Right- Broad-band Loss Factor. Bottom 
Left- Narrow-band S11 (dB) Reponse. Bottom Right- Narrow-band Loss Factor. Red Trace- Inductor 
Bonded in a Vertical Configuration. Blue Trace- Inductor Bonded in a Horizontal Configuration 
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Figure 5.7  Radiation Efficiency of 270 nH 0603 Coil Inductor Bonded in a 1-Port Configuration. Top Left- 
Broad-band Response of Inductor in a Vertical Configuration. Top Right- Broad-band Response of 
Inductor in a Horizontal Configuration. Bottom Left- Narrow-band Response of Inductor in a Vertical 
Configuration. Bottom Right- Narrow-band Response of Inductor in a Horizontal Configuration 
 

For the vertical 270nH 0603 sample, we obtained a very high efficiency of 91.6%, 

which is explained by a shift in resonance frequency from 1.070 GHz to 995.3 MHz 

rather than the existence of high radiation efficiency. In addition, the horizontal 270nH 

0603 sample showed a very low radiation efficiency of 3.8% without a shift in resonance 

frequency. The loss factor does not significantly decrease when placed inside the 

Wheeler cap, generating this low efficiency; in fact, in some cases the loss factor 

increases when measured inside the Wheeler Cap. Based on our current efficiency results, 

we can conclude that these coil inductors have resonant frequencies with very low 

radiation efficiencies.  
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In order for the loss mechanisms and near fields of the antenna to behave the 

same way when inside the conducting sphere (Wheeler cap) as when it is radiating in free 

space, the Wheeler cap should have a radius of λ/2π [10]. This radius represents the 

transition between the antenna’s energy-storing near-field and its radiating far-field [5]. 

The Wheeler cap used for the efficiency measurements did not have the specified radius, 

and this could have disturbed the coil antennas’ near fields producing the frequency shift 

between shielded and unshielded measurements as well as the high loss for the shielded 

measurements. Moreover, electrically small antennas are difficult to measure properly 

because when they are connected to a measuring device a current will flow in the outer 

conductor of the cable connecting the antenna creating spurious radiation [16]. This 

spurious radiation will frequently completely mask the characteristics of the antenna 

under test yielding results that include the connecting cable [16]. 

Antennas are resonant at a frequency where they exhibit the greatest effective 

volume, and their resonant Q decreases with increasing effective volume [14]. 

Furthermore, antennas with dimensions which are small compared to a wavelength 

exhibit large radiation quality factors. Radiation quality factor Q equals the antenna 

reactance (stored energy) divided by the antenna resistance (radiated energy) [14]. Thus, 

there is more non-propagating energy stored than energy radiated leading to 

predominantly reactive input impedances. Also, because of the large radiation quality 

factors, the presence of even small resistive losses leads to very low efficiencies [12]. 

The basic limitations of electrically small antennas are imposed by the free-space 

wavelength that the antenna element must couple to [5]. These limitations are derived by 

assuming that the entire antenna structure with a largest linear dimension of 2r is 
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enclosed within a sphere of radius r [5]. When the sphere enclosing the antenna element 

becomes very small, there exist no propagating modes so the Q of the system becomes 

very large. Thus, the fundamental limit on the electrical size of an antenna is related to 

the lowest achievable Q at its largest linear dimension, which is independent of the 

geometrical configuration of the antenna within the sphere of radius r [5]. The shape of 

the radiating element within the bounds of the sphere only determines what modes are 

excited [5]. The fundamental limit of electrically small antennas is given by equation 

5.12, where k is the wave number equal to 2π/λ, and r is the radius of the sphere 

enclosing the antenna [16]. 

Q
1

k r⋅( )3
   (5.12) 

Figure 5.8 shows how the input impedance for the 270nH 0603 coil inductor 

bonded vertically and horizontally is predominantly reactive at the resonant frequencies. 

For instance, the inductor in a vertical configuration has an input impedance equal to 

19.11-119.93j, and the inductor in a horizontal configuration has an input impedance 

equal to 35.105-113.5j. Therefore, there is more non-propagating energy stored than 

energy radiated. 
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Figure 5.8  Input impedance of 270 nH 0603 Coil Inductor Bonded in a 1-Port Configuration Radiating in 
Free Space. Top Left- Broad-band Plot of Input Impedance for the Coil Inductor Bonded in a Vertical 
Configuration. Top Right- Broad-band Plot of Input Impedance for the Coil Inductor Bonded in a 
Horizontal Configuration. Bottom Left- Narrow-band Plot of Input Impedance for the Coil Inductor 
Bonded in a Vertical Configuration. Bottom Right- Narrow-band Plot of Input Impedance for the Coil 
Inductor Bonded in a Horizontal Configuration. Red Trace- Zin (real). Blue Trace- Zin (imag) 
 

In [11], the efficiency measurement of a lossy monopole consisting of a copper 

strip with three 10-ohm resistors placed at interval of 1/6, 1/2, and 5/6 along the antenna 

length is presented. At 950 MHz, the measured antenna efficiency is about 65%. The 

radiation efficiency of this monopole with different copper wire diameters ranging from 

0.5 to 1.6 mm is also presented in this work. It is shown that monopoles with larger-

diameter wires measured higher efficiency. Fort instance, a monopole with a wire 

diameter equal to 1.6 mm had a radiation efficiency of 98% at 950 MHz, and a monopole 

with wire diameter equal to 0.5 mm had a radiation efficiency of 87% at 950 MHz. All 
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the monopoles presented in [11] had a length of 85 mm, and were centrally mounted on a 

220 mm by 220 mm ground plane. Similarly, the radiation efficiency measurement of a 

modified bow-tie antenna constructed as a monopole (also called a waveguide-to-coax 

transition) with a large surface area to minimize conductor losses is presented in [11]. 

The efficiency was found to be equal to 99.17%. These radiation efficiency values 

reported in the literature for small antennas confirm that the surface mount chip inductors 

used in this investigation have very low radiation efficiencies. 

5.4 Summary and Conclusions 

The fundamental limits to how small an antenna can be at a particular wavelength 

and still behave as an efficient radiating device were studied. The restrictions of 

miniature coil antennas were examined by conducting S-parameters and efficiency 

measurements characterization. The measurement results show that the coil inductors 

have resonant frequencies with very low radiation efficiencies, which translates into the 

coil inductors not using effectively the available volume within the sphere of radius r 

enclosing them. Moreover, the coil inductors have predominantly reactive input 

impedances at the resonant frequencies, which indicate that there is more non-

propagating energy stored than energy radiated.  

Finally, even though the wheeler cap used for the efficiency measurements did 

not have the specified radius producing the frequency shift between shielded and 

unshielded measurements as well as the high loss for the shielded measurements, the coil 

inductors still have low efficiencies because of the predominantly reactive input 

impedances that make the presence of even small resistive losses decrease the efficiency. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

In this research work, the design of frequency independent antennas, an 

Archimedean spiral antenna, and a narrow-band planar couple microstrip Balun were 

presented. Moreover, the designed Archimedean spiral antenna integrated with the 

narrow-band Balun was successfully fabricated and tested to validate the performance 

predicted by the electromagnetic simulations. An analysis of frequency selective surfaces 

was also conducted in order to demonstrate their capability to miniaturize an antenna 

overall thickness by serving as backing ground planes. Lastly, the radiation properties of 

surface mount chip inductors were studied to investigate the feasibility of using them as 

electrically small antennas. 

An Equiangular and Archimedean spiral frequency independent antennas were 

designed and simulated as two-arm spirals for a frequency range of operation between 2 

to 6 GHz. Simulations were performed with a ground plane located approximately a 

quarter-wavelength from the antenna, and without a ground plane, to corroborate the 

expected performance. It was demonstrated that the presence of a ground plane backing 

the antenna redirects one-half of the radiation into the opposite direction, which improves 

the antenna peak gain by about 3 dB. Furthermore, it was shown that when spiral 

antennas are backed by a quarter-wavelength substrate without a ground conducting 
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plane present, the radiated waves tend to get stored in the dielectric so the peak gain 

shifts 180 degrees in the theta direction. The simulation results showed that even though 

the Archimedean and the equiangular spiral antennas have different equations defining 

them, their performance characteristics are similar. For instance, the return loss, VSWR, 

total gain, and radiation characteristics follow similar and expected trends. However, the 

Archimedean spiral had a more flat input impedance response, as well as circular 

polarization over a greater bandwidth than the equiangular spiral. Despite the fact that the 

simulations were performed using a substrate with a fixed electrical length of λ/4 

calculated at 2.4 GHz, both spirals showed a broadband response at the designed 

frequency range. 

With the aim of electromagnetic and circuit-level simulations, the Archimedean 

spiral antenna performance was successfully analyzed to the point where it was 

connected to the balanced feed network. It was shown that the twin-strip line feeding 

configuration does not affect the radiation characteristics of the antenna. It was also 

demonstrated that there is a trade-off in the antenna performance when the substrate 

backing up the antenna is reduced in thickness from an ideal λ/4 thickness. 

A narrow-band feed network that consists of a planar Balun was designed and 

simulated using the Agilent Advanced Design System (ADS) software in order to connect 

the antenna balanced input to an unbalanced line for fabrication and measurement 

purposes. Furthermore, the Balun was measured with the antenna as well as separate 

from the antenna in a back-to-back configuration. Both the Archimedean spiral antenna 

and Balun measurements agreed with the simulations. 
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A two-layer Frequency selective surface structure operating at 2.4 GHz was 

presented that could serve as the substrate for the Archimedean spiral antenna design to 

miniaturize its overall thickness. The FSS layer is static (not tuned) and thus the overall 

bandwidth reduces relative to the non-ground plane approach presented in Chapter 2. 

This type of high impedance structure not only makes it possible to reduce the antenna 

height by at least 69%, but also provides the opportunity of maintaining broad-band 

antenna responses by means of including tunable varactor diodes to the structure that 

adjusts the resonance frequency of the FSS. 

Lastly, the fundamental limits to how small an antenna can be at a particular 

wavelength and still behave as an efficient radiating device were studied. The restrictions 

of surface mount chip inductors operating as miniature coil antennas were examined by 

conducting S-parameters and efficiency measurements characterization. The 

measurement results showed that the coil inductors have resonant frequencies with very 

low radiation efficiencies, which translates into the coil inductors not using effectively 

the available volume within the sphere of radius r enclosing them. Moreover, the 

measurement results also indicated that the coil inductors have predominantly reactive 

input impedances at the resonant frequencies due to the fact that there is more non-

propagating energy stored than energy radiated. 

6.2 Recommendations for Future Work 

The simulations, analysis, and experimental data presented on the previous 

designs have provided interesting conclusions and ideas for future research work. 

Even though it was proved that the coil inductors have low efficiencies because of 

the predominantly reactive input impedances that make the presence of even small 
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resistive losses decrease the efficiency, there is an important recommendation to validate 

expected results. It is advised to modify the wheeler cap used for the efficiency 

measurements to have the required quarter wavelength radius so that the frequency shift 

between shielded and unshielded measurements as well as the high loss for the shielded 

measurements can be resolved. 

Finally, a significant recommendation for future work regarding the frequency 

selective surfaces emphasizes the electromagnetic simulation of the low-frequency design 

operating at 2.4 GHz to validate the background theory and analysis presented in this 

research work. Integrating the 2.4 GHz frequency selective surface design with tunable 

varactor diodes is another important recommendation in order to exploit the inherently 

broad-band characteristics of the Archimedean spiral antenna. 
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