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EXPERIMENTAL AND ANALYTICAL MODELING OF THE IN VIVO and IN 

VITRO BIOMECHANICAL BEHAVIOR OF THE HUMAN LUMBAR SPINE  

Tov I. Vestgaarden 

ABSTRACT 

 

This dissertation has two major parts; Analytical and Experimental. The 

analytical section contains a study using Finite Element Analysis of dynamic 

instrumentation to demonstrate stress reduction in adjacent level discs. The 

experimental section contains biomechanical testing of facet fusion allograft 

technique and finally a comparison between In Vivo and In Vitro intradiscal 

pressures to determine forces acting on Lumbar spine segment L4-L5. A 

comprehensive study of available data, technology and literature was done. 

Conventional fusion instrumentation is believed to accelerate the 

degeneration of adjacent discs due to the increased stresses caused by motion 

discontinuity.  A three dimensional finite element model of the lumbar spine was 

obtained which simulated flexion and extension. Reduced stiffness and 



 xii

increased axial motion of dynamic posterior lumbar fusion instrumentation 

designs results in a ~10% cumulative stress reduction for each flexion cycle.  

The cumulative effect of this reduced amplitude and distribution of peak 

stresses in the adjacent disc may partially alleviate the problem of adjacent 

level disc degeneration. 

Traditionally a pedicle screw system has been used for fixation of the 

lumbar spine and this involves major surgery and recovery time. Facet fixation 

is a technique that has been used for stabilization of the lumbar spine. The 

cadaver segments were tested in axial rotation, combined flexion/extension and 

lateral bending. Implantation of the allograft dowel resulted in a significant 

increase in stiffness compared to control. Facet fusion allograft provides an 

effective minimally invasive method of treating debilitating pain caused by 

deteriorated facet joints by permanently fusing them. 

An In Vitro biomechanical study was conducted to determine the 

intradiscal pressure during spinal loading. The intradiscal pressures in 

flexion/extension, lateral bending and axial rotation was compared to In Vivo 

published data. There is no data that explains the actual forces acting on the 

spine during flexion, extension, lateral bending or axial rotation. The functional 

spinal units were tested in combined axial compression and flexion/extension, 

combined axial compression and lateral bending and combined axial 

compression and axial rotation using a nondestructive testing method. Overall, 

this study found a good correlation between In Vivo and In Vitro data. This can 



 xiii

essentially be used to make physiological relation from experimental and 

analytical evaluations of the lumbar spine. It is important to know how much 

load needs to be controlled by an implant. 
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CHAPTER 1 – INTRODUCTION 

 

1.1 – Background 

First, I want to introduce some commonly used terms in medicine to 

describe directions, planes and motions. A person that is orientated in the 

“anatomical” position is facing forward, with arms and legs on a slight angle. 

The “palms of hands” are facing forward. 

Directional terms commonly used are Anterior, Posterior, Superior, 

Inferior, Medial and Lateral. Anterior, also referred to as Ventral, means toward 

the front. Posterior (Dorsal) is towards the back, and as an example we can 

look at the vertebra. When you look at the vertebra, you have the vertebral body 

and the posterior elements. These posterior elements are towards the back. 

Superior (cranial) is towards the top and inferior (caudal) is towards the bottom. 

Medial describes the midline of the body and Lateral means away from the 

midline of the body. 

In general there are three planes; frontal, midsagittal and transverse 

plane. The frontal plane is the plane that goes from inferior-superior and right-

left. As an example, right side bending will occur within the frontal plane. The 
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other planes are midsagittal (anterior-posterior and inferior-superior) and 

transverse (anterior-posterior and right to left) planes.  

 

1.1.1 – Spine Anatomy 

1.1.1.1 – Normal Curves 

The spine consists of four curvatures, and they alter between convex 

and concave. The cervical region (neck) has a concave curvature and the same 

does the lumbar region (lower back). The thoracic region (mid region) and 

Sacral region are both convex curved. 

 

 

Figure 1-1: The Complete Human Spine 
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1.1.1.2 – Curvature Abnormalities 

There are some curvature abnormalities that might be present at birth, 

while others might be the caused from a disease, uneven muscle force or bad 

posture. The most frequently seen curvature abnormalities are scoliosis, 

kyphosis and lordosis.  

Scoliosis is a spine curvature that is abnormal in the lateral curvature 

and the spine should normally be straight in this position. While the spine will 

always have a slight scoliosis (lateral curvature in the frontal plane), it will not 

cause problems with most people. Scoliosis is more common for females and is 

most common to occur in late childhood.  

Kyphosis is a change in the thoracic curvature towards the back 

(posterior). The spine is rounded, and the vertebral bodies are usually 

compressed into a wedge shape. This is most commonly caused by 

compression fractures due to osteoporosis. 

Lordosis is an exaggerated lumbar curvature and is often referred to 

swayback. 

 

1.1.1.3 – Divisions 

Three of these four regions are build up from vertebral and intervertebral 

disc. The vertebrae consist of a vertebral body, lamina, pedicle, spinous 

process, transverse process, superior facet and inferior facet. The disc that 



 4

connects the vertebral bodies is made from an incompressible center named 

nucleus pulposus and the nucleus pulposus is surrounded by the annulus 

fibrosus. The annulus fibrosus is build up by annulus grounds and layers of 

annulus fibers. These fibers have an alternating mesh that is aligned at an 

approximate 30 degrees. 

 

1.1.1.4 – Typical Vertebra 

Different regions have different characteristics to the vertebrae, but they 

have all some common features. A typical vertebra consists of the vertebral 

body, vertebral arch and seven processes. 

The body is the solid construction of the vertebrae and is exposed to 

high compression loads. The majority of the loads are distributed through the 

vertebral body and the intervertebral disc act as the “shock absorber”. While the 

superior and inferior parts of the vertebral body are roughened for attachment of 

the intervertebral disc. The intervertebral disc is a thick, disc shaped construct. 

The anterior and posterior surfaces have ligaments running from superior to 

inferior on the spine. The anterior and lateral surfaces have nutrient foramina 

for blood vessels.  
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1.1.1.5 – Lumbar Vertebrae 

The Lumbar vertebrae are the larges vertebrae in the spine. These are in 

the lower spine and carry the highest loads. A lumbar vertebra consists of the 

body, pedicle, transverse process, spinous process, lamina, inferior and 

superior facets. The vertebral body is the largest part of the vertebrae and the 

vertebral body is connected to the intervertebral disc. The disc is carrying about 

70 percent of the load, while the two facet joints carry the remaining 30 percent. 

The pedicle connects the posterior elements to the vertebra body and this is a 

very strong and rigid part of the vertebrae. 

Typically the L4 vertebra is the largest vertebrae and the L4 vertebrae is 

typically located at the same level as the superior part of the ileum crest. 

 

 

Figure 1-2: A Typical Lumbar Vertebra (Gray’s Anatomy) 
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As seen in figure 1-2, the transverse process is attached to the pedicle 

and the transverse process is directed in the lateral direction. The facets 

(labeled as Inferior Articulated Process) are also connected to the pedicle and 

the facets are directed in the superior and inferior directions. The facet joints 

consist of the superior facets of one vertebra and the inferior facets of the 

adjacent vertebrae. These facet joins add stability to the segment and it is also 

load bearing. 

The posterior elements create the spinal canal, which protects the spinal 

cord. 

 

 

Figure 1-3: A Typical Cervical Vertebra (Gray’s Anatomy) 

 

 



 7

 

Figure 1-4: A Typical Thoracic Vertebra (Gray’s Anatomy) 

 

1.1.1.6 – Cervical Spine 

The cervical spine consists of 7 vertebrae (C1-C7), where C1 and C2 are 

very unique. A typical cervical vertebrae consist of the C1 is also referred to as 

the atlas and the C2 is referred to as the axis.  The atlas has a primary function 

to support the head and it does not have the body, pedicle, lamina, spinous 

processes like the vertebral usually do. It consists of two large lateral masses. 
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The axis is a rigid vertical axis, for rotation of the atlas. The C7 is 

referred to as the “vertebral prominens” and is the most prominent. It has many 

characteristics of the thoracic vertebrae. 

Cervical spine is the most flexible region (the greatest Range of Motion) 

of the spine and is also the region with the lowest load bearing capabilities. 

 

1.1.1.7 – Thoracic Spine 

The thoracic region has twelve vertebrae. This is also the region where 

the ribs are connected to the verbal column. The typical thoracic vertebrae are 

T2-T10 and the an-typical are T1 and T11-T12. 

 

1.1.1.8 – Lumbar Spine 

The lumbar region consists of 5 vertebrae and they have wide massive 

bodies. 

The Lumbar region is the section of the spine that has the highest load 

bearing capabilities, and limited Range of Motion (ROM). The Lumbar region 

has good ROM in Flexion. 

 

1.1.1.9 – Intervertebral Disc 

The intervertebral disc is the flexible portion between the vertebral 

bodies. This intervertebral disc consists of two major components: nucleus 
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pulposus and annulus fibrosus. The nucleus pulposus is the center portion of 

the intervertebral disc and it is an incompressible material. This nucleus 

pulposus is a gelatinous cushioning part of the intervertebral disc and as the 

pressure increases, the nucleus bulges and this leads to the disc bulging. The 

annulus fibrosus are several layers of cartilaginous laminae. 

 

 

 Figure 1-5: A Typical Intervertebral Disc (Gray’s Anatomy) 

 

1.2 – Significance 

The most common disease, next to the common cold, is Low Back Pain 

(LBP)1.  
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Fusion of adjacent vertebrae is widely used for treating degenerated disc 

disease, but this procedure does not always alleviate pain2 and has a degree of 

comorbidity.3 Use of conventional (rigid) posterior instrumentation commonly 

accompanies fusion to prevent motion and aid fusion healing; however, such 

rigid fixation is believed to accelerate the radiographically observed 

degeneration of the discs adjacent to the fused segments due to the increased 

stresses caused by the abrupt stiffness and motion discontinuity.4-8 As an 

alternative to rigid fixation, different methods of “soft”9 or “dynamic”10-11 

stabilization have emerged.12   Regardless of the name used, these stabilization 

methods feature some type of less-than-rigid instrumentation design connected 

to modified pedicle screws for the purpose of gaining more favorable movement 

and load transmission across non-fused segments.  Less than rigid 

instrumentation seeks to distribute motion rather than eliminate it, and thereby 

reduce the likelihood of adjacent level disc disease while improving the long 

term outcome of lumbar fusion procedures.13  

Treatment of lower back pain can be performed by several different 

procedures. These procedures typically involve an internal fixation of the lower 

spine, which is a well established method of reducing lower back pain. To allow 

fusion, several methods of fixation are used14-21. Metal is traditionally used to 

achieve fixation, which is done by pedicle screw system, translaminar facet 

screws or facet interference screws22-27. Lately, the surgical methods and 

fixation devices have been rapidly evolving. When internal fixation first began in 
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the 1940’s, Don King developed and implemented a somewhat simple idea for 

fixation28. This method is very similar to what is now referred to as translaminar 

facet fixation29-34. This idea restricts the motion in the facet joint, leading to a 

fusion of the joint28,29,35-46.  

The idea introduced in the late 1940’s was modified by Boucher in 1959 

and it is referred to as the “True transfacet” method36. This method changes the 

angle which the screws are inserted, and provides for similar stability and a 

safer approach. Facet fixation was brought back in 1984 by Magerl, referred to 

as translaminar transfacet fixation29. This is a modification of the original 

method developed by King28. This method is considered easier to perform, 

more stable and safer than the initial translaminar facet method developed by 

King28.   

In the 1980’s the pedicle screw system became the golden standard, 

while it might not be the most ergonomically method of fixing the lumbar spine 

for fusion24-26. The pedicle screw system has several disadvantages, but in 

some cases it is the only option for a successful healing47-58.  

With an increase of medical device development to treat low back pain 

(LBP), there is also an increasing need for testing of medical devices In 

Vitro1,59. Currently, there are no published data that supports the actual forces 

in the spine during flexion, extension or lateral bending. There are published 

articles that give In Vivo intradiscal pressure measurements for these motions, 

but there are no correlation performed against In Vitro testing results60-65.  
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With this increased demand for development and validation of medical 

devices, the relation to physiological relevance is critical. Currently, there is no 

physiological rationale for the forces and moments applied during cadaver 

testing of medical devices. Another increasing problem is the supply of cadaver 

tissue and mathematical models are increasing in popularity. By collecting 

scientific data, this data can be used to validate mathematical models.  

 

1.3 – Objective 

There are three main objectives to this dissertation. As earlier stated, 

these are both analytical and experimental. The analytical section is 

accomplished by the use of a finite element model to calculate and compare the 

stresses in the adjacent level disc that are induced by conventional and 

“dynamic” posterior lumbar fusion instrumentation. The hypothesis of this 

particular study was validation of the incidence of adjacent level disc disease in 

the lumbosacral spine will be decreased with the use of semi-rigid rods.  

The second section of this dissertation contains the experimental 

evaluation. Here, a comparison of the biomechanical properties of a facet fusion 

allograft In Vitro was performed. The hypothesis is to investigate that the 

stiffness and stability of spine will increase by implanting facet fusion allograft. 

The last objective of this dissertation was to find relationship between In 

Vivo and In Vitro spinal mechanical loads. This was done by comparing the 
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published In Vivo intradiscal pressures to In Vitro intradiscal pressures and 

evaluate the effects of moments applied In Vitro. 

 

1.4 – Outline of the Dissertation 

The remaining of the dissertation is organized as follows. In Chapter 2, 

the general materials and methods of the analytical and experimental work is 

described. Application specifics are explained in the respective chapters. 

Chapter 3 describes the analytical section of the dissertation, which contains a 

three dimensional finite elements study of the lumbar spine.   

The experimental work is shown in chapter 4 and 5. In chapter 4, a facet 

fusion allograft is investigated. In Vitro Intradiscal pressure measurements are 

conducted in chapter 5 and compared to published In Vivo data. This 

comparison shows how much mechanical load is acting on the spine. 

Chapter 6 summarizes the dissertation research, outlines the 

contributions and provides some recommendations for future work. 
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CHAPTER 2 – MATERIALS AND METHODS 

 

2.1 – Analytical 

 Engineering is in general problem solving by using mathematical models of 

physical situations. In traditional engineering, finite element method has been 

used extensively and is increasing in popularity in the medical field. The 

mathematical models are differential equations developed to solve the 

boundary and initial conditions. By applying fundamental laws and principles, 

these differential equations are derived based upon mass, force or energy. 

 There are two methods; Force method, where the forces are unknown and 

displacement method, where displacements are unknown. There are limitations 

to the force method, so the current use in finite element method is the 

displacement method. 

 The governing equation for finite element method is a relation between the 

force, displacement and the stiffness. Seen below, is a sample of a two 

dimensional finite element method equation. 
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(Equation 2-1) 

  

 

This equation shows the force (F), the displacement (d) and the stiffness 

(k). There are generally eight steps to solving a problem with finite element 

method. The first step is to select an element. Depending on the problem, a 

one, two or three dimensional element can be used. A first or second order 

element, as well as the shape of the element must be used. Second order 

elements have more nodes, and gives better accuracy. The next step is to 

choose the displacement functions as shown below.  

 

 

Figure 2-1: Displacement Function for Finite Element Method 
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Next, a definition of stress/strain and strain/displacement relationship is 

needed. This is done by applying boundary conditions. From this, the element 

stiffness matrix can be defined and the global equations can be assembled. 

With the global equations, a solution for displacement can be found. The 

displacements will be used to find the stress and the strain and the results are 

interpreted.  The specifics for this particular study, is explained in detail later on 

in the dissertation. 

 

2.2 – Experimental 

2.2.1 - Biomechanical Testing 

A nondestructive spine biomechanics test setup was used to find the 

biomechanical properties. This particular setup is based on an axial servo-

hydraulic materials testing system (MTS Systems Inc., 858 Bionix II, Eden 

Prairie, MN) and is modified to allow bending as well as axial rotation. Axial 

compression is integrated in the MTS 858 Bionix II and the load is measured by 

the use of a load cell. The MTS 858 Bionix II with the modifications can be seen 

below in figure 2-2. 
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Figure 2-2: The MTS 858 Bionix II Spine Tester at University of South Florida 

 

The load cell is an electronic device (transducer) that is used to find the 

axial force applied. The load cell measures strain, by the use of a Wheatstone 

bridge strain gage. Since the load cell measures dynamic load, there is a 

constant feed back and error correction process. This will generally cause the 

signal to oscillate, but by the use of a controller system, this oscillating effect is 

minimized. The control systems consist of an actuator that actively dampens 

the effect of the oscillation. This method offers great performance, but the 

process is complex and costly. 
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These load cells are calibrated on site by the manufacturer. The general 

method of calibration is simply to apply a known force by the help of gravity. 

Since the applied static force is known, the load cell can be calibrated 

accordingly. This procedure is done with a series of different loads, and a 

calibration equation is developed. The load cell has an accuracy of 0.13% error 

for force measurements and 0.10% for displacement measurements. 

 

 

Figure 2-3: MTS Force Transducer Used on the Experimental Apparatus 

 

The displacement is measured by a linear variable differential 

transformer. The linear variable transformer measures the absolute position by 

using the magnetostrictive measuring principle developed by J. Tellermann. 

This method uses magnetic fields and waveguides to determine the distance 
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the ultrasonic wave travels. These linear variable differential transformers are 

calibrated by the manufacturer and have an accuracy of 0.01% 

The torsion and bending motions are measured by linear variable 

differential transformers. The linear variable transformers record the angular 

displacement and an approximate error of 1%. The angular displacement is 

calibrated by positioning the device in series of different known angles and 

finding the proper gain settings for the particular device. 

The torque is measured by an electronic device (transducer) that is 

called a torque cell. In a very similar manner to the load cell, the torque cell 

measures strain, by the use of a Wheatstone bridge strain gage. Since the 

torque cell measures dynamic load, there is a constant feed back and error 

correction process. This will generally cause the signal to oscillate, but by the 

use of a controller system, this oscillating effect is minimized. The control 

systems consist of an actuator that actively dampens the effect of the 

oscillation. This method offers great performance, but the process is complex 

and costly. The torque cells are calibrated by inputting a linear series of known 

torque to find the proper gain. The accuracy of these torque cells are 

approximately 1%. 

The axial force and axial displacement are continuously recorded and 

can be used to interpret the axial stiffness of the specimen. Axial torsion is 

measured by fixing one end of the specimen and applying an axial torque on 

the other end of the specimen. By measuring the torque and the axial rotational 
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angle, the rotational resistance can be calculated. The bending consists of a 

superior and inferior moment and an equal, but opposite bending moment is 

applies at both ends. This allows for pure bending moment and no shear is 

present. The bending moment and the angle are recorded throughout the cycle 

for an accurate measurement of the bending stiffness. This bending moment is 

used to measure flexion/extension and by turning the specimen 90 degrees, it 

will measure lateral bending. 

 

2.2.2 – Intradiscal Pressure Measurements 

The intradiscal pressure measurements were performed by inserting a 

cannulated needle into the center of the nucleus propulsus66,67. The nucleus 

propulsus is uniformly hydro static and gives a comparable reading through out 

the majority of the nucleus. An approximation of the center of the nucleus was 

done by measuring the radiographic images. Once the center of the nucleus 

was found, a calibrated pressure probe (OrthoAR Model No: 0571521-57, 

Medical Measurements Inc., Hackensack, NJ) was inserted through the 

cannulated needle and the pressure sensor was exposed to the hydrostatic 

pressure of the nucleus propulsus.  
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Figure 2-4: Pressure Probe Made by OrthoAR 

 

The pressure probe is a Piezoresistance of semiconductor device, based 

on a microelectromechanical system (MEMS) Wheatstone bridge strain gage. 

The strain gage changes the resistance accordingly to the strains in the 

pressure probe. The output voltage is changing as a result of the change in 

resistance, and the voltages are recorded and interpreted by the MTS software. 

The pressure probe is calibrated by using nitrogen pressure. A known 

pressure of nitrogen is released into a sealed container, where the pressure 

probe is inserted. This procedure is done with small increments and a graph of 

the known pressure can be plotted against the change of resistance in the 

strain gage in the tip of the pressure probe. The gain on the pressure probe can 

be adjusted accordingly and verification is done. The pressure probe has a 

certified sensitivity of 0.496 µV/V-kPa at a pressure of 2 MPa with an error of 

0.3% at 1 MPa according to National Bureau of Standards. The pressure 

sensor was horizontal oriented, as there is no significant difference in 

orientation68.  
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2.2.3 – Human Cadaver Tissue and Fixation 

The human cadaver tissue is supplied by National Disease Research 

Interchange to be used for research only. This tissue is harvested at the 

hospital within 12 hours and stored at -80 degrees Celsius. The tissue has 

passed all the serologic testing before shipping, while care must still be taken. 

The tissue is inspected upon arrival and stored at -80 degrees until use. Tissue 

is handled professionally, with respect, care and disposed in a proper manner. 

The lumbar spine segments are disarticulated and potted into 4” x 4” 

aluminum fixtures by the use of polyester resin and anchors. Figure 2-5 below 

is a sample image of a FSU potted on both sides and securely fastened in the 

fixture. 



 23

 

Figure 2-5: A FSU Potted on Both Sides 

 

An important aspect of potting is not to disturb the disc space. A digital 

Faxatron (Model No: MX-20, Wheeling, Illinois) is used to capture an X-Ray to 

verify that the disc space is not violated. Figure 2-6 below show a sample X-

Ray of the potted FSU, and there are no objects in the disc space to alter the 

biomechanical behavior. 
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Figure 2-6: X-Ray Image of a Potted Specimen, with No Anchors in the Disc 

Space 

  

Once the potting is performed, the FSU are covered with gauss and 

sprayed with saline solution. When the specimens are not in use, they are 

stored at +4 degrees Celsius to minimize tissue degradation. 
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CHAPTER 3 – FINITE ELEMENT ANALYSIS OF DYNAMIC 

INSTRUMENTATION DEMONSTRATES STRESS REDUCTION IN 

ADJACENT LEVEL DISCS 

  

3.1 – Introduction 

Conventional fusion instrumentation is believed to accelerate the 

degeneration of adjacent discs due to the increased stresses caused by motion 

discontinuity.  Fusion instrumentation that employs reduced rod stiffness and 

increased axial motion, i.e. “dynamic” instrumentation, may partially alleviate 

this problem, but the effects of this instrumentation on the stresses in the 

adjacent disc are unknown.  The objective of this study was to use a finite 

element model to calculate and compare the stresses in the adjacent level disc 

that are induced by conventional and “dynamic” posterior lumbar fusion 

instrumentation. 

The efficacy of dynamic stabilization remains controversial, and is 

therefore a suitable topic for continuing investigation2,70-73. Although several 

clinical outcome studies describe preliminary results obtained from the use of 

dynamic stabilization3,4,12,23,26, these studies lack a randomized controlled 

design, a statistically adequate sample size, or long-term follow-up data that 
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would enable the clinical efficacy of these methods to be properly evaluated10. 

Early data suggests that the results are at least no worse than those observed 

from conventional rigid instrumentation2. Information is also lacking from a 

scientific perspective because dynamic stabilization methods have largely been 

developed based on clinical suggestions instead of quantitative engineering 

design efforts, and thus the biomechanics of these methods remain relatively 

unstudied. 

 Therefore, the purpose of the present study was to: 1) quantify the 

biomechanics of rigid and one other specific type of dynamic instrumentation 

when biomechanically tested in a simulated laboratory model, 2) use these data 

in a finite element model of a fused and fixed lumbar spine to calculate the 

flexion-induced peak stresses in the adjacent level discs, and 3) compare these 

results to determine if a biomechanical basis exists for believing that the 

reduced stiffness and increased axial motion conferred by dynamic 

instrumentation can alter the stresses in adjacent level discs. 

 

3.2 – Materials and Methods 

3.2.1 – Study Design 

This laboratory study, performed at University of Kentucky, used both 

standardized compressive testing of dynamic instrumentation on an established 

lumbar spinal segment model, as well as a finite element modeling technique 



 27

which enabled quantification of the stresses induced in an established model of 

lumbar spinal discs74 as a function of instrumentation design (rigid or 

conventional vs. dynamic).  This experimental design, i.e., stiffness testing 

followed by finite element analyses, is consistent with prior studies75-76. 

 

3.2.2 – Finite Element Modeling 

 A three dimensional finite element model of the lumbar spine (L1-L5 

including discs) was developed by first obtaining a validated finite element 

mesh74 for the L3-L5 spine section. (Figure 3-1)    

 

 

Figure 3-1: Isometric View of the Finite Element Mesh of the Lumbar Spine and 

the Semi-Rigid Rod 
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Isometric view of the finite element mesh adapted from a model created and 

validated by Smit et al from which a model of the lumbar spine was used and to 

which the semi-rigid instrumentation was applied. 

 

The geometry had been developed based on a series of computed 

tomography scans of the L4 vertebra of a 44 year male with no pathologies74.  

The L4 mesh was then replicated to model the other lumbar spine vertebrae.  

Note that this validated model of L1 – L5, previously developed by Smit et al., 

consists of a series of five dimensionally equivalent L4 vertebrae.  This resulting 

mesh of L1-L5 vertebrae was positioned such that the angle between the 

inferior surface of L2 and the superior surface of L5 was 40 degrees. This 

model consisted of a fused (totally rigid) L5-S1 segment and a L4-L5 segment 

that was modeled to imitate fixation with either rigid or dynamic instrumentation.  

The dimensions for the instrumentation used in this model were obtained from 

direct measurement of exemplar instrumentation (Isobar TTL, Scient’X USA Inc, 

Maitland, FL, USA). The fused segments between L5-S1 were modeled by 

specifying the material properties of the L5-S1 disc to be the same as those of 

cortical bone. Adjacent pairs of vertebrae were connected by intervertebral 

discs that were modeled by a nucleus in the center surrounded by 3-4 rings of 

annulus fibrosus. The nucleus typically occupies about 30-50% of the area of 

the disc; therefore the fraction used for the nucleus in the model obtained was 

43%77.(Figure 3-2)  
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Figure 3-2: Isometric View of an Intervertebral Disc 

 

Isometric view of an intervertebral disc used in the model.  Model shows the 

annulus fibrosis (outer three layers of mesh elements) and the nucleus pulposis 

(darker inner mesh elements) 

 

The entire finite element model contained 18,128 three-dimensional 8-

node linear brick elements. 

 Loading of the model was accomplished by combined flexion or 

extension plus axial loading.  The axial load of 400 N was applied as a 

“follower” load thereby allowing the axial load to follow the motion of the spine.  

The model simulated forward flexion at discrete angular increments of 15°, 30° 

and 45° and a backwards extension of 15° by applying relative angular 
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displacements between L1-L2, L2-L3, and L3-L4 segments, respectively, based 

upon values equal to those obtained from a normal spine during forward flexion 

and backward extensions78. 

The damper of the dynamic instrumentation, located between the 

instrumented L5 and L4 vertebrae, permitted the upper segment of the fixation 

rod to have a reduced stiffness and a limited amount of axial micromotion.  

These two features of this damper mechanism were modeled by employing a 

softer segment (having variable stiffness values, all of which were less than 

those of titanium alloy) placed in series with an axial motion connector (which 

allowed axial motion only). (Figure 3-3)   

 

 

Figure 3-3: The Damper Model of the Dynamic Instrumentation 
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Expanded schematic illustration of the mechanical components of the damper 

element of the dynamic instrumentation component (shown in Figure 3-1). 

 

Two parameters, R and G, were used in this model to quantify the 

reduced stiffness and the axial micromotion of the damper mechanism, 

respectively.  Note that the damper is an integral component of the TTL device 

which is responsible for these two features.  The parameter, 

 

R=Krigid/Kdynamic                                                                                                                                                                                   (Equation 3-1) 

 

was used to quantify the reduced stiffness of the damper. (This dimensionless 

stiffness ratio quantified how much stiffer the rigid instrumentation was relative 

to the dynamic instrumentation.   The Krigid term of equation [3-1] represents the 

elastic stiffness of the rigid instrumentation, while the Kdynamic term represents 

the elastic stiffness of the dynamic instrumentation. Values for Krigid and Kdynamic 

were obtained from the material properties of titanium alloy and the variable 

reduced stiffness material comprising the softer segment.  The G parameter 

was defined as the maximum axial motion allowed by the damper mechanism. 

To study the effects of axial motion on the resulting pressures inside the disc, 

five discrete maximum allowable axial displacements (0 to 0.8 mm in 0.2 mm 

increments) were used in the model.  Changes to both R and G permit the 

changes in pressure within the disc to be quantified as a result of varying 
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instrumentation elastic stiffness and axial micromotion.  Before reaching the 

maximum axial motion, the damper also functioned as an axial spring with a 

stiffness of 175 KN/m (calculated from the product manual accompanying the 

Isobar TTL instrumentation).  

The inferior portion of the sacrum was modeled as a block and the lower 

surface of the block was considered fixed. A static compressive (“follower”) load 

of 400 N was axially applied to the superior surface of the L1 vertebra and this 

load was maintained perpendicular to the superior surface of the L1 segment 

throughout axial load induced deformation. All components in the assembly 

shown (Figure 3-1) were modeled by using linear elastic materials. The material 

properties assigned to these components74,78 in the finite element model are 

shown (Table 3-1).   
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Material properties obtained from sources listed and used in the finite element model.  

Units of Young’s Modulus are gigaPascals; Poisson’s ratio is dimensionless.  

Table 3-1: Material Properties 

 

Material Young’s Modulus, GPa Poisson's Ratio 

Cortical Bone 12 0.3 

Cancellous Bone 3 0.2 

Fibrous 0.03 0.45 

Nucleus 0.001 0.49 

Steel 190 0.3 

Titanium 116 0.33 

 

Peak stress values in the disc, as well as the areas of the 2D projections 

of the 3D volumes of disc tissue exposed to > 80% of peak stress volumes, 

were calculated for varying values of R and G by using commercially available 

finite element analysis software (ABAQUS/Standard, ABAQUS Inc., Pawtucket, 

RI). 

 

3.3 – Results 

The experimental testing performed at University of Kentucky, showed 

mean value of the elastic stiffness (axial load divided by actuator displacement) 
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of the rigid instrumentation was 21,960 ± 8,034 N/mm, while the mean elastic 

stiffness of the dynamic instrumentation was less than one-third this value (p = 

0.01), i.e., 6,169 ± 1,298 N/mm.  Using these data, the resulting R and G values 

for the rigid instrumentation were 1 (“control” stiffness value) and 0 (meaning no 

axial micromotion – obtained from the manufacturer), respectively, whereas the 

R and G values for the dynamic instrumentation were 3.6 and 0.4 mm, 

respectively.  Other values for R and G were also used in the model 

calculations to compute the effect of alternative values for elastic stiffness and 

axial micromotion. (Tables 3-2 & 3-3). 

 

 Table entries (italicized values) are the peak stresses (units of gigaPascals) 

induced in the L3 – L4 disc superior to the dynamic instrumentation component 

as calculated from the finite element model as a function of: 1) flexion (+ 

value)/extension (- value) angle (extreme left column), 2) dimensionless 

stiffness ratio R (second column from left), and 3) axial motion parameter G 

(column headings, units of mm). 

 

 

 

 



 35

Table 3-2: Peak Calculated Stress (MPa) in the L3-L4 Disc 

Angle, 

degrees 

      G(mm) 

       

R (ratio) 

0.0 0.2 0.4 0.6 0.8 

1 7.7096 7.5364 7.3715 7.2067 7.0422 

3.6 7.6376 7.4578 7.2866 7.1157 6.9453 

10 7.5644 7.3867 7.2174 7.0485 6.8800 
45 

44 7.3416     

1 5.0483 4.8767 4.7133 4.5503 4.3882 

3.6 4.9999 4.8211 4.6511 4.4814 4.3123 

10 4.9524 4.7754 4.6069 4.4388 4.2712 
30 

44 4.8044     

1 2.4776 2.3078 2.1472 2.0859 2.0859 

3.6 2.4532 2.2759 2.1077 1.9404 1.9101 

10 2.4303 2.2542 2.0870 1.9209 1.8515 
15 

44 2.3569     

1 4.2420 4.0428 3.8508 3.8508 3.8508 

3.6 4.2348 4.0251 3.8066 3.7431 3.7431 

10 4.2215 4.0126 3.7947 3.7093 3.7093 
-15 

44 4.2085     
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 Table entries (italicized values) are the peak stresses (units of gigaPascals) 

induced in the L4 – L5 disc spanned by the dynamic instrumentation component 

as calculated from the finite element model as a function of: 1) flexion (+ 

value)/extension (- value) angle (extreme left column), 2) dimensionless 

stiffness ratio R (second column from left), and 3) axial motion parameter G 

(column headings, units of mm). 
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Table 3-3: Peak Calculated Stress (MPa) in the L4 – L5 Disc 

Angle, 

degrees 

      G(mm) 

       

R (ratio) 

0.0 0.2 0.4 0.6 0.8 

1 2.5972 2.7377 2.8713 3.0043 3.1369 

3.6 2.7141 2.8765 3.0317 3.1872 3.3429 

10 2.7601 2.9242 3.0812 3.2386 3.3964 
45 

44 2.9633     

1 1.7221 1.8579 1.9873 2.1165 2.2448 

3.6 1.8010 1.9591 2.1105 2.2624 2.4147 

10 1.8309 1.9912 2.1448 2.2990 2.4537 
30 

44 1.9626     

1 0.8522 0.9844 1.1106 1.1588 1.1588 

3.6 0.8921 1.0470 1.1955 1.3443 1.3713 

10 0.9067 1.0642 1.2153 1.3667 1.4300 
15 

44 0.9717     

1 0.4319 0.8208 1.2029 1.2029 1.2029 

3.6 0.4803 0.8214 1.1828 1.2882 1.2882 

10 0.5368 0.8616 1.2055 1.3410 1.3410 
-15 

44 0.8796     

 



 38

Calculated values are shown for the peak von Mises stresses induced in 

the L3-L4 disc for the 400 N axial load applied with each of the two 

instrumentation designs at each of the four flexion/extension positions (15°, 30° 

and 45° flexion and 15° extension) and for varying values of R and G (Table 3-

2).  The data showed that the use of dynamic instrumentation was associated 

with a 5.5% reduction in peak stress for the L3-L4 disc and a 16.7% increase in 

peak stress for the L4-L5 disc compared to the rigid instrumentation at 45° of 

flexion.  It was also observed that, by maintaining the G value at 0.0 (allowing 

no axial micromotion) but allowing the stiffness of the proximal segment of the 

dynamic instrumentation to decrease, caused a reduction in the peak stress in 

the L3-L4 disc by approximately 1-2%. Alternatively, maintaining the same 

stiffness of this proximal segment as is found in the rigid case, i.e., maintaining 

the R-value at 1, but increasing the axial micromotion, i.e., increasing the G-

value, results in reducing the peak stress in the L3-L4 disc by approximately 8-

9%. Thus, increasing the G-parameter (specifically, increasing axial 

micromotion) was shown to be more effective in reducing the peak stress in the 

L3-L4 disc than was decreasing the R-parameter (specifically, decreasing the 

rod stiffness).  The effects noted above were also observed at 15° and 30° of 

flexion as well as at 15° of extension, but less prominently (Figure 3-4).  
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Figure 3-4: Comparison of Stress in L3-L4 with Different Variables for R and G 

 

Representative values for the calculated stresses induced in the L3-L4 disc as 

function of one of four different flexion/extension angles (abscissa) and for 

varying indicated (color-coded values of relative stiffness (R-parameter values) 

and axial motion (G-parameter values). 

 

Note that the minimal value for peak stress in the L3-L4 disc in the 45° 

flexion case was achieved for R and G values of 10 and 0.8 mm, respectively.  

To graphically visualize the stress reduction caused by reduced stiffness 

and increased axial micromotion associated with dynamic instrumentation, the 
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stress levels in the L3-L4 disc located above the rigid instrumentation were 

contrasted with those of the same disc located above dynamic instrumentation 

which have the “optimal” dynamic parameters (R=10, G=0.8 mm) noted. (Figure 

3-5). 

   

 

Figure 3-5: Stress Distribution of L3-L4 at 45˚ Flexion. 

 

Anterior and posterior views of calculated stress distribution in the L3-L4 disc at 

a 45˚ flexion angle for discs associated with rigid instrumentation (right side) 

and “dynamic” (left side) instrumentation (1/10 stiffness, i.e., R = 0.1) for 0.8 

mm axial motion. 
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A representation of the peak stresses for the extreme motions are shown 

below in figures 3-5, 3-6 and 3-7. These cases are all achieved with R and G 

values of 10 and 0.8 mm, respectively. The remaining representations are 

shown in Appendix A. 

 

 

Figure 3-6: Stress Distribution of L4-L5 Disk at 45˚ Flexion  
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Figure 3-7: Stress Distribution of L3-L4 Disk at 15˚ Extension 

 

 

Figure 3-8: Stress Distribution of L4-L5 Disk at 15˚ Extension 
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Note from these stress contours that the volume of L3-L4 disc tissue 

located above the dynamic instrumentation that was exposed to stresses of 

6.17 MPa or greater was 47% less than the volume of L3-L4 disc tissue located 

above the rigid instrumentation that was exposed to stresses of 6.17 MPa or 

greater.  The stress value 6.17 MPa was 80% of the peak stress in the L3-L4 

disc located above the rigid instrumentation when calculated at 45° of flexion.  

 

3.4 – Discussion 

 Reduced stiffness and increased axial motion of dynamic posterior 

lumbar spinal fixation instrumentation resulted in both lower peak stresses and 

smaller volumes of tissue exposed to high amplitude stresses in simulated 

adjacent level discs.  While the stress reduction effect was small (~10% 

cumulatively for a single forward flexion), this is important because this benefit 

will be repeated over many loading cycles (1 – 10 million/year).  Classic 

material fatigue studies show that small reductions in peak load amplitude 

produce substantial increases in material longevity, and this finding is 

substantiated by analogous studies conducted in cadaveric lumbar vertebrae70. 

Although the reduced stiffness and increased axial motion also increased the 

peak stress in the L4-L5 disc by up to 28%, this load increase needs to be 

considered in light of the peak stress amplitude in the L4-L5 disc which was 2 to 

3 times less than that in the adjacent L3-L4 disc.  The reduced stiffness and 

increased axial motion of dynamic instrumentation also allows some rotation of 
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the L4 vertebra with respect to L5.  This rotation is not permitted by rigid 

instrumentation designs.  To achieve the same overall level of flexion when 

both types of devices are used, the L3-L4 disc experiences smaller rotation 

demands when this type of dynamic instrumentation is used. This reduced 

rotation then leads to a corresponding stress reduction in this disc. 

There are only a few published studies that are reasonably comparable 

to the present study. Three of these used cadaveric spinal segments that were 

mechanically tested In Vitro in conjunction with another type (Dynesis) of 

dynamic instrumentation. All showed that this type of dynamic instrumentation 

can favorably alter load transmission and movement yet can also provide 

adequate stability.  None of these studies quantified the changes in pressure 

within the disc that remain at the basis of adjacent segment degeneration79-81. 

Another study used computational models to compare materials selection, but 

not device design.  This study also focused on overall mechanical stability and 

load transmission rather than pressures within the disc76. A fifth study used a 

finite element method to compute pressures within adjacent discs, but did not 

study the effects of dynamic instrumentation82. The one study most closely 

similar to that done presently83 also used a finite element model of the lumbar 

discs, but concluded that dynamic instrumentation does not alter pressures 

within the discs.  The reason for this disparity in findings may be reflective of the 

mechanical performance differences between the Isobar system (present study) 

and the Dynesis system (Zander et al. study). 
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It is important to note that dynamic instrumentation also permits axial 

distraction, which in turn changes the center of rotation.  Consider the two 

instrumented segments, A and B. (Figure 3-9a). 

 

 

Figure 3-9: Two Approaches to Generate 2˚ of Rotation 

 

Saggital view of a schematic illustration of the damper mechanism that shows 

two approaches regarding how rotation can be obtained for instrumentation that 

allows “dynamic” motion (a): (b) pure bending only with no axial motion – notice 

the location of the Center of Rotation (COR), or (c) bending with axial 

compression/extension – note the altered (more physiological) location of the 

Center of Rotation. 
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If axial distraction (i.e., increase of the inter pedicular distance) is 

permitted, then the center of rotation shifts and falls within the L4-L5 disc and 

not on the posterior side of the posterior lateral ligament. (Figure 3-9a)  When 

no axial motion is allowed, the center of rotation is located at the level of the 

damper (which is acting as a type of “hinge”, Figure 3-9b).  This shift in the 

center of rotation reduces the effective moment arm for L4 rotation, which in 

turn causes a reduced moment and lower stresses in the L3-L4 disc since L1 

will have the same displacement in both cases.  This allows a more 

physiological motion than can otherwise be obtained with instrumentation that 

does not allow distraction.  As noted in the results, decreasing the R-parameter 

alone has the effect of reducing the stiffness of the material resisting the 

rotation, while decreasing the G-parameter alone has the effect of adjusting the 

axis of rotation for L4. The numerical results obtained in the present study 

demonstrate that within the range of values for stiffness and axial motion 

(parameters R and G) used herein, moving the center of rotation anteriorly is 

more effective in reducing stress amplitudes in the adjacent level disc than is 

reducing the elastic stiffness of the instrumentation.  Although the particular 

type of dynamic instrumentation studied has both features, i.e., anterior 

translation of the center of rotation and reduced elastic stiffness, the former 

feature is considered to be clinically more important.  

Increased load demands at the adjacent level disc accompanying fusion 

has been associated with accelerated degeneration of that disc in animal 
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models14 and is also associated with adjacent level disc problems in humans5. 

Rigid fixation has been associated with increased pressures within the disc 

which are as much as 73% greater in adjacent cervical discs84. Others suggest 

that not just the amplitude, but the altered pattern of loading may also have a 

role in this process of adjacent level disc disease12. Given the current findings, 

some6 argue that there remains less than adequate proof of the difference 

between rigid and dynamic stabilization, while others10 claim that the lack of 

differences provides support for the concept.  This assumption will be best 

evaluated from long-term follow-up data obtained from adequately powered 

randomized controlled clinical trials which study dynamic versus conventional 

instrumentation. It is important to remember that “dynamic” is an appellation for 

a generic class of load-sharing fixation instrumentation; due to differences in 

designs and materials of such devices, varying levels of stiffness and motion 

will result.  Outcomes of computational or in vivo studies employing dynamic 

devices are likely to be different due to their biomechanical heterogeneity.  Only 

the resulting clinical studies will enable those with superior performance to be 

identified. 

Limitations of the present study include the less than ideal anatomical 

model used.  The lumbar vertebrae employed in this finite element model were 

not size-adjusted for the various vertebral levels, but were all identical and 

based upon the dimensions of an L4 vertebral body.  However, this model was 

developed and validated previously74 and thus is not considered a major 
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limitation because the focus of the study was the comparative, not absolute, 

differences in pressures within the disc.  Also, as loading deforms the in vivo 

spine, the load likely does not remain perpendicular: however for the model 

used in this study, it was assumed to remain perpendicular. This assumption 

introduces a limitation to the absolute accuracy of the internal stress results 

reported, but the magnitude of this error is considered small and the 

comparative (between rigid and dynamic stabilization instrumentation) effects 

are believed negligible.  The model used also did not include the effects of 

degenerative disc material properties, strain dependent disc swelling 

pressures/material permeability, or nonlinear elastic material behavior.  While 

these may be important from an absolute perspective to understand the 

behavior of individual discs85, their relative contribution in the present study 

involving comparison of two different fixation types is considered insignificant. 

 Assuming that adjacent level disc deterioration is partially caused by 

repetitive high amplitude loading and non-physiologic axes of rotation, reduced 

elastic bending stiffness and increased axial motion attributable to an anteriorly 

shifted axis of rotation in posterior instrumentation will more favorably distribute 

the motion demands of the lumbar spine.  This finding supports emerging 

clinical evidence that such mechanical alterations to posterior spinal fixation 

devices have a beneficial effect on disc tissue and thereby delays the onset, 

reduces the severity of, or prevents entirely, the phenomenon of accelerated 

adjacent level disc deterioration. 
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     In conclusion, reducing the stiffness, increasing the axial motion, and 

anteriorly translating the axis of rotation of posterior spinal fixation 

instrumentation may be part of the solution to the problem of adjacent level disc 

degeneration. 
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CHAPTER 4 – BIOMECHANICAL TESTING OF FACET FUSION TECHNIQUE  

 

4.1 - Introduction 

Traditionally a pedicle screw system has been used for fixation of the 

lumbar spine and this involves major surgery and recovery time. Facet fixation 

is a technique that has been used for stabilization of the lumbar spine and the 

proposed facet fixation technique can be performed as a percutaneous 

procedure. The proposed technique stabilizes the facet joints in a similar 

manner as the translaminar facet stabilization. 

Minimal invasive surgery has had an increase in popularity the last 

couple of years, instead of a traditionally open back surgery. For minimal 

invasive surgery, a facet fixation will be more feasible than a pedicle screw 

system86. The minimal invasive pedicle screw method is very time consuming 

and technically demanding.  

The procedure discussed in this paper is a percutaneous facet fixation 

where an allograft is used for fixation. This method will use human bone for the 

fixation and this will allow the facets to fuse together and provide fixation of the 

facet joints. The stability of the functional spinal unit (FSU) will be restricted by 

no motion of the facet joint, which will lead to fusion of the facet joint. While all 
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other available procedures for FSU stabilization use pedicle or transfacet screw 

fixation, this procedure uses an allograft bone dowel that is pre-formed to a 

specific shape22,87,88.  

 

4.2 - Materials and Methods 

Three human cadaveric lumbar spine segments were tested, using a 

nondestructive testing method. The lumbar spines were disarticulated at L1-L2 

and L3-L4. The segments were tested in axial rotation, combined 

flexion/extension and lateral bending. The specimens were first tested intact as 

control. Next, the same spine segments were implanted with the facet fusion 

allograft by a board certified orthopedic surgeon according to the 

manufacturer’s specification. Axial rotation, flexion/extension and lateral 

bending were performed with a constant load of 100 N and a moment of 6 Nm 

was applied in 6 cycles. The first 5 cycles were used to precondition the 

specimen and the data for the 6th cycle was interpreted. 

 

4.2.1 - Spine Preparations 

A total of three adult human cadaver lumbar spine segments were 

harvested. The donor’s average age was 65.5 ± 1.8 (range 61-73) years and 

the donor group consisted of 2 males and 1 female. The medical history of all 

the donors was reviewed, where donors with any disease that will affect the 
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spine biomechanics or trauma were excluded. These three lumbar spine 

segments were investigated visually, as well as the specimens went through a 

radio graphically screening to exclude any major abnormalities such as 

osteolycis, fractures or damage to the vertebral bodies or the intervertebral disc. 

The disarticulation was chosen based on the quality of the particular 

articulations found in the radio graphically screening. The lumbar spines were 

disarticulated to create a variation of Functional Spinal Units (FSU) from 

different levels to be used in this study. This method allows for the most FSU’s 

to be extracted from each lumbar spine, but certain spines produced more 

FSU’s than others.  

En Block specimens were stored at -80 degree Celsius and thawed to +4 

degrees Celsius in a refrigerator. The specimens where covered by gauss, 

sprayed with saline solution and left at room temperature before testing. To 

securely attach the specimens to the test fixture, the specimens were reinforced 

by inserting metal screws in the vertebral endplate and potted in a two part 

polyepoxide based resin.  All extraneous musculature was removed from each 

spine, keeping all the ligaments and posterior elements intact. 
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4.2.2 - Implant and Fixation Techniques 

4.2.2.1 - Specimen Instrumentation 

Each FSU was instrumented with facet fusion allograft as shown in 

Figures 4-1 and 4-2. 

 

Figure 4-1: Posterior View of Placement of Facet Fusion Allograft in Facet 

Joints 
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Figure 4-2: Superior View of Placement of Facet Fusion Allograft in Facet 

Joints. 

 

4.2.2.2 - Facet Fusion Allograft Insertion 

To implant the facet fusion allograft the facet joint needs to be accessed 

either by direct visualization during open surgery or indirectly by fluoroscopy 

during percutaneous surgery. Once the facet joint is identified, the posterior 

facet joint capsule is removed, as well as any significant osteophytes. The facet 

joints will then be cleared of any remaining cartilage or debris, as well as this, 

clinically, will help the joint to fuse. The drill guide is then centered between the 

inferior and superior facets, where the drill guide stabilizing teeth are placed 
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superior and inferior in the facet joint opening. This will prevent the drill guide to 

move around on the facets, but still allow for changing the angle medially and 

laterally to drill in the plane of the facet joint. Once the drill guide is in position, 

the tapered compaction drill bit can be used to drill facet implantation site. This 

will lead to a removal of less than 50% of the superior facet and less than 50% 

of the inferior facet as shown in Figure 4-3.   
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Figure 4-3: Percentage Reduction of Facet Joint Due to the Implant (Panjabi) 

 

The drill bit has a drill stop set at 10 mm and it will allow the drill bit to 

drill slightly deeper (2 mm) than the height of the implant (8 mm), but not so 

deep it might cause any potential damage. The drill bit and drill guide is now 
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removed, and this void will now be filled with the tapered facet fusion allograft. 

The facet fusion allograft implant is inserted with the placement and impaction 

tool, in the same direction as the site was drilled. This implant is now impacted 

into place and will be counter sunk 1-2 mm into the compaction-drilled tunnel. 

This procedure will be repeated for the other facet joint at the particular level 

that is being treated. 

 

4.2.3 - Study Protocol 

The segments were tested in axial rotation, combined flexion/extension 

and combined left/right lateral bending. The specimens are tested intact 

(control) before they where treated with the facet fusion allograft implant. Axial 

rotation, flexion/extension and lateral bending were performed with a constant 

axial load of 100 N and a moment of 6 Nm was applied in 6 cycles. The loading 

rate used for all the different cases is 0.125 Hz for one part of the cycle89. 

 

4.2.4 - Statistical Analysis 

The collected data was evaluated by using one-way analysis of variance 

(ANOVA) followed by a Tukey-Kramer comparison for evaluating the significant 

difference of the stiffness between the intact and treated specimen. All 

statistical tests were performed on SAS (release 9.1, SAS Institute Inc., Cary, 
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NC), with a significance defined at a 95% confidence interval. The values are 

given as the mean ± standard deviation. 

 

4.3 - Results 

The stiffness and range of motion (ROM) of intact and treated 

specimens, during flexion/extension, lateral bending and axial rotation are 

shown in Figures 4-1 and 4-2. Tables 4-1, 4-2 and 4-3 summarize the results of 

stiffness, ROM and percentage change due to treatment.  

Table 4-1: Range of Motion of the Intact and Treated Segment 

 

 Intact [Degree] Treated [Degree] 

Flexion 4.28 ± 1.10 1.59 ± 0.52 

Extension 2.18 ± 0.58 1.03 ± 0.04 

Bending 6.05 ± 0.56 3.12 ± 1.39 

Torsion 2.51 ± 1.41 1.82 ± 0.64 
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Table 4-2: Stiffness of the Intact and Treated Segment 

 

 Intact [Nm/Degree] Treated [Nm/Degree] 

Flexion 0.99 ± 0.25 2.45 ± 0.78 

Extension 2.00 ± 0.74 4.11 ± 0.22 

Bending 1.51 ± 0.16 3.56 ± 1.80 

Torsion 3.64 ± 1.76 4.21 ± 1.29 

 

Table 4-3: Percentage Change of Range of Motion and Stiffness 

 

 Change of ROM Change of Stiffness

Flexion 49.62% ± 10.73% 126.76% ± 35.71%

Extension 40.85% ± 21.02% 119.88% ± 4.16%

Bending 54.44% ± 13.84% 148.58% ± 48.78%

Torsion 26.32% ± 2.09% 26.80% ± 11.43%

 

In comparison to the intact specimen, the facet fusion allograft shows a 

significantly higher (P < 0.05) stiffness in flexion and extension (Table 4-1). 

There is a noticeable change of stiffness in lateral bending and axial rotation, 

but this change is not statistical significant. The stiffness increased 127% in 
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flexion (1.1 Nm/Degree to 2.5 Nm/Degree) and 120% in extension (1.8 

Nm/Degree to 4.0 Nm/Degree) following bilateral implantation of the allograft. 

For lateral bending, the stiffness increased by 149% (1.6 Nm/Degree to 4.0 

Nm/Degree) and for axial torsion there was a 27% change of stiffness (3.0 

Nm/Degree to 3.8 Nm/Degree).  

These values are interpreted from full range of motion grafts. The sample 

graph in figure 4-4 below, show the typical flexion-extension results. 
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Figure 4-4: Typical Flexion-Extension Results, Showing Comparison Between 

Intact and Treated Specimen. 

 

 The sample graphs for lateral bending and axial rotation are shown in Appendix 

B. 
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4.4 - Discussion 

Fixation of the facet joint has been performed by inserting metal screws 

perpendicular through the facet joint. This has shown to give a good fixation, 

but it is at high risk of causing permanent damage. It is also a technically 

demanding procedure28-29,35-46. The proposed technique is similar to the Lumbar 

Facet Interference screw, but this implant is made from allograft and has a 

press fit27,86,. A potential problem with allograft implant is the biological process 

of absorption of the bone. When the bone is absorbed, the implant reduces in 

size and there is a chance of the implant to become loose90-93. This method is 

also very similar to the procedure proposed by Stein et al., while the proposed 

procedure has a pre shaped implant and the proper instruments for insertion86. 

The purpose of this study was to find the biomechanical stability of the facet 

fusion allograft and compare to published data of various facet fixation 

techniques27.  

There are some limitations in this study to consider. As any in vitro 

experimental testing, the study will be limited by the lack of muscular lumbar 

spine stability. This will be the case for all the groups included in this study, and 

the change as a percentage will be compared. Since each FSU is used for 

control and treatment, each FSU are tested twice. This might change the 

stiffness of the last treatment from fatigue, but according to Panjabi there is little 

or no effect for the short duration the specimen is tested94. 
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 Lumbar facet fixation devices have been discussed in several 

biomechanical in vitro studies27. These fixation methods provide good fixation, 

but they are technical demanding and the biomechanical properties are usually 

not ideal in axial rotation. This proposed method inserts the implant in the plane 

of the facet, perpendicular to the traditional method. For this reason, the implant 

is compressed between the inferior and superior facet and better axial rotation 

results are seen. The comparative intact and treated results for stiffness and 

range of motion are shown in figure 4-5 and 4-6 below. 
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Figure 4-5: Stiffness Results for the Intact and Treated Specimens 
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Figure 4-6: Stiffness Results for the Intact and Treated Specimens 

 

The comparisons in difference between specimens are shown in 

Appendix B. 

In the comparison shown in Figure 4-7, the facet fusion allograft is shown 

as a standalone procedure, while the other methods are presented with a cage. 

This might cause the facet fusion allograft to show a higher gain of stiffness in 

axial rotation. 
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Figure 4-7: Comparison of Percent Change of Stiffness to Published Data 

 

 The facet fusion allograft presented in this study demonstrates 

comparable demobilization of flexion and extension to traditional methods. The 

percentage change of stiffness in lateral bending demonstrate a great 

percentage change, but it is not statistical significant. One out of three 

specimens only had a minor change in stiffness and therefore, the statistical 

significance is not present.  

The stiffness of this fixation method is lower than the pedicle screw 

systems. This can be explained by the absence of metal through the pedicles, 
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which allows for deflection of the pedicle. Deflection of the pedicle also allows 

for some deflection of the vertebral body and higher stress level in the disc are 

occurring. By increased stress, the disc will remain in better condition and 

reduce the chance of adjacent degenerative disc desease90-93. 

The pre-shaped allograft dowel is effective in restricting facet joint 

movement. This method provides stabilization and fixation for minor instabilities, 

which can allow the joint to fuse through integration with the allograft. The 

allograft also gives a smooth change of stiffness in the spine and reduces the 

chance of adjacent degenerative disc disease. This study demonstrates that the 

biomechanical properties of the facet fusion allograft are similar to existing facet 

fixation methods. Results of this pilot study shows a potential for this technique 

and additional biomechanical studies with a greater sample size is desiered.  
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CHAPTER 5 - A COMPARISON BETWEEN IN VIVO AND IN VITRO 

INTRADISCAL PRESSURES 

 

5.1 - Introduction 

There is no data that explains the actual forces acting on the spine 

during flexion, extension, lateral bending or axial rotation. There are published 

articles that give intradiscal pressure measurements for these motions, but 

there are no correlation performed against In Vitro testing results. All these 

issues will be addressed in this dissertation and it will be presented in sections. 

Many models have been made to estimate loads during lifting activity. 

Some are simplified, while others have used EMG measurements to find the 

muscle forces with or without the combination of intradiscal pressure 

measurements95-109. Wilke et al made continuous dynamic In Vivo 

measurements for flexion, extension, lateral bending and axial rotation110. This 

is the only published study with this data. The motions and pressure curves 

described in this study are very similar to experimental cadaver testing.  

Finite Element Method has been used to evaluate spinal implants, but 

these models do not necessarily give a direct correlation to physiological loads 

acting on the spine111-114. By using known forces and moments, their respective 
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displacements and the use of intradiscal pressure, these models can be very 

accurate. There are models that take these aspects into considerations, but 

they are not validated by the use of physiological data115-118. 

The prediction of muscle forces and spinal loadings are dependent on 

the trunk models and the posture119-120. The effect of the abdominal pressure is 

controversially, but the In Vivo intradiscal pressure is measured with all the 

physiological loads present121. The abdominal pressures are usually not 

simulated during In Vitro testing or in analytical models. 

There have been several papers published in the 60s and 70s discussing 

intradiscal pressures122-127. These pressures are absolute values, rather than 

complete data sets published more recently. Pressure transducers are also an 

important aspect of measuring intradiscal pressures and there has been made 

some major advantages with the technology used in more recent publications66. 

The purpose of this paper is to provide a database with correlation to 

previously published In Vivo intradiscal pressure curves to the current In Vitro 

pressure curves. This data will enable a proper adjustment and validation of a 

computer model and to give physiological meaning to loading data used on 

cadavers for In Vitro testing of medical devices. 

 

5.2 - Materials and Methods 

A study of the intradiscal pressure during motion of an intact specimen 

will be performed to compare to In Vivo results as described in literature. 
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Human cadaver lumbar spines were disarticulated to get functional spinal units 

(FSU). The FSU’s were tested in combined axial compression and 

flexion/extension, combined axial compression and lateral bending and 

combined axial compression and axial rotation using a nondestructive testing 

method.  

 

5.2.1 - Spine Preparations 

A total of 6 adult human cadaver lumbar spine segments were 

harvested. The donor’s average age was 50.5 ± 1.8 (range 45-65) years and 

the donor group consisted of 5 males and 1 female. The medical history of all 

the donors was reviewed, where donors with any disease that will affect the 

spine biomechanics or trauma were excluded. These six lumbar spines were 

investigated visually, as well as the specimens went through a radio graphically 

screening to exclude any major abnormalities such as osteolycis, fractures or 

damage to the vertebral bodies or the intervertebral disc. All the FSU’s were 

disarticulated to give L4-L5 specimens containing the L4 and L5 vertebral 

bodies, posterior elements, ligaments and the intervertebral disc.  

En Block specimens were stored at -20 degree Celsius and thawed to +4 

degrees Celsius in a refrigerator128. The specimens where covered by gauss, 

sprayed with saline solution and left at room temperature prior to testing. To 

securely attach the specimens to the test fixture, the specimens were reinforced 
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by inserting metal screws in the vertebral endplate and potted in a two part 

polyepoxide based resin. All extraneous musculature was removed from each 

spine, keeping all the ligaments and posterior elements intact. Plain film 

radiographs (Faxatron Model Ni: MX-20, Wheeling, IL) was used to verify that 

none of the reinforcing metal screws interfered with the intervertebral disc.   

 

5.2.2 - Test Setup and Biomechanical Testing 

5.2.2.1 - Test Setup  

A nondestructive spine biomechanics test setup was used to find the 

biomechanical properties. This particular setup is based on an axial servo-

hydraulic materials testing system (MTS Systems Inc., 858 Bionix II, Eden 

Prairie, MN) and is modified to allow bending as well as axial rotation. Axial 

compression is integrated in the MTS 858 Bionix II and the load is measured by 

the use of a load cell. The load cell has an accuracy of 0.13% error for force 

measurements and 0.10% for displacement measurements. The linear variable 

differential transformers used to measure torsion have an approximate error of 

1%. 

 The axial force and axial displacement are continuously recorded and 

can be used to interpret the axial stiffness of the specimen. Axial torsion is 

measured by fixing one end of the specimen and applying an axial torque on 

the other end of the specimen. By measuring the torque and the axial rotational 
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angle, the rotational resistance can be calculated. The bending consists of a 

superior and inferior moment and an equal, but opposite bending moment is 

applies at both ends. This allows for pure bending moment and no shear is 

present. The bending moment and the angle are recorded throughout the cycle 

for an accurate measurement of the bending stiffness. This bending moment is 

used to measure flexion/extension and by turning the specimen 90 degrees, it 

will measure lateral bending. 

 

5.2.3 - Study Protocol 

The segments were tested in axial rotation, combined flexion/extension 

and combined left/right lateral bending under constant axial compression.  

Axial rotation, flexion/extension and lateral bending were performed with 

a constant load that represents the load of a person standing relaxed. From 

published data, the initial intradiscal pressure was set to 0.5 MPa and resulted 

in a constant axial compressive load of 500-700 N depending on the 

specimen63-65,110,129-130. A moment of 6 Nm was applied in 6 cycles. The loading 

rate used for all the different cases is 0.125 Hz for one part of the cycle. 

With the pressure probe secured in the center of nucleus, the FSU was 

tested in all the motions and measurements were made. No losses of spinal 

fluids were noted during the pressure testing, while some of the specimens 

appeared to have severely dehydrated nucleus. 
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5.3 - Results 

There have been previous studies that have reported In Vivo intradiscal 

pressures for daily activities. One study has reported series of data points 

during flexion-extension, lateral bending and axial rotation. These motions have 

been repeated In Vitro.  

For this study, the comparable In Vivo intradiscal pressures are relaxed 

standing 0.43 - 0.50 MPa, standing flexed forward 1.08 MPa, standing extended 

backwards 0.6 MPa, lateral bending 0.59 MPa (decreasing to 0.38 MPa) and 

axial rotation 0.6 - 0.7 MPa110. 

 

Figure 5-1: Torque vs. Angle Data for the Extension and Flexion Experimental 

Test 
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Figure 5-2: Pressure vs. Angle Data for the Extension and Flexion Experimental 

Test 

 

In Vitro intradiscal results for the same motions are 0.68 MPa for flexion, 

0.50 MPa in extension, 0.57 MPa during lateral bending (decreasing to 0.26 - 

0.36 MPa) and axial rotation 0.51 - .53 MPa. 
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Figure 5-3: Torque vs. Angle Data for the Lateral Bending Experimental Test 

 

 

Figure 5-4: Pressure vs. Angle Data for the Lateral Bending Experimental Test 
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In Vitro results corresponds to the following moments and angular 

displacements; flexion 6.5 Nm and 5.9 degrees, extension 6.5 Nm and 3.1 

degrees, lateral bending 1.8 Nm and 0.9 degree (decreased pressure at 6.3 Nm 

and 1.6 degrees) and axial rotation 3.6 - 5.7 Nm moment and 2.5 degrees 

angular displacement. 

 

 

Figure 5-5: Torque vs. Angle Data for the Axial Rotation Experimental Test 
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Figure 5-6: Pressure vs. Angle Data for the Axial Rotation Experimental Test 

 

 A comparison between the In Vivo and In Vitro curves are shown in Figures 5-

7, 5-8 and 5-9.  
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Figure 5-7: Extension - Flexion Intradiscal Pressure In Vitro of Selected L4-L5 

Segments with Respect to the Total Motion in a Single Level 

 

Figure 5-8: Lateral Bending Intradiscal Pressure In Vitro of Selected L4-L5 

Segments with Respect to the Total Motion in a Single Level 
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Figure 5-9: Axial Rotation Intradiscal Pressure In Vitro of Selected L4-L5 

Segments with Respect to the Total Motion in a Single Level. 

 

The line with square markers is an import from the In Vivo publication, 

while the measured In Vitro results are represented by circular marks. 

 

5.4 - Discussion 

The purpose of this study is to create a database of the correlation 

between In Vivo and In Vitro data. The In Vivo published pressure 

measurements have been used, where the In Vitro pressure measurements 

from the current study show a close relation to the In Vivo pressures110. This 



 77

database can be used for physiological relevance to experimental testing and 

for validation of mathematical models. 

As far as the authors are aware, there has never been done a study to 

find these correlations.  There are studies that show In Vivo intradiscal 

pressures, but the referred study is the only paper with dynamic In Vivo 

intradiscal pressure results published. During the testing of the cadaver spines, 

there were several specimens that could not reproduce the dynamic intradiscal 

pressures. These specimens were only used for the absolute values to achieve 

a reasonable sample size.  

In present papers, the absolute values of the pressure in the center of 

L4-L5 are described as well. The values presented in this study are roughly the 

same to the values presented by Wilke et al, in exception of flexion and 

extension110. In flexion and extension, it is clear that the moments applied 

during the cadaver testing are not sufficient to achieve the pressures presented 

by Wilke et. al.110 The flexion and extension results demonstrate a correlation, 

but the applied moments during In Vitro testing are not great enough to simulate 

the complete cycle of forward flexion and backwards extension. During In Vitro 

flexion and extension testing, the applied moment does not have to work 

against abdominal forces and pressures. This is not the case for In Vivo, and it 

is clear that this will create a higher moment to achieve the same pressure. This 

shows us that during biomechanical evaluation of medical devices, the applied 
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moment in flexion and extension needs to be greater than for lateral bending 

and axial rotation.  

The results from the In Vitro testing give an accurate representation of 

the In Vivo intradiscal pressures during lateral bending. A symmetrical curve, 

roughly, is shown in lateral bending, with the same characteristics as seen 

during In Vivo measurements. It is seen both In Vivo and In Vitro that the 

pressure raises to a maximum, before the pressure decreases at the highest 

measured angular deflection. Wilke et al describes the possibility of muscles 

trying to stabilize the spine actively, before the muscles relaxed and stabilized 

the spine passively110. Since the same phenomenon is occurring In Vitro, this 

can be dismissed. A likely possibility is that the superior facet impacts the 

inferior facet on one side and acts like a pivot point. This will give increased disc 

height on one side of the disc and the chance of the nucleus to relieve 

pressure. 

During axial rotation, the slope of the pressure is fairly stable for the In 

Vitro results. During In Vivo testing there is an increase of pressure at the end 

of the cycle. This can be explained by the axis of rotation being fixed during In 

Vitro testing and no translation allowed. This axis of rotation can have some 

translation In Vivo, were shear forces will be acting on the disc131. This could be 

the reason for the increased pressure observed by Wilke et al110. 
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For all the specimens tested, the pressures at the maximum angular 

displacements were collected. These are similar to the pressures reported by 

Wilke et al, and these values are now verified by a higher sample size110. 

The published intradiscal pressure curves from the In Vivo 

measurements have a close correlation to the In Vitro measurements in the 

current study. This is a good guide for researchers to give a physiological 

relation to the loads that is applied during cadaver testing. It is very important to 

know how much load needs to be controlled by the implant. This can lead to 

optimization of implants and reduce the size. 

During In Vitro flexion, the pure bending moment of 6.5 Nm gives an 

angular displacement of 5.9 degrees and an intradiscal pressure of 0.68 MPa. 

These measurements indicate that the physiological motion is equal to a flexion 

of 20 degrees. During In Vitro testing the physiological maximum flexion was 

not achieved, so higher moments should be applied during In Vitro testing. 

Similarly, during extension the angular displacement was 3.1 degrees and this 

gives an intradiscal pressure of 0.50 MPa and a physiological backwards 

extension of 10 degrees.  

Lateral bending had pressure peak of 0.57 MPa when the angular 

displacement was 0.9 degree and at a bending moment of 1.8 Nm. This 

corresponds to a physiological lateral bending of 18 - 23 degrees. During lateral 

bending, the highest angular displacement of 1.6 degree was reached with a 
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moment of 6.3 Nm and a pressure of 0.26 - 0.36 MPa. This correlates to a 

person bending 29 degrees laterally. 

An axial rotation of 2.5 degrees and a pressure of 0.51 - 0.53 MPa was 

achieved by applying a moment of 3.6 Nm to one side and 5.7 Nm to the other 

side. During In Vivo measurements, this same axial rotation gave 17 degree 

rotation to one side and 24 degrees to the other side. 

Overall, this study found a good correlation between In Vivo and In Vitro 

data. The variation of data is likely to occur from lack of translation of motion 

during In Vitro testing. It is also shown that a higher moment needs to be 

applied during testing in Flexion/Extension. This can essentially be used to 

make physiological relation from experimental and analytical evaluations of the 

lumbar spine. 
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CHAPTER 6 – SUMMARY 

  

6.1 – Conclusion 

This dissertation contains both analytical and experimental hypothesis. 

Three hypotheses were looked at and all three hypotheses were answered. The 

first hypothesis was: The incidence of adjacent level disc disease in the 

lumbosacral spine will be decreased with the use of semi-rigid rods. As earlier 

shown in this dissertation, semi-rigid rods increase axial motion and anteriorly 

translating the axis of rotation. These factors reduce stress in adjacent disc, 

while maintains a stress level in the disc at the instrumented level. By reducing 

the stress in the adjacent disc, the disc will degrade at a lower rate, and the 

incident of adjacent level disc disease is decreased. 

 The second hypothesis was to validate increased biomechanical 

stiffness by the use of a facet fusion allograft In Vitro. It was found that facet 

fusion allograft significantly changes the stiffness and could be used for 

treatment of minor instability. 

 The last hypothesis to be answered was that there is a correlation 

between In Vivo and In Vitro intradiscal pressures. A comparison of the 

published In Vivo intradiscal pressures to In Vitro intradiscal pressures was 
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performed. The pressures were evaluated and the effects of loads applied In 

Vitro was considered. A clear correlation was found between the In Vivo and In 

Vitro intradiscal pressures and physiological relevance can be used In Vitro and 

in analytical models. This study also determined how much load to control while 

testing medical devices. 

 

6.2 – Contribution 

There are five important discoveries made in the research that has led to 

this dissertation. One of these is the discovery of reduced stresses in the 

adjacent disc by the use of semi-rigid rods. The incidence of adjacent level disc 

disease in the lumbosacral spine will be decreased with the use of semi-rigid 

rods. From this research, there has already been made improvements to this 

traditional fusion technique, and there are many patients that benefit from this. 

Semi-rigid rods also increase axial motion, anteriorly translating the axis of 

rotation, which leads to reduction of stress in adjacent disc. 

Facet fusion has been performed since the 1940’s, but it has always 

been a technically demanding procedure. Because of this, there has been very 

limited popularity to these methods. In this dissertation, a comparison of the 

biomechanical properties of a facet fusion allograft In Vitro was done. These 

results showed that there is merit for this procedure. Facet fusion allograft 

significantly changes the stiffness and could be used for treatment of minor 

instability. 
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Biomechanical testing of spinal implants has been performed on human 

cadaver lumbar spines, but there has never been any scientific reasoning for 

the loads that has been applied. There are several studies that look at the 

intradiscal pressures of living humans, and this data was used to find a 

correlation to the mechanical loads acting on the spine. These experimental 

results from the in vitro testing were compared to the published In Vivo 

intradiscal pressures. A clear correlation was found and physiological relevance 

can be used In Vitro and in analytical models, as well as a definition for how 

much load to control was found. 

 

6.3 – Future Work 

When conducting a intradiscal pressure study, it is important to have 

intervertebral discs that are in good shape and well hydrated. Also, with all 

biological tissue there will be differences. Therefore, a large study needs to be 

conducted to give the most optimal representation of the correlation between In 

Vivo and In Vitro intradiscal pressures. This study should also contain study 

parameters to give a good idea of the effect of different ligaments and facet joint 

capsule. Eventually, the intervertebral disc will be subjected to all independent 

loading situations, with all the ligaments and posterior elements removed. By 

removing all the ligaments and posterior elements, the disc can be modeled by 

using continuum mechanics. These specimens should also be tested at a series 

of different physiological strain rates. 
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All individual specimens used for this study, should also be scanned by 

high resolution Computed Tomography (CT) scans. These scans could be used 

to create a high quality three dimensional finite element mesh. This mesh can 

be created by using commercially available software, by importing the images 

into medical imaging software. In the selected software package, the tissue is 

selected a rendered into a three dimensional model. The rendering parameters 

are adjusted to accomplish the desired model. This model will be exported as a 

three dimensional model, before imported into a finite element mesher. Once 

the model is meshed, the exact experimental data for that particular finite 

element mesh can be created into a unique finite element model with verified 

values. This can be done to all of the individual specimens and statistical 

significance can be achieved by using finite element method. 

With the current limited supply and increasing demand for human 

cadaver spines, there will be advantages of creating these verified and accurate 

finite element models. These models will reduce the demand for human 

cadaver spines. These models could also be used for preliminary testing of 

implants and have the design optimization performed at an early stage. These 

models can also be used to predict failures, instead of meeting the minimum 

requirements set by the Food and Drug Administration (FDA). The FDA, an 

American governmental agency, is already showing an interest in finite element 

modeling of medical devices.  
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Appendix A – Figures Related to Analytical Results 

 

Figure A-1: Stress Distribution of L3-L4 Disk at 15˚ Flexion 

 

 

Figure A-2: Stress Distribution of L3-L4 Disk at 30˚ Flexion 
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Appendix A. (Continued) 

 

Figure A-3: Stress Distribution of L3-L4 Disk at 45˚ Flexion 

 

 

Figure A-4: Stress Distribution of L4-L5 Disk at 15˚ Flexion 
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Appendix A. (Continued) 

 

Figure A-5: Stress Distribution of L4-L5 Disk at 30˚ Flexion 
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Appendix B – Figures Related to Experimental Results 
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Figure B-1: Typical Lateral Bending Results, Demonstrating a Comparison 

Between Intact and Treated Specimen 
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Appendix B. (Continued) 
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Figure B-2: Typical Axial Rotation Results, Demonstrating Comparison Between 

Intact and Treated Specimen 
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Figure B-3: Range of Motion Comparison Between the Different Intact 

Specimens 



 103

Appendix B. (Continued) 
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Figure B-4: Range of Motion Comparison Between the Different Treated 

Specimens 
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Figure B-5: Stiffness Comparison Between the Different Intact Specimens 
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Appendix B. (Continued) 
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Figure B-6: Stiffness Comparison Between the Different Treated Specimens 
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Appendix C – Tables Related to Statistics and Experimental Data 

Table C-1: Range of Motion Test Results for Individual Specimens During 

Extension Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 2.081623 0.983444 

Specimen 2 2.800083 1.035348 

Specimen 3 1.650000 1.070861 

Mean 2.177235 1.029884 

Standard Deviation 0.580972 0.043964 

 

Table C-2: Range of Motion Test Results for Individual Specimens During 

Flexion Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 3.223510 1.589901 

Specimen 2 5.419868 1.068129 

Specimen 3 4.198759 2.117136 

Mean 4.280712 1.591722 

Standard Deviation 1.100470 0.524506 
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Appendix C. (Continued) 

Table C-3: Range of Motion Test Results for Individual Specimens During 

Bending Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 5.479967 2.955795 

Specimen 2 6.083692 1.813907 

Specimen 3 6.602732 4.583941 

Mean 6.055464 3.117881 

Standard Deviation 0.561915 1.392112 

 

Table C-4: Range of Motion Test Results for Individual Specimens During 

Torsion Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 4.114073 2.513245 

Specimen 2 1.491557 1.256623 

Specimen 3 1.928642 1.688245 

Mean 2.511424 1.819371 

Standard Deviation 1.405035 0.638491 
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Appendix C. (Continued) 

Table C-5: Stiffness Test Results for Individual Specimens During Extension 

Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 2.155369 4.125380 

Specimen 2 1.207111 3.882020 

Specimen 3 2.661620 4.321470 

Mean 2.008033 4.109623 

Standard Deviation 0.738363 0.220149 

 

Table C-6: Stiffness Test Results for Individual Specimens During Flexion 

Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 1.259533 2.343231 

Specimen 2 0.755765 3.266234 

Specimen 3 0.944333 1.725766 

Mean 0.986544 2.445077 

Standard Deviation 0.254523 0.775267 
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Appendix C. (Continued) 

Table C-7: Stiffness Test Results for Individual Specimens During Bending 

Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 1.680425 3.264725 

Specimen 2 1.498587 5.496485 

Specimen 3 1.359610 1.931985 

Mean 1.512874 3.564398 

Standard Deviation 0.160884 1.801047 

 

Table C-8: Stiffness Test Results for Individual Specimens During Torsion 

Loading  

 

Intact 

[Nm] 

Treatment

[Nm] 

Specimen 1 1.832627 2.859055 

Specimen 2 5.340553 5.433570 

Specimen 3 3.735976 4.329021 

Mean 3.636385 4.207215 

Standard Deviation 1.756083 1.291572 
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Appendix C. (Continued) 

Table C-9: Summary of the Single Factor ANOVA Performed on the Range of 

Motion Specimens During Extension Loading 

 

Groups Count Sum Average Variance   

Column 1 3 6.531705 2.177235 0.337529   

Column 2 3 3.089652 1.029884 0.001933   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 1.974622 1 1.974622 11.63384 0.027006 7.708647

Within Groups 0.678924 4 0.169731    

       

Total 2.653545 5         
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Appendix C. (Continued) 

Table C-10: Summary of the Single Factor ANOVA Performed on the Range of 

Motion Specimens During Flexion Loading 

 

Groups Count Sum Average Variance   

Column 1 3 12.84214 4.280712 1.211034   

Column 2 3 4.775166 1.591722 0.275106   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 10.846 1 10.846 14.5962 0.01877 7.708647

Within Groups 2.972281 4 0.74307    

       

Total 13.81828 5         
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Appendix C. (Continued) 

Table C-11: Summary of the Single Factor ANOVA Performed on the Range of 

Motion Specimens During Lateral Bending Loading 

 

Groups Count Sum Average Variance   

Column 1 3 18.16639 6.055464 0.315748   

Column 2 3 9.353643 3.117881 1.937975   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 12.94409 1 12.94409 11.48685 0.02755 7.708647

Within Groups 4.507446 4 1.126861    

       

Total 17.45154 5         

 

 



 112

Appendix C. (Continued) 

Table C-12: Summary of the Single Factor ANOVA Performed on the Range of 

Motion Specimens During Axial Rotation Loading 

 

Groups Count Sum Average Variance   

Column 1 3 7.534272 2.511424 1.974124   

Column 2 3 5.458113 1.819371 0.407671   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 0.718406 1 0.718406 0.603248 0.480711 7.708647

Within Groups 4.763589 4 1.190897    

       

Total 5.481995 5         
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Appendix C. (Continued) 

Table C-13: Summary of the Single Factor ANOVA Performed on the Stiffness 

Specimens During Extension Loading 

 

Groups Count Sum Average Variance   

Column 1 3 6.0241 2.008033 0.54518   

Column 2 3 12.32887 4.109623 0.048465   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 6.62502 1 6.62502 22.31977 0.009142 7.708647

Within Groups 1.187291 4 0.296823    

       

Total 7.812311 5         
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Appendix C. (Continued) 

Table C-14: Summary of the Single Factor ANOVA Performed on the Stiffness 

Specimens During Flexion Loading 

 

Groups Count Sum Average Variance   

Column 1 3 2.959631 0.986544 0.064782   

Column 2 3 7.335231 2.445077 0.60104   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 3.19098 1 3.19098 9.585091 0.036363 7.708647

Within Groups 1.331643 4 0.332911    

       

Total 4.522623 5         
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Appendix C. (Continued) 

Table C-15: Summary of the Single Factor ANOVA Performed on the Stiffness 

Specimens During Lateral Bending Loading 

 

Groups Count Sum Average Variance   

Column 1 3 4.538622 1.512874 0.025884   

Column 2 3 10.69319 3.564398 3.243769   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 6.313127 1 6.313127 3.86165 0.120845 7.708647

Within Groups 6.539305 4 1.634826    

       

Total 12.85243 5         
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Appendix C. (Continued) 

Table C-16: Summary of the Single Factor ANOVA Performed on the Stiffness 

Specimens During Axial Rotation Loading 

 

Groups Count Sum Average Variance   

Column 1 3 10.90916 3.636385 3.083826   

Column 2 3 12.62165 4.207215 1.668159   

       

       

ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 0.48877 1 0.48877 0.205712 0.673666 7.708647

Within Groups 9.503972 4 2.375993    

       

Total 9.992742 5         
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