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CHANNEL, SPECTRUM, AND WAVEFORM AWARENESS IN OFDM-BASED
COGNITIVE RADIO SYSTEMS

Tevfik Yücek

ABSTRACT

The radio spectrum is becoming increasingly congested everyday with emerging technologies

and with the increasing number of wireless devices. Considering the limited bandwidth availability,

accommodating the demand for higher capacity and data rates is a challenging task, requiring

innovative technologies that can offer new ways of exploiting the available radio spectrum. Cognitive

radio arises to be a tempting solution to the spectral crowding problem by introducing the notion

of opportunistic spectrum usage. Because of its attractive features, orthogonal frequency division

multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies.

We believe that OFDM will play an important role in realizing the cognitive radio concept as well

by providing a proven, scalable, and adaptive technology for air interface.

The goal of this dissertation is to identify and address some of the challenges that arise from

the introduction of cognitive radio. Specifically, we propose methods for obtaining awareness about

channel, spectrum, and waveform in OFDM-based cognitive radio systems in this dissertation. Pa-

rameter estimation for enabling adaptation, spectrum sensing, and OFDM system identification are

the three main topics discussed.

OFDM technique is investigated as a candidate for cognitive radio systems. Cognitive radio

features and requirements are discussed in detail, and OFDM’s ability to satisfy these requirements

is explained. In addition, we identify the challenges that arise from employing OFDM technology in

cognitive radio. Algorithms for estimating various channel related parameters are presented. These

parameters are vital for enabling adaptive system design, which is a key requirement for cognitive

radio. We develop methods for estimating root-mean-square (RMS) delay spread, Doppler spread,

and noise variance. The spectrum opportunity and spectrum sensing concepts are re-evaluated by

x



considering different dimensions of the spectrum which is known as multi-dimensional spectrum

space. Spectrum sensing problem in a multi-dimensional space is addressed by developing a new

sensing algorithm termed as partial match filtering (PMF). Cognitive radios are expected to rec-

ognize different wireless networks and have capability of communicating with them. Algorithms

for identification of multi-carrier transmissions are developed. Within the same work, methods for

blindly detecting transmission parameters of an OFDM based system are developed. Blind detection

is also very helpful in reducing system signaling overhead in the case of adaptive transmission where

transmission parameters are changed depending on the environmental characteristics or spectrum

availability.
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CHAPTER 1

INTRODUCTION

As wireless communication systems are making the transition from wireless telephony to interac-

tive Internet data and multi-media types of applications, the desire for higher data rate transmission

is increasing tremendously. As more and more devices go wireless, future technologies will face spec-

tral crowding and coexistence of wireless devices will be a major issue. Considering the limited

bandwidth availability, accommodating the demand for higher capacity and data rates is a challeng-

ing task, requiring innovative technologies that can offer new ways of exploiting the available radio

spectrum.1 Cognitive radio offers a solution to the spectral crowding problem by introducing the

opportunistic usage of frequency bands that are not heavily occupied by licensed users [3]. It is a new

concept in wireless communications which aims to have more adaptive and aware communication

devices which can make better use of available natural resources [4].

Even though there is no agreement on the formal definition, and hence capabilities, of cognitive

radio as of now, the concept has evolved recently to include various meanings in several contexts [5].

One main aspect of it is related to autonomously exploiting locally unused spectrum to provide new

paths to spectrum access. Other aspects include interoperability across several networks; roaming

across borders while being able to stay in compliance with local regulations; adapting the system,

transmission, and reception parameters without user intervention; and having the ability to under-

stand and follow actions and choices taken by their users to become more responsive over time.

Cognitive radios can be used as a secondary system on top of current allocation of users which are

called primary (or licensed) users. In this case, secondary (cognitive) users need to detect the unused

spectrum in order to be able to exploit it. Moreover, the radio should be able to shape its waveform

so as to exploit only the unused part of the spectrum.
1The term “spectrum” refers to the multi-dimensional radio space in this dissertation and it should not be confused

with the general term that only refers to the frequency dimension. A more detailed definition for this term is presented
in Chapter 6.
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In order to understand the importance of cognitive radio technology within the wireless research

community, it is sufficient to have a look at the conferences and special issues organized on cognitive

radio. Within the last couple of years, there have been numerous conferences specifically on cognitive

radio and dynamic spectrum access,2 not to mention the various workshops and sessions on cognitive

radio in many communications related conferences. Moreover, many of the prestigious journals

have prepared special issues on cognitive radio.3 There have also been standardization activities for

cognitive radio: IEEE 802.22 and IEEE Standards Coordinating Committee 414 (Dynamic Spectrum

Access Networks), and 4 books have been published (or are in press) on cognitive radio only within

the last two years. These facts underline the significant interest of the wireless research community

in cognitive radio technology.

In this introductory chapter, a brief introduction to orthogonal frequency division multiplexing

(OFDM) technology is given and OFDM based cognitive radio is explained. Then, an outline of the

dissertation is presented.

1.1 OFDM Technology

OFDM is a multicarrier modulation technique that can overcome many problems that arise from

high bit rate communications, the biggest of which is time dispersion. In OFDM, carrier frequencies

are chosen in such a way that there is no influence of other carriers when detecting the information

in a particular carrier as long as the orthogonality between the carriers is maintained. The data

bearing symbol stream is split into several lower rate streams and these streams are transmitted on

different carriers. Since this splitting increases the symbol period by the number of non-overlapping

carriers (subcarriers), multipath echoes affect only a small portion of the neighboring symbols.

Remaining inter-symbol interference (ISI) is removed by cyclically extending the OFDM symbol.

The length of the cyclic extension should be at least as long as the maximum excess delay (MED) of

the channel. This way, OFDM reduces the effect of multipath channels encountered with high data
2To count few; IEEE Dynamic Spectrum Access Networks Conference DySPAN (November 2005, April 2007),

International Conference on Cognitive Radio Oriented Wireless Networks and Communications (June 2007, July
2008), and so on.

3To count few; IEEE Journal on Selected Areas in Communications Special Issue on Adaptive, Spectrum Agile
and Cognitive Wireless Networks (February 2006), Wireless Communications and Mobile Computing Journal: Special
Issue on Cognitive Radio, Software Defined Radio, and Adaptive Wireless System (May 2006), IEEE Communications
Magazine Feature Topic on Cognitive Radios for Dynamic Spectrum Access (October 2006), Special Issue of Elsevier
Computer Networks on Cognitive Wireless Networks (December 2006), Special Issue of IEEE Journal on Selected
Areas in Communications on Cognitive Radio, Theory and Applications (March 2007), The European Association
for Signal Processing (EURASIP) Journal on Wireless Communications and Networking Special Issue on Cognitive
Radio and Dynamic Spectrum Sharing Systems (June 2007), and so on.

4Formerly IEEE 1900 Standards Committee on Next Generation Radio and Spectrum Management.
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rates and avoids the need for complex equalizers. Other advantages of OFDM include high spectral

efficiency, robustness against narrow-band interference (NBI), scalability, and easy implementation

by fast Fourier transforms (FFTs). OFDM is used as the modulation method for digital audio

broadcasting (DAB) [6] and terrestrial digital video broadcasting (DVB-T) [7] in Europe, and in

asymmetric digital subscriber line (ADSL) [8]. The wireless local area network (WLAN) [9–11],

and wireless metropolitan area network (WMAN) standards [12] use OFDM as their physical layer

transmission technique as well. OFDM is also a strong candidate for IEEE wireless personal area

network (WPAN) standard [13], for fourth generation (4G) cellular systems (see e.g. [14]), and finally

wireless regional area network (WRAN) standard which is known as cognitive radio standard [15].

1.2 OFDM-Based Cognitive Radio

Application of OFDM to cognitive radio brings about new aspects and challenges to system

design. The cognitive OFDM conceptual model considered in this dissertation is shown in Fig. 1.1.5

Cognitive engine is responsible for making the intelligent decisions and configuring the radio and

physical layer (PHY) parameters. Spectral opportunities are identified by the decision unit based

on the information from policy engine as well as local and network spectrum sensing data.

Policy engine provides information to the cognitive engine concerning the current policies to be

considered by the system depending on the location of the system. This ensures that cognitive

radio does not use illegal waveforms or breach any policies. On the other hand, local spectrum

sensing unit processes the spectrum information and identifies licensed users accessing to spectrum

and their signal specifications such as their bandwidth and power level. It also detects spectrum

opportunities that can be exploited by cognitive radio. Once the required information is available,

decision unit can make a conclusion on the best course of action for the system. The decision includes

choosing the appropriate channel coding, modulation, operation frequencies, and bandwidth. At this

stage, OFDM technology gets the upper hand over other similar transmission technologies with its

adaptive features and great flexibility. By only changing the configuration parameters of OFDM

(see Table 2.2 for some example parameters) and radio, the cognitive system can communicate with

various radio access technologies in the environment, or it can optimize the transmission depending

on the environmental characteristics. The radio circuit is divided into digital part (digital IF, analog

to digital converter (ADC), and digital to analog converter (DAC)) and analog part (software tunable

5Some OFDM functions are skipped or simplified for the sake of brevity.
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Figure 1.1 OFDM-based cognitive radio system block diagram. All of the layers can interact with
the cognitive engine. OFDM parameters and radio are configured by the cognitive engine.

analog radio). Both parts are reconfigurable by the cognitive engine to increase the flexibility of

the system. This includes controlling the operating frequency, bandwidth, filters, and mixers. Even

antenna parameters, e.g. number of antennas and beam forming, can be configured to improve the

system performance.

1.3 Awareness in Cognitive Radio

One of the most important elements of the cognitive radio concept is the ability to measure,

sense, learn, and be aware of parameters related to the radio channel characteristics, availability

of spectrum and power, interference and noise temperature, radio’s operational environments, user

requirements and applications, available networks (infrastructures) and nodes, local policies and

other operating restrictions. A list of key types of awareness in cognitive radio is given in [16]. Main

types of awareness include location awareness, geographical environment awareness, RF environ-

ment awareness, waveform awareness, mobility and trajectory awareness, power supply and energy

efficiency awareness, regulation awareness, policy awareness, capabilities awareness, language aware-

ness, mission awareness, spectrum awareness, priority awareness, past experience awareness, network
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awareness [16]. Acquiring some of these awareness types related to physical layer is the main topic

of this dissertation. Specifically, RF environment (channel) awareness, spectrum awareness, and

waveform awareness are considered. Having the capability of acquiring these awareness enables

adaptation and helps realizing cognitive radio concept. Furthermore, opportunistic spectrum access

can be implemented as the major requirement of spectrum awareness is achieved using developed

algorithms.

1.4 Dissertation Outline

In this dissertation, based on the preliminary discussion in the previous sections, we try to

identify and address certain challenges related to physical layer awareness. Following the introduction

(Chapter 1), the outline of this dissertation consists of four parts:

1. Detailed study of cognitive OFDM systems (Chapter 2).

2. Estimation of critical channel parameters for enabling adaptation (Chapters 3 – 5)

3. Spectrum sensing for dynamic spectrum access in cognitive radio (Chapters 6 and 7)

4. OFDM system identification and secure OFDM transmission for cognitive radio applications

(Chapters 8 and 9)

The first part given above expands on the current chapter and provides detailed information about

OFDM technology and cognitive radio. The last three parts contain the main contribution of the

dissertation and include original research results. The conceptual relationship among these parts is

illustrated in Fig. 1.2. As shown in this figure, the goal of this dissertation is to develop algorithms

that enable the awareness capability of cognitive radio. While doing this, we consider an OFDM-

based physical layer technology.

We start by investigating the requirements of cognitive radio and how OFDM fulfills these re-

quirements in Chapter 2. Challenges that arise from employing OFDM in cognitive radio systems

are identified and cognitive properties of some OFDM-based wireless standards are discussed in the

same chapter.

In designing mobile wireless systems, the variation of radio channel characteristics needs to be

taken into account. Traditional designs build head-room so that the mobile subscribers at the worst-

case channel conditions can still maintain the communication. This would translate to lower data
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Channel
Parameters

Awareness

Figure 1.2 The three elements that are studied in this dissertation.

rates and inefficient usage of the available resources such as power and spectrum. While this ensures

reliable communications from the services and consumer points of view, scarce resources are not

exploited efficiently, yielding a sub-optimal communications system. Therefore, recently, adaptation

of wireless communications systems has gained a strong momentum and the new generation wireless

standards are designed to be more aware of the variations and characteristics of the channel. This

is what cognitive radio aims and these new standards include cognitive radio features. In terms

of adapting the transmission parameters, OFDM offers many possibilities. Adapting the transmit

power, cyclic prefix (CP) size, modulation and coding, and the number of sub-carriers are some of

these transmission parameters.6 In addition to adaptation over each symbol (as in the case of single

carrier systems), OFDM also offers adaptation of the parameters for each carrier or over a small

group of carriers. In other words, adaptation can be done independently over narrower bands rather

than employing adaptation over the whole transmission band. Similarly, reception of an OFDM

signal can bring about several new designs and approaches for adaptive receiver. An overview of

commonly used adaptation techniques in multi-carrier systems and their applications for wireless

mobile radio systems are discussed in [17]. Many of these adaptation techniques require measurement

(or estimate) of the related channel parameters. The three main channel related parameters are root-

mean-squared (RMS) delay spread, Doppler spread and noise variance.7 We discuss estimation of

these three parameters and propose new algorithms in Chapters 3, 4, and 5, respectively. With the

knowledge of these parameters, cognitive radio can obtain an environmental awareness.
6Please see Section 2.3.1.1 for more details.
7In coherent wireless systems, signal-to-noise ratio (SNR) can be calculated once the noise variance is estimated

using the knowledge of channel frequency response (CFR).
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One important task in realizing cognitive radio is characterization of the spectrum, or in other

words, spectrum sensing. Cognitive radio devices should be able to identify the unused spectrum in

a fast and efficient way to provide new ways to access spectrum. Spectrum sensing includes multi-

dimensional awareness about the interference temperature and existence of primary users in these

dimensions. A detailed survey of the spectrum sensing methods for cognitive radio applications is

given in Chapter 6. In Chapter 7, a new spectrum sensing method based on the feature extraction

of primary users’ signals is presented. Proposed method makes use of the a priori information

about the characteristics of primary users operating in a specific band and geographic location.

Successful application of the proposed algorithm enables dynamic spectrum access and helps to

solve the spectral crowding problem.

Cognitive radios are expected to recognize different wireless networks and have capability of

communicating with them. Multi-carrier techniques, specifically OFDM, are commonly used in

modern communications systems. Some examples include IEEE 802.11a/g based WLAN and IEEE

802.16 based WMAN systems. For identification of active transmissions, signals can be classified

as single-carrier and multi-carrier first. Hence, the size of candidate set can be reduced. Moreover,

transmission parameters of an OFDM based system can be detected blindly if the system is not

known to cognitive radio bringing in waveform awareness. Maximum-likelihood (ML) estimation is

used to identify the OFDM waveform and estimate its crucial parameters in Chapter 8. Furthermore,

we develop estimation of signal parameters via rotational invariance techniques (ESPRIT)-based

algorithm for identifying active subcarriers in the case of a cognitive radio scenario. In Chapter 9,

we propose new algorithms for achieving transmission-level security in OFDM systems for preventing

detection of OFDM parameters blindly. Hence, in a sense, Chapter 8 and Chapter 9 are opposite of

each other.

Performances of different algorithms and techniques discussed above are analyzed with closed

form expressions and/or simulations. In the rest of this chapter, we provide more details regarding

the content of these upcoming individual chapters and our contributions in each chapter.

1.4.1 Chapter 2: OFDM for Cognitive Radio: Merits and Challenges

In this chapter, cognitive radio systems and their requirements of the physical layer are discussed

and OFDM technique is investigated as a candidate transmission technology for cognitive radio. In

addition, the challenges that arise from employing OFDM in cognitive radio systems are identified.
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The cognitive properties of some OFDM-based wireless standards are discussed in order to indicate

the trend towards a more cognitive radio.8

1.4.2 Chapter 3: Time Dispersion and Delay Spread Estimation for Adaptive OFDM
Systems

In this chapter, algorithms for estimating the time dispersion (frequency selectivity) of the chan-

nel, which use the frequency domain channel estimates or the frequency domain received signal,

are proposed. The proposed algorithms estimate the power delay profile (PDP) from which the two

important dispersion parameters, namely RMS delay spread and MED of the channel, are estimated.

It is shown that synchronization errors bias the performance of the estimators based on the channel

correlation, and this bias is removed by obtaining the PDP using the magnitude of channel esti-

mates. Moreover, Cramér-Rao lower bound (CRLB) for estimation of RMS delay spread is derived

and performances of the proposed algorithms are compared against this theoretical limit.9

1.4.3 Chapter 4: Doppler Spread Estimation for Wireless OFDM Systems

In this chapter, we present a method for estimating the Doppler spread in mobile OFDM systems.

The estimation is based on finding the autocorrelation function of time domain channel estimates

over several OFDM symbols. In OFDM systems, channel estimation is popularly performed in

frequency domain. Channel frequency response estimates are affected by noise and inter-carrier

interference (ICI). As a result, Doppler estimates based on frequency domain channel estimates are

affected significantly. We show that usage of channel estimates in time domain can greatly improve

the performance of Doppler estimates. The channel impulse response (CIR) can be obtained by

taking inverse discrete Fourier transform (IDFT) of the CFR. Consequently, the proposed method

reduces processing time and memory usage. Computer simulations support our claim for a broad

range of Doppler spread and SNR values in Rayleigh fading channels.10

1.4.4 Chapter 5: MMSE Noise Plus Interference Power Estimation in Adaptive OFDM
Systems

Noise variance and SNR are important parameters for adaptive OFDM systems since they serve

as a standard measure of signal quality. Conventional algorithms assume that noise statistics remain

constant over the OFDM frequency band, and thereby average the instantaneous noise samples to
8Certain parts of the content in this chapter are published in [18], and are submitted to [19].
9Certain parts of the content in this chapter are published in [20–22], and are submitted to [23].

10Certain parts of the content in this chapter are published in [24].
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get a single estimate. In reality, noise is often made up of white Gaussian noise along with correlated

colored noise that affects the OFDM spectrum unevenly. This chapter proposes a minimum mean-

square error (MMSE) filtering technique to estimate the noise power that takes into account the

variation of the noise statistics across the OFDM sub-carrier index as well as across OFDM symbols.

The proposed method provides many local estimates that allow tracking of the variation of noise

statistics in frequency and time. The MMSE filter coefficients are obtained from mean-squared-

error (MSE) expression, which can be calculated using noise statistics. Evaluation of the performance

with computer simulations shows that the proposed method tracks the local statistics of noise more

efficiently than conventional methods.11

1.4.5 Chapter 6: Spectrum Sensing for Cognitive Radio Applications

In this chapter, a survey of spectrum sensing methodologies for cognitive radio is presented. Var-

ious aspects of spectrum sensing problem are studied from cognitive radio perspective. Challenges

associated with spectrum sensing is given and enabling spectrum sensing methods are reviewed. The

chapter explains cooperative sensing concept and its various forms. External sensing algorithms and

other alternative sensing methods are discussed. Furthermore, statistical modeling of network traffic

and utilization of these models for prediction of primary user behavior is studied. Hardware perspec-

tive of sensing problem is discussed and multi-dimensional spectrum sensing concept is explained.

Finally, sensing features of some current wireless standards are given.12

1.4.6 Chapter 7: Spectrum Sensing for Cognitive Radio Using Partial Match Filtering

In this chapter, a new spectrum sensing method is introduced where primary users are identified

by matching the features extracted from the received signal to the a priori information about primary

users’ transmission characteristics. By identifying active primary users, multi-dimensional spectrum

awareness is obtained. Furthermore, application of proposed algorithm to energy detector based

sensing methods is presented as a case study.13

11Certain parts of the content in this chapter are published in [25–27], and a patent application is filed with US
Patent office [28].

12Certain parts of the content in this chapter are published in [29], and are submitted to [30].
13Certain parts of the content in this chapter are published in [31], and are submitted to [32]. In addition, a patent

application is filed with US Patent office [33].
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1.4.7 Chapter 8: OFDM Signal Identification and Transmission Parameter Estimation
for Cognitive Radio Applications

Methods for identification of OFDM signals and estimation of fundamental OFDM parameters

are developed in this chapter. Detected transmissions are classified as single-carrier or multi-carrier.

In the case of multi-carrier transmission, OFDM symbol duration, CP length, number and frequen-

cies of subcarriers, and nominal bandwidth are estimated blindly using characteristics of OFDM

transmission. For estimation of symbol duration and CP length, cyclostationarity of OFDM signal-

ing is explored by using a suboptimal maximum likelihood (ML) estimator. Active subcarriers are

estimated by employing a modified version of ESPRIT method. The proposed algorithms can be

used in cognitive radio for identifying various OFDM-based transmissions and for electronic surveil-

lance to detect illegal or enemy signals. In addition, in the case of adaptive subcarrier selection in a

cognitive radio scenario, the receiver can blindly identify deactivated subcarriers without the need

for signaling.14

1.4.8 Chapter 9: Feature Suppression for Physical-Layer Security in OFDM Systems

OFDM symbols carry redundancy due to the cyclic extension employed for providing immunity to

multipath distortion. This redundancy can be used for blindly detecting the transmission parameters

as well as achieving synchronization to transmitted signal as discussed in Chapter 8. This chapter

proposes transmission-level techniques for suppressing physical-layer features of OFDM waveform.

Hence, a covert, secure and reliable transmission based on OFDM technique can be achieved. We

analyze the effectiveness of the proposed methods by investigating the cyclic autocorrelation function

(CAF) of the OFDM waveforms.15

1.4.9 Other Work Done

Apart from the work discussed above, there are some other works that did not get into this

dissertation.16 During my internship at Logus wireless, I have worked significantly on base station

(BS) design for fixed and mobile Worldwide Interoperability for Microwave Access (WiMAX).17 I

14Certain parts of the content in this chapter are published in [34], and are submitted to [35].
15Certain parts of the content in this chapter are submitted to [36], and a patent application is filed with US Patent

office [37].
16There are few different reasons for not including these in the dissertation. In some other work, I am not the main

author, and/or my contribution is rather minor. Also, I want to keep the integrity of the manuscript and have the
topics in a good flow.

17I have worked on design and very high-speed integrated circuits hardware description language (VHDL) imple-
mentation of PHY algorithms [38,39].
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have also worked on carrier frequency offset compensation for orthogonal frequency division multiple

access (OFDMA) systems, e.g. mobile WiMAX.18

1.5 Notation

Throughout this dissertation, the following notation is followed. Bold upper letters denote ma-

trices and bold lower letters denote column vectors; (·)T denotes transpose; (·)H denotes Hermitian

operation; ? denotes convolution operation; I is the identity matrix; δ(·) is the Kronecker delta

function; b·c denotes the largest integer less then or equal to input argument, and E [·] denotes

expectation.

18The outcome of this research is published in [40,41]
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CHAPTER 2

OFDM FOR COGNITIVE RADIO: MERITS AND CHALLENGES

2.1 Introduction

Spectrum measurements show that wide ranges of the spectrum are rarely used most of the time

while other bands are heavily used. However, those unused portions of the spectrum are licensed

and thus cannot be utilized by users other than the license owners. Hence, there is a need for a novel

technology that can benefit from these opportunities. Cognitive radio is a promising concept that

offers solution to spectral crowding problem by introducing the opportunistic usage of frequency

bands that are not heavily occupied by licensed users [3]. It can be defined as an intelligent wireless

system that is aware of its surrounding environment through sensing and measurements; a system

that uses its gained experience to plan future actions and adapt to improve the overall commu-

nication quality and meet user needs. One main aspect of cognitive radio is its ability to exploit

unused spectrum to provide new ways of communication. Hence, cognitive radio should have ability

to sense and be aware of its operational environment, and dynamically adjust its radio operating

parameters accordingly. For cognitive radio to achieve this objective, the physical layer (PHY) needs

to be highly flexible and adaptable. A special case of multicarrier transmission known as orthogonal

frequency division multiplexing (OFDM) is one of the most widely used technologies in current wire-

less communications systems and it has the potential of fulfilling the aforementioned requirements of

cognitive radios inherently or with minor changes. By dividing the spectrum into subbands that are

modulated with orthogonal subcarriers, OFDM removes the need for equalizers and thus reduces the

complexity of the receiver. Because of its attractive features, OFDM has been successfully used in

numerous wireless technologies including wireless local area network (WLAN), wireless metropolitan

area network (WMAN), and the European terrestrial digital video broadcasting (DVB-T). It is be-

lieved that OFDM will also play an important role in realizing cognitive radio concept by providing a

proven, scalable and adaptive technology for air interface. In this chapter, the application of OFDM
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to cognitive radio is discussed. We identify the advantages of OFDM over other technologies and

provide challenges associated with its application to cognitive radio.

2.2 A Basic OFDM System Model

In this section, basic principles of OFDM technology is introduced. A basic system model is given,

common components for OFDM based systems are explained, and a simple OFDM transceiver design

is presented. Important impairments in OFDM systems are mathematically analyzed.

The discrete Fourier transform (DFT) of a discrete sequence f(n) of length N , F (k), is defined

as [42]

F (k) =
1
N

N−1∑
n=0

f(n)e−j 2πkn
N , (2.1)

and inverse discrete Fourier transform (IDFT) is defined as

f(n) =
N−1∑

k=0

F (k)ej 2πkn
N . (2.2)

OFDM converts serial data stream into parallel blocks of size N , and uses IDFT to obtain

time-domain signal. Time-domain OFDM symbol can be calculated as

xm(n) = IDFT {Xm(k)} (2.3)

=
N−1∑

k=0

Xm(k)ej2πnk/N −NG ≤ n ≤ N − 1, (2.4)

where Xm(k) is the symbol transmitted on the kth subcarrier of mth OFDM symbol and N is the

number of sub-carriers. Symbols are obtained from the data bits using an M -ary modulation, e.g.

binary phase shift keying (BPSK), quadrature amplitude modulation (QAM), etc. Time domain

signal is cyclically extended NG samples to avoid inter-symbol interference (ISI) from previous

symbol (see next section). Transmitted signal can be obtained by concatenating OFDM symbols as

x(n) =
∞∑

m=−∞
xm(n−m(N + NG)) (2.5)

The symbols Xm(k) are interpreted as frequency domain signal and samples x(n) are interpreted

as time domain signal. Applying the central limit theorem, while assuming that N is sufficiently

large, x(n) can be shown to have zero-mean complex-valued Gaussian distribution. Power spectrum
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Figure 2.1 Power spectrum density of transmitted time domain OFDM signal.

of OFDM signal with 64 sub-carriers is shown in Fig. 2.1. Symbols are mapped using quadrature

phase shift keying (QPSK) modulation.

The sub-carriers at the end sides of the spectrum are usually set to zero in order to simplify the

spectrum shaping requirements at the transmitter, e.g. IEEE 802.11a. These subcarriers are used

as frequency guard band and referred as virtual carriers or null subcarriers in literature [43]. To

avoid difficulties in D/A and A/D converter offsets, and to avoid DC offset, the subcarrier falling

at DC is not used as well. The power spectrum for such a system is shown in Fig. 2.2. Number of

sub-carriers that are set to zero at the sides of the spectrum is 11.

2.2.1 Cyclic Extension of OFDM Symbols

Time domain OFDM signal is cyclically extended to mitigate the effect of time dispersion. The

length of cyclic prefix (CP) has to exceed the maximum excess delay of the channel in order to avoid

ISI [44, 45]. Basic idea of cyclic extension is to replicate part of the OFDM time-domain symbol

from back to the front to create a guard period. This is shown in the Fig. 2.3. This figure also shows

how cyclic prefix prevents the ISI. As can be seen from the figure, as long as maximum excess delay
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Figure 2.2 Power spectrum density of OFDM signal when the subcarriers at the sides of the spectrum
and at DC is set to zero.

(τmax) is smaller than the length of the cyclic extension TG, the distorted part of the signal stays

within the guard interval, which is removed later at the transmitter. Hence, ISI is prevented at the

expense of spectral efficiency loss.

The ratio of the guard interval to the useful symbol duration is application dependent. If this

ratio is large, the overhead increases causing a decrease in the system throughput. A cyclic prefix is

used for the guard time for the following reasons;

1. To maintain the receiver time synchronization; since a long silence can cause synchronization

to be lost.

2. To convert the linear convolution of the signal and channel to a circular convolution and thereby

causing the DFT of the circularly convolved signal and channel to simply be the product of

their respective DFTs.

3. It is easy to implement in digital signal processors (DSPs) and field-programmable gate arrays

(FPGAs).
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Figure 2.3 Illustration of cyclic prefix extension.

2.2.2 Wireless Channel

In wireless communication systems, information is transmitted to a receiver through a radio chan-

nel. Transmitted signals are typically reflected, diffracted, and scattered, arriving at the receiver

along multiple paths with different delays, amplitudes, and phases as illustrated in Fig. 2.4. Multi-

path propagation affects the signal significantly, corrupting the signal and often placing limitations

on the performance of the system.

Depending on the transmission bandwidth (or symbol duration) and the type of the environment

that the communication takes place, multipath can cause various problems. When relative time

delays are small compared to the transmitted symbol period, different “images” of the same symbol

arrive at the same time, adding either constructively or destructively. The overall effect is a random

fading channel response. When the relative path delays are on the order of a symbol period or more,

then images of different symbols arrive at the same time. For example, when a particular symbol

arrives at the receiver along one path, the previous symbol is arriving along another, delayed path.

This is analogous to an acoustic echo and results in a more complicated channel response, which

is often referred as time dispersive channel (or frequency selective channel). For example, in office

buildings, the average delay spread is around 50 ns and maximum delay spread is around 300 ns

in 5GHz band. Therefore, if the transmitted symbol duration is less than the maximum excess

delay (MED) of the channel, the dispersion causes ISI. Traditionally, in single carrier systems, ISI is
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time varying channel, leading to frequency dispersion (Doppler spread); reuse of frequencies, adjacent
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handled by equalizers. For example, in the popular global system for mobile communications (GSM)

cellular receivers, 3-5 tap equalizers are used to handle the ISI due to channel and filter effects. As

the demand for higher and higher data rates increase, the transmission bandwidth to accommodate

this high data rates also increases. Hence, the transmitted symbol duration (which is about the

inverse of the transmission bandwidth) decreases as well. As a result, for a given environment, the

amount of dispersion and equalizer complexity increases dramatically. Multi-carrier transmission

and OFDM solves this problem, by dividing the wide frequency band into narrower bands.

The channel response can change rapidly with time due to the mobility of the transmitter, the

receiver, or the scattering objects. This phenomenon causes spectral broadening which is also referred

as Doppler spread. Doppler spread affects the signal differently depending on the transmission

bandwidth. As the transmission bandwidth increases, the relative broadening of the channel with

respect to the transmission bandwidth is insignificant. In other words, the time variation within

the transmission of a symbol is negligible. This brings about a common trade-off between high

mobility and high data rate. An example two-dimensional channel response is shown in Fig. 2.5.
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Figure 2.5 An example 2-dimensional channel response: An exponential PDP with RMS delay
spread of 16µs is used, mobile speed is assumed to be 100km/h, and the center frequency was
5.2GHz. Channel taps are obtained using modified Jakes’ model [1].

An exponential power delay profile (PDP) with root-mean-squared (RMS) delay spread of 16µs is

used and mobile speed is assumed to be 100 km/h. Channel taps are obtained using modified Jakes’

model [1].

Channel equalizers are usually used to compensate multipath effects. Equalizers can considerably

increase the system complexity as their complexity increases exponentially with the number of

channel paths. In OFDM system, however, the need for equalizers can be avoided by careful system

design. To avoid ISI, symbol duration is extended by adding a guard band to the beginning of each

symbol as explained before. If we define the delay spread (or multipath spread) of the channel as the

delay between the first and last received paths over the channel1, the CP should be longer than that

delay. On the other hand, frequency selective fading is avoided by decreasing the subcarrier spacing

or consequently increasing the number of subcarriers. We define the channel coherence bandwidth

as the bandwidth over which the channel could be considered flat. Since OFDM signal can be
1See Chapter 3 for more details on delay spread and how to estimate it.
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Figure 2.6 Block diagram of an OFDM transceiver.

considered as group of narrowband signals, by increasing the number of subcarriers, the bandwidth

of each subcarrier (subcarrier spacing) becomes narrower. When the subcarrier spacing is set to

be less than coherence bandwidth of the channel, each subcarrier is going to be affected by a flat

channel and thus no channel equalization is needed.

2.2.3 A Simple System

A block diagram of a basic OFDM system is given in Fig. 2.6. Usually raw data is coded

and interleaved before modulation. In a multipath fading channel, all subcarriers have different

attenuations. Some subcarriers may even be completely lost because of deep fades. Therefore,

the overall bit-error-rate (BER) may be largely dominated by a few subcarriers with the smallest

amplitudes. To avoid this problem, channel coding and interleaving can be used. By using coding,

errors can be corrected up to a certain level depending on the code rate and type, and the channel.

Interleaving is applied to randomize the occurrence of bit errors.

Coded and interleaved data is then be mapped to the constellation points to obtain data symbols.

These steps are represented by the first block of Fig. 2.6. The serial data symbols are then converted

to parallel and inverse fast Fourier transform (IFFT) is applied to these parallel blocks to obtain
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the time domain OFDM symbols. Later, these samples are cyclically extended as explained in

Section 2.2.1, converted to analog signal and up-converted to radio frequencies (RF) frequencies

using mixers. The signal is then amplified by using a power amplifier (PA) and transmitted through

antennas.

In the receiver side, the received signal is passed through a band-pass noise rejection filter and

downconverted to baseband. After frequency and time synchronization, cyclic prefix is removed

and the signal is transformed to the frequency domain using fast Fourier transform (FFT) opera-

tion. Finally, the symbols are demodulated, deinterleaved and decoded to obtain the transmitted

information bits.

2.2.4 OFDM Impairments

This section gives the main impairments that exist in OFDM systems with underlying mathe-

matical details. For simplicity, the symbol index is dropped in this section without loss of generality.

2.2.4.1 Frequency Offset

Frequency offset is a critical factor in OFDM system design. It results in inter-carrier interference

(ICI) and degrades the orthogonality of sub-carriers. Frequency errors tend to occur from two

main sources. These are local oscillator errors and common Doppler shift due to mobility. Any

difference between transmitter and receiver local oscillators results in a frequency offset. This offset

is usually compensated for by using adaptive frequency correction (AFC), however, any residual

(uncompensated) error results in a degraded system performance.

The characteristics of ICI are similar to Gaussian noise, hence it leads to degradation of the

signal-to-noise ratio (SNR). The amount of degradation is proportional to the fractional frequency

offset which is equal to ratio of frequency offset to carrier spacing.

Frequency offset can be estimated by different methods e.g. using pilot symbols, the statistical

redundancy in the received signal, or transmitted training sequences. In [46], a frequency offset

estimator which uses the repeated structure of training signal is given. The average phase difference

between the first and second part of the long training sequences is calculated and then normalized

to obtain the frequency offset.

Assume that we have the symbols X(k) to be transmitted using an OFDM system. These symbols

are transformed to the time domain using IDFT as shown earlier in (2.4). This baseband signal is
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then up-converted to RF frequencies and transmitted over the wireless channel. In the receiver, the

received signal is down-converted to baseband. But, due to the frequency mismatch between the

transmitter and receiver, the received signal has a frequency offset. This signal is denoted as y(n).

Frequency offset is added to the OFDM symbol in the receiver. Finally, to recover the data symbols,

DFT is applied to the OFDM symbol taking the signal back to frequency domain. Let Y (k) denote

the recovered data symbols. This process is shown below.

X(k) IDFT−−−−−−→ x(n)
frequency offset−−−−−−−−−−−−−−→ y(n) DFT−−−−−−→ Y (k).

Let us apply the above operations to X(k) in order to get Y (k). First find x(n) using (2.2)

x(n) = IDFT{X(k)} (2.6)

=
N−1∑

k=0

X(k)ej 2πkn
N . (2.7)

The effect of frequency offset on x(n) is a phase shift of 2πεn/N , where ε is the normalized

frequency offset. Therefore;

y(n) = x(n)ej 2πεn
N (2.8)

=
N−1∑

k=0

X(k)ej 2πkn
N ej 2πεn

N (2.9)

=
N−1∑

k=0

X(k)ej 2πn
N (k+ε). (2.10)

Finally, we need to apply DFT to y(n) for recovering the symbols

Y (k) = DFT ( y(n) ) (2.11)

=
1
N

N−1∑
n=0

{
N−1∑
m=0

X(m)ej 2πn
N (m+ε)

}
e−j 2πkn

N (2.12)

=
1
N

N−1∑
n=0

N−1∑
m=0

X(m)ej 2πn
N (m−k+ε) (2.13)

=
1
N

N−1∑
m=0

X(m)

{
N−1∑
n=0

ej 2πn
N (m−k+ε)

}
. (2.14)
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The term within the curly braces can be calculated using geometric series expansion, Sn ≡
∑n

k=0 rk =

1−rn+1

1−r . Using this expansion we have

Y (k) =
1
N

N−1∑
m=0

X(m)

{
N−1∑
n=0

ej 2πn
N (m−k+ε)

}
(2.15)

=
1
N

N−1∑
m=0

X(m)
1− ej2π(m−k+ε)

1− ej
2π(m−k+ε)

N

(2.16)

=
1
N

N−1∑
m=0

X(m)
ejπ(m−k+ε)(e−jπ(m−k+ε) − ejπ(m−k+ε))

ej
π(m−k+ε)

N (e−j
π(m−k+ε)

N − ej
π(m−k+ε)

N )
(2.17)

=
1
N

N−1∑
m=0

X(m)
ejπ(m−k+ε)

ej
π(m−k+ε)

N

−2j sin(π(m− k + ε))

−2j sin(π(m−k+ε)
N )

(2.18)

≈
N−1∑
m=0

X(m)ejπ(m−k+ε) N−1
N

sin(π(m− k + ε))
π(m− k + ε)

(2.19)

≈
N−1∑
m=0

X(m)
sin(π(m− k + ε))

π(m− k + ε)
ejπ(m−k+ε). (2.20)

In the above derivation we used the fact that sin(x) ≈ x for small x values, and N−1
N ≈ 1 for large

values of N . These approximations are reasonable since usually N is a large integer.

We can now relate the received symbols to the transmitted symbols using (2.20). But we first

define

SF (m, k) =
sin(π(m− k + ε))

π(m− k + ε)
ejπ(m−k+ε).

Therefore;

Y (k) =
N−1∑
m=0

X(m)SF (m, k) (2.21)

= X(k)SF (k, k) +
N−1∑

m=0,m 6=k

X(m)SF (m, k). (2.22)

The first term in (2.22) is equal to the originally transmitted symbol shifted by a constant term

that corresponds to ε. This term SF (k, k) introduces a phase shift of πε and an attenuation of

sin(πε)/πε in magnitude. Actually, this term only depends on the value of offset ε but not carrier

index k, so the effect of frequency offset on each sub-carrier is the same. The second term in (2.22)

represents the interference from other sub-carriers which is a dual to ISI in time domain due to

timing offset and it is known as ICI.
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2.2.4.2 Time-Varying Channel

Another channel effect that should be considered in OFDM system design is mobility. For

fixed communication systems, the channel can be considered constant over time. However, if either

transmitter or receiver is mobile, channel is going to vary over time resulting in fast fading of

the received signal. Coherence time of the channel is defined as the time over which the channel is

considered constant. To avoid fast fading effect, OFDM symbol time is chosen to be shorter than the

coherence time of the channel. In the frequency domain, mobility results in frequency spread of the

signal which dependents on the operating frequency and the relative speed between the transmitter

and receiver, also know as Doppler spread [47]. Doppler spread of OFDM signals results in ICI

which can be reduced by increasing the subcarrier spacing [48]. Assuming an L-tap symbol-spaced

time-varying channel, the time domain received OFDM signal can be obtained by convolving the

transmitted signal with channel impulse response (CIR) hl(n) as

y(n) =
L−1∑

l=0

hl(n)x(n− l) 0 ≤ n ≤ N − 1 . (2.23)

By taking FFT of (2.23) and ignoring the channel noise for the moment, frequency domain

received symbols can be obtained as

Y (k) =
1
N

N−1∑
n=0

y(n)e−j 2πkn
N (2.24)

=
1
N

N−1∑
n=0

[
L−1∑

l=0

hl(n)x(n− l)

]
e−j 2πkn

N (2.25)

=
1
N

N−1∑
n=0

[
L−1∑

l=0

hl(n)

(
N−1∑
m=0

X(m)ej
2πm(n−l)

N

)]
e−j 2πkn

N (2.26)

=
N−1∑
m=0

X(m)





L−1∑

l=0

(
1
N

N−1∑
n=0

hl(n)ej
2πn(m−k)

N

)

︸ ︷︷ ︸
Hl(m−k)

e−j 2πml
N





. (2.27)

Note that when hl(n) = hl, i.e. when the channel is constant over the OFDM symbol, Hl(m−
k) = hl and there is no ICI.
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Let us define the interference matrix due to channel variation as a matrix with elements given

by

SC(m, k) =
1
N

L−1∑

l=0

N−1∑
n=0

hl(n)e
j2πn(m−k)

N e−
j2πml

N . (2.28)

Note that (2.28) also includes the effect of frequency selective channel. Therefore,

Y (k) =
N−1∑
m=0

X(m)

{
1
N

L−1∑

l=0

N−1∑
n=0

hl(n)e
j2πn(m−k)

N e−
j2πml

N

}
(2.29)

=
N−1∑
m=0

X(m)SC(m, k) (2.30)

= X(k)SC(k, k) +
N−1∑

m=0,m 6=k

X(m)SC(m, k). (2.31)

As in (2.22), the second term in (2.31) represents the interference between the subcarriers. while the

first term is equal to the originally transmitted symbol multiplied by SC(k, k) which, in this case,

depends on the carrier index. This term can be re-written as

SC(k, k) =
1
N

L−1∑

l=0

N−1∑
n=0

hl(n)e
j2πn(k−k)

N e−
j2πkl

N (2.32)

=
L−1∑

l=0

(
1
N

N−1∑
n=0

hl(n)

)
e−

j2πkl
N . (2.33)

The term in the parentheses is just an arithmetic average of the varying CIR taps within an OFDM

symbol. Hence, the whole expression is Fourier transform of the average CIR which gives the

frequency domain channel, i.e a transmitted symbol is multiplied with the value of frequency domain

channel at that sub-carrier.

2.2.4.3 Phase Noise

Phase noise is introduced by local oscillator in any receiver and can be interpreted as a parasitic

phase modulation in the oscillator’s signal. It can be modeled as a zero mean random variable [49].

If we assume the channel is flat and the signal is only effected by phase noise φ(n) at the receiver,

the received time domain signal can be written as

r(n) = x(n)ejφ(n). (2.34)
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When phase offset is assumed to be small ejφ(n) ≈ 1 + jφ(n), and the recovered symbols have the

form

X̂k ≈ X(k) +
j

N

N−1∑
r=0

X(r)
N−1∑
n=0

φ(n)ej(2π/N)(r−k)n (2.35)

≈ X(k) + jX(k)
1
N

N−1∑
n=0

φ(n)

︸ ︷︷ ︸
jX(k)Φ

+
j

N

N−1∑

r=0,r 6=k

X(r)
N−1∑
n=0

φ(n)ej(2π/N)(r−k)n

︸ ︷︷ ︸
ICI term

. (2.36)

In (2.36), the second term represents a common error added to every subcarrier that is proportional

to its value multiplied by a complex number jΦ, i.e. a rotation of the constellation. This rotation

is the same for all subcarriers, so it can be corrected by using a phase rotation equal to the average

of the phase noise,

Φ =
1
N

N−1∑
n=0

φ(n). (2.37)

The last term in (2.36) represents the leakage from neighboring subcarriers to the useful signal of

each subcarrier, i.e., ICI. This term can not be corrected, since both phase offset φ(n) and input

data sequence X(k) are random. Therefore it causes SNR degradation of the overall system. The

only way to reduce interference due to the phase noise is to improve the performance of the oscillator,

with associated cost increase [50].

A more detailed study of the effects of phase noise on OFDM system can be found in [50–53].

2.2.4.4 Receiver Timing Errors

The effect of sampling time offset in OFDM is the rotation of symbols. This rotation can be

folded into the channel estimate and corrected easily. This section derives the amount of rotation

assuming a small timing offset.2

As in the frequency offset case, we are going to relate the transmitted and recovered data symbols

with respect to time offset. Let us use the same notation used in frequency offset case, represent

transmitted symbols by X(k), and represent the baseband equivalent of the time domain signal

by xb(n). To prevent confusion, the impaired signals are represented with a tilde this time, so

x̃b(n) represents the baseband signal with time offset and X̃[k] represents the recovered symbols.

2Timing offset is assumed to be smaller than the unused part of the cyclic prefix.
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Therefore, new OFDM process chain can be as follows;

X(k) IDFT−−−−−−→ xb(n)
timing error−−−−−−−−−−−→ x̃b(n) DFT−−−−−−→ X̃(k)

The formula for xb(n) is already derived, and is given in (2.7). Timing error is caused by sampling

the received signal at a wrong time. So x̃b(n) is nothing but the shifted version of xb(n) in time

domain. Hence, in the case of a timing error of θ it can be written as

x̃b(n) = xb(n± θ) (2.38)

=
N−1∑

k=0

X(k)ej 2πk
N (n±θ). (2.39)

Here the sign of θ depends on whether sampling is performed before or after the correct time instant.

Assuming θ to be positive, we use a minus sign hereafter. Now X̃(k) can be calculated using x̃b(n)

by DFT as

X̃(k) =
1
N

N−1∑
n=0

{
N−1∑
m=0

X(m)ej 2πm
N (n−θ)

}
e−j 2πkn

N (2.40)

=
1
N

N−1∑
n=0

{
N−1∑
m=0

X(m)ej 2πn
N (m−k)e−j 2πmθ

N

}
(2.41)

=
1
N

N−1∑
m=0

{
N−1∑
n=0

X(m)ej 2πn
N (m−k)

}

︸ ︷︷ ︸
N∆(m−k)

e−j 2πmθ
N (2.42)

=
N−1∑
m=0

X(m)∆(m− k)e−j 2πmθ
N (2.43)

= X(k)ej 2πkθ
N . (2.44)

Equation 2.44 shows that a timing offset of θ causes only a rotation on the recovered data symbols.

The value of the recovered symbol depends only on the transmitted data, but not the neighboring

carriers. As a result, timing error does not destroy the orthogonality of carriers and the effect

of timing error is a phase rotation which linearly changes with carrier order. Therefore, timing

synchronization is not a very serious problem in OFDM based systems. Unless otherwise stated,

perfect timing synchronization is assumed in the rest of this thesis.
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2.2.4.5 Additive Noise

In addition to the distortions due to channel, additive noise is introduced to the transmitted

signal due to wireless channel and impairments in the hardware of the receivers and transmitters.

The main sources of noise are thermal background noise, electrical noise in the receiver amplifiers,

and interference. In addition to this, noise can also be generated internal to the communications

system as a result of ISI, ICI, and inter-modulation distortion (IMD) [54]. The noise decrease

SNR resulting in an increase in the BER. The total effective noise at the receiver of an OFDM

system can be modeled as additive white Gaussian noise (AWGN). AWGN has a uniform spectral

density (making it white), and a Gaussian probability distribution. Additive noise is assumed to

be white throughout this dissertation except Chapter 5 where this assumption is removed. Time

and frequency domain noise samples are represented by wm(n) and Wm(k) respectively where m is

the OFDM symbol index and is dropped in some chapters for simplicity. The variance of noise is

assumed to be σ2
w.

2.2.4.6 Peak-to-Average Power Ratio

One of the major drawbacks of OFDM is its high peak-to-average-power ratio (PAPR). Super-

position of a large number of subcarrier signals results in a power density with Rayleigh distribution

which has large fluctuations. OFDM transmitters therefore require power amplifiers with large

linear range of operation which are expensive and inefficient. Any amplifier non-linearity causes sig-

nal distortion and inter-modulation products resulting in unwanted out-of-band power and higher

BER [55]. Moreover, digital to analog converters (DACs) and analog to digital converters (ADCs)

are also required to have a wide dynamic range which increases complexity.

Discrete-time PAPR of mth OFDM symbol xm is defined as [56]

PAPRm = max
0≤n≤N−1

|xm(n)|2
E{|xm(n)|2} . (2.45)

Although PAPR is moderately high for OFDM, high magnitude peaks occur relatively rarely and

most of the transmitted power is concentrated in signals of low amplitude, e.g. maximum PAPR for

an OFDM system with 32 carriers and QPSK modulation is observed statistically only once in 3.7

million years if the duration of an OFDM symbol is 100 µs [57]. Therefore, statistical distribution

of the PAPR should also be taken into account in addition to PAPR value only.
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Applying the central limit theorem, while assuming that N is sufficiently large, x(n) is zero-mean

complex-valued near Gaussian distributed random variable for all modulation options. Therefore,

PAPR is independent of modulation used.

One way to avoid non-linear distortion is to operate the amplifier in its linear region. Unfor-

tunately such solution is not power efficient and thus not suitable for battery operated wireless

communication applications. Minimizing the PAPR before power amplifier allows a higher average

power to be transmitted for a fixed peak power, improving the overall signal to noise ratio at the

receiver. It is therefore important to minimize the PAPR. In the rest of this thesis, the distortion

of the signal due to non-linear effects is ignored. In the literature, different approaches are used to

reduce PAPR of OFDM signals (see [58] and references therein). Some of these include clipping [59],

scrambling [60], coding [61], phase optimization [56], tone reservation [62] and tone injection.

2.2.5 Multiple-Accessing With OFDM

In this section, a single user system model is represented, where the available channel is used

by a single user. Note that OFDM by itself is not a multi-access technique. However, it can be

combined with existing multiple accessing methods to allow multiple users to access to the available

channel. Please refer to Section 2.3.5 for more information.

2.3 Why OFDM is a Good Fit for Cognitive Radio

The underlying sensing and spectrum shaping capabilities together with flexibility and adap-

tiveness make OFDM probably the best candidate for cognitive radio systems. In the following,

we present some of the requirements for cognitive radios and explain how OFDM can fulfill these

requirements. A summary of these requirements and OFDM’s strength in addressing them are

presented in Table 2.1.

2.3.1 Adapting to Environment

Adaptivity is one of the key requirements for a cognitive radio [63]. By combining the measured

information (awareness) with the knowledge of current system abilities and limitations, cognitive ra-

dio can adapt waveforms to interoperate with other friendly communication devices, choose the most

appropriate communications channel or network for transmission, allocate appropriate frequency to
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Table 2.1 OFDM cognitive radio.

Cognitive Radio
Requirements

OFDM’s Strength

Spectrum sensing Inherent FFT operation of OFDM eases spectrum sensing in frequency
domain.

Efficient Spectrum
Utilization

Waveform can easily be shaped by simply turning off some subcarriers
where primary users exist.

Adaptation/Scalability
OFDM systems can be adapted to different transmission environments
and available resources. Some parameters include: FFT size, subcar-
rier spacing, CP size, modulation, coding, and subcarrier powers.

Advanced Antenna
Techniques

MIMO techniques are commonly used with OFDM mainly because of
the reduced equalizer complexity. OFDM also supports smart anten-
nas.

Interoperability

With WLAN (IEEE 802.11), WMAN (IEEE 802.16). WRAN (IEEE
802.22), WPAN (IEEE 802.15.3a) all using OFDM as their physical
layer techniques, interoperability becomes easier compared to other
technologies.

Multiple accessing and
spectral allocation

Support for multiuser access is already inherited in the system design
by assigning groups of subcarriers to different users (OFDMA).

NBI Immunity NBI affect only some subcarriers in OFDM systems. These subcarriers
can be simply turned off.

transmit in an open area of spectrum, adapt the waveform to compensate for channel fading, and

null an interfering signal [64].

The adaptivity in OFDM systems can be divided into two groups [65]: algorithm-selection level

adaptivity and algorithm-parameter level adaptivity. In classical wireless systems, usually parame-

ters of the algorithms, e.g. coding rate, have been adapted in order to optimize the transmission.

However, in cognitive OFDM systems, algorithm type, e.g. channel coding method, can also be

adapted in order to achieve interoperability with other systems and/or to further optimize the

transmission. To achieve such adaptivity, a fully configurable hardware platform would be needed.

OFDM offers a great flexibility in this regard as the number of parameters for adaptation is

quite large [17]. The transmission parameters that can be changed based on the spectrum awareness

include bandwidth, FFT size, filters, windows, modulation, transmit power, and active subcarriers

used for transmission. Moreover, the parameters that can be adapted depending on the charac-

teristics of the environment in order to optimize the transmission include cyclic prefix size, coding

rate/type, modulation type, interleaving method, pilot patterns, preambles/midambles, duplexing
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method. In the next section, a detailed explanation of some of these adaptation techniques is dis-

cussed.

2.3.1.1 Adaptation Techniques in Multi-Carrier Systems

In this section, some of the popular adaptation techniques that are suitable for multi-carrier

systems are discussed. Adaptation of the link between the transmitter and receiver depending on

the variation of the channel, adaptation of the system and transmission parameters depending on

the user and channel requirements, and adaptation of the multi-carrier signal are discussed briefly.

Link Adaptation: Link adaptation plays an important role in wireless communication systems be-

cause of the dynamic nature of the channel. Link adaptation ensures that the signal at the receiver

side is in a form that can be processed and detected properly. It leads to efficient utilization of the

resources including the bandwidth and power, as well as making sure that the communication is

maintained to satisfy a desired service quality. The cost function can be multi-dimensional. Also,

the number of factors that affect the link quality can be more than one. Among these factors power

control, variable coding and modulation are very popular.

Adaptive modulation and coding provide a framework to adjust modulation level and forward

error correction (FEC) coding rate depending on the link quality. Higher order modulations allow

more bits to be transmitted for a given symbol rate. On the other hand, they are less power efficient,

requiring higher energy per bit for a given BER. Therefore, higher order modulations should be used

only when the link quality is high, as they are less robust to channel impairments. Similarly, strong

FEC and interleaving provide robustness against channel impairments at the expense of lower data

rate and spectral efficiency. As a result, by properly adapting the coding and modulation depending

on the link quality, the average throughput can be maximized, which makes it very attractive for

wireless packet data communication. Note that for mobile users, the instantaneous data rates vary

depending on the link quality.

Without power control, adaptive coding and modulation increase the variation of throughput

among users such that users with good link quality always have high throughput, but users with

bad link quality always have low throughput [66]. On the other hand, power control tries to equalize

the link quality of the users so that all the receivers have a constant signal-to-interference ratio (SIR).

This allows reducing the interference from other sources while making sure that each user gets just
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enough power to be able to detect what is being transmitted by the desired transmitter. If the

transmitter sends more power for a specific user, the user benefits from it by having a better link

quality, but the level of interference for the other users increases accordingly. On the other hand, if

the user does not receive enough power, a reliable link cannot be established. In order to establish

a reliable link while minimizing interference to other users, the transmitter should continuously

control the transmitted power level. From a user perspective, power control ensures a constant

service quality across the network, and such adaptation is suitable for real time audio and video

communication applications. Power control can be combined with adaptive coding and modulation

scheme to achieve both benefits for better resource utilization [67].

In OFDM systems, it is also possible to adapt the modulation and power for each subcarrier

individually. Note that since the bandwidths of OFDM systems are much larger than the coherence

bandwidth of the channel, different carriers experience different signal-to-interference-plus-noise ratio

(SINR). Therefore, the modulation level or the power on different carriers can be changed depending

on the link quality observed at that carrier [68].

Transmitting different modulation on each carrier requires a large overhead for signaling. There-

fore, approaches that group the neighboring carriers into subsets and use the same modulation in

each group of carriers are preferred. This is called subband adaptive OFDM and illustrated in

Fig. 2.7. The signaling can also be avoided in time division duplexing (TDD) systems under cer-

tain assumptions. Unlike frequency division duplexing (FDD) systems, where the channel on the

downlink and uplink are different, in TDD systems, using the assumption of the reciprocal and

slow varying channel, the transmitter and receiver can be assumed to experience the same channel

response. Therefore, this might eliminate the need for signaling of the channel state information to

the transmitter if the channel estimates are used as the link quality measures. However, the receiver

still needs to know which modulation is used at the transmitter for each group. Blind modulation

detection techniques can be used for this purpose [69,70] as there is enough a priori information to

estimate the modulation type. Note that although the channels could be the same, the interferences

observed in transmitter and receiver are not necessarily the same because the interferer may be

physically closer to transmitter or receiver.

Even though adaptive power control has a long and rich history for wireless communication sys-

tems, the adaptive coding and modulation recently become popular due to the increased interest

for high data rate communications, and they are becoming an integral part of most of the new gen-
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Figure 2.7 Modulation mode selection based on channel quality in subband adaptive OFDM systems.

eration standards. Adaptive modulation and coding are employed for WLAN and WMAN systems

successfully. Both systems use OFDM as their transmission technique. IEEE 802.11a physical layer,

for example, allow four different modulation options (BPSK, QPSK, 16-QAM, and 64-QAM) with

different coding rates. The coding rates are obtained with different puncturing patterns to a mother

convolutional code, resulting in 8 different modulation/coding options [10]. Therefore, a data rate

ranging from 6 to 54Mbit/s can be obtained by using various modes. BPSK, QPSK, and 16-QAM

are used as mandatory modulation formats, whereas 64-QAM is an optional mode.

Adaptation with Multiple Antennas: Adaptive antennas and adaptive beam forming techniques

have also been studied extensively to increase the capacity and/or to improve the performance of

wireless communication systems [71]. The adaptive antenna systems shape the radiation pattern in

such a way that the information is transmitted (for example, from a base station) directly to the

mobile user in narrow beams. This reduces the probability of another user experiencing interference

in the network, resulting in improved link quality, which can also be translated into increased

network capacity. Although, adaptive beam forming is an excellent way to utilize multiple antenna

systems to enhance the link quality, recently different flavors of the usage of multi-antenna systems

have gained significant interest. Space-time processing and multiple-input multiple-output (MIMO)

antenna systems are some new developments that allow further usage of multiple antenna systems in
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wireless communications. Adaptive implementation of these technologies is important for successful

and efficient integration of them into wireless communication systems.

Combining adaptive antennas with OFDM for operation in a faded delay-spread channel is

discussed in [72]. In this adaptive beamforming algorithm, a short training process first updates the

weight vector and then a decision-directed technique is used for updating the weight vector. It has

been demonstrated that this algorithm is able to extract desired signals while suppressing co-channel

interferers.

MIMO and multi-antenna systems bring about a new dimension to wireless channel. It can

provide huge capacity and/or improved performance gains by exploiting spatial selectivity of the

channel. However, these gains, in reality, depend heavily on the statistical properties of the channel

and the correlations between antenna elements. One of the factors that affects the antenna correla-

tion is the characteristics of the scattering environment. Therefore, optimal way of using multiple

antenna systems depends on the situation awareness. If the transmitter knows the instantaneous

channel gains (the MIMO channel matrix), it can adapt the transmission to maximize the capacity

of MIMO system [73, 74]. Similarly, the instantaneous antenna correlation values can be exploited

to adapt the transmission. In many cases, estimation of the perfect instantaneous channel state and

antenna correlation information, and feeding this information back to the transmitter might not be

possible. This is the case especially when the mobility is high. Instead, other parameter measures

like partial (statistical) channel information, average channel selectivity or angular spread would be

useful for adapting the transmitter and receiver. Advanced signal processing techniques to calculate

these partial channel and correlation information are needed.

In MIMO-OFDM, the SNR not only varies over time and frequency but also depends on a

number of parameters including the way the transmitted signals are mapped and weighed onto the

transmit antennas, the processing technique used at the receiver, and the antenna polarization and

propagation parameters such as mutual coupling between antennas [75]. Space-time adaptation

aims to choose the best way of combining antennas either through space-time coding approach,

beamforming or using the BLAST architecture. Those approaches can be coupled with adaptation

of OFDM parameters, e.g., on each OFDM subcarrier, adaptive space-time coding, beamforming

along with adaptive power and bit loading schemes can be employed yielding a space-time frequency

adaptation scenario. The process can be generalized for multiuser MIMO-OFDM systems.
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Adaptive Cyclic Prefix Size: The CP provides multipath immunity and tolerance to symbol time

synchronization errors. In order to remove the distortion due to multipath, the length of the CP

should be larger than the maximum excess delay of the channel. On the other hand, large CP

size reduces the transmission efficiency because of the redundancy that it introduces. Conventional

OFDM system uses fixed-length cyclic prefix to combat the ISI caused by multipath fading. This

may cause considerable performance degradation when the CP length is less than the channel delay

spread [44,76]. On the other hand it may decrease the system power and spectral efficiency when it

is much larger.

The CP length can be changed adaptively depending on the channel conditions, specifically max-

imum excess delay of the channel. Adaptive CP is studied in [48,77]. In the proposed algorithms the

CP length is varied according to the current delay spread of the channel and the length information

is conveyed to the receiver by signaling. This adaptation requires the knowledge of the maximum

excess delay of the channel, estimation of which is studied in Chapter 3.

Adaptive Interleaving: Interleaving is a method that is used in communication systems to randomize

the bursty channel errors. This can greatly improve the performance of channel coding which works

better when the errors do not occur in bursty fashion. In OFDM, interleaving can be achieved

in both time and frequency. Time interleaving is similar to the single carrier systems. Frequency

interleaving is achieved by changing the order of symbols in frequency domain. Interleaving pattern

is another parameter that can be changed adaptively to obtain better shuffling of the symbols in

time and frequency domain. Symbols can be rearranged according to instantaneous channel state

information (CSI) of the OFDM subcarriers so as to minimize the BER after decoding. This approach

is proposed in [78] and its performance is analyzed in [79] by finding bounds on the system BER.

Adaptive Subcarrier Spacing: Subcarrier spacing, or number of subcarriers for a given bandwidth, is

one of the most critical OFDM parameters. Subcarrier spacing can be changed adaptively depending

on the Doppler spread, delay spread, and SNR of the channel. As subcarrier spacing increase, ICI

effect decreases as the spacing between subcarriers becomes larger compared to the Doppler shift.

The raw BER performance of an OFDM system is shown in Fig. 2.8 as a function of FFT size. A

center frequency of 5.8 GHz, transmission bandwidth of 3.5 MHz, and mobile speed of 100 km/h are

used in this figure. Note that since the bandwidth is fixed, x-axis can be interpreted as decreasing
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Figure 2.8 Bit error rate of an OFDM system in time-varying channel as a function of FFT size.
The transmission bandwidth is 3.5 MHz, the center frequency is 5.8 GHz and the mobile speed is
100 km/h.

subcarrier spacing. Large subcarrier sizes cause higher PAPR and the receiver becomes less immune

to the frequency synchronization errors as the number of subcarriers increases.

While increasing subcarrier spacing cures the ICI problem, it means shorter symbol duration.

Therefore, the relative size of required CP becomes larger, decreasing bandwidth efficiency. The

effect of number of subcarriers on the system performance is investigated in [80]. The optimum

number of subcarriers is found to be increasing with delay spread and the coherence time. The

calculation of optimum subcarrier spacing for different channel conditions is studied in [48] by

simulation and analytically in [81].

Using variable FFT sizes is proposed for IEEE 802.16e standard to implement scalable OFDMA

(see [82] and references therein) in which a constant subcarrier spacing is obtained by changing the

FFT size and system bandwidth. Doppler spread knowledge can be used for selecting the optimum

subcarrier spacing adaptively. Estimation of Doppler spread is discussed in Chapter 4.
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Adaptive Pilot Pattern: Pilot symbols can be inserted into the transmitted symbol stream regularly.

These symbols can be used to find the channel values at their corresponding locations and these

estimates can be filtered or interpolated to calculate the estimates of the channel parameters at other

locations [83]. The rate of insertion of pilots in frequency and time direction (from OFDM symbol

to OFDM symbol) can not be set arbitrarily. It depends on the variation of the channel parameters

in time and frequency. It should be noted that an optimum pilot allocation is a trade-off between

wasted energy in unnecessary pilot symbols, the fading process not being sampled sufficiently, and

the spectral efficiency of the system. Hence, an optimum pilot allocation for a given channel might

not be optimal for another channel as the fading process is different.

Some other important elements for pilot arrangements can be the allocation of power to the

pilots with respect to the data symbols, the transmitted modulation for the pilot tones etc. In most

cases, the power for pilot tones and data symbols are equally distributed, however, it does not have

to be uniform. For example, the channel estimation accuracy can be improved by transmitting more

power at the pilot tones compared to the data symbols. Yet, this reduces the SNR over the data

transmission for a given total power.

It is clear from the above discussion about the pilot allocation that a better system performance

can be obtained when the system is adaptive [84–87]. In this case, the information about the

channel statistics becomes very critical. The pilot allocation in the frequency direction requires the

delay spread estimation, whereas the one in time direction requires Doppler spread estimation. If

these estimates are available, then a pilot scheme using relatively less pilots but still providing an

acceptable performance can be utilized. If this information is not available, then the pilot scheme

can be designed based on the worst channel condition, i.e. the maximum expected delay spread

and mobile speed. In [88], the pilot patterns are chosen adaptively based on the prediction of the

channel estimation error at the receiver. The transmitter tries to guarantee the minimum required

SNR by using the minimum number of pilot subcarriers. Adaptation is performed over a block of

OFDM symbols.

2.3.1.2 Adaptation in Mobile OFDM Systems

OFDM is a suitable solution for high data rate transmission because of its immunity to the time

dispersion of the channel. However, frequency dispersion, or time-varying channel introduces another
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problem as OFDM systems loose their orthogonality when the channel varies over the OFDM symbol

time, i.e. when the Doppler spread is a significant portion of the subcarrier spacing [89].

The output of IFFT at the receiver can be obtained as (2.31). The second term in the right hand

size of (2.31) is the power leakage from the neighboring subcarriers and it is called ICI. When there

is no time variation in channel during a block period, e.g. hl(n) = hl, the resulting ICI is zero.

For a fixed total bandwidth, the ICI contribution increases as the number of subcarriers increases.

This happens since the OFDM symbol period increases and hence the variation of channel within the

symbol duration. Analysis of the effects of Doppler spread for OFDM systems is given in [47,90,91].

Tight and general bounds for ICI due to Doppler spread are found in [92]. The ICI power is reported

to be linearly proportional with the square of maximum Doppler frequency and symbol duration

(fDTS). In other words, the ratio between the maximum Doppler frequency and subcarrier spacing

determines the effect of ICI.

While increasing the subcarrier spacing may decrease the ICI, it increases the energy loss due

to the cyclic prefix extension of OFDM systems. Hence the optimum window size is a function

of frequency and time selectivity of the channel. This trade-off is shown in Fig. 2.9. The BER

performance of an OFDM system with 3.5 MHz bandwidth operating at 5.8 GHz center frequency is

shown for different FFT sizes and CP lengths. The SNR of the system is 30dB and mobile speed is

100 km/h. As opposed to the Fig. 2.8, the affect of energy loss due to CP is taken into consideration

in this figure. However, the length of the CP is chosen larger than the delay spread of the channel in

order to only show the affect of CP and FFT sizes. As this figure shows the subcarrier spacing (or

FFT size) that gives optimum performance is a function of the delay spread and Doppler spreads of

the channel.

Transmitter adaptation can be used to overcome the mobility problem. The subcarrier spacing

can be changed depending on the Doppler and delay spread of the channel in order to reduce ICI

while keeping the bandwidth usage maximum. Calculation of the optimum subcarrier spacing in

doubly dispersive channels is investigated in [48, 81]. The ICI problem can also be solved using

advanced receiver algorithms such as frequency domain equalization or interference cancellation.

However, these algorithms are computationally complex and they can only eliminate some of the

disturbance due to ICI.

Another factor that needs to be considered in mobile OFDM systems is the estimation of fast

varying channel. When the training symbols transmitted before the data symbols are used for
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Figure 2.9 Bit error rate of an OFDM system in time-varying channel as a function of FFT size and
guard interval length. The transmission bandwidth is 3.5MHz, the center frequency is 5.8 GHz, the
mobile speed is 100 km/h and SNR is 30 dB.

estimation, an error floor for time-varying channels is introduced. To overcome this problem, pilot

subcarriers or midambles can be used [93].

2.3.2 Spectrum Sensing and Awareness

Cognitive radio should be able to scan the spectrum and measure different channel characteristics

such as power availability, interference, and noise temperature [94]. In addition, the system should

be able to identify different users’ signals in the spectrum and also identify if they are either licensed

or rental users. These abilities allow cognitive radio system to identify unused parts of the spectrum

and spectral opportunities.

However, since for a rental system it is important not to interfere with other licensed systems

using the spectrum, other measures should be taken to guarantee an interference-free communication

between rental users. One approach is to share the spectrum sensing information between multiple

cognitive radio devices to decrease or even eliminate the probability of interference with licensed
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users [95]. On the other hand, more sophisticated algorithms can be used for sensing the spectrum

(see Chapter 6 and 7).

While the efficiency of the spectrum sensing and analyzing process is important for a successful

implementation of cognitive radio, the processing time can be even more important. The periodicity

of spectrum sensing should be short enough to allow for detection of new spectrum opportunities

and, at the same time, to detect licensed users accessing the previously-identified-as-unused parts of

the spectrum. On the other hand, if spectrum sensing is done so frequently, the overhead of sharing

such information increases reducing the spectrum efficiency of the whole system not to mention

the increase in system complexity. In OFDM systems, conversion from time domain to frequency

domain is achieved inherently by using DFT. Hence, all the points in the time-frequency grid can be

scanned without any extra hardware and computation because of the hardware reuse of FFT cores.

Using the time-frequency grid, the selection of bins that are available for exploitation (spectrum

holes) can be carried out using simple hypothesis testing [96]. The DFT outputs can be filtered

across time and frequency dimensions to reduce the uncertainty in detection as well [26, 27]. Note

that the resolution of the frequency grid is dependent on subcarrier spacing.

2.3.3 Spectrum Shaping

After a cognitive radio system scans the spectrum and identifies active licensed users and available

opportunities, comes the next step: spectrum shaping. Theoretically, it is desired to allow the

cognitive users to freely use available unused portions of the spectrum.

Cognitive users should be able to flexibly shape the transmitted signal spectrum. It is desired to

have control over waveform parameters such as the signal bandwidth, power level, center frequency,

and most of all a flexible spectrum mask. OFDM systems can provide such flexibility due to the

unique nature of OFDM signaling. By disabling a set of subcarriers, the spectrum of OFDM signals

can be adaptively shaped to fit into the required spectrum mask. Assuming the spectrum mask is

already known to the cognitive radio system, choosing the disabled subcarriers is a relatively simple

process [97].

The main parameters of an OFDM system that can be used to shape the signal spectrum are

number of subcarriers, subcarrier’s power, and pulse-shaping filters. Increasing the number of sub-

carriers for a fixed bandwidth allows the OFDM system to have a higher resolution in the frequency
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Figure 2.10 Spectrum sensing and shaping using OFDM.

domain. However, this results in increasing the complexity of the FFT operations and thus increasing

the overall system complexity.

Subcarrier power can be used to shape the signal into the desired mask. One reason to assign

subcarriers different powers is to better fit into the channel response [98]. For example, subcarriers

with higher SNR values can be assigned lower power than those with lower SNR to improve the

overall system BER. Another reason is to reduce the adjacent channel interference from an OFDM

system by reducing the power assigned to edge subcarriers.

An example of spectrum sensing and shaping procedures in OFDM-based cognitive radio systems

is illustrated in Fig. 2.10. Two licensed users are detected using the output of FFT block, and

subcarriers that can cause interference to licensed user are turned off. The transmitter then uses

the free parts of the spectrum for signal transmission. In addition, pulse-shaping filters can also

be used to reduce the interference to adjacent bands. More discussions on reducing interference is

introduced in section 2.4.5.

2.3.4 Advanced Antenna Techniques

Advanced antenna techniques are not necessarily required for cognitive radios. However, they

are desirable as they provide better spectral efficiency which is the primary motivation for cogni-

tive radio. Smart antennas and multiple-input multiple-Output (MIMO) systems can be used to

exploit the spatial dimension of spectrum space (e.g. through beam forming) to improve the ef-
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ficiency. In essence multi-antenna systems can help to find spectral opportunities in the spatial

domain and can help to exploit these opportunities in full. The use of MIMO techniques offers

several important advantages including spatial degree of freedom, increased spectral efficiency and

diversity [99]. These advantages can be used to increase the spectrum utilization of the overall

system. Furthermore, beamforming, diversity combining and space-time equalization can also be

applied to cognitive OFDM systems. Another application of adaptive antenna techniques is the

reduction of the interference in OFDM systems [100].

MIMO systems commonly employ OFDM as their transmission technique because of simple

diversity combination and equalization, particularly at high data rates [101]. In MIMO-OFDM, the

channel response becomes a matrix. Since each tone can be equalized independently, the complexity

of space-time equalizers is avoided and signals can be processed using relatively straightforward

matrix algebra. Moreover, the advantages of OFDM in multipath are preserved in MIMO-OFDM

system as frequency selectivity caused by multipath increases the capacity.

2.3.5 Multiple Accessing and Spectral Allocation

The resources available to a cognitive system have to be shared among users. Several techniques

can be used to achieve such tasks. OFDM supports the well-known multiple accessing techniques

such as time division multiple access (TDMA), frequency division multiple accessing (FDMA) and

carrier sense multiple accessing (CSMA). Moreover, code division multiple access (CDMA) can also

be used together with OFDM for multiplexing different users, in which case the transmission is

known as multi-carrier code division multiple access (MC-CDMA) or multicarrier direct spread code

division multiple access (DS-CDMA) [102].

OFDMA, a special case of FDMA, has gained tremendous attention recently with its usage in

mobile Worldwide Interoperability for Microwave Access (WiMAX) [82, 103]. In OFDMA, subcar-

riers are grouped into sets each of which is assigned to a different user. Interleaved, randomized, or

clustered assignment schemes can be used for this purpose. Hence, it offers very flexible multiple

accessing and spectral allocation capability for cognitive radios without any extra complexity or

hardware. The allocation of subcarriers can be tailored according to the spectrum availability. The

flexibility and support of OFDM systems for various multiple accessing enables the interoperability

and increases the adoption of cognitive radio as well.
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2.3.6 Interoperability

Another desirable feature of cognitive radio is interoperability. Interoperability can be defined as

the ability of two or more systems or components to exchange information and to use the information

that has been exchanged [104]. Since cognitive radio systems have to deal with licensed users as

well as other cognitive users, the ability to detect and encode existing users’ signals can expedite

the adoption and improve the performance of cognitive radio systems. Furthermore, some recent

unfortunate events manifested the importance of interoperability in terms of wireless communications

for the first responders [105, 106]. For interoperability problems, cognitive radio will improve the

disaster relief operations by developing the coordination between first responders [107,108]. For such

tasks, OFDM is one of the best candidates as OFDM signaling has been successfully used in various

technologies. Systems based on OFDM includes 802.11a and 802.11g Wireless LAN standards,

digital audio broadcasting (DAB), DVB-T, and WiMAX. Fig. 2.11 shows some of the OFDM-

based wireless technologies according to communication range. As shown in this figure, OFDM has

been used in both short range and long range communication systems. Hence, a cognitive radio

system employing OFDM can communicate with systems using other OFDM-based technologies

with much ease. Only the knowledge of the signal parameters used by the desired users are needed

(see Table 2.2). However, for such task to be successful, the cognitive radio system should be built

around a software-defined radio architecture. In addition, the cognitive radio system should have

all the standard-related information required to decode other signals, such as the data and pilot

mapping to the frequency subcarriers, frame structure or the coding type and rate.

2.4 Challenges to Cognitive OFDM Systems

As an intelligent system with features such as awareness, adaptability and learning, cognitive

radio represents the future of wireless systems with the promise of offering solutions to various

communication problems as outlined in the previous section. However, with this new technology,

new challenges appear, raising interesting research topics. In the considered OFDM based cognitive

radio systems, the challenges can be grouped into three categories as illustrated in Fig. 2.12. The

first category includes the challenges that are the unique to classical OFDM systems including

PAPR, sensitivity to frequency offset and phase noise, synchronization etc. The second category

includes problems faced by all cognitive radios such as spectrum sensing, cross layer adaptation, and

interference avoidance. Our main focus in this chapter is on the third category: challenges that arise
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Figure 2.11 OFDM-based wireless technologies.

Table 2.2 OFDM-based wireless standards.

Standard
IEEE
802.11(a/g)

IEEE
802.16(d/e)

IEEE
802.22

DVB-T

FFT Size 64 128, 256, 512,
1024, 2048

1024, 2048,
4096 2048, 8192

CP Size 3 1/4 1/4, 1/8,
1/16, 1/32 variable 1/4, 1/8,

1/16, 1/32

Bit per
Symbol

1, 2, 4, 6 1, 2, 4, 6 2, 4, 6 2, 4, 6

Pilots 4 variable 96, 192,
384 62, 245

Bandwidth
(MHz)

20 1.75 to 20 6, 7, 8 8

Multiple
Accessing

CSMA OFDMA
/TDMA

OFDMA
/TDMA N/A

when OFDM technique is employed by cognitive radio systems. In the following, some challenges

and approaches for solving these are given.

2.4.1 Spectrum Shaping

One of the main challenges in OFDM cognitive radio systems is spectrum shaping. In OFDM-

based systems, spectrum shaping means determining the subcarriers to be used by the OFDM system

while keeping the interference to and from primary users at a negligible level. Once spectrum sensing
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Figure 2.12 Research challenges in cognitive radio and OFDM.

information is acquired, this knowledge should be utilized to select the subcarriers to be used by

the secondary/cognitive users. This problem is addressed in [109] by using energy detectors over

each subcarrier. Moreover, a detection criterion is used to determine used subcarriers. Spectrum

sensing is directly related to the sensing problem for spectrum hole identification. However, the

cognitive radio might prefer to skip some opportunities depending on the power and network traffic

requirements.

2.4.2 Effective Pruning Algorithm Design

Once the subcarriers to be used are determined, there might be many subcarriers that are

deactivated. In such a case, the efficiency of FFT algorithms can be increased and/or execution

time can be decreased by removing operations on input values which are zero; a process known

as pruning. Designing effective pruning algorithms is important for cognitive OFDM systems for

achieving higher performance. Specific implementation of pruning technique for CR-OFDM systems

is discussed in [110].

2.4.3 Signaling Transmission Parameters

OFDM system can adjust its waveform by turning off some subcarriers in order to exploit the

available spectrum holes (see Fig. 2.10). The receiver, however, should be informed about subcarriers

that are deactivated and that are to be used. Signaling of this information should be performed care-

fully in order to prevent interference to primary users while keeping the bandwidth loss at minimum.

Detection of those unused subcarriers can also be performed blindly as proposed in Chapter 8. One
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method to reduce the overhead due to signaling is proposed in [111]. The activation/deactivation

of subcarriers is performed over a block of subcarriers instead of each individual subcarrier. Hence,

the signaling overhead can be reduced by a factor of each block’s size. Moreover, depending on the

channel quality and available resources, parameters like FFT size, CP size etc. can also be changed

and this information should also be conveyed to the receiver.

2.4.4 Synchronization

Synchronization is another important issue that needs to be addressed in OFDM system de-

sign. With the introduction of cognitive radio, new aspects are introduced to the problem. The

narrow-band interference (NBI), which can interfere with the preamble, is one of the problems [112].

Furthermore, the incomplete subcarrier set might be an issue for preambles, and pilots might fall into

unused subcarriers if used. Moreover, if multiple user accessing is employed, the subcarriers can be

assigned to different users. To keep the orthogonality between subcarriers and avoid interference, all

users should be synchronized to the receiver. In [112], it is shown that longer preambles are needed

in CR-OFDM systems as compared to conventional systems. Moreover, new preamble structures

are introduced and their performance for time and frequency synchronization is investigated.

2.4.5 Mutual Interference

Mutual interference should be carefully considered when designing cognitive radio systems. The

side lobes of modulated OFDM subcarriers are known to be large. As a result, there is power leakage

from used subcarriers to nulled subcarriers which causes interference to the licensed users. Various

methods are proposed in the literature to reduce this leakage and to enable co-existence of cognitive-

OFDM systems with primary license owner systems. One method is to make the sinc function decay

faster by windowing the time domain OFDM samples [113]. Similar techniques have already been

investigated to reduce ICI and out-of-band radiation in OFDM systems [114,115]. In [113], a raised-

cosine window is applied. By changing the roll-off factor of the raised-cosine window, interference

reduction of up to 6 dB has been achieved. Figs. 2.13 and 2.14 show the raised-cosine window

shape for different roll-off values and corresponding power spectral densities. The drawback of

this method is the reduction of system throughput due to the temporal extension of time domain

signal to maintain orthogonality. Another method for reducing the interference is to adaptively

deactivate the subcarriers that are adjacent to the subcarriers occupied by licensed users [113]. This
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Figure 2.14 Rolloff effect on the PSD of a single OFDM subcarrier.

way the interference can be greatly reduced as most of the interference comes from the neighboring

subcarriers. However, the obvious disadvantage of this method is the reduction of spectral efficiency.

Instead of deactivating the neighboring subcarriers, their values can be determined actively in order

to cancel the interference in the deactivated bands. This technique is proposed in [116] and [117] and

referred as active interference cancellation and cancellation carriers respectively. It is shown that the

performance can be improved, however, determination of the values for cancellation subcarriers is
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complex as it requires optimization. One last method for reducing the interference to and from the

narrowband primary users is subcarrier weighting [118,119]. In this method, the subcarrier weights

are determined in such a way that the sidelobes of the transmission signal are minimized according

to an optimization algorithm which allows several optimization constraints. This way, more than

10 dB reduction in the sidelobes of OFDM signal can be achieved. Note that subcarrier weighting

requires constant envelope modulation such as BPSK or QPSK. Moreover, the receiver does not

need to know the weighting sequence as the phase information is not changed.

In addition to the aforementioned challenges, there are other issues for practical implementation

of OFDM cognitive radio systems. While cognitive radio is such a promising technology, more

research is needed to build practical system with affordable complexity.

2.5 A Step Toward Cognitive-OFDM: Standards and Technologies

As cognitive radio concept is attracting more interest everyday, recently developed standards are

considering more cognitive features. Dynamic frequency allocation, transmit power control (TPC),

and spectrum sensing are just a few examples of features that are included in some of the current

standards. These can be considered as a step toward the future implementation of a cognitive radio.

It is worth to note that most of these standards consider OFDM as their choice for transmission

technology (see Fig. 2.11).

2.5.1 WiMAX - IEEE 802.16

One of the technologies that are getting a fair amount of interest lately –in both academia

and industry– is WiMAX. The first WiMAX standard, IEEE 802.16a [120], operates in the 10 to

66 GHz range. In this frequency range, only line-of-sight (LOS) communication is possible. The

standard later evolved in 2004 to the IEEE 802.16-2004 [12]; also know as IEEE 802.16d. The IEEE

802.16-2004 standard supported the operation in the 2 to 11 GHz range allowing for a non-line-of-

sight (NLOS) communications. It provides point to multipoint access for fixed subscribers. The

IEEE 802.16e-2005 [103] standard updates and extends this standard to allow for mobile subscriber

stations traveling at vehicular speeds. A scalable version of orthogonal frequency division multiple

access (OFDMA) is introduced improving the overall system performance. While IEEE’s role is to

develop standards for the PHY and medium access control (MAC) layers, WiMAX forum ensures

compatibility and interoperability between vendors’ equipments through its certification process.
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OFDMA PHY mode is probably the most interesting mode supported by WiMAX. Using OFDM

signaling, OFDMA PHY mode enables a WiMAX base station (BS) to support multiple fixed or

mobile users at the same time. In this mode, a BS system utilizes the available channel by dividing

the available subcarriers into subchannels. A number of subchannel grouped with a number of

OFDMA symbols constitutes a slot. A slot is defined as the minimum data allocation unit [12].

The slot definition shows that the system resources are being shared between users in two domains.

The first dimension is frequency which is represented by the number of subchannels in each slot.

The second dimension is time which is represented by number of OFDMA symbols. Fig. 2.15 shows

the OFDMA signal structure used in WiMAX. Note that this figure is only for illustration purposes

and thus the number of subcarriers or the slot size does not reflect the actual numbers used by the

standard.

In WiMAX-based systems, users can be assigned different bandwidths, time durations, transmit

power levels, and modulation orders (see Table 2.2) based on various parameters such as user carrier-

to-interference-plus-noise ratio (CINR), received signal strength indicator (RSSI) or the available

bandwidth. Moreover, OFDMA PHY offers multiple FFT sizes, CP sizes, and pilot allocation

schemes. The FFT size can be selected as 128, 256, 512, 1024 or 2048 depending on the transmission

bandwidth4. Similarly, the CP length can be set to 1/4, 1/8, 1/16 and 1/32 time the OFDM symbol

length. The CP size can be changed depending on the various environmental characteristics. With

all these adaptive features, WiMAX has the ability to adapt to various channel conditions and

communication scenarios. Indeed, a WiMAX BS measures the available channel and received signal

parameters, makes a plan on what the most appropriate settings for communication with current

subscribers (with certain goals in mind such as maximum throughput, quality of service (QoS).) is,

and executes this plan.

WiMAX standard is very rich in terms of advanced antenna techniques as well. Table 2.3 shows

the MIMO features available in the mobile-WiMAX standard IEEE 802.16E-2005 [103]. Although

these antenna techniques are not requirements, they are well suited to cognitive radio and useful for

achieving high data rates.

The amendment to IEEE 802.16 standard IEEE 802.16h, which is currently being developed,

introduces cognitive features to WiMAX. The goal is to achieve coexistence of WiMAX devices in

unlicensed bands. Furthermore, methods for coexistence with primary users are also developed.
4This is known as scalable OFDMA. Various FFT sizes are used to keep the subcarrier spacing constant for different

transmission bandwidths
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Figure 2.15 Illustration of OFDMA signal structure used in WiMAX.

2.5.2 IEEE 802.22

IEEE 802.22 standard is known as cognitive radio standard because of the cognitive features that

it has [15]. It is designed to operate within the TV bands. However, IEEE 802.22-based systems

should avoid interfering with incumbent signals. Systems should be able to sense the channel,

detect incumbent signals within spectrum, and adjust their operating frequency and transmit power

accordingly [121]. With features such as channel sensing, licensed users detection, dynamic frequency

selection (DFS), and TPC, IEEE 802.22 can be considered as a cognitive radio standard. Even
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Table 2.3 Advanced antenna features of WiMAX.

Techniques Details Advantages

Adaptive Antenna
Systems (AAS) -
Beamforming

The BS uses multiple antennas to form the
beams in the direction of a subcarrier.

Extended range and
increased capacity
thanks to lower
interference.

Space-time coding
(STC)

Transmit diversity such as Alamouti code is
used.

Increase in system
gain through spatial
diversity and reduced
fade margin.

Spatial multiplexing
(SM)

Independent and separately encoded data sig-
nals are transmitted over multiple antennas.

Increase in capacity
(higher data rates).

Collaborative SM
Two UL users can transmit collaboratively in
the same slot as if two streams are spatially mul-
tiplexed from two antennas of the same user.

Increased coverage
and throughput.

Antenna selection

Any combination of antennas are selected (on-off
type of selection of group of antennas from the
available antennas) based on the channel feed-
back.

Efficient use of avail-
able power.

Antenna grouping

The BS can group multiple antennas for different
carriers in different way based on the feedback
from BSs. For example, if we have 3 Tx anten-
nas, the BS can group the first two antennas in
some carriers, and the last 2 antennas in some
other carriers.

Maximum diversity /
capacity gain.

MIMO precoding

The antenna elements are weighted with a ma-
trix before mapping them to transmit antennas
based on the feedback from SSs. This scheme is
similar to a water-pouring algorithm.

Increased capacity
gain.

STC sub-packet
combining

In the initial transmission, the packets are trans-
mitted in a full MIMO spatial multiplexing
mode (no diversity). If the data can not be de-
coded correctly (CRC did not check), then the
packets are sent in full STC mode (full transmit
diversity mode). The receiver combines the ini-
tial data and the later data for better detection.

Provides incremental
redundancy.

Frequency hopping
diversity coding
(FHDC)

This scheme (as for STC) transmits two complex
symbols using the multiple input single output
channel.

Adaptive MIMO
Switch (AMC)

STC or SM is selected adaptively to adopt chan-
nel conditions.

Optimum spectral ef-
ficiency is achieved.

though this standard is not finalized yet, it is anticipated that it will be based on OFDM transmission

as well.
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The main difference between WiMAX and the IEEE 802.22 standard is that the latter is mainly

targeting rural and remote areas, since it is reusing TV bands. However, this gives 802.22 the upper

hand in terms of range. A coverage area of up to 100 km is possible making it the first wireless

regional area network (WRAN) standard. Current specifications can establish a coverage area of up

to 33 km.

The 802.22 standard is designed for a fixed point-to-multipoint communication topology where

the BS acts as the master mandating all the operation parameters of users with its cell. And while

the users (slaves) can share sensing information with the BS through distributed sensing, it is up

to the BS to change a user’s transmit power, modulation, coding or operating frequency. In such

topology, it is the responsibility of the service provider to ensure that users signal is causing no

interference to the incumbent signals by within the coverage area. This is a crucial issue for the

coexistence of the standard with the already existing TV services.

Another challenge in designing the 802.22 standard is the initialization of new users who desire

to communicate with the BS. Unlike current wireless technologies, the frequency and time duration

of the initialization channel is not predefined. In other words, initial users will have to scan parts

(if not all) of the TV bands to find the current BS operating frequency and time. In addition, users

should be able to differentiate between incumbent signals and the BS signal. This could prove to be

very challenging especially if the BS is operating over a combination of multiple frequency bands.

A discussion of the aforementioned challenges and more issues related to the design of the 802.22

standard can be found in [121].

2.5.3 IEEE 802.11

The legendary WLAN standard, IEEE 802.11a/g [10,122], is amended to have cognitive features

with IEEE 802.11h and IEEE 802.11k standards. IEEE 802.11h [123] is designed to allow estimation

of channel characteristics and DFS, which is the ability to switch to different physical RF channels

for transmit and receive activity based on channel measurements. In addition, TPC is incorporated

as well, providing the system with more control over the signal range and interference level. The

purpose of the IEEE 802.11h standard is to allow WLAN systems to share the 5-GHz spectrum with

primary users (e.g. military radar systems).

The DFS detects devices using the same radio channel and the system switches to other radio

channels if necessary avoiding interference with other existing primary users. WLAN station reports
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a list of channels that it can support to an access point. When it’s necessary to switch to a new

channel, the access point uses this data to determine the best channel. On the other hand, TPC is

used to reduce the interference from stations to other devices by controlling the power level of the

transmitted signal. In addition, TPC is used to manage the power consumption of wireless devices

and the range between access points and wireless devices.

On the other hand, IEEE 802.11k standard is proposed for radio resource management. The

aim is to improve the traffic distribution in a WLAN. The standard defines a list of several radio

parameters to be estimated by the system. While this list is limited and aimed for IEEE 802.11

standards, it is further enhanced compared to earlier standards. WLAN devices can be upgraded to

support the new standard, since it is designed to be implemented in software. The standard allows

access points to collect data from clients regarding access points they can hear and their signal

power. After the collected data is analyzed, access points within range of a client are ordered into a

list according to their signal strength, services, and encryption types supported by the client. This

list is called site report. The access points provide the clients with the site report and thus improve

the roaming decisions and increase the overall network throughput.

The access point could gather information from clients about the RF channel. For example, the

access point could request the client to measure the channel noise level, or to provide the access

point with information regarding the traffic load on the channel and the time duration over which

the channel is occupied. Using this information, the access point can make a decision whether a

certain channel is being crowded or if the channel contains high level of noise/interference.

Other features including tracking of hidden nodes and sharing clients’ statistics are included in the

standard. By applying both 802.11h and 802.11k standards to current 802.11-based WLAN systems,

the performance and efficiency of wireless networking can be improved significantly. Adding cognitive

features such as channel sensing and estimation, statistics distribution, DFS, TPC to WLAN devices

will soon be possible. It is important to remember that 802.11 standards mainly use OFDM making

it the signaling of choice for future technologies. Fig. 2.16 shows an illustration of the discussed

current and future technologies and standards.

2.6 Conclusion

In this chapter, a general overview of cognitive radio and OFDM technology is presented. Cog-

nitive radio is an exciting and promising effort for solving the spectrum crowding problem. On the
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Figure 2.16 Standards and technologies developments.

other hand, OFDM technique is used in many wireless systems and proven as a reliable and effec-

tive transmission method. OFDM can be used for realizing cognitive radio concept because of its

inherent capabilities that are discussed in detail in this chapter. By employing OFDM transmission

in cognitive radio systems; adaptive, aware and flexible systems that can interoperate with current

technologies can be realized.
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CHAPTER 3

TIME DISPERSION AND DELAY SPREAD ESTIMATION FOR ADAPTIVE
OFDM SYSTEMS

3.1 Introduction

OFDM has been applied for various wireless communication systems successfully in the last

decade [124]. Those systems, however, should be capable of working efficiently in wide range of

operating conditions, such as large range of mobile speeds, different carrier frequencies in licensed

and license-exempt bands, various delay spreads, asymmetric traffic loads in downlink and uplink,

and wide dynamic signal-to-noise ratio (SNR) ranges. The aforementioned reasons motivated the

use of adaptive algorithms in new generation wireless communication systems [17]. Adaptation

aims to optimize wireless mobile radio system performance, enhance its capacity, and utilize the

available resources in an efficient manner. It is also an integral element of cognitive radio. However,

adaptation requires a form of accurate parameter measurements. One key parameter in adaptation

of OFDM systems is the time dispersion which provides information about the frequency selectivity

of the wireless channel. Knowledge of the frequency selectivity in mobile communication systems

can improve detection and help to optimize transmission.

In OFDM systems, the cyclic prefix (CP) length needs to be larger than the maximum excess

delay of the channel. If this information is not available, the worst case channel condition is used for

system design which makes CP a significant portion of the transmitted data. One way to increase

the spectral efficiency is to adapt the length of the CP to the changing multipath conditions which

requires the channel excess delay knowledge [48, 77]. Adaptive filtering for channel estimation is

another area where time dispersion information of the channel is useful. A two-dimensional Wiener

filter, implemented as a cascade of two one-dimensional filters, is used for channel estimation in [125].

The bandwidth of the second filter, which is in the frequency direction, is changed depending on

the estimated delay spread of the channel to keep the noise low and thus to improve the channel

estimation performance. Similarly, the coefficients of the frequency domain channel estimation filter
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is chosen adaptively in [126] depending on the channel difference vector which is directly related

to the delay spread of the channel. The information about the time dispersion of the channel can

also be used for allocating the pilot symbols in frequency direction, whereas the allocation in time

direction requires Doppler spread estimation. For example, the number of pilots and their spacing

are adjusted depending on the delay spread knowledge in [84, 88]. Other OFDM parameters that

could be changed adaptively using the knowledge of the time dispersion are OFDM symbol duration

and OFDM sub-carrier bandwidth.

Characterization of the frequency selectivity of the radio channel is studied in [127,128] using level

crossing rate (LCR) of the channel in frequency domain. Frequency domain LCR gives the average

number of crossings per Hz at which the measured amplitude intersects a threshold level. However,

LCR is very sensitive to noise which increases the number of level crossings and severely deteriorates

the performance of the LCR measurements [129]. Filtering the channel frequency response (CFR)

reduces the noise effect, but finding the appropriate filter parameters could be a problem. If the

filter is not designed properly, one might end up smoothing the actual variation of the frequency

domain channel response. Time dispersion of the channel can be estimated using the channel impulse

response (CIR) estimates as well. In [84, 125], the CIR is obtained by taking the inverse discrete

Fourier transform (IDFT) of the frequency domain channel estimate which is calculated at pilot

locations. In [130], instantaneous root-mean-squared (RMS) delay spread is obtained by estimating

the CIR in time domain. The detected symbols in the frequency domain are used to re-generate

the time domain signal through IDFT and then this signal is correlated with the received signal

in order to obtain the CIR. Since the detected symbols are random, they might not have good

autocorrelation properties, which can be a problem especially when the number of carriers is small

and SNR is low. Timing synchronization errors create a problem with the time domain estimation; if

synchronization is performed independently over different frames (or symbols), the estimated CIRs

should be time aligned as the timing errors will be different for each CIR estimate. Techniques

exploiting the CP are proposed for delay spread estimation in [131, 132]. The change of gradient

of the correlation between the CP and the last part of the OFDM symbol is used as a strategy

to detect the dispersion parameters in [131]. Using the change of gradient in the correlation, the

amplitude and delay of each tap is calculated and the delay spread information is extracted from

this information. This method requires computationally complex optimization and the accuracy

of the technique can be expected to degrade for closely spaced and weak multipath components.
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In [132], the magnitude of each arriving tap and the corresponding delay are estimated from the

calculated correlation. Once the delays and magnitudes are estimated, the maximum excess delay

or RMS delay spread of the channel can be computed. In [20], RMS delay spread of the channel is

obtained using the channel frequency correlation (CFC) without calculating the channel power delay

profile (PDP). Analytical relations between the CFC and the RMS delay spread value are derived

by assuming an exponentially decaying PDP. To calculate the RMS delay spread, the proposed

algorithm uses the CFC estimate and the analytical relation between the RMS delay spread and

the coherence bandwidth which is obtained from the CFC for a given correlation level. In [126],

the adaptive filter coefficients are updated using the first derivative of frequency domain channel

estimates. Note that, although the RMS delay spread value is not estimated, a directly related

parameter is used, and hence, it can be considered as a simplified version of delay spread estimation

using CFC.

In this chapter, time dispersion of the radio channel is estimated using frequency domain channel

estimates. In OFDM systems, channel can be estimated in frequency domain easily, and this is

usually the preferred method as both estimation and equalization in frequency domain are simpler

than their time domain equivalents. Since the timing errors are folded into the channel estimates in

frequency domain as a subcarrier-dependent phase term, the magnitudes of the channel estimates

are used for delay spread estimation in order to remove the phase dependence. As a third algorithm,

the magnitude of the received frequency domain signal is used when a constant envelope modulation

is employed. The proposed algorithms estimate the channel PDP which is then used to extract the

time dispersion parameters: RMS delay spread and maximum excess delay of the channel.

This chapter is organized as following. In Section 3.2, system model will be introduced, and the

proposed algorithms will be presented in Section 3.3. Numerical results will be given in Section 3.4

and the chapter will be concluded in Section 3.5.

3.2 System Model

For the time and frequency domain OFDM symbols, the model given in Section 2.2 is used.

Furthermore, the channel is assumed to be constant over an OFDM symbol, but time-varying across

OFDM symbols, which is a reasonable assumption for low and medium mobility.

At the receiver, the signal is received along with noise. After time and frequency synchronization,

down-sampling, and removal of CP, the simplified baseband model of the received samples can be
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formulated as

ym(n + θm) =
L−1∑

l=0

xm(n + θm − l)hl,m + wm(n), (3.1)

where L is the number of sample-spaced channel taps, and the time domain CIR for mth OFDM

symbol, hl,m, is given as a time-invariant linear filter. The timing error θm is caused by the imperfect

synchronization and its statistics depends on the SNR and the synchronization algorithm used. In

this case, after taking discrete Fourier transform (DFT) of the received signal ym(n + θm), the

samples in frequency domain can be written as1 [133]

Ym(k) = DFT{ym(n + θm)}

= Xm(k)Hm(k)e−j2πkθm/N + Wm(k) 0 ≤ k ≤ N − 1, (3.2)

where H and W are DFTs of h and w respectively. The least squares (LS) estimate of the CFR Ĥm

can be calculated using the received signal and the knowledge of transmitted symbols as

Ĥm(k) =
Ym(k)
Xm(k)

(3.3)

= Hm(k)e−j2πkθm/N

︸ ︷︷ ︸
H̃m(k)

+
Wm(k)
Xm(k)︸ ︷︷ ︸
Zm(k)

. (3.4)

The LS channel estimation consists of the desired channel with a frequency dependent phase term

due to timing errors and an additive estimation error term due to noise.

3.3 Proposed Delay Spread Estimation Algorithms

In this section, we propose algorithms for estimating the time dispersion parameters. Three

methods will be given for estimating the PDP using frequency domain information. Calculation of

the RMS delay spread and maximum excess delay from the estimated PDPs is also discussed in this

section.
1It is assumed that the timing errors are small enough so there will not be any inter-symbol interference (ISI) or

inter-carrier interference (ICI).
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3.3.1 Channel Estimation Based Algorithm

In OFDM systems, channel estimation is usually done in frequency domain using known train-

ing symbols. Hence, the frequency domain channel estimates are usually available. Using these

estimates, the instantaneous channel frequency correlation values can be calculated as

RĤ(∆) = Et,k

[
Ĥt(k)Ĥ∗

t (k + ∆)
]
, (3.5)

where Et,k[·] is the expectation over training symbols t and over subcarriers k (averaging within an

OFDM symbol). Assuming that the channel and noise terms are uncorrelated, the correlation given

in (3.5) can be written as

RĤ(∆) = RH̃(∆) + RZ(∆), (3.6)

where RH̃(∆) is the correlation of the effective channel and RZ(∆) is the correlation of channel

estimation error. RZ(∆) becomes a delta function when the estimation errors at different subcarriers

are uncorrelated, i.e. when it is white. However, as channel estimation is a filtering operation, this

noise is usually colored and it creates a bias on the estimates obtained using RĤ , hence care should

be taken. When the channel estimates are obtained using the LS method given in Section 3.2,

however, the noise becomes white as the additive noise on the received signal W (k) is assumed

to be white and uncorrelated with the transmitted signal as well as the channel. In this case the

correlation (3.5) can be written as

RĤ(∆) = RH̃(∆) + δ(∆)σ2
z , (3.7)

where σ2
z is the variance of channel estimation error Z(k), and δ(·) is the Kronecker delta function.

Using (3.4) and (3.5), the channel correlation with timing errors can be obtained as

RH̃(∆) = RH(∆)Et

[
ej2πθt∆/N

]
. (3.8)

The expectation in (3.8) is a function of the statistics of the estimation error θt which depends on

channel conditions and the algorithm used for synchronization. This expectation can be written in
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terms of timing error probabilities as

Et

[
ej2πθt∆/N

]
=

θmax∑

θ=θmin

cos
2πθ∆

N
P (θ), (3.9)

where θmin and θmax are the minimum and maximum synchronization values respectively. P (θ) is

the probability of having the synchronization error θ and in the case of perfect synchronization it

becomes a delta function, i.e. P (θ) = δ(θ). In this chapter, the timing errors are assumed to have

a Gaussian distribution with zero mean and the variance of σ2
θ [134].

As can be seen from (3.7) and (3.8), there are two impairments that affect the correlation

estimates. We first assume perfect timing synchronization and concentrate on the noise term. In

a similar problem for a different context, a parabola is fitted to the lags with non-zero index for

finding the value at the zero-th lag of time domain channel correlation in [135]. In this chapter,

we use the same algorithm for removing the correlation term due to noise in (3.7). This algorithm

consists of the following steps:

• calculate RĤ(∆) for ∆ = 1 . . . M ,

• obtain the coefficients of the parabola P(∆) using the LS method,

• substitute P(0) into RĤ(0) and call it R′
H̃

.

Once the effect of noise is removed, the PDP can be estimated from the CFC estimate R′
H̃

by

simply applying IDFT operation as

Pl = IDFT
{
R′

H̃
(∆)

}
(3.10)

=
1√
N

N−1∑

∆=0

R′
H̃

(∆)ej2π∆l/N 0 ≤ l ≤ L− 1. (3.11)

where Pl = Em

[|hl,m|2
]

is the lth tap of the channel PDP. As the PDP coefficients are real, the

CFC exhibits a conjugate symmetry that can be used to decrease the number of correlation lags to

be calculated by half.

Timing error is the other impairment that degrades the performance of the channel estimation

based algorithm. Fig. 3.1 shows the correlation magnitude as a function of subcarrier separation ∆

for perfect synchronization and for synchronization errors with a zero-mean Gaussian distribution

and variance of 2t2s, i.e. σ2
θ = 2, where ts is the sampling frequency. Both analytical results obtained
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Figure 3.1 Magnitude of channel frequency correlation with perfect synchronization and with syn-
chronization errors. Analytical (Eqn. 3.9) and simulation results are shown.

using (3.9) and simulation results are given. Although the algorithm given in this section is simple

to calculate and straightforward, timing errors affect the correlation estimates and bias the time

dispersion estimation as Fig. 3.1 shows. In order to remove this effect, we propose to use the

magnitude square of the frequency domain channel estimates which will be discussed in the next

section.

3.3.2 Channel Magnitude Based Algorithm

The correlation of the magnitude of the channel estimates can be represented as

R|Ĥ|2(∆) = Et,k

[
|Ĥt(k)|2|Ĥt(k + ∆)|2

]
. (3.12)

By inserting (3.4) into (3.12), the correlation can be simplified to

R|Ĥ|2(∆) = R|H|2(∆) + (1 + δ(∆))
(
2RH(0)σ2

z + σ4
z

)
, (3.13)
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where R|H|2(∆) is the correlation of the magnitude of true channel and it can be written as (see

Appendix A for detailed derivation)

R|H|2(∆) = Et,k

[|Ht(k)|2|Ht(k + ∆)|2]

=
2

N2

N−1∑

l=0

N−1∑
u=0

PlPu cos2
π(l − u)∆

N
(3.14)

=
1

N2

N−1∑

l=0

N−1∑
u=0

PlPu

[
1 + cos

2πl∆
N

cos
2πu∆

N

+ sin
2πl∆

N
sin

2πu∆
N

]
. (3.15)

The effect of noise on (3.13) at the first correlation lag, i.e. ∆ = 0, is two times the effect of noise

on the other lags. Therefore, if the value of the first correlation lag is calculated using other lags,

the overall effect of the noise can be subtracted from the correlation removing the effect of the noise.

The parabola fitting algorithm described in Section 3.3.1 is used for removing the noise contribution

in this method as well.

Note that the first term in the right-hand side (RHS) of (3.15) is equal to R|H|2(0)/2 and the

second and third terms together are equal to the magnitude square of the correlation of the channel

response, RH(∆). Using these facts, the following equality can be obtained

R|H|2(∆)− R|H|2(0)
2

= RH(∆)R∗H(∆), (3.16)

where RH(∆) is the correlation of H(k) as defined before. Note that the left-hand side (LHS) of

this equation can be estimated using the received signal. The RHS is a multiplication, and when

IDFT is applied on this term, it becomes a convolution of PDP with the flipped version of itself in

time domain. This follows from the properties of DFT [42] and from the fact that the IDFT of the

CFC is equal to the PDP. The resulting equation can then be written as

IDFT

{
R|H|2(∆)− R|H|2(0)

2

}
= IDFT {RH(∆)R∗H(∆)} (3.17)

=
L−1∑

i=0

Pl−iP〈−i〉N . (3.18)

Having the LHS of the equality calculated using the received signal, we can estimate the PDP using

(3.18) and by solving the non-linear set of equations. For this purpose, least squares optimization is
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used in this chapter. The number of unknowns can be limited to the number of PDP taps L. As the

length of the CP is expected to be larger than the maximum excess delay, the number of unknowns

is set to the length of CP. The system of equations can then be solved as the number of unknowns

is smaller than the number of equations which is N .

3.3.3 Received Signal Based Algorithm

The algorithms given in the previous sections can use only the training symbols for the estimation.

However, when the OFDM system employs a constant envelope modulation, the power of the received

signal Y (k) can be used. The received signal in the frequency domain for OFDM is given in (3.2).

Using this equation, the correlation of the magnitude of the received frequency domain signal can

be calculated as

R|Y |2(∆) = Em,k

[|Ym(k)|2|Ym(k + ∆)|2] (3.19)

After expanding (3.19), the simplified version can be written as

R|Y |2(∆) = R|H|2(∆)R|X|2(∆) + (1 + δ(∆))
(
2RH(0)RX(0)σ2

w + σ4
w

)
. (3.20)

For constant envelope modulations R|X|2(∆) = RX(∆) = 1, and therefore (3.20) reduces to (3.13)

as2

R|Y |2(∆) = R|Ĥ|2(∆). (3.21)

Therefore the algorithm given in Section 3.3.2 can be used for estimating PDP using Y (k) instead

of Ĥ(k). This enables us to use all of the received OFDM symbols which results in both noise

averaging and getting better correlation estimates.

3.3.4 Estimation of RMS Delay Spread and Maximum Excess Delay

The RMS delay spread and excess delay spread (X dB) are multipath channel parameters that

can be determined from a PDP. Once the PDP of the channel is estimated using the proposed

methods, these parameters can be estimated using their definitions. The RMS delay spread τrms is

the square root of the second central moment of the PDP and the maximum excess delay (X dB)

of the PDP is defined as the time delay during which multipath energy falls to X dB below the
2Without loss of generality, we assume σ2

X = 1. Hence σ2
w = σ2

z .
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maximum value. The RMS delay spread is defined as [136]

τrms =

√√√√
∑L−1

l=0 Plτ2
l∑L−1

l Pl

−
(∑L−1

l=0 Plτl∑L−1
l Pl

)2

, (3.22)

where τl = lts is the delay of lth multipath component. In order to decrease the effect of errors in

the PDP estimation, taps with power 25 dB below the most powerful lag are set to zero. Moreover,

we consider the maximum excess delay of 25 dB, i.e. the maximum excess delay is equal to the delay

of the last non-zero tap.

The statistics of the channel might be changing in time because of the environmental changes

or because of the mobility of the transmitter or receiver. In this case, the correlation estimates can

be updated using an alpha tracker in order to capture this variation. For channel magnitude based

algorithm, for example, the correlation values can be updated as

Rm
|H|2(∆) = (1− α)R|Hm|2(∆) + αRm−1

|H|2 (∆) (3.23)

where R|Hm|2(∆) is the correlation value obtained using mth symbol. The forgetting factor 0 ≤ α ≤ 1

is a design parameter and it should be selected depending on how fast the channel parameters are

changing.

3.4 Numerical Results

A system similar to the OFDM mode of IEEE 802.16d [12] is used for the simulations. Total

number of subcarriers is 256, out of which 200 subcarriers are used for transmitting data information

and pilots. The center frequency carrier is set to zero and the outermost 55 subcarriers (27 on left

and 28 on the right of the spectrum) are not used to allow for guard bands. The system bandwidth

is chosen as 10MHz and the length of the CP is set to 32 samples (the length of the guard band

is 3.2 µs). For simulating the wireless channel, the Channel A of ITU-R channel model [137] for

vehicular environments with high antenna is used. The relative delays and average power of each

tap of this model is given in Table 3.1. The mobile speed used in the simulations3 is 60 km/h and

time-varying channel is generated according to [138]. For estimating the CFR, LS method (see

Section 3.2) is used.

3Similar results are observed when tests at different mobile speeds are performed.
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Table 3.1 Characteristics of the ITU-R “Vehicular A” channel model.

Tap 1 2 3 4 5 6

Relative delay (ns) 0 310 710 1090 1730 2510

Average power (dB) 0 -1 -9 -10 -15 -20

Frame N+1Frame N

User k-1 User k User k+1

Training symbol (Preamble)

10ms

Frame N-1

20 OFDM symbols

Figure 3.2 Illustration of frame structure of the system used for testing the proposed algorithms.

The estimation is assumed to be done in uplink for a user with 20 OFDM symbols in a frame

with 10ms frame duration. The frame structure of the considered system is illustrated in Fig. 3.2.

In uplink, each user is assumed to have a training symbol for synchronization and channel estimation

purposes. The channel estimation based algorithms use the channel estimates obtained using the

training symbols while the received signal power based algorithm uses all of the 20 transmitted

symbols (1 training symbol and 19 data symbols) for estimation of PDP. The first 5 non-zero

correlation values are used for obtaining the parameters of the parabola which is used to remove the

effect of noise on correlation estimates, i.e. M = 5.

Normalized MSE is used as a performance measure of the estimator as it reflects both the bias

and the variance of the estimator. The normalized MSE of τrms is defined as NMSE(τrms) ,

E
[
(τ̂rms − τrms)2

]
/τ2

rms where τ̂rms is the estimate of τrms. Fig. 3.3 shows the normalized mean-

squared-error (MSE) of the RMS delay spread as a function of the number of frames used for

estimation. In this figure, perfect channel and timing information is assumed to be available and

Cramér-Rao lower bound (CRLB) for the estimation (B.7) is also presented. The proposed algo-

rithms are labeled as Algorithm A, B, and C respectively. The multipath channel components at

different frames are assumed to be independent in this figure in order to show .?. The channel

estimation based algorithm yields close results to the bound and the performance loss in the chan-

nel magnitude based algorithm can be explained by the information lost by not utilizing the phase

information of channel estimates. Figs. 3.4 and 3.5 show the normalized MSE of the RMS delay
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Figure 3.3 Normalized mean-square-error performances of the RMS delay spread estimators as a
function of number of frames used for estimation.

spread estimation as a function of the number of frames used for estimation. Fig. 3.4 shows the

case of perfect timing knowledge, while in Fig. 3.5 a timing mismatch with zero-mean Gaussian

distribution and variance of 2t2s is introduced. The SNRs of the received signal for both figures are

set to 10dB. Channel estimation based algorithm performs better than the other algorithms in the

case of no timing errors as the phase information on the channel is also used. On the other hand, it

has a large error floor when there are timing errors. The results presented in these figures show that

the channel magnitude based algorithm (Algorithm A) and the received magnitude based algorithm

(Algorithm C) work quite satisfactory under timing errors.

The normalized MSE as a function of SNR for 80 frames is shown in Fig. 3.6 for perfect timing

synchronization. The performances of all three algorithms increase as the SNR is increasing. How-

ever, after a certain SNR level (around 10 dB), the performance does not change significantly with

increasing SNR.
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Figure 3.4 Normalized mean-square-error performances of the RMS delay spread estimators as a
function of number of frames used for estimation.
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Figure 3.5 Normalized mean-square-error performances of the RMS delay spread estimators as a
function of number of frames used for estimation when there are timing synchronization errors.
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Figure 3.6 Normalized mean-square-error performances of the RMS delay spread estimators as a
function of the SNR. Estimation is performed over 80 frames.

3.5 Conclusion

Delay spread estimation algorithms for OFDM systems are proposed in this chapter. The pro-

posed algorithms estimate the PDP of the channel which is then used to calculate the dispersion

parameters. It is found that timing errors cause estimation error floor if the channel frequency

estimates are directly used, and this problem is overcome by using the magnitude of the channel

estimates. Moreover, the channel magnitude based algorithm is extended to a method which uses

the received signal power (in frequency domain) when the transmitted symbols has a constant en-

velope. The performances of the developed algorithms are tested using computer simulations and

the channel and received signal magnitude based algorithms are shown to perform well under dif-

ferent scenarios. In addition, the CRLB for the RMS delay spread parameter is derived and used to

validate the performance of the proposed methods.
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CHAPTER 4

DOPPLER SPREAD ESTIMATION FOR WIRELESS OFDM SYSTEMS

4.1 Introduction

Because of its tremendous success in digital video broadcasting (DVB) and wireless local area

networks (WLANs), orthogonal frequency division multiplexing (OFDM) is now considered for

broadband wireless systems for both fixed and mobile applications such as wireless metropolitan

area networks (WMANs), mobile broadband wireless access (MBWA) and proposed fourth genera-

tion (4G) cellular systems [139]. Those systems however, should be capable of working efficiently in

wide range of operating conditions, such as large range of mobile subscriber station (MSS) speeds,

different carrier frequencies in licensed and licensed-exempt bands, various delay spreads, asymmet-

ric traffic loads in downlink (DL) and uplink (UL) and wide dynamic signal-to-noise ratio (SNR)

ranges.

The aforementioned reasons motivated the use of adaptive algorithms in new generation wireless

communication systems. Adaptation aims to optimize wireless mobile radio systems performance,

enhance its capacity and utilize available resources in an efficient manner. However, adaptation

requires a form of accurate parameter measurements. One key parameter in adaptation of mobile

radio systems is the maximum Doppler spread. It provides information about the fading rate of the

channel. Knowing Doppler spread in mobile communication systems can improve detection and help

to optimize transmission at the physical layer as well as higher levels of the protocol stack [140].

Specifically, knowing Doppler spread can decrease unnecessary hand-offs, adjust interleaving lengths

to reduce reception delays, update rate of power control algorithms, etc. In addition, in OFDM

systems, if the channel varies considerably within one OFDM symbol because of high MSS mobility,

orthogonality between subcarriers is lost, leading to inter-carrier interference (ICI) [89]. Doppler

information can help in selection of appropriate transmission profiles that are immune to ICI and

hence the overall system performance will be improved.
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Various methods based on the auto-correlation function (ACF) have been used to estimate the

Doppler spread fD in single carrier systems [140]. In OFDM systems, the autocorrelation between

the repeated parts of the symbol due to cyclic prefix (CP) is exploited in [141] to estimate the

Doppler spread. However, adaptive OFDM systems employ a form of variable CP size selection

according to the delay spread of the channel. The part of the CP that is undisturbed by the

multipath channel may be small especially when the environment causes large delay spread. This

will degrade estimation greatly. Moreover, the results presented shows that the algorithm is biased

at low and medium Doppler values, and gives good estimates at very high velocities which are less

likely to occur. The scheme is also sensitive to SNR variations. In OFDM systems, channel estimates

are often obtained in frequency domain. By obtaining the ACF of a certain subcarrier over several

symbols, fD can also be estimated [142]. However, every subcarrier will have noise perturbation

due to additive white Gaussian noise (AWGN) and ICI. In this chapter, we overcome this bias by

performing inverse fast Fourier transform (IFFT) to the channel estimates and then using the few

obtained channel taps to get fD.

The organization of this chapter is as follows. In Section 4.2, brief system and channel models are

presented. Then, the Doppler spread estimation algorithm is discussed in Section 4.3. Simulation

results are presented and analyzed in Section 4.4. Finally, Section 4.5 concludes the chapter.

4.2 System and Channel Models

For the time and frequency domain OFDM symbols, the model given in Section 2.2 is used.

Furthermore, we adopt the two dimensional channel model proposed by Clarke, where at a given

instant, there exist L multipath components arriving at the receiver with distinct complex ampli-

tudes, phases, Doppler shifts and delays. It was shown that with no line-of-sight (LOS) path the

envelope of each path fading is modeled by Rayleigh distribution [143]. The channel is assumed to

be time-variant. Consequently, during an OFDM symbol period, the discrete time channel impulse

response is given by

h(n, τ) =
L∑

l=1

hl(n)δ(n− τl), (4.1)

where τl is the propagation delay associated with lth path. The path gains hl(n) are zero-mean

stochastic processes with normalized overall power, so that E [(hl(n))] = 0 and
∑L

l=1 E
[
|hl(n)|2

]
= 1.

Assuming wide-sense stationary uncorrelated scattering (WSSUS) channel model, and with uni-
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formly distributed angle of arrival (AOA), the autocorrelation function of the channel impulse

response (CIR) for a certain tap l is given by

E [h(n)h∗(n + τ)] = J0 (2πfDτ) , (4.2)

where Jo(.) is the zeroth order Bessel function of the first kind. The maximum Doppler shift fD

is determined by the mobile velocity and the wavelength. After passing through a radio channel,

the mth received time-domain OFDM signal ym(n) can be written as a function of the transmitted

signal, the channel transfer function, and AWGN as

ym(n) = xm(n) ∗ h(n, τ) + wm(n), 1 ≤ n ≤ N. (4.3)

After performing the fast Fourier transform (FFT) operation at receiver, the received frequency-

domain signal Ym(k) can be expressed as [144]

Ym(k) = Xm(k)Hm(k) + Im(k) + Wm(k), (4.4)

where Hm(k) is the channel transfer function at the kth subcarrier and Im(k) is the ICI term. The

interference term depends on transmitted symbols and the variation of the channel over an OFDM

symbol. It can be formulated as

Im(k) =
N−1∑

u=0, u 6=k

L−1∑

l=0

Xm(u)
1
N

N−1∑

d=0

hl(d)ej2πd(u−k)/N . (4.5)

Note that the interference power increases with increasing variation in the channel response, i.e with

increasing velocity or Doppler spread.

4.3 Doppler Spread Estimation

In OFDM systems, channel estimation is usually done in frequency domain either by sending

pilots on specific subcarriers or using preambles and inserting frequent mid-ambles to capture channel

variations. The latter case will be considered in this chapter. The channel estimates at all subcarriers
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can be obtained by dividing (4.4) by the known transmitted symbols Xm(k) as

Ĥm(k) =
Ym(k)
Xm(k)

= Hm(k) +
Im(k)
Xm(k)

+
Wm(k)
Xm(k)

. (4.6)

The second term on the right hand side is the bias in the estimate due to ICI and can have an effect

on the estimation if the Doppler frequency is relatively high. However, the ICI term depends on the

signal values modulated on all the other subcarriers. Since, we are interested in the correlation of

the channel estimate at kth subcarrier in time, ICI appears uncorrelated. Hence, it can be treated

as additional noise. The last term in (4.6) represents the AWGN.

It is known that the channel in time domain is limited to the maximum excess delay of the

channel. The data mapped into various subcarriers are zero-mean random variables. Thus ICI

appears fast varying over subcarriers. The same holds true for the totally random AWGN samples

in frequency domain which change very fast over OFDM subcarriers. Therefore, by transforming the

frequency domain channel components, the true channel and noise components (ICI and AWGN)

can be separated. When IFFT is applied to the channel frequency response (CFR), the CIR will

be concentrated on the first few taps, while noise and ICI terms will be spread over all IFFT size.

Fig. 4.1 illustrates this fact for a MSS with moderate vehicular speed. The average power levels of

the components in the channel estimate are plotted for a uniform power delay profile (PDP).

In this chapter, we propose to use time domain channel estimation instead of frequency domain

estimation in order to increase the immunity to white noise and to ICI in the channel estimation.

Similar approaches are used in OFDM literature for channel estimation, and are commonly referred

to as transform-domain methods [145]. In the time-domain, the first few taps can be used to estimate

the Doppler spread with lower estimation error. Besides, this can allow use of less number of symbols

to find the autocorrelation and so we can reduce memory usage and computation time needed for

fast adaptation. By using (4.2) and following the assumptions, we can obtain the autocorrelation of

a CIR tap as

E
[
ĥ(n)ĥ∗(n + sTS)

]
= J0(2πfDsTS) + σ2

rδ(l) (4.7)

where ĥ is the estimate of the time domain channel taps, s is the difference in OFDM symbol number

and σ2
r is the combined reduced variance of ICI and AWGN.
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Figure 4.1 Average powers of the channel components and disturbances in time-domain.

4.3.1 Computing fD from Auto-Correlation Function

Once the ACF is estimated, different methods can be used to calculate the Doppler spread (see

references in [140]). We use a similar method to that proposed in [146] to extract fD from the

calculated ACF. In this method, the best hypothesis that minimizes the mean-squared-error (MSE)

between the actual ACF and the Bessel function given by (4.2) is used. The Doppler range is divided

into several bins depending on accuracy required. The ACF of few lags is then obtained and the

estimate of Doppler spread which minimizes the MSE goal function is selected.

We note here that although the zero-crossing method used in [147] avoids the influence of noise on

finding zero-crossing point if perfect match with Bessel function is assumed, this is unlikely to occur

especially in relatively low Doppler values where the high lags are not reliable due to insufficient

samples for correlation computation. The method will require very large number of symbols for

ACF computation. On the contrary, here we assume use of less symbols to obtain the ACF.
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4.3.2 Coherence Time Versus Doppler Spread

The coherence time of the channel tC is the duration over which the channel characteristics can

be considered as time-invariant [148]. It is of utmost importance for evaluating and adapting the

techniques that try to exploit time diversity of the channel or to compensate its time selectivity [149].

Time diversity can be exploited if the separation between time slots carrying the same information

exceeds the coherence time. For an OFDM transmission system, coherence time tC has a special

significance because symbol duration should be chosen to be much smaller than tC to avoid ICI. Al-

though, there is no specific definition for the coherence time, it is known to be inversely proportional

to the maximum Doppler frequency [136], i.e.

tC ≈ 1
fD

. (4.8)

The computation of the coherence time can be easily obtained from the ACF of the available channel

estimates if a certain threshold is attained within an amount of time lags. Commonly, when the time

elapsed for ACF to drop to half of its maximum zero lag value, this can be regarded as a measure

of the coherence time. It is obvious that our proposed method will also allow a reliable estimate of

the coherence time due to its immunity to noise and ICI perturbations.

4.3.3 Complexity of Proposed Method Versus Gains

The proposed modification performs an added IFFT operation. In some cases this might be

already implemented in order to perform reliable channel estimation. The added complexity of this

is O(N log N). The complexity of computing ACF is O(C2), C is the number of samples used to

estimate the ACF and can be regarded as the correlation length. For a fixed FFT size, by reducing

C to ten folds, the proposed method will allow 100 folds complexity reduction in obtaining ACF

but adds N log N . As a numerical example, in [147], pilot carriers over 4096 symbols were used

in a 2048 FFT size OFDM system to estimate ACF. In our proposed modification, we use only

200 symbols and even get gains in our results. Simple calculations show tremendous 350 times

complexity reduction and at least 20 times reduction in processing time.
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Figure 4.2 Mean squared error as a function of signal to noise ratio for a fixed Dopper spread of
300Hz.

4.4 Numerical Results

Computer simulations were performed to evaluate the performance of the proposed scheme. An

OFDM system with 64 subcarriers is used for simulations. The carrier frequency is set to 3.5 GHz

and CP size of 16 is used. The available channel bandwidth is 1 MHz and QPSK is used for mapping

bits into data symbols. For a MSS speed of 55mph, fD=300Hz. A 16-tap time-varying channel with

exponentially decaying power profile, which is generated according to [138], is used in simulations.

For obtaining the Doppler values, all of the subcarriers in the CFR based method and all of

the taps in the CIR method are used. The correlations from different taps are added up to obtain

maximum ratio combining.

Fig. 4.2 shows the normalized mean square error (NMSE) of Doppler estimation when estimation

is done using CFR and when it is done using CIR as proposed. 300 OFDM symbols are used to

obtain the correlation values and the Doppler spread was 300 Hz. We can see a considerable gain

achieved by the proposed method especially in low SNR (5-10 dB) conditions where the effect of

noise is more visible.
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Figure 4.3 Mean squared error as a function of averaging size for fixed Dopper spread of 300Hz and
SNR value of 15dB.

The NMSE versus the correlation length is shown in Fig. 4.3. The Doppler spread is fixed to

300Hz and SNR is 15 dB. It is evident that our method reduces the correlation length to many folds

less than conventional method for same estimation performance. In general, the results obtained

indicate robustness of this method for Doppler spread estimation in Rayleigh fading channels.

Finally, Fig. 4.4 shows the MSE as a function of the maximum Doppler frequency for a fixed SNR

of 15 dB. As this figure shows, the MSE increases for both time and frequency domain estimations

with increasing Doppler frequency. This is caused by the increased ICI power due to larger Doppler

frequencies.

4.5 Conclusion

In this chapter, Doppler spread estimation for mobile OFDM systems in Rayleigh fading channels

is presented. Doppler spread is estimated using the time domain channel estimates instead of

frequency domain channel response. By using the CIR, the effect of the noise and ICI on the

frequency-domain channel is reduced. Computer simulations are carried out for comparing the
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Figure 4.4 Mean squared error as a function of the maximum Doppler frequency for SNR value of
15dB.

performances of time domain and frequency domain Doppler estimation methods. Our results show

the validity and the robustness of proposed scheme in wide range of operating conditions.
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CHAPTER 5

MMSE NOISE PLUS INTERFERENCE POWER ESTIMATION IN ADAPTIVE
OFDM SYSTEMS

5.1 Introduction

In orthogonal frequency division multiplexing (OFDM), the wide transmission spectrum is di-

vided into narrower bands and data is transmitted in parallel on these narrow bands. Therefore,

the symbol period is increased by the number of sub-carriers, decreasing the effect of inter-symbol

interference (ISI). The remaining ISI effect is eliminated by cyclically extending the signal. OFDM

provides effective solution to high data-rate transmission by its robustness against multi-path fad-

ing [124]. Parallel with the possible data rates, the transmission bandwidth of OFDM systems is also

large. UWB-OFDM [150] and IEEE 802.16 based wireless metropolitan area networks (WMANs)

[151] are examples of OFDM systems with large bandwidths. Because of these large bandwidths,

noise can not be assumed to be white with flat spectrum across subcarriers.

The signal-to-noise ratio (SNR) is broadly defined as the ratio of desired signal power to noise

power and has been accepted as a standard measure of signal quality for communication systems.

Adaptive system design requires the estimate of SNR in order to modify the transmission parame-

ters to make efficient use of system resources. Poor channel conditions, reflected by low SNR values,

require that the transmitter modifies transmission parameters such as coding rate, modulation mode

etc. in order to compensate for the channel and to satisfy certain application dependent constraints

such as constant bit-error-rate (BER) and throughput. Dynamic system parameter adaptation re-

quires a real-time noise power estimator for continuous channel quality monitoring and corresponding

compensation in order to maximize resource utilization. In [152–154], bit loading in DMT systems

is performed using the knowledge of SNR information in each subcarrier position, and adaptive bit-

loading is applied to OFDM systems in [155,156]. In these papers, SNR is assumed to be perfectly

known. In [157] the effect of imperfect SNR information on adaptive bit-loading is investigated,

but the errors are assumed to be caused by channel estimation and noise variance is assumed to
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be constant over all subcarriers. The knowledge of SNR also provides information about the chan-

nel quality which can be used by handoff algorithms, power control, channel estimation through

interpolation, and optimal soft information generation for high performance decoding algorithms.

White noise is rarely the case in practical wireless communication systems where the noise is

dominated by interferences, which are often colored in nature. This is more pronounced in OFDM

systems where the bandwidth is large and the noise power is not the same over all of the sub-carriers.

Color of the noise is defined as the variation of its power spectral density in frequency domain. This

variation of spectral content affects certain sub-carriers more than the others. Therefore, an averaged

noise estimate is not the optimal technique to use. The SNR can be estimated using regularly

transmitted training sequences, pilot data or data symbols (blind estimation). In this chapter, we

restrict ourselves to data aided estimation. A comparison of time-domain SNR estimation techniques

can be found in [158]. There are several other SNR measurement techniques which are given in [159]

and references listed therein. In the literature of OFDM SNR estimation, the number of related

works is limited. In conventional SNR estimation techniques, the noise is usually assumed to be

white and an SNR value is calculated for all subcarriers [160–163]. In [161], channel estimation for

an OFDM system with multiple transmit and receive antennas is studied. Using the intermediate

signals from channel estimation, noise variance is also calculated. Pilots are used for estimation

and only one noise variance is estimated for the whole subcarrier range. In [162], the noise variance

(assumed to be constant for each subcarrier) is estimated by finding the eigenvalue decomposition of

the channel frequency correlation (CFC). The eigen-decomposition will partition the signal into noise

subspace and signal subspace. If the length of the multipath channel is known, which is estimated

from the eigenvalues using minimum descriptive length (MDL) estimation method, one can get

noise variance and channel power. SNR estimation for an OFDM system under AWGN channel

is given in [163], where estimation is performed using the BPSK modulated preamble symbols of

HiperLAN/2. In [164, 165], the assumption that the noise variance is constant over subcarriers is

removed by calculating SNR values for each subcarrier. However, the correlation of the noise variance

across subcarriers is not used in either paper as noise variance is calculated for each subcarrier

separately. Blind (expectation maximization (EM)) and decision-directed noise variance estimation

algorithms are given in [164]. The noise variances are calculated separately for each subcarrier by

assuming they are constant over time. Therefore, the noise variance at each subcarrier is assumed to

be independent of each other and the same algorithm is applied for each subcarrier. For the decision
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directed approach, the distribution of error is obtained, and noise variance is calculated using the

variance of estimated error values. A look-up table or the derived equations can be used for this

transformation. SNR estimation for a 2 × 2 MIMO-OFDM system is presented in [165]. SNR is

estimated using the preambles without the need for channel estimation. Two SNRs are defined, SNR

per subcarrier and overall SNR. SNR per subcarrier is calculated using four neighboring subcarriers.

However, the correlation of the noise variance across subcarriers is not used since noise variance is

calculated for each subcarrier separately.

In this chapter, the white noise assumption is removed and variation of the noise power across

OFDM sub-carriers as well as across OFDM symbols is considered. The noise variances at each

subcarrier are estimated using a two dimensional MMSE filter whose coefficients are calculated

using statistics of the noise. These estimates are especially useful for adaptive modulation, optimal

soft value calculation for improving channel decoder performance, and for opportunistic spectrum

usage for cognitive radios. Moreover, it can be used to detect and avoid narrowband interference.

The chapter focuses more on estimation of noise power, and assumes that the signal power, and

hence SNR, can be estimated from the channel estimates.

This chapter is organized as follows. In the next section, our system model is described. Sec-

tion 5.3 explains the details of the proposed algorithms. Numerical results are presented in Sec-

tion 5.4 and the conclusions are given in Section 5.5.

5.2 System Model

For the time and frequency domain OFDM symbols, the model given in Section 2.2 is used.

At the receiver, the signal is received along with noise and interference. After synchronization and

removal of the cyclic prefix (CP)1, discrete Fourier transform (DFT) is applied to the received signal.

The received signal at the kth subcarrier of the mth OFDM symbol can then be written as

Ym(k) = Xm(k)Hm(k) + Im(k) + Wm(k)︸ ︷︷ ︸
Zm(k)

0 ≤ k ≤ N − 1, (5.1)

where Im(k) is the colored noise caused by interferers or primary users. We assume that the im-

pairments due to imperfect synchronization, transceiver non-linearities etc. are incorporated into

Wm(k) and the channel frequency response (CFR) does not change within the observation time.

1The length of the CP is assumed to be larger than the maximum excess delay of the channel.
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The white noise is modeled as a zero-mean Gaussian random variable with variance σ2
w, i.e.

Wm(k) = N (0, σ2
w). The interference term is also modeled as a zero-mean Gaussian variable whose

variance is a function of the symbol and subcarrier indices, i.e. Im(k) = N (0, σ2
m,k), where σm,k is

the local standard deviation. Note that although the time-domain samples of the interference signal

are correlated (colored), the frequency-domain samples Im(k) are not correlated, but their variances

are correlated [166]. Assuming that the interference and white noise terms are uncorrelated, the

overall noise term Zm(k) can be modeled as Zm(k) = N (0, σ′m,k
2), where σ′m,k

2 = σ2
m,k + σ2

w is the

effective noise variance. The goal of this chapter is to estimate σ′m,k
2 which can be used to find SNR

or to measure the spectrum that the OFDM system is currently using. Note that if σw À σm,k, the

overall noise can be assumed to be white and it is colored otherwise.

The autocorrelation of the effective noise power is defined as

Rσ′2(τ, ∆) = Em,k

[
σ′m,k

2
σ′m+τ,k+∆

2
]
, (5.2)

where Em,k [·] represents expectation over OFDM symbols and subcarriers. When the time depen-

dency is dropped, the correlation of variance in the frequency dimension can be expressed as

Rσ′2(∆) = Ek

[
σ′k

2
σ′k+∆

2
]
. (5.3)

5.3 Details of the Proposed Algorithm

In this chapter, three different scenarios for the noise process Zm(k) are considered: white

noise, stationary2 colored noise, and non-stationary colored noise. When the frequency direction

is considered, the first scenario corresponds to the commonly assumed case, where the frequency

spectrum of the noise is uniform. In the second scenario, the existence of a strong interferer which

has larger bandwidth than the desired OFDM signal is addressed. A strong co-channel interferer is

a good example for this case. In the third scenario, an interferer whose statistics are not stationary

with respect to frequency is assumed to be present. Adjacent channel interference or a co-channel

interference with a smaller bandwidth than the desired signal (narrowband interference) are examples

of this type of interference. These three scenarios can also be applied to time domain where time-

domain statistics of Zm(k) should be considered.

2Stationarity in both time and frequency domains are considered.
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The commonly used approach for noise power estimation in OFDM systems is based on finding

the difference between the noisy received sample in the frequency domain and the best hypothesis

of the noiseless received sample [160]. It can be formulated as

Ẑm(k) = Ym(k)− X̂m(k)Ĥm(k), (5.4)

where X̂m(k) is the noiseless sample of the received symbol and Ĥm(k) is the channel estimate for

the kth sub-carrier of nth OFDM symbol. The bias caused by incorrect hypothesis of data symbols

X̂m(k) can be removed by using a look-up table or statistical relation between the true and estimated

SNR values [164].

We propose to filter the noise variance estimates calculated at each subcarrier |Ẑm(k)|2 using a

two dimensional filter. Filtering will remove the common assumption of having the noise to be white

and it will take the colored interference (both in time and frequency) into account. Let us represent

the weighting coefficient of the filter at each subcarrier with βu,l. In this case, the estimate of the

noise power at kth subcarrier of nth OFDM symbol can be written as

σ̂′
2

m,k =
U∑

u=−U

L∑

l=−L

βu,l|Ẑn+u,k+l|2, (5.5)

where 2U +1 and 2L+1 are the dimensions of the filter in time and frequency directions respectively.

The weighting coefficients should have a unity power, i.e.
∑

u

∑
l βu,l = 1. The two dimensional

filter given by (5.5) can be complex for practical implementation. To reduce the complexity, two

cascaded one dimensional filters in time and frequency are used instead. This approach is valid as

the variation of the noise variance in time and frequency dimensions are independent. For the rest of

the chapter, filtering in the frequency direction will be considered and symbol index will be dropped

for notational clarity. Time domain filtering is the dual of the frequency domain counterpart, and

the same algorithm can be applied for filtering. The estimator in frequency domain only can be

represented as

σ̂′
2

k =
L∑

l=−L

βl|Ẑk+l|2, (5.6)

where βl satisfies
∑L

l=−L βl = 1. The filter coefficients βl can be calculated using the statistics of

the interference plus noise Z(k). In this chapter, we use a minimum mean-square error (MMSE)

approach for finding these coefficients.
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Estimation error at the kth subcarrier can be written as

ε(k) = σ̂′
2

k − σ′k
2 (5.7)

=
L∑

l=−L

βl|Ẑ(k + l)|2 − σ′k
2
. (5.8)

Note that the instantaneous errors (5.8) will be a function of the filter coefficients βl, the interference

statistics, average interference power, and average noise power. Hence, ideally the optimum values

for weighting coefficients will be different for each subcarrier. However, this requires knowledge of

local statistics and has a large complexity. In order to overcome these problems, we use the same

coefficients for the whole subcarrier range.

The filter coefficients can be calculated by minimizing the mean-squared-error (MSE), i.e by

minimizing the expected value of the square of (5.8). The MSE can be formulated as

ρ = Ek

[
ε(k)2

]
(5.9)

= Ek




(
L∑

l=−L

βl|Ẑ(k + l)|2 − σ′k
2

)2

 (5.10)

= Ek

[
L∑

l=−L

L∑

u=−L

βlβu|Ẑ(k + l)|2|Ẑ(k + u)|2 − 2σ′k
2

L∑

l=−L

βl|Ẑ(k + l)|2 + σ′k
4

]
, (5.11)

where Ek [·] represents expectation over subcarriers. By further simplification, (5.11) can be written

in terms of the auto-correlation of the variance of the noise component Rσ′2(τ, ∆) and the filter

coefficients as

ρ =

(
1 +

L∑

l=−L

β2
l

)
Rσ′2(0)− 2

L∑

l=−L

βlRσ′2(l) +
L∑

l=−L

L∑

u=−L

βlβuRσ′2(l − u). (5.12)

The weighting coefficients that minimize (5.12) yield the MMSE solution. In order to find this

solution, the derivative of MSE ρ with respect to filter coefficients can be set to zero. We can

write (5.12) in matrix form for simplifying the calculations. Let β = [β−L · · ·β0 · · ·βL]T be the

coefficient vector, r = [Rσ′2(−L) · · ·Rσ′2(0) · · ·Rσ′2(L)]T be the correlation vector, and Cσ′2 be the

covariance matrix of size (2L + 1) × (2L + 1) with coefficients Cσ′2(i, j) =σ′2 (i − j). Using these
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definitions, the MSE equation given in (5.12) can be represented in matrix form as

ρ = Rσ′2(0)(1 + βT β)− 2βT r + βT Cσ′2β. (5.13)

The derivative of (5.13) with respect to the filter coefficients is

d

dβ
ρ = 2Rσ′2(0)β − 2r + 2Cσ′2β. (5.14)

By setting the derivative to zero, i.e. dρ/dβ = 0, and arranging the terms, the coefficient vector can

be calculated as

β = (Cσ′2 + Rσ′2(0)I)−1r, (5.15)

where I is (2L+1)× (2L+1) identity matrix. The variance of the proposed estimator can be found

by inserting (5.15) into (5.13) as

ρ = Rσ′2(0)− rT (Cσ′2 + Rσ′2(0)I)−1r. (5.16)

Some example weighting factors3 in the frequency domain are shown in Fig. 5.1 for different

interference to white noise power ratios which is defined as

INRdB , 10 log10

∑N−1
k=0 E

[|I(k)|2]
∑N−1

k=0 E [|W (k)|2]
. (5.17)

As the noise becomes more colored (high decibel values in the figure), the filter becomes more

localized in order to be able to capture the variation of noise variance. On the other hand, filter

turns into a rectangular window when white noise becomes more dominant. Note that the weighting

coefficients depend on the statistics of interference and white noise. These statistics can be obtained

with averaging by assuming the noise process is time-stationary in a given interval. However, the

statistics should be updated in time as they might be changing. In order to achieve this, a tracking

method such as an alpha-tracker can be employed.
3See Section 5.4 for details of the considered system.
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Figure 5.1 Weighting coefficients for different colored noise to white noise power ratios.

5.3.1 Rectangular Window

In order to decrease the computational complexity of the filtering algorithm, we propose an

approximate method. Instead of using the weighting factor β for filtering, a simple rectangular

window, i.e. a moving average, is used. The dimensions of this filter (as OFDM symbol and

subcarrier number) can be calculated using the statistics of the received signal. The filter coefficients

in rectangular window case can be written as

β′l =





1/Lw −Lw ≤ l ≤ Lw

0 otherwise
(5.18)

where 2Lw + 1 is the length of rectangular window. For calculating the optimum window size, the

MSE given in (5.12) can be minimized by excessive searching [25]. Note that in this case βl should

be replaced with β′l.

84



The window size can also be calculated using the weight βl given in (5.15) by minimizing the

squared error between the two coefficients as

Lw = arg min
Lw

{
L∑

l=−L

(βl − β′l)
2

}
. (5.19)

Our results show that both methods for calculating Lw yield very close results, and the second

method, i.e. calculation using (5.19), is used in this chapter for finding the length of rectangular

window.

For calculating the noise variance at one subcarrier, 2L multiplications and additions are required

in the MMSE filtering algorithm. On the other hand, only 2Lw additions and 1 division is required

in the rectangular window algorithm. Although, the reduction in the computational complexity is

large, the performance loss due to the rectangular windowing is not very big as will be discussed

later.

5.3.2 Edges and Time Averaging

The filtering method given by (5.6) requires the noise estimates at L-many left and right subcar-

riers for estimating the variance at current subcarrier. This might be a problem at the edges of the

spectrum as the weights are calculated by assuming that averaging can be done on both sides of the

current subcarrier. In order to find the weighing values at the edges, (5.6) is modified and (5.15) is

derived again. In order to find the noise variance at the right edge of the spectrum, for example,

(5.6) can be updated as

σ̂′
2

k =
0∑

l=−L

βl|Ẑ(k + l)|2. (5.20)

In this case, the same formula for β given in (5.15) can be used for calculating the weighting

coefficients. However, the definition of β and r should be updated as β = [β−L · · ·β0]T and r =

[Rσ′2(−L) · · ·Rσ′2(0)]T .

A similar problem to the edge problem in frequency domain is observed in the time domain

filtering (across OFDM symbols) if the estimation is delay sensitive. In this case, the estimator

might not have OFDM symbols after the current symbol and hence filtering should be applied as

defined in (5.20). Therefore, the noise variance or other related parameters can be estimated using

only the previous OFDM symbols.
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5.4 Numerical Results

An OFDM system with 512 subcarriers and 20 MHz bandwidth is considered for testing the

proposed algorithms. The stationary interference is assumed to be caused by a co-channel user

transmitting in the same band with the desired user, and a co-channel signal with 3 MHz bandwidth

centered in the middle of the 20 MHz band is used to simulate the non-stationary interference (please

refer to Fig. 5.4). Filtering is performed in only frequency domain, i.e. βm(k) = w(k), and only one

OFDM symbol is considered. However, the results can be generalized to the two dimensional case

as mentioned earlier. The length of the MMSE filter is set to 120, i.e. L = 60. Normalized MSE is

used as a performance measure of the estimator as it reflects both the bias and the variance of the

estimation. The normalized MSE of σ′2 is defined as

NMSE(σ′2) ,

∑N−1
k=0 E

[(
σ̂′

2

k − σ′k
2
)2

]

∑N−1
k=0 σ′k

4
. (5.21)

The MSE performances of the conventional, MMSE filtering, and rectangular window algorithms

are given in Figs. 5.2 and 5.3. Fig. 5.2 gives the MSEs as a function of the stationary interference to

white noise power ratio and Fig. 5.3 gives the MSEs as a function of the non-stationary interference

to white noise power ratio. The interference to noise ratio is as defined in (5.17), and the total

noise plus interference power is kept constant for both figures. When the ratio is very small (e.g.

-20 dB), the total noise can be considered as white noise, and the conventional algorithm performs

best because its inherent white noise assumption is valid. The estimation error increases as the

total noise becomes more colored for all three methods. The proposed filtering algorithms have

considerable performance gain over the conventional one. The rectangular window based algorithm

has very close performance to the MSE filtering, and it may be preferable in practical applications

because of its lower complexity. Note that Figs. 5.2 and 5.3 show the MSEs in logarithmic scale.

The gain obtained by using the proposed algorithms at high power ratios is much larger than the

MSE loss compared to conventional algorithm at low power ratios (white noise case).

Finally, the application of the proposed methods to narrowband interference detection is studied4.

Fig. 5.4 shows the true and estimated power levels for a non-stationary interference/primary user.

Figs. 5.5 and 5.6 show the probability of detection and probability of false alarm rates for a single
4Interference detection and primary user identification are the similar operations. Hence, the presented results are

valid for primary user identification in cognitive radios.
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Figure 5.2 Mean squared error for different algorithms as a function of the stationary interference
to white noise power ratios.
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Figure 5.3 Mean squared error for different algorithms as a function of the non-stationary interfer-
ence to white noise power ratios.
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Figure 5.4 True and estimated noise variances in the presence of a narrowband interferer.

subcarrier. The output of the frequency domain filters (MMSE and rectangular) and the magnitude

of the FFT output (no filtering) are passed through a threshold detector. The selection of threshold

value can be performed in order to satisfy a target probability of detection or probability of false

alarm [95]. However, it is out of the scope of this chapter and the threshold values are set equal to

the white noise variance plus half of the interference variance, i.e. σ2
w +σ2

k/2. Both the probability

of detection and probability of false alarm performances are improved by application of the proposed

MMSE and rectangular filtering which makes the energy detector based approach a better candidate

for interference detection. Figs. 5.4, 5.5 and 5.6 show that the proposed methods can be used for

identifying the subcarriers with interference and also for detecting the primary users in cognitive

radios.

5.5 Conclusion

In this chapter, a new noise variance estimation algorithm for OFDM systems is proposed. The

proposed method removes the common assumption of white Gaussian noise and considers colored

noise. Noise variance, and hence SNR, is calculated by using two cascaded filters in time and fre-
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Figure 5.5 Probability of detection of interference as a function of interference to white noise power
ratios.
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Figure 5.6 Probability of false alarm rates as a function of interference to white noise power ratios.
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quency directions whose coefficients are calculated using the statistics of noise/interference variance.

Simulation results show that the proposed algorithm out-performs conventional algorithm under

colored noise cases and it can identify the presence of interference in the OFDM transmission band.
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CHAPTER 6

SPECTRUM SENSING FOR COGNITIVE RADIO APPLICATIONS

6.1 Introduction

One of the most important components of cognitive radio concept is the ability to measure,

sense, learn, and be aware of the parameters related to the radio channel characteristics, availability

of spectrum and power, interference and noise temperature, radio’s operating environment, user

requirements and applications, available networks (infrastructures) and nodes, local policies and

other operating restrictions. In cognitive radio terminology, primary users can be defined as the

users who have higher priority or legacy rights on the usage of a specific part of the spectrum. On

the other hand, secondary users, which have lower priority, exploit this spectrum in such a way that

they do not cause interference to primary users. Therefore, secondary users need to have cognitive

radio capabilities, such as sensing the spectrum reliably to check whether it is being used by a

primary user, and to change the radio parameters to exploit the unused part of the spectrum.

Being the focus of this chapter, spectrum sensing by far is the most important task among

others for the establishment of cognitive radio. Spectrum sensing includes awareness about the

interference temperature and existence of primary users. As an alternative to spectrum sensing,

geolocation and database or beacons1 can be used for determining the current status of the spectrum

usage [167, 168]. In this chapter, we focus on spectrum sensing performed by cognitive radios

because of its broader application areas while referring other methods as needed. Although spectrum

sensing is traditionally understood as measuring the spectral content, or measuring the interference

temperature over the spectrum; when the ultimate cognitive radio is considered, it is a more general

term that involves obtaining the spectrum usage characteristics across multiple dimensions such as

time, space, frequency, and code. It also involves determining what type of signals are occupying
1When beacons are used, the transmitted information can be occupancy of a spectrum as well as other advanced

features such as channel quality.
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the spectrum (including the modulation, waveform, bandwidth, carrier frequency, etc.). However,

this requires more powerful signal analysis techniques with additional computational complexity.

Various aspects of spectrum sensing task are illustrated in Fig. 6.1. The goal of this chapter is to

point out several aspects of spectrum sensing as shown in this figure. These aspects will be discussed

in the rest of this chapter. We start by explaining some challenges associated with spectrum sensing

in Section 6.2. Section 6.3 explains the main spectrum sensing methods. Cooperative sensing concept

and its various forms are introduced in Section 6.4, followed by a discussion of external sensing

algorithms in Section 6.5. Statistical modeling of network traffic and utilization of these models for

prediction of primary user behavior is studied in Section 6.6. Section 6.7 explains the factors on

deciding the frequency of spectrum sensing. Hardware perspective of sensing problem is discussed in

Section 6.8. We introduce the multi-dimensional spectrum sensing concept in Section 6.9. Finally,

sensing features of some current wireless standards are explained in Section 6.10 and our conclusions

are given in Section 6.11.
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6.2 Challenges

Before getting into the details of spectrum sensing techniques, some challenges associated with

the spectrum sensing for cognitive radio is given in this section.

6.2.1 Hardware Requirements

Spectrum sensing for cognitive radio applications requires high sampling rate, high resolution

analog to digital converters (ADCs) with large dynamic range, multiple analog front end circuitry,

and high speed signal processors. Estimating the noise variance or interference temperature over

transmission of desired narrowband signals is not new. Such noise variance estimation techniques

have been popularly used for optimal receiver designs like channel estimation, soft information gen-

eration etc., as well as for improved hand-off, power control, and channel allocation techniques. The

noise/interference estimation problem is easier for these purposes as receivers are tuned to receive

signals that are transmitted over a desired bandwidth. Moreover, receivers are capable of processing

the narrowband baseband signals with reasonably low complexity and low power processors. How-

ever, in cognitive radio, terminals are required to process transmission over a much wider band for

sensing any opportunity.

6.2.2 Hidden Primary User Problem

Hidden primary user problem is similar to the hidden node problem in carrier sense multiple

accessing (CSMA). This problem can be caused by many factors including severe multipath fading or

shadowing that secondary users observe while scanning primary users’ transmissions. Fig. 6.2 shows

an illustration of hidden node problem. Here, cognitive radio device causes unwanted interference

to the primary user (receiver) as the primary transmitters signal could not be detected because of

the positioning of devices in space.

6.2.3 Spread Spectrum Primary Users

Primary users that use frequency hopping and spread spectrum signaling, where the power of

the primary user signal is distributed over a wider frequency even though the actual information

bandwidth is much narrower, are difficult to detect. Especially, frequency hopping based signaling

creates significant problems regarding to spectrum sensing. This problem can be partially avoided

if the hopping pattern is known and perfect synchronization to the signal can be achieved.
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Interference

Figure 6.2 Illustration of hidden primary user problem in cognitive radio systems.

6.2.4 Sensing Time

Primary users can claim their frequency bands anytime while cognitive radio is operating at that

band. In order to prevent interference to and from primary license owners, cognitive radio should

be able to identify the presence of primary users as quickly as possible and should vacate the band

immediately. Hence, sensing method should be able to identify the presence of primary user within

a certain duration. This requirement possesses a limit on the performance of sensing algorithm and

creates a challenge for cognitive radio design.

6.2.5 Other Challenges

Some other challenges that need to be considered while designing effective spectrum sensing

algorithm include implementation complexity, presence of multiple secondary users, coherence times,

multipath and shadowing, cooperation, competition, robustness, heterogeneous propagation losses,

and power consumption.

6.3 Spectrum Sensing Methods for Cognitive Radio

The present literature for spectrum sensing is still in its early stages of development. A num-

ber of different methods are proposed for identifying the presence of signal transmission. In some

approaches, characteristics of the identified transmission are detected for deciding the signal trans-
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mission as well as identifying the signal type. In this section, some of the most common spectrum

sensing techniques in the cognitive radio literature are explained.

6.3.1 Matched Filtering

Matched-filtering is known as the optimum method for detection of primary users when the

transmitted signal is known [148]. The main advantage of matched filtering is the short time2 to

achieve a certain probability of false alarm or probability of miss detection [169] as compared to other

methods that are discussed in this section. However, matched-filtering requires the cognitive radio

to demodulate received signals. Hence, it requires perfect knowledge of the primary users signaling

features such as bandwidth, operating frequency, modulation type and order, pulse shaping, frame

format etc. Moreover, since cognitive radio needs receivers for all signal types, implementation com-

plexity of sensing unit is impractically large [170]. Another disadvantage is large power consumption

as various receiver algorithms need to be executed for detection.

6.3.2 Waveform Based Sensing

Known patterns are usually utilized in wireless systems to assist synchronization or for other pur-

poses. Such patterns include preambles, midambles, regularly transmitted pilot patterns, spreading

sequences etc. In the presence of a known pattern, sensing can be performed by correlating the

received signal with a known copy of itself [171, 172]. This method is only applicable to systems

with known signal patterns, and it is termed as waveform based sensing. In [171], it is shown that

waveform-based sensing outperforms energy detector based sensing in reliability and convergence

time. Furthermore, it is shown that the performance of the sensing algorithm increases as the length

of the known signal pattern increases. As one of the methods for analyzing the wireless local area

network (WLAN) channel usage characteristics, packet preambles of IEEE 802.11b [173] signals are

exploited in [174, 175]. Measurement results presented in [176] show that waveform based sensing

requires short measurements time. However, it is susceptible to synchronization errors.

Let us assume that the received signal has the following simple form

y(n) = s(n) + w(n), (6.1)

2The required number of samples grows as O(1/SNR) for a target probability of false alarm or miss detection at
low signal-to-noise ratios (SNRs) [169].
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where s(n) is the signal to be detected, w(n) is the additive white Gaussian noise (AWGN) sample,

and n is the sample index. Note that s(n) = 0 when there is no transmission by primary user. The

waveform based sensing metric3 can be obtained as [171]

M = Re

[
N∑

n=1

y(n)s∗(n)

]
, (6.2)

where N is the length of known pattern. In the absence of the primary user, the metric value

becomes

M = Re

[
N∑

n=1

w(n)s∗(n)

]
. (6.3)

Similarly, in the presence of a primary user’s signal, the sensing metric becomes

M =
N∑

n=1

|s(n)|2 + Re

[
N∑

n=1

w(n)s∗(n)

]
. (6.4)

The decision on the presence of a primary user signal can be made by comparing the decision metric

M against a fixed threshold λW . This is equivalent to distinguishing between the following two

hypotheses:

H0 : y(n) = w(n), (6.5)

H1 : y(n) = s(n) + w(n). (6.6)

The performance of the detection algorithm can be summarized with two probabilities: proba-

bility of detection PD and probability of false alarm PF . PD is the probability of detecting a signal

on the considered frequency when it truly is present, thus large detection probability is desired. It

can be formulated as

PD = Pr (M > λW |H1) , (6.7)

where λW is the threshold value. PF is the probability that the test incorrectly decides that the

considered frequency is occupied when it actually is not, and it can be written as

PF = Pr (M > λW |H0) . (6.8)

3In this chapter, time-domain sampling is explained as an example. Modified versions of the method explained in
this chapter can be used in frequency domain as well. Likewise, the method given in this chapter can be modified
depending on the available pattern.
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PF should be kept as small as possible. The decision threshold λW can be selected for finding an

optimum balance between PD and PF . However, this requires the knowledge of noise and detected

signal powers. The noise power can be estimated, but the signal power is difficult to estimate as it

changes depending on ongoing transmission characteristics and the distance between the cognitive

radio and primary user. In practice, the threshold is chosen to obtain a certain false alarm rate.

Hence, the knowledge of noise variance is enough for selection of a threshold.

6.3.3 Cyclostationarity Based Sensing

Cyclostationarity feature detection is a method for detecting primary user transmissions by ex-

ploiting the cyclostationarity features of the received signals [170,177–182]. Cyclostationary features

are caused by the periodicity in the signal or in its statistics like mean and autocorrelation. Instead

of power spectral density (PSD), cyclic correlation function is used for detecting signals present

in a given spectrum. The cyclostationarity based detection algorithms can differentiate noise from

primary users’ signals. This is a result of the fact that noise is wide-sense stationary (WSS) with no

correlation while modulated signals are cyclostationary with spectral correlation due to the redun-

dancy of signal periodicities [179].

The cyclic spectral density (CSD) function of received signal (6.1) can be calculated as [183]

S(f, α) =
∞∑

τ=−∞
Rα

y (τ)e−j2πfτ , (6.9)

where

Rα
y (τ) = E

[
y(n + τ)y∗(n− τ)ej2παn

]
(6.10)

is the cyclic autocorrelation function (CAF), and α is the cyclic frequency. The CSD function outputs

peak values when the cyclic frequency is equal to the fundamental frequencies of transmitted signal

x(n). Cyclic frequencies can be assumed to be known [177, 182] or they can be extracted and used

as features for identifying transmitted signals [180].

6.3.4 Energy Detector Based Sensing

Energy detector based approaches, also known as radiometry or periodogram, are the most

common ways of spectrum sensing because of their low computational and implementation com-

plexities [31, 96, 109, 170–172, 174, 175, 181, 184–190]. Moreover, they are more generic as receivers
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do not need any knowledge on the primary users’ signals. The signal is detected by comparing the

output of energy detector with a threshold which depends on the noise floor [191]. Some of the chal-

lenges with energy detector based sensing include selection of the threshold for detecting primary

users, inability to differentiate interference from primary users and noise, and poor performance

under low SNR values [171]. Moreover, the energy detector does not work efficiently for detecting

spread spectrum signals [170].

Using the same model given in (6.1), decision metric for energy detector can be written as

M =
N∑

n=0

|y(n)|2. (6.11)

The white noise can be modeled as a zero-mean Gaussian random variable with variance σ2
w, i.e.

w(n) = N (0, σ2
w). For a simplified analysis, let us model the signal term as a zero-mean Gaussian

variable as well4, i.e. s(n) = N (0, σ2
s). Because of these assumptions, the decision metric M follows

chi-square distribution with 2N degrees freedom, χ2
2N and hence, it can be modeled as

M =





σ2
w

2 χ2
2N H0,

σ2
w+σ2

s

2 χ2
2N H1.

(6.12)

For energy detector, the probabilities PF and PD can be calculated as [184]5

PF = 1− Γ
(

LfLt,
λE

σ2
w

)
, (6.13)

PD = 1− Γ
(

LfLt,
λE

σ2
w + σ2

s

)
, (6.14)

where λE is the decision threshold, and Γ (a, x) is the incomplete gamma function as given in [192]

(see Equation 6.5.1). Fig. 6.3 shows the receiver operating characteristics (ROCs) for different

SNR values. SNR is defined as the ratio of the primary user’s signal power to noise power, i.e.

SNR=σ2
s/σ2

w. The averaging size is set to 15 in this figure, N = 15. As this figure clearly shows,

the performance of the threshold detector increases at high SNR values.
4In fact, the model for s(n) is more complicated as fading should also be considered.
5Please note that the notation used in [184] is slightly different. Moreover, the noise power is normalized before it

is fed into the threshold device in [184].
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Figure 6.3 ROC curves for energy detector based spectrum sensing under different SNR values.

The threshold used in energy detector based sensing algorithms depends on the noise variance.

Consequently, small noise power estimation errors cause significant performance loss [193]. As a

solution to this problem, in [194], noise level is estimated dynamically by applying a reduced-rank

eigenvalue decomposition to incoming signal’s autocorrelation. Then, the estimated value is used to

choose the threshold for satisfying a constant false alarm rate.

Measurement results are analyzed in [174, 175] using energy detector to identify the idle and

busy periods of WLAN channels. Energy level for each GSM slot is measured and compared in [186]

for identifying the idle slots for exploitation. The sensing task in this work is different in the sense

that the cognitive radio has to be synchronized to the primary user network and the sensing time

is limited to slot duration. A similar approach is used in [195] as well for opportunistic exploitation

of unused cellular slots. In [187], power at the output of fast Fourier transform (FFT) of incoming

signal is compared with a threshold value in order to identify the number of used TV channels.

FFT is performed on the data sampled at 45 kHz around the centered TV carrier frequency for

each TV channel. The performance of energy detector based sensing over various fading channels

is investigated in [184]. Closed-form expressions for probability of detection under AWGN and
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fading (Rayleigh, Nakagami, and Ricean) channels are derived. Average probability of detection for

energy detector based sensing algorithms under log-normal shadowing and Rayleigh fading channels

is derived in [95]. It is observed that the performance of energy-detector degrades considerably under

Rayleigh fading. Forward methods based on energy measurements are studied for unknown noise

power scenarios in [196]. The proposed method adaptively estimates the noise level, hence suitable

for practical cases where noise variance is not known.

6.3.5 Radio Identification

A better knowledge about the spectrum characteristics can be obtained by identifying the trans-

mission technology used by primary users. Such an identification enables cognitive radio with a

higher dimensional knowledge as well as providing higher accuracy [31]. For example, assume that

the primary user’s technology is identified as a Bluetooth signal. Cognitive radio can use this infor-

mation for extracting some useful information in space dimension as the range of Bluetooth signal

is known to be around 10 meters6. Furthermore, cognitive radio may want to communicate with

the identified communication systems in some applications. For radio identification, feature ex-

traction and classification techniques are used in the context of European transparent ubiquitous

terminal (TRUST) project [197]. The goal is to identify the presence of some known transmis-

sion technologies and achieve communication through them. The two main tasks are initial mode

identification (IMI) and alternative mode monitoring (AMM). In IMI, the cognitive device searches

for a possible transmission mode (network) following the power on. AMM is the task of monitoring

other modes while cognitive device is having communication in a certain mode. Some of the pro-

posed methods for blind radio identification are shown in Table 6.1. Several features are extracted

from the received signal and they are used for selecting the most probable primary user technology

by employing various classification methods.

6.3.6 Other Sensing Methods

Other alternative spectrum sensing methods include multitaper spectral estimation, wavelet

transform based estimation, Hough transform, and time-frequency analysis. Multitaper spectrum

estimation is proposed in [63]. The proposed algorithm is shown to be an approximation to maximum

likelihood PSD estimator, and for wideband signals, it is nearly optimal. Although the complexity
6Please see Section 6.9 for more examples.
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Table 6.1 Blind radio identification algorithms.

Article Used Features Classification Method

Mehta [198],
Vardoulias [199]

Amount of energy detected, its distri-
bution across the spectrum, and its cor-
relation with some predefined functions
(Briefly mentioned, not explained in de-
tail).

-

Palicot [200]

Channel bandwidth and its shape: this
feature is found to be the most discrimi-
nating parameter using tables and cross-
tables, i.e. by comparing with other pa-
rameters.

Radial basis function (RBF) neu-
ral networks.

Gandetto [201]

The standard deviation of the instanta-
neous frequency and the maximum du-
ration of a signal (Time-Frequency anal-
ysis).

Feed forward back-propagation
neural networks (FFBPNNs) and
support vector machines (SVMs)
with RBF.

Fehske [180]
Spectral correlation density (SCD) and
spectral coherence function (SCF).

Multilayer linear perception net-
work (MLPN) neural networks.

Oner [177]
Spectral correlation density (SCD) and
spectral coherence function (SCF).

Statistical tests for identifying
the presence of cyclostationarity.

of this method is less than the maximum likelihood estimator, it is still computationally demanding.

Random Hough transform of received signal is used in [202] for identifying the presence of radar

pulses in the operating channels of IEEE 802.11 systems. This method can be used to detect any

type of signals with periodic patterns as well. In [203], wavelets are used for detecting edges in the

PSD of a wideband channel. Once the edges, which correspond to transitions from occupied band

to empty band or vice versa, are detected, the power within bands between two edges are estimated.

Using this information and edge positions, the PSD can be characterized as occupied or empty in a

binary fashion. The assumptions made in [203], however, need to be relaxed for building a practical

sensing algorithm.

6.4 Cooperative Sensing

The estimation of traffic in a specific geographic area can be done locally (by one cognitive radio

only) or information from different cognitive radios can be combined. In the literature, cooperation

is discussed as a solution to problems that arise in spectrum sensing due to noise uncertainty, fading,

and shadowing. Cooperative sensing decreases the probability of mis-detections and the probability
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Table 6.2 Local versus cooperative sensing.

Sensing
Method

Advantages Disadvantages

Non-cooperative
sensing (Local
sensing)

- Computational & implementation
simplicity

- Hidden node problem
- Multipath and shadowing

Cooperative sens-
ing

- Higher accuracy (close to optimal)
- Reduced sensing time [188]
- Shadowing effect and hidden node
problems can be prevented

- Complexity (complexity of sensor,
complexity of within-system cooper-
ation, complexity of among-system
cooperation)
- Traffic overhead
- The need for a control channel

of false alarms considerably. In addition, cooperation can solve the hidden primary user problem

and can decrease sensing time [176,188,189].

The interference to primary users caused by cognitive radio devices employing spectrum access

mechanisms based on simple listen-before-talk (LBT) scheme is investigated in [190] via analysis

and computer simulations. Results show that even simple local sensing can be used to explore the

unused spectrum without causing interference to existing users. On the other hand, it is shown

analytically and through numerical results that collaborative sensing provides significantly higher

spectrum capacity gains than local sensing. The fact that cognitive radio acts without any knowledge

about the location of the primary users in local sensing degrades the performance.

The challenges of cooperative sensing include developing efficient information sharing algorithms

and increased complexity [204]. The advantages and disadvantages of local and cooperative (or

collaborative) sensing methods are tabulated in Table 6.2.

In cooperative sensing architectures, the control channel can be implemented using different

methodologies. These include a dedicated band, unlicensed band such as industrial, scientific and

medical (ISM) band, and underlay ultra wide band (UWB) system [205]. Depending on the system

requirements, one of these methods can be selected. The shared information can be soft or hard

decisions made by each cognitive device [206]. Furthermore, various techniques for combining sensing

results can be employed. The performances of equal gain-combining (EGC), selection combining

(SC), and switch and stay combining (SSC) are investigated in [184] for energy detector based

spectrum sensing under Rayleigh fading. The EGC method is found to have a gain of approximately

two orders of magnitude while SC and SSC having one order of magnitude gain. As far as the
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networking is concerned, the coordination algorithm should have reduced protocol overhead and

it should be robust to changes and failures in the network. Moreover, the coordination algorithm

should introduce minimum amount of delay.

Cooperative sensing can be implemented in two fashions: centralized or distributed [207]. These

two methods will be explained in the following sections.

6.4.1 Centralized Sensing

In centralized sensing, a central unit collects sensing information from cognitive devices, identifies

the available spectrum, and broadcasts this information to other cognitive radios or directly controls

the cognitive radio traffic.

The hard (binary) sensing results are gathered at a central place which is known as access

point (AP) in [109]. The goal is to mitigate the fading effects of the channel and increase detection

performance. Resulting detection and false alarm rates are given in [208] for the sensing algorithm

used in [109]. In [206], the sensing results are combined in a central node, termed as master node, for

detecting TV channels. Hard and soft information combining methods are investigated for reducing

the probability of missed opportunity. The results presented in [109,206] show that soft information-

combining outperforms hard information-combining method in terms of the probability of missed

opportunity.

6.4.2 Distributed Sensing

In the case of distributed sensing, cognitive nodes share information among each other but they

make their own decisions as to which part of the spectrum they can use. Distributed sensing is more

advantageous in the sense that there is no need for a backbone infrastructure.

An incremental gossiping approach termed as GUESS (gossiping updates for efficient spectrum

sensing) is proposed in [209] for performing efficient coordination between cognitive radios in dis-

tributed collaborative sensing. The proposed algorithm is shown to have low-complexity with re-

duced protocol overhead. The GUESS algorithm has fast convergence and robust to network changes

as it does not require a setup phase to generate the clusters. Incremental aggregation and random-

ized gossiping algorithms are also studied in [209] for efficient coordination within a cognitive radio

network. A distributed collaboration algorithm is proposed in [189]. The collaboration is performed

between two secondary users. The user closer to primary transmitter, which has a better change of
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detecting the primary user transmission, cooperates with a far away user. An algorithm for pairing

secondary users without a centralized mechanism is also proposed. A distributed sensing method is

proposed in [95] where secondary users share their sensing information among themselves. Only final

decisions are shared in order to minimize the network overhead due to collaboration. As secondary

user receives decisions from other users and decides H1 if any of the received decisions plus its own

is H1, a fusion rule known as OR-rule. The results presented in [95] clearly show the performance

improvements achieved through collaborative sensing.

6.5 External Sensing

Another technique for obtaining spectrum information is the external sensing. In external sens-

ing, an external agent performs the sensing and broadcasts the channel occupancy information to

cognitive radios. External sensing algorithms solve some problems associated with the internal sens-

ing, which is termed as collocated sensing in [181]. The main advantages are overcoming hidden

primary user problem as well as the uncertainty due to shadowing and fading. Furthermore, as the

cognitive radios do not spend time for sensing, spectrum efficiency is increased. The sensing network

does not need to be mobile and not necessarily powered by batteries. Hence, power consumption

problem of internal sensing can also be addressed.

A sensor node detector architecture is used in [210]. The presence of passive receivers, viz.

television receivers, is detected by measuring the local oscillator (LO) power leakage. Once a receiver

and the channel is detected, the sensor node notifies cognitive radios in the region of passive primary

user via a control channel. Similar to [210], a sensor network based sensing architecture is proposed

in [181]. A dedicated network composed of only spectrum sensing units is used to sense the spectrum

continuously or periodically. The results are communicated to a sink (central) node which further

processes the sensing data and shares the information about the spectrum occupancy in the sensed

area with opportunistic radios. These opportunistic radios use the information obtained from sensing

network for selecting the bands (and time durations) of their data transmissions. The sensing

results can also be shared via a pilot channel similar to network access and connectivity channel

(NACCH) [211]. External sensing is one of the methods proposed for identifying primary users in

IEEE 802.22 standard as well (See Section 6.10).
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Figure 6.4 Binary scheme used for modeling spectrum occupation in [2].

6.6 Using History for Prediction

For minimizing interference to primary users while making the most out of the opportunities,

cognitive radios should keep track of the variations in spectrum and should make predictions. Stem-

ming from the fact that cognitive radio senses the spectrum steadily and has the ability of learning,

the history of the spectrum usage information can be used for predicting the future profile of the

spectrum. Towards this goal, knowledge about currently active devices or prediction algorithms

based on statistical analysis can be used.

Channel access patterns of primary users are identified and used for predicting spectrum usage

in [212]. Assuming a TDMA transmission, periodicity pattern of channel occupancy is extracted

using cyclostationary detection. This parameter is then used to forecast the channel idle probability

for a given channel. Furthermore, [212] proposes to use hidden Markov models (HMMs) in order

to model the channel usage patterns of primary users. A multivariate time series approach is taken

in [2] to be able to learn the primary user characteristics and predict the future occupancy of

neighboring channels. A binary scheme (empty or occupied) is used to reduce the complexity and

storage requirements as shown in Fig. 6.4. It is noted in [174] that the statistical model of primary

users’ behavior should be kept simple enough to be able to design optimal higher order protocols. On

the other hand, it will be useless if the primary user’s behavior could not be predicted well. In order to

strike a balance between complexity and effectiveness, continuous-time semi-Markov process model

is used to describe the statistical characteristics of WLAN channels that can be used by cognitive

radio to predict transmission opportunities. The investigation of voice over Internet protocol (VoIP)

106



and file transfer protocol (FTP)-type traffic scenarios for semi-Markov model is performed in [175].

Pareto, phase-type (hyper-Erlang) and mixture distributions are used for fitting to the empirical

data. Statistics of spectrum availability is employed in [185] for dynamically selecting the operating

frequency, i.e. for identifying the spectrum holes. The statistics of the spectral occupancy of a

bin (FFT output) is assumed to be at least piecewise stationary over the time at which they are

observed in order to guarantee that these statistics are still reliable when a spectrum access request

is received. Using the statistics, the likelihood that the spectral opportunity will remain available

for at least the requested time duration is calculated for each bin. Then, these likelihood values are

used to identify the range of frequencies which can be used for transmission.

6.7 Sensing Frequency

Sensing frequency, i.e. how often cognitive radio should perform spectrum sensing, is a design

parameter that needs to be chosen carefully. The optimum value depends on the capabilities of

cognitive radio itself and temporal characteristics of primary users in the environment. If the statuses

of primary users are known to change slowly, sensing frequency can be relaxed. A good example

for such a scenario is the detection of TV channels. The presence of a TV station usually does

not change frequently in a geographical area unless a new station starts broadcasting or an existing

station goes offline. Another factor that affects the sensing frequency is the interference tolerance of

primary license owners. For example, when the cognitive radio is exploiting opportunities in public

safety bands, sensing should be done as frequently as possible in order to prevent any interference.

Cognitive radio should immediately vacate the band if it is needed by public safety units. In the

IEEE 802.22 draft standard (see Section 6.10), the sensing period is defined as 30 seconds. In

addition to these, the channel detection time, channel move time and some other timing related

parameters are also defined [213].

6.8 Hardware Requirements and Approaches

In this section, several aspects of spectrum sensing from hardware perspective are investigated.

As explained before, one of the main challenges lies on the requirements of high sampling rate, high

resolution ADCs with large dynamic range. This requirement is a result of the need for a wideband

sensing. Cognitive radio should be able to capture and analyze a relatively large band for identifying
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Table 6.3 Comparison of single-radio and dual-radio sensing algorithms.

Single-Radio Arch. Double-Radio Arch.

Advantages
- Simplicity
- Lower cost

- Higher spectrum efficiency
- Better sensing accuracy

Disadvantages
- Lower spectrum efficiency
- Poor sensing accuracy

- Higher cost
- Higher power consumption
- Higher complexity

spectrum opportunities. Moreover, high speed processing units (DSPs or FPGAs) are needed for

performing computationally demanding signal processing tasks with relatively low delay.

Sensing can be performed via two different architectures: single-radio and dual-radio [181, 199].

In the single-radio architecture, only a specific time slot is allocated for spectrum sensing. As a

result of this, only a certain accuracy can be guaranteed for spectrum sensing results. Moreover,

the spectrum efficiency is decreased as some portion of the available time slot is used for sensing

instead of data transmission. The obvious advantage of single-radio architecture is its simplicity and

lower cost. In the dual-radio sensing architecture, one radio chain is dedicated for data transmission

and reception while the other chain is dedicated for spectrum monitoring. The drawback of such an

approach is the increased power consumption and hardware cost. Note that only one antenna would

be sufficient for both chains as suggested in [199]. A comparison of advantages and disadvantages

of single and dual-radio architectures is given in Table 6.3. In conclusion, one might prefer one

architecture over the other depending on the available resources, and performance and/or data rate

requirements.

6.9 Multi-Dimensional Spectrum Awareness

The definition of opportunity determines the ways of measuring and exploiting the spectrum

space. The conventional definition of the spectrum opportunity which is often referred as “band

of frequencies that are not being used by the primary user of that band at a particular time in a

particular geographic area” [214] only exploits three dimensions of the spectrum space: frequency,

time, and space. The problems stated in the previous section also relates to sensing the spectrum

in these three dimensions. However, there are other dimensions that need to be explored further

for spectrum opportunity. For example, the code dimension of the spectral space has not been

explored well in the literature. Therefore, the conventional spectrum sensing algorithms do not
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know how to deal with signals that use spread spectrum, time or frequency hopping codes. If the

code dimension is interpreted as part of the spectrum space, this problem can be avoided, and

new opportunities for spectrum usage can be created. Naturally, this will bring about other new

challenges for detection and estimation of this new opportunity. Similarly, the angle dimension has

not been exploited well enough for spectrum opportunity. It is assumed that the primary users

and/or the secondary users are transmitting in all the directions. However, with the recent advances

in multi-antenna technologies, e.g. beamforming, multiple users can be multiplexed into the same

channel at the same time in the same geographical area. In other words, an additional dimension

of spectral space can be created as opportunity. This will also create new opportunities for spectral

estimation, where not only the frequency spectrum but also the angle of arrivals might need to be

estimated. With these new dimensions, sensing only the frequency spectrum usage falls short. The

radio space with the introduced dimensions can be defined as “a theoretical hyperspace occupied

by radio signals, which has dimensions of location, angle-of-arrival, frequency, time, and possibly

others” [215]. This hyperspace is called electrospace, transmission hyperspace, radio spectrum space,

or simply spectrum space by various authors, and it can be used to describe how radio environment

can be shared among multiple (primary and/or secondary) systems [216]. Various dimensions of this

space and the corresponding measurement/sensing requirements are summarized in Table 6.4 along

with some representative pictures. Each dimension has its own parameters that should be sensed

for a complete spectrum awareness as indicated in the Table.

It is of crucial importance to define such an n-dimensional space for spectrum sensing. Spectrum

sensing should include the process of identifying occupancy in all dimensions of the spectrum space

and finding spectrum holes, or more precisely spectrum space holes. For example a certain frequency

can be occupied for a given time, but it might be empty in another time. Hence, temporal dimension

is as important as frequency dimension. This example can be extended to the other dimensions of

spectrum space given in Table 6.4. As a result of this requirement, advanced spectrum sensing

algorithms that offer awareness in multiple dimensions of the spectrum space should be developed.

6.10 Spectrum Sensing in Current Wireless Standards

Recently developed wireless standards have started to include cognitive features. Even though

it is difficult to expect a wireless standard that is based on wideband spectrum sensing and oppor-

tunistic exploitation of spectrum, the trend is in this direction. In this section, wireless technologies
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that require some sort of spectrum sensing for adaptation or for dynamic frequency selection (DFS)

will be discussed. However, the spectrum knowledge can also be used to initiate advanced receiver

algorithms such as adaptive interference cancellation [217].

6.10.1 IEEE 802.11k

A proposed extension to IEEE 802.11 specification is IEEE 802.11k which defines several types of

measurements [218]. Some of the measurements include channel load report, noise histogram report

and station statistic report. The noise histogram report provides methods to measure interference

levels that display all non-802.11 energy on a channel as received by the subscriber unit. The AP

collects channel information from each mobile unit and makes its own measurements. This data is

then used by the AP to regulate access to a given channel.

The sensing (or measurement) information is used to improve the traffic distribution within a

network as well. WLAN devices usually connect to the AP that has the strongest signal level.

Sometimes, such an arrangement might not be the optimum and can cause overloading on one AP

and underutilization of others. In 802.11k, when an AP with the strongest signal power is loaded

to its full capacity, new subscriber units are assigned to one of the underutilized APs. Despite the

fact that the received signal level is weaker, the overall system throughput is better thanks to more

efficient utilization of network resources.

6.10.2 Bluetooth

A new feature, namely adaptive frequency hopping (AFH), is introduced to Bluetooth stan-

dard to reduce interference between wireless technologies sharing the 2.4 GHz unlicensed radio

spectrum [219]. In this band IEEE 802.11b/g devices, cordless telephones, microwave ovens use the

same wireless frequencies as Bluetooth. AFH identifies the transmissions in the ISM band and avoids

their frequencies. Hence, narrow-band interference can be avoided and better bit-error-rate (BER)

performance can be achieved as well as reducing the transmit power. Fig. 6.5 shows an illustrative

Bluetooth transmission with and without AFH. By employing AFH, collusions with WLAN signals

are avoided in this example.

AFH requires a sensing algorithm for determining whether there are other devices present in the

ISM band and whether or not to avoid them. The sensing algorithm is based on statistics gathered

to determine which channels are occupied and which channels are not occupied. Channel statistics
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a) With AFH b) Without AFH

Figure 6.5 Bluetooth transmission with and without adaptive frequency hopping (AFH). AFH
prevents collusions between WLAN and Bluetooth transmissions.

can be packet-error rate, BER, received signal strength indicator (RSSI), carrier-to-interference-

plus-noise ratio (CINR) or other metrics [220]. The statistics are used to classify the channel as

good, bad, or unknown [219].

6.10.3 IEEE 802.22

One of the most distinctive features of 802.22 standard is its sensing requirements [15]. IEEE

802.22 based wireless regional area network (WRAN) devices sense the TV channels and identify

transmission opportunities. Sensing is envisioned to be based on two stages: fast and fine sens-

ing [213]. In the fast sensing stage, a fast sensing algorithm is employed, e.g. energy detector. The

fine sensing stage is initiated based on the fast sensing results. Fine sensing involves a more detailed

sensing where more powerful methods are used. Several techniques that have been proposed and

included in the draft standard include energy detection, waveform based sensing (PN511 or PN63

sequence detection and/or segment sync detection), cyclostationary feature detection, and matched

filtering. A base station (BS) can distribute the sensing load among subscriber stations (SSs). The

results are returned to BS which uses these results for managing the transmissions. Hence, it is a

practical example of centralized collaborative sensing explained in Section 6.4.1.

Another approach for managing the spectrum in IEEE 802.22 devices is based on a centralized

method for available spectrum discovery. The BSs would be equipped with a global positioning

system (GPS) receiver which would allow its position to be reported. The location information

would then be used to obtain the information about available TV channels through a central server.

For low-power devices7 operating in the TV bands, external sensing is proposed as an alternative
7These devices include wireless microphone, wireless camera etc.
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technique. These devices periodically transmit beacons with a higher power level. These beacons

are monitored by IEEE 802.22 devices to detect the presence of such low-power devices which are

otherwise difficult to detect due to the low-power transmission.

6.11 Conclusions

One of the important elements of the cognitive radio is sensing the available spectrum opportuni-

ties. In this chapter, various aspects of spectrum sensing task are explained in detail. Several sensing

methods are studied and collaborative sensing is considered as a solution to some common problems

in spectrum sensing. Hardware aspects of spectrum sensing and pro-active approaches are given and

sensing methods employed in current wireless systems are discussed. Furthermore, the spectrum

opportunity and spectrum sensing concepts are re-evaluated by considering different dimensions of

the spectrum space. The new interpretation of spectrum space will create new opportunities and

challenges for spectrum sensing while it will solve some of the traditional problems. Estimating

real levels of usage of the spectrum in multiple dimensions including time, frequency, space, angle,

and code; identifying for opportunities in multiple dimensions including prediction into the future

using past information and making reasoning can be considered some of these challenges for future

research.
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Table 6.4 Multi-dimensional radio spectrum space and transmission opportunities.

Dimension
What needs to be
sensed?

Comments Illustrations

Frequency
Opportunity in the fre-
quency domain.

Availability in part of the frequency
spectrum. The available spectrum
is divided into narrower chunks of
bands. Spectrum opportunity in this
dimension means that all the bands
are not used simultaneously at the
same time, i.e. some bands might be
available for opportunistic usage.

Opportunity OpportunityOpportunityOpportunity OpportunityOpportunity Time
Frequency

Time
Opportunity of a specific
band in time.

This involves the availability of a spe-
cific part of the spectrum in time. In
other words, the band is not continu-
ously used. There will be times where
it will be available for opportunistic
usage.

Geographical
space

Location (latitude, lon-
gitude, and elevation)
and distance of primary
users.

The spectrum can be available in
some parts of the geographical area
while it is occupied in some other
parts at a given time. This takes ad-
vantage of the propagation loss (path
loss) in space.
These measurements can be avoided
by simply looking at the interference
temperature. No interference means
no primary user transmission in a
local area. However, one needs to
be careful because of hidden terminal
problem.

Primary UserCognitive RadioCognitive RadioRegion A Region B
Code

The spreading code,
time hopping (TH), or
frequency hopping (FH)
sequences used by the
primary users. Tim-
ing information is also
needed so that secondary
users can synchronize
their transmissions. The
synchronization estima-
tion can be avoided with
long and random code
usage. However, partial
interference in this case
is unavoidable.

The spectrum over a wideband might
be used at a given time through
spread spectrum or frequency hop-
ping. This does not mean that there
is no availability over this band. Si-
multaneous transmission without in-
terfering with primary users would be
possible in code domain with an or-
thogonal code with respect to codes
that primary users are using. This
requires the opportunity in code do-
main, i.e. not only detecting the us-
age of the spectrum, but also deter-
mining the used codes, and possibly
multipath parameters as well.

Primary User 1Primary User 2Opportunity Frequency
TimeChannel capacity (# of 

codes)

Angle

Directions of primary
users’ beam (azimuth
and elevation angle)
and locations of primary
users.

Along with the knowledge of the loca-
tion/position or direction of primary
users, spectrum opportunities in an-
gle dimension can be created. For ex-
ample, if a primary user is transmit-
ting in a specific direction, the sec-
ondary user can transmit in other di-
rections without creating interference
on the primary user.

Cognitive Radio Cognitive RadioPrimary User
Primary User

Signal
Signal polarization and
waveforms of primary
users.

Primary users and secondary users
might be transmitting a waveform at
a specific band for a given time in
a geographical area in all the direc-
tions but secondary users can exploit
the signal dimension to transmit an
orthogonal waveform so that it does
not create interference with primary
users. This requires not only spec-
trum estimation but also waveform
identification.

Primary User
Primary UserCognitive Radio Cognitive Radio
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CHAPTER 7

SPECTRUM SENSING FOR COGNITIVE RADIO USING PARTIAL MATCH
FILTERING

7.1 Introduction

Cognitive radio devices should be able to identify unused spectrum in a fast and efficient way.

Conventional algorithms sense the spectrum without exploiting all the properties of primary users.

In this chapter, we explore the a priori information about transmission properties of possible primary

users for developing a framework for spectrum sensing. In this method, the parameters estimated

from the received signal are matched to the possible transmission parameters for achieving a more

robust and reliable sensing that covers multiple dimensions of the spectrum space. Furthermore, a

case study, which uses energy detector based sensing and Bayesian classification, is presented and

its performance is analyzed using computer simulations. Our contribution in this chapter can be

summarized as following:

• A unification of various algorithms for spectrum sensing is presented by describing the essential

steps in detail. The proposed framework is named as partial match-filtering (PMF).

• The most commonly used waveform identification features are summarized.

• A case study of energy-detector based PMF algorithm is provided. Bayesian classification is

used for assigning the feature set to a radio access technology (RAT).

• Performance analysis of the energy-detector based PMF method is obtained using computer

simulations.

This chapter is organized as follows. Proposed PMF algorithm is presented in Section 7.2.

Section 7.3 discusses energy detector based PMF followed by numerical results in Section 7.4. Some

discussions are presented in Section 7.5, and finally, the concluding remarks are given in Section 7.6.
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7.2 Partial Match-Filtering

Spectrum estimation techniques given in the literature do not utilize most of the a priori knowl-

edge about primary users. For example, IEEE 802.11a signal has a bandwidth of 20 MHz and oper-

ates at industrial, scientific and medical (ISM) or unlicensed national information infrastructure (U-

NII) bands in the United States (US). This knowledge about center frequencies and bandwidth of

this type of a signal along with other transmission characteristics can be exploited to identify the

presence of an IEEE 802.11a transmission and thus to improve spectrum sensing accuracy. The

features that describe certain type of devices can be obtained by investigating the received signal.

These features then can be matched to the a priori sets of known parameters. By finding the exact

transmission characteristics of primary users, possible estimation errors due to sensing algorithm

and noise can be removed. We refer to this process as partial match-filtering as we are matching to

the primary users’ signal parameters instead of the signal itself. Once primary users or the occupied

frequencies are detected, unused portion of the spectrum space can be identified for opportunistic

exploitation. The PMF algorithm can be realized in three main steps:

1. Extraction of a predefined set of features from the received signal,

2. Using the extracted features for making decisions on the presence of an anticipated transmis-

sion,

3. Exploiting the gained knowledge about the active primary users for multi-dimensional spec-

trum characterization.

System model for PMF based cognitive radio is shown in Fig. 7.1. The blocks that represent the

three main steps of PMF are marked with corresponding step numbers. Cognitive engine governs

the selection of bands for transmission and communicates with radio, user, and open systems inter-

connection reference (OSI) layers. Radio identification is performed based on the extracted features

of received signal, environmental information and cognitive radio’s prior knowledge. The set of pos-

sible RATs and their transmission parameters can be collected by cognitive devices using previous

decisions (blind) or they can be broadcasted by a central unit (assisted). Alternatively, these pa-

rameters can be pre-configured to cognitive radio during hardware design. Federal Communications

Commission (FCC) Licensing and International Telecommunication Union (ITU) frequency alloca-
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Figure 7.1 Block diagram of proposed algorithm.

tion rules are some example databases. The three steps that make PMF will be explained in detail

in the rest of this section.

7.2.1 Feature Extraction

In this section, a comprehensive list of parameters that can be used to detect the presence

of a particular type of primary user will be presented. These parameters can be extracted using

a single algorithm or multiple algorithms such as energy detector, cyclostationarity based feature

extraction etc. can be used together for estimating different parameters. Depending on the domain

of estimation, the features are classified as time-domain or frequency-domain.

7.2.1.1 Frequency Domain Features

Bandwidth: Different wireless standards (licensed or unlicensed) utilize different transmission band-

widths depending on the data rate requirements. The bandwidth of a possible transmission can be
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estimated and compared with the bandwidth of the expected transmissions in the considered fre-

quency band [200]. Channel bandwidth and shape of the power spectral density (PSD) are found

to the most discriminating features in [200] among other parameters.

Center frequency: Operating frequencies of different systems would be also a differentiating factor

for detecting the presence of certain types of signals. It is especially useful for systems with large

bandwidths such as wireless local area network (WLAN) where the transmission bands have large

separation.

Single carrier versus multi-carrier: The knowledge of whether a particular signal is generated using

single carrier or multi-carrier modulation can be used as a feature for classification. This knowledge

is especially useful for reducing the size of the candidate set. In addition, cyclic prefix (CP) duration,

symbol duration, fast Fourier transform (FFT) size and number of subcarriers can be used for further

identifying the ongoing transmissions in the case of multi-carrier modulation [221].

7.2.1.2 Time Domain Features

Maximum duration of a signal: The maximum duration of a signal can also be used as a distin-

guishing parameter. This feature is used in [201] for discriminating WLAN and Bluetooth signals.

Multiple accessing: Multiple accessing method is another factor that can be used to differentiate

distinct systems. A system employing time division multiple access (TDMA), for example, exhibits a

pattern in time that does not exist in code division multiple access (CDMA) or carrier sense multiple

accessing (CSMA) systems.

Duplexing method: The duplexing method refers to whether the transmission is half duplex or full

duplex. For full duplexing, duplexing type, i.e., time division duplexing (TDD) or frequency division

duplexing (FDD), can be used as well.

Frame duration: Frame duration and/or the ratio of uplink (UL) and downlink (DL) frame lengths

can be used as discriminating parameters for identifying different transmissions. Similarly time-slot

and guard interval lengths can also be used.

117



Spreading codes - hopping pattern: In spread spectrum systems, the spreading codes assigned to a

particular primary user could be beneficial for exploiting the opportunity in the code domain and

for identifying primary users. Moreover, chip rate, spreading factor, hopping frequency etc. can also

be extracted and used as discriminating parameters.

7.2.1.3 Other Features

The features given in this section are not meant to be a complete set, rather they are given as

examples and the list can be extended. Some other discriminating features include cumulants, power

moment matrices, and zero-crossing rate.

The dimension of the feature set is a design parameter. Some or all of the parameters can be

extracted from the received data and used for classification. However, the larger the dimension

of the feature set, the more complex the system, and the more reliable the classification results.

Selection of the employed features can be performed by considering the characteristics of potential

systems. The feature set can be represented as a vector f which is a point in multi-dimensional

feature space. Then, this vector can be used for classifying the detected transmission into one of K

candidate transmissions using a classifier that will be discussed in the next section.

7.2.2 Decision Making (Classification)

In this step, the measured signal is associated with a RAT. This process can be regarded as a

classification problem. For this purpose, various classification methods can be used such as pattern

recognition [201], neural networks [180, 200] or statistical classification. Selection of a classification

method depends on the considered RATs and available features. Please note that the classification

performed in this step is different from blind modulation classification task as not only the type of

signaling but also some parameters of the transmission need to be identified.

Prior probabilities of different systems play an important role during classification. For example,

we may have wireless universal serial bus (USB) with much less occurrence probability than WLANs.

Similarly, Channels 1, 6, and 11 of WLAN systems are used more commonly then other bands. This

prior information can be used during classification. Note that this parameter can not be obtained

from received signals, but it is an a priori information that cognitive radio can collect after each

classification.
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The classification results can be further verified by using the structures of the anticipated signal

such as preambles, pilots and spreading codes. For example, the repetition in the preamble of

WLAN signals can be used to verify that indeed there is a WLAN transmission at the identified

channel. The receiver does not need to actually synchronize with the WLAN signal in order to test

the presence of WLAN packets.

7.2.3 Multi-Dimensional Spectrum Characterization

In this final step of PMF, the output of classification is used for obtaining a complete multi-

dimensional spectrum awareness in cognitive radio. The knowledge of primary users can help identify

the transmission opportunities across different dimensions. For example, if the identified signal is

a cordless phone, the range is expected to be around 100 meters and for Bluetooth signals it is

around 10 meters. This knowledge can be used in a cooperative sensing environment for gaining

knowledge in the space dimension. The characterization in time, frequency, and code dimensions is

straightforward once primary users are associated with a particular RAT.

7.3 Case Study: Energy Detector Based PMF

In this part of the chapter, we present a case study for the proposed PMF algorithm. Two

features, namely bandwidth and center frequencies of primary users, are extracted using energy

detector based algorithm. The feature extraction algorithm is based on FFT operation which is

used to transform time-domain signal into frequency domain. In [109], FFT output samples are

used for deciding whether an FFT frequency bin is occupied by a primary user or not. However,

the primary users signal is usually spread over a group of FFT output samples as the bandwidth of

primary user is expected to be larger than the considered bandwidth divided by the FFT size1. Using

this fact, the FFT output is filtered for noise averaging in order to obtain a better performance.

The proposed algorithm is especially suitable for cognitive devices using OFDM as their trans-

mission technology, such as systems similar to [97]. The availability of FFT circuitry in these systems

eases the requirements on the hardware. Moreover, the computational requirement of the spectrum

sensing algorithm is reduced as receiver needs to apply FFT for data detection.
1Making an analogy to orthogonal frequency division multiplexing (OFDM) systems, the primary users usually

cover more than just one subcarrier.
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Figure 7.2 Block diagram of energy detector based partial match-filtering method.

The block diagram of the proposed algorithm is shown in Fig. 7.2. The signal that arrives to

cognitive user y(t) is first filtered with a band pass filter (BPF) to extract the signal in the frequencies

of interest. This filter can be adjustable and controlled by a control unit in order to scan a wider

range [222]. The output of the filter is sampled at Nyquist rate and N -point FFT is applied to

obtain the frequency domain samples which can be modeled as

Ym(k) =





Wm(k) H0,

Sm(k) + Wm(k) H1,

k = 1, · · · , N (7.1)

where Sm(k) is the transmitted signal by primary users at the output of mth FFT operation, Wm(k)

is the white noise sample at kth frequency sample, and N is the FFT size. H0 and H1 represent the

null hypothesis and alternate hypothesis respectively. The white noise is modeled as a zero-mean

Gaussian random variable with variance σ2
w, i.e. W (k) = N (0, σ2

w). The signal term is also modeled

as a zero-mean Gaussian variable whose variance is a function of frequency, i.e. S(k) = N (0, σ2
k),

where σk is the local standard deviation. The variation of σk across frequency depends on the

characteristics of primary users signals and operating frequency. Hence, by changing the signal

variance across frequency, PSDs for various technologies can be represented.

Some critical blocks for the proposed energy detector based PMF algorithm will be discussed in

the following.

7.3.1 Frequency Domain Filtering

The magnitude square of FFT output |Ym(k)|2 can be compared with a threshold value for

detection of presence of transmission at a particular frequency. In order to smooth the FFT output,

filtering is applied before applying the threshold detector. The optimum filter coefficients depend
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on the statistics of primary user’s signal as well as the noise power. In [27], minimum mean-

square error (MMSE) filtering is applied for estimating the noise plus interference ratio for OFDM

systems. The MMSE filter coefficients are derived as a function of the statistics of interference.

As an approximation to MMSE filtering, a sliding rectangular window can also be applied for

smoothing the spectrum estimates Y (k). In this chapter, we use rectangular filter for its simplicity

and lower computational complexity. In this case, the decision statistics at different frequencies can

be calculated as

Ỹm(k) =
k+bLf /2c∑

l=k−bLf /2c

m∑

u=m−Lt+1

|Yu(l)|2 (7.2)

where b·c represents the floor function, and Lt and Lf are the averaging filter lengths in time and

frequency directions respectively.

7.3.2 Threshold Detector

The sensing time index m is dropped for simplicity in the rest of the chapter. The output of

the rectangular filter Ỹ (k) is fed to a threshold device to identify the frequencies occupied by the

primary users. This is equivalent to distinguishing between the following two hypotheses:

H0 : Y (k) = W (k), (7.3)

H1 : Y (k) = S(k) + W (k). (7.4)

As Y (k) has Gaussian distribution, the decision statistics Ỹ (k) follows chi-square distribution with

2LfLt degrees freedom, χ2
2Lf Lt

. Hence, Ỹ (k) can be modeled as

Ỹ (k) =





σ2
w

2 χ2
2Lf Lt

H0,

σ2
w+σ2

k

2 χ2
2Lf Lt

H1,

k = 1, · · · , N (7.5)

where σ2
w and σ2

k are as defined before. The performance of the detection algorithm can be summa-

rized with two probabilities: probability of detection PD and probability of false alarm PF . PD is

the probability of detecting a signal on the considered frequency when it is truly present, thus large

detection probability is desired. It can be formulated as

PD = Pr
(
Ỹ > λ|H1

)
, (7.6)
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where λ is the threshold value. PF is the probability that the test incorrectly decides that the

considered frequency is occupied when it actually is not, and it can be written as

PF = Pr
(
Ỹ > λ|H0

)
. (7.7)

PF should be kept as small as possible. The probabilities PF and PD can be calculated as [184]2

PF = 1− Γ
(

LfLt,
λ

σ2
w

)
, (7.8)

PD = 1− Γ
(

LfLt,
λ

σ2
w + σ2

k

)
, (7.9)

where Γ (a, x) is the incomplete gamma function as given in [192] (see Equation 6.5.1). In general,

PD and PF are inversely proportional. Fig. 7.3 shows the receiver operating characteristics (ROCs)

for a single frequency sample at the output of threshold device (see Fig. 7.2) for different signal-to-

noise ratio (SNR) values. SNR is defined as the ratio of the primary user’s signal power to noise

power, i.e. SNR=σ2
k/σ2

w. The averaging size is set to 15 in this figure. As this figure clearly shows,

the performance of the threshold detector increases at high SNR values.

The decision threshold λ can be selected for finding an optimum balance between PD and PF .

However, this requires the knowledge of noise and detected signal powers as seen in (7.8) and (7.9).

Noise power can be estimated, but the signal power is difficult to estimate as it changes depending on

the ongoing transmission characteristics and the distance between the cognitive radio and primary

user. In this chapter, it is assumed that the noise variance is estimated and the threshold is chosen

to obtain a false alarm rate of 0.1 percent.

7.3.3 Feature Extraction

In this stage, two features, bandwidth and center frequencies of primary users, are extracted by

using the threshold detector output. In order to achieve this, the bins exceeding the threshold value

are grouped together. In order to reject the erroneous bins, we apply a method similar to the initial

stage of dynamic undersea detection extractor (DUDE) algorithm [223] by defining two parameters

Bmin and Gmax. Bmin is the minimum assumed bandwidth for the primary users and Gmax is the

maximum gap allowed between two frequency samples. The feature extraction algorithm searches for
2Please note that the notation used in [184] is different than the one used in this chapter. Moreover, the noise

power is normalized before it is fed into the threshold device in [184].
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Figure 7.3 ROC curves for different SNR values.

continuous frequencies which are marked by threshold detector as having signal, not Gmax samples

away and with more adjacent frequency samples than Bmin as illustrated in Fig. 7.4. Hence, using

these two parameters, the occupied frequency band can be identified. It is then straightforward to

estimate the bandwidth and the center frequency of transmission which make up the feature set f .

One drawback of this method, however, is that the cognitive radio may not differentiate between

two (or more) superimposed primary user transmissions and threat them as a single transmission

with a larger bandwidth.

7.3.4 Classification

In the final step, the primary users are identified by using the a priori information about their

transmission parameters. Bayesian classifier is the optimum method from the statistical viewpoint

and it will be used this chapter. By using Bayesian decision rule, we classify the feature set obtained

using measurements in the previous section to systems or devices that has the highest a posteriori

probability. The classifier can be represented in terms of a set of discriminant functions gi(f),

i = 1, . . . , K where K is the total number of systems. Note that the same RATs operating at
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Figure 7.4 Illustration of DUDE algorithm for bandwidth and center frequency estimation.

different bands are regarded as different systems for the sake of classification. The transmission

band of a system needs to be known for identifying the frequencies occupied by primary users. The

discriminant functions are defined as

gi(f) ≡ log P (f |ωi) + log P (ωi). (7.10)

where P (ωi) is the prior probability of class ωi, and P (x|ωi) is the class conditional probability which

is assumed to have multivariate normal distribution with mean vector µi and covariance matrix Σi.

Under such an assumption, the discriminant functions can be obtained as [224]

gi(f) = −1
2
(f − µi)

T Σ−1
i (f − µi)−

1
2

log |Σi|+ log P (ωi). (7.11)

The classification regions defined by (7.11) are quadratic functions. Therefore, gi(x) is known as

normal-based quadratic discriminant function. The classification rule can now be written as: assign

a feature vector f to a system ωi if gi(f) > gj(f) for all j 6= i.

The discriminant function gi(f) is locally estimated. When collaborative sensing is used, clas-

sification results can be shared among cognitive radios. Alternatively, instead of providing hard

decisions cognitive radios can share the discriminant function values. Then, the central unit can

combine these values and make a more optimum decision based on the discriminant function values

from all cognitive radios present in the environment.

The mean vector µi can be obtained by using the expected values of features, e.g. bandwidth

and center frequency in this case. In practice, the covariance matrix Σi is unknown and can be
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replaced with estimates based on the training data as

Σ̂i =
1

D − 1

D∑

j=1

(f j − µi)(f j − µi)
T . (7.12)

where D is the length of the training data. Furthermore, the covariance matrix can be assumed

to be the same for all classes using the same RAT. For example, all the classes using WLAN

are expected to have the same covariance matrix as only center frequency is changed. When the

estimated features are not correlated to each other, the correlation matrix becomes a diagonal matrix.

Different features will have different units and hence proper normalization of this features needs to

be established. Moreover, the values of diagonal elements give the weights for each feature, and

different weights can be assigned to different features.

7.4 Numerical Results

In order to test the proposed algorithm, we consider two RATs in 2.4 GHz ISM bands, namely

WLAN and Bluetooth signals. Note that ISM band is an unlicensed band and there is no notion of

primary users in this band. However, we have chosen this band for illustrative purposes as different

types of devices can use this band. It is assumed that Bluetooth signal is not changing hopping

frequency during the detection phase, i.e., the detection process takes much less than 675 µs. Both

WLAN and Bluetooth signals are assumed to have the same power and prior probabilities, and no

overlap of spectrum between the two signals is allowed. The latter assumption can be justified by

the adaptive frequency hopping (AFH) capability of Bluetooth. The spectrum of the ISM band is

calculated using 1024-point FFT. Hence the frequency separation between two FFT output samples

is 81.5 kHz, i.e. at least 12 frequency points will have Bluetooth signal and at least 246 frequency

points will have WLAN signal. The length of the frequency domain filter is set to 5, i.e. Lf = 5.

Fig. 7.5 shows the PSD of a WLAN signal operating at channel 5 (Fc=2.432GHz) and a Bluetooth

signal at frequency Fc=2.462GHz. WLAN and Bluetooth signals are generated by transmitting

random data modulated using OFDM and Gaussian frequency shift keying (GFSK) modulations as

defined in their corresponding standards.

The features, transmission bandwidth and center frequency, are calculated as explained in Sec-

tion 7.3 after passing the FFT output through a threshold device and finding continuous frequencies

with power larger than the threshold. The threshold is chosen to have a low false alarm rate of 0.1
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Figure 7.5 Power spectral density of tested WLAN and Bluetooth signals.

percent, i.e. PF = 0.001. Note that while setting the threshold, the noise variance is assumed to be

known. The feature extraction parameters are set as Gmax = 30 and Bmin = 6 which correspond to

2.44MHz and 490 kHz respectively.

Figs. 7.6 and 7.7 show the error rates in detecting the WLAN and Bluetooth signals for additive

white Gaussian noise (AWGN) channels. The error rate for identifying a non-existent system (or

a system in another band) is shown as well. The time averaging Lt for Fig. 7.6 and Fig. 7.7 are

set to be 15 and 30 respectively. Hence, sensing durations correspond to 184µs and 368 µs. The

classification is quite successful even at very low SNR scenarios and performance increases with

increasing averaging duration. Note that the error rates for WLAN are smaller for a given SNR

value. This is because of the large bandwidth and large separation of center frequencies of WLAN

signals.

Fig. 7.8 shows the performance of energy detector based algorithm when the received signal is

passed through a multipath channel with exponential delay power delay profile (PDP) with root-

mean-squared (RMS) delay spread value of 50 ns. The performance of the Bluetooth signal detection

is affected very little while the performance of WLAN detection is decreased. The power fluctuations
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Figure 7.6 Detection error rates for the WLAN and Bluetooth systems at different SNR values for
Lt = 15.
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Figure 7.7 Detection error rates for the WLAN and Bluetooth systems at different SNR values for
Lt = 30.
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Figure 7.8 Detection error rates for the WLAN and Bluetooth systems at different SNR values for
Lt = 15 under multi-path fading channel.

within the large bandwidth of the WLAN signal due to frequency selectivity and fading causes the

performance degradation.

When the received signal is weak (low SNR values), the signal power falls below the noise floor.

In such cases, the comparator yields zero output mostly due to the low PF settings. Hence, no

transmissions can be detected. As a result of this, the probability of missing ongoing transmissions

becomes one and probability of detecting a non-existent signal approaches to zero.

7.5 Discussion

The energy detector based algorithm is presented as a case-study in the previous section. Even

though energy detector based sensing has low complexity, it has some problems that need to be

addressed. For commercially available devices, there are two main types of technologies: fixed fre-

quency and spread spectrum. The two major spread spectrum technologies are frequency-hoping

spread-spectrum (FHSS) and direct-sequence spread-spectrum (DSSS). Fixed frequency devices op-

erate at a single frequency or channel. An example to such systems is IEEE 802.11a/g based WLAN.

FHSS devices change their operational frequencies dynamically to multiple narrowband channels.
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This is known as hopping and performed in a sequence that is known by both the transmitter and

receiver. DSSS devices are similar to FHSS devices, however they use a single band to spread their

energy. Bluetooth and IEEE 802.11b devices are examples to FHSS and DSSS respectively. Energy

detector based algorithm works fine for fixed frequency signals. However, spread spectrum signals

are very hard if not impossible to identify by using only energy detector based sensing as the energy

is spread across the spectrum.

Another problem arises when the fixed frequency signals overlap in the frequency or when they

are very close to each other. Energy detector based algorithm discussed in this chapter might not be

able to differentiate the two transmissions and can regard the transmission as a single transmission

with a wider bandwidth. This will in turn affect the classification output of PMF and yield inaccurate

spectrum knowledge.

These problems can be solved by supporting the energy detector based algorithm with care-

fully designed signal processing techniques or extra features for PMF can be obtained using other

signal processing tools such as cyclostationarity based or wavelet based methods. As explained in

Section 7.2.1, the selection of features and algorithms for extracting these features should be done

by considering the initial set of parameters and processing capabilities of cognitive radio. In this

chapter, we have explored energy detector-based method as an example for PMF because of its

simplicity.

7.6 Conclusions and Future Research

Transmissions within a given frequency band are identified by using PMF in this chapter. The

characteristics of these transmissions are used for obtaining spectrum knowledge and finding spec-

trum holes. A simple feature extraction method is proposed for finding the transmission parameters

using the energy detector output. By applying the partial match-filtering algorithm, the spectrum

estimation can be improved significantly as not only the frequency spectrum but a multi-dimensional

spectrum awareness can be obtained.
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CHAPTER 8

OFDM SIGNAL IDENTIFICATION AND TRANSMISSION PARAMETER
ESTIMATION FOR COGNITIVE RADIO APPLICATIONS

8.1 Introduction

Cognitive radios are expected to recognize different wireless networks and have capability to com-

municate with them. Multi-carrier techniques, specifically orthogonal frequency division multiplexing

(OFDM), are commonly used in modern communications systems. For identification of active trans-

missions, signals can be classified as single-carrier and multi-carrier first. Hence, the size of candidate

set can be reduced. Moreover, transmission parameters of an OFDM based system can be detected

blindly if the system is not known to cognitive radio. Blind detection is also very helpful for reducing

system signaling overhead in the case of adaptive transmission where transmission parameters are

changed depending on the environmental characteristics or spectrum availability. The capability of

identifying transmission parameters can be useful for spectrum survey for radio monitoring systems

to discover enemy and illegal transmissions as well.

OFDM signals can be considered as a composition of large number of independent random

signals. Hence, sampled OFDM signal can be assumed to have a Gaussian distribution thanks to

central limit theorem. This observation is used in [221,225,226] for classification of signals as single-

carrier or multi-carrier by applying normality tests to incoming signal. However, in the presence

of multipath-fading and interference, single-carrier signals at the cognitive radio receiver can also

have Gaussian distribution. This is especially true for low signal-to-noise ratio (SNR) scenarios.

Furthermore, when power control is employed in time-multiplexed OFDM (such as IEEE 802.16),

the Gaussian approximation does not hold anymore, and as a consequence, classification based on

normality tests may fail.

Various parameter estimation algorithms for OFDM systems are developed in literature. Methods

for finding the OFDM symbol and cyclic prefix (CP) durations are mostly based on exploitation

of the cyclostationarity of OFDM signaling due to cyclic prefix extension [221, 226–230]. In [227],
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symbol duration is estimated by finding the distance between the peaks at the correlation. In order

to estimate the length of CP, time-frequency transform of the received signal is found and entropy

is calculated which is then used to find the CP size. In [221], symbol duration is estimated using

cyclic correlation based algorithm, and CP duration is estimated by performing a correlation test.

A different approach is taken in [229] for finding the CP size when the data length is known. Auto-

correlation of the received signal with its delayed copy is calculated and its magnitude is normalized

with average signal power. As the auto-correlation has non-zero terms only for the part that falls

into the guard time, power ratio of the guard time to the symbol duration can be used to find the

CP length. However, SNR knowledge is required for a precise estimation.

Number of subcarriers or discrete Fourier transform (DFT) size is another key parameter for

OFDM systems. An algorithm based on multiple signal classification (MUSIC) technique is used

in [231] for finding the DFT size. Basically, eigen-decomposition is used to diagonalize the correlation

matrix of the received signal. Then, using Akaike’s criteria, number of sub-spaces or sub-carriers

is estimated. However, zeros are used for generating OFDM signal instead of cyclic prefix in [231].

In [221], once CP and symbol durations are estimated, DFT size is found by testing all hypothesis

DFT size values. The fact that the DFT output gives modulated data symbols, which do not

have Gaussian properties, when DFT size is matched to correct one is explored. DFT outputs are

tested for Gaussianity to find the correct DFT size. If not all of the subcarriers are employed for

transmission, active subcarriers should be identified. This can be performed by analyzing the power

level at the output of FFT [232]. However, such methods need the knowledge of FFT size and

require synchronization to the received signal.

OFDM signal bandwidth can be a useful element for signal identification and finding white spaces

in the spectrum. In literature, the brick-wall shape of the spectrum is used for estimating the OFDM

bandwidth [233, 234]. Spectral breaking points are identified using edge detection algorithms and

bandwidth information is extracted by using the spectral breaking points. These methods, however,

are only effective when all of the subcarriers are employed.

In this chapter, classification of communications systems as single-carrier or multi-carrier is

considered, and methods for estimation of fundamental transmission parameters in the case of multi-

carrier transmission are proposed. Our contributions can be summarized as following:

• maximum likelihood (ML) and suboptimal ML algorithms are developed for estimating the

OFDM symbol duration and CP size,

131



• a method for classifying unknown signals as OFDM or single-carrier is developed. This method

is based on the likelihood function of the received signal evaluated at ML estimates of signal

parameters,

• a new method based on estimation of signal parameters via rotational invariance techniques

(ESPRIT) is developed to estimate the number and frequencies of subcarriers of the identified

OFDM signals.

The chapter is organized as follows. Section 8.2 describes the system model. Proposed OFDM

identification and parameter extraction algorithms are given in Section 8.3, followed by numerical

results in Section 8.4. Finally, the chapter is concluded in Section 8.5.

8.2 System Model

OFDM converts serial data stream into parallel blocks of size N and modulates these blocks using

inverse discrete Fourier transform (IDFT). The continuous-time OFDM signal in the baseband can

be written as1

xm(t) =
K∑

k=1

Xm(k)ej
2πΓ(k)t

TD − TG ≤ t < TD, (8.1)

where Xm(k) is the transmitted data symbol at kth (data) subcarrier of mth OFDM symbol and Γ

denotes the set of K used subcarriers. Useful data duration and CP length are represented by TD

and TG respectively and they make up the total duration of OFDM symbol TS , i.e. TS = TD + TG,

as shown in Fig. 8.1. Transmitted signal can now be written as

x(t) =
∞∑

m=−∞
xm(t−mTS). (8.2)

After D/A conversion and radio frequencies (RF) modulation, signal is passed through the mobile

radio channel which can be modeled as a time-variant linear filter

h(t) =
L∑

l=1

hl(t)δ(t− τl), (8.3)

1Please note that in this chapter a continuous-time system model is used whereas in other parts of the dissertation
discrete-time system model is used.
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Figure 8.1 Illustration of cyclic prefix extension in OFDM systems.

where L is the number of sample-spaced channel taps and τl is the delay of lth tap. In this chapter,

the channel is assumed to be constant over an OFDM symbol, but time-varying across OFDM

symbols, which is a reasonable assumption for low and medium mobility.

At the receiver, the signal is received along with noise. After down-conversion, simplified base-

band model of the received signal can be formulated as

y(t) = ej2πξt [x(t) ? h(t)] + w(t) (8.4)

= ej2πξt

∫
x(τ)h(t− τ)dτ + w(t) (8.5)

= ej2πξt
L∑

l=1

x(t− τl)hl(τl) + w(t), (8.6)

where ξ corresponds to the frequency offset due to inaccurate frequency synchronization with the

received signal. The average received signal power is denoted by σ2
s .

It is assumed that the receiver does not know the correct sampling rate2 and samples the received

signal with a sampling time of ∆t. Now, the discrete-time received signal can be obtained from

continuous time signal as

y[n] := y(n∆t). (8.7)

In discrete-time representation, ND, NG and NS are used to represent the number of samples

corresponding to data, CP and total symbol durations respectively. The time durations can be

calculated by multiplying these numbers with the sampling period, e.g. TS = NS∆t. The received

signal is assumed to have D samples which contains an unknown single-carrier signal or unknown
2The Nyquist sampling period is ts = TD/N where N is the DFT size used to generate the OFDM signal.
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number of OFDM symbols. In vector notation the received signal can be represented as

y = [y[1], y[2], · · · y[D]]. (8.8)

8.3 Proposed Algorithms

OFDM signaling is shown to be cyclostationary with period TS in [235]. It is also known that

cyclostationarity of a signal holds when it is passed through a linear time-invariant channel3. Hence,

the received OFDM signal is also cyclostationary. In this section, detection algorithms are developed

by exploring the cyclostationarity characteristics of the OFDM signaling in additive white Gaussian

noise (AWGN) channel. The performance of developed methods under multipath fading channel is

shown in Section 8.4. First, symbol duration and CP size are estimated by assuming an OFDM

transmission. Then, the estimated parameters are used to decide on whether the received signal is

OFDM signal or a single-carrier signal. Finally, we estimate the number and frequencies of active

subcarriers by using the rotational invariance of OFDM signaling.

8.3.1 ML Estimation of OFDM Symbol Length and CP Size

For the observation vector y, OFDM symbol duration ND and CP size NG are not known as

well as the start time of each symbol, denoted by θ. Let us denote the set of samples that belong

to CP with Ω. The samples in CP and in the last part of OFDM symbol are pairwise correlated

(see Fig. 8.1). Using the structure of OFDM signaling, the correlation of the samples in observation

vector can be written as

E [y[n]y∗[n + ∆]] =





σ2
s + σ2

w ∆ = 0,

σ2
se−j2πξ∆tND ∆ = ND; n ∈ Ω

0 otherwise.

(8.9)

Maximum likelihood estimates of the unknown parameters ND, NG, and θ can be obtained

by maximizing the log-likelihood function of the observations y. Log-likelihood function can be
3In fact, for our application, it is enough that the channel is time-invariant for the duration of each OFDM symbol.
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formulated as

Λ(y; ND, NG, θ) = log

( ∏

n∈Ω

p(y[n], y[n + ND])
∏

n/∈Ω∪Ω′
p(y[n])

)
(8.10)

= log

( ∏

n∈Ω

p(y[n], y[n + ND])
p(y[n])p(y[n + ND])

∏
n

p(y[n])

)
(8.11)

where p(·) is the probability density function (PDF) of the observed samples and p(·, ·) is the joint

PDF. The set Ω′ contains the samples of OFDM data that are copied to CP. Assuming that y has

a jointly Gaussian distribution, it is shown in Appendix C that the log-likelihood function can be

obtained as (C.5) where a and Ω are as given in (C.4) and (C.6) respectively. Please note that, ML

estimation obtained by maximizing the likelihood function given by (C.5) is asymptotically optimal

when the following assumptions are satisfied:

1. Noise is white, Gaussian, and uncorrelated with the transmission signal.

2. y has a joint Gaussian distribution with correlation function given by (8.9).

Also note that, the ML estimation algorithm can be modified to estimate the frequency offset ξ as

well.

The value of a, σ2
s and σ2

w are difficult to estimate in a non-cooperative scenario. At low SNR

values, the second and third terms of (C.5) approaches to zero and can be dropped. Therefore, a

suboptimal ML estimation is possible with less complexity and no need for the knowledge of noise

and signal variances. Modified likelihood function can now be obtained from (C.5) as4

Λ̃(y; ND, NG, θ) =

∣∣∣∣∣

⌊
D

ND+NG

⌋
∑
m=0

NG∑
p=1

y[m(ND + NG) + p + θ]y∗[m(ND + NG) + ND + p + θ]

∣∣∣∣∣. (8.12)

Hence, the proposed sub-obtimum ML estimation algorithm is

N̂D, N̂G, θ̂ = arg max
ND,NG,θ

{
Λ̃(y;ND, NG, θ)

}
(8.13)

= arg max
ND,NG,θ

{∣∣∣∣∣

⌊
D

ND+NG

⌋
∑
m=0

NG∑
p=1

y[m(ND + NG) + p + θ]y∗[m(ND + NG) + ND + p + θ]

∣∣∣∣∣
}

.

(8.14)

4Note that the likelihood function is independent of the frequency offset.
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A method similar to (8.14) is used in [236] where the symbol duration and CP length have only a

predetermined set of values as the underlying transmission was known.

Maximization given in (8.14) is a computationally demanding process. In order to reduce the

complexity, maximization can be performed in two steps. First, OFDM symbol length ND is esti-

mated, and then the estimated ND value is used to find CP duration NG and timing offset θ in the

second step. As will be shown later, the simplification on the computational complexity comes with

the expense of performance degradation.

Step 1 The repetition due to CP is used to find the OFDM data duration TD. As the receiver is

assumed to have no prior information on the symbol duration, all expected values should be tested.

The discrete correlation of the received signal can be written as

Ry(∆) =
1

D −∆

D−∆∑
n=1

y[n]y∗[n + ∆]. (8.15)

Assuming enough statistical averaging, the correlation can be obtained as

Ry(∆) =





σ2
s + σ2

w ∆ = 0,

NG

ND+NG
σ2

se−j2πξ∆tND ∆ = ND,

0 otherwise.

(8.16)

Hence, the auto-correlation based estimation of ND can be formulated as

N̂D = arg max
∆

{|Ry(∆)|} , ∆ > 0. (8.17)

In order to simplify time and frequency synchronization, known sequences are transmitted in

OFDM based systems. These sequences include preambles and pseudo-random pilot (data) sym-

bols. OFDM preamble is usually composed of identical sequences that can be used to facilitate

synchronization using auto-correlation. However, for the blind estimation method given by (8.17),

the correlation peak due to repetition in the preamble cause ambiguity as the value of this peak

can be larger than the peak generated by the cyclic prefix. Assume that the received signal has nD

OFDM data symbols, nP preamble symbols, and power of the preamble is boosted by ζ. The worst

case happens when the preamble has large number of identical parts. Assuming that the number of
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identical parts is very large, the following inequality should be satisfied for correct detection

ζ(nP TD + nP TG) < (nD + ζnP )TG. (8.18)

For IEEE 802.11a/g based wireless local area network (WLAN), for example, the minimum number

of OFDM symbols for correct detection is 8. In order to remove this ambiguity in finding the symbol

duration, we first find C peak values in the correlation and use the corresponding ND values for ML

estimation of CP duration. Then, the final value of ND is selected in the second step.

Step 2 Once the OFDM symbol duration ND is found, the CP duration can be estimated by testing

for different NG values as

N̂G, θ̂ = arg max
NG,θ

{
Λ̃(y; N̂D, NG, θ)

}
. (8.19)

Usually, the CP length is chosen as a multiple of OFDM symbol duration. In IEEE 802.16

systems, for example, available sizes are 1/4, 1/8, 1/16 and 1/32 [103]. Therefore, in order to

further reduce the complexity, the CP size hypotheses can be limited to these ratios of the estimated

ND value from previous step.

A numerical comparison of ML, suboptimal ML, and two-step low-complexity algorithms is

given in Fig. 8.2 which shows the normalized mean-squared-error (MSE) of OFDM data duration

estimation for AWGN and multi-path fading channels for a WLAN system [10] (see Section 8.4 for

more details of the used OFDM system and channel model). As can be seen from this figure, the

performance loss for the suboptimal method is around 1 - 1.5 dB as compared to the ML method.

Please note that for ML algorithm, perfect noise and signal variance knowledge is assumed; and

the performance of ML algorithm is expected to decrease when these parameters are not perfectly

known. Another 2 dB performance loss is observed when low-complexity two step method is used

instead of calculating (8.14). In the rest of the chapter, we use two-step estimation algorithm based

on modified likelihood function for obtaining performance results of the proposed method.
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Figure 8.2 Numerical performance comparison of ML, suboptimal ML and two-step algorithms.
Normalized MSE of OFDM symbol duration estimation versus SNR is presented.

8.3.2 OFDM Signal Identification

The modified likelihood function (8.12) evaluated at the estimated values can be written as

γ = Λ̃(y; ND, NG, θ)
∣∣∣
N̂D,N̂G,θ̂

= Λ̃(y; N̂D, N̂G, θ̂). (8.20)

Eqn. (8.20) gives us the likelihood of receiving y for an OFDM system which has the estimated

parameters. For OFDM signals, as the number of samples increases, γ converges to
⌊

D
N̂D+N̂G

⌋
N̂Gσ2

s

and for non-OFDM signals, it becomes zero, i.e.

γ =





⌊
D

N̂D+N̂G

⌋
N̂Gσ2

s H1

0 H0,

(8.21)

where H0 and H1 represent the null hypothesis and alternate hypothesis, i.e. the received signal is

not OFDM signal or it is an OFDM signal, respectively. This observation is used for classification of
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a signal as single-carrier or multi-carrier (OFDM) by comparing γ to a threshold λMC . The received

signal is classified as OFDM signal if γ > λMC .

The value of decision threshold depends on the incoming (OFDM) signal power and desired

probability of false alarm (or probability of miss). Signal power can be found using the total signal

if SNR is known. In non-cooperative environments, SNR knowledge is usually unavailable. In such

a case, a low SNR value can be assumed. In Section 8.4, it is shown that such an approach gives

robust results for a wide range of SNR values.

8.3.3 Estimation of Number and Frequencies of Active Subcarriers

Not all of the subcarriers carry data symbols in OFDM systems. Some subcarriers at the edges

of the spectrum are not used to create guard bands which ease filter requirements. In addition,

subcarriers might be turned off (unused) to prevent interference to relatively narrower-band primary

users as done in spectrum pooling systems [97]. Moreover, in orthogonal frequency division multiple

access (OFDMA) systems, subcarriers might be shared by different users. Knowledge of frequencies

and number of active subcarriers can be used to find the FFT size and to blindly identify the

deactivated subcarriers. The latter can be used in adaptive and cognitive radio systems to decrease

the signaling overhead.

When only a single OFDM symbol is concerned, time domain signal can be considered as a

sum of sinusoids whose number is equal to the number of active subcarriers. Hence, high-resolution

methods can be used to estimate the number and positions (frequencies) of subcarriers. OFDM

signals are inherently shift-invariant as time-shift causes only a subcarrier-dependent phase shift to

the subcarriers. In OFDM, shift-invariance is caused by the addition of cyclic prefix. In this section,

we exploit shift-invariance of signal subspaces of sinusoids using ESPRIT algorithm for estimating

the number and frequencies of used subcarriers. Using the results of Section 8.3.1, observation

vectors for each OFDM symbol can be constructed as

xm = [ym[1] ym[2] · · · ym[ND]]T (8.22)

ym = [ym[2] ym[3] · · · ym[ND + 1]]T , (8.23)
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where ym[1] is the first sample that belongs to data part of OFDM symbol. In order for ym[ND +1]

to stay within the mth symbol duration, start time can be shifted into CP portion as the phase shift

between xm and ym is not affected.

Using (8.1) and (8.7), the observation vectors can be expressed in matrix notation as

xm = Asm + wm, (8.24)

ym = AΦsm + w′
m, (8.25)

where A = [a1 a2 · · · aK ] is ND ×K Vandermonde matrix whose columns are given as

ak = [1 ejωk ej2ωk · · · ej(ND−1)ωk ]T . (8.26)

The frequency of each subcarrier can be obtained using (8.1) as

ωk =
2π∆t

TD
Γ(k) k = 1, 2 · · ·K. (8.27)

The K ×K matrix Φ contains the phase difference due to shifting and it is given by

Φ = diag
[
ejω1 , · · · , ejωK

]
. (8.28)

The column vector sm is given as

sm = [Hm(1)Xm(1) Hm(2)Xm(2) · · ·Hm(K)Xm(K)]T . (8.29)

where Hm(k) corresponds to the effect of multipath fading channel on the kth (active) subcarrier of

mth OFDM symbol, i.e. the channel frequency response (CFR) at kth subcarrier position.

The auto-covariance matrix of xm can be calculated as

Rxx = Em

[
xmxH

m

]
= ASAH + σ2

wI. (8.30)

Similarly cross-covariance matrix of xm and ym are obtained as

Rxy = Em

[
xmyH

m

]
= ASΦHAH + σ2

wL, (8.31)
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where L is an ND × ND lower shift matrix. Assuming that the data symbols are normalized and

symbols at different subcarriers are independent, i.e.

E [Xm(i)X∗
m(j)] =





0 i 6= j

1 i = j,

(8.32)

it can be shown that S becomes a diagonal matrix whose diagonal elements are equal to average

channel power at each used subcarrier position. Hence S can be written as

S = Em

[
smsH

m

]
= diag

[
σ2

H(1), σ2
H(2), · · · , σ2

H(K)
]
. (8.33)

where σ2
H(k) = E

[|Hm(k)|2] is the average channel power at kth subcarriers.

In the following, we use auto-covariance and cross-covariance matices of observation vectors to

estimate the number and frequencies of active subcarriers of received OFDM signal.

8.3.3.1 Number of Subcarriers

One critical parameter in high-resolution frequency estimation is the number of sinusoids that

needs to be estimated using the received signal. In this chapter, we follow information theoretic

approach developed in [237]. The number of active subcarriers K can be found as the value of k

that minimizes the minimum descriptive length (MDL) criterion which is given as

MDL(k) = −D log




∏ND

i=k+1 ηi(
1

ND−k

∑ND

k+1 ηi

)ND−k




+
1
2
k(2ND − k) log D, (8.34)

where η1 ≥ η2 · · · ≥ ηND
denote the eigenvalues of Rxx. Hence, the estimator can be written as

K̂ = arg min
k

{MDL(k)} . (8.35)

In [237], it is shown that this estimator based on MDL criterion is consistent. Therefore, the value

obtained using (8.35) converges to true value of number of signals as sample size grows. Simulation

results presented in Section 8.4 are consistent with these conclusions as well.

141



  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Subcarrier frequencies (Multipath fading)
Subcarrier frequencies (AWGN)

Figure 8.3 Illustration of ESPRIT based subcarrier estimation.

8.3.3.2 Frequencies of Subcarriers

Once the observation models are obtained, ESPRIT algorithm [238] can be used to estimate the

frequencies of the subcarriers. Note that the formulation of (8.24) and (8.25) is different than the

array problem given in [238]. In [238], the sm vector was replaced by a constant vector, while in our

problem sm is varying for each observation as data symbols over each OFDM symbol are changed.

However, the statistics such as auto or cross-covariance (ref. (8.30) and (8.31)) are independent of

data symbols, which enables us to use ESPRIT method. Fig. 8.3 shows polar plot of generalized

eigenvalues whose phase give the frequencies of subcarriers. The FFT size of the OFDM signal is

64 and 8 subcarriers are left deactivated in order to prevent interference to primary users (refer to

Section 8.4 for more details). Mapping of these phases to frequencies, and power spectral density

(PSD) of the signal in AWGN and fading channel is given in Fig. 8.4.

ESPRIT algorithm does not assume any prior knowledge about the (complex) sinusoids. By

investigating (8.27), however, we see that the frequencies in our problem have a regular structure.
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Figure 8.4 Subcarriers estimated by ESPRIT algorithm and power spectral density of received signal
under AWGN and fading channels are illustrated.

This regular structure is used to develop a modified version of ESPRIT algorithm that suits well to

the problem of estimating active subcarriers, i.e. Γ. Using the same notation in [238], we define

Cxx as

Cxx = Rxx − σ̂2
wI ≈ ASAH , (8.36)

where is σ̂2
w the noise variance estimate which is estimated as

σ̂2
w =

1
ND − K̂

ND∑

j=K̂+1

ηj . (8.37)

Similarly Cxy is defined as,

Cxy = Rxy − σ̂2
wL ≈ ASΦHAH . (8.38)

Now, let us consider the matrix pencil of the form

Cxx − e−jωiCxy = AS(I − e−jωiΦH)AH (8.39)
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where ωi = 2π∆t
TD

i. If i ∈ Γ, one row of I − e−jωiΦH becomes zero. Consequently, the determinant

of I − e−jωiΦH and hence the determinant of Cxx − e−jωiCxy become zero. Therefore, active

subcarriers can be identified as the i values that makes the determinant of Cxx−e−jωiCxy zero and

the frequencies of each subcarrier can be obtained as 2π∆t
TD

i. Hence, the steps of proposed ESPRIT

based subcarrier detection algorithm can be summarized as following:

1. Using received signal and synchronization knowledge, construct observation vectors xm and

ym.

2. Construct auto-correlation and cross-correlation matrices Rxx and Rxy.

3. Compute the eigenvalues of Rxx and find number of subcarriers K̂ using (8.35).

4. Compute Cxx Cxy using (8.36) and (8.38) respectively.

5. Calculate the determinant of Cxx − e−jωiCxy for i = 0 to i = ND.

6. The i values which produce the K̂ smallest determinants are selected as active subcarriers.

8.3.4 FFT Size and Communication Standard

If it is known that the received signal does not have any unused subcarriers (except guard

bands and DC subcarrier), fast Fourier transform (FFT) size can be selected as the smallest integer

larger than K̂ and power of two. Otherwise, the gaps can be interleaved and K̂ can be updated for

calculating FFT size. Bandwidth of the received signal can easily be estimated by using knowledge of

active subcarriers and their frequencies as well. In fact, actual bandwidth can easily be determined

if the number of guard subcarriers is known which is possible when the underlying standard is

identified.

It is straightforward to find the communication standard that the received signal belongs once its

parameters are calculated. The estimated parameters can be compared with the a priori standard

parameters. For this purpose, the most distinguishing parameters can be selected and based on

these parameters a simple tree-based classification can be performed. In [226], for example, only

the length of CP is used for finding which standard the received signal belongs. Alternatively, more

complex and accurate methods such as statistical classification also be used [31].
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8.4 Numerical Results

The proposed algorithms are tested using computer simulations. As for OFDM system, IEEE

802.11a based WLAN is used [10]. For this system, the transmission bandwidth is 20MHz and

number of subcarriers is 64, out of which 11 subcarriers are used as guard subcarriers and one

as DC subcarrier. Furthermore, 8 subcarriers are deactivated in order to model a cognitive radio

system. The spectrum of the transmitted signal can be seen in Fig. 8.4. CP contains 16 samples,

hence, CP rate is 1/4. For this system, CP and total symbol durations correspond to 0.8 µs and

4 µs respectively. The sampling rate of received signal is assumed to be unknown to the cognitive

radio and signal is assumed to be sampled at a rate 50% higher than Nyquist rate. An exponentially

decaying power delay profile (PDP) with 90 ns root-mean-squared (RMS) delay spread is used for

modeling wireless channel. Simulation results are obtained for 25, 50 and 100 consecutive OFDM

symbols. The threshold for classifying signal as OFDM is chosen as λMC = σ2
s+σ2

w

2

⌊
D

N̂G+N̂D

⌋
N̂G.

This value corresponds to a 0 dB SNR value. Normalized MSE is used as a performance measure of

the estimation as it reflects both the bias and the variance of the estimation.

Fig. 8.5 shows the probability of incorrect classification of the simulated OFDM signal as single-

carrier in AWGN and multi-path fading channels. As this figure shows, the classification is successful

even at low SNR values and no error is observed for 10 dB or higher SNR values. Note that for

AWGN channel, 0 dB is a decision boundary for classification. The reason for this boundary is the

selected threshold λMC which corresponds to 0 dB SNR assumption for the received signal. If SNR

information is available, the decision threshold λMC can be changed adaptively decreasing the false

alarm and mis-detection rates. The normalized MSEs for TD and TG are given in Figs. 8.6 and 8.7

respectively. The estimation is more accurate for AWGN channel than multi-path fading channel as

expected. It is noted that the number of available OFDM symbols used for estimation affects the

performance of the estimation because of noise averaging.

For observing the performance of modified ESPRIT algorithm, knowledge of symbol and CP

durations and perfect synchronization is assumed. The proposed method is applied to the same

OFDM system whose parameters are given in this section. The probability of error for detecting the

number of subcarriers is given in Fig. 8.8 for 100, 250 and 500 OFDM symbols. The probabilities

of number of identified subcarriers for different SNR values in multipath fading channel are given

in Fig. 8.9. The results are obtained for 250 OFDM symbols. Note that the total number of used
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Figure 8.5 Probability of incorrect detection for OFDM signal for different number of symbols under
AWGN and fading channels.
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Figure 8.6 Normalized MSE of OFDM symbol duration as a function of SNR for different number
of symbols under AWGN and fading channels.
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Figure 8.7 Normalized MSE of CP duration as a function of SNR for different number of symbols
under AWGN and fading channels.
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Figure 8.8 Probability of error for detecting number of active subcarriers for different number of
symbols under AWGN and fading channels.
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Figure 8.9 Histogram of number of detected subcarriers for different SNR values. The number of
employed subcarriers is 44.

subcarriers is 44. The estimation of subcarriers is biased towards less number of subcarriers which

can be explained by multipath fading of the channel. The performance of the subcarrier estimation

algorithm under AWGN channel is found to be much better in the case of AWGN channel (not

shown in figure). In the case of multipath fading, some subcarriers might be in deep fade and can

be missed by the proposed algorithm.

While applying the modified ESPRIT algorithm, false alarms or miss detection can happen due

to channel and noise. The former corresponds to identifying a deactivated subcarrier as active and

latter means that an active subcarrier is missed by the algorithm. Fig. 8.10 shows the probability

of errors for the subcarrier detection algorithm. Both false alarm and miss-detection are considered

as errors.

148



0 5 10 15 20 25
10

−3

10
−2

10
−1

P
ro

ba
bi

lit
y 

of
 e

rr
or

Signal to noise ratio (dB)

 

 

100 syms − AWGN
100 syms − Fading channel
250 syms − AWGN
250 syms − Fading channel
500 syms − AWGN
500 syms − Fading channel

Figure 8.10 Probability of errors for proposed subcarrier detection algorithm. Errors include both
false alarms and mis-detections of subcarriers.

8.5 Conclusion

It is shown in this chapter that most fundamental parameters of OFDM transmission can be

blindly estimated and synchronization and demodulation is possible without any prior knowledge.

Methods for identifying OFDM signals and their parameters are given. Furthermore, a method for

identifying active subcarriers of an OFDM system is developed. This method is especially important

for cognitive radio systems for reducing the signaling overhead that would otherwise be needed for

transmitting spectrum shaping information. Simulation results show that proposed algorithms are

capable of finding the transmission parameters under AWGN and multipath fading channels with

only a limited amount of data.
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CHAPTER 9

FEATURE SUPPRESSION FOR PHYSICAL-LAYER SECURITY IN OFDM
SYSTEMS

9.1 Introduction

Security has always been an important requirement for military communication systems. With

the increasing number of wireless devices and our dependence on these devices, security is becoming

crucial for commercial systems as well. Bit-level security measures are commonly used in commer-

cial and military applications for increasing security by encrypting data payloads. However, an

eavesdropper can obtain the encrypted data and reverse engineer the encryption technique if syn-

chronization is established to signal and data fields of the physical layer (PHY) data are identified.

In order to achieve further security on top of encryption, the transmitted waveform can be altered

according to an encryption technique. When this process is applied appropriately, eavesdroppers

can not even obtain the transmitted signal in a meaningful way.

In orthogonal frequency division multiplexing (OFDM), linear convolution of the transmitted

signal with the channel impulse response (CIR) is converted to circular convolution by cyclically

extending the OFDM symbols. This way, transmitted data symbols can be recovered using a sim-

ple single-tap frequency domain equalizer. The redundancy introduced by the cyclic prefix (CP),

however, can be used for detecting the transmission parameters [221,226–229] as well as channel es-

timation [235,239] and synchronization [240–242]. Hence, while having the aforementioned benefits,

CP may be undesired for applications which require covertness. The periodicity introduced by the

CP can be explored by undesired users to synchronize to transmitted signal. Note that the cyclic

features in conventional OFDM systems are not suspended even when frequency hopping (FH) is

used [243].

Various techniques are developed to achieve transmission-level security and covertness in OFDM

systems. OFDM data symbols are embedded into a notched ultra wide band (UWB) noise signal

in [244]. The aim is to design a spectrally undetectable system for building a network among
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radars. However, sharp filters are required in the transmitter and receiver sides and there is a

bit-error-rate (BER) gap (reliability gap) due to the added noise. UWB-OFDM is another method

for achieving covertness thanks to its transmitted power which is below the noise level. Hence,

UWB-OFDM can be used to facilitate covert and spectrally undetectable transmission. A random

frequency jitter is applied to OFDM signals to mask OFDM signature in [243]. Time jitter can be

used in frequency hopping OFDM (FH-OFDM) signals as well to remove the spectral lines at symbol

and hopping periods [243]. In [245], CP and pilot tones are completely eliminated to suppress OFDM

features. The inter-symbol interference (ISI) is removed using a decision feedback equalizer (DFE).

However, the obvious disadvantage of such an approach is the increased complexity and loosing

OFDM’s advantage of handling multipath fading channel easily using CP. Pseudo-random sequences

are used instead of preambles in [245] in order to facilitate time and frequency synchronization. A

random frequency offset is added to each preamble to further mask the spectral lines. In addition

to the aforementioned methods, power control, beamforming, and powerful channel coding can be

used to obtain further PHY-layer security in any wireless system.

In this chapter, methods to prevent unwanted exploitation of the CP for eavesdropping to the

transmitted signal, while maintaining the advantages of CP, are developed. This is achieved by

suppressing the cyclic features of OFDM signals in order to 1) prevent identification of signaling pa-

rameters and 2) avoid undesired users to achieve synchronization to transmitted signal. Specifically,

we propose to change the size of the CP size in a pseudo noise (PN) fashion and append random

signals to some of the OFDM symbols to scramble the correlation peaks in time domain. These

two methods prevent enemy detection of the transmitted signal even if an initial synchronization is

achieved by undesired users.

The chapter is organized as follows. Section 9.2 explains the effects of short CP on the BER

performance of the OFDM systems, followed by an overview of CP based (time and frequency)

synchronization and parameter estimation algorithms in Section 9.3. The developed techniques are

given in Section 9.4. Some numerical results are presented in Section 9.5 and conclusions are given

in Section 9.6.

9.2 Effect of Cyclic Prefix on the BER

In order to remove the distortion due to multipath, the length of the CP should be larger

than the maximum excess delay of the channel. Otherwise, previously transmitted OFDM symbol
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Figure 9.1 Illustration of inter-symbol interference due to multipath fading and short cyclic prefix
size.

causes interference to the current OFDM symbol (see Fig. 9.1). This interference is called ISI and

the performance degradation due to ISI is investigated in [76] and [44]. Assuming there is only

post-cursors from the preceding symbol, signal-to-noise ratio (SNR) of the received signal at each

subcarrier position can be written as

SNR(k) =
1
2

|H(k)|2N∑L
l=NG+1 |hl|2

, (9.1)

where H(k) is the channel frequency response (CFR) at kth subcarrier, N is the fast Fourier

transform (FFT) size, L is the CIR length, and hl is the lth tap of CIR. As can be seen in

(9.1), the degradation depends on the ratio between the tail power of the CIR and total power of

CIR. Unless equalization is used, short CP size causes performance degradation.

9.3 Blind Parameter Estimation and Synchronization

Various parameter estimation algorithms for OFDM systems are developed in literature. Methods

for finding the OFDM symbol and CP duration are mostly based on exploitation of the cyclosta-

tionarity of OFDM signaling due to cyclic prefix extension [221,226–229]. If cyclostationarity of the

OFDM waveform is removed, i.e. cyclic features are suppressed, estimating parameters of OFDM

signal becomes difficult and it can be prevented with proper system design.

The redundancy in the cyclic prefix of OFDM systems can also be exploited in order to obtain

time and frequency synchronization once the symbol duration and CP size are estimated/known.

Synchronization algorithms based on the maximum likelihood (ML) [240], minimum mean-square
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Figure 9.2 Illustration of cyclic prefix based maximum likelihood estimation.

error (MMSE) [241] and the maximum correlation (MC) [242] criteria can be used for this purpose.

Moreover, it is possible to exploit the cyclostationarity for estimating channel state information [235].

The ML synchronization method is illustrated in Fig. 9.2 where only one OFDM symbol is shown.

The synchronization metric obtained by one OFDM symbol can be written as

M(m) =
NG−1∑
n=0

y(m− n)y∗(m− n + ND), (9.2)

where y(n) is the received signal, NG is the length of CP and ND is the length of the useful data

part. Using (9.2), the timing position can be found as

θ̂ = arg max
m

{|M(m)|} , (9.3)

and frequency offset estimate is

ε̂ =
1
2π

∠M(θ̂). (9.4)

In practical applications, extraction of the synchronization parameters by using the CP with

only one OFDM symbol is very difficult if not impossible, since the CP is perturbed by multipath

components and additive noise. Moreover, the presence of frequency offset decreases the correlation

between the repeated parts. In order to overcome this problem, averaging over a number of OFDM

symbols should be performed. Fig. 9.3 shows the noisy correlation outputs from different OFDM

symbols and the resulting synchronization metric which is obtained by averaging these correlations.

The results are obtained for an OFDM system with 64 subcarriers and 1/4 CP ratio. Please see
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Figure 9.3 The correlations obtained by using the cyclic prefix and the resulting synchronization
metric obtained by averaging.

Section 9.5 for more details on the considered system. As we can see, the instantaneous correlations

are noisy and the resulting metric obtained by averaging has a peak around the correct timing point.

As the number of available OFDM symbols increases, the estimates become more accurate. In the

next section, we propose methods that prevent combining correlation information from different

symbols and avoid synchronization by unwanted users.

9.4 Proposed Methods for Covert Transmission

As shown in the previous section, the periodicity introduced by usage of CP can be explored

by undesired users to synchronize to and demodulate the transmitted signal. This problem leads

us to find a technique which prevents enemy synchronization while maintaining the advantages of

the CP. In the following, we propose new methods to prevent enemy exploitation of the CP for

identification and synchronization purposes. These methods provide secure transmission, lower the

requirements on coding by allowing CP usage, enable high data rate transmission and decrease the

power consumption since equalizers are not required.
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Figure 9.4 Illustration of the proposed transmission scheme. The resulting correlation peaks in the
ideal case is shown as well.

9.4.1 Insertion of Random Signals

Averaging over different OFDM symbols can only be done if the length of each OFDM symbol

is precisely known. We propose changing the length of OFDM symbols in a pseudo-random fashion

by appending a totally random signal to some of the OFDM symbols. The resulting frame structure

and correlation peaks in a noiseless static channel are illustrated in Fig. 9.4 where the length of CP

is NG, the length of the data is ND, and the length of the appended random signal is R. Using this

method, correlation peaks are scrambled in time (ref. Fig. 9.3). This prevents undesired users from

using the CP for synchronization, since they can not combine the information from different symbols

anymore. Note that even if an initial synchronization is obtained for the arriving frame, the receiver

needs to know the exact start positions of individual OFDM symbols. This is only possible if the

positions and length of the added random signals are known. The desired user, on the other hand,

can extract the transmitted information since the pattern according to which the random signals

are introduced is known. The proposed method prevents enemy from estimating the length of the

CP and useful data by executive search method as well.

For synchronization, a PN-based preamble can be used as done in [245]. Since the transmitted

signal is known only by the desired user, eavesdroppers can not synchronize to the transmitted sig-

nal. The desired users, however, can use the knowledge of scrambling pattern and the redundancy

contained in the CP to obtain synchronization information by combining the correlation outputs

from each OFDM symbol. Furthermore, synchronization information from the preamble and syn-

chronization information from the CP can be combined using an appropriate method for increasing

accuracy at the expense of increased numerical complexity.

The code sequence for prepending the random signal can be the same with the preamble sequence

(if used) for decreasing signaling overhead. However, using the same sequence reduces the security
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level and one might want to use different codes for this purpose. The sequence should be renewed

and conveyed to receiver in a periodic fashion during transmission.

9.4.2 Adaptive Cyclic Prefix Size

The length of the CP is changed adaptively depending on the channel conditions. As it is shown

in the previous section, insufficient CP causes performance degradation and not desired. On the

other hand, it becomes easier for undesired users to synchronize to the transmitted signal with large

CP sizes. Hence, the length of the CP should be just enough to prevent ISI. By changing the

CP size, the total OFDM symbol duration is changed similar to the method given in Section 9.4.1.

Therefore, undesired users can not achieve synchronization unless they know the duration of CP for

each OFDM symbol. For decreasing the complexity and overhead, only a predefined set of CP sizes

can be used.

Adaptive cyclic prefix method can be combined with channel coding and channel equalizer. The

cyclic prefix does not have to be the same as the maximum excess delay of the channel; it can be

smaller but not larger for security. If it is smaller, then the performance loss needs to be compensated

by additional coding power or channel equalizers need to be used. In the limiting case, no CP is used

and the ISI is compensated by using very high coding or channel equalizers as proposed in [245].

Adaptive cyclic prefix method requires the knowledge of the maximum excess delay of the wireless

channel. Various algorithms are developed in literature for this purpose which uses CFR [128] or

channel frequency correlation (CFC) [22]. Changing the length of the CP adaptively also provides

efficient channel utilization since the overall CP time is minimized.

9.4.3 Possible Extensions

The followings are possible extensions that can be applied to increase effectiveness of the methods

given in this section:

1. The size of the random signal inserted between OFDM symbols can be changed depending on

a PN sequence. This provides extra scrambling of the correlation peaks.

2. For random data insertion, instead of using totally random signal, a known PN sequence can

be used. The receiver can exploit the knowledge of used PN sequence for synchronization or

channel estimation. This way, the bandwidth loss due to the transmission of the random signal

can be reduced.
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3. The FFT/IFFT sizes of each OFDM symbol can be changed based on a PN sequence. This

provides two types of security by making synchronization and demodulation of received signal

difficult for undesired users.

9.5 Numerical Results

Simulation results are obtained in order to show that the proposed methods remove cyclic features

of OFDM signals. As for OFDM system, IEEE 802.11a based wireless local area network (WLAN)

is used [10]. For this system, the transmission bandwidth is 20 MHz and number of subcarriers is

64, out of which 11 subcarriers are used as guard subcarriers and one as DC subcarrier. We use

cyclic autocorrelation function (CAF) and cyclic spectral density (CSD) [183] for observing the cyclic

features contained in the OFDM waveform. The CAF for 100 OFDM symbols in a noiseless scenario

is given in Fig. 9.5. Fig. 9.6 shows the CSD for the same signal. These two figures clearly show the

cyclic features that a conventional OFDM system exhibits. As explained in the text of the chapter,

these features could be used for extracting the transmission parameters and for synchronization by

undesired users.

The method given in Section 9.4.1 is realized by inserting random sequences of length 4, 8, and 12

samples or by not inserting any data. Each four case is assumed to have equal probability. The CAF

for the transmitted signal with random signal insertion is given in Fig. 9.7. The cyclic frequencies

are clearly removed from the correlation function. CSD is not presented because of space limitation.

Please note that this information can be obtained from CAF.

Fig. 9.8 shows the CAF for the case where different CP sizes are used for each OFDM system.

Four different CP sizes containing 8, 12, 16 and 20 samples are used randomly. The cyclic features

are somewhat removed, but we can see that this method is not as effective as previous one in terms

of removing cyclic features.

9.6 Conclusion

We have proposed new techniques for increasing the covertness and security of OFDM-based com-

munication systems by altering the OFDM waveform. Variable cyclic prefix and random sequence

addition to OFDM systems in a (pseudo) random fashion are investigated. Using these methods,

synchronization to an OFDM system without the knowledge of used sequences is not possible if
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Figure 9.5 Cyclic auto correlation function (CAF) of a conventional OFDM system.
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Figure 9.6 Cyclic frequency density (CFD) of a conventional OFDM system.
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Figure 9.7 Cyclic auto correlation function (CAF) obtained by inserting random data with different
lengths between OFDM symbols.

preambles and pilot tones are not used. Furthermore, the proposed methods suppress the cyclic

features of OFDM waveform making blind estimation of transmission parameters difficult.
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Figure 9.8 Cyclic auto correlation function (CAF) obtained by using different cyclic prefix lengths
for each OFDM symbol.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

In this dissertation, we have addressed a number of transceiver design issues in multicarrier based

cognitive radio. Adaptation and parameter estimation such as Doppler spread, delay spread, and

noise variance estimations are considered in different chapters. Application of multicarrier techniques

to cognitive radio is discussed. Furthermore, multi-dimensional spectrum space is studied and sensing

methods for cognitive radios are developed. Some of the more significant issues that were reported

(to our best knowledge) the first time in the literature are as follows:

• Effect of timing errors on delay spread estimation is investigated and methods robust to these

errors are developed.

• White noise assumption is removed and variation of the noise power across OFDM sub-carriers

as well as across OFDM symbols is considered.

• A detailed survey of spectrum sensing methods for cognitive radio applications is prepared.

• High-resolution frequency estimation techniques are used to identify active and idle subcarriers.

• OFDM waveform is altered by changing only the software to remove features and achieve

covertness.

Below, we first present a list of specific contributions in different chapters of the dissertation.

Then, possible extensions of the work done are discussed.

10.1 List of Specific Contributions

• Delay spread estimation

– Synchronization errors are shown to bias the performance of estimators based on the

channel correlation.
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– The bias due to timing errors is removed by obtaining the power delay profile (PDP) and

root-mean-squared (RMS) delay spread using magnitude of the channel estimates.

– The Cramér-Rao lower bound (CRLB) for estimation of RMS delay spread is derived and

performances of the proposed algorithms are compared against this theoretical limit.

• Doppler spread estimation

– Doppler spread is estimated using time domain channel estimates instead of frequency do-

main channel response. By using the CIR, the effect of noise and inter-carrier interference

(ICI) on the frequency-domain channel is reduced.

• Noise plus interference power (SNR) estimation

– A new noise variance estimation algorithm which uses MMSE filtering technique to es-

timate the noise power is developed. This method removes the common assumption of

white Gaussian noise and considers colored noise.

– The MMSE filter coefficients are obtained from the mean-squared-error (MSE) expression,

which can be calculated using noise statistics.

• Spectrum sensing for dynamic spectrum access

– A detailed survey of spectrum sensing methodologies for cognitive radio is presented.

– Multi-dimensional spectrum sensing concept is explained and challenges this new concept

brings about for cognitive radio are discussed.

– Partial match-filtering (PMF) method is introduced where primary users are identified

by matching the features extracted from received signal to the a priori information about

primary users’ transmission characteristics.

– Energy detector based PMF method is developed and presented as a case study for PMF

technique.

• OFDM signal identification and feature suppression

– ML and suboptimal ML algorithms are developed for estimating OFDM symbol duration

and CP size.
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– A method for classifying unknown signals as OFDM or single-carrier is developed. This

method is based on the likelihood function of the received signal evaluated at ML estimates

of signal parameters.

– A new method based on estimation of signal parameters via rotational invariance techniques

(ESPRIT) is developed to estimate the number and frequencies of subcarriers of identified

OFDM signal.

– Transmission-level techniques for suppressing physical-layer features of OFDM waveform

are proposed. Hence, a covert, secure, and reliable transmission based on OFDM tech-

nique can be achieved.

10.2 Final Comments and Future Work

Cognitive radio has recently become an exciting and promising concept. In parallel to this,

OFDM technique has been used in many wireless systems and proven as a reliable and effective

transmission method. OFDM can be used in realizing cognitive radio concept because of its inherent

capabilities that are discussed in detail in Chapter 2. By employing OFDM transmission in cognitive

radio systems; adaptive, aware, and flexible systems that can interoperate with current technologies

can be realized. The adoption of OFDM in cognitive radios may happen in two ways: current

wireless technologies might evolve to have more and more cognitive features or new systems might

be developed that has full cognitive features. In either case, we foresee that OFDM will be the

dominant physical layer technology for cognitive radio.

In this dissertation, we have discussed some challenges and developed methods for addressing

those. Specifically, estimation algorithms for achieving awareness in cognitive radio are proposed.

This awareness capability can be used for adaptation of OFDM systems and opportunistic spectrum

access.

We have identified some of the open research areas for OFDM based cognitive radio systems in

Chapter 2. These topics include spectrum shaping, effective pruning algorithm design, designing ro-

bust synchronization methods for cognitive radio applications, and reducing mutual interference due

to power leakage to unused subcarriers. In addition to these general areas, the following extensions

to the work in this dissertation are possible.
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Partial match filtering: We have studied energy detector based spectrum sensing as a case study

for partial match-filtering (PMF) algorithm developed in Chapter 7. The PMF framework can

be used with different feature extraction algorithms as well, such as cyclostationarity-based or

waveform-based sensing methods. Application of PMF with different feature extraction methods

and performance comparison of these methods can be undertaken as a future research.

Interoperable cognitive radio: In order for cognitive radio to interoperate with existing devices,

it needs to have the capability to generate all possible modulations. One method is to download

the waveform from a centralized location. However, the file sizes can be very large and a total

reconfiguration of physical layer may be necessary. Cognitive radio can be designed to use only

OFDM waveform. In such a case, instead of whole waveform, cognitive radio can download (or even

store) only the OFDM parameters such as CP size, FFT size, available symbol mappings and so on.

Hence, the complexity of the reconfiguration is minimized and only a limited storage is necessary

to store different waveforms. For identification of OFDM systems, methods developed in Chapter 8

can be used.

Covert OFDM system design: Analysis of a complete system which uses PN sequences for removing

the OFDM cyclic features can be studied. Investigation of exploiting the PN sequences for channel

estimation and synchronization can be done.
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[135] C. Tepedelenlioğlu and G. B. Giannakis, “On velocity estimation and correlation properties
of narrow-band mobile communication channels,” IEEE Trans. Veh. Technol., vol. 50, no. 4,
pp. 1039–1052, July 2001.

[136] T. S. Rappaport, Wireless Communications, Principles and Practice, 2nd ed. Upper Saddle
River, New Jersey, USA: Prentice-Hall Inc., 2002.

[137] “Guidelines for evaluation of radio transmission technologies for IMT-2000,” Recommendation
ITU-R M.1225, International Telecommunication Union, 1997.

[138] Y. R. Zheng and C. Xiao, “Improved models for the generation of multiple uncorrelated
Rayleigh fading waveforms,” IEEE Commun. Lett., vol. 6, no. 5, June 2002.

[139] R. Prasad, OFDM for Wireless Communication Systems. Artech House Publishers, 2004.
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Appendix A Derivation of Channel Magnitude Correlation

The frequency domain channel frequency response (CFR) can be obtained as

H(k) =
1√
N

∑

l

hle
−j2πlk/N . (A.1)

Using (A.1) and definition of correlation, the correlation of CFR magnitude can be formulated as

R|H|2(∆) = Em,k

[|Hm(k)|2|Hm(k + ∆)|2] (A.2)

=
1

N2

∑

l

∑

l′

∑
u

∑

u′
E

[
hlh

∗
l′huh∗u′e

−j2π[k(l−l′)+(k+∆)(u−u′)]
]
. (A.3)

The summands in (A.3) equate to zero except for the following cases

1. l = l′ = u = u′, in this case

• E [hlh
∗l′huh∗u′] = E

[|hl|4
]

1 = 2P 2
l

• E
[
e−j2π[k(l−l′)+(k+∆)(u−u′)]

]
= 1

2. l = l′, u = u′, l 6= u, in this case

• E [hlh
∗
l′huh∗u′ ] = PlPu

• E
[
e−j2π[k(l−l′)+(k+∆)(u−u′)]

]
= 1

3. l = u′, u = l′, l 6= u, in this case

• E [hlh
∗
l′huh∗u′ ] = PlPu

• E
[
e−j2π[k(l−l′)+(k+∆)(u−u′)]

]
= e−j2π∆(l−u)

Using these results, (A.3) can be written as

R|H|2(∆) =
1

N2


∑

l

2P 2
l +

∑

l

∑

u;u 6=l

PlPm +
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l
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 (A.4)

=
1
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∑

l

∑
u

PlPm (1 + cos(2π∆(l − u)/N)) (A.5)

=
2

N2

∑

l

∑
u

PlPm cos2(π∆(l − u)/N). (A.6)

1The fourth order moment of a complex Gaussian variable [246].
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Appendix B Derivation of Cramér-Rao Bound

The root-mean-squared (RMS) delay spread is a function of power delay profile (PDP) as given

in (3.22). Let P = [P1P2 · · ·PL], then τrms can be written as a function of P as τrms = g(P ). In

this case, the Cramér-Rao lower bound (CRLB) for τrms can be obtained as [247]

CRLB(τrms) =
∂g(P )
∂P

I−1(P )
∂g(P )
∂P

T

, (B.1)

where (·)T denotes the transpose and ∂g(P )/∂P is defined as

∂g(P )
∂P

=
[
∂g(P )
∂P1

∂g(P )
∂P2

· · · ∂g(P )
∂PL

]
. (B.2)

Using the definition of RMS delay spread (3.22), the partials with respect to each tap can be

obtained as

∂g(P )
∂Pi

=
1

2τrms

[
τ2
i∑
l Pl

+
∑

l Plτ
2
l

(
∑

l Pl)2
+

∑
l Plτl

(
∑

l Pl)3

(
τi

∑

l

Pl −
∑

l

Plτl

)]
. (B.3)

The L× L matrix I(P ) is the Fisher information matrix and it is defined by

[I(P )]ij = −E

[
∂2 ln p(h;P )

∂Pi∂Pj

]
, (B.4)

where p(h;P ) is the likelihood function of channel impulse response (CIR) vector h = [h1h2 · · ·hL]

conditioned on P . We model channel taps hi as independent complex Gaussian random variables.

Hence, p(h;P ) can be easily formulated. When each channel tap is assumed to be independent of

each other, the Fisher matrix becomes a diagonal matrix whose diagonal entries can be calculated

as

[I(P )]ii =
Nf

P 2
i

, (B.5)

where Nf is the number of available CIRs, i.e. number of frames over which the estimation is

performed. Consequently, the inverse of I(P ) can easily be obtained as

[
I−1(P )

]
ii

=
P 2

i

Nf
. (B.6)
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Appendix B (Continued)

Please note that the diagonal entries of I−1(P ) gives the lower bound on the estimation error of

each tap’s power, i.e. E
[
(P̂i − Pi)2

]
≤ P 2

i /Nf , where P̂i is the estimate of ith tap. Finally, By

inserting (B.2) and (B.6) into (B.1), the CRLB for the RMS delay spread can be obtained as

CRLB(τrms) =
1

Nf

L−1∑

i=0

P 2
i

4τ2
rms

[
τ2
i∑
l Pl

+
∑

l Plτ
2
l

(
∑

l Pl)2
+

∑
l Plτl

(
∑

l Pl)3

(
τi

∑

l

Pl −
∑

l

Plτl

)]2

. (B.7)
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Appendix C Log-Likelihood Function for OFDM Parameter Estimation

The probability density function (PDF) of one-dimensional complex Gaussian sample can be

written as

p(y[n]) =
1

π(σ2
s + σ2

w)
exp

(−|y[n]|2
σ2

s + σ2
w

)
. (C.1)

It follows from (C.1) that the second product term in (8.11) can be dropped as p(y[n]) is not a

function of unknown parameters set. Then, the log-likelihood function can be written as

Λ(y;ND, NG, θ) =
∑

n∈Ω

log
(

p(y[n], y[n + ND])
p(y[n])p(y[n + ND])

)
. (C.2)

The numerator of (C.2) has a bivariate complex Gaussian distribution, whose PDF can be found

using (8.9) as [240].

p (r[n], r[n + ND]) =
1

π2(σ2
y + σ2

w)2(1− a2)
exp

(
−|r[n]|2−2a<{ej2πr[n]r∗[n+ND]}+|r[n+ND]|2

(σ2
y + σ2

w)(1− a2)

)

(C.3)

where the variable a is given as

a =
σ2

s

σ2
s + σ2

w

. (C.4)

By inserting (C.1) and (C.3) into (C.2), and after some simplifications, the log-likelihood function

can be found as

Λ(y; ND, NG, θ) =

∣∣∣∣∣
∑

n∈Ω

y(n)y∗(n + ND)

∣∣∣∣∣

−
∑

n∈Ω

(
a

2
(|y[n]|2 + |y[n + ND|2

)
+

1
2a

(σ2
s + σ2

w)(1− a2) log(1− a2)
)

. (C.5)

Please note that the CP set Ω is not known and depends on the symbol and cyclic prefix (CP)

durations. This set is defined as following

Ω :=
{

n
∣∣∣ m(ND + NG) + p + θ, m = {0, 1, · · · ,

⌊
D

ND + NG

⌋
− 1},

p = {1, 2, · · · , NG}, θ = {0, 1, · · · , ND − 1}
}

. (C.6)
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