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Community Context and Health Disparities Among Older Adults 
 

Helen M. Zayac 
 

ABSTRACT 
 
 
 

African Americans, Hispanics, and other minorities in the U.S. continue to face 

conditions of residential and educational segregation, lower socioeconomic status, and 

higher rates of mortality than whites.  Better theory-based research that uses community 

and individual level factors to explain how health disparities are created and perpetuated 

is needed. The Community Context and Health Disparities Model, which extends the 

work of Schulz and Northridge (2004) with elements described by Williams and Collins 

(2001), is described. This framework identifies the pathways by which characteristics of 

the physical, built, social, economic, and healthcare environments impact health and are 

mediated by individual traits. Two measures of the healthcare environment, physician 

density and emergency room hospital accessibility, are created using Geographic 

Information Systems (GIS), compared to traditional measures of these concepts, and 

contrasted across racial and ethnic populations. The Community Context and Health 

Disparities Model is implemented to understand physical and mental health disparities 

among a sample of older adults in Miami-Dade County who were participants in the 

Survey of Older Floridians using hierarchical linear modeling (HLM). Exogenous 

measures of each community domain, including the healthcare measures created, are used 

as community-level predictors of self-rated health and number of depressive symptoms. 

The results show that community poverty rate predicts self-rated health, but is no longer 



ix 

significant after individual attributes are controlled. There is a significant interaction 

between Hispanic ethnicity and community poverty associated with self-rated health. 

Hispanics are negatively impacted by community poverty but other ethnic groups are not. 

Depressive symptoms are found to be primarily explained by individual characteristics. 

Future research, practice recommendations and policy implications of these findings are 

described.    

 
 



1 

CHAPTER 1: INTRODUCTION 

Reducing racial and ethnic health disparities has been a research and policy 

priority since the 1985 Report of the Secretary’s Task Force on Black and Minority 

Health (U.S. Department of Health and Human Services [US DHHS], 1985). Over the 

past 20 years, racial health inequalities have most often been attributed to differential 

socioeconomic conditions (Mutchler & Burr, 1991; Williams, 1999; Williams & Collins, 

1995). Although statistically controlling for socioeconomic measures such as education 

and income reduces differences in health status, older African Americans and Hispanics 

remain significantly more likely than whites to report poor self-rated health (Hayward, 

Miles, Crimmins, & Yang, 2000; Hummer, Benjamins, & Rogers, 2004). Researchers 

from a variety of disciplines have documented the existence and persistence of health 

disparities and recognize that theory is needed to guide studies which expose the 

mechanisms that create and perpetuate these inequalities (Krieger, 1994; Krieger, 2001; 

Potvin, Gendron, Bilodeau, & Chabot, 2005; Snowden, 2005). This dissertation addresses 

these issues in four articles (chapters 2-5) which are introduced below. 

Community Context and Health 

Differential neighborhood contexts in residential communities offer a potential 

explanation for the persistent differences in health between whites, African Americans, 

and Hispanics (Browning, Cagney, & Wen, 2003; Cagney, Browning, & Wen, 2002; 

LeClere, Rogers, & Peters, 1997; Oakes, 2004; Robert & Lee, 2002). The geographic 
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distribution of older minorities is not uniform across the country (Rogerson, 1998). At all 

personal income levels African Americans are more likely than whites to live in poorer, 

more disadvantaged neighborhoods (Diez Roux et al., 2001; Jargowsky, 1996; Robert & 

Lee, 2002; Sampson & Wilson, 1995), making this a plausible explanation for the 

additional variation in health between racial groups after individual socioeconomic status 

has been taken into account. When both individual and community socioeconomic 

variables are controlled statistically, there are no longer significant differences in self-

rated health or number of chronic conditions between African Americans and Whites, 

although there are inconsistent findings among Hispanics (Browning, et al., 2003; Robert 

& Lee, 2002).  

The community context may have a particularly strong influence on the health of 

older adults because they have lived in the community for a longer time, have a greater 

need for services, and spend less time at work and hence more time in the residential 

community than younger adults (Robert & Lee, 2002; Robert & Li, 2001). On the other 

hand, differential mortality effects may actually reduce the ability to detect the influence 

of these conditions (Robert & Li, 2001; Waitzman & Smith, 1998). Individuals most 

impacted by neighborhood conditions may be more likely to die earlier resulting in an 

older population of survivors who are resilient to these effects.  

The Need for Theory 

The elements of community context and the mechanisms by which they influence 

health are not clear. Convenience and availability of socioeconomic indicators from the 

U.S. Census have made attributes such as unemployment, poverty, deprivation, and 

income inequality the most often utilized measures of context, although it is unlikely that 
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these factors directly impact health outcomes. Instead, these indicators are, at best, 

proxies for neighborhood conditions such as presence of environmental toxins and 

pollutants, availability of social services and recreational facilities, and social mobility, 

which have been shown to influence health (Jones & Duncan, 1995; MacIntyre, Ellaway, 

& Cummins, 2002; Robert, 1998; Robert & Li, 2002; Wallace & Wallace, 1990). 

Additional linkages, including neighborhood strain (Feldman & Steptoe, 2004; Steptoe & 

Feldman, 2001), collective efficacy and social capital (Cagney, et al., 2002; Franzini, 

Caughy, Spears, & Esquer, 2005), health behaviors (Robert, 1999; Ross, 2000), and 

neighborhood disorder (Ross & Mirowsky, 2001) have also been examined. 

Rather than using socioeconomic measures as proxies for the vague concept of 

“community context,” the specific aspects of the neighborhood and pathways by which 

they impact racial and ethnic health inequalities need to be outlined in a theoretical 

model. This framework would guide research and shape practice and policy. In the past, 

atheoretical research has led to inconsistent findings and made it difficult to identify what 

role, if any, community plays in determining an individual’s health (Sloggett & Joshi, 

1994). The conceptualization of context, variables used to measure it, and statistical 

analyses must be theoretically guided (MacIntyre, et al., 2002; Mitchell, Gleave, Bartley, 

Wiggins, & Joshi, 2000; O’Campo, 2003). Theoretically-based research will also identify 

causal factors and pathways so that public health policies and practices can be most 

effective in reducing disparities. This research will help to identify specific aspects of the 

community that can be modified, and may increase the effectiveness of individual-level 

public health interventions, such as anti-tobacco campaigns and exercise interventions 

(Oakes, 2004).  
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Use of Spatial Data to Define Community Context 

“Community” as a social or physical construct needs to be better defined so that 

the boundaries and spatial scale most appropriate for capturing the factors which 

influence health can be delineated (Mitchell et al., 2000; O’Campo, 2003; Pickett & 

Pearl, 2001; Sampson, Morenoff, & Gannon-Rowley, 2002). Currently community 

effects are measured at a variety of spatial scales  ranging from Census block groups, 

which are theoretically socially and economically homogeneous and include 600 to 3,000 

people (U.S. Census, 2001), up to counties, states and nations. Although community data 

are available for both U.S. Census-delineated units and U.S. Postal Service Zip Codes, 

and the former are constructed to be socially and economically homogeneous, these 

arbitrary boundaries may not correspond to true community boundaries. The results may 

change if the data are aggregated to larger geographic units or if different boundaries are 

used (Waller & Gotway, 2004).  

Objectives 

The goal of this study was to address the gaps in previous research, specifically 

by 1) developing a theoretical framework to understand the impact of community context 

on health disparities; 2) creating two new measures of the healthcare environment, 

availability and accessibility, to measure the domain that may be important to health 

disparities; 3) testing the proposed pathways between community context and physical 

health disparities; and, 4) testing the proposed pathways between community context and 

depression.  

These goals were met by a combination of methods over the following four 

chapters, with a common reference list included at the end. First, literature from a variety 
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of disciplines was integrated into a theoretical framework. Next, innovative spatial 

techniques using Geographic Information Systems (GIS) technology were used to create 

two measures of the healthcare environment, physician availability and hospital 

accessibility. For the third and fourth objectives, secondary data analysis of the Survey of 

Older Floridians (SOF) was used to test the theoretical framework using exogenous 

measures of the community, including the new healthcare measures created, to explain 

disparities in self-rated health and depression. 

In Chapter 2, the Community Context and Health Disparities Model, we describe 

a theoretical framework for understanding and researching the role of community and 

individual level factors on health disparities. The model extends the work of Schulz and 

Northridge (2004) with elements related to segregation described by Williams and 

Collins (2001), and draws on research from fields such as environmental justice, public 

health, and psychology. Available community measures which may be used to explain 

racial and ethnic disparities in individual physical and mental health outcomes within a 

community context are also identified.   

The focus of Chapter 3 is the construction, validation, an implementation of two 

measures of the local healthcare system, physician availability and emergency room 

hospital accessibility. Geographic Information Systems (GIS) are used to map the 

geographic locations of healthcare providers and facilities in Florida. Physician 

availability is calculated using kernel density estimation and compared to traditional 

provider-to-population ratios. Hospital accessibility is measured as road network distance 

to the nearest hospital with an emergency department, which is compared to Euclidean, 

or straight-line, distance. Both measures are derived for U.S. Census block groups. They 
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are validated by comparing the new methodology to previous methods that use large 

geographic areas. Racial and ethnic differences in availability and accessibility are also 

examined as a further test of validity.  

In Chapters 4 and 5, the hypothesized relationships between community attributes 

and physical and mental health outcomes proposed by the Community Context and 

Health Disparities Model in Chapter 2 are validated with secondary data analysis of the 

Survey of Older Floridians (SOF) data. Community measures for each of the five 

proposed domains were calculated from exogenous data sources including the U.S. 

Environmental Protection Agency (EPA), telephone directories, the U.S. Census (2000), 

and other sources as described in Chapter 2. Individual predictor and outcome data were 

drawn from a subset of participants from the SOF, a telephone survey of 1,433 older 

adults in Florida that focused on physical and mental health conditions, health care, and 

barriers to services faced by ethnic minorities in the state. We use hierarchical linear 

modeling (HLM), a statistical methodology that includes predictors at both the 

community and individual levels, to account for the potential similarity of individuals 

within communities, and allows us to examine interactions between conditions at both 

levels, to test the pathways proposed by the model. In Chapter 4, we examine the effects 

of predictors at both levels on self-rated health (Ware & Sherbourne, 1992). In Chapter 5, 

our focus turns to mental health, specifically depressive symptomology as measures by 

the Centers for Epidemiological Studies Depression scale (CES-D; Radloff, 1977).  

This work represents the convergence of research from a number of social and 

medical disciplines, and uses two relatively new methodological innovations, HLM and 

spatial analysis. In Chapter 6, we discuss the implications of these findings for future 
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research across these fields as well as for practice and policy. Taken together, this work 

provides a foundation for understanding health disparities among older adults by testing a 

more complete theoretical model and developing two new measures of the healthcare 

environment. It demonstrates the potential of Geographic Information Systems and 

spatial data to measure community context in studies employing hierarchical linear 

modeling. In this way, it is possible to more clearly understand how these pernicious 

disparities are affected by place and perhaps not race, an important distinction because 

we can make policy changes to affect place.  
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CHAPTER 2: THE COMMUNITY CONTEXT AND HEALTH DISPARITIES MODEL 

Introduction 

Forty years after Lyndon Johnson’s Great Society programs were put in place, 

African Americans, Hispanics, and other ethnic minorities in the United States still face 

conditions of residential and educational segregation, lower socioeconomic status, worse 

health, and higher rates of mortality than whites (Eberhardt, Ingram, & Makuc, 2001; 

Otten, Teutsch, Williamson, & Marks, 1990; Sorlie, Rogot, Anderson, Johnson, & 

Backlund, 1992). Hispanics and African Americans have increased rates of health 

conditions such as diabetes and HIV/AIDS (Keppel, Pearcy & Wagener, 2002) and live 

fewer years disability-free (Hayward & Heron, 1999). Infant mortality rates are twice as 

high among African Americans than whites (Keppel, et al., 2002) and higher levels of 

disease and mortality are seen throughout most of the life course (Fiscella & Williams, 

2004; Hummer, Benjamins, & Rogers, 2004). Minorities are more likely to suffer from 

mental health disorders such as depression (Roberts, Roberts, & Chen, 1997), but are less 

likely to seek treatment and more often disabled by these disorders than whites (US 

DHHS, 1999).  

The federal government has funded research and policy analyses to reduce these 

disparities since the 1985 Report of the Secretary’s Task Force on Black and Minority 

Health (US DHHS, 1985). A report to the Surgeon General highlighted the vast 

disparities in mental health among minorities (US DHHS, 1999). The Department of 

Health and Human Services’ Healthy People 2010 campaign began in 2000, with the aim 

of eliminating racial health disparities in ten years. In the same year, the National Center 

for Minority Health and Health Disparities was added to the National Institutes of Health 



9 

(Oliver & Muntaner, 2005). These developments highlight the increasing priority placed 

on the elimination of physical and mental health disparities.  

In order for these campaigns to be effective, better theory-based research is 

needed to expose how these disparities are created and perpetuated (Krieger, 1994; 

LaVeist, 2000). During the past 20 years, only a handful of factors have been used to 

varying degrees of success to explain these differences including socioeconomic status, 

racial-genetic differences, health behaviors, and psychosocial stress, but none have been 

able to adequately explain health differences between racial and ethnic minorities and 

whites (Dressler, Oths, & Gravlee, 2005). More recently, theories of residential 

segregation and community context have been offered as possible explanations for these 

inequalities (Krieger, 2001; Krieger, Chen, Waterman, Rehkopf, & Subramanian, 2003; 

LaVeist, 2005; Williams & Collins, 2001).  

Community Context, Health, and Health Disparities 

A community is a “social group of any size whose members reside in a specific 

locality, share government, and often have a common cultural and historical heritage” 

(Hart, 1998). Community context includes a number of factors that have been related to 

health disparities between minority groups and whites.  For example, community 

environmental and social conditions are associated with health outcomes (Halpern, 1995; 

Jones & Duncan, 1995). The appropriate use of community context to explain health 

disparities is confounded by the fact that most communities are still not fully integrated.  

According to data from the 2000 U.S. Census, although racial residential segregation has 

declined from previous decades, it still exists to a great extent in many locations (Glaeser 

& Vigdor, 2001).  We summarize the state of the art of community context research next. 
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Residential Segregation  

Conditions of residential segregation, or separation of racial groups (Williams & 

Collins, 2001), have been associated with concentrated poverty and poorer health 

outcomes for both African Americans and whites living in predominantly African 

American, segregated communities (Massey & Fischer, 2000; Subramanian, Acevedo-

Garcia, & Osypuk, 2005).  At all individual income levels, African Americans are more 

likely than whites to live in poorer, more disadvantaged neighborhoods (Jargowsky, 

1996).  At all education levels, African Americans are highly segregated from whites 

(Darden & Kamel, 2000).   

Environmental and Social Conditions 

Environmental and social conditions are associated with physical and mental 

health outcomes (Curtis, 1990; Gardner, 1973). Environmental conditions such as air 

pollution, water quality, and climate are associated with mortality (Chinn, du, Florey, 

Baldwin, & Gorgol, 1981; Pocock et al., 1980; West & Lowe, 1976).  Community 

socioeconomic conditions such as poverty rates, unemployment rates, and median family 

income are also related to heart disease, chronic conditions, self-rated health, and 

mortality (LeClere, Rogers, & Peters, 1998; Robert & Lee, 2002). Lack of access to 

services such as full-service grocery stores and healthcare facilities are associated with 

poorer diet and fewer opportunities for healthy behaviors (Ellaway & MacIntyre, 1996; 

Morland, Wing, & Diez Roux, 2002).  Rates of mental health disorders also vary 

geographically and are associated with socioeconomic characteristics of the residential 

community (Brown et al., 1977; Ostler et al., 2001).  It is clear that exposure of members 
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of racial or ethnic groups to poorer social and environmental conditions, and less access 

to services due to conditions of residential segregation, make community context a 

relevant explanation for the development and persistence of health disparities. 

Limitations of Previous Research 

Too often investigations of community context and health disparities have been 

driven by availability of data, rather than strong theoretical arguments. Socioeconomic 

indicators such as unemployment and poverty rates, deprivation, and income inequality, 

which are readily available from the U.S. Census, are the most often utilized measures of 

community context. It is unlikely, however, that these aggregated measures of the 

economic and social conditions of an individual’s neighbors directly impacts that 

individual’s health outcomes. Instead these indicators may be proxies for neighborhood 

conditions such as presence of environmental toxins and pollutants, availability of social 

services and recreational facilities, and social mobility, which have been shown to 

influence health directly (Jones & Duncan, 1995; MacIntyre, Ellaway, & Cummins, 

2002).   

Community context research often fails to take into account multiple co-existing 

community conditions identified by other disciplines.  As a result, all the factors that 

influence health rarely are well integrated into a theoretical model.  Such a model also 

needs to be used to test the direct and indirect impact of community conditions and the 

specific pathways through which socioeconomic and physical and mental health 

disparities exist (Krieger, 1994, 2001). It would examine the individual in the context of 

his community, identify domains of influential contextual conditions, and highlight the 

mechanisms through which they influence health.  In addition, a theory of community 
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context would be parsimonious, measurable, supported by research, and pragmatic.  And 

it would be useful for both prediction and intervention (Achenbaum & Bengston, 1994).   

Social and Environment Health Promotion Model 

One theoretical model responds to many of these concerns.  The Social 

Determinants of Health and Environment Health Promotion Model was developed by 

urban planners and sociologists (Northridge, Sclar, & Biswas, 2003; Schulz & 

Northridge, 2004; Schulz, Williams, Israel, & Lempert, 2002).  They posit that 

fundamental societal conditions impact characteristics of the built and social 

environments, which lead to individual stressors, health behaviors, and social relations 

that ultimately explain population health. Macro level factors, including the natural 

environment, the economic, legal, political, and historical societal conditions, and 

inequalities that result from these factors, determine where minorities live. This 

segregation, along with social and historical conditions, explain health disparities because 

they shape the built environment and social context of minority neighborhoods, which 

impact proximate level factors such as stress, health behaviors, and social integration and 

support. These, in turn, lead to physical and mental health disparities (Schulz & 

Northridge, 2004). Although this model is more complete than previous explanations for 

health disparities and it integrates findings from multiple disciplines, it has not been 

tested with population-based data as yet (Schulz, personal communication August 8, 

2006).  

This model also needs further development in regard to community context and 

segregation. For example, Williams and Collins (2001) identified three additional 

relationships between the community and health outcomes that are directly related to the 
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impact of residential segregation: education and employment, number and quality of 

medical facilities, and health promotion opportunities. Limited community educational 

and employment opportunities are associated with lower individual socioeconomic status 

which, in turn, leads to poorer health outcomes. Communities with medical facilities 

which are more likely to close or provide poorer care, have a direct effect on health 

outcomes (Mayberry, Mili, & Ofili, 2000). Health-promoting behaviors such as exercise, 

diet, and smoking are also influenced by the lack of community recreation facilities, poor 

quality grocery stores, and a higher prevalence of tobacco and alcohol advertisements 

(Williams & Collins, 2001).   

The Social Determinants of Health and Environment Health Promotion Model 

meets the logical test for a theoretical model. It is relevant to the social issues we are 

addressing. In addition, it is clear, simple, consistent, and informative and many of the 

social determinants are supported by research. It is difficult to find reliable measures for 

all pieces of the model, however, so it may not be pragmatic when the goal is to make 

policy or practical changes in the community to decrease disparities between race and 

ethnic groups. 

Recent Methodological Developments 

Recent advances in software now make it possible to address these questions in 

ways that would not have been feasible in the past.  Geographic Information Systems 

(GIS) make it possible to reference information within geographic units, such as census 

tracts, and there has been increasing availability of timely data on relevant community-

level factors which may be studied with these systems. For example, it is now possible to 

map populations, individuals, and community conditions such as poverty, crime rates, 
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traffic incidents, or air pollutant emissions and examine trends and relationships spatially. 

These developments make it feasible to test existing theoretical frameworks in using 

comparable community data, which was not possible in the past.  

Community Context and Health Disparities: A New Model 

We developed a new model, Community Context and Health Disparities (Figure 

1), that integrates the theoretical model of Schulz and Northridge (2004) with the 

additional elements described by Williams and Collins (2001) to explain racial and ethnic 

disparities in individual socioeconomic status and health outcomes within a community 

context.  We apply the theory by suggesting better measures that are now available. The 

balance of this article describes the new model and how it can be validated using 

community and individual data.  

As noted above, the previous theory (Schulz & Northridge, 2004) suggested that 

fundamental (macro level) factors such as the environment, sociopolitical, historical 

conditions and the resulting inequalities are interrelated with community factors such as 

the built, business, and political environments.  These, in turn, may cause or be affected 

by environmental stressors, health behaviors, and the degree of social integration and 

support.  All of these factors theoretically explain physical and mental health outcomes.  

The previous model has primarily been used to argue for the complexity of the reasons 

that are associated with poorer health and well-being of African Americans, but the 

hypotheses inherent to the model have not been tested with population data. In contrast, 

the Community Context and Health Disparities Model (Figure 1) nests individual factors 

within the community context and simplifies the pathways between them and health 

outcomes.  The earlier model was proposed mainly to test health disparities between 
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African Americans and whites (the most pernicious disparities in the United States).  The 

current model examines health disparities between all race and ethnic groups and within 

socioeconomic groups in a population-based research study.   

Societal conditions such as segregation, political, historical and economic 

conditions, cultural and social beliefs, institutional racism, and ideologies are likely to 

determine and shape the characteristics of residential neighborhoods in which minorities 

live (Schulz et al., 2002; Collins & Williams, 1999), but it is difficult, if not impossible, 

to measure these aspects of society in a contemporary population-based research study, 

for example.  Therefore, most of these macro level factors from the earlier model are not 

included here, although we fully recognize their importance in explaining current 

inequities.   

The broadest unit of analysis in the new model is community context, which 

includes the physical, built, social, economic, and healthcare environments. Some of 

these factors have been shown to affect health outcomes, such as exposure to toxins, poor 

housing conditions, and high rates of poverty (e.g., Krieger & Higgins, 2002; Morello-

Frosch & Jesdale, 2006; Waitzman & Smith, 1998).  Other factors have been proposed by 

Schulz and Northridge (2004) and others, and are measurable, so they are included here 

even though the research on their relationship to health disparities is not yet established 

(e.g., education quality, civic participation).  Nested within, and shaped by the 

community context, are individual factors, including demographics, health behaviors, 

social interactions and support, and psychological stressors.  These individual level 
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factors are proposed pathways between community context and physical and mental 

health outcomes.   

Although theoretically the relationships between the individual and community 

factors are bi-directional, for the present purposes we will discuss the relationships in 

terms of a potential causal pathway.  That pathway portrays the community context as a 

powerful, but often overlooked, predictor of racial or ethnic physical and mental health 

disparities. This is particularly important because the community context is mutable 

whereas race and ethnicity are not.  Policymakers, engineers, educators, and healthcare 

professionals have the power to build or renew communities so all citizens live, work, 

and recreate in places that promote health and well-being.  In addition, this model makes 

it possible to examine the interactions between individual and community characteristics. 

The individual is a key player but the burden for eliminating health disparities falls on the 

wider societal order as suggested by Schulz and colleagues (2002), rather than on the 

victim.    

Measures of Community Context 

Five community context factors are proposed to help explain physical and mental 

health disparities: physical, built, social, economic, and healthcare (Figure 1). These 

domains are listed in a loose hierarchy, with the expectation that the physical 

environment affects building design which affects the social community and economic 

conditions which affect access to the healthcare system. We suggest that shared variance 

between these conditions can be examined in terms of how a  new factor reduces the 

effect of a previous factor when added to a statistical model.  Community context factors 

are expected to have a direct effect on physical and mental health outcomes and to 
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indirectly impact these outcomes through their effect on individual behaviors and 

characteristics. These domains are described below. 

Physical Environment 

At the most basic level, health outcomes are influenced by the physical attributes 

of the environment, such as climate, toxins, and noise (Balfour & Kaplan, 2002; Evans & 

Kantrowitz, 2002). As in the Social Determinants of Health and Environmental Health 

Promotion Model, we also include aspects of topography and climate conditions such as 

extreme cold or heat, which are associated with increased morbidity and mortality 

(Klinenberg, 2002; McGeehin & Mirabelli, 2001).  Expanding upon Schulz and 

Northridge (2004), we add pollutants such as toxic waste sites and water quality to this 

factor.  

African Americans and Hispanics are more likely to live in areas where they are 

exposed to environmental pollutants and to live closer to toxic waste sites (Anderton, 

Anderson, Oakes, & Fraser, 1994; Moses et al., 1993; Pastor, Sadd, & Hipp, 2001). 

Segregated areas are also more likely to have high levels of air toxins associated with 

higher cancer risks and poor mental health (Evans, 2003; Morello-Frosch & Jesdale, 

2006). Natural disasters caused by climate lead to increased rates of depression (Ginexi, 

Weihs, Simmons, & Hoyt, 2000). Lack of exposure to daylight, a feature of the physical 

environment, is thought to be the primary cause of seasonal affective disorder, which is 

characterized by depression and fatigue (Rosenthal et al., 1984).  

Built Environment  

Built structures are nested within the conditions of the physical environment. 

Unlike Schulz and Northridge (2004), our conceptualization of the built environment is 
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limited to the attributes of the buildings, transportation systems and roads, services and 

stores in the community, but not healthcare services or schools which are covered 

elsewhere.   

The presence of boarded up housing is associated with higher mortality rates 

(Cohen et al., 2003). Poor housing conditions, such as exposure to lead, overcrowding, 

poor insulation, dampness, rodent infestation, and inadequate heating have been linked to 

asthma, heart diseases, injuries, neurological disorders, and mental health disorders 

(Burridge & Ormandy, 1993; Evans, 2003; Halpern, 1995; Krieger & Higgins, 2002; 

Shaw, 2004). Urban sprawl is associated with health outcomes such as hypertension 

(Ewing, Schmid, Killingswoth, Zlot, & Raudenbush, 2003). Neighborhood conditions 

such as land use and building deterioration may affect both depression and life 

satisfaction (Chapman & Beaudet, 1983; Galea, Ahern, Rudenstine, Wallace, & Vlahov, 

2005). Features of local transportation systems, such as traffic and vehicular accidents, 

are associated with poorer self-rated health (Gee & Takeuchi, 2004).  The presence and 

characteristics of stores, libraries and museums, recreation facilities, parks, and 

community centers can impact health (MacIntyre, Maciver, & Soomans, 1993; Morland 

et al., 2002). Among African Americans, the types of restaurants and grocery stores in 

residential areas have been linked to poor diet (Morland, et al., 2002).  

Social Environment 

Social interactions and conditions exist in the context of the physical and built 

environments. As with Schulz and Northridge (2004), we note the important impact of 

neighborhood social context on health outcomes. Three major domains of the social 

environment are included in the new model: organized social institutions, informal social 
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conditions, and the sociodemographic characteristics of other community residents. 

Organized civic, political, social, and religious institutions can empower a community 

and buffer individuals from more harmful aspects of the environment (LaVeist, 1993; 

Rich, Edelstein, Hallman, & Wandersman, 1995). Both supportive and harmful aspects of 

the informal social environment have been linked to physical health and well-being. 

Supportive environments are characterized by high levels of collective efficacy, or 

willingness of residents to intervene on behalf of other residents, and high levels of social 

capital, which are characterized by civic engagement, solidarity, and trust in the 

community. These concepts have been shown to mediate the effects of community 

characteristics on individual health outcomes (Cagney, Browning, & Wen, 2002; 

Franzini, Caughy, Spears, & Esquer, 2005; Sampson, Raudenbush, & Earls, 1997). 

Negative conditions such as crime and disorder have also been shown to affect health 

(Ross & Mirowsky, 2001; Sampson et al., 1997). And social demographics of the 

community such as racial and ethnic composition, female-headed households, and 

housing turnover rates are associated with depression and health (Franzini et al., 2005; 

Wen, Browning, & Cagney, 2003).  

Economic Environment  

Community economic conditions such as aggregate poverty, affluence, quality of 

educational systems, and employment opportunities are often included as social 

conditions, but are a separate domain in this model. Low community socioeconomic 

status, or “deprivation,” has been linked to stroke, cardiovascular and all-cause mortality, 

and self-rated health, controlling for individual attributes (Davey Smith, Hart, Watt, Hole, 

& Hawthorne, 1998; Jones & Duncan, 1995; Maheswaran, Elliott, & Strachan, 1997).  
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Living in a community with high poverty doubles the mortality rate among adults aged 

25 to 54, even after individual socioeconomic conditions and health behaviors are 

statistically controlled (Waitzman & Smith, 1998). There are higher rates of depression 

and psychiatric disorders in poorer urban communities (Brown et al., 1977; Ostler et al., 

2001) and higher levels of well-being in neighborhoods where more people have 

adequate personal resources (Schwirian & Schwirian, 1993). In some cases, these 

differences can be fully accounted for by the lower individual socioeconomic status of 

residents in these areas (Reijneveld & Schene, 1998). In other studies, however, 

community characteristics had significant effects on mental health after controlling for 

individual characteristics (Fone & Dunstan, 2006; Skapinakis, Lewis, Araya, Jones, & 

Williams, 2005).  

Conversely, a social environment that includes affluent residents may help 

increase social organization and mobility leading to better self-rated health (Browning, 

Cagney, & Wen, 2003).  People in more affluent communities are in significantly better 

health, even when compared to people with the same income in less affluent Census 

tracts. Poor individuals living in upper-middle income neighborhoods were 43 percent 

more likely to report better self-rated health than people with the same income living in 

poorer neighborhoods (Hou & Myles, 2005). Moving from a low-income to a middle-

income community has positive effects on the mental health of both children and adults 

(Dalgard & Tambs, 1997).  

In addition to the economic conditions of the people living in the community, the 

educational and employment opportunities are important facets of the economic 

environment. Education and employment are included under the macro level factor of 
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inequalities and social context of “educational quality” by Schulz and Northridge (2004).  

Here, drawing on Williams and Collins (2001), these aspects are considered components 

of the community economic context. Community racial segregation has been linked to 

disparities in education and income (Cutler, Glaeser & Vigdor, 1997), and these aspects 

of community socioeconomic status are associated with health (Adler, Boyce, Chesney, 

Folkman, & Syme, 1993). The concentration of minorities in communities with poor 

quality education systems and limited job opportunities represents a mechanism by which 

socioeconomic disparities are developed and reinforced (Orfield & Eaton, 1996; 

Williams & Collins, 2001).  

Educational experiences are also shaped by residential community. Although 

school segregation was officially abolished by the Brown versus Board of Education 

decision (1954), it still exists. The use of private, magnet, and charter schools by white 

children leads to sustained conditions of segregation in many school districts (Saporito & 

Sohoni, 2006). A higher percentage of African American and Hispanic students attended 

primarily minority schools in 2000 than in 1970 (Frankenberg, Lee, & Orfield, 2003). 

The schools that minorities attend have more students from poor socioeconomic 

backgrounds (Orfield & Lee, 2005), which is associated with lower levels of student 

achievement, regardless of individual socioeconomic characteristics (Rumberger & 

Palardy, 2005).   

Employment opportunities are an important part of the community economic 

context as well. Individuals search for jobs near where they live and African Americans 

and Hispanics who live in segregated areas generally live and search for jobs in areas of 

low job growth compared to whites (Stoll & Raphael, 2000). This Spatial Mismatch 
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Hypothesis has been used to explain lower wages and higher rates of unemployment 

among minorities, particularly following the movement of industrial jobs out of inner 

cities to more affluent suburbs in the 1980s (Kain, 1968; Zax & Kain, 1996).  This, in 

turn, affects health. People living in areas with lower unemployment rates have a lower 

risk for depression (Zimmerman & Bell, 2006).  Job market characteristics vary 

geographically (Kain, 1968).  Jobs with low autonomy are more likely to be found in 

minority communities and these types of jobs are associated with depressive symptoms 

(Rugulies, Bultmann, Aust, & Burr, 2006). 

Healthcare Environment  

The local healthcare system is another facet of the community that influences 

health and is shaped by the aforementioned community characteristics. Although medical 

facilities are included by Schulz and Northridge (2004) in the built environment, a large 

number of studies document the independent relationship between characteristics of the 

healthcare system and health disparities, making it important to highlight the influence of 

the system itself (Smedley, Stith, & Nelson, 2003). Within this domain, healthcare 

system characteristics include availability, accessibility, and quality. Urban communities 

with high percentages of African Americans are more likely to have hospitals close 

down, thereby changing the number and type of healthcare options available to them 

(Whiteis, 1992). In rural areas, there are fewer mental health services, and thus more 

unmet need (Hauenstein et al., 2006). Regardless of individual and healthcare system 

characteristics, adults in poorer neighborhoods are less likely to have a usual source of 

care and more likely to report an unmet healthcare need in the past year (Kirby & 

Kaneda, 2005), reflecting accessibility and structural barriers (Smedley, et al., 2003). A 
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greater proportion of African Americans and Latinos than whites receive healthcare in 

hospital outpatient departments, clinics, or emergency rooms, even when individual traits 

such as insurance status and income are controlled (Lillie-Blanton, Martinez, & 

Salganicoff, 2001). Poorer quality healthcare in minority communities has been offered 

as an explanation for racial and ethnic health disparities. Rates of standard and effective 

treatments, which may be considered measures of healthcare quality, including the use of 

beta-blockers following a heart attack, preventive mammograms and colonoscopies, and 

pneumonia and flu vaccinations, vary geographically. In regions with the highest 

concentrations of African Americans, older diabetics of all ethnicities are less likely to 

receive annual eye exams than in other areas (Baicker, Chandra, & Skinner, 2005).  

Primary care physicians are also the first source of help for depression and anxiety 

problems (Gorn, Icaza, & Cantu, 2003) so the availability, accessibility, and quality of 

these physicians will impact mental health disorder diagnosis and treatment, as well.   

Measures of Individual Context 

In the Community Context and Health Disparities Model, individual 

demographics, socioeconomic status, health behaviors, social support, and stress, which 

are often employed as control measures in studies of racial differences in health, here are 

shaped by the community context described above and have both direct and indirect 

effects on physical and mental health. We describe the variables used to measure these 

conditions and then discuss how they may mediate the influence of community context 

on health.  
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Demographics  

Age, race, ethnicity, and gender are considered in this model. Increased age is 

associated with poorer physical health (House et al., 1990) and, to a lesser degree, mental 

health (Jorm, 2000). As described earlier, race is predictive of poorer health outcomes 

(c.f., Sorlie et al., 1992). Here, we are interested in whether race has additional effects on 

health outcomes when community context is controlled.  Ethnicity, particularly if the 

individual is of Hispanic origin, is measured separately. Research has shown an 

independent negative effect on physical and mental health associated with being Hispanic 

of any race (Hummer et al., 2004). Gender is also important.  Women have longer life 

expectancies, but with higher incidences of chronic conditions such as arthritis and 

osteoporosis (Verbrugge, 1985). They are also more likely to suffer from depression 

(Roberts et al., 1997). 

Socioeconomic Status 

Individual economic conditions are hypothesized to mediate the effects of 

community social and economic contexts (Pickett & Pearl, 2001; Williams & Collins, 

2001). Socioeconomic status includes income, level of education, assets, employment, 

and occupational class (Krieger, Williams, & Moss, 1997). Poor health outcomes and 

higher mortality rates are highly associated with lower individual socioeconomic status 

(Adler, Boyce, Chesney, Folkman, & Syme, 1993; Syme & Berkman, 1976). There is a 

negative correlation between income and morbidity and mortality (Adler et al., 1993; 

Ecob & Davey Smith, 1999), a relationship that persists throughout the life course (Smith 

& Kington, 1997; Starfield, Robertson, & Riley, 2002). Lower socioeconomic status also 
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increases the likelihood of having a psychiatric or common mental health disorder 

(Dohrenwend, et al., 1992; Roberts, et al., 1997).   

Health Related Behaviors  

This domain includes actions that individuals take to improve their health status 

which include: a regular source of healthcare, seeking preventive care, exercising, not 

smoking, and not drinking to excess. Differences in these behaviors are hypothesized to 

explain differences in health outcomes and also, in the aggregate, differences between 

communities.  Others have found that these individual behaviors mediate the community 

context, that is, healthy behaviors are a stronger predictor of health outcomes than the 

physical, built, or economic environments (Ellaway & MacIntyre, 1996; Robert, 1999; 

Ross, 2000).  We suggest the opposite; measures of community context will remain good 

predictors, when individual health behaviors are included. For example, better health 

outcomes are associated with having a usual source of healthcare, getting regular check-

ups and seeking preventive care such as screenings (Corbie-Smith, Flagg, Doyle, & 

O’Brien, 2002; Newacheck, Hung, Park, Brindis, & Irwin, 2003; Politzer et al., 2001).  

We need to understand how the healthcare system has an impact on these behaviors. 

Exercise and increased physical activity are associated with positive physical and mental 

health outcomes (Cress et al., 1999; Stathopoulous, Powers, Berry, Smits, & Otto, 2006). 

Heavy drinking increased the likelihood of depression (Manninen, Poikolainen, 

Vartiainen, & Laatikainen, 2006) and the deleterious effects of smoking and heavy 

drinking on physical health have been documented (Shopland, Eyre, & Peachacek, 1991; 

Thorogood, Mann, & McPherson, 1993).  
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Social Support 

This domain includes the size and characteristics of the individual’s social 

networks, and whether they feel the social environment is supportive. Longer tenure in a 

neighborhood is associated with greater levels of support (Schulz et al., 2006). The social 

support that an individual receives from a network of family and friends is positively 

associated with physical and mental health outcomes including lower depression and 

mortality (Berkman & Glass, 2000; Kawachi & Berkman, 2000; Leskela et al., 2006). 

The extent to which an individual feels supported by other members of the community, or 

a sense of strong neighborhood social capital, may also indicate social supportive 

conditions (Davidson & Cotter, 1991).  

Stressors  

This domain includes individual stressful life events and the perception of stress 

due to neighborhood conditions. Experiencing a number of stressful life events, which 

include things like death of a spouse, change in financial status, or loss of a job lead to 

worse physical and mental health outcomes (Holmes & Masuda, 1974; Leskela et al., 

2006).  Individual perceptions of stress from community conditions have often been 

operationalized as exposure to neighborhood conditions such as noise and pollution, fear 

of crime, and neighborhood problems or disorder (Franzini, et al., 2005; Gee & Payne-

Sturges, 2004; Ross & Mirowsky, 2001). In the new model, however, these attributes are 

measures of the physical, built, and social environments within the community context. 

Within the individual context, we focus on the individual’s assessment of the community 

as stressful and examine whether or not this mediates the effects of community context 

on health outcomes.  That is, an objective measure of crime (social environment) may be 
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mediated by an individual’s self assessment of feeling safe and secure and lead to better 

mental health outcomes. 

Measures of Individual Outcomes 

As described above, individual physical health and mental health outcomes are 

associated with both community context and individual characteristics.  Aspects of 

community context including rates of unemployment, overcrowding, public assistance, 

and median household income have been associated with individual measures of physical 

health including blood pressure (Hart, Ecob, & Davey Smith, 1997), myocardial 

infarction (Diez Roux et al., 2001), and cardiovascular mortality (Davey Smith, et al., 

1998). Because this new model addresses the effects of community context on individual 

overall health, we examine self-reported measures of physical functioning, number of 

chronic conditions, or self-rated health (Browning, et al., 2003; Robert & Lee, 2002) 

rather than incidence of specific diseases or health indicators. The latter line of research 

is important especially when examining very specific community context (e.g. 

neighborhood pollution and rates of chronic obstructive pulmonary disease).  Similarly, 

mental health is assessed with general measures of functioning (Reijneveld & Schene, 

1998) such as depression, happiness, and life satisfaction.  

Physical and mental health outcomes are closely related. Cognitive impairment 

and depressive symptoms are associated with physical functioning (Fultz, Ofstedal, 

Herzog, & Wallace, 2003). People with poor self-rated health are more likely to report 

that they are unhappy (Subramanian, Kim, & Kawachi, 2005). The increasing gap 

between levels of depression between people with high and low levels of education is 

primarily explained by differences in physical health (Meich & Shanahan, 2000).  In fact, 
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it may be that it is the community context of the educational and healthcare systems that 

are implicated. 

Potential Interactions 

The large number of variables measured at both community and individual levels 

make it possible to include many cross-level interactions to examine the moderating 

effects of individual characteristics on community conditions when explaining health 

outcomes (Hox, 1995). Individual behaviors may or may not overcome the risks 

associated with features of the community context. Based on previous research, we 

expect interactions between individual socioeconomic status, social support, and stress 

with community factors in predicting health outcomes.  

Poorer or unemployed individuals may be more affected by community 

conditions than those who have more economic resources (Fone & Dunstan, 2006; 

Weich, Twigg, Holt, Lewis, & Jones, 2003). We expect high levels of social support, 

particularly from neighbors, to buffer against the harmful effects of community 

conditions (Cassel, 1976), although Latkin and Curry (2003) did not find such an 

interaction.  Individual appraisals of stress from the community may lower immune 

system function and therefore increase susceptibility to pollutants and toxins in the 

neighborhoods, leading to the development of disease and functional loss that would not 

occur if a person does not feel stressed (Cohen, Tyrrell, & Smith, 1991; Gee & Payne-

Sturges, 2004).  Or the more straight forward explanation may be true.  Pollution and 

toxins may lead to higher levels of chronic diseases and the individual’s perception of 

living in a stressful community is simply an accurate one with the expected outcome—

poor health. 
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Discussion 

Proposed factors such as socioeconomic inequality (Williams & Collins, 1999), 

innate biological differences (Boyle, 1970), health behaviors, and psychosocial stress 

(Dressler et al., 2005) fail to fully account for racial and ethnic health inequities. Instead, 

aspects of the environment have been posited as potential explanations for these 

disparities (Williams & Collins, 2001). Although the Social Determinants of Health and 

Environmental Health Promotion Model (Northridge, et al., 2003; Schulz & Northridge, 

2004; Schulz et al., 2002) outlines a number of community conditions and the 

mechanisms through which they impact health, the full model has not been empirically 

tested, and many of the proposed causes are too complex to be translated into measurable 

variables. It would also be enhanced with additional, measurable, pathways between 

community context and individual health.  

The Community Context and Health Disparities Model presented here is both a 

refinement and an expansion of the previous theory using community context to explain 

racial and ethnic health disparities. We improve upon this model by adding economic and 

healthcare domains (Williams & Collins, 2001) and proposing a direct association 

between community conditions and health. In addition, the model is designed to be 

applied in empirical research that tests the relationships between community context and 

health.  This research can be readily translated into changes in policy and practice.  

We hypothesize about the causal relationships between these factors, and 

although associations have been shown between some of the community domains and 

health outcomes, longitudinal data are needed to establish causality. With Geographic 

Information Systems it is now possible to link individual data from large-scale 
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community-based studies to exogenous community characteristics. For example, distance 

to the nearest Superfund or toxic waste site is now easily calculated. The U.S. Census 

provides measures of a number of community social, economic, and even built 

environment characteristics from the American Housing Survey so that researchers need 

not rely on measures of community created by aggregating study participant data.  

Multilevel statistical modeling can test the relative contribution of community and 

individual characteristics and the interactions between these factors without committing 

an ecological fallacy by drawing conclusions about individuals from aggregated data and 

without violating the assumption of independent observations.  Instead, the net effects of 

community variables can be measured by holding individual variables constant and 

allowing error to vary randomly across communities. With these advancements, it is 

possible to employ this theoretical model for research examining the role of community 

context on health disparities.  

Testing this model requires working across disciplines and taking into account 

concepts and measures from public health, psychology, sociology, and related fields and 

putting them into a geographical framework. The work of urban planners, 

environmentalists, and educators may be identified as essential to the elimination of 

health disparities. Using a more geographic perspective to examine conditions in all of 

these areas will not only identify the role of the community in shaping health outcomes, 

but also highlight the unique relationship between the individual and place. We are 

recommending that research shift in focus from the individual to both the individual and 

the community.  
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A recent report from the Brookings Institute (Fellowes, 2006) highlighted how 

poor people living in poverty areas pay more for everything from groceries to insurance 

premiums, supporting the importance of the social and economic pathways suggested 

here. Testing the Community Context and Health Disparities Model demonstrates the 

relative contribution of both community and individual characteristics and will perhaps 

eradicate the “blame the victim” mentality by showing the circumstances under which 

community conditions cannot be easily overcome. Community conditions may be as 

strong, if not stronger, predictors of health than individual characteristics. Both models 

described here are based on the societal and historical conditions, such as racism and 

segregation that create and perpetuate these community disparities, with the aim of 

demonstrating the resultant harm caused by such community contexts.  The identification 

of key community factors can lead to policy interventions targeting these conditions, 

making it possible to reduce health disparities.   

For example, northern urban areas where housing rarely includes air conditioning 

are learning the importance of extreme weather and the built environment on mortality of 

older people.  Recent policy research has suggested that cities plan to identify vulnerable 

individuals and supply them with needed air conditioners (Klinenberg, 2006). School 

boards in regions of the country with chronically poorly performing schools and where 

graduates have poor access to well-paying jobs can work with businesses and community 

leaders to mitigate these pernicious conditions.  Developers, architects, and builders can 

be required by municipalities to integrate healthy building concepts into housing and 

work environments.  There has been much focus on rebuilding New Orleans, which faced 

many negative community conditions prior to Hurricane Katrina in 2005. Lessons learned 
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from this experience should serve as a blueprint for redevelopment planning.  New 

Orleans has the potential to be a model for creating a healthy city.  

Conclusion 

The study of community context on health has been limited by the lack of a tested 

theoretical framework on which to base research. Drawing on other models (Schulz & 

Northridge, 2004; Williams & Collins, 2001) and related literature, we outline the 

Community Context and Health Disparities Model and delineate the elements and 

mechanisms by which neighborhood influences health. Societal characteristics shape the 

physical, built, social, economic, and healthcare environments of the community which 

directly and indirectly influence physical and mental health. Individual characteristics, 

such as demographic, socioeconomic status, health behaviors, social support, and stress 

mediate or moderate community conditions when explaining health outcomes.  The use 

of multilevel modeling and geographical information systems data and analysis makes it 

easier to use such a model to test these relationships and suggest interventions in policy 

and practice. 
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CHAPTER 3: MEAURING HEALTHCARE AVAILABILITY AND ACCESSIBILITY 

Introduction 

The inability of factors such as socioeconomic inequality (Williams & Collins, 

1995), innate biological differences (Boyle, 1970), health behaviors (Winkleby & 

Cubbin, 2004), or psychosocial stress (Dressler, Oths, & Gravlee, 2005) to fully account 

for racial and ethnic health disparities has led researchers to explore other potential 

causes. In recent years, differential conditions in the residential neighborhoods of whites, 

African Americans, and Hispanics have been offered as potential explanations for these 

differences (Browning, Cagney, & Wen, 2003; Cagney, Browning, & Wen, 2002; 

LeClere, Rogers, & Peters, 1997; Robert & Lee, 2002). For example, neighborhood 

poverty rate, unemployment rate, and median family income have been linked to health 

outcomes such as heart disease, chronic conditions, self-rated health, and mortality 

(LeClere, et al., 1997; Robert & Lee, 2002). Environmental conditions such as air 

pollution, water quality, and climate are associated with mortality and have been 

associated with residential segregation (Chinn, du, Florey, Baldwin, & Gorgol, 1981; 

Pocock et al., 1980; West & Lowe, 1976). Features of the local transportation systems, 

such as high levels of traffic and vehicular accidents, have been associated with poorer 

self-rated health (Gee & Takeuchi, 2004).  However, the local healthcare system is also 

an important facet of the community that may explain health disparities (Smedley, Stith, 

& Nelson, 2003).  
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Healthcare System 

The healthcare system has been described according to measures of availability 

(number of providers by population in a geographic area), accessibility (distance from 

population to providers), affordability (cost of care), acceptability (meeting patients’ 

needs and desires), and accommodation (hours of operation, ease of getting an 

appointment) (Penchansky & Thomas, 1981), as well as the quality of care provided 

(Baicker et al., 2005). Research has shown that geographic variability exists in most of 

these attributes (Baicker, Chandra, & Skinner, 2005; Hauenstein et al., 2006; Whiteis, 

1992). For example, urban communities with high percentages of African Americans are 

more likely to have hospitals close down, thereby changing the number and type of 

available healthcare options (Whiteis, 1992). In rural areas there are fewer healthcare 

services, particularly mental health services, and thus more unmet need (Hauenstein et 

al., 2006). Regardless of individual and healthcare system characteristics, adults in poorer 

neighborhoods are less likely to have a usual source of care and more likely to report an 

unmet healthcare need in the past year (Kirby & Kaneda, 2005), reflecting barriers to 

healthcare (Smedley, et al., 2003). Poorer quality healthcare in minority communities has 

been offered as an explanation for racial and ethnic health disparities. Rates of standard 

and effective treatments used to measure of healthcare quality (Chandra & Skinner, 

2003), including the use of beta-blockers following a heart attack, preventive 

mammograms and colonoscopies, and pneumonia and flu vaccinations, vary 

geographically. In regions with the highest concentrations of African Americans, older 

diabetics of all ethnicities are less likely to receive annual eye exams than in other areas 

(Baicker et al., 2005).  This growing body of literature suggests that features of the 
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healthcare system may play an important role in the creation and persistence of health 

disparities.  

Previous research on the adequacy of the healthcare system has analyzed the 

geographic variability of provider availability and healthcare facility accessibility. We 

adopt the same focus here, rather than on aspects of affordability, insurance coverage, 

waiting times, utilization (“actual accessibility”), and quality. We do address the latter 

elsewhere (Zayac & Reader, 2007).  In the next section we describe previous approaches 

for calculating spatial measures of healthcare availability and accessibility. Throughout 

the paper, we use the definition of availability as the number of providers potentially 

available to the population and accessibility as the ease of reaching these providers as 

measured by distance. As such, availability is operationalized as the ratio of providers to 

the population while accessibility is operationalized as distance to the nearest provider. 

Provider Availability  

Physicians and hospitals are not uniformly distributed throughout the United 

States (Rosenthal, Zaslavsky, & Newhouse, 2005), an issue which has been the focus of 

much research and concern, particularly because the adequate availability of physicians is 

associated with lower rates of avoidable hospitalization (Laditka, 2004). A simple ratio of 

providers, services, or hospital beds to the number of people living in a geographical area 

(e.g., county or city) is one of the most commonly employed measures of healthcare 

availability (Guagliardo, Ronzio, Cheung, & Joseph,  2004). This ratio does not take into 

account distance, thereby overweighting the availability of providers who are distant and 

not realistic options for the entire population within the area. Conversely, the use of 

geographic boundaries may underweight the availability of physicians in adjoining areas 
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who are as close as across the street (Guagliardo et al., 2004). For example, people living 

along the border of a rural county that is adjacent to an urban area may have ample 

healthcare options, but this would not be reflected in the provider ratios based on county 

boundaries typically used in previous research.   

In recent years, researchers have developed two methodologies utilizing 

Geographic Information Systems (GIS) data that overcome these limitations. The first is 

the two-step floating catchment area (FCA) method (Luo, 2004; Wang & Luo, 2005), 

which involves first mapping physicians to point locations using geocoding. A popular 

choice of geocoding resolution has been the zip code, reflecting the widespread use of 

provider lists from the American Medical Association (AMA) in which many addresses 

are listed as “P.O. Boxes” with only zip code address information (Wang & Luo, 2005). 

In effect, physicians within a zip code are summed and assigned to the geographic 

centroid of that zip code. Then, using a “population catchment” area defined by travel 

time (or distance) away from each zip code centroid, the populations of any census 

divisions (typically census tracts) within the catchment area, as determined by their 

centroids, are summed. The number of physicians summed at the zip code centroid is 

then divided by the population in the catchment area to produce a physician-to-population 

ratio. The ratio is then assigned to the zip-code centroid. In step two of the FCA method, 

focus is shifted to the census division centroids and “physician catchment” areas, based 

again on travel time or distance, are determined for each census division centroid. 

Finally, for each census division, the physician-to-population ratios for any zip-code 

centroids falling within the physician-catchment area are summed and this becomes the 
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measure of physician availability for the census division. The approach is an elegant 

method that attempts to adjust for accessibility based upon population density.   

The second method is based on kernel density estimation (KDE). In this approach, 

the units of analysis are square grid cells at a relatively fine spatial resolution, such as 

100 meters, one-quarter mile, or one kilometer.  A geographic area is first converted to a 

grid of equally-sized grid cells. For each grid cell, a weighted count, or intensity, of 

physicians within a certain radius of the cell centroid (known as bandwidth) is then 

determined, where the weight assigned to a physician declines with distance according to 

whatever kernel density function is assumed.  A typical kernel density function is the 

quartic kernel which approximates a Gaussian distribution.  The grid of kernel density 

values produces an easily-visualized surface and the individual cells can be divided by 

cell-estimated populations to produce cell-based population “densities.”  The cells, being 

of fine spatial resolution, also can be approximately aggregated to such entities as census 

divisions and the average intensity across cells is used to produce census-division 

population “densities” or ratios (Guagliardo et al., 2004).  

As implemented to date, these two approaches have a number of relative 

advantages and disadvantages. The use of a coarser spatial data resolution by the FCA 

method (zip codes and census tracts) has enabled computational efficiency and to use 

more realistic road network travel times in determining service catchments, whereas the 

KDE method uses a less realistic fixed Euclidean distance bandwidth to demarcate 

catchments for each grid cell. Conversely, the use of a finer spatial resolution in typical 

KDE implementation (geocoded physicians to points and high resolution grid cells) 

enables the weighting of physician counts by distance, and the estimation of physician 
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variability at very fine spatial scales not limited to standard census divisions, and 

therefore not affected so much by the arbitrary size and shape of census divisions that can 

significantly impact the centroid locations used in the FCA method. The FCA method has 

so far not implemented distance-based weighting of physician counts and so implicitly 

assumes that the physician-to-population ratio is uniform over the spatial unit being 

summarized; results which can also be sensitive to edge-effects when marginally-located 

centroids are included or excluded.  

It is important to point out that this comparison of methods is “as implemented” 

rather than theoretical. In theory, the FCA method could be implemented with finer 

spatial scale data and could indeed implement distance-based physician counting. 

Similarly, the KDE method could be implemented as an “adaptive kernel” where the 

bandwidth in effect varied with road network distance. Here, with access to an address-

based database of physicians, the emphasis is on illustrating spatial variability at 

relatively fine spatial scales and so the method chosen for implementation is the KDE 

method. It should be noted that Yang, Goerge and Mullner (2006) concluded that the 

two-step floating catchment area method is a better measure than kernel density 

estimation. However, their conclusion is largely based on the homogeneous estimates 

created by the former – exactly what we are trying to avoid.  

Healthcare Accessibility  

At the individual level, accessibility is typically considered to be actual 

accessibility, as measured by such aspects as service utilization, having a usual source of 

care, being insured, or the ability to obtain care (Joseph & Phillips, 1984).  Research has 

less often focused on the potential accessibility of the healthcare system, or the spatial 
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and systemic factors which make it easy or difficult to obtain services (Joseph & Phillips, 

1984). The most common measures of spatial accessibility are the distance to the nearest 

provider or the average distance to a specific number of providers (Yang, et al., 2006). 

Increased distance has been linked to lower rates of healthcare utilization (Gregory et al., 

2000; Hadley & Cunningham, 2004; Monnet et al., 2006), which may impact health 

outcomes and explain health disparities. 

Fortney, Rost, and Warren (2000) highlighted the error associated with using 

methods that calculate distances between physicians and populations assigned to zip code 

centers via geocoding, and concluded that actual road distance is a more accurate 

measure of accessibility than Euclidean (“crow flies”) distance. Using methodological 

advances in GIS, Brabyn and Skelly (2002) calculated travel time over the road network 

from each census enumeration district to the nearest public hospital throughout New 

Zealand, thus demonstrating that calculating travel time estimates based on road-network 

distances are relatively easily computed, even at a large scale. We implement a similar 

approach to that taken by Brabyn and Skelly except that we do not calculate travel time, 

which takes into account speed as well as road distance.  

Objectives 

There were three major objectives of this study. The first was to create measures 

of physician availability and emergency-room hospital accessibility. The second was to 

investigate the performance of these measures by comparing them to analogous measures 

created using the previously implemented methodologies described above. The third 

objective was to illustrate the spatial variation in physician availability and ER hospital 
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accessibility among different racial and ethnic populations. We calculated these measures 

for the entire state of Florida, but only analyze them for Central Florida.   

For the first objective, we created a measure of physician availability that 

improved upon the previous methodologies described earlier, particularly by: 1) 

assigning physicians to specific addresses rather than zip code centroids and 2) using 

areal interpolation to assign physicians variable point locations within a zip code when 

only zip code level address information was available. For accessibility, we calculated the 

distance from each block group to the nearest hospital with an emergency department 

(ER hospital) based on the road network rather than straight-line (Euclidean) distance. 

For both availability and accessibility, we calculated our measures at finer geographic 

scales than has been typical for large area studies.  

For the second objective, we first evaluated our measure of physician availability 

relative to the traditional method of area-based physician-to-population ratios. We then 

illustrated the spatial variability in our measure of physician intensity at fine geographic 

scales, so as to demonstrate that studies using coarse geographic resolutions may not be 

fully addressing the issues of healthcare availability, especially when the spatial activity 

spaces of individuals, or populations, are more constrained than the geographic scales 

being assumed for their behavior. Finally we compared the differences between distance 

estimates based on the road-network calculation and those based on Euclidean distance 

measurement.  

To meet our third objective, we compared our measures across racial and ethnic 

groups by deriving average availability and accessibility values for the populations of 

non-Hispanic whites, non-Hispanic Blacks, and Hispanics in Central Florida. To 
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investigate the variability in these measures across areas where these populations are 

concentrated, we first identified a series of census block groups with high proportions of 

each population, and then mapped the variability of our measures by each of these series.  

Method 

Sample 

There were three types of provider and population data employed: 1) physician 

point locations; 2) hospitals with emergency departments point locations; and 3) U.S. 

Census population data on block groups and Zip Code Tabulation Areas (ZCTA). These 

will be described next.  

Physicians 

Office addresses of all licensed physicians (N=51,639) in the state were obtained 

from the Florida Department of Health Licensee Data Center at the Florida Department 

of Health (Florida Agency for Health Care Administration [FL AHCA], 2006). Of these 

licensed physicians, 1,382 were inactive and 11,529, although licensed to practice in 

Florida, did not have addresses within the state so they were ineligible. An additional 72 

were excluded because their addresses were confidential (N=57) or no address was listed 

(N=15).  Of the eligible physicians with office addresses (N=38,658), 91% were 

successfully geocoded using standard GIS methods and mapped to block groups 

(N=35,291).   

Of those physicians who could not be geocoded this way, another 2,183 (6%), 

were mapped using areal interpolation to assign these physicians to block group centroids 

within each zip code. To implement this, it was first necessary to perform a GIS spatial 

overlay between the zip code polygon layer and the block group polygon layer. This 
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allowed us to calculate the proportion of the total zip code area accounted for by each 

block group. A count of physicians with only the zip code was then summed and this 

quantity was then divided among the block group centroids within each zip code based 

upon their area proportion of the zip code. For example, if there were five  physicians 

with only a zip code for an address in a particular zip code, and that zip code was 

composed of two block groups representing 20 percent and 80 percent of the total zip 

code area, respectively, then values of one and four would be assigned to the respective 

centers of these block groups. In practice, however, and given the complex geographic 

interplay between these two geographic layers, the calculations were more detailed than 

our simple example and the physician counts assigned to block group centroids would 

typically be fractional, and, in some cases, less than one. Finally, for physicians with zip 

codes that did not correspond to those from the 2000 U.S. Census, most likely because 

these were new postal areas, an internet zip code locator was used to find the x,y-

coordinates of the center of these new zip codes (N=302; 0.8%).  The remaining 882 

physicians (2.3%) could not be geocoded.  They were distributed throughout the 67 

counties in the state and did not appear to introduce bias into the final sample. These 

quite exhaustive geocoding methods to retain providers with P.O. Boxes or addresses that 

could not be located and would normally be excluded represent an improvement on 

previous research where only physicians with street addresses were mapped to zip code 

centers (Wang & Luo, 2005). 

Hospitals with Emergency Departments  

The addresses of all licensed hospitals (N=209) in the state were obtained from 

the Florida Department of Health Licensee Data Center at the Florida Department of 
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Health (FL AHCA, 2006). Of these, we limited our analyses to hospitals with emergency 

departments (N=205) because patients are most likely to seek treatment at the nearest 

facility during acute health emergencies. In addition, a greater proportion of African 

Americans and Hispanics than whites receive healthcare in hospital outpatient 

departments, clinics, or emergency rooms, even when individual traits such as insurance 

status and income are controlled (Lillie-Blanton, Martinez, & Salganicoff, 2001). All 205 

hospitals with emergency departments (ER hospitals) were successfully geocoded to their 

street address location.  

U.S. Census population Data  

Population data at the block group level were obtained from the Census 2000 

Summary Tape File 1 (U.S. Census, 2000).  Although 2005 estimates would be 

temporally more accurate, these estimates were not available at a spatial resolution finer 

than “cities and town,” so we used data from the 2000 Census which allowed us to 

calculate the healthcare measures at the desired resolutions (block group and zip code). 

The total population in Florida in 2000 was 15,982,378, of which 65.4 percent 

were non-Hispanic white and 14.2 percent were non-Hispanic Black. Hispanics 

comprised 16.8 percent of the population (Table 1). In 2000, there was a total of 9,112 

block groups in Florida with an average of 882 residents each. These were the smallest 

geographical units for which race and age data were available. We also used data from 

Census Zip Code Tabulation Areas (ZCTA), or zip codes, of which there were 917 in 

Florida in  2000 with an average of 17,429 residents. There were approximately 10 block 

groups in each zip code, although this varied tremendously.  
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For purposes of investigating these new measures, a study area of the Central 

Florida corridor was defined. This study area extends from the St. Petersburg-Clearwater-

Tampa metropolitan area in the west, through the Orlando metropolitan area in the center, 

and east to Cape Canaveral. This region includes seven counties.  The population in 2000 

was 4,314,618 (33% of statewide population). There were 10,075 (27% of state total) 

physicians who had offices in this region, and 48 (23% of state total) hospitals with 

emergency departments in this region.  The study area includes a wide range of urban and 

rural block groups, making this region a particularly interesting one in which to 

investigate the spatial variability in the measures of healthcare availability and 

accessibility. Although the racial and ethnic composition of this area is different from 

Florida as a whole, it is similar to that of the entire U.S. (Table 1, p. 51).  

Measures 

Physician Availability (Intensity)  

First, we created a measure of physician availability that improves on the kernel 

density estimation techniques used in earlier studies.  KDE is based upon a distance-

weighted count of points that are assigned to a grid cell center, and whereby the 

bandwidth radius of the estimation is an order of magnitude greater than the grid cell 

resolution. It is therefore more accurate to interpret the KDE as a measure of intensity 

rather than density. 

 To create a measure of physician intensity for block groups, based upon the 

geocoded physician locations described above, we first calculated a quartic 

approximation of a true Gaussian kernel density estimate using kernel density tools 

available within ArcGIS 9.2 Spatial Analyst (Environmental Systems Research Institute 



46 

[ESRI], 2006) for the entire state of Florida at a grid cell resolution of 200 meters with a 

kernel bandwidth of two kilometers. We used a kernel density estimate because it 

provides a weighted count of the number of physicians within a two kilometer radius for 

each grid cell.  Physician weights were inversely related to distance away from the center 

of the cell and followed the quartic approximation to a Gaussian kernel function. In other 

words, this estimate accounted for the fact that providers farther away were less 

available, and did not limit providers to only those within a defined area. One particular 

advantage of using the kernel density tool available in ArcGIS 9.2 Spatial Analyst is that 

it allowed us to specify additional weights to the point locations themselves, thereby 

allowing the use of point locations where the physician count was greater than one or, as 

in the case of physicians distributed to block group centroids based on ZIP Code, less 

than one (see above).  

Following Bailey and Gatrell (1995), the quartic approximation to the Gaussian 

kernel density estimate takes the form: 
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where (s)λτˆ is the estimate of the kernel density at the center of grid cell s, τ is the kernel 

bandwidth (2000 meters), hi is the Euclidean distance (in meters) from physician i to the 

center of grid cell s, and k is a scaling factor applied to adjust for the actual units and 

bandwidth used.  This equation produces estimates based on a standard one-unit 

bandwidth radius. The scaling factor used in this analysis was 4,000,000 meters or the 

square of the actual bandwidth radius (2000 meters; Bailey & Gatrell, 1995).      
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Using this formulation for the kernel density estimation, one physician located at 

exactly the grid cell center would contribute 0.9549 to the kernel density estimate, one 

physician located one kilometer away would contribute 0.5371, and a physician located 

1.75 kilometers away would contribute 0.0524. Therefore a grid cell with this particular 

set of three physicians within its two kilometer bandwidth would have a total kernel 

density estimate of 1.5444 (.9549+.5371+.0524).  

 Having derived such grid-cell based estimates of physician intensity across 

Florida, the Zonal Statistics function within ArcGIS 9.2 was then used to produce a 

physician intensity estimate for each census block group by averaging across all the grid 

cells making up a particular block group. Note that in GIS raster analysis, where spatial 

units are represented as grid cells, this average then becomes the value of every grid cell 

making up a block group (or raster zone). Finally, this physician intensity measure was 

expressed as physician intensity per 1000 population for each census block group. 

Physician Availability Comparison Variables  

For the first comparison, we sought to investigate the differences between our 

block-group level measures of physician intensity (per 1000) and what the measures 

would have been if zip code level estimates were used instead. Zip code level estimates 

of physician intensity were calculated by direct analogy to the method outlined for block 

groups but now averaging across all grid cells included all the grid cells making up a 

particular zip code using Zonal Statistics (ArcGIS 9.2). This zip code level intensity 

measure was then expressed as physicians per 1000 population, akin to the block group 

measure, but grouped by zip code rather than block group. However, as indicated 

previously, block group boundaries (or raster zones in this implementation) do not 
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correspond with zip code boundaries (zones). Therefore, to derive a block group level 

estimate of what its zip code level intensity measure would be, we needed to perform a 

further Zonal Statistics function that averaged across the zip code intensity grid cells 

making up each block group zone.  

 For the second comparison, we sought to investigate the difference between the 

kernel density based estimation of physician intensity per 1000 population and the 

traditional measure based on a simple count of physicians within an area, then expressed 

as a physician-population ratio for that area, i.e. physician density. Since the traditional 

measure is usually performed at the zip code level, we calculated physician densities for 

each zip code based upon our data. This was compared to the zip code level physician 

intensity measure derived from kernel density estimation that was produced in the first 

comparison.  It should be noted that the 302 physician (0.8%) whose zip codes addresses 

did not correspond to the 2000 U.S. Census were excluded from these comparative 

analyses because there was no population data for these new zip codes.  

We ranked each of the old physician density and new physician intensity 

measures by their ratios and then mapped the differences between the two rankings.  A 

positive value difference indicates that the zip code ranked higher using the new intensity 

measure compared to the old density measure.  A negative value indicates that the zip 

codes ranked higher using the old density measure compared to the new intensity 

measure.   In cases where there was little to no difference in these indicators, the 

difference in rankings would be small (-19 to + 20).   
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Distance To Nearest ER Hospital  

There were six steps taken to calculate the distance from each census block group 

to the closest emergency room (ER) hospital.  First, the block group centroids were 

derived from the cartographic census block groups using standard GIS methods. Second, 

using the NEAR function within ArcGIS, the x,y-coordinates of the nearest location on 

the major road network from each centroid were determined. Third, based upon the x,y-

coordinates of the centroids and the x,y-coordinates of their nearest locations on the 

major road network, line features were generated using the “Add XY Line Data from 

Table” tool from Hawth’s Spatial Analysis Tools for ArcGIS (Beyer, 2004).  Fourth, 

these line features were merged with the major road network into a new GIS data layer in 

ESRI shapefile format. An identical method was then followed to incorporate the 

emergency room hospital point locations onto the network. In effect, to join the locations 

of block group centroids and ER hospitals to the original road network, a straight line 

segment was extended from the original road network to these points.  

The fifth step involved using the NODEDISTANCE function within ARC/INFO 

to calculate the network distance between the block group centroids and the ER hospitals.  

Since this requires the GIS data layers to be in ARC/INFO coverage format, the extended 

road network shapefile was converted to this format. One advantageous aspect of this 

conversion was the ability to specify a “snap tolerance” and so clean up any minor 

topological errors in the extended road network, such as minor gaps between the 

centroid-network and hospital-network lines that arose due to lack of coordinate 

precision. The point attributes of the census block groups and ER hospitals were 

transferred to their corresponding nodes on the coverage-based network, to identify them 
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as “supply” and “demand” locations. This was achieved by first converting the block 

group centroids and ER hospital point shapefiles to point coverages and then making use 

of the POINTNODE function in ArcGIS.  The sixth and final step involved using the 

ARC/INFO NODEDISTANCE function itself. This function calculated the network-

based distances between each of a set of demand nodes (the census tract centroids) and 

each of a set of supply nodes (ER hospitals) up to a threshold distance. The threshold 

distance was set sufficiently high to ensure that every block group centroid supply node 

would have a distance calculated to at least one closest hospital. Determining the closest 

hospital and network distance for each block group then followed, by identifying these 

attributes from the resultant table of network distances.  

Euclidean Distance To Nearest ER Hospital   

A secondary measure of emergency room hospital accessibility was calculated for 

comparative purposes. This measure was the Euclidean distance between each block 

group centroid and the closest ER hospital. This is a simple task using ArcGIS that 

involves performing a spatial “Join” between the two point layers. That is, each block 

group was given two new attribute columns, one column containing the closest hospital 

based on Euclidean distance and one column containing that distance.  

Evaluation 

In order to evaluate our measures, we calculated the average physician availability 

and ER hospital accessibility for each of the populations of Non-Hispanic whites, Non-

Hispanic Blacks, and Hispanics in the seven Central Florida counties using the new 

measure of physician intensity (block group based and geocoding of all addresses) and 

the old measure of physician density (zip code based and no geocoding of P.O. Box 
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addresses). To do this it was first necessary to calculate for each block group separate 

weights for each population group that reflected the share of that population group in 

Central Florida accounted for by the block group. These weights summed to 1.0 across all 

block groups for each population group. The availability and accessibility values in each 

block were then multiplied by their block group weight and these were summed across 

block groups to calculate the average for the entire population.   

To investigate the spatial variation within race and ethnic groups in a 

parsimonious manner, we created four categories of block groups, reflecting 

concentrations of races/ethnicities that could then be mapped according to our measures. 

These four categories of block groups were defined as predominatly Black (>50%), 

Hispanic (>50%), or white (>90%), or ethnically “diverse” (<10% white, <50% Black, 

and <50% Hispanic). The remainder of the block groups were relatively heterogeneous in 

race and ethnicity and not included in this particular analysis. 

Results 

One-third (33%) of the Florida population, 4.3 million people, lived in the Central 

Florida region in 2000 (Table 1). Compared to the entire state, the Central Florida 

population was slightly more white, and less Black or Hispanic. The racial composition 

was similar to that of the U.S. as a whole in 2000.    

   

Table 1. Racial and Ethnic Composition of United States, Florida, 
and Central Florida, 2000  

  
United 
States Florida 

Central 
Florida 

Population 281,421,906 15,982,378 4,314,618 
Non-Hispanic White 69.1% 65.4% 70.7% 
Non-Hispanic Black 12.1% 14.2% 12.3% 
Hispanic 12.5% 16.8% 12.8% 
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Physician Availability 

 The results of the physician availability calculations are summarized in Table 2. 

We excluded block groups with populations of less than 100 from these analyses in order 

to prevent inflation of intensity and density estimates due to the small population in the 

denominator. The average physician intensity across block groups is 13.55 per 1000 

people, with a maximum of physician intensity of 609.80.  The physician intensity for 

block groups, which are simply spatial units, is not as meaningful as examining as 

describing the physician intensity for the population, which was an average 6.81 

physicians per 1000 people in the study area. 

Table 2. Physician Intensity and Network-based ER Hospital 
Distance in Central Florida 

  
Physician Intensity 

(per 1000) 
Network-based ER 
Hospital Distance 

Block groups    
N1 2381 2402 
Min 0.00 0.05 
Max 609.80 34.97 
Mean 13.55 4.58 
SD 34.94  3.17 

   
Population     

Mean 6.81 5.07 
1Block group populations with less than 100 were excluded from 
these analyses. 
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Figure 2. Physician intensity per 1000 population by census block group for Central 
Florida. 
 

Physician intensity is mapped by census block group for Central Florida in Figure 

2. At one level, the map clearly reflects a relationship between physician intensity and the 

level of urbanicity.  However, it also illustrates a marked variability in physician intensity 

that can occur within urban areas. For example, Pinellas County, which has a relatively 

uniform spatial pattern of urban development, has a wide range of physician intensity 

values. Even in the two major metropolitan centers beyond Pinellas County, namely 

Tampa and Orlando, where there is a general intensity gradient with centrality such that 

availability increases as urbanicity increases, there are areas that contradict the trend.  
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Road Network-based ER Hospital Distance 

 The results of the network-based hospital distance calculations are displayed in 

Figure 3 and summarized in Table 2. The furthest block group is approximately 35 miles 

from the nearest ER hospital. The average distance to the nearest ER hospital across 

block groups is 4.58 miles. For the Central Florida population, the average ER hospital 

distance is 5.07 miles.  

The expected pattern of higher levels of accessibility, based on road network 

distance, was found for block groups geographically closer to hospitals and a general 

pattern of declining accessibility for block groups that are at a further distance away 

(Figure 3). However, there are exceptions to this generally linear pattern which likely 

reflect the local structure of the road network.  

 

 



55 

Polk

Volusia

Orange Brevard

Hillsborough

Seminole

Pinellas

Road Network Distance
(Miles)

0 to 2

> 2 to 4

> 4 to 6

> 6 to 8

> 8

 

Figure 3. Road network distance to closest emergency room hospital by census block 
group for Central Florida. 

 

 
Table 3. Comparison of physician availability as 
measured by physician-to-population ratio (density) and 
kernel-density estimated intensity for zip codes in 
Central Florida. 
  Physician Density Physician Intensity 
Mean 2.18 0.45 
SD 2.85 1.00 
Max 16.22 9.71 
N= 206; 13 zip codes with populations less than 100 
excluded. 
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Figure 4. Difference in rank between physician density (negative) and physician intensity 
(positive) ratios.  

 

Physician Intensity vs. Physician Density 

 The average zip code has a density of 2.18 physicians per 1000 people, but an 

intensity of 0.45 physicians per 1000 people (Table 3). As indicated earlier, however, 

since density and intensity measures are not synonymous, Figure 4 shows the differences 

in the relative rank orders of zip codes based upon the two measures of availability.  

Positive values indicate where the ranking of a zip code amongst all zip codes is higher 

based upon the intensity measure than it is based upon the density measure. The converse 

is true for negative values.  
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Most of the zip codes show low disagreement (-19 to +20 rankings) although 

there are pockets where there is a general pattern of higher density ranks, as indicated by 

negative differences, in some urban areas, and higher intensity ranks (positive 

differences) in some rural areas. This pattern may reflect the impact of border crossing 

such that the availability of physicians is understated by density measures for rural areas 

where there are available physicians outside the zip code boundaries. This is more likely 

to be the case for generally rural zip codes relatively close to urban areas. Conversely, in 

urban areas, zip codes that have high density rankings may experience a significant shift 

in rank when using the intensity measure when neighboring zip codes benefit as a result 

of the way in which intensity is calculated by kernel density estimation. That is, KDE 

does not limit by borders; physicians can serve people in more than one zip code or block 

group. There are some exceptions to this urban-rural trend, particularly among several 

large rural zip codes in the southeastern area of the study region that perhaps reflect a 

lack of nearby urban areas. 

Table 4. Comparison of physician intensity for census 
block groups between unit of mean aggregation (zip code 
vs. block group) in Central Florida  
  Zip Code Block Group Difference 
Mean 6.78 13.55 1.46 
SD 22.67 34.95 23.54 
Max 392.87 609.8 347.39 
N=2,381; Block groups with populations less than 100 
excluded. 

 

Spatial Resolution Comparison 

As hypothesized, the new physician intensity measure, across block groups, 

produces a higher mean and standard deviation compared to the physician intensity 

measure using zip codes (Table 4).  The differences noted in the summary statistics of 
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these two measures obviously reflect differing levels of spatial averaging. Because 

intensity measures are population based these differences also reflect the fact that the zip 

code estimates assume population to be evenly distributed across all of the block groups 

within the zip code whereas using the disaggregated block group populations as 

denominators reflects the more specific location of populations.  

For example, the variability in physician intensity measures between block groups 

within four zip codes in Pinellas County is displayed in Figure 5. The average physician 

intensity for these zip codes range from 4.35 to 19.95 and, as the map shows, there is 

significant variability between block group estimates within these zip codes. For 

example, the 33713 zip code is comprised of block groups in its southeastern corner with 

high physician intensity, but these are balanced by block groups in the northwestern 

corner with much lower physician intensities.  
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Figure 5. Variation of physician intensity by census block group within four illustrative 
urban zip codes of Pinellas County, Florida. 
 
 

Table 5. Comparison of distance estimates (in miles) 
from census block group centroids to nearest ER hospital 
in Central Florida.  

  Euclidean 
Road 

Network Difference 
Mean 3.26 4.58 1.32 
SD 2.4 3.17 1.13 
Max 26.33 34.97 20.38 
N= 2,402 

 



60 

Euclidean vs. Road Network-based ER Hospital Accessibility 

As hypothesized, the distances from the block group center to the nearest ER 

hospital based on the road network-based calculations show more variation than the 

Euclidean calculations (Table 5).  Based on network calculations, the average block 

group is 40 percent further from the nearest ER hospital (4.58 miles) compared with the 

estimates from the Euclidean calculation (3.26 miles).  The discrepancy between the two 

distance calculations ranges from 0.020 miles to 20.38 miles.  

Polk
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Pinellas

Difference in Miles
0.0 to 0.5

> 0.5 to 1.0

> 1.0 to 1.5
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> 2.5 - 20.5

 

Figure 6. Difference between Euclidean and road network distance to the closest 
emergency room hospital by census block group for Central Florida.  

 

The disparities between Euclidean and road network distance calculations are 

generally the greatest in rural areas, but this is not always the case (Figure 6). Euclidean-
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based calculations also greatly underestimate the distance to the nearest hospital when the 

block group covers a large geographic area, and for barrier islands (e.g., Pinellas County 

coastline) where Euclidean distance calculations do not take into account the fact that 

intercoastal waterways must be crossed to reach the nearest hospital. However, even 

within the relatively urban area of Hillsborough County there is a centrally-located block 

group where the difference between the two distance measures is considerably larger than 

for neighboring block groups. The discrepancy is because this block group includes the 

Tampa International Airport and the centroid is far removed from the closest major road.     

Racial and Ethnic Disparities in Healthcare 

Physician Availability  

There are pronounced differences in physician availability between racial and 

ethnic groups (Table 6). On average, Non-Hispanic Black residents live in areas with the 

highest physician intensities (M = 8.18), that are 22 percent higher than the average Non-

Hispanic white resident (M = 6.71), and 32 percent higher than among Hispanics 

(M=6.22). These racial/ethnic availability patterns are not consistent in Hillsborough and 

Orange counties. In Hillsborough county, Hispanics have the highest physician 

availability (M=11.64) and non-Hispanic Blacks have the lowest availability (M=8.22). In 

Orange county it is non-Hispanic whites who have the highest availability (M=8.91), 

while Hispanics have the lowest availability (M=3.19). 
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Table 6. Differential physician availability (intensity) between racial and 
ethnic populations in Hillsborough and Orange Counties in Central Florida

  
Total 

Population 
Non-Hispanic 

White 
Non-Hispanic 

Black Hispanic 
N  4,314,617 3,048,455 530,875 550,174 
Hillsborough 10.47 10.65 8.22 11.64 
Orange 7.19 8.91 6.72 3.19 
Central 
Florida 6.81 6.71 8.18 6.22 

 

The variability in physician availability across predominantly Black, 

predominantly Hispanic, predominantly white, and diverse block groups neighborhoods 

in Hillsborough and Orange counties, the locations of Tampa and Orlando, respectively, 

is displayed in Figure 7.  There is a high degree of variability in physician intensity 

within these sets of block groups indicating variation in availability within racial and 

ethnic populations. For example, in central Hillsborough County, there are a number of 

contiguous, predominatly Black block groups where the physician intensity ranges from 

less than 0.25 to more than 5 physicians per 1000 people. There are predominatly white 

block groups concentrated at both ends of the accessibility range; some have very high 

availability in urban areas while others, particularly those in rural regions, have very low 

physician intensity. The gray areas are relatively heterogeneous and not included in these 

analyses.  
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Figure 7. Variation in physician intensity among block groups with high concentrations 
of four racial/ethnic populations in Hillsborough and Orange Counties, Florida.  
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Table 7. Average miles to  ER hospital between racial and ethnic 
populations in Hillsborough and Orange Counties in Central Florida 

  
Total 

Population 
Non-Hispanic 

White 
Non-Hispanic 

Black Hispanic 
N  4,314,617 3,048,455 530,875 550,174 
Hillsborough 4.52 4.93 3.49 3.95 
Orange 4.89 4.97 4.61 4.85 
Central 
Florida 5.07 5.25 4.27 4.93 
 

ER Hospital Accessibility  

There are also differences in average road network distance to the nearest ER 

hospital by race and ethnicity (Table 7). The average distance for non-Hispanic whites is 

5.25 miles, making them the furthest away from hospitals of all the ethnic groups. Non-

Hispanic Blacks are the closest (M = 4.27 miles) and the average distance for Hispanics is 

between these two estimates (M=4.93 miles). These patterns are consistent in 

Hillsborough and Orange counties.  

These averages mask the variability in accessibility within areas with high 

populations of these ethnic groups, displayed in Figure 8. Similar to Figure 7, for the 

block groups with a high concentration of each racial group, there is a range of ER 

hospital accessibility values, even where block groups are contiguous. For example, there 

is lower accessibility among the highly Hispanic block groups in the southern part of 

Hillsborough County, but high accessibility for Hispanic block groups more centrally 

located in Tampa.  
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Figure 8. Variation in road network distance to nearest emergency room hospital among 
block groups with high concentrations of four racial/ethnic populations in Hillsborough 
and Orange Counties, Florida.  
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Discussion 
 
 Geographic variability in healthcare availability, accessibility, and quality, among 

other measures, have been proposed as pathways to the development and persistence of 

racial and ethnic health disparities (Williams & Collins, 2001). In order to determine the 

impact of the local healthcare system on health disparities, however, accurate geographic 

measures of these characteristics are needed. This study described the development of 

two measures, physician availability and ER hospital accessibility, which were calculated 

using methodological advances in GIS. Physician availability was calculated based on the 

geocoded office locations of physicians in Florida, with areal interpolation of the 

locations of physicians who could not be accurately geocoded in order to minimize data 

loss. We then used kernel density estimation with a bandwidth of two kilometers and 

calculated the average physician intensity per 1000 people for each block group. To 

measure hospital accessibility, we calculated the distance along the network of major 

roads to the nearest ER hospital. These data were analyzed for the Central Florida region, 

an area that has a racial composition similar to that of the U.S. as a whole, and with a 

number of urban and rural regions.  

Evaluation of New Measures 

We evaluated our new measures by comparing them to analogous measures 

created using previously-implemented methodologies and at varying spatial scales. We 

showed that calculating mean availability from zip code-level data and Euclidean 

distances to the nearest hospital mask the true variability in measures of availability and 

accessibility.  Specifically, we showed that zip code physician density provides higher 

ratios of availability than physician intensity at the same spatial resolution, particularly 
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because the latter “spatially weights” physicians by distance. Next we highlighted how 

physician intensity summarized to the zip code masks the variation between block groups 

within these zip codes. Calculations of Euclidean distance to the nearest hospital are, on 

average, 1.32 miles shorter than those based on road network distances. Thus, we believe 

that physician intensity calculated with kernel density estimation for block groups and 

road network-based calculations of distance to the nearest ER hospital, represent 

significant advances in healthcare availability and accessibility measurement.  

Racial and Ethnic Healthcare System Disparities 

Other researchers have argued that differences in healthcare availability and 

accessibility explain health disparities. However, our results show that minorities, 

particularly Blacks and Hispanics, actually have higher average values of physician 

availability and ER hospital accessibility than whites in one county but not another.  By 

examining these measures across block groups with predominantly white, Black, and 

Hispanic populations, however, we showed that intra-ethnicity variation in healthcare 

availability and accessibility may be masked by averages. The fact that Blacks live closer 

to ER hospitals or have higher physician to population ratios could be due to the 

clustering of minority population in inner cities near large medical centers (Kahn et al., 

1994). As our analyses showed, physician offices often cluster near hospitals, putting 

both types of providers more often in poorer neighborhoods, but not necessarily ensuring 

better access to care. 

It is important to note, however, that these results only take into account the 

potential availability and accessibility of healthcare options and fail to address non-

spatial issues such as cost, appointment availability, and quality of care, which are 
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important facets of the healthcare system that impact realized access and outcomes. The 

measures of availability and accessibility created here should be validated by comparing 

them to utilization data to determine whether the features of the healthcare environment 

affect actual utilization and outcomes when non-spatial characteristics are statistically 

controlled. 

Limitations 

There are a few limitations to this study. The first is the temporal accuracy of the 

provider data compared to the population data. Data from the 2000 U.S. Census were 

used because population data were available at the block group level for the racial and 

ethnic populations of interest, but provider data were from 2005. This is of particular 

concern for physician intensity calculations, which may have failed to take into account 

growing populations.  

Another problem is that, although block groups represent population data at a 

finer spatial resolution than zip codes, these units vary tremendously in size and, in rural 

areas, are rather large. We assumed that the population was geographically distributed 

evenly across the block group, but this is usually not the case.  

Although using the road network to calculate the distance to the nearest hospital 

represents an improvement on Euclidean-based measures, there may be limitations 

associated with the GIS technology used to calculate these measures. For example, the 

road closest to the block group center may not, in fact, be the most direct or fastest route 

to the nearest hospital.  
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Validity 

Although we evaluate our measures by comparing them to those created using 

former methodology, future research needs to establish the validity of these new 

measures. Construct validity is demonstrated when a measure correctly operationalizes 

the concept it is measuring. Data on actual utilization could be used to validate these 

measures. Of particular interest to practioners and policy-makers is identifying the level 

of physician intensity and ER hospital distance which is associated with higher utilization 

and better care. That is, how far is an individual willing to travel to a hospital to seek care 

and at what physician intensity does the population demand impact the ability of the 

supply of physicians to serve the population?  Although difficult to measure with the data 

used here, actual patient address, characteristics, and utilization data could be used with 

GIS technology to answer these questions.  

Conclusions 

The increasing attention to the geographic variation in healthcare systems and 

widespread use of GIS, in conjunction with the availability of provider data and the ease 

at which these measures can be created, make it likely that this topic will continue to be 

explored by researchers, policy-makers, and practioners. The fine spatial resolution, 

which made it possible to show more marked variability, also makes it is possible to 

aggregate these measures to larger geographic units such as census tracts, cities, and 

counties and show how results vary at different spatial levels. Although we conducted 

relatively simple analyses of these measures, there are an unlimited number of ways to 

use them. For example, planners could identify areas with physician to population ratios 

of less than 1:3500, or 0.287 physicians per 1000 people, which is the general ratio used 
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by the US Department of Health and Human Services to designate Health Professional 

Shortage Areas (HPSA; U.S. Government Accountability Office [US GAO], 1995). The 

current ER hospital accessibility measures could be used in conjunction with population 

data to determine where to place new hospitals in order to minimize distance and 

maximize the number of potential patients that can be served.  

More broadly, this research adds to the growing body of research examining the 

impact of environmental and community characteristics on individuals. The 

characteristics and behaviors of individuals are increasingly studied in relationship to the 

residential communities and life spaces that they occupy.  
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CHAPTER 4: COMMUNITY CONTEXT AND PHYSICAL HEALTH DISPARITIES 
 

Introduction 
 
 Calls for interventions aimed at eliminating health disparities, such as the 1985 

Report of the Secretary’s Task Force on Black and Minority Health (US DHHS, 1985) 

and the Department of Health and Human Services’ Healthy People 2010 campaign, have 

only begun to reduce differences in physical health between whites and racial/ethnic 

minority groups. Among older adults, African Americans and Hispanics remain 

significantly more likely than whites to report poor self-rated health, even when 

socioeconomic differences such as education and income are statistically controlled 

(Hayward, Miles, Crimmins, & Yang, 2000; Hummer, Benjamins, & Rogers, 2004). 

The very slow progress towards the reduction of disparities results in part from 

the complex array of forces that lead to disparities in the first place. During the past ten 

years, features associated with the community context have emerged as possible sources 

of health disparities (Browning, Cagney, & Wen, 2003; Cagney, Browning, & Wen, 

2005; LeClere, Rogers, & Peters, 1997; Oakes, 2004; Robert & Lee, 2002). These factors 

offer a particularly pertinent explanation for disparities in part because racial residential 

segregation still exists to a great extent in many areas throughout the United States 

(Glaeser & Vigdor, 2001).  Moreover, African Americans in general are more likely to 

live in areas lacking in services, and there is some evidence that African Americans as 

well as whites living in these areas are more likely to have poorer health outcomes 

(Massey & Fischer, 2000; Subramanian, Acevedo-Garcia, & Osypuk 2005).   
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The literature, in other words, suggests that it is not segregation alone that leads to 

these health disparities. Rather, it may be the greater likelihood for racial and ethnic 

minorities to be exposed to poorer social and environmental conditions, and to have less 

access to services. While such problems are associated with residential segregation, 

community context becomes a relevant explanation for the development and persistence 

of health disparities. For example, high rates of poverty and unemployment and low 

median family income in the community are associated with heart disease, chronic 

conditions, self-rated health, and mortality (LeClere, Rogers, & Peters, 1998; Robert & 

Lee, 2002). Lack of access to services such as full-service grocery stores and healthcare 

facilities are associated with poorer diet and fewer opportunities for healthy behaviors 

(Ellaway & MacIntyre 1996; Morland, Wing, & Diez Roux 2002).   

Community Context and Health Disparities Model 

Despite the linkages that have been established between segregation, discrete 

community conditions, and health disparities, there is little research or few theoretical 

frameworks that focus on the multiple pathways and conditions by which community 

features affect health. The Community Context and Health Disparities Model (Figure 1; 

p. 16), was developed by the authors drawing from the existing literature and previous 

theoretical frameworks (Northridge, Sclar, & Biswas, 2003; Schulz & Northridge, 2004; 

Schulz, Williams, Israel, & Lempert, 2002; Williams & Collins, 2001). The model 

proposes that community conditions such as pollution, poor housing quality, unstable 

social conditions, limited educational and employment opportunities, and poor healthcare 

systems have an association with poor health, as well as indirectly shape health by 

limiting individual socioeconomic status and opportunities, affecting health behaviors, 
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heightening stress, and lessening social support (see Chapter 2). With longitudinal data, 

these pathways have the potential to demonstrate causality. 

Community Context  

The broadest unit of analysis in the model is the community context, which 

includes the physical, built, social, economic, and healthcare environments. Factors in 

each of these domains have been shown to affect health outcomes (such as exposure to 

toxins, poor housing conditions, and high rates of poverty; e.g., Krieger & Higgins, 2002; 

Morello-Frosch & Jesdale, 2006; Waitzman & Smith, 1998). The physical environment 

includes local climate and toxins in the air and water, which have been linked to health 

outcomes (Balfour & Kaplan, 2002; Evans & Kantrowitz, 2002). Housing stock, traffic, 

local shops, and services are measures of the built environment which have also been 

associated with health outcomes such as hypertension (Ewing, Schmid, Killingswoth, 

Zlot, & Raudenbush, 2003) and mortality (Cohen et al., 2003). Aspects of the social 

environment, such as civic and religious organizations and characteristics of 

neighborhood residents, are associated with health (Franzini, Caughy, Spears, & Esquer, 

2005; Wen, Browning, & Cagney, 2003) and may buffer individuals from more harmful 

aspects of the environment (LaVeist, 1993; Rich, Edelstein, Hallman, & Wandersman, 

1995). Low community socioeconomic status, one aspect of the economic environment, 

has been linked to stroke, cardiovascular and all-cause mortality, and self-rated health, 

net of individual attributes and risk factors (Davey Smith, Hart, Watt, Hole, & 

Hawthorne, 1998; Jones & Duncan, 1995; Maheswaran, Elliott, & Strachan, 1997).  

Finally, the availability, accessibility, and quality of healthcare have been suggested as 

possible causes for health disparities (Baicker, Chandra, & Skinner, 2005; see Chapter 3).  
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Individual Context 

In the Community Context and Health Disparities Model, individual 

demographics, socioeconomic status, health behaviors, social support, and stress, which 

are often employed as control measures in studies of racial differences in health, here are 

shaped by the community context. For example, individual economic conditions are 

hypothesized to mediate the effects of community social and economic contexts (Pickett 

& Pearl, 2001; Williams & Collins, 2001). Poor health outcomes and higher mortality 

rates are highly associated with lower individual socioeconomic status (Adler, Boyce, 

Chesney, Folkman, & Syme, 1993; Syme & Berkman, 1976). Differences in health-

related behaviors such as having a regular source of healthcare, seeking preventive care, 

exercising, not smoking, and not drinking to excess mediate the effect of community 

context on health (Ellaway & MacIntyre, 1996; Robert, 1999; Ross, 2000). Social support 

(e.g., the size and characteristics of the individual’s social networks, and whether they 

feel the social environment is supportive) is positively associated with lower rates of 

mortality (Berkman & Glass, 2000; Kawachi & Berkman, 2000; Leskela et al., 2006). 

Stress, particularly from objective assessment of community conditions such as crime 

rate, noise, and pollution, have been linked to health (Franzini, et al., 2005; Gee & Payne-

Sturges, 2004; Ross & Mirowsky, 2001). In the Community Context in Health Disparities 

Model, we focus on the individual’s subjective assessment of the community as stressful 

and examine whether or not this mediates the effects of community context on health 

outcomes. 
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Older Adults 

Implicit in the model is that there may be a greater impact of the community 

context on the health of older adults because they have lived in the community for a 

longer time, have a greater need for services, and spend less time at work and hence more 

time in the residential community than younger adults (e.g., Robert & Lee, 2002; Robert 

& Li, 2001). On the other hand, differential mortality effects may actually reduce the 

ability to detect the influence of these conditions (Robert & Li, 2001; Waitzman & Smith, 

1998). Individuals most impacted by neighborhood conditions may be more likely to die 

earlier resulting in an older population of survivors who are resilient to these effects.  

Research Questions 

The goal of this research was to evaluate the impact of the community context on 

the self-rated health of older adults using the Community Context and Health Disparities 

Model. Specifically, we sought to determine:  

1. Are there significant differences in self-rated health across communities?  

2. What are the direct relationships between community context and individual 

self-rated health?  

3. To what extent are differences in individual self-rated health across 

communities due to differences in the characteristics of the individuals within 

these communities?  

4. What are the effects of community context net of individual context on self-

rated health? That is, does individual context mediate community context? 

5. How do community conditions interact with individual factors to explain self-

rated health of older adults? 
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We conducted secondary data analysis using hierarchical linear modeling to examine the 

effect of community context, net of individual context, on self-rated health. Each 

question corresponds to one step in the HLM procedure.  

Method 

Sample 

The Survey of Older Floridians (SOF) received approval from the Institutional 

Review Board of the University of South Florida on 3/19/2004 (IRB # 102334G). 

Communities  

Previous research has grouped individuals into communities based on county 

(Fiscella & Franks, 1997), U.S. Census tract (Franzini & Spears, 2003; LeClere, et al., 

1997; Robert 1998), U.S. Census block group (Franzini & Spears, 2003), and defined 

communities (Davey Smith, et al., 1998; Feldman & Steptoe, 2004; Reijneveld & 

Schene, 1998; Ross, 2000). The smaller geographic units are generally more 

homogeneous, and both individual and community variability increases as the geographic 

unit increases in size, making it more difficult to accurately assess the effects of 

community context. This difficulty is the modifiable area unit problem (Waller & 

Gotway, 2004).  As an example, Franzini and Spears (2003) found that four percent of 

the variance in heart disease mortality was accounted for by variation at the Census tract 

level, but county-level variation contributed less than one half of a percent.  

In this study, we defined “communities” using a combination of U.S. Census 

“Places” in Miami-Dade County and Neighborhood Enhancement Team (NET) 

boundaries within the City of Miami. The U.S. Census “Places” include incorporated 

areas, consolidated cities, and Census-designated places (CDP). CDPs are the “statistical 

counterparts of incorporated places” created by the U.S. Census “for concentrations of 
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population, housing, and commercial structures that are identifiable by name but are not 

within an incorporated place” (U.S. Census, 2001).   

The city of Miami, while defined by the U.S. Census as a single “place” is very 

diverse and contains a number of neighborhoods, as well as 141 of the 733 Miami-Dade 

participants in the SOF.  The remainder lived in the other parts of Miami-Dade County 

and place names came from the U.S. Census.  Within the city of Miami, we obtained the 

geographical boundaries of Neighborhood Enhancement Team (NET) areas within the 

city. These areas, designed to link community residents to the city government, were 

designated based on established neighborhoods in Miami (City of Miami, 2004). Because 

the NET area communities did not coincide with U.S. Census entities, we assigned 

Census block group identifiers to each community based on their centroid location. 

Community measures were calculated by aggregating the data for all of the block groups 

within that community. This process resulted in the creation of 38 communities that 

included both urban (including city of Miami) and suburban areas in Miami-Dade 

County. We were able to use 36 of these 38 communities in the current study. 

Individuals  

The Survey of Older Floridians (SOF) was a telephone survey designed to assess 

the health and healthcare needs of four populations of interest: older Floridians in 

general, and specifically older African Americans, Cubans, and other Hispanics. 

Participants in the state-representative sample were contacted by random-digit dialing. A 

stratified sampling procedure was applied to subsequent sampling frames.  We sorted 

telephone exchanges by the proportions of older African Americans, Cubans, and other 

Hispanics to increase the productivity of random digit dialing and created a sample of all 
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the exchanges needed to get coverage of approximately 70 percent of these populations.  

Phone numbers in the exchanges were called in this order until each sample had reached 

the desired sample size. Adults over the age of 65 in these target groups were interviewed 

regardless of the sampling frame. A supplemental sample of 122 whites living in the 

same communities as the minority oversamples was also interviewed to examine the 

effects of the summer 2004 hurricanes that hit Florida approximately three months prior 

to the oversample data collection phase. The statewide participants are therefore a 

random sample of the entire state, whereas the oversample participants are a sample of 

adults drawn from telephone exchanges with high proportions of older minorities. 

Conducted in 2004-2005, the final sample included telephone interviews with 1,433 

white, African American, Cuban, and other Hispanic older adults. Response rates ranged 

from 55 percent to 62 percent, with the lowest rates for the minority oversamples and the 

highest rates for the statewide survey (Zayac et al., 2005). Although the data were 

weighted for epidemiological reporting, the data were unweighted for these analyses. 

For this study, we selected a subset of those SOF participants whose residences 

were geocoded using Geographical Information Systems (GIS) techniques. Of the 1,433 

participants in the SOF, 1,412 (98.5%) were successfully geocoded. Participants who 

could not be geocoded did not significantly differ from the rest of the sample in terms of 

age, gender, race, ethnicity, or self-rated health. Consistent with the distribution of the 

actual population of older minorities in Florida, most (N=733; 51.9%) of the participants 

resided in communities in Miami-Dade County. The geographic distribution of 

participants elsewhere in the state limited our ability to designate community clusters 
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outside of Miami-Dade County. That is, 48 percent of the SOF participants were 

scattered through the remaining 66 counties. 

Measures 

Community Measures 

Community measures were chosen based on availability, heterogeneity within 

Miami-Dade County, and relevance. For example, the climate is homogeneous 

throughout the county so it was not possible to test the effect of this community attribute 

with this sample. The Community Context and Health Disparities Model suggests 

multiple measures for each domain. In order to minimize multicollinearity, we followed 

the recommendation of Bryk and Raudenbush (1992), who suggested fitting separate sub-

models with predictors from each of the neighborhood domains (e.g., physical, built, 

social, economic, and healthcare) and retaining the strongest predictor from each sub-

model in the main model. Data sources and the measures employed for each of the five 

domains are described next. The correlations between the variables used to measure each 

domain are displayed in Table 8. 

Physical environment. One measure of the physical environment was the presence 

of toxins, assessed using the Toxics Release Inventory (TRI), which includes the 

geographical locations of releases of over 300 toxins to air, water, and land by the 

manufacturing industry. These locations are released by the Environmental Protection 

Agency (EPA) per a mandate by the 1986 Section 313 of the Emergency Planning and 

Community Right-to-Know Act (EPCRA). Certain industries must report their waste 

emissions if they use more one or more of 650 specified toxic chemicals (U.S. EPA, 
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2004). Higher densities of TRI sites have been associated with asthma among children 

(Maantay, 2007) and could potentially affect the health of older adults.   

Because the influence of toxins is likely to cross community boundaries, we used 

kernel density estimation to measure TRI exposures. First, the 2006 locations of these 

sites were geocoded to a point shapefile. There were 51 TRI locations in Miami-Dade 

County. We next converted Miami-Dade County into a grid of equally-sized cells 100 

feet by 100 feet. We then created a kernel density estimation using the Spatial Analyst 

tool in ArcGis 9.2, which created a surface of toxin intensity. The kernel density 

estimation provided a distance-weighted count of toxins where the influence of each of 

the TRI sites was inversely weighted by the distance away from the center of the cell and 

followed the quartic approximation to a Gaussian kernel function (see Chapter 3). In 

other words, this estimate accounted for the fact that people will be less exposed to toxins 

sites that are further away.  Values were scaled by a factor of 27,878,400 (or 52802) and 

then by a factor of 1000 to make values comparable to other variables in the model. The 

TRI value for each community was obtained by averaging the values in each cell in the 

community (M = 2.04; SD=3.36). These values represent an intensity of TRI sites within 

the community, with a large TRI score indicating a higher likelihood of exposure to 

toxins within a community 

Built environment. Many aspects of the built environment, including attributes of 

the buildings, transportation systems and roads, services and stores in the community 

have been linked to health outcomes. We limited our measure of the built environment to 

the proportion of supermarkets that were major chain retailers because previous research 

has shown that the availability and type of food stores in one’s residential neighborhood 



81 

influence diet, and these retailers are more likely to be sources of fresh fruit and 

vegetables (Morland et al., 2002). Data on the locations of these stores came from the 

GeoPlan Center at the University of Florida that provides geographic datasets and 

shapefiles for the state of Florida, available through the Florida Geographic Data Library 

(Florida Geographic Data Library [FGDL], 2003). The original shapefile, created from a 

2003 online telephone directory search, included supermarkets, grocery stores, and 

shopping centers, which were geocoded based on address. We limited our analyses to 

stores categorized as “supermarkets” and identified major supermarket chain retailers 

(e.g., Publix, Winn Dixie). Of the 306 supermarkets in Miami-Dade County, 85 (27.7%) 

were major chain retailers. In the communities in this study, an average of 36.66 percent 

of the supermarkets were major chain retailers (SD=36.08). 

  Social environment. The U.S. Census (2000) provided data on the characteristics 

of the residents within each community as measures of the social composition, including 

racial, ethnic, and age composition, proportion of households headed by females and 

owner occupied, and housing tenure. These measures were highly correlated so the 

proportion of households that were owner-occupied was employed as the measure of 

social environment (M=56.74%; SD=18.34).  

Economic environment. The proportion of residents living below the federal 

poverty level in 2000 was calculated from U.S. Census (2000) data (M=17.28%; 

SD=10.06). Other relevant data on employment and educational systems were available 

only at the county level and not used here.  

Healthcare environment. The distance to the nearest hospital via the network of 

major roads was used to measure of healthcare accessibility (Chapter 3). Hospital 
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addresses were obtained from the Florida Agency for Health Care Administration’s 

database of licensed hospitals (FL AHCA, 2006). Only facilities with an emergency 

department were included. A network analysis along major roads in Florida was used to 

calculate the distance from each block group center to the nearest hospital along these 

roads (M=2.99mi; SD=1.36mi).  For a more thorough explanation of this methodology, 

see Chapter 3.   

Table 8.  Correlations between community (level 2) predictors 
  1 2. 3. 4. 

1. TRI Score     
2. Proportion Chain Supermarkets -0.042    
3. Owner-occupied Housing Units -0.047 0.456**   
4. Poverty Rate -0.033 -0.558*** -.713***  
5. Hospital Distance 0.075 0.119 .320 -.374* 
N=36     
*p<.05, **p<.01, ***p<.001     

 

Individual Measures  

Demographics, socioeconomic status, health behaviors, social support, and stress 

were used as independent and potential mediator variables in the analyses to answer the 

research questions. In order to minimize multicollinearity, we examined the correlation 

between variables in each domain at the community and individual level and removed 

variables which were highly (r>0.50) correlated within a domain (Table 9). The 

dependent variable was self-rated health.   

Demographics.  Age, gender, and race or ethnicity were used to measure 

demographic characteristics.  Age was a continuous variable and gender was coded Male 

= 0 and Female = 1.  Although participants in the SOF were enrolled as white, African-

American, Cuban, or Non-Cuban Hispanic, we combined the two Hispanic groups and 
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created two dummy variables: Black vs. all others and Hispanic vs. all others, with whites 

as the reference group.  

Socioeconomic status. Education was categorized as less than high school (1), 

high school degree (2), or more than high school (3). Yearly household income was 

recoded into six groups from less than $10,000 (1) to more than $50,000 (6).   

Health behaviors. There were five independent variables for health behaviors: 

exercise, smoking patterns, alcohol consumption, having a personal doctor, and having 

sufficient food. Physical exercise was assessed by asking respondents whether they took 

part in at least one hour of aerobic exercise a week (No=0, Yes=1). Participants identified 

whether they were a current smoker (0), former smoker (1), or had never smoked (2). 

Alcohol consumption was a dichotomous variable, coded as drinker (1 or more drinks per 

day = 0) or non-drinker (fewer than 1 drink per day = 1). Participants identified if they 

have a personal doctor (No=0; Yes=1) and how frequently they had sufficient food 

(Always=2; Sometimes=1; Never=0). 

Social support. Marital status was dichotomized (Not Married=0; Married=1). 

Participants indicated how often they could count on friends and family in times of need 

(Never=0; Most or some of the time=1; Always=2). Finally, we asked participants how 

long they had lived in their home, a continuous measure aimed at assessing the potential 

for social support from neighbors.  

Stress. In the Community Context and Health Disparities Model we focus on the 

individual’s subjective perception of the community as stressful. We asked participants to 

rate the safety of their neighborhood (0=Poor; 1=Fair; 2=Good; 3=Very Good; 

4=Excellent).  
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Dependent Variable  

The dependent variable was self-rated health, which had four categories (Poor=1; 

Fair=2; Good=3; Excellent=4). The continuous nature of the variable made it appropriate 

for these analyses. Increasing scores indicated better health.   

Statistical Analyses 

This study tests the Community Context and Health Disparities Model, in 

particular, the hypothesis that differential health outcomes are attributable to 

characteristics of the residential community rather than to race or ethnicity. There are two 

levels of data: individuals (level 1) nested in communities (level 2), with predictors at 

both levels which must be analyzed together in order to understand their independent, 

additive, and interactive effects. 

One way the effects of community context have been examined is using ordinary 

least squares (OLS) regression with community-level predictors from exogenous data 

sources. But, including individuals nested within communities in ordinary least squares 

(OLS) regression violates the assumption of independent errors (Steenbergen & Jones, 

2002) because these individuals will be more similar than individuals in other 

communities. Such an error would lead to an underestimation of standard errors and 

increased probability of Type I errors (Hox, 1995; Pedhazur, 1997). In addition, it is not 

possible to study the cross-level interaction of community and individual attributes with 

OLS regression (Hox, 1995; Stoker & Bowers, 2002). In OLS there is no way to account 

for the similarity in variance among individuals in the same community, differences 

between individuals within communities, and the effects of individual characteristics 

cannot vary across communities. The impact of individual-level variables is “fixed” 
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(Jones & Duncan, 1995), that is, there is one specified relationship between each 

predictor and the outcome for all individual in all communities.  Residual differences 

between individuals are summarized by a single error term. 

Hierarchical linear modeling (HLM; Stoker & Bowers, 2002), addresses these 

issues, taking into account the nested structure of the data which leads to similarities 

between individuals within communities. HLM models simultaneously include both 

individual- and community-predictors, can assess the interactions between predictors 

within and across levels, and partition the variance and covariance to individual and 

neighborhood levels (Bryk & Raudenbush, 1992; Hox, 1995; Stoker & Bowers, 2002).  

HLM allows us to model variance between individuals and between communities as 

random, representing only a sample of the possible relationships between the predictors 

and outcomes, drawn from all the possible combinations of individuals and communities. 

The outcome for each community is then an overall rate for all individuals in each plus a 

“random” difference that is allowed to vary between each community. It is then possible 

to specify individual characteristics and examine the extent to which similarities between 

individuals within a community are associated with the same outcome (Jones & Duncan, 

1995).   

Within HLM, there are a number of specifications for each model that must be 

made. First, differences between communities can be modeled as fixed or random effects. 

A fixed effects model is appropriate when highlighting the impact of a particular set of 

distinct communities on health outcomes, and when the number of communities is small. 

For example, this would be appropriate for comparing four distinctive areas such as 

Boston, the Southwestern U.S., North Carolina, and Iowa, as was the case for the 
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Established Populations for the Epidemiological Study of the Elderly (EPESE) studies 

(Cornoni-Huntley et al., 1993). Our analyses are based on a relatively large number of 

communities (n=36) and focus on the impact of community (level-2) predictors on health 

outcomes, rather than the impact of specific communities. That is, how do the physical, 

built, and other community attributes predict individual health outcomes across 

communities, rather than how the unique attributes of specific neighborhoods lead to 

these outcomes. The presence of a particular predictor in several communities is expected 

to impact the self-rated health across communities because the number of communities is 

large and generalizes to a larger population.  

A random effects HLM model is appropriate when making generalizations about 

communities beyond those included in the study. In essence, the communities are 

considered as a random sample of the population of all possible communities. HLM 

essentially calculates a regression equation for each community (Pedhazur, 1997). Error 

variance is assumed to be constant between individuals within neighborhoods, but to vary 

randomly across communities (Ewart & Sunchday, 2002). This error variance may lead 

to differences in the mean values between groups (intercepts), as well as differing 

relationships between predictors and outcomes (slopes) across communities. As a result, 

the regression coefficients are expected to vary and are interpreted as random effects 

when sampled from the normally-distributed population of communities (Hox, 1995). In 

other words, the means (intercepts) and relationships between level 1 predictors and the 

outcome measure (slopes) are allowed to vary randomly across groups. These are thus 

random coefficients. Both level 1 and level 2 predictors can also be used as fixed 
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coefficients. The inclusion of both types of coefficients, random and fixed, is why these 

are also called “mixed” models.  

HLM is commonly used for random slopes model, in which the relationship 

between individual-level predictors and self-rated health is allowed to vary across 

communities. Although we allowed the slopes to vary across communities for each 

individual-level predictor, there were no significant differences in the relationship 

between these predictors across communities. Instead, we report the independent and net 

effects of community conditions on mean self-rated health (the intercept or constant).  All 

results are therefore from random intercept models with fixed community-level predictors 

and fixed individual-level predictors, with the latter having the same effect on self-rated 

health across communities (Yen & Kaplan, 1999).  

Finally, although HLM can incorporate weighted data and SOF data were 

weighted for other analyses (Zayac et al. 2005), we are not using weights because the 

participants within the 36 selected communities were chosen solely because of their 

convenience within the dataset. Neither the communities nor the participants were 

selected with these analyses or HLM in mind, which would require randomly selecting 

individuals within randomly selected communities. Instead we selected communities and 

participants with the methods described earlier (see Sample).  

All hierarchical linear models were run using the PROC MIXED procedure 

(Singer, 1998) in the SAS statistical software package (SAS, 9.1, 2004). Predictors of 

each of the five community domains and the individual-level domains suggested by the 

Community Context and Health Disparities Model were added in successive steps. Each 

model includes a constant (intercept), the random effects (variance) between individuals 
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within communities (level 1) and between communities (level 2), as well as the fixed 

effects of the level 1 and level 2 predictors. HLM does not produce an R2 value indicating 

the proportion of the variance in the dependent measure that is explained by the 

predictors.  Instead, we use reductions in variance, which indicates the proportion of the 

variance explained by the added predictors, an indicator which is analogous to R2 values 

(Snijders & Bosker, 1994). We calculated the proportion of the variance estimates 

reduced from the initial, unspecified model (Model 1). Cases where unexplained variance 

increased from the initial model were indicated by a negative value.  Improvement of 

model fit was assessed with the addition of each set of predictors by examining the 

change in the -2 REML Log Likelihood from the initial model, with negative values 

indicating a better fit from the previous model (Hox, 1995).  The change in the -2 REML 

Log Likelihood was evaluated with a Wald statistic. This statistic compares the change in 

the -2 REML Log Likelihood to a chi-square distribution where the degrees of freedom 

are the number of predictors 

To answer research question 1 (Model 1), a random-effects analysis of variance 

(RANOVA), an HLM model with no predictors, was used to determine whether there 

were differences in self-rated health across the communities without accounting for 

community or individual characteristics (Oakes, 2004; Raudenbush & Bryk, 2002). The 

constant (or intercept) produced by this analysis is the average self-rated health across 

communities. Statistical significance of between-community variance would show that 

there were differences in self-rated health between communities.  The significance of 

between-individual variance indicates there are differences between individuals within 

communities. The relative size of these estimates would indicate what proportion of the 
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variance is due to individual and community characteristics. Non-significant differences 

would mean that the variance between communities or individuals has been accounted for 

by the predictors to be added in subsequent models. We also examine the intraclass 

correlation, or the correlation between self-rated health among participants in the same 

community.  

To answer research question 2 (Model 2), community-level variables for each of 

the five domains (physical, built, social, economic, and healthcare environments, Figure 

1; p. 16) were added to Model 1 sequentially, starting with the physical environment and 

ending with the healthcare environment, as predictors of health for individuals nested 

within each community. This step tests the hypothesized direct relationship between 

community contextual variables on self-rated health (Figure 1; p. 16). With the addition 

of each variable, the significance of the fixed effect indicates the strength of that 

characteristic as a predictor of self-rated health. The extent of decrease in between-

community variance from Model 1 indicates the proportion of the variation between 

communities that can be accounted for by the addition of each domain.  

Research question 3 (Model 3) adjusts for selection bias, or the possibility that 

individual characteristics of participants do not vary randomly within communities 

(Oakes, 2004). Self-rated health was regressed on individual demographic, 

socioeconomic status, health behavior, social support, and stress variables. These 

variables were entered sequentially in the order proposed by the theoretical framework, 

and non-significant measures were eliminated.  Particular attention was paid to the 

between communities variance estimates. If this parameter were to become non-

significant with the inclusion of individual-level predictors, it would indicate that 
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between-community differences in self-rated health were entirely attributable to 

differences in individual characteristics and not community differences.   

To answer research question 4 (Model 4), significant community- and individual-

level variables were used to predict self-rated health. The change in the significance of 

community-level predictors from the previous analyses indicated whether the community 

effect was mediated by individual-level variables. By comparing the decrease in the 

between-community variance estimate in this step to that in Model 3 we assess what 

additional proportion of the variation in self-rated health between communities is 

accounted for by community context rather than individual characteristics.    

Finally, to answer Research Question 5 (Model 5), we tested the interaction 

between the remaining significant community-level and individual-level predictors. The 

significance of these interactions was used to indicate whether individuals are 

differentially impacted by community conditions.  

All of the variables in Table 8 and Table 9 were entered into the model. Only 

those which were significant were retained in these results.   

Results 

Characteristics of Communities and Individuals 

Community Characteristics 

The average TRI score was 2.04 (SD=3.36; Table 10). On average, 36.66 percent 

of the supermarkets in each community were major retailers, but there was great 

variability (SD=36.08). The average owner-occupancy rate was 56.74% (SD=18.34) and 

the average poverty rate was just over 17 percent (SD=10.06). Finally, the nearest 

hospital was 2.99 miles, on average, from the community (SD=1.36 miles).  
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Table 10.  Community (Level 2) Characteristics 
  % or Mean Std. Deviation 
TRI Score 2.04 3.36 
Proportion Chain Supermarkets 36.66 36.08 
Owner-occupied Housing Units 56.74 18.34 
Poverty Rate 17.28 10.06 
Hospital Distance 2.99 1.36 
N=36 Communities     

 

Individual Characteristics 

The final sample included 487 participants living within one of the 36 

communities. The average participant age was 72.7 years old (Table 11). The sample was 

primarily female (63.7%) and Hispanic (74.9%). Just over a quarter (26.3%) had a grade 

school education or less, 29.6 percent had completed high school, and 44.1 percent had 

more than a high school education. Almost one third (32.6%) of the participants had a 

yearly household income of less than $10,000 and 7.8 percent earned more than $50,000 

per year. Most of the sample (72.1%) got at least an hour of aerobic exercise per week, 

always had enough of the food they wanted (89.3%) and had a regular doctor (83.0%). 

Few participants were drinkers (14.1%) or current smokers (8.3%). Less than half of the 

sample was married (44.2%), but over 78 percent of respondents said they could always 

count on family and friends in times of need. The majority of respondents felt their 

neighborhood safety was excellent (26.9%), very good (20.5%), or good (36.3). Finally, 

the average self-rated health was 2.6, between fair and good. 
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Table 11.  Individual (Level 1) Characteristics 
  % or Mean Std. Deviation 
Age 72.7 6.2 
Females 63.7%  
Race or ethnicity (ref=White)   

Black 15.8%  
Hispanic 74.9%  

Education   
Grade School 26.3%  
High School 29.6%  
More than High School 44.1%  

Income   
Less than $10,000 32.6%  
$10,000-$20,000 23.6%  
$20,000-$30,000 13.6%  
$30,000-$40,000 6.6%  
$40,000-$50,000 1.6%  
More than $50,000 7.8%  

Exercise 1 hour per week 72.1%  
Enough Food   

Always 89.3%  
Sometimes 8.8%  
Never 1.8%  

Regular Doctor 83.0%  
Drinker 14.1%  
Smoker   

Never 56.2%  
Former 35.5%  
Current 8.3%  

Married 44.2%  
Able to Count on Family   

Always 78.0%  
Sometimes 12.7%  
Never 9.2%  

Neighborhood Safety   
Excellent 26.9%  
Very Good 20.5%  
Good 36.3%  
Fair 13.1%  
Poor 3.1%  

Self-rated health 2.6 0.9 
N=487 
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Research Question 1 

The average self-rated health across communities was 2.592 (Table 12). There 

was a trend toward significant differences in self-rated health between communities 

(β=0.040, p=0.064) and intraclass correlation, ρ, was 0.050 (not displayed), indicating 

moderate correlation within communities. There was significant variance between 

individuals within these communities (β =0.758, p<0.001).  

 
Table 12.  Self-rated health between communities (Model 1) 
Fixed Effects  
 β  
(Constant) 2.592 *** 
Random Effects    
 σ2  
Between-individuals variance 0.758 *** 
Between-community variance 0.040  
-2 REML Log Likelihood 1267.5  
N=487 participants in 36 communities 
*p<.05, **p<.01, ***p<.001 

 

Research Question 2 

With the addition of each community context predictor (Table 13), we examined 

the fixed effects of that measure, the change in the between-community variance, and the 

change in model fit compared to Model 1. The TRI score was not a significant predictor 

of self-rated health (β =-0.001) and did not improve model fit (change -2 REML Log 

Likelihood increased 6.5 points rather than decreased). In addition, this measure did not 

explain any of the variance in self-rated health between communities; in fact, the 

inclusion of TRI score increased the between-communities variance by 7.5 percent.  

The proportion of supermarkets that were chain retailers, a measure of the built 

environment, also did not significantly predict self-rated health (β =-0.001) and adding 
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this level-2 predictor worsened model fit significantly. This measure also did not explain 

any of the between-community variance on self-rated health.  

 The rate of owner-occupied housing units did not significantly predict individual 

self-rated health (β =0.006) and explained only 5 percent of the variance between 

communities. Additionally, the inclusion of this predictor did not improvement model fit.  

Poverty rate significantly predicted self-rated health (β =-0.028, p<0.01), with 

declining self-rated health scores as poverty rate increased. This variable explained 50 

percent of the total change in variance between communities and, although fit was not 

improved from Model 1, the was a slight decrease in the -2 REML Log Likelihood from 

the previous model. 

Finally, hospital distance did not significantly predict self-rated health (β =0.068). 

Poverty rate remained a significant predictor (β =-0.026, p<0.01) after hospital distance 

was added to the model and a total of 72.5 percent of the variance between communities 

was accounted for by all five community-level measures. There was a negligible decline 

in between-community variance and model fit worsened slightly with the inclusion of this 

variable.   

Research Question 3 

In Model 3, we examined the effects of individual- or level-1 predictors on self-

rated health by adding groups of variables hierarchically as proposed by the model 

(demographics, socioeconomic status, health behaviors, social support, and stress). In the 

first step, being Black or Hispanic compared to white significantly predicted poorer self-

rated health (β =-0.384, p<0.05; β =-0.370, p<0.05, respectively; Table 14). These 

differences in race or ethnicity accounted for 20 percent of the variance between 
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communities. In other words, 20 percent of the differences between communities on self-

rated health are due to differences in the racial and ethnic characteristics of participants in 

these communities. These measures also improved model fit, although not significantly.  

Education significantly predicted self-rated health (β =0.170, p<0.001). Black 

race was no longer a significant predictor when education was entered into the model, 

suggesting that the negative impact of being Black was explained by education 

differences. Differences in race or ethnicity and education accounted for 37.5 percent of 

the variance between communities. Including education also significantly improved 

model fit.  

Health behaviors, including exercising, having enough food, and having a regular 

doctor, were significantly associated with self-rated health. Getting at least an hour of 

exercise a week significantly predicted a 0.100 point increase in self-rated health 

(p<0.05). Similarly, self-rated health was positively related to having enough food (β 

=0.330, p<0.01). Counter to our expectation, having a regular doctor was associated with 

lower self-rated health scores (β =-0.318, p<0.01). The inclusion of these measures 

significantly improved model fit, although they did not explain any additional variance 

between communities.  

Being able to count on one’s family and friends (β =0.159, p<0.05) significantly 

predicted self-rated health and mediated the negative effect of being Hispanic, which was 

no longer statistically significant after the inclusion of this social support variable. The 

addition of this variables improved model fit significantly and, with the measures added 

in previous steps, explained 45 percent of the between-community variance.  The 
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inclusion of these variables added unexplained variance between communities, but 

improved model fit.   

The subjective rating of neighborhood safety was a significant predictor, with 

increases in community safety associated with better self-rated health (β =0.122, 

p<0.001).   This variable also improved model fit significantly. Together, all the 

individual-level predictors accounted for 72.5 percent of the between-community 

variance.  

Research Question 4 

In Model 4, the community predictor poverty rate (from Model 2) was added to 

the individual-level predictors of self-rated health from Model 3. Although it was 

significant in Model 2, poverty rate was no longer a significant predictor of self-rated 

health after individual characteristics are taken into account (β =-0.008), although an 

additional 12.5 percent of the variance between communities was explained by poverty 

rate. Overall, 85 percent of the between-community variability on self-rated health could 

be attributed to the individual characteristics and community differences in poverty rates.     
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Research Question 5 

Although poverty was not a significant predictor of self-rated health in Model 4 

when individual characteristics were statistically controlled, there was a significant cross-

level interaction between poverty rate (level 2) and Hispanic ethnicity (level 1) as seen in 

Model 5 (Table 15).  The significance of this interaction indicates that the relationship 

(slope) between poverty rate and self-rated health is moderated by being Hispanic.  This 

interaction explains an additional 2.5 percent of the variance between communities. This 

is displayed in Figure 9.  The relationship between community poverty rate and 

individual self-rated health is significant for Hispanics (β=-0.016, p<0.05) but not for 

non-Hispanics (β=0.019).  Higher rates of community poverty have a negative impact on 

the health of older Hispanics, but not on non-Hispanic whites or African-Americans.  
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Table 15. Community characteristics net of individual characteristics on self-rated health and 
cross-level interactions (Models 4 and 5). 

 Model 1 
From 

Model 3 Model 4 Model 5 
Fixed Effects               
 β  β  β  β  
(Constant) 2.592 *** 1.799 *** 1.970 *** 1.758 *** 
Individual Predictors         
Race or ethnicity (ref=Whites)         

Black   -0.247  -0.147  -0.429 * 
Hispanic   -0.215  -0.187  0.142  

Education   0.160 *** 0.149 ** 0.146 ** 
Exercise   0.092 * 0.091 * 0.087  
Enough Food   0.263 * 0.255 * 0.272 ** 
Regular Doctor   -0.359 *** -0.365 *** -0.368 *** 
Able to Count on Family   0.131 * 0.131 * 0.124 * 
Neighborhood Safety   0.122 *** 0.110 ** 0.108 ** 
Community Predictor         
Poverty Rate     -0.008  0.010  
Interactions         
Poverty Rate x Hispanic      -0.024 * 
Random Effects                 
 σ2  σ2  σ2  σ2  
Between-individuals variance 0.758 *** 0.694 *** 0.696 *** 0.690 *** 
Between-community variance 0.040  0.011   0.006   0.005   
Percent change1  72.5%  85.0%  87.5%  
-2 REML Log Likelihood 1267.5  1233.5  1240.1  1242.1  
Change from Model 1   -34.0 *** -27.4 ** -25.4 ** 
1Change in between-community variance from Model 1. 
 N=487 in 36 communities.  
*p<.05, **p<.01, ***p<.001 
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Figure 9. Relationship between community poverty rate and self-rated health: 
Hispanics vs. Non-Hispanics. 

 

Discussion 

In an effort to understand the causes of racial and ethnic health disparities among 

older adults, we tested the theoretical framework proposed by the Community Context 

and Health Disparities Model (Figure 1; p. 16). Using this model, we argue that 

characteristics of the community, including aspect of the physical, built, social, 

economic, and healthcare environments, directly influence health outcomes and are 

mediated by individual demographic characteristics, socioeconomic status, health 

behaviors, social support, and stress. The model was tested using a secondary data 

analysis of individual-level data from participants in the Survey of Older Floridians living 

in communities within Miami-Dade County, which were linked to contextual measures 

from outside sources through GIS.  We discuss the findings in terms of the adequacy of 

the theoretical model, possible causes of health disparities among older racial and ethnic 

minorities, and recommendations for changes in public policy and healthcare practice. 
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Adequacy of the Community Context and Health Disparities Model 

In general, our findings support the link between aspects of the community 

context and health outcomes and somewhat support the pathways proposed by the 

Community Context and Health Disparities Model.  Differences in self-rated health 

across communities were low, particularly when compared to the variation between 

individuals within communities, but approached statistical significance. Community 

poverty rate was the only community predictor that remained statistically significant after 

the inclusion of all other community-level variables. Most of the variance between 

communities (72.5%) was explained by individual factors (race/ethnicity, education, 

exercise, having enough food, having a regular doctor, social support, ratings of 

neighborhood safety) and, when these individual characteristics were controlled 

statistically, community poverty rate was no longer a significant predictor of self-rated 

health. This level-2 predictor did, however, account for an additional 12.5% percent of 

the variation between communities on self-rated health. We examined cross-level 

interactions and found that community poverty rate interacted with Hispanic ethnicity so 

that participants who were Hispanic were significantly negatively impacted by 

community poverty, although there was no effect between non-Hispanics.  

Our findings are similar to others that have linked poor community economic 

conditions to poor health outcomes (Davey Smith et al., 1998; Jones & Duncan, 1995; 

Maheswaran, et al., 1997; Waitzman & Smith, 1998). Like Reijneveld and Schene 

(1998), however, we found that the effect of community poverty was not significant net 

of individual characteristics and that most of the variability between communities on self-

rated health was attributable to individual differences. Although we expected other 
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attributes of the community to predict a significant amount of the variation in self-rated 

health, the proportion of residents below the poverty level was the only persistent 

predictor. This suggests that other work that has linked community poverty to poor self-

rated health both alone (Kobetz, Daniel, & Earp, 2003) and in combination with other 

economic measures (Davey Smith et al., 1998; Jones & Duncan, 1995; Robert, 1998) 

adequately assessed the aspect of community that influences health. Given the high 

correlation between community poverty and the other measures of the community 

context, it is necessary to further disentangle the pathways suggested by the Community 

Context and Health Disparities Model.  This study provided preliminary examples of 

measures of each of the domains. Future studies using a more disparate array of 

communities are needed to examine the relationships between conditions across domains, 

relationships with self-rated health, and to better identify causal pathways for these 

relationships.   

Possible Causes of Health Disparities Among Older Racial and Ethnic Minorities 

At the individual level, being Black or Hispanic was associated with worse health, 

although the former was mediated by education and the latter was mediated by social 

support. This finding supports arguments that racial and ethnic disparities are mediated 

by differences in other characteristics, particularly socioeconomic status and social 

support. Increased health promotion behaviors, including getting at least an hour of 

exercise and having enough food were associated with better health. Although we 

expected having a personal doctor to be associated with better health, we found the 

opposite effect. This may be  because people who are in worse health are more likely to 

see their physician on a regular basis. It was noteworthy that age and gender, which have 

previously been linked to self-rated health, were not significant in these analyses, perhaps 
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because they are mediated by other variables included in the model and it was a more 

age-homogenous sample. Finally, positive subjective ratings of neighborhood safety were 

associated with better health.  

Recommendations 

Although community conditions have long been the focus of public health 

researchers and practitioners, in more recent years researchers have tested interventions 

to focus on changing individual attributes and behaviors. We make recommendations in 

terms of all three areas: policy, practice, and future research. 

Public Policy 

Public policy alone cannot eradicate the biases and beliefs that cause segregation, 

which leads to disparities in residential communities between whites and ethnic 

minorities. Policy interventions can, however, focus on elements and pathways at the 

community and individual levels that impact health. For example, the Environmental 

Protection Agency (EPA) recently began an Aging Initiative, designed to better 

understand how aspects of the environment affect the health of older adults who may be 

more susceptible to things like toxins, pollution, and extreme climate events. The Healthy 

People 2010 program, which has set goals for health behaviors and conditions, includes 

information about creating healthy communities, recognizing that health and health 

behaviors are impacted by community.  

Our research highlights the importance of creating more equitable economic 

conditions across communities. Individual level of education and community poverty rate 

are related to educational and employment opportunities, which are mutable 

characteristics of the local community. Interventions designed to alleviate economic 
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disparities should therefore focus on these systems, not individual conditions alone. As 

this study has shown, reducing community poverty benefits older adults as well as for its 

intended target--families and those still in the workforce.  

One area that needs particular attention is the coexistence of multiple negative 

community conditions in areas where residents are already vulnerable because of low 

socioeconomic status. For example, although we did not find an effect for TRI, Browning 

and colleagues (2003) argued that not having affluent residents in a neighborhood 

increases susceptibility to adverse community conditions such as the placement of toxic 

waste sites. That is, these sites are more likely to be placed in communities with less 

affluence because of the effectiveness of more affluent communities to argue “Not in My 

Back Yard.” 

In our study, there were fewer chain supermarkets in communities with high 

levels of poverty, indicating that it may be more difficult for residents, who are already at 

a disadvantage because of limited economic resources, to obtain adequate food. Indeed, 

having enough to eat was a factor in this study.   

Practice 

Because having a usual source of healthcare, getting regular check-ups and 

seeking preventive care such as screenings (Corbie-Smith, Flagg, Doyle, & O’Brien, 

2002; Newacheck, Hung, Park, Brindis, & Irwin, 2003; Politzer et al., 2001) have been 

associated with better health outcomes, we expected to see a positive relationship 

between having a regular doctor and self-rated health, but we found the opposite: having 

a regular doctor significantly predicted poorer self-rated health. Although this may reflect 

that individuals who are sicker are more likely to have a regular doctor, it may also 
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reflect characteristics of the healthcare system.  For example, the quality of care that 

these individuals are receiving may be worse. Baicker and colleagues (2005) showed that 

all patients received poorer quality healthcare in minority communities.  So this affects 

care for all race and ethnic groups.  In addition, it may be that the physician’s personal 

characteristics (gender, race, ethnicity, language) are barriers to good physician-patient 

communication.  Further studies are needed to better disentangle these relationships.  

Limitations 

Our study was limited by a very small sample size, particularly the small number 

of participants who were white or Black. This limited our power to detect differences 

between race and ethnic groups and communities. This was a secondary data analysis of a 

study where participants were not sampled from communities per se, so generalizations 

drawn about these communities are limited.  

We limited our study to communities within the same county in order to be able 

to find community level data for all aspects of the theoretical model.  But this may have 

limited the range of values for community-level predictors and minimized community 

differences. There were also some aspects of the community not measured, such as 

climate, vehicular accidents, and unemployment rate, because these measures are 

available at geographic resolutions not compatible with our study. In addition, high 

within-domain correlations made it necessary to include only one measure of each 

domain when it may, in fact, be other aspects of that domain that impact health.  For 

example, we did not include poor transportation systems and lack of sidewalks in the 

built environment as predictors of health. There were moderate to high correlations 

between many of the community-level measures (Table 8) and poverty rate. The shared 
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variance between many of the community factors may explain why poverty rate was the 

only significant predictor.   

Future Research 

Further studies with large community and individual sample sizes are needed to 

more adequately parse the impact of conditions in each domain. Ideally, study 

participants should be sampled from distinct communities, in order to maximize variance 

on level-2 predictors. Finally, although we focused on older adults, research should focus 

on disparities individual conditions and health outcomes, as well as community 

conditions, throughout the life course.  

Conclusion 

This study has highlighted the importance of taking into account the community 

context when studying the individual. Contextual factors play an important role in the 

economic opportunities, social networks, and opportunities for exercise and healthy 

eating that an individual experiences. High rates of neighborhood poverty were 

associated with poorer self-rated health, with older Hispanics particularly vulnerable to 

poor neighborhood conditions. Public policies aimed at eliminating health disparities 

must take into account the characteristics of the communities where minorities are living. 

Although the pathways proposed by the Community Context and Health Disparities 

Model were not fully supported with this secondary data analysis, the role of community 

context has the potential to be an important mutable factor and should be included in 

future research studies of health disparities. Further studies are needed to determine 

additional attributes of the community that are related to poverty rate and to test the 

efficacy of community level data at various geographic levels. 
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CHAPTER 5: COMMUNITY CONTEXT AND MENTAL HEALTH DISPARITIES 
 

Introduction 
 

Interventions aimed at eliminating mental health disparities, such as a report to 

the Surgeon General in 1999 (US DHHS, 1999) and the 2000 creation of the National 

Center for Minority Health and Health Disparities in the National Institutes of Health 

(Oliver & Muntaner, 2005), highlight the increasing attention to disparities between 

whites and racial and ethnic minorities. African Americans and Hispanics are more likely 

to suffer from disorders such as depression (Roberts, Roberts & Chen, 1997), but are less 

likely to seek treatment and more often disabled by these disorders than whites (US 

DHHS, 1999).  

The reasons for mental health disparities are complex, and not all are linked to 

factors such as bias in the quality of care provided, health beliefs, or even genetic 

differences. One promising new area of research focuses on the community context. 

Environmental psychology literature has long recognized the influence of the 

environment on well-being (e.g., Barker, 1968; Lawton, 1983), but the environment as an 

explanation for physical health disparities has only received attention  within the past 10 

years.  

Environmental research has demonstrated the impact of a number of community 

attributes on mental health. High rates of poverty in an area are associated with higher 

rates of depression and schizophrenia (Silver, Mulvey, & Swanson, 2002; van Os, 

Driessen, Gunther, & Delespaul, 2000). Poorer housing stock and construction are 



 

110 

associated with a higher prevalence of depression in urban areas (Weich, Twigg, Holt, 

Lewis & Jones, 2003). On the other hand, an older adult population in the residential 

neighborhood has been linked to better mental health outcomes among the elderly 

(Kubzansky et al., 2005). 

Multilevel statistical modeling of mental health disparities has been used to assess 

the impact of community conditions net of individual attributes. Although rates of 

depression, schizophrenia, and substance abuse vary across communities, the impact of 

community conditions declines significantly when individual characteristics are taken 

into account (e.g., Troung & Ma, 2006). Net of individual predictors, rates of residential 

mobility and material deprivation in the residential community persist as significant 

predictors of depression in the adult population (Matheson et al., 2006; Silver, et al., 

2002). Community attributes such as poverty rate have been shown to explain variation in 

depressive symptoms among older Mexican Americans (Ostir, Eschbach, Markides, & 

Goodwin, 2003). Hybels and colleagues (2006) found no effect of neighborhood on 

depression among older adults when individual characteristics are controlled statistically. 

On the other hand, Kubzansky and colleagues (2005) found that, among the elderly, 

neighborhood poverty was positively associated with higher rates of depression, and the 

concentration of elderly with lower rates. Twenty-seven of the 29 studies that Truong and 

Ma (2006) reviewed found a significant association between neighborhood attributes and 

mental health outcomes net of individual attributes. There is, therefore, some evidence of 

a relationship between community context, depression, and well-being, although previous 

research has not provided an explanation of the pathways by which contextual factors 

impact mental health.  
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Community Context and Health Disparities Model 

In studies of the relationship between community conditions and mental health 

disparities, researchers have used a variety of conditions including resident characteristics 

(Matheson et al., 2006; Silver, et al., 2002), resident ratings of the community social 

conditions (Cagney & Browning, 2004), and measures of the built structures (Weich et 

al., 2003 to measure community context.  Although these studies suggest community 

attributes that may impact mental health, theoretically-based research is needed in order 

to help identify the specific pathways by which these conditions directly lead to mental 

health outcomes, explain higher rates of mental health problems among racial and ethnic 

minorities, and take into account for multiple co-existing community conditions 

(Kubzansky, et al., 2006). Building on previous theoretical frameworks (Northridge, 

Sclar, & Biswas, 2003; Schulz & Northridge, 2004; Schulz, Williams, Israel, & Lempert, 

2002; Williams & Collins, 2001), a Community Context and Health Disparities Model 

was developed (Figure 1; p. 16).  

The model proposes that characteristics of the residential community, which 

includes the physical, built, social, economic, and healthcare environments, have a direct 

effect on physical and mental health outcomes and indirectly impact these outcomes 

through their effect on individual behaviors and characteristics. The physical 

environment includes the role of the climate and air and water toxins. Physical 

environment attributes such as exposure to daylight, have been linked to mental health 

outcomes such as seasonal affective disorder, which is characterized by depression and 

fatigue (Rosenthal et al., 1984). The built environment includes the conditions of 

structures and transportation systems, as well as services and stores. Commercially zoned 



 

112 

areas and building deterioration are associated with depression and low life satisfaction 

(Chapman & Beaudet, 1983; Galea, Ahern, Rudenstine, Wallace, & Vlahov., 2005).  

Aspects of the social environment, such as civic and religious organizations and 

characteristics of neighborhood residents, have been associated with depression and 

health (Franzini, Caughy, Spears, & Esquer, 2005; Wen, Browning, & Cagney, 2003) and 

may buffer individuals from more harmful aspects of the environment (LaVeist, 1993; 

Rich, Edelstein, Hallman, & Wandersman, 1995). Among older adults, high rates of 

residential mobility have been associated with increased depressive symptoms (Matheson 

et al., 2006). Studies have consistently shown that there are higher rates of depression and 

psychiatric disorders in poorer urban communities (Brown et al., 1977; Ostir et al., 2003; 

Ostler et al., 2001) and higher levels of well-being in neighborhoods where more people 

have adequate personal resources (Schwirian & Schwirian, 1993), two characteristics of 

the economic environment. In addition, residents of communities with lower 

unemployment rates have a lower risk for depression (Zimmerman & Bell, 2006). The 

availability, accessibility, and quality of healthcare, particularly from primary care 

physicians will impact mental health disorder diagnosis and treatment because they are 

usually the first source of help for depression and anxiety problems (Gorn, Icaza, & 

Cantu, 2003), although the availability of mental health services, which are inadequate in 

most communities (US DHHS, 1999), will affect treatment, prognosis, and outcomes. 

In the Community Context and Health Disparities Model, individual 

demographics, socioeconomic status, health behaviors, social support, and stress, often 

employed as control measures in studies of community context, are influenced by the 

community context and have both direct and indirect effects on mental health. There is 
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empirical support for this proposition. For example, Matheson and colleagues (2006) 

showed that socioeconomic status is associated with aspects of mental health.  Longer 

tenure in a neighborhood has been associated with greater levels of support (Schulz et al., 

2006) and social support is positively associated with lower rates of depression and 

mortality (Berkman & Glass, 2000; Kawachi & Berkman, 2001; Leskela et al., 2006). 

Poorer or unemployed individuals may be more affected by community conditions than 

those who have more economic resources (Fone & Dunstan, 2006; Weich et al., 2003). 

High levels of social support, including that provided by neighbors, buffer against the 

harmful effects of community conditions (Cassel, 1976).  

These conditions may affect older adults in particular because they usually have 

lived in the community for a longer time, have a greater need for services, and spend less 

time at work and hence more time in the residential community than younger adults 

(Robert & Lee, 2002; Robert & Li, 2001). They are also at increased risk of losing a 

spouse and face shrinking social networks (Krause, 1988; US DHHS, 1999). 

Experiencing a number of stressful life events, which include death of a spouse, change 

in financial status, or loss of a job is associated with worse physical and mental health 

outcomes (Holmes & Masuda, 1974; Leskela et al., 2006).   

Research Questions 

The goal of this research was to evaluate the impact of conditions of the 

community context on the mental health of older adults using the Community Context 

and Health Disparities Model. Specifically, we sought to determine:  

1. Are there significant differences in depressive symptoms across communities?  
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2. What are the direct relationships between community conditions and 

depressive symptoms?  

3. To what extent are differences in depressive symptoms across communities 

due to differences in the characteristics of the individuals within these 

communities?  

4. What are the effects of community conditions net of individual factors on 

depressive symptoms? 

We conducted secondary data analysis using hierarchical linear modeling (HLM) 

to examine the effect of community context, net of individual context, on depressive 

symptoms, measured by the 10-item version of the Center for Epidemiological Studies 

Depression Scale (CES-D; Radloff, 1977). Each question corresponds to one step in the 

HLM procedure.  

Method 

Sample 

The Survey of Older Floridians (SOF) received approval from the Institutional 

Review Board of the University of South Florida on 3/19/2004 (IRB # 102334G). 

Communities  

Previous research has grouped individuals into communities based on county 

(Fiscella & Franks, 1997), U.S. Census tract (Franzini & Spears, 2003; LeClere, et al., 

1997; Robert 1998), U.S. Census block group (Franzini & Spears, 2003), and defined 

communities (Davey Smith, et al., 1998; Feldman & Steptoe, 2004; Reijneveld & 

Schene, 1998; Ross, 2000). The smaller geographic units are generally more 

homogeneous, and both individual and community variability increases as the geographic 
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unit increases in size, making it more difficult to accurately assess the effects of 

community context. This difficulty is the modifiable area unit problem (Waller & 

Gotway, 2004).  As an example, Franzini and Spears (2003) found that four percent of 

the variance in heart disease mortality was accounted for by variation at the Census tract 

level, but county-level variation contributed less than one half of a percent.  

In this study, we defined “communities” using a combination of U.S. Census 

“Places” in Miami-Dade County and Neighborhood Enhancement Team (NET) 

boundaries within the City of Miami. The U.S. Census “Places” include incorporated 

areas, consolidated cities, and Census-designated places (CDP). CDPs are the “statistical 

counterparts of incorporated places” created by the U.S. Census “for concentrations of 

population, housing, and commercial structures that are identifiable by name but are not 

within an incorporated place” (U.S. Census, 2001).   

The city of Miami, while defined by the U.S. Census as a single “place” is very 

diverse and contains a number of neighborhoods, as well as 141 of the 733 Miami-Dade 

participants in the SOF.  The remainder lived in the other parts of Miami-Dade County 

and place names came from the U.S. Census.  Within the city of Miami, we obtained the 

geographical boundaries of Neighborhood Enhancement Team (NET) areas within the 

city. These areas, designed to link community residents to the city government, were 

designated based on established neighborhoods in Miami (City of Miami, 2004). Because 

the NET area communities did not coincide with U.S. Census entities, we assigned 

Census block group identifiers to each community based on their centroid location. 

Community measures were calculated by aggregating the data for all of the block groups 

within that community. This process resulted in the creation of 38 communities that 
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included both urban (including city of Miami) and suburban areas in Miami-Dade 

County. We were able to use 36 of these 38 communities in the current study. 

Individuals  

The Survey of Older Floridians (SOF) was a telephone survey designed to assess 

the health and healthcare needs of four populations of interest: older Floridians in 

general, and specifically older African Americans, Cubans, and other Hispanics. 

Participants in the state-representative sample were contacted by random-digit dialing. A 

stratified sampling procedure was applied to subsequent sampling frames.  We sorted 

telephone exchanges by the proportions of older African Americans, Cubans, and other 

Hispanics to increase the productivity of random digit dialing and created a sample of all 

the exchanges needed to get coverage of approximately 70 percent of these populations.  

Phone numbers in the exchanges were called in this order until each sample had reached 

the desired sample size. Adults over the age of 65 in these target groups were interviewed 

regardless of the sampling frame. A supplemental sample of 122 whites living in the 

same communities as the minority oversamples was also interviewed to examine the 

effects of the summer 2004 hurricanes that hit Florida approximately three months prior 

to the oversample data collection phase. The statewide participants are therefore a 

random sample of the entire state, whereas the oversample participants are a sample of 

adults drawn from telephone exchanges with high proportions of older minorities. 

Conducted in 2004-2005, the final sample included telephone interviews with 1,433 

white, African American, Cuban, and other Hispanic older adults. Response rates ranged 

from 55 percent to 62 percent, with the lowest rates for the minority oversamples and the 
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highest rates for the statewide survey (Zayac et al., 2005). Although the data were 

weighted for epidemiological reporting, the data were unweighted for these analyses. 

For this study, we selected a subset of those SOF participants whose residences 

were geocoded using Geographical Information Systems (GIS) techniques. Of the 1,433 

participants in the SOF, 1,412 (98.5%) were successfully geocoded. Participants who 

could not be geocoded did not significantly differ from the rest of the sample in terms of 

age, gender, race, ethnicity, or self-rated health. Consistent with the distribution of the 

actual population of older minorities in Florida, most (N=733; 51.9%) of the participants 

resided in communities in Miami-Dade County. The geographic distribution of 

participants elsewhere in the state limited our ability to designate community clusters 

outside of Miami-Dade County. That is, 48 percent of the SOF participants were 

scattered through the remaining 66 counties. 

Measures 

Community Measures 

Community measures were chosen based on availability, heterogeneity within 

Miami-Dade County, and relevance. For example, the climate is homogeneous 

throughout the county so it was not possible to test the effect of this community attribute 

with this sample. The Community Context and Health Disparities Model suggests 

multiple measures for each domain. In order to minimize multicollinearity, we followed 

the recommendation of Bryk and Raudenbush (1992), who suggested fitting separate sub-

models with predictors from each of the neighborhood domains (e.g., physical, built, 

social, economic, and healthcare) and retaining the strongest predictor from each sub-

model in the main model. Data sources and the measures employed for each of the five 
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domains are described next. The correlations between the variables used to measure each 

domain are displayed in Table 16. 

Physical environment. One measure of the physical environment was the presence 

of toxins, assessed using the Toxics Release Inventory (TRI), which includes the 

geographical locations of releases of over 300 toxins to air, water, and land by the 

manufacturing industry. These locations are released by the Environmental Protection 

Agency (EPA) per a mandate by the 1986 Section 313 of the Emergency Planning and 

Community Right-to-Know Act (EPCRA). Certain industries must report their waste 

emissions if they use more one or more of 650 specified toxic chemicals (U.S. EPA, 

2004). Higher densities of TRI sites have been associated with asthma among children 

(Maantay, 2007) and could potentially affect the health of older adults.   

Because the influence of toxins is likely to cross community boundaries, we used 

kernel density estimation to measure TRI exposures. First, the 2006 locations of these 

sites were geocoded to a point shapefile. There were 51 TRI locations in Miami-Dade 

County. We next converted Miami-Dade County into a grid of equally-sized cells 100 

feet by 100 feet. We then created a kernel density estimation using the Spatial Analyst 

tool in ArcGis 9.2, which created a surface of toxin intensity. The kernel density 

estimation provided a distance-weighted count of toxins where the influence of each of 

the TRI sites was inversely weighted by the distance away from the center of the cell and 

followed the quartic approximation to a Gaussian kernel function (see Chapter 3). In 

other words, this estimate accounted for the fact that people will be less exposed to toxins 

sites that are further away.  Values were scaled by a factor of 27,878,400 (or 52802) and 

then by a factor of 1000 to make values comparable to other variables in the model. The 
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TRI value for each community was obtained by averaging the values in each cell in the 

community (M = 2.04; SD=3.36). These values represent an intensity of TRI sites within 

the community, with a large TRI score indicating a higher likelihood of exposure to 

toxins within a community 

Built environment. Many aspects of the built environment, including attributes of 

the buildings, transportation systems and roads, services and stores in the community 

have been linked to health outcomes. We limited our measure of the built environment to 

the proportion of supermarkets that were major chain retailers because previous research 

has shown that the availability and type of food stores in one’s residential neighborhood 

influence diet, and these retailers are more likely to be sources of fresh fruit and 

vegetables (Morland et al., 2002). Data on the locations of these stores came from the 

GeoPlan Center at the University of Florida that provides geographic datasets and 

shapefiles for the state of Florida, available through the Florida Geographic Data Library 

(Florida Geographic Data Library [FGDL], 2003). The original shapefile, created from a 

2003 online telephone directory search, included supermarkets, grocery stores, and 

shopping centers, which were geocoded based on address. We limited our analyses to 

stores categorized as “supermarkets” and identified major supermarket chain retailers 

(e.g., Publix, Winn Dixie). Of the 306 supermarkets in Miami-Dade County, 85 (27.7%) 

were major chain retailers. In the communities in this study, an average of 36.66 percent 

of the supermarkets were major chain retailers (SD=36.08). 

  Social environment. The U.S. Census (2000) provided data on the characteristics 

of the residents within each community as measures of the social composition, including 

racial, ethnic, and age composition, proportion of households headed by females and 
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owner occupied, and housing tenure. These measures were highly correlated so the 

proportion of households that were owner-occupied was employed as the measure of 

social environment (M=56.74%; SD=18.34).  

Economic environment. The proportion of residents living below the federal 

poverty level in 2000 was calculated from U.S. Census (2000) data (M=17.28%; 

SD=10.06). Other relevant data on employment and educational systems were available 

only at the county level and not used here.  

Healthcare environment. The distance to the nearest hospital via the network of 

major roads was used to measure of healthcare accessibility (Chapter 3). Hospital 

addresses were obtained from the Florida Agency for Health Care Administration’s 

database of licensed hospitals (FL AHCA, 2006). Only facilities with an emergency 

department were included. A network analysis along major roads in Florida was used to 

calculate the distance from each block group center to the nearest hospital along these 

roads (M=2.99mi; SD=1.36mi).  For a more thorough explanation of this methodology, 

see Chapter 3.   

Table 16.  Correlations between community (level 2) predictors 
  1 2. 3. 4. 

1. TRI Score     
2. Proportion Chain Supermarkets -0.042    
3. Owner-occupied Housing Units -0.047 0.456**   
4. Poverty Rate -0.033 -0.558*** -.713***  
5. Hospital Distance 0.075 0.119 .320 -.374* 
N=36     
*p<.05, **p<.01, ***p<.001     

 

Individual Measures  

Demographics, socioeconomic status, health behaviors, social support, and stress 

were used as independent and potential mediator variables in the analyses to answer the 
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research questions. In order to minimize multicollinearity, we examined the correlation 

between variables in each domain at the community and individual level and removed 

variables which were highly (r>0.50) correlated within a domain (Table 17). The 

dependent variable was CES-D score.   

Demographics.  Age, gender, and race or ethnicity were used to measure 

demographic characteristics.  Age was a continuous variable and gender was coded Male 

= 0 and Female = 1.  Although participants in the SOF were enrolled as white, African-

American, Cuban, or Non-Cuban Hispanic, we combined the two Hispanic groups and 

created two dummy variables: Black vs. all others and Hispanic vs. all others, with whites 

as the reference group.  

Socioeconomic status. Education was categorized as less than high school (1), 

high school degree (2), or more than high school (3). Yearly household income was 

recoded into six groups from less than $10,000 (1) to more than $50,000 (6).   

Health behaviors. There were five independent variables for health behaviors: 

exercise, smoking patterns, alcohol consumption, having a personal doctor, and having 

sufficient food. Physical exercise was assessed by asking respondents whether they took 

part in at least one hour of aerobic exercise a week (No=0, Yes=1). Participants identified 

whether they were a current smoker (0), former smoker (1), or had never smoked (2). 

Alcohol consumption was a dichotomous variable, coded as drinker (1 or more drinks per 

day = 0) or non-drinker (fewer than 1 drink per day = 1). Participants identified if they 

have a personal doctor (No=0; Yes=1) and how frequently they had sufficient food 

(Always=2; Sometimes=1; Never=0). 
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Social support. Marital status was dichotomized (Not Married=0; Married=1). 

Participants indicated how often they could count on friends and family in times of need 

(Never=0; Most or some of the time=1; Always=2). Finally, we asked participants how 

long they had lived in their home, a continuous measure aimed at assessing the potential 

for social support from neighbors.  

Stress. In the Community Context and Health Disparities Model we focus on the 

individual’s subjective perception of the community as stressful. We asked participants to 

rate the safety of their neighborhood (0=Poor; 1=Fair; 2=Good; 3=Very Good; 

4=Excellent).  

Dependent Variable 

The dependent variable was depressive symptoms, as measured with the 10-item 

version of the Center for Epidemiological Studies Depression Scale (CES-D; Radloff, 

1977). The instrument asks how often 8 negatively stated symptoms and 2 positively 

stated symptoms were experienced during the past week. The items include loneliness, 

feelings of fearfulness, and restless sleep and responses were coded on a 4 point scale (0= 

Rarely or Never, 1= Some of the time, 2= Moderate amount of the time, 3=Most of the 

time) and summed. A score of 10 or higher on the short form of the CES-D is generally 

indicative of depression.   
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CES-D scores are calculated by summing responses to each question, with the 

positively stated symptoms reverse coded. In the original SOF dataset, 19.8 percent 

participants were missing at least one response to a CES-D item. In the subsample used in 

these analyses, 21.8 percent of participants were missing at least one CES-D response. 

There were no systematic differences in terms of age, race, ethnicity, gender, education, 

or income between participants who answered all CES-D items and those who did not. 

We therefore limited our analyses to participants with complete CES-D data (N=374).  

The average CES-D score was 7.45 (SD=6.70) and Cronbach’s alpha for the ten CES-D 

items was 0.819.  

Statistical Analyses 

This study tests the Community Context and Health Disparities Model, in 

particular, the hypothesis that differential mental health outcomes, particularly depressive 

symptoms, are attributable to characteristics of the residential community rather than to 

race or ethnicity. There are two levels of data: individuals (level 1) nested in communities 

(level 2), with predictors at both levels which must be analyzed together in order to 

understand their independent, additive, and interactive effects. 

One way the effects of community context have been examined is using ordinary 

least squares (OLS) regression with community-level predictors from exogenous data 

sources. But, including individuals nested within communities in ordinary least squares 

(OLS) regression violates the assumption of independent errors (Steenbergen & Jones, 

2002) because these individuals will be more similar than individuals in other 

communities. Such an error would lead to an underestimation of standard errors and 

increased probability of Type I errors (Hox, 1995; Pedhazur, 1997). In addition, it is not 
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possible to study the cross-level interaction of community and individual attributes with 

OLS regression (Hox, 1995; Stoker & Bowers, 2002). In OLS there is no way to account 

for the similarity in variance among individuals in the same community, differences 

between individuals within communities, and the effects of individual characteristics 

cannot vary across communities. The impact of individual-level variables is “fixed” 

(Jones & Duncan, 1995), that is, there is one specified relationship between each 

predictor and the outcome for all individual in all communities.  Residual differences 

between individuals are summarized by a single error term. 

Hierarchical linear modeling (HLM; Stoker & Bowers, 2002), addresses these 

issues, taking into account the nested structure of the data which leads to similarities 

between individuals within communities. HLM models simultaneously include both 

individual- and community-predictors, can assess the interactions between predictors 

within and across levels, and partition the variance and covariance to individual and 

neighborhood levels (Bryk & Raudenbush, 1992; Diez-Roux, 2000; Hox, 1995; Stoker & 

Bowers, 2002).  HLM allows us to model variance between individuals and between 

communities as random, representing only a sample of the possible relationships between 

the predictors and outcomes, drawn from all the possible combinations of individuals and 

communities. The outcome for each community is then an overall rate for all individuals 

in each plus a “random” difference that is allowed to vary between each community. It is 

then possible to specify individual characteristics and examine the extent to which 

similarities between individuals within a community are associated with the same 

outcome (Jones & Duncan, 1995).   
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Within HLM, there are a number of specifications for each model that must be 

made. First, differences between communities can be modeled as fixed or random effects. 

A fixed effects model is appropriate when highlighting the impact of a particular set of 

distinct communities on health outcomes, and when the number of communities is small. 

For example, this would be appropriate for comparing distinctive four distinctive areas 

such as Boston, the Southwestern U.S., North Carolina, and Iowa, as was the case for the 

Established Populations for the Epidemiological Study of the Elderly (EPESE) studies 

(Cornoni-Huntley et al., 1993). Our analyses are based on a relatively large number of 

communities (N=36) and focus on the impact of community (level-2) predictors on health 

outcomes, rather than the impact of specific communities. That is, how do the physical, 

built, and other community attributes predict individual health outcomes across 

communities, rather than how the unique attributes of specific neighborhoods lead to 

these outcomes. The presence of a particular predictor in several communities is expected 

to impact the individuals across communities in the same way to predict depressive 

symptoms.  Therefore, we used random effects HLM models. 

A random effects HLM model is appropriate when making generalizations about 

communities beyond those included in the study. In essence, the communities are 

considered as a random sample of the population of all possible communities. HLM 

essentially calculates a regression equation for each community (Pedhazur, 1997). Error 

variance is assumed to be constant between individuals within neighborhoods, but to vary 

randomly across communities (Ewart & Sunchday, 2002). This error variance may lead 

to differences in the mean values between groups (intercepts), as well as differing 

relationships between predictors and outcomes (slopes) across communities. As a result, 
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the regression coefficients are expected to vary and are interpreted as random effects 

when sampled from the normally-distributed population of communities (Hox, 1995). In 

other words, the means (intercepts) and relationships between level 1 predictors and the 

outcome measure (slopes) are allowed to vary randomly across groups. These are thus 

random coefficients. Both level 1 and level 2 predictors can also be used as fixed 

coefficients. The inclusion of both types of coefficients, random and fixed, is why these 

are also called “mixed” models.  

HLM is commonly used for random slopes model, in which the relationship 

between individual-level predictors and depressive symptoms is allowed to vary across 

communities. Although we allowed the slopes to vary across communities for each 

individual-level predictor, there were no significant differences in the relationship 

between these predictors across communities. Instead, we report the independent and net 

effects of community conditions on mean depressive symptoms (the intercept or 

constant).  All results are therefore from random intercept models with fixed community-

level predictors and fixed individual-level predictors, with the latter having the same 

effect on depressive symptoms across communities (Yen & Kaplan, 1999).  

Finally, although HLM can incorporate weighted data and SOF data were 

weighted for other analyses (Zayac et al. 2005), we are not using weights because the 

participants within the 36 selected communities were chosen solely because of their 

convenience within the dataset. Neither the communities nor the participants were 

selected with these analyses or HLM in mind, which would require randomly selecting 

individuals within randomly selected communities. Instead we selected communities and 

participants with the methods described earlier (see Sample).  
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All hierarchical linear models were run using the PROC MIXED procedure 

(Singer, 1998) in the SAS statistical software package (SAS, 9.1, 2004). Predictors of 

each of the five community domains and the individual-level domains suggested by the 

Community Context and Health Disparities Model were added in successive steps. Each 

model includes a constant (intercept), the random effects (variance) between individuals 

within communities (level 1) and between communities (level 2), as well as the fixed 

effects of the level 1 and level 2 predictors. HLM does not produce an R2 value indicating 

the proportion of the variance in the dependent measure that is explained by the 

predictors.  Instead, we use reductions in variance, which indicates the proportion of the 

variance explained by the added predictors, an indicator which is analogous to R2 values 

(Snijders & Bosker, 1994). We calculated the proportion of the variance estimates 

reduced from the initial, unspecified model (Model 1). Cases where unexplained variance 

increased from the initial model were indicated by a negative value.  Improvement of 

model fit was assessed with the addition of each set of predictors by examining the 

change in the -2 REML Log Likelihood from the initial model, with negative values 

indicating a better fit from the previous model (Hox, 1995).  The change in the -2 REML 

Log Likelihood was evaluated with a Wald statistic. This statistic compares the change in 

the -2 REML Log Likelihood to a chi-square distribution where the degrees of freedom 

are the number of predictors 

To answer research question 1 (Model 1), a random-effects analysis of variance 

(RANOVA), an HLM model with no predictors, was used to determine whether there 

were differences in depressive symptoms across the communities without accounting for 

community or individual characteristics (Oakes, 2004; Raudenbush & Bryk, 2002). The 
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constant (or intercept) produced by this analysis is the average CES-D score across 

communities. Statistical significance of between-community variance would show that 

there were differences in depressive symptoms between communities.  The significance 

of between-individual variance indicates there are differences between individuals within 

communities. The relative size of these estimates would indicate what proportion of the 

variance is due to individual and community characteristics. Non-significant differences 

would mean that the variance between communities or individuals has been accounted for 

by the predictors to be added in subsequent models. We also examine the intraclass 

correlation, or the correlation between CES-D score among participants in the same 

community.  

To answer research question 2 (Model 2), community-level variables for each of 

the five domains (physical, built, social, economic, and healthcare environments, Figure 

1; p. 16) were added to Model 1 sequentially, starting with the physical environment and 

ending with the healthcare environment, as predictors of CES-D score for individuals 

nested within each community. This step tests the hypothesized direct relationship 

between community contextual variables on depressive symptoms (Figure 1; p. 16). With 

the addition of each variable, the significance of the fixed effect indicates the strength of 

that characteristic as a predictor of depressive symptoms. The extent of decrease in 

between-community variance from Model 1 indicates the proportion of the variation 

between communities that can be accounted for by the addition of each domain.  

Research question 3 (Model 3) adjusts for selection bias, or the possibility that 

individual characteristics of participants do not vary randomly within communities 

(Oakes, 2004). CES-D score was regressed on individual demographic, socioeconomic 
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status, health behavior, social support, and stress variables. These variables were entered 

sequentially in the order proposed by the theoretical framework, and non-significant 

measures were eliminated.  Particular attention was paid to the between communities 

variance estimates. If this parameter were to become non-significant with the inclusion of 

individual-level predictors, it would indicate that between-community differences in 

CES-D score were entirely attributable to differences in individual characteristics and not 

community differences.   

To answer research question 4 (Model 4), significant community- and individual-

level variables were used to predict depressive symptoms. The change in the significance 

of community-level predictors from the previous analyses indicated whether the 

community effect was mediated by individual-level variables. By comparing the decrease 

in the between-community variance estimate in this step to that in Model 3 we assess 

what additional proportion of the variation in CES-D score between communities is 

accounted for by community context rather than individual characteristics.    

All of the variables in Table 16 and Table 17 were entered into the model. Only 

those which were significant were retained in these results.   

Results 

Characteristics of Communities and Individuals 

Community Characteristics 

The average TRI score was 2.04 (SD=3.36; Table 18). On average, 36.66 percent 

of the supermarkets in each community were major retailers, but there was great 

variability (SD=36.08). The average owner-occupancy rate was 56.74% (SD=18.34) and 
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the average poverty rate was just over 17 percent (SD=10.06). Finally, the nearest 

hospital was 2.99 miles, on average, from the community (SD=1.36 miles).  

Table 18.  Community (Level 2) Characteristics 
  % or Mean Std. Deviation 
TRI Score 2.04 3.36 
Proportion Chain Supermarkets 36.66 36.08 
Owner-occupied Housing Units 56.74 18.34 
Poverty Rate 17.28 10.06 
Hospital Distance 2.99 1.36 
N=36 communities     

 

Individual Characteristics 

The final sample included 374 participants. The average participant age was 72.1 

years old (Table 19). The sample was primarily female (62.0%) and Hispanic (72.5%). 

Just over a quarter (25.7%) had less than a grade school education, 28.9 percent had 

completed high school, and 45.4 percent had more than a high school education. More 

than 36 percent of the participants had a yearly household income of less than $10,000, 

but 11.3 percent earned more than $50,000 per year. Most of the sample (68.4%) got at 

least an hour of aerobic exercise per week, always had enough of the food they wanted 

(89.3%) and had a regular doctor (84.0%). Few participants were drinkers (14.4%) or 

current smokers (8.6%). Less than half of the sample was married (44.9%), but almost 80 

percent of respondents said they could always count on family and friends in times of 

need. The majority of respondents felt their neighborhood safety was excellent (28.3%), 

very good (20.3%), or good (34.7). The mean score on the CES-D was 7.5 (SD=6.7). 
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Table 19.  Individual (Level 1) Characteristics 

  
% or 
Mean 

Std. 
Deviation 

Age 72.1 7.3 
Females 62.0%  
Race or ethnicity (ref=White)   

Black 16.3%  
Hispanic 72.5%  

Education   
Grade School 25.7%  
High School 28.9%  
More than High School 45.4%  

Income   
Less than $10,000 36.8%  
$10,000-$20,000 26.1%  
$20,000-$30,000 16.7%  
$30,000-$40,000 7.0%  
$40,000-$50,000 2.1%  
More than $50,000 11.3%  

Exercise 1 hour per week 68.4%  
Enough Food   

Always 89.3%  
Sometimes 8.8%  
Never 1.9%  

Regular Doctor 84.0%  
Drinker 14.4%  
Smoker   

Never 55.5%  
Former 35.8%  
Current 8.6%  

Married 44.9%  
Able to Count on Family   

Always 79.4%  
Sometimes 12.0%  
Never 8.6%  

Neighborhood Safety   
Excellent 28.3%  
Very Good 20.3%  
Good 34.7%  
Fair 13.9%  
Poor 2.7%  

CES-D score 7.5 6.7 
N=374   
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Research Question 1 

The average CES-D score across the communities was 6.882 (Table 20). The 

variance between communities (β=1.910) was not statistically significant, and the 

variability between individuals within communities (β=41.414) was almost 22 times 

greater. The intra-class correlation, ρ, was 4.41 percent (not displayed).   

Table 20.  CES-D score between communities (Model 1)  
Fixed Effects   
 β  
(Constant) 6.882 *** 
Random Effects   
 σ2  
Between-individuals variance 41.414 *** 
Between-community variance 1.910   
-2 REML Log Likelihood 2469.0   
N=374 participants in 36 communities 
*p<.05, **p<.01, ***p<.001 

 

Research Question 2 

 Table 21 displays Model 1 and the results of Model 2 with the addition of each 

level-2 predictor so that the change in between-community variance and model fit (-2 

REML Log Likelihood) can be assessed. The TRI score was not a significant predictor of 

depressive symptoms (β=0.109), although this variable accounted for 8.22 percent of the 

variance between communities. The inclusion of this measure did not improve model fit, 

however. 

The proportion of supermarkets that were chain retailers also did not significantly 

predict CES-D score (β=0.012). This measure both increased between-community 

variance by 8.22 percent and worsened model fit.   
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The proportion of housing units that are owner-occupied (β=-0.058, p<0.05) 

significantly predicted CES-D score, with a decrease in depressive symptoms as owner-

occupancy rates increased. In addition to the measures of the physical and built 

environment, this measure predicted 12.04 percent of the variance in CES-D score 

between communities, but model fit was not improved from Model 1.  

When poverty rate was added to the model, owner-occupancy rate was no longer 

a significant predictor (β=-0.041) perhaps because these two measures were so highly 

correlated (r=-0.713; Table 18).  Poverty rate did not significantly predict depressive 

symptoms (β=0.053) and slightly worsened model fit. Even when aspects of the physical, 

built, social, and economic environments were included in the model, just under seven 

percent of the between community variance was explained.  

Finally, when distance to the nearest hospital was added it was not a significant 

predictor (β=-0.677). However, the proportion of grocery stores that were major chain 

supermarkets became statistically significant (β=0.034, p<0.05) and 47.43 percent of the 

between-community unexplained variance was explained. Model fit was not improved.   
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Research Question 3 

 In Model 3 (Table 22), we examined the effect of individual, or level-1 

predictors, on depressive symptoms by adding groups of variables hierarchically as 

proposed by the model (demographics, socioeconomic status, health behaviors, social 

support, stress) and comparing the changes in the variance estimates and model fit to 

Model 1. Being female was associated with an increase in depressive symptoms 

(β=2.914, p<0.01), while being Black or Hispanic was unrelated. These factors explained 

13.51 percent of the between-community variance and the inclusion of these 

demographic characteristics significantly improved model fit.   

Almost 40 percent of the between-community variance was accounted for by 

demographic characteristics and education, and the latter significantly predicted CES-D 

score (β=-1.005; p<0.05). Increased education was associated with fewer depressive 

symptoms. Model fit from Model 1 was also significantly improved when these factors 

were taken into account statistically.   

Two health behaviors, getting at least one hour of exercise (β=-1.216, p<0.01) and 

having enough food (β=-3.590, p<0.001), significantly predicted CES-D score. A total of 

60.26 percent of the between community variation in depressive symptoms was 

attributable to demographic, socioeconomic, and health behavior characteristics of the 

study participants.  
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Being able to count on one’s family was also a statistically significant predictor 

(β=-2.641, p<0.001) and was associated with fewer depressive symptoms. Adding this 

variable statistically improved model fit and almost three-quarters of the between-

community variance was explained by demographic, health behavior, and social support 

characteristics of the study participants. 

Finally, participant assessment of neighborhood safety significantly predicted 

depression (β=-0.882, p<0.001), with fewer depressive symptoms as neighborhood safety 

increased. With all of the individual-level predictors entered in the model, 83.19 percent 

of the between-community variance was explained. In other words, the majority of the 

differences between communities on depressive symptoms was due to differences in 

individual characteristics; just over 17 percent of the between-community variance 

remained to be explained by community-level predictors or unexplained by individual 

characteristics.  

Research Question 4 

In Model 4 (Table 23, last two columns) both owner-occupancy rate and 

proportion chain supermarkets were added as community-level predictor because these 

variables had statistically significant associations with depressive symptoms in Model 2 

(Table 21). Neither the proportion of chain supermarkets (β=0.007) nor owner occupancy 

rate (β=-0.007) significantly predicted CES-D score when individual characteristics were 

controlled statistically.  The inclusion of these level-2 variables also did not explain any 

additional variance between communities on CES-D score and model fit was not as good 

with the inclusion of these measures.  
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Table 23. Community conditions net of individual factors on CES-D score (Model 4). 

From Model 4 
  Model 1 Model 3 Built  Social 
Fixed Effects         
 β  β  β  β  
(Constant) 6.882 *** 18.510 *** 18.139 *** 18.812 *** 
Individual Predictors         
Female   2.806 *** 2.805 *** 2.800 *** 
Race or ethnicity (ref=Whites)         
Black   -0.929  -0.650  -0.988  
Hispanic   0.356  0.407  0.307  
Education   -0.890 * -0.910 * -0.876 * 
Exercise   -0.992 * -0.984 * -0.985 * 
Enough Food   -2.758 *** -2.743 *** -2.749 *** 
Able to Count on Family   -2.392 *** -2.408 *** -2.385 *** 
Neighborhood Safety   -0.882 *** -0.875 ** -0.864 ** 
Community Predictors         
Proportion chain supermarkets    0.007    
Owner-occupied housing units        -0.007   
Random Effects             
 σ2  σ2  σ2  σ2  

Between-individuals variance 41.414 *** 33.658 *** 33.595 *** 33.688  
Between-community variance 1.910  0.321  0.476  0.385  

Percent change1     83.19%   75.08%   79.84%   
-2 REML Log Likelihood 2465.9  2366  2372.7  2372   
Change from Model 1    -99.9 *** -93.2 *** -93.9 *** 
1Change in between-
community variance from 
Model 1.              
 N=374 in 36 communities         
*p<.05, **p<.01, ***p<.001         

 

Discussion 

The goal of this research was to test the influence of community attributes on 

well-being as proposed by the Community Context and Health Disparities Model (Figure 

1; p. 16). This theoretical framework posits that characteristics of the community, 

including the physical, built, social, economic, and healthcare environments directly 

influence mental health outcomes and are mediated by individual demographic 
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characteristics, socioeconomic status, health behaviors, social support, and stress. The 

model was tested using individual-level data from participants in the Survey of Older 

Floridians living in communities within Miami-Dade County, which were linked to 

contextual measures from outside sources through Geographic Information Systems. 

Adequacy of the Community Context and Health Disparities Model 

A better understanding of these results may be facilitated by reviewing the 

correlations within the community measures (Table 16) and the individual measures 

(Table 17). The community correlations were high (r>.40), while only one individual 

correlation reached this level (married and gender). The proportion of supermarkets, for 

example, was moderately and significantly correlated with the proportion of owner-

occupied housing units, and with lower poverty rates. The proportion of owner-occupied 

units, in turn, was strongly correlated with lower rates of poverty. We excluded other 

measures that had high within domain correlations but kept these measures with high 

between domain correlations in order to test the theoretical model. 

Given the level of correlation between community variables, it is not surprising 

that although owner-occupancy rate, a measure of community social environment, did 

predict CES-D score in Model 2, it was no longer a significant predictor when poverty 

rate was included (Model 2; Table 21). Similarly, our measure of the built environment, 

the proportion of supermarkets that were major chains, was only a significant predictor of 

depressive symptoms when all other community variables were controlled statistically. 

Neither owner-occupancy rate nor percent chain supermarkets significantly predict 

depressive symptoms after individual characteristics were controlled (Model 4; Table 

23). In fact, including these measures led to a worse model fit and less between-
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community variance explained than when individual-level predictors alone were included 

in the model. Individual-level measures were stronger predictors of depressive symptoms 

and accounted for most (83.19 percent) of the variance between communities. Increased 

education, getting at least an hour of exercise, having enough food, being able to count on 

one’s family and friends, and living in what the participant felt to be a safe neighborhood 

significantly decreased depressive symptoms. On the other hand, being female was 

associated with a greater number of symptoms. These findings are similar to others who 

have found little to no impact of community on depression after individual factors were 

taken into account (Hybels et al., 2006; Troung & Ma, 2006) 

Community Context as an Explanation for Mental Health Disparities 

Although the theoretical framework was designed to facilitate examination of 

differences between whites and minorities in depressive symptoms, Black and Hispanic 

race/ethnicity were not significantly associated with CES-D score. This finding supports 

arguments that racial and ethnic disparities in mental health are likely due to other factors 

such as gender, socioeconomic status, social support, and stress.  

Limitations 

There are a number of reasons why the theoretical model may not have been 

validated by this study. First, the community-level variables that we used may have a 

minimal influence on mental health. The Community Context and Health Disparities 

Model suggests many variables to represent each domain and other attributes or measures 

of each domain may have been more appropriate for measuring context when explaining 

mental health. For example, we could have included the accessibility of mental health 

treatment centers to assess the healthcare environment.  
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We were also limited by our relatively small numbers of communities and 

participants within communities. The location of all the study communities within one 

county means that they were relatively homogenous on a number of measures, such as 

daylight, which have been associated with depression (Rosenthal et al., 1984) but could 

not be included in this analysis.  The lack of ethnic diversity, particularly that over 70 

percent of the sample was Hispanic, may have made it difficult to statistically detect 

differences between ethnic groups, although we were able to show this difference when 

explaining self-rated health (see Chapter 4). Future research should use communities with 

a range of values for each of the level-2 measures as well as a more diverse sample of 

individuals. 

Participant rating of neighborhood safety was a significant predictor of depression 

scores. Although we included this as a measure of stress from the community, it is likely 

correlated with actual community conditions (e.g., crime). Further research is needed to 

identify what community attributes lead to a rating of “poor” safety since we did not find 

that any of our community measures were significant predictors. In particular, it may be 

interesting to highlight situations where there is a discrepancy between community 

attributes and individual assessments of safety in order to better understand whether this 

rating is indicative of specific community conditions or particularly vulnerable 

individuals.  

Implications for Policy and Practice 

This study highlights that it is possible to explore the impact of both individual 

and community-level factors on mental health outcomes. Although we did not find 

significant differences in depressive symptoms between communities, individual 
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demographic, socioeconomic, health behaviors, social support, and stress characteristics 

significantly predicted CES-D score and explained variability in these scores between 

communities. In other words, the individual characteristics that are associated with 

depression vary spatially. Community mental health interventions should identify areas 

where residents are at high risk based on these predictors. The clustering of people with 

these characteristics may make it easier to find the most effective locations for mental 

health services.  

Conclusion 

The Community Context and Health Disparities Model provides a theoretical 

framework for understanding how community and individual characteristics explain 

disparities in mental health. We tested the attributes and pathways suggested by this 

model as predictors of depressive symptoms and found that individual traits and 

behaviors are stronger predictors of depression, than community characteristics.  
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CHAPTER 6: CONCLUSION 

 Research on racial and ethnic health disparities has attempted to explore aspects 

of the community context as possible explanations for these gaps in health. The 

persistence of racial residential segregation (Glaeser & Vigdor, 2001), leading to 

discrepancies in the characteristics of the communities where whites and minorities live, 

make it plausible that there is a relationship between community factors and individual 

health status. Previous research on contextual factors has been limited, however, by the 

lack of a theoretical framework to direct the research. Although our work was guided by 

a new theoretical framework that proposed relationships between five community-level 

domains and five individual-level domains, we found limited utility of the model with our 

data.  This may be why others (Northridge, Sclar & Biswas, 2003; Schulz & Northridge, 

2004; Schulz, Williams, Israel, & Lempert, 2002) have not empirically tested similar 

models. In both cases, researchers have tried to aggregate a wide variety of research 

disciplines, disentangling community attributes that would explain differences in health 

by race and ethnicity.  

We have argued that the older minority population may experience these 

disparities more since they spend more time in the community as most are no longer 

leaving the community during the day to work.  We also acknowledge that these older 

minorities are survivors and therefore may not have been as impacted by community 

context as those who did not survive.  Without studying contextual factors over time, it is 
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impossible to separate the impact of these conditions from individual characteristics. One 

example of this is in the Established Populations for the Epidemiological Study of the 

Elderly (EPESE) studies, which have been used to estimate the prevalence of health 

conditions between different racial and ethnic groups (Cornoni-Huntley et al., 1993). 

These studies are based on samples of urban whites living in Boston, urban and rural 

whites and Blacks living in North Carolina, and Mexican Americans living in five 

southwestern states. There are vast differences in the conditions of the environment, 

social systems, economic conditions, and healthcare systems between these geographic 

areas as well as cultural differences between Mexican-Americans and other Hispanic 

populations in the U.S. (e.g., Cubans in Miami, Florida; Puerto Ricans in New York 

City), as well as whites and Blacks. It is not valid to draw conclusions about race and 

ethnicity from these samples without accounting for the differences in both heritage and 

geographic location.  

 At the same time, our own analyses demonstrated the challenges of applying a 

theoretical model to examine health disparities among older minorities.  In future 

research we need to design a study that includes an adequate number of discrete 

communities which each include diverse populations.  Hierarchical linear modeling 

(HLM), the most appropriate statistical analysis for testing such a model, is most 

effective with at least 30 communities with at least 30 individuals in each community 

(Kreft, 1996).  A larger data set such as the Medicare Current Beneficiaries Survey (U.S. 

DHHS, 2004) or the North Carolina EPESE study (Cornoni-Huntley et al., 1993) may be 

better suited for such an analysis.  Although on one hand the fact that community 

conditions such as pollution, poor housing quality, a deteriorating social structure, few 
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job opportunities, and poor accessibility to healthcare reinforce the hypothesis that 

community affects health, the high correlations between these conditions in our study 

made it difficult to identify the particular factor that explains health disparities.  

Understanding community context may require many more disparate communities such 

as found in the EPESE or national MCBS studies. 

Our research developed two important indicators of healthcare availability 

(physicians per population) and accessibility (distance to hospitals with emergency 

rooms). We were able to improve on previous indicators of availability which lost 

physician data due to not coding P.O. Box addresses and lost variability due to using zip 

codes rather than smaller census units like block groups or census tracts.  And we 

improved on indicators of healthcare accessibility by calculating the actual road network 

distance to the nearest hospital rather than Euclidian distances.  Our measure could be 

improved by accounting for travel time for a large number of locations, like commonly 

available programs such as Mapquest calculate for a single location. We identified 

challenges with matching community and population data which are collected at different 

time intervals.  This would be particularly important for longitudinal research that 

attempts to show causality and not just associations as we have done here.  Not only is 

temporality important but these community healthcare measures need to be validated in 

terms of whether or not they are accurately capturing what they are designed to measure. 

For example, although there may be what appears to be adequate potential physician 

availability and healthcare accessibility in a community, without a universal healthcare 

insurance or payment system in the United States for all age groups, actual healthcare 

availability and accessibility may not be adequate. Kahn and colleagues (1994) suggest 
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that African Americans may actually live closer to academic medical centers located in 

the inner city, but this does not mean that the populations living in these poorer areas 

have access to this care. Further explorations into the relationship between the quality of 

care received (Chandra & Skinner, 2003) may actually provide a more accurate 

assessment of the impact of the healthcare system on outcomes.  

 There are also a number of policy implications from this type of research. Given 

the persistence of community poverty levels in explaining self-rated health and Hispanics 

versus Blacks or whites in this study and elsewhere, we need to continue to wage a war 

on poverty. Although we did not find the built environment to be a consistent factor in 

explaining community differences on individual self-rated health or depression, probably 

because of the close proximity between communities, the built environment and land use 

planning does affect both these outcomes as others have found.  The U.S. EPA recently 

began an Aging Initiative designed to create a national agenda for studying how negative 

environmental conditions affect older Americans. For example, older adults are more 

susceptible to extreme heat conditions, so heat watch/warning systems implemented in 

cities like Chicago and Seattle are one way to prevent heat fatalities (U.S. EPA, 2004). 

The Healthy People 2010 program includes a healthy communities component in 

recognition of the fact that exercise and other health behaviors are influenced by the 

community. There are a number of resources available to promote healthy communities 

by building coalitions, engaging community residents in physical activity, and measuring 

results (U.S. DHHS, 2001). 

 Over the past fifteen years, eliminating health disparities has been a goal of the 

U.S. government. Throughout the four articles written for this dissertation, there has been 
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evidence of a relationship between community conditions and health disparities, even in a 

single county in a single state.  In the United States, these differences are more 

pronounced and since race and ethnic groups cluster differentially, these community 

differences need to be considered when designing policy.  Although we find all race and 

ethnic groups in every urban and most rural areas of the country, African Americans are 

concentrated in the Southeast (Baicker, Chandra, & Skinner, 2005) while whites are 

concentrated in the Northeast and West.  Since community conditions such as physical, 

built, and economic are different in these regions of the country, if health disparities 

between racial and ethnic groups are to be alleviated, policies must target the 

characteristics of the communities where minorities live that affect health. Although this 

aim is broad, it is more readily met through policy changes than other hypothesized 

causes of health disparities, particularly what some consider inherent biological 

differences. Improving educational and employment opportunities will help alleviate 

socioeconomic disparities. The improvement of community conditions will lead to better 

health and well-being among all populations, lowering healthcare costs and leading to a 

better quality of life. As described here, the disparities between communities are great 

and much work is needed to create equitable community conditions. These four studies in 

this dissertation provide important theoretical, methodological, and empirical evidence to 

support the ongoing investigation of health disparities and demonstrating the need to 

improve community conditions. 
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