
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

2007

Assistive force feedback for path following in 3D space for upper Assistive force feedback for path following in 3D space for upper

limb rehabilitation applications limb rehabilitation applications

Ramya Swaminathan
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Swaminathan, Ramya, "Assistive force feedback for path following in 3D space for upper limb
rehabilitation applications" (2007). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/2381

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Assistive Force Feedback for Path Following in 3D Space for

Upper Limb Rehabilitation Applications

by

Ramya Swaminathan

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Biomedical Engineering
Department of Chemical Engineering

College of Engineering
University of South Florida

Major Professor: Rajiv V. Dubey, Ph.D.
Craig Lusk, Ph.D.

Shuh Jing Benjamin Ying, Ph.D.
Kathryn J. De Laurentis, Ph.D.

Date of Approval:
November 8, 2007

Keywords: Spring Force, Haptic, Fitts’ Task, Scaling, Repetitive Motion, Phantom

© Copyright 2008, Ramya Swaminathan

Acknowledgments

First of all, I take this opportunity to thank my advisor Dr. Rajiv Dubey for his

valuable guidance and support in completing my thesis. I would like to specially thank

my good friend and colleague, Eduardo J Veras for his constant help, guidance and

encouragement during my entire Master’s research tenure. I would also like to thank Dr.

Kathryn J. De Laurentis and all my colleagues at the Robotics and Rehabilitation group

for their help. I also thank the members of my committee Dr. Shuh-Jing Ying, Dr. Craig

Lusk and Dr. Kathryn J. De Laurentis for their valuable comments to this research. My

friends are a huge pillar of support to me and i would like to acknowledge their valuable

help and encouragement. Last, but not the least, all this wouldn’t have been possible

without my family. I would like to thank them for their unconditional love, support and

encouragement during all phases of my life.

i

Table of Contents

List of Tables v

List of Figures vi

ABSTRACT x

1. Introduction 1

1.1. Motivation 1
1.2. Problem Definition 2
1.3. Objectives 4
1.4. Thesis Outline 6

2. Background 7

2.1. Introduction 7
2.2. Haptics Based Upper Arm Rehabilitation 8
2.3. Non Haptics Based Upper Arm Rehabilitation 13

3. Assistance Concepts 15

3.1. Introduction 15
3.2. Force Assistance Function/Force Feedback Design 16

3.2.1. Motion Dependent 17
3.2.1.1. Spring Force 17
3.2.1.2. Force Based on Exponential Law 18
3.2.1.3. Force Based on Projected Velocity 19
3.2.1.4. Force Assistance Based on

Constant Force Projection 20
3.2.1.5. Force Assistance Based on Velocity Based Force

Projection 21
3.2.1.6. Damper 21

3.2.2. Friction 22
3.2.2.1. Columbic Friction 22
3.2.2.2. Viscous Friction 23

3.2.3. Inertia 24
3.2.4. Time Dependent 24

3.2.4.1. Constant Force 24
3.2.4.2. Periodic Force 24

ii

3.2.5. Impulses 25
3.3. Velocity Assistance Function 25
3.4. Position Assistance Function 27

4. Implementation of Fitts’ Task 28

4.1. Introduction 28
4.1.1. Existing Models of Predicting Human Movement 30
4.1.2. Significance of the Fitts’ Task 31

4.2. A Unique Implementation of Fitts’ Task 33
4.2.1. Fitts’ Task X 35

4.2.1.1. Terminology Used in Fitts’ X 37
4.2.1.2. Explanation of the Flowchart in Fitts’ X 37

4.2.2. Fitts’ Task Y 38
4.2.3. Fitts’ Task Z 40

5. Experimental Test Set-Up 42

5.1. Introduction 42
5.2. Hardware 43

5.2.1. Phantom 3D-Touch Enabled Modeling System 43
5.2.2. Haptic Process Flow 44

5.3. Software 45
5.3.1. Open Haptic Overview 46

5.3.1.1. HDAPI 46
5.3.1.2. HLAPI 47

5.3.2. OpenGL Graphical Software 47
5.3.3. Multithreading 49

6. Description of the Different Assistive Functions 50

6.1. Introduction 50
6.2. Trajectory Approach and Traversal 50

6.2.1. Experimental Set-Up 51
6.2.2. Terminology Used in Trajectory Approach Task 52
6.2.3. Stiffness 53
6.2.4. Distance 53
6.2.5. Trajectory Vector 53
6.2.6. Normal Vector 54
6.2.7. Determination of a Point on the Trajectory

Closest to the User’s Position 54
6.2.8. Assistance Concepts Applied to this System 55

6.2.8.1. Case a: When the User Approaches the
Trajectory 56

6.2.8.2. Case b: When the User is Very Close to
the Trajectory and Under the Y_Start Point. 59

6.2.8.3. Case c: When the User is On the Trajectory 60

iii

6.2.8.4. Case d: When the User is at Very Close
Proximity to the Trajectory 62

6.2.8.5. Case e: When the User Reaches the End
of the Trajectory Path 64

6.3. Three Dimensional Force Scaling 65
6.3.1. Description 65
6.3.2. Method 66

6.3.2.1. Terminology for 3D Force Scaling 68
6.3.2.2. Explanation of Flow Chart 68

6.4. User Controlled Velocity Based Force Scaling 69
6.4.1. Experimental Set-Up 69
6.4.2. Method 70

7. Experiments Based on Fitts’ Task 72

7.1. Experimental Set-Up 73
7.1.1. Graphical User Interface 73
7.1.2. Validation of Assistance Concept 74
7.1.3. Baseline Time Values 74
7.1.4. Fitts’ Training 75
7.1.5. Final Task 75
7.1.6. Determination of Position Accuracy 76

7.2. Fitts’ Task X-Direction 77
7.3. Fitts’ Task Y-Direction 78
7.4. Fitts’ Task Z-Direction 80

8. Results 82

8.1. Validation of Assistance Concept 84
8.2. Determination of Position Accuracy 93

8.2.1. Comparison of Fitts’ with and without Assistance
or without Time Constant 93

8.2.2. Comparison of Accuracy (without Assistance)
with Execution Time Kept Constant 97

8.2.2.1. Experimental Procedure 97
8.2.3. Position Accuracy Before and After Training

for S1 and S2 100
8.2.3.1. Standard Deviation of S1 and S2 104

9. Conclusions and Future Work 106

9.1. Conclusions 106
9.2. Future Work 107

9.2.1. 3D Simulation of Pre-Set Activities of Daily Living Tasks 107
9.2.2. Addition to this Research Work 109
9.2.3. Robotic Teleoperation 109

iv

References 111

Appendices 115

Appendix A. Fitts’ Coefficients 116
Appendix B. Fitts’ Graphs 119
Appendix C. C++ Code 126

v

List of Tables

Table 8.1: Comparison of Average Delta Time when Performed without
 Any Assistance for Group A and Group B 85

Table 8.2: Comparison of Average Delta Time Values with Assistance for
 Group A and Group B 86

Table 8.3: Comparison of Average Delta Execution Time when Performed
 without Assistance 86

Table 8.4: Comparison of Average Delta Execution Time when Group A
 Performed (WA) and Group B (WOA) 88

Table 8.5: Standard Deviation of Subject S2 who Received Training with
 Assistance 104

Table 8.6: Standard Deviation of Subject S1 who Received Training without
 Assistance 105

vi

List of Figures

Figure 2.1: The Phantom Omni with “THE LABYRINTH”(Ref:[10]) 11

Figure 2.2: The Prototype Developed at Rutgers, The State University

of New Jersey, Rutger’s Glove (Ref:[14]) 11

Figure 2.3: Commercial Version of the MIT Manus

[Ref:Journal of Neuroengineering and Rehabilitation 2004] 12

Figure 2.4: Photo of the ARM Guide (Ref:[11]) 13

Figure 2.5: a)Version II of RUPERT Device

b) Computer Simulation of Version III 14

Figure 3.1: Representation of Force Assistance Function [13] 19

Figure 4.1: Descriptive Representation of Fitts’ Law 29

Figure 4.2: Flowchart Depicting Assistive Function in Fitts’ Task X 36

Figure 4.3: Flowchart Describing Assistance Function in Fitts’ Task Y 39

Figure 4.4: Flowchart Describing Assistance Function in Fitts’ Task Z 41

Figure 5.1: Phantom from Sensable Technologies [www.sensable.com] 44

Figure 5.2: Haptic Process Flow [www.sensable.com] 45

Figure 5.3: OpenGL Visualization Programming Pipeline 48

Figure 6.1: UI with the Desired Trajectory and End-Effector 51

Figure 6.2: UI Showing the End-Effector on the Trajectory Path 52

Figure 6.3: Calculation of the Nearest Point on a Line to a Trajectory 55

Figure 6.4: Graphical Representation of a User Approaching a Trajectory 56

Figure 6.5: Negative Exponential Relationship between Force and Distance 57

vii

Figure 6.6: Graphical Representation of Force Direction in Case a 57

Figure 6.7: Graphical Representation when a User is Very

Close to the Trajectory 59

Figure 6.8: Graphical Representation of Force Vector Acting in Case b 59

Figure 6.9: Graphical Representation when a User is on the Trajectory

and Above Y_start 60

Figure 6.10: Graphical Representation of Forces Acting in Case c 61

Figure 6.11: Graphical Representation when a User is Near Trajectory

and Above Y_start 62

Figure 6.12: Graphical Representation of Force Vector 63

Figure 6.13: Graphical Representation when a User Exceeds Y_end Position 64

Figure 6.14: UI with End-Effector and a Three Dimensional Trajectory Path 65

Figure 6.15: Flowchart Describing Assistive Functions for Three Dimensional

Trajectory Traversal 67

Figure 6.16: User Controlled Velocity Based Force Scaling 70

Figure 7.1: Graphical User Interface 73

Figure 7.2: Schematic Representation of Fitts’ Task X 77

Figure 7.3: Schematic Representation of Fitts’ Task Y 79

Figure 7.4: Schematic Representation of Fitts’ Task Z before

OpenGL Camera Rotation 80

Figure 7.5: Schematic Representation of Fitts’ Task Z after

OpenGL Camera Rotation 80

Figure 8.1: Comparison of Average Delta (Baseline-Final)

Execution Time when Performed without Assistance 87

Figure 8.2: Comparison of Average Delta (Baseline-Final)

Execution Time when Performed with Assistance 89

Figure 8.3: Comparison of Average Delta Time with

Assistance in Fitts’ X 90

viii

Figure 8.4: Comparison of Average Delta (Baseline–Final)
Time between Group A (with Assistance) and
Group B (without Assistance) in Fitts’ Y 92

Figure 8.5: Trajectory Path Position Values Versus Haptic Real

Time Data Positions in Fitts’ X 94

Figure 8.6: Trajectory Path Position Versus Haptic Real Time

Data Positions in Fitts’ Y 95

Figure 8.7: Trajectory Path Position Versus Haptic Real Time

Data Positions in Fitts’ Z 96

Figure 8.8 : Position Accuracy of Subject S2 and S1 in

Fitts’ X, Smaller Distance 98

Figure 8.9: Position Accuracy of Subject S2 and S1 in

Fitts’ X, Medium Distance 98

Figure 8.10 : Position Accuracy of Subject S2 and S1 in

Fitts’ X, Larger Distance 99

Figure 8.11: Haptic Position Data of Subject S2 and S1

before and after Training in Fitts’ X 101

Figure 8.12: Haptic Position Data of Subject S2 and S1

before and after Training in Fitts’ Y 102

Figure 8.13: Haptic Position Data of Subject S2 and S1

before and after Training in Fitts’ Z 103

Figure B-1: Comparison of Average Delta Time with Assistance in Fitts’ Y 119

Figure B-2: Comparison of Average Delta Time with Assistance in Fitts’ Z 120

Figure B-3: Comparison of Average Delta (Baseline-Final) Time
 between Group A (with Assistance) and Group B

(without Assistance) in Fitts’ X 121

Figure B-4: Comparison of Average Delta (Baseline-Final) Time

between Group A (with Assistance) and Group B
(without Assistance) in Fitts’ Z 122

Figure B-5: Performance of S2 and S1 before and after Training 122

ix

Figure B-6: Position Accuracy of Subject S2 and S1 before and after
Training in Fitts’ Y, Medium Distance 123

Figure B-7: Position Accuracy of Subject S2 and S1 before and after

Training in Fitts’ Y, Larger Distance 123

Figure B-8: Position Accuracy of Subject S2 and S1 before and after

Training in Fitts’ Z, Smaller Distance 124

Figure B-9: Position Accuracy of Subject S2 and S1 before and after

Training in Fitts’ Z, Medium Distance 124

Figure B-10: Position Accuracy of Subject S2 and S1 before and after

Training in Fitts’ Z, Larger Distance 125

x

Assistive Force Feedback for Path Following in 3D Space for

Upper Limb Rehabilitation Applications

Ramya Swaminathan

ABSTRACT

The primary objective of this research was the design of an easy to use C++

Graphical User Interface (GUI) which helps the user to choose the task that he/she wants to

perform. This C++ application provides a platform intended for upper arm rehabilitation

applications. The user can choose from different tasks such as:

• Assistive Function in 3D Space to Traverse a Linear Trajectory

• User Controlled Velocity Based Scaling

• Fitts’ Task in X, Y, Z Directions

According to a study conducted by the scientific journal of the American Academy of

Neurology, stroke patients aided by robotic rehabilitation devices gain significant

improvement in movement [1]. They also indicate that both initial and long term recovery

are greater for patients assisted by robots during rehabilitation. This research aims to

provide a haptic interface C++ platform for clinicians and therapists to study human arm

motion and also to provide assistance to the user. The user would get to choose and

xi

perform repetitive tasks aimed at improving his/her muscle memory. About eight healthy

volunteers were chosen to perform a set of preliminary experiments on this haptic

integrated C++ platform. These experiments were performed to get an indication of the

effectiveness of the assistance functions provided in this C++ application. The eight

volunteers performed the Fitts’ Task in X, Y and Z directions. The subjects were divided

into two groups, where one of the groups was given training without assistance and the

other was given training with assistance. The execution time for both the groups was

compared and analyzed. The experiments performed were preliminary, however some

trends were observed: the people who received training with assistive force feedback took

less execution time compared to those who were given training without any assistance.

The path following error was also analyzed. These preliminary tests were performed to

demonstrate the haptic platform’s use as a therapeutic assessment application, a

rehabilitation tool and a data collection system for clinicians and researchers.

1

1. Introduction

1.1 Motivation

 The concept of applying robotics to rehabilitation has come a long way.

Earlier, robotics research emphasized robot motion control and then focus shifted to the

force control of a robot and the dynamics of robot interaction with the object it

manipulates [1]. This research aims at developing a user friendly platform that has

multiple applications for a robotic rehabilitation tool. Robot assisted devices are

increasingly being used in stroke rehabilitation. The robotic tools help in the study of

functional adaptation after a stroke. The greatest impact of the application of robotics to

rehabilitation is not just the devices themselves, but also the infrastructure supporting

rehabilitation. The concept of machines guiding people who are partially abled is not

new, but what we present here is a useful modification in upper arm rehabilitation to help

perform Activities of Daily Living (ADL). The main advantage of robot assisted therapy

is that, they allow semi-autonomous practice of therapeutic tasks. Now, when we apply

haptic technology to robotics, we provide another dimension to upper arm rehabilitation.

This project emphasizes the use of assistive technology using haptics, to help people

identify the direction of arm movement which causes tremors and undergo rehabilitative

2

training accordingly. This project is user friendly and cost effective, and hence becomes

suitable for providing a platform for rehabilitative training. The unique idea about this

project is that, it combines different assistance functions in one platform from which the

user can choose the task that he or she wants to perform.

1.2 Problem Definition

 There are a lot of robot assisted devices currently available to help people with

arm disorder perform any of the simple ADL. This includes force assistance functions to

help the user perform activities such as:

• Moving an Object from, Position A to Position B

• Grasping Objects

But there are not many options given to a user in terms of the types of assist

functions or even in terms of the functionality of the interface device. The current arm

rehabilitation tools for stroke, recoveries, etc, unfortunately do not provide a good

quantitative measure of the recovery process. Secondly, standard interface devices like

the keyboard or mouse often pose problems to motion impaired users [5]. These devices

are not appropriate to meet the diverse needs of people with varying physical capabilities.

Moreover, the devices may not perform consistently for extended computer usage. These

standard input devices rely only on visual feedback which maybe supported by sound.

The motion impaired users may not find visual feedback sufficient enough to perform

teleoperation with their already reduced motor control and muscle strength. This would

increase the error output in terms of position precision along with a huge delay in the

time taken for completing the task. Studies have also shown that the fewer the number of

3

degrees of freedom of input devices, fewer the interactions rates. This emphasizes the

importance of incorporating more degrees of freedom like finger flexion, to improve the

reaction time [6]. This shows the significance of input devices for rehabilitation purposes.

To be more specific, there is no user friendly software to help identify and

quantify the hand disability motion in any particular direction. The haptic device has been

identified as a better and effective tool aimed at rehabilitation purposes. One such device

called the Phantom is being widely used for the same. Moreover, the C++ application

provides an immediate feedback on the quantitative measure of parameters which helps

the clinician assess user performance during rehabilitation. The assist functions applied

here also provide path assistance to facilitate the rehabilitation process. However, not

many researchers have put the Phantom to its maximum use in terms of assistance based

force feedback. The scaling of forces depending on factors such as the arm mobility of

each individual or the type of teleoperation based task facilitates the user control and task

performance. Even though there are a lot of haptic based rehabilitation application tools,

not all have applied the concept of Multithreading to their applications. These haptic

based rehabilitation tools will be discussed in the next chapter. The current scenario of

haptic teleoperation with assistive techniques offers very few choices in terms of ease of

operation, time of task execution, type of assistive functions, and extent of user control.

That is the reason, why this area of research presents a high scope for advanced haptic

teleoperation and rehabilitation.

4

1.3 Objectives

The objective is to create a haptic integrated PC based platform in C++ that unites

different kinds of assistive functions intended for upper arm rehabilitation applications.

Then, different types of assistive functions were studied and applied.

This application was designed to provide different types of virtual tasks for the

user to perform. Also, the user can perform these tasks either with or without any

assistance. Three virtual tasks in this application were designed and modeled based on a

well known model of human psychomotor behavior called the Fitts’ Task. It is very

important to design a virtual task based on a mathematical model so that we can validate

the accuracy of the task. Now, the human arm has seven degrees of freedom, three

degrees of freedom in the shoulder, three in the wrist and one degree of freedom in the

elbow. We try to replicate at least three translational movements, in other words, three

degrees of freedom of the human arm based for a 3 degree of freedom Fitts’ Task.

Finally, the goal was to conduct experiments to validate the assistance concept and

position accuracy among a sample population of eight subjects. The Fitts’ Task

implemented with force feedback aim at giving training to improve the speed-accuracy

ratio of the arm disabled users apart from quantifying human dexterity [7]. The Fitts’

Task test preliminary results later show a trend that the assist functions help reduce the

task execution time and maintain the accuracy of user motion.

5

The objectives are summarized in points as shown below:

• To create a haptic integrated PC based platform in C++ that unites different

kinds of assistive functions intended for upper arm rehabilitation applications.

• To study and implement some of the different types of assistive forces.

• To implement the well known model of human psychomotor behavior called

the Fitts’ Task in a virtual environment.

• To replicate three translational movements (3 DOF) of the human arm based

with the Fitts’ Task.

• To validate the assistance concept and position accuracy.

The GUI application in C++ also provides various test options to the user, in a

very easy to use menu. This project intends to enable a robust haptic control with

assistive technology primarily designed for motion impaired users. The various options

presented in this GUI are as follows:

• Linear Constraint Motion 3D

• Velocity Scaling Assistance (User Controlled Scaling)

• Fitts’ Task Implemented in X, with Assistance

• Fitts’ Task Implemented in Y, with Assistance

• Fitts’ Task Implemented in Z, with Assistance

• No Assistance Applied to any of the Above Tasks

The GUI is displayed in a later part of this thesis.

6

1.4 Thesis Outline

 The current chapter is an introduction to robotics in rehabilitation, and a small

outline of the research work. The related work or background in haptics and non haptics

based upper arm rehabilitation, forms the crux of the second chapter. The third chapter

presents a background on the different kinds of assistance concepts. The fourth chapter

talks about the background of the Fitts’ Law. The fifth chapter presents the experimental

set-up with an introduction to the hardware, software part used in this research. The sixth

chapter presents two virtual tasks that were designed along with a descriptive explanation

of the concepts applied here. The seventh chapter describes the three Fitts’ Tasks

designed for the application and gives an introduction on the assistive concepts applied

here. The eighth chapter presents the results and the conclusions. The Fitts’ experiments

were performed on a group of eight people. All the results with the graphs are provided in

the eighth chapter. The last chapter talks about the future work that is integrated to this

research.

7

2. Background

The Background work for this research was done in four different areas of interest

such as:

• Haptics Based Therapy

• Non Haptics Based Therapy

• Assistance Concepts

• Fitts’ Law

In this chapter, the background details of haptics based therapy and non haptics

based therapy will be discussed.

2.1 Introduction

 As far as rehabilitation is concerned, robotics has come a long way. Stroke

rehabilitation is one of the main areas where robot assisted devices are extensively used.

They help in the study of functional adaptation after a stroke. About 10% of the world

population is affected with arm disabilities like stroke, tremors and disabled hand motor

functions. Tremor is the most common cause of movement disorder. Tremors can be

triggered by normal aging, drugs, Parkinson’s disease, and Multiple Sclerosis or

8

excessive stress. The severity of the hand disability increases in the case of a spinal cord

injury leading to neurological deficit conditions. In such a condition, a human would face

difficulties in accomplishing simple ADL. Tremors are classified into Rest and Action

types. Action tremors are further divided into Postural, Isometric and Kinetic. The tremor

syndromes are further classified into Physiological, Essential, drug induced Parkinson’s,

Cerebellar and Pschycogenic. There exist a number of tremor syndrome diagnostic tools

like Surface Electromyography, Accelerometers, Potentiometers and Handwriting

Tremor Analysis but these are useable only in research or in some specialty centers. They

require more technical knowledge to be operated upon and hence may not be user

friendly. Even new technologies like Positron Emission Tomography and Single Photon

Emission have limited applications and require more investigation. They can hardly be

used on a daily basis. Here, we propose an efficient way to find the direction of motion in

which the user faces difficulty in moving the arm. This research work aims at providing a

platform for the clinicians and therapists to study arm motion and also to provide

assistance to a user. This research helps to provide more precise, objective and detailed

data on what actually happens during recovery. This in turn, would provide a better

understanding of the key biomechanical and neurological factors required for successful

rehabilitation.

2.2 Haptics Based Upper Arm Rehabilitation

The term haptic is derived from the Greek word haptesthai, meaning “to touch”.

The haptic sensory system employs both Cutaneous and Kinesthetic Receptors when

9

engaged in an active procedure. Basically, any kind of touch becomes “active”, when the

sensory inputs are combined with controlled body motion. Haptic rendering is defined as

the process of computing and generating forces in response to user interactions with

virtual objects. They offer important applicability in engineering and medical training

tasks. The past research [8] in haptic interface implemented several forms of assistance

functions designed to augment human performance. The test bed used for these tasks

consisted of a six degree of freedom force reflecting haptic interface device called the

Phantom, with the GHOST SDK software produced by Sensable Tech. More recently,

this company developed the Omni Phantom which is a more affordable haptic interface

and it uses the OpenHaptics toolbox for programming. Pernalete [8] demonstrated that

for a set of chosen tasks, the assistance functions significantly reduced execution times

and enhanced the individual’s performance. Arsenault et al [9] implemented a haptic

device interface to test eye-hand coordination during the manipulation of any 3D object

in the virtual world. They proved that haptic rendering of virtual objects improved the

eye-hand coordination for user interactions.

 In teleoperation applications, a user is able to perform complex tasks in a remote

environment. For example removal of bombs, mines and inspection of underwater

structures require the intervention of a remote operator. The visual feedback plays an

important role for these task executions and Morris [10] proved that the use of a haptic

Interface with force feedback assistance increases the user’s perception of the virtual

environment. Yu [12] developed a telemanipulation system using intelligent mapping

from a haptic user interface to a remote manipulator. The mapping is referred to as an

10

assistance function, and was derived on the basis of user’s motion intention. He applied

the Hidden Markov Model for classifying the user’s motion intention in a teleoperation

task. In order to characterize the skill of the upper limb motion, Yu chose a simple task

such as human movement along a virtual labyrinth. Although this is an excellent

example, he implements the motion only in the X-Y plane, which limits the arm

movement. We have developed a platform where the user can get haptic assistance in X,

Y and Z directions.

One of the simplest of rehabilitation applications using haptics was the upper limb

rehabilitation program using a basic motion training program [14]. The users were made

to execute a simple task called the POINT task where time, viscosity and friction were

measured when the user moved and pointed to 9 small circles displayed on the screen.

The same task was performed with assistance. However, the entire task takes place only

in the X and Y directions completely ignoring the Z axis.

Another interesting haptic exercise designed for post stroke arm rehabilitation is

an application called the “The Labyrinth” which combines virtual environment with

haptics. This [13] task was found to be very encouraging and motivating to the stroke

patients. The users had to guide a stylus through a virtual maze using the Phantom device

from one panel to the other without touching the walls as shown in Figure 2.1. Though

this is very good exercise for the affected upper arm, the lack of a suitable model to

quantify human motion performance might leave the clinician with very less information.

11

Figure 2.1: The Phantom Omni with “THE LABYRINTH”(Ref:[10])

The Rutgers Master II (RMII) glove [14] is another interesting rehabilitation

device which provides resistive forces to the user wearing it. This glove, as shown in

Figure 2.2, is integrated to a novel multipurpose haptic interface along with a tracker.

This device helps the user perform a set of physical therapy and rehabilitation exercises.

Figure 2.2: The Prototype Developed at Rutgers, The State University of New Jersey,
Rutger’s Glove (Ref:[14])

The MIT Manus [18] robot is a direct drive five bar linkage Selective Compliance

Assembly Robot Arm (SCARA) mechanism which provides two translational degrees of

freedom for the elbow and forearm motion. It also provides wrist rotation movements.

12

The Manus needs an occupational therapist to physically guide the patient initially in

executing simple tasks. The Manus can be seen in Figure 2.3.

Figure 2.3: Commercial Version of the MIT Manus [Ref:Journal of Neuroengineering
and Rehabilitation 2004]

Our project, also guides the patient in executing simple tasks like, approaching a

trajectory path, following a trajectory path, Fitts’ X, Fitts’ Y, Fitts’ Z and user controlled

force scaling. Another significant difference between the Manus project and the

rehabilitation tool presented here is that, there is no need of a therapist to guide the user

to perform the above mentioned tasks. The Phantom device used as a haptic input device

is very user friendly.

13

2.3 Non Haptics Based Upper Arm Rehabilitation

The development of rehabilitation robot manipulators began in the late 1960’s

itself. One of the first successful rehabilitation robot manipulators is the Rancho “Golden

arm” developed in California [16]. One of the earliest examples of the workstation based

approach to implement robotic systems was the Heidelberg Manipulator [16]. In line with

the workstation based robotic device, the most commonly used system was the Robot for

Assisting the Integration of the Disabled (RAID) [17]. This involved a set of

preprogrammed tasks like moving books from one shelf to another using the robot

controlled by a joystick. Another such robot used for occupational therapy is the Assisted

Rehabilitation and Measurement (ARM) Guide device.

Figure 2.4: Photo of the ARM Guide (Ref:[11])

The ARM Guide [19] is a four degree of freedom robotic device which consists of

a hand piece attached to an oriented linear track as seen in Figure 2.4. A force sensor can

record the forces and torques at the interface between the device and the subject. This

14

device was primarily used to measure hand movements. Another interesting robotic

device for arm rehabilitation is the Robotic Assisted Upper Extremity Repetitive Therapy

(RUPERT) [20]. This arm is powered by four pneumatic muscles and has four actuated

degrees of freedom. It can be adjusted to fit the patient body size. The arm is used to

assist patients wearing them, to perform simple ADL and to move the arm in 3D space.

The RUPERT arm can be seen in Figure 2.5.

Figure 2.5: a)Version II of RUPERT Device b) Computer Simulation of Version III

c) Version III of RUPERT Device (Ref:[12])

The Armin rehabilitation robotic arm designed for therapy [21] had a target

population consisting of patients with orthopedic and neurological conditions. This is a

six degree of freedom robotic arm designed like a human arm, fitted with position and

force sensors. This arm did not provide any kind of force assistance to guide the user. So,

the training sessions lasted longer. These robotic rehabilitation arms were either bulky or

complicated to be operated upon. These are the major limitations of the established

rehabilitation arms. That is why this research concentrates on the creation of a system

that is simple and user friendly.The non haptic therapy devices do not provide a sense of

touch to the user while performing tasks.

15

3. Assistance Concepts

3.1 Introduction

This chapter is an overview of the various types of forces that can be generated

using the Phantom device and each of them is explained briefly here. In the later part of

the research, the assistance concepts discussed here is eventually applied in the Fitts’

experiments. The force feedback device used in this research is the three degree of

freedom device called the phantom. The Assistance function concept is a way of assisting

a user in task execution without overriding his or her command to the operator. The

following chapter presents an introduction on the types of assistance concepts. In order to

make our haptic tasks and teleoperation more accessible to people with arm disabilities, it

was decided that assistance functions would be incorporated into the proposed

simulations experiments.

The importance of assistance functions is emphasized in the following lines. In

his study, J. Schuyler [22] concluded that even a slight increase in manipulation ability

and strength would improve the job scope of the disabled individual. T. Kesavadas and

Hari Subramanium [24] developed a system of virtual tools that one could use to

interactively perform tasks in 3D with just click of a mouse on a computer screen. They

performed experiments with tools with and without attributes. Here the ones with

16

attributes had pre-defined guide planes which would control the motion of the end-

effector depending on the path. The task execution time was computed using Fitts’ Task

algorithm as it involved the tapping of blocks in 3D space. The Fitts’ Task is used to

model human movement based on speed and accuracy. The experiment was performed

without any kind of assistance and the execution time was noted. They inferred from their

results that the user performance improved when toll guided features were used. The

importance of haptic assistance was further emphasized by K. Maclean [25] who

determined that force reflection, sense of touch, made the haptic devices most suitable for

applications in human augmentation, filtering and for manual activities performed by the

differently abled. Thus, the assistance function concepts play a very important role in

robotic tele-operation. The position and velocity mappings between the slave and

manipulator are the basis of assistance function concepts [27].

The assistance functions can be classified as:

• Force Assistance Function or Regulation of Contact Forces

• Regulation of Velocity

• Regulation of Position

3.2 Force Assistance Function/Force Feedback Design

This helps to augment the user’s hand dexterity by imposing some constraints

based on attractive or repulsive potential fields. The attractive or repulsive forces are

implemented as virtual constraints in the master’s workspace so that user cannot move in

any undesired direction.

17

The force vector is a unit of output for a haptic device. The three different ways of

simulating forces are motion dependent, time dependent and motion and time dependent.

3.2.1 Motion Dependent

This is computed based on the motion of the haptic device. The motion dependent

forces are classified as follows:

3.2.1.1 Spring Force

 The spring force is the simplest of force calculation techniques and is easily

applied. The spring force is calculated based on the Hooke’s Law which can be described

as follows,

 xkF rr
*= (3.1)

Where:

• F
r

 = Spring Force Vector

• k = Stiffness Constant

• =xr Displacement Vector = 10 xx rr
−

• 0xr = Fixed Anchor Position

• 1xr = Device Position

The virtual spring is attached between the fixed anchor position p0 and device

position p1. The surface of the object that the user is touching usually forms the fixed

anchor position.

The spring tries to restore itself to its original length from the displaced length and

this mathematical displacement value is used to compute the restoring force of the spring

18

which is conveniently called as spring force. This force will always be directed towards

the fixed anchor position. The stiffness constant k, determines how aggressively the

spring would try to restore itself to its rest length. The behavior of this type of force is

easy to predict and understand as it is based on the physical analogy of a spring. This

force could be applied to either push two points in the virtual world from each other or

just attract them towards each other which made this force suitable for our project as it

could help the user to move towards any point on the trajectory or move away from it.

Moreover, the data obtained from spring type force displayed aesthetic criteria like

uniform edge length, uniform vertex distribution and symmetry.

3.2.1.2 Force Based on Exponential Law

This force is computed based on an exponential relationship between the haptic

end-effector and the target object or trajectory. The relationship can be explained as,

 DistaekF 1*1 −= (3.2)

 DistaekF 2*2 −= (3.3)

 DistaekF 2*3 −= (3.4)

Where:

• =3,2,1 FFF Force Components in X, Y, Z Direction

• 3,2,1 aaa = Scaling Factors in the X, Y, Z Directions

• =k Scaling Factor

• Dist = Distance Between Haptic End-Effector and Target Object

19

Hence, as the exponential force increases with decrease in distance and vice versa.

The incorporation of a negative sign would change the direction of force vector which

depends on the location of the end-effector and target on 3D screen. This force is

considered to be an ideal force during trajectory approach because; the force is high only

when the user is near the trajectory. This would prevent any sudden high force rendering

in the beginning of trajectory approach itself. The user would not feel any jerks or

unwanted pulling forces at the beginning itself. This slow increasing force would create a

very smooth motion during trajectory or target approach.

3.2.1.3 Force Based on Projected Velocity

Figure 3.1: Representation of Force Assistance Function [13]

These forces are calculated based on the projection vector of the Cartesian

position of the end-effector on the desired trajectory. They are important set of forces

because they allow the user to stay on a perfect line of trajectory. The attractive force is

computed as:

)(Pr ojectionVVkF
rr

−= (3.5)

20

Where:

• k = Scaling Factor

• ctorVelocityVeV =
v

of the End-Effector

• ctorVelocityVeV ojection =Pr

v
 Projected on to the Trajectory Vector.

This is then multiplied by a scaling factor depending upon the direction of motion.

That is, the scaling value is higher for the component of the force (F) vector which is in

the direction of required motion of master. The lesser scaling values applied in the other

two direction constraint the force in those directions respectively. Thus, while the

attractive force enhances the motion in one or two directions, the master will have to fight

high torques on the constraint directions.

3.2.1.4 Force Assistance Based on Constant Force Projection

As indicated above, a force based on exponential law is exerted on the user to

assist his or her motion towards the trajectory. Once the user is on the trajectory, a

constant force is projected in the direction of the trajectory as follows:

 TTFF DP

rrrr
*)/(

2
−= (3.6)

Where:

• =PF
r

Projected Force

• TFFD

rrr
•= , Dot product of a Constant Force Vector with the Trajectory

Vector

• =
2

T
r

Square of the Magnitude of Trajectory Vector

• =T
r

Vector along the Desired Trajectory Path

21

3.2.1.5 Force Assistance Based on Velocity Based Force Projection

The exponential based force is provided to the user to assist trajectory approach as

in the above two cases. A force based on the haptic velocity of the approaching sphere is

determined. The haptic velocity is obtained using a haptic command and projected in the

direction of trajectory as shown in the next page.

 TTVF DP

rrrr
*)/(

2
−= (3.7)

Where:

• TVVD

rrr
*= , Dot Product of Haptic Velocity Vector with the Trajectory Vector

• =
2

T
r

Square of the Magnitude of Trajectory Vector

• =T
r

Vector along the Desired Trajectory Path

 This force projection assists the user in moving on the trajectory path.

3.2.1.6 Damper

The Damper, as the name suggests damps or opposes motion. The strength of

Damper is proportional to end-effector velocity. The Damper equation is,

 VbF
rr

*−= (3.8)

Where:

• b = Damping Constant

• V
v

= Velocity of End-Effector

This force always points in the opposite direction of motion. This force can be

very useful when the user wants to control the scaling of forces sent to him during

22

teleoperation. Basically, user controlled scaling requires a factor which defines user

motion to compute forces for every frame per second. The velocity of the user is the best

factor which can determine user intention and scale up or scale down the forces

accordingly. If the user velocity is low, then the Damper force applied is also low, based

on the equation so that user controlled motion is not hindered. If the user velocity is high,

then to prevent him or her from exceeding the velocity limits, a higher damping force is

computed accordingly and sent to the user.

3.2.2 Friction

The haptic device can be used to simulate the following kinds of frictional forces:

Columbic Friction, Viscous Friction, Static Friction, Dynamic Friction, and Inertia. The

Frictional forces play an important role in rehabilitation based training tasks using haptic

technology for people with hand disabilities. They can especially help haptic users with

hand tremors to move in 3D space smoothly in any direction. Here is a description of the

different types of frictional forces:

3.2.2.1 Columbic Friction

This basic kind of force opposes the direction of motion with a force that is

computed by:

)(VsignCF
rr

×−= (3.9)

23

Where:

• V
r

 = Velocity of End-Effector

• C = Frictional Constant

•)(Vsign
r

 =Direction of Vector V
r

This frictional force helps to create a smooth transition when changing directions,

since friction will be proportional to velocity for slow movement. Here the damping

constant is high, with a small constant force clamp.

3.2.2.2 Viscous Friction

This force is very similar to the Columbic force. This is also computed with

damping constant and constant force clamp. The only difference here is that, the damping

constant is low with a high clamp value. The Static and Dynamic Friction is also referred

to as the stick-slip friction as the friction model switches between no relative motion and

resisted relative motion. This force opposes lateral motion along a surface, and the

magnitude of the frictional force is always proportional to the perpendicular (normal)

force of contact.

24

3.2.3 Inertia

This force is associated with any moving mass. In a given trajectory, one can

calculate the force during that motion using Newton’s second law of motion:

 amF rr
∗= (3.10)

Where:

• F
r

= Force in Newton

• m= Mass

• ar = Acceleration

3.2.4 Time Dependent

Any force that is computed as a function of time is called Time Dependent. The

following are the different ways of rendering Time Dependent forces:

3.2.4.1 Constant Force

This is a force with fixed magnitude and direction. This force is used for gravity

compensation so that the end-effector feels weightless. This force can also be used to

make the end-effector feel heavier than normal.

3.2.4.2 Periodic Force

This force is produced by applying a pattern that repeats over time. The patterns

vary from a Saw Tooth Wave, Sinusoidal Wave or Square Wave. The Periodic force is

25

defined by a time constant and amplitude. The time constant controls the period of the

patterns cycle whereas the amplitude determines how strong the force will be at the peak

of the cycle.

3.2.5 Impulses

These are forces which are applied instantaneously. This force is more effective

because, nerves are more sensitive to discontinuities in force rather than steady-state

force. This is why, a larger derivative of force with lower magnitude is more compelling

than a smaller force derivative with higher magnitude. The impulse force can be very

useful when it comes to computing average impact forces during collision. Given, the

end-effector velocity of the Phantom, and the assumed mass of the end-effector, the

impulse force could be calculated as follows:

)/(* tVmF ΔΔ=
rr

 (3.11)

 Where:

• =m Mass of the End-Effector

• =ΔV
r

 Change in End-Effector Velocity

• =Δt Change in Time

3.3 Velocity Assistance Function

The Velocity assistance function serves two purposes: assistance in approach to a

target and the assistance in avoidance of an obstacle. The velocity scaling is varied

26

according to whether the motion in that particular direction is achieving the desired effect

of the motion. The scaling is applied in two different ways such as:

• Constant Scaling Factors of 0 and 1: The scaling was performed only if it

assisted the user in the desired direction of travel.

• Variable Scaling Factor: Here, the scaling factor is computed for every new

position of the haptic end-effector and multiplies the velocity vector.

According to [26], an estimate of the desired scaling can be obtained as

follows:

 The scaling can be applied in two different ways:

 MaxVXVS mSs /)(max = (3.12)

Where:

• =maxsS Scaling Factor

•)(XVS = Desired Velocity of Approach

• MaxVm = Maximum Expected Master Velocity

The velocity assistance with scaling is given by:

)(*)1(tVKtV SCALED

rr
=+ (3.13)

Where:

• cityScaledVeloVSCALED =
v

vector

• ctorVelocityVeV =
r

• rScaleFactoK =

27

3.4 Position Assistance Function

The Position Assistance Function also known as Position scaling, involves the

enlargement or reduction of slave workspace as compared to master workspace.

There are two types of Position Assistance Functions:

• Planar Assistance Function

• Linear Assistance Function

In the above cases, the motion constraint was designed to lie along a line or in a

plane. This was designed for people with disabilities so that they could operate in a more

stable manner. In Planar Assistance Function, the whole workspace is scaled up or down

depending on the master workspace requirements. In Linear Assistance Function, just the

linear path end-effector points are scaled up or down with respect to the master

workspace.

The force assistance concepts used in this project are:

• Spring Type Force Feedback

• Exponential Type Force Feedback

• Constant Force Projection

• Velocity Scaling Based Assistance

These different concepts are explained in detail in a later chapter in this

document. The concepts are also accompanied by detailed diagrams.

.

28

4. Implementation of Fitts’ Task

The reason to choose the Fitts’ Task as the rehabilitation task is because its one of

the most commonly used mathematical model of human movement. This experiment is

simple in nature but yet provides a large amount of information regarding the user

performance. This is the important phase of the project where three Fitts’ experiments

were designed on the haptic interfaced C++ application platform. The Fitts’ experiments

were used as a validation tool for this system which also illustrates the use of the system

for rehabilitation applications. This application is very versatile because the Fitts’ is

designed in 3 degrees of freedom, which means in all three directions of motion, X, Y

and Z. Three Fitts’ experiments were designed based on the direction of motion. Eight

volunteers were asked to perform experiments based on these three Fitts’ Tasks. The

motive behind designing these Fitts’ Tasks was to measure the user performance after

training with and without assistance.

4.1 Introduction

The Fitts’ Task was proposed by Paul M. Fitts’ (1912-1965) who was a

Psychologist at Ohio State University. This widely known human model of movement is

based on rapid, aimed movement and is a well studied mathematical model of human

29

motion [7]. The Fitts’ model is a formal relationship which describes speed/accuracy

tradeoffs in aimed one dimensional translational movement in upper extremity tasks.

Figure 4.1: Descriptive Representation of Fitts’ Law

Mathematically, Fitts’ Task is expressed as follows:

)/2(log2 BATmove βα += (4.1)

Where:

• =moveT Time for a Given Number of Traversals between the Two Goals

• =βα , Constants Fit to the Experimental Data

• A = Distance between the Two Goals

• B = Width of Each Goal

As seen in the above equation, the Fitts’ model can predict the time required to

rapidly move from a starting position to a final target area, as a function of the distance to

the target and the size of the target.

30

Another important aspect of Fitts’ law is the Index of difficulty (ID) which

provides a measure of the difficulty of a motor task. The ID is given as follows:

 ID =)/2(log2 BA (4.2)

This law is applied to human movements involving pointing both in the real world

and in simulation tasks. This relationship means that at increased difficulty, more

accurate movements require longer aiming time [28]. Initially, proposed as a method of

quantifying human dexterity [35], Fitts’ Task has found wide applications since then, in

the area of robotics and rehabilitation.

4.1.1 Existing Models of Predicting Human Movement

Now, let us see why the Fitts’ Task was chosen among the existing mathematical

models of human movement. The existing models of human movement are classified into

Predictive models and Descriptive models. The Predictive models, also known as

engineering models or performance models, determine metrics of human performance

analytically. On the other hand, the Descriptive models help to provide a framework for

describing a problem or a situation. The Predictive models are classified into Hick-

Hymann Law, Key Stroke Level Model and Fitts’ Law. The Descriptive models are Key-

Action Model, Three State Model of Graphical Input, Model for Mapping Degrees of

Freedom to Dimensions and Guiards Model of Bimanual Skill.

The effect of spatial uncertainty on motor planning was studied using a queing

method in a reaching task [29]. The results showed that the relationship between average

reaction time and number of cues was poorly described by the Hick-Hymann Law [29].

The Key Stroke Level Model [30] did not require any specialized psychological

31

knowledge. However, this model had lot of limitations. They could predict only one

aspect of user computer interaction namely, time of interaction. Moreover, this model

required a complete error free performance time on routine tasks and also a high user

expertise. The Descriptive models do not provide any empirical or analytical data as

mentioned above. However, they are used to understand any problem or situation better.

With all these considerations, the significance of the Fitts’ Task in human computer

interactions is discussed next.

4.1.2 Significance of the Fitts’ Task

The technological advancement in human-computer interfaces has evoked an

interest in developing a reliable prediction model of movement time in computer input

tasks [31]. In our study, the human interfaces like cursor keys and function keys are

replaced by GUI. The Fitts’ Task satisfies the need to measure and quantify human

movement in virtual space. Previous experiments have shown that kinematic patterns of

human movement change in a systematic manner. These kinematic patterns displayed a

relationship between simple oscillatory motion and informational flow in task space

during rhythmic pointing tasks [32].

This Task has found prominence in many experiments to validate speed, accuracy

and time coordination involving movement time. Movement time is defined as the time

taken to complete a task. Sommer Gentry, Eric Feron and Roderick Murray Smith [33]

report that two person teams, also known as dyads can achieve lower movement time

(MT) for cyclical, continuous aiming movements’. One of their experiments was based

32

on a cyclic task formulated with Fitts’ model. In the cyclic task, the user had to aim

successively at each pair of targets as rapidly as possible without overshooting or

undershooting. This was as opposed to the discrete task where the person was asked to

aim at and come to a stop within a given target. The haptically coupled cyclic Fitts’ Task

involved two people to control the motion of the pointer and target respectively. The

experimental setup involved a standard computer driving wheel fixed to a desk, with a 4

foot long wooden dowel attached to create a lever. The screen displayed two targets as

sectors of a circle and the current position as a pointer. The authors did two experiments,

one with dyads and one with solo subjects.

 While the solo subjects individually tried to move the pointer to the target, the

dyads performed the cyclic task together with one person on either side of the rotating

handle. Here, each person had his own target and pointer display. The data analysis led

them to conclude that dyads performed significantly better at a minimum time cyclical

aiming task than individuals. This because, the dyads could concentrate on their

individual targets better.

Steven Edward Everett [34] performed some experiments like the surface impact

and Fitts’ Task to demonstrate the efficacy of his assistance algorithms in performing

radioactive waste tank cleanup. Everett’s test bed consisted of two dark rectangles

representing the goals on a white table. He measured the transit time in moving from the

left goal to the right and back again for different values of distance (D) between the goals

and width (W) of the goal regions. Then, he experimentally determined the best fit

theoretical lines for the time versus (D/W) ratio. This was done for both constant and

33

variably scaled velocity mappings. The findings of his research suggested that the

assistance functions resulted in smaller task execution times as compared to the

performance of tasks without assistance functions.

4.2 A Unique Implementation of Fitts’ Task

The implemented Fitts’ Task is designed to detect tremors in any direction in 3D

space. Fitts’ model describes a relationship developed by applying the information theory

of physical communication systems to the sensory-motor system [7]. The reason why

Fitts’ Task was chosen to be a part of this project is two-fold. One, to validate the

assistance functions which were developed previously and secondly, to provide

parameters like Movement Time (MT), Index of Difficulty (ID), Index of Performance

(IP) which provides very useful information to the human factors engineers and

biomedical engineers [35]. The Human movement has been shown to display a tradeoff

between speed and accuracy in target directed movements [36, 37]. This trade-off could

be traced back to pschycomotor delay.

Sensory transduction, latencies in central processing and motor output could be

the reason for motor circuit delays. This is due to a synaptic delay between two single

neurons which may range between 1-2 ms. The conduction along an axon could also be

the cause of the delay in motor circuit. The factors which determine axon conduction

would be length of axon, and if the axon is myelinated or non-myelinated. This explains

one of the possible reasons of time delay in task execution.

The Fitts’ Law [35] has been shown to provide an indirect estimate of the delay

within the motor circuit. They applied the natural relationship developed between the

34

underlying physiology and (βα ,), the coefficients of Fitts’ Law to observe human motor

performance and also to provide an indirect estimate of delay within the motor circuit.

Thus, researchers [35] have shown that the coefficients of Fitts’ Law can be used to study

human-motor behavior. This understanding of the human motor behavior through Fitts’

Law could also lead to improved robotic aids for teleoperation and rehabilitation

applications. Fitts’ Law has many applications in Human Computer Interactions (HCI)

like developing methods for target acquisition in virtual worlds, conceptual extension of

Fitts’ model with the help of multiscale pointing in zoomable surfaces [36]. With all

these factors in mind, the Fitts’ Task was incorporated in the GUI. In the user interface,

the user could choose from any of the three Fitts’ Tasks provided. These tasks were

classified as Fitts’ Task X, Fitts’ Task Y, Fitts’ Task Z, three dimensional force scaling

and user controlled velocity based scaling technique. Each of these tasks were subdivided

into two options. One option did not provide any kind of assistance to the user while the

other one provided force assistance in performing the same task. All these options were

provided in the C++ GUI.

The Fitts’ Task can be classified into discrete and cyclical motion types. Given,

two targets in the virtual space, when the user moves towards a target and comes to a stop

within the same target, then the motion is called a discrete type motion. On the other

hand, if the user has to move towards each of the pair of targets successively in a rapid

motion, the task becomes a cyclical kind of motion.

 Researchers [33] have proved that cyclic aiming reduces the Movement Time

(MT) compared to the discrete aiming. This was due to the sinusoidal motion of the

35

cyclic Fitts’ Task which permits storage and reuse of kinetic energy that a user has

generated. Hence, a cyclic task puts the user at an advantage physically. G. P. Van Galen

and J. Duysens [39] conducted a study to compare discrete versus cyclic movements for

different target widths. The sample population used for the study consisted of 24 healthy

participants. They found that the Index of Performance (IP) and movement velocity were

almost twice as large in cyclic compared to discrete movements. The predicted Index of

Performance (IP) constant was found not to hold for rapid cyclic movements. Their

studies clearly indicated that cyclic movements exploit the energetic and physiological

properties of the neuromotor system. This is the reason why cyclic Fitts’ Task was

implemented for the rehabilitation part of this project.

4.2.1 Fitts’ Task X

In Fitts’ Task X, the OpenGL scene consisted of two goal regions represented by

two rectangular blocks drawn with a pre-defined distance between them. The linear

trajectory connecting the two goal points was drawn in the X direction. The user could

move the Phantom end-effector over the line from one goal point to another to first

determine if he or she had any difficulty in that particular direction for hand motion. In

other words, the user could detect motion abnormalities in the horizontal direction. In

Fitts’ X, the user moved in the X-Y plane while traveling on the trajectory. The flowchart

in Figure 4.2 describes the assistive function applied in Fitts’ Task X.

36

Figure 4.2: Flowchart Depicting Assistive Function in Fitts’ Task X

 In order to understand the flowchart, we should first understand the terminology

applied here.

37

4.2.1.1 Terminology Used in Fitts’ X

EffectorPos is a vector representing the current user position in a virtual space. Fitts’Start

is a vector representing the point at the start of the trajectory. Fitts’End is a vector

representing the point at the end of the trajectory. PrevPos is a vector representing the

previous position of the user. DistRight is the distance between the EffectorPos and the

Fitts’End when the user is on the right side of the centre of the trajectory. DistLeft is the

distance between the EffectorPos and the Fitts’Start when the user is on the left side of

the centre of the trajectory. LimitX is a point which defines the limits of the middle space

on the trajectory where null force exists.

4.2.1.2 Explanation of the Flowchart in Fitts’ X

The steps involved are described as follows:

• Step 1: First, the code checks if the effector X and Y coordinate lies in a range

of 10 units on either side of the trajectory.

• Step 2: Then it is determined if the effector position is greater or lesser than

the previous position. This determines the direction of motion of the user. The

Phantom provides assistance in both directions of motion.

• Step 3: This code does not generate any force in a small region in the middle

of the trajectory in Fitts’ Task. That is why, the code calculates whether the

user is beyond the limits of the middle region.

38

• Step 4: If yes, then an exponential force is provided to assist the user in the

direction of motion which is totally controlled by the user.

• Step 5: If no, that is if the user is in the middle region, then no force is given

so that the user can easily disengage from the task.

Any irregularity like tremors in the hand in this particular direction of motion

qualified for assistance. Then the user could choose the assistance option from GUI. The

user was given force assistance to move from the center of the trajectory to the left goal

point and vice versa. Similarly, a spring type force was given when the user began to

approach the right hand side goal point. This resulted in smooth acceleration during

transit, lessening any deviations from the trajectory or any unwanted vibrations.

4.2.2 Fitts’ Task Y

The Fitts’ Task Y had a graphical scene similar to the previous one except for the

fact that the trajectory connecting the two goal points was drawn in the direction of the Y

axis. Here also, the movement was made in the X-Y plane. This experiment was designed

to test the effectiveness of the human hand motion in the Y direction or up-down motion.

People with hand motor dysfunctions in this direction would have difficulty in

performing this Fitts’ Task. The assistance option along with this task provided assistive

force to the user to move towards the goal point in an upward motion and also to come

back to the starting point from the goal. These forces were also made effective when the

user wanted to travel to the goal point in the lower end of the trajectory in a smooth

motion.

39

Figure 4.3: Flowchart Describing Assistance Function in Fitts’ Task Y

40

4.2.3 Fitts’ Task Z

The final one, Fitts’ Task Z was implemented to help the user identify any kind of

hand motion difficulties in the Z direction. This meant that the user could detect motion

abnormalities for movement towards the screen. The trajectory vector was drawn in the Z

direction. The assistance option for this task was also provided in the GUI. The user

could overcome the hand motor difficulties in approaching a virtual object in space in the

Z direction with the help of the assistive forces. Here the plane of motion is the Y-Z

plane. The terminology for this task remains the same as the previous two experiments.

The flowchart representing the sequence of events in Fitts’ Y is shown in Figure 4.4.

Here, the algorithm differs from that of Fitts’ X and Fitts’ Y as three conditions

are checked instead of just two. That is, the algorithm in Fitts’ Z checks for the location

of the end–effector with respect to the X, Y and Z directions.

41

Figure 4.4: Flowchart Describing Assistance Function in Fitts’ Task Z

42

5. Experimental Test Set-Up

5.1 Introduction

The experimental set up consists of a C++ based application integrated with a

haptic device called the Phantom from Sensable Technology. The Phantom is an ideal

rehabilitation tool for this research because it provides force feedback in X, Y and Z

directions. This force can be used to our advantage to provide constraint or assistance.

Thus, the Phantom plays a very important role in this project and it becomes essential to

learn about its libraries and capabilities. The rehabilitation tasks are simulated using

OpenGL graphical software tools. A well know mathematical model of human movement

called the Fitts’ Task was simulated in X, Y and Z directions separately. A stopwatch is

used to measure the execution time of the eight subjects in completing all the Fitts’

Tasks. A C++ code is written to store the haptic position data of every user

systematically.

43

5.2 Hardware

5.2.1 Phantom 3D-Touch Enabled Modeling System

Earlier, haptic feedback was used mainly for flight simulator applications and

Master-Slave tele-robotic application. These systems had mechanical linkages between

the master and the slave. Then in 1954, Goertz and Thomson developed an electrical

servomechanism that received feedback signals from sensors mounted on the slave. This

servomechanism applied forces to the master. The founding stone for haptics tele-

operations was hence made. In the period of 1967-1990, the GROPE project at University

of North Carolina created another breakthrough in haptic research [30]. This project

initiated force feedback from simulated interactions. Here, the slave robot was substituted

by a simulated system, in which forces were computed using physically based

simulations. Thus, the concept of force feedback was implemented from a very long time

back. Engineers just needed to develop a better user friendly device to incorporate these

force feedback concepts.

In 1980, Bejczy and Salisbury devised a computer based Cartesian control for

tele-operator systems. This helped to develop separate kinematic configurations for the

master and the slave. By 1991, Cartesian control was being used to manipulate simulated

slave robots. Eventually, the research was directed towards interaction of forces with

objects with rich geometrical information. Massie and Salisbury in 1994, designed the

Phantom, a stylus based haptic device which was later commercialized.

44

5.2.2 Haptic Process Flow

Figure 5.1: Phantom from Sensable Technologies [www.sensable.com]

The concept of combining robotic and haptic technologies to touch and

manipulate 3D data developed into a full fledged project in the early 1990s. This project

evolved into the first ever haptic device called “Phantom”, a force feedback device. The

development of Phantom since then has opened a new avenue for computer interaction

techniques for visually impaired people and people with physical disabilities. Haptic

technology makes it possible to extend the range of touch from the length of an arm to a

virtually unlimited distance. The Phantom enables the user to control the robot with small

movements of one finger and also feel some of the tasks that the robot performs. The

Phantom interacts with the computer to interpret the user’s finger position in three

dimensional spaces and applies an appropriate and variable resisting force.

Three sensors located in the Phantom tracks the position of the user’s fingertip

and send them to the computer. The computer calculates the necessary force and sends

45

them to the three DC motors which generate the force that could be felt by the user. The

haptic process can be well described in the diagram that follows:

Figure 5.2: Haptic Process Flow [www.sensable.com]

This process is carried out 1000 times per second. The high frequency along with

high resolution of the encoders makes it possible to feel almost any shape very

realistically with a device like the Phantom.

5.3 Software

The General Haptic Open Software (GHOST) SDK toolkit is a powerful C++

software toolkit that eases the task of developing touch-enabled applications. This

software essentially takes care of the complex computations and helps the users deal with

simple, high level objects and physical properties like location, mass, friction and

stiffness. The GHOST SDK also consists of libraries of 3D prismatic objects, touch

effects etc. Hence, all the computations necessary to simulate physical interaction with

graphical objects is provided by these libraries.

46

The Sensable OpenHaptics toolkit enables software developers to add haptics and

true 3D navigation to a broad range of applications. This software allows the user to add

functionality to support new types of shapes. They can also integrate third party libraries

such as physics/dynamics and collision detection engines.

5.3.1 Open Haptic Overview

The OpenHaptics toolkit mainly consists of the following libraries:

• Haptic Device API (HDAPI)

• Haptic Library API (HLAPI)

5.3.1.1 HDAPI

 This provides low-level access to the haptic device renders direct force, controls

run time behavior of the drivers. The HDAPI consists of two components, the device and

the scheduler. The device allows any supported 3D haptic mechanism to be used with the

HDAPI. The scheduler callbacks meanwhile, allows the user to enter commands that will

be performed within the servo loop thread. The HDAPI is generally used to initialize a

device, create scheduler callbacks to define force effects, enable forces and start the

scheduler. An example of force effect is the query of position device at every scheduler

tick and the calculation of force based on that. The device routines can be classified into

device initialization, device safety and device state. The scheduler’s main purpose is the

rendering of forces and retrieval of state information from the device. In order to create

compelling and stable force feedback, the force updates need to be sent at 1000 Hz

frequency. The scheduler interface allows the application to communicate effectively

47

performed in the servo loop thread in a thread safe manner. This also allows operations to

be performed in the servo loop thread.

5.3.1.2 HLAPI

 The HLAPI allows rendering of geometric primitives along with haptic material

properties. The haptic rendering machine uses this information along with data read from

haptic device to calculate the appropriate forces to be sent to the haptic device. The

HLAPI commands can modify the rendering state of haptic device and store important

information like position and orientation. The API also has the ability to set event

callback functions which the rendering engine can call whenever any event like, touching

a shape or pressing the stylus button on the haptic device occurs.

5.3.2 OpenGL Graphical Software

OpenGL is a graphical software tool that can be used to develop interactive 2D

and 3D graphical applications. We used the OpenGL graphical software to simulate the

environment for the Fitts’ experiments in all X, Y and Z axis respectively. Moreover,

walls and floor were also graphically drawn to give the user a sense of being inside a

room. This made the whole experiment very real and visually very guiding.

48

Figure 5.3: OpenGL Visualization Programming Pipeline

The graphical scene was simulated using OpenGL with very simple commands

like:

gluSphere(quadObj, VISITOR_SPHERE_RADIUS, 20, 20);

This command generated a virtual sphere with a radius represented by

VISITOR_SPHERE_RADIUS, and the remaining two arguments referred to slices and

stacks which made the sphere visually realistic.

glBegin(GL_QUADS);
glLineWidth(10.0);
 glVertex3d(pointstart.x-10.0,pointstart.y+40.0,pointstart.z);
 glVertex3d(pointstart.x+10.0,pointstart.y+40.0,pointstart.z);
 glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z);
 glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z);
glEnd;

These OpenGL commands were used to draw each of the rectangular goal regions

at the two ends of the linear path. The command glVertex3d is used to represent a point

in a 2D or 3D Space.

49

5.3.3 Multithreading

The concept of Multithreading is implemented here to enable real time generation

of haptic data and to enable simultaneous running of the haptic and graphic loop.

Multithreading is the concept of integrating the Phantom haptics thread with the graphics

thread to work concurrently. The haptics needs to be updated more frequently than the

graphics and hence the HLAPI creates two additional threads called the collision thread

and servo thread. While the servo thread handles direct communication with the haptic

device, the collision thread determines which geometric primitives are in contact with the

proxy.

The servo thread runs at a frequency of 1000 Hz while the collision thread runs at

100 Hz. In this particular application, a synchronizer structure is created which stores

variables that can be modified by the haptics thread and simultaneously used by the

graphics thread. The synchronizer basically gets a snapshot of data from the haptics

thread in a thread safe fashion. The synchronizer uses the same pointer to the haptic state

as that used in the haptics loop. The graphics loop however, access the haptic state in a

thread safe manner by using a synchronous callback. This callback is executed in a

thread-safe and realtime fashion. This can be seen in the realtime force generated from

Phantom.

50

6. Description of the Different Assistive Functions

We designed six types of tasks provided in a GUI from which the user can choose

the one he or she wants to perform. The assistance concepts described before, are applied

to the tasks described here in this chapter.

6.1 Introduction

This chapter describes the application of the various assistance concepts for 2D

and 3D virtual tasks in a haptic environment. This is the basis of designing repetitive

tasks like the Fitts’ Task with assistance functions for upper arm rehabilitation purposes.

6.2 Trajectory Approach and Traversal

One of the basic haptic experiments is where the user approaches a trajectory and

moves along the same to reach the target. This system is designed to assist the user in

trajectory approach and traversal with effective force feedback. The system is also

designed in a way that human motion can control the movement when necessary. In this

case, the user intentions are always considered. Here, the assistive functions have been

used to enable the user to perform with ease without any unnecessary buzzing or jittery

motion.

51

6.2.1 Experimental Set-Up

The experimental set-up consists of a display window depicting a linear trajectory

and the end-effector represented by the blue sphere on a user interface (UI), as shown in

Figure 6.1.

Figure 6.1: UI with the Desired Trajectory and End-Effector

This sphere follows the motion of the end-effector of the Phantom Omni device.

The user controls the motion of the sphere with the haptic stylus. The goal of the user is

to move the sphere towards the trajectory and move it along the linear path. The user

traverses the trajectory path as shown in Figure 6.2. Here all the directions of motion is in

the X-Y plane.

52

Figure 6.2: UI Showing the End-Effector on the Trajectory Path

6.2.2 Terminology Used in Trajectory Approach Task

Here is the terminology which clearly explains the logic behind this assistance

concept:

•)1,1,1(zyx = Start Point of the User Defined Trajectory

• (x2, y2, z2) = End Point of the User Defined Trajectory

• (nnn ZYX ,,) = Point on the Trajectory Which is Closest to the User Controlled
Phantom End – Effector Position.

• (),, 321 UUU = User Controlled Phantom End-Effector Position

• =F

r
 Force Vector at the User Controlled Effector Position

• =321 ,, FFF Force Components in the X, Y, and Z Directions Respectively

• Line_Mag = Magnitude of the Length of the Trajectory Path

• (=),, 321 III Closest Point on the Trajectory

53

6.2.3 Stiffness

 This is the resistance of an elastic body to deflection or deformation by an

applied force. This is defined as,

 δ/PStiffness = (6.1)

This is the stiffness of a body that deflects a distanceδ , under an applied force P.

6.2.4 Distance

 This is the distance between the user’s position and the closest point on the

trajectory to the user. The closest distance is computed based on a point on the trajectory

which lies on the normal to the trajectory path.

If (nnn ZYX ,,) is the closest point on the trajectory to the user, and if (),, 321 UUU

is the user’s end-effector position, then the distance can be represented as:

 2

3
2

2
2

1)()()(nnn ZUYUXUDist −+−+−= (6.2)

6.2.5 Trajectory Vector

 The trajectory vector is a vector defined in the direction of the trajectory path. It

is given as follows:

 kzzjyyixxt
rrrr

)()()(121212 −+−+−= (6.3)

54

6.2.6 Normal Vector

 The Normal vector is the vector which is in the direction of the normal to the

closest point on the trajectory.

 kDistzzjDistyyiDistxxn
rrrr)/)(()/)(()/)((121212 −+−+−= (6.4)

Where:

• K = also known as the scaling factor, this value can be used to Scale up or

 scale down the force to get the desired effect.

• Y_start = this is the predefined point in the Y axis below which the user is

allowed to approach the trajectory easily.

• Y_end = this is the predefined point in the Y axis above which the user is

allowed toleave the trajectory easily.

Some of these variables will be described in a later section in this chapter.

The following section describes how the distance between the end-effector and the

closest point on the trajectory is determined.

6.2.7 Determination of a Point on the Trajectory Closest to the User’s Position

The length of the trajectory line Line_Mag, is determined as follows:

 Line_Mag = 2

12
2

12
2

12)()()(zzyyxx −+−+− (6.5)

This mathematical computation is explained very descriptively in Figure 6.3.

55

Figure 6.3: Calculation of the Nearest Point on a Line to a Trajectory

Next, the dot product P

r
 of the trajectory vector t

r
, and line joining the end-effector

position, is computed as shown below.

P = /))(*)()(*)()(*)((121312121211 zzzUyyyUxxxU −−+−−+−− Line_Mag (6.6)

Then, the dot product is checked P is checked for perpendicularity.

If (0 < P < 1), then the closest point on the trajectory is computed as follows:

)(* 1211 xxPxI −+= (6.7)
)(* 1212 yyPyI −+= (6.8)
)(* 1213 zzPzI −+= (6.9)

If the condition is not true, then the closest point does not lie near the line segment.

6.2.8 Assistance Concepts Applied to this System

In order to understand the application of the assistance concepts, each instance of

assistance application is descriptively explained next. The force algorithm applied when

the user approaches the trajectory, is first explained here. The corresponding force flow

56

diagrams are also shown immediately. Next, we are going to explain all the assistance

scenarios figuratively in five cases as follows. These five cases represent different

scenarios of trajectory approach and traversal. The first scenario is one where the user

approaches a trajectory and the forces that influence him or her in performing the same

task. The force applied here is an exponential force which increases slowly as the

distance between the user represented end-effector and trajectory is reduced.

6.2.8.1 Case a: When the User Approaches the Trajectory

Figure 6.4: Graphical Representation of a User Approaching a Trajectory

Y_end

Y start

(x1, y1, z1)

(x2, y2, z2)

57

Figure 6.5: Negative Exponential Relationship between Force and Distance

Figure 6.6: Graphical Representation of Force Direction in Case a

 (6.10)

 DistaeKF 2*2 −= (6.11)

 DistaeKF 3*3 −= (6.12)

Exponential Force

High Spring Force

High Spring Force +
Projection Component

Force

Distance

DistaeKF 1*1 −=

58

Where:

• F1, F2, F3 = Force Components in X, Y and Z Directions

• K = Scaling Factor

• 3,2,1 aaa = Scaling Factor

• Dist = Distance Between the Current Effector Position and the Closest Point

on the Trajectory.

The trajectory approach task has been graphically depicted in Figure 6.4. This

exponential force is given to the user when the Y coordinate of the end-effector position

falls within the Y-start limit. This force is intended to help the user approach the

trajectory at its starting point. The exponential force increases as the user gets closer to

the trajectory. This exponential force is represented by the red dashed line as shown in

Figure 6.6. The Y-start is represented by a dashed line in the lower end as shown in

Figure 6.4. The negative exponential relationship between force and distance is

graphically shown in Figure 6.5.

59

6.2.8.2 Case b: When the User is Very Close to the Trajectory and Under the Y_Start
Point.

Figure 6.7: Graphical Representation when a User is Very Close to the Trajectory

Figure 6.8: Graphical Representation of Force Vector Acting in Case b

Exponential Force

High Spring Force

High Spring Force +
Projection Component

(x1, y1, z1)

Y_start

Y_end

(x2, y2, z2)

60

 xnDistSTIFFNESSF rr
***0.181 = ; (6.11)

 ;***0.182 ynDistSTIFFNESSF rr
= (6.12)

 ;***0.183 znDistSTIFFNESSF rr
= (6.13)

Where, xn , yn , yn are the three components of the line vector normal to the

trajectory. The high spring force attracts the sphere to the trajectory at a very high

magnitude such that the user feels a high pulling force to the trajectory. Figure 6.8

contains the force diagram with the high spring force highlighted in red.

6.2.8.3 Case c: When the User is On the Trajectory

Figure 6.9: Graphical Representation when a User is on the Trajectory and Above
Y_start

(x2,y2,z2)

(x1,y1,z1)

Y_start

Y_end

61

Figure 6.10: Graphical Representation of Forces Acting in Case c

)*()***(tKnDistSTIFFNESSKF

rrr
+= (6.12)

Where:

•)***(nDistSTIFFNESSK r = Spring Force Component which Assists the

User to move towards the Trajectory Path and Stick to it.

• =)*(tK

r
 Projected Force Component which Assists the User to Move Along

the Trajectory Path to the End Point of the Specified Trajectory.

• =K Scaling Factor

When the user is on the trajectory, a projection force is applied in the direction of

the trajectory so that the user gets assistance to reach the end of the trajectory as shown in

Figure 6.9. Here, the spring force is scaled down a bit so that, buzzing is eliminated. The

two component forces acting on the end-effector sphere are highlighted in red as shown

in the force diagram in Figure 6.10. The next case study talks about the forces acting

when the user is at very close proximity to the trajectory. In this scenario, the user is

Exponential Force

High Spring Force

High Spring Force +
Projection Component

62

expected to be above Y_start limit as shown in the Figure 6.11. There is a strong

attractive force that pulls the user close to the trajectory path. This force is a high spring

force applied in the direction of the path between the user represented end-effector and

trajectory.

6.2.8.4 Case d: When the User is at Very Close Proximity to the Trajectory

Figure 6.11: Graphical Representation when a User is Near Trajectory and Above Y_start

(x1,y1,z1)

(x2,y2,z2) (x2,y2,z2)

(x1,y1,z1)

Y_start

Y_end Y_end

Y_start

63

Figure 6.12: Graphical Representation of Force Vector

 nDistSTIFFNESSKF rr

***= (6.13)

 kDistzzjDistyyiDistxxn

rrrr)/)(()/)(()/)((121212 −+−+−= (6.14)

 Here, Dist is the distance between the effective sphere and the closest point on

the trajectory. This high magnitude spring force is applied on the left and right hand side

of the trajectory as shown. These two forces become virtual walls and don’t allow the

user to move beyond them. These virtual walls are designed at pre-defined distances from

the trajectory. The force on the right hand side of the trajectory is given at a magnitude

lesser than the left side of virtual wall so that the user can pull away from the trajectory at

any position of the end-effector. This force acts within the virtual wall. The virtual wall is

clearly visible in Figure 6.11 and they basically prevent the end-effector from moving

away from the trajectory path. The force diagram is given in Figure 6.12 where the active

Exponential Force

High Spring Force

High Spring Force +
Projection Component

64

force in this condition is highlighted. The next case describes the scenario where the user

has reached the end of the trajectory path and is ready to move away from the same.

6.2.8.5 Case e: When the User Reaches the End of the Trajectory Path

 (x2,y2,z2)

 (x1,y1,z1)

Figure 6.13: Graphical Representation when a User Exceeds Y_end Position

 0.0=F (6.15)

When the user exceeds the Y_end position, all forces are made null as shown in

equation 6.15. This enables the user to easily get out of the trajectory and back to the rest

position. The Y_end point is represented by a dotted line at the upper end of the

trajectory path.

Y_start

Y_end

65

6.3 Three Dimensional Force Scaling

6.3.1 Description

The graphical scene of the multidimensional trajectory path is similar to the 2D

trajectory path. Here the user travels in X, Y and Z directions in 3D space.

Figure 6.14: UI with End-Effector and a Three Dimensional Trajectory Path

The multidimensional assistance concept was developed in a haptic and OpenGL

environment as shown in the above figure. The room environment was simulated

graphically using OpenGL commands. The walls were drawn in a way so that the user

felt he or she was moving in the corner of a room. The visual enhancement helped in

assisting users to respond to assistive forces in a better way. The trajectory path was

drawn in this environment with the end coordinates varying in all three directions of X, Y

and Z. The user thus would travel in a 3D space when moving on this trajectory path. The

X

Z
Y

A

B

66

two rectangular blocks A, B were drawn to give the user a better sense of judgment of the

start and end points of the trajectory line.

6.3.2 Method

This concept focused on providing assistance to the user for bidirectional

movement on the trajectory. The first rectangular region was denoted as A and the second

one was represented as B. If the user was near A and was proceeding to move towards the

target B, then scaled forces were provided in X, Y and Z directions to push the user

smoothly towards B. Similarly, when the user wanted to return to A from B, appropriate

forces were provided to assist movement in the reverse direction. In the next page, there

is a flowchart presenting the logic behind the 3D assistive concept.

67

Figure 6.15: Flowchart Describing Assistive Functions for Three Dimensional Trajectory

Traversal

EffectorPos,TrajStart,
TrajEnd,

PrevPos,Dist

If
TrajStart[0]<EffectorPo

s[0]<TrajEnd[0]

If
TrajStart[1]<EffectorPos

[1]< TrajEnd [1]

If ((TrajStart [2]-LimitZ)
<EffectorPos[2]<(

TrajStart[2]+LimitZ))

If
((Effector[0]>PrevPos[0])

&(EffectorPos[1]>
PrevPos[1]))

DisteScaleF −= * DisteScaleF −−= *

End

Yes

Yes

No

No

No

No

Yes

68

6.3.2.1 Terminology for 3D Force Scaling

EffectorPos is a vector which represents the position of the Phantom end-effector

in the haptic environment. EffectorPos [0], EffectorPos [1], EffectorPos [2] are the

components of the vector in the X, Y, and Z directions respectively. TrajStart is a vector

which represents the starting point of the three dimensional trajectory path. TrajStart [0],

TrajStart [1], TrajStart [2] are the components of the vector in the X, Y, and Z directions

respectively. TrajEnd is a vector which represents the end point of the three dimensional

trajectory path. TrajEnd [0], TrajEnd [1], TrajEnd [2] are the components of the vector in

the X, Y and Z directions respectively. PrevPos is a vector which represents the previous

position of the haptic end -effector for any given current effector position. PrevPos [0],

PrevPos [1], PrevPos [2] are the components of the vector in the X, Y and Z directions

respectively. LimitZ is the range of Z values for which the assistive forces should be

active. This limit in Z is parallel to the Z axis in OpenGL. Dist is the distance between the

end-effector position and the closest point on the trajectory.

6.3.2.2 Explanation of Flow Chart

The first step was to check for the position of the end-effector. It was made sure

that the effector fell within an agreeable range of X, Y and Z coordinates in the 3D space.

If any of these conditions were not satisfied, then the program terminated. Once the user

controlled effector sphere was within the assistance range, and going from A to B, the

following force pushed him or her ahead.

69

The force computed here was based on the Exponential Law where:

 DistaeKF 1*1 −= (6.16)

 DistaeKF 2*2 −= (6.17)

 DistaeKF 3*3 −= (6.18)

Where:

• F1, F2, F3 = Force Components in X, Y and Z Directions

• 3,2,1 aaa = Scaling Factors in X, Y and Z Directions

• Dist = Distance between the User Position and the Closest Point on the

 Trajectory

If the user was moving from B to A, then a force in the opposite direction was

implemented.

 DistaeKF 1*1 −−= (6.19)

 DistaeKF 2*2 −−= (6.20)

 DistaeKF 3*3 −−= (6.21)

The user just had to pull out of the trajectory to get out of the force region.

6.4 User Controlled Velocity Based Force Scaling

6.4.1 Experimental Set-Up

The user-controlled velocity based force scaling has a similar environmental set

up as that of the previous experiment.

70

Figure 6.16: User Controlled Velocity Based Force Scaling

6.4.2 Method

The user had to move the Phantom controlled end-effector sphere towards the

starting point on the trajectory and move on the line towards the target point or end of the

trajectory as shown in Figure 6.16. The force algorithm applied here is similar in concept

to the logic applied in the trajectory approach and traversal experiment. The only

difference here would be the addition of extra set of code statements to decide the scaling

value in the force computation algorithm. The C++ application is designed in a way that

the user’s haptic velocity can be determined as real time data and displayed

simultaneously. The command to determine the user controlled end-effector velocity is

given by the following command which falls in the next page.

\

X

Z

Y

71

hdGetDoublev(HD_CURRENT_VELOCITY,vel);

Then the software velocity limit of the Phantom was determined using the following

command,

hdGetDoublev(HD_SOFTWARE_VELOCITY_LIMIT,Vmax)

Then the user velocity is compared to maximum allowable velocity to determine the level

of scaling that would suit the user motion best. The application of user controlled force

scaling enables the user to have more control and smoother motion in a haptic process.

72

7. Experiments Based on Fitts’ Task

These experiments are performed to validate the data which may indicate the

significance of the assistance concepts applied here. These experiments are more like

preliminary experiments which gives an indication of the versatility of application rather

than restoring a person’s function. This chapter describes two types of experimental

designs based on the Fitts’ Tasks. The experimental designs are:

• Validation of Assistance Concept

• Position Accuracy

The sample population consists of 8 young, healthy subjects. They were divided

into two groups, A and B. One group was given training with assistance, the other group

was given rehabilitative training without assistance. The validation of the assistance

concept experiment is designed to indicate that the Phantom based rehabilitation training

with assistance helps the user to learn the task faster compared to those who were not

given training with assistance. In the second experiment, we verify the accuracy of two of

the eight volunteers. Among the two, one of them was from Group A, and the other from

Group B. Now, this chapter talks in detail about the Fitts’ experimental setup.

73

7.1 Experimental Set-Up

7.1.1 Graphical User Interface

The C++ GUI consists of a list of different types of assistive options such as, user

controlled velocity based force scaling, multidimensional force scaling and the Fitts’

Task experiments in 3D. The interface is basically a popup menuhandler which is

activated on the right click of the mouse on an OpenGL window. The interface is

displayed on the screen as shown in the Figure 7.1.

Figure 7.1: Graphical User Interface

Fitts’ X-dir constraint
Fitts’ Y-dir constraint
Fitts’ Z-dir constraint
Linear constraint motion in 3D
Velocity scaling assistance
No assistance provided
Quit

74

We chose to perform the Fitts’ experiment which gives a meaningful insight into

the speed and accuracy of human motion. The following section describes two

experiments which were designed based on the Fitts’ Law.

7.1.2 Validation of Assistance Concept

 In this experiment, emphasis was laid on the observed experimental execution

time when assistance was provided compared to the case when no assistance was

provided. The sample population consisted of eight normal, healthy young people, who

fell within an age group of 20-30 years. They were divided in an unbiased way into two

groups, Group A and Group B. All the members of Group A and Group B were asked to

perform Fitts’ Task X, Fitts’ Task Y, and Fitts’ Task Z for a total sum of seven trials in

each direction for a total of 21 trials. Thus, each volunteer performed a total of 63 trials.

The time was noted for a total of 63 trials. The observed time for all eight volunteers was

recorded. Each of the three experiments was performed for three different (A/B) ratios.

The (A/B) ratio is the ratio of the distance between the two targets and the width of each

target. The Fitts’ Law essentially states that the time taken to move from one target to

another can be described as a function of distance between the two targets and the width

of each target.

7.1.3 Baseline Time Values

In the first trial, all the eight volunteers were asked to perform the Fitts’

experiment in all directions for three different A/B values without any assistance. The

75

time recorded here was noted as the baseline value for each. In the second trial, all the

experiments were repeated with assistance provided to each of them. The time recorded

here was observed as baseline time value with assistance for each. These time values

were designated as it .

7.1.4 Fitts’ Training

Next, the eight volunteers were divided into groups, Group A and Group B. In the

next three trials, Group A was given assistance in executing the same set of tasks again.

Group B was not provided assistance in executing the same set of tasks. This is called the

training stage where, Group B was given training in Fitts’ Task with assistance and

Group A was given training in Fitts’ Task without assistance, and the average of

observed time for both the groups was recorded separately.

7.1.5 Final Task

The last trial involved performing the same set of experiments without any

assistance by all the volunteers in Group A and Group B. Again, all the volunteers were

asked to perform the same set of experiments with assistance. The time recorded here for

each one of the volunteers was designated as ft .

DeltaT= fi tt − (7.1)

76

Where:

• it = Time taken at Baseline Task

• ft =Time taken at the Final Task

The average Delta T was calculated as shown above for each of the eight volunteers in all

three directions of X, Y and Z.

7.1.6 Determination of Position Accuracy

This experiment involves just two subjects who were a part of the previous

experiment. The first subject performed the Fitts’ experiment without assistance for six

trials in X, Y and Z directions. The second subject repeated the same experiments but

with assistance.

In the next type of position accuracy experiment, time was kept constant and the

haptic position data was recorded and plotted for both the subjects. In the last experiment

in position accuracy, the haptic position of the subjects was compared to themselves

before and after training. Here is a brief description of the Fitts’ X, Y and Z Tasks.

77

7.2 Fitts’ Task X-Direction

Figure 7.2: Schematic Representation of Fitts’ Task X

The Fitts’ Task X was the first experiment conducted where the range of motion

was constrained in the X direction alone in 3D virtual space. This is clearly depicted in

Figure 7.2. The rectangular boxes shown in the above figure represented the goal points

at the either end of the path. The blue sphere represented the end-effector of the Phantom

which was user controlled. The scene consisted of two walls and a floor. This gave a

realistic environment to the user. The user felt as if, he or she was moving a virtual object

in a 3D room. The visual feedback has been proved to help the user perform better in

virtual space. The distance and goal region width measurements were made. The distance

between the centre of the two goal regions D1 and D2 was represented by A. The width

of both D1 and D2 was made equal to each other and was represented by B. The Fitts’

Task in the X direction was conducted as follows. The user was first asked to haptically

X

Z

D1 D2

Y

78

move towards the midpoint of D1. The task involved the user to move from mid point of

D1 to the midpoint of D2 and trace the path back from midpoint of D2 to midpoint of D1

without any stopping. About three different values of A/B ratio was computed. While

Group A was provided with no kind of assistance, the Group B was given force

assistance in performing the Fitts’ Task X. For each A/B ratio, the time taken to move

from D1 centre to D2 centre and back again was measured using a stop watch. The time

values are discussed in a later chapter. Meanwhile the average Delta T values were also

computed for each of the eight participants and compared among Group A and Group B

members using a histogram chart. This chart will be explained in the results chapter. The

second experiment involving position accuracy was further classified into two types:

• Non Constant Time

• Constant Time

7.3 Fitts’ Task Y-Direction

The Fitts’ Task Y allowed the user to travel in the Y direction alone, as shown in

Figure 7.3. The environmental set up for the task was the same as that of the previous

experiment. The walls of the room were simulated haptically as before. The rectangular

goal regions were displaced in the Y direction. D1 is the rectangular target which was

drawn in the lower part of the trajectory and D2, at the upper end of the trajectory. The

user was asked to perform the same task of moving from D1 to D2 and vice versa.

79

Figure 7.3: Schematic Representation of Fitts’ Task Y

While Group A was not given any assistance while performing this experiment,

Group B was provided assistance based on the logic explained in the previous chapter.

The average Delta T was also computed here as previously described and plotted in the

same histogram for all the eight subjects. The determination of position accuracy was

performed for Fitts’ Task Y also. The real time position values of the two subjects were

recorded haptically and compared to the trajectory points in the Y direction from D1 to

D2. The position accuracy experiments were also performed in Fitts’ Y.

X

Y
Z

D1

D2

80

7.4 Fitts’ Task Z-Direction

Figure 7.4: Schematic Representation of Fitts’ Task Z before OpenGL Camera Rotation

Figure 7.5: Schematic Representation of Fitts’ Task Z after OpenGL Camera Rotation

The Fitts’ Task Z consists of a trajectory drawn in the Z axis as shown in Figure

7.4. The OpenGL camera location is changed and rotated at an angle such that viewer

X

Y

Z

81

looks at the Z axis from a side view in Figure 7.5. This is because, the Z axis is located

perpendicular to the OpenGL screen and hence the computer’s screen for the default

OpenGL camera settings. The camera was thus rotated to visually map the Z axis of the

OpenGL screen to the real world Z axis of the Phantom. The environmental set up for the

task was the same as that of the previous experiment. The walls of the room were

simulated haptically as before. The rectangular boxes were simulated at the two ends of

the trajectory path. The lower and upper rectangular boxes were denoted as D1 and D2

respectively. The time taken for the user to move from D1 to D2 and back to D1 was

noted as T3. The experiment was repeated for all the eight participants in moving from

D1 to D2 and from D2 to D1. The assistance concept was provided depending on which

group they fell into. The theoretical time was calculated using the Fitts’ Law. The Delta T

values were calculated as described in the previous experiments and added to the

histogram. Meanwhile, the position accuracy test was also performed in the Z direction

for the two subjects. Also, the haptic position data was compared to the trajectory

position data both before and after training for both the subjects. The position accuracy

experiments will be explained in the next chapter along with detailed graphs and tables.

82

8. Results

 The data obtained from the previous mentioned experiments are preliminary data

and provide a basis of information for further testing. These results indicate the advantage

of having this C++ based platform for future rehabilitation applications. The data

presented in this chapter are indications of the effectiveness of the assistance concepts

and intends to validate the assistance concepts. In the first experiment, the following

observations were made:

• The performance of assistance functions with respect to the C++ application

was verified.

• In the second experiment the position accuracy was tested to see how closely

the subjects traveled near the trajectory path. The position accuracy is meanwhile

divided into two types.

• In this chapter, we analyze and compare the performance of eight subjects for

the previously mentioned experimental procedures.

• Also, the reliability of the C++ application is tested here.

• The experiments were performed to confirm the versatility of the system, in

terms of the effectiveness of the assist functions, and the benefit of applying

multithreading concepts.

83

The intention of this research is to show how the PC based system can be used as

a rehabilitation tool in future. The following is a detailed explanation about the

experimental framework. The Group A and Group B members first perform 18 trials as a

part of their baseline task. Here, all of them perform Fitts’ X, Y and Z once with

assistance and once without assistance. The next phase is the experimental phase where

Group A performs 27 trials without assistance and Group B performs the same 27 trials

with assistance. The last part is the Final task phase where all subjects again perform

Fitts’ X, Y and Z once with assistance and once without assistance. This phase is

important because it determines the actual performance of the subjects after their training

sessions. The Fitts’ tasks can be described as follows:

•

Group A (For one A/B) (Without Assistance
Training)
• Baseline Task

• Fitts’ X: wa, woa :2 trials

• Fitts’ Y: wa, woa :2 trials

• Fitts’ Z: wa, woa :2 trials

• Fitts’ Training

• Fitts’ X: woa: 3 trials

• Fitts’ Y: woa :3 trials

• Fitts’ Z: woa: 3 trials

 Group B (For One A/B) (With Assistance
 Training)
• Baseline Task

• Fitts’ X: wa, woa :2 trials

• Fitts’ Y: wa, woa :2 trials

• Fitts’ Z: wa, woa :2 trials

• Fitts’ Training

• Fitts’ X: wa: 3 trials

• Fitts’ Y: wa: 3 trials

• Fitts’ Z: wa: 3 trials

84

• Final Task

• Fitts’ X: woa, wa : 2 trials

• Fitts’ Y: woa, wa : 2 trials

• Fitts’ Z: woa, wa : 2 trials

Total No of Trials for 1(A/B): 21 trials

Total No of Trials for 3(A/B): 63 trials

Delta T = where Time Taken at Initial Task,

 Time Taken at Final Task

Three A/B values = 8.25, 7.75,7

Hence every subject performed 63 trials including Fitts’ X, Y and Z.

8.1 Validation of Assistance Concept

The eight subjects were divided into two groups A and B with four members in

each group. All the subjects in Group A were provided training without assistance

whereas all the subjects in Group B were provided training with assistive concepts. Each

of these eight subjects performed a total of 63 trials in Fitts’ X, Y and Z directions. The

63 trials were divided into 21 for the Fitts’ X, Y and Z each. These 21 trials were further

divided into 7 trials for three different (A/B) ratios each. In each of these 7 trials, the first

two were called the baseline trial. Here all the subjects irrespective of their groups were

asked to perform the experiment once with and without assistance. Then the next three

trials were called the Fitts’ training session where Group A was given training without

assistance and Group B was given training with assistance. The last two trials aptly called

the final task is a repetition of the baseline task with the only difference being that it is

fi tt − =it

=ft

85

performed at the end of the training session. All these experiments are timed using a

stopwatch. Now, the time difference between the baseline and final tasks was noted down

as Delta time for Fitts’ X, Y, Z separately for each of the subjects. Then, the average

Delta time values in Group A for Fitts’ X, Y, Z were determined separately. This was

again repeated for Group B. The higher the Delta time value, the shorter the execution

time at the end of the training session, and hence better performance in terms of speed.

Group B was expected to show higher Delta time values signifying that they moved faster

for the same number of training trials compared to Group A. For three different (A/B)

ratios, the average Delta time values are tabulated as shown below. The average time

values are determined separately for Fitts’ X, Y and Z. Table 8.1 displays the Delta time

value between the baseline and final task when executed without any assistance.

Table 8.1: Comparison of Average Delta Time Values when Performed without Any
Assistance for Group A and Group B

 Group A (Average Delta Time WOA) Group B(Average Delta Time WOA)

A/B Fitts’ X Fitts’ Y Fitts’ Z Fitts’ X Fitts’ Y Fitts’ Z

165/20 0.49975 -1.272 2.2815 1.3405 1.252 1.34675

155/20 -0.75025 0.095 0.81835 0.4375 0.637 1.4505

140/20 -0.50425 0.47575 0.5145 0.62675 0.68525 0.6565

The Table 8.2 displays the average Delta time (baseline-final) values when performed

with assistance for Group A and Group B.

86

Table 8.2: Comparison of Average Delta Time Values with Assistance for Group A and
Group B

 Group A(Average Delta Time(WA) Group B(Average Delta Time WOA)

A/B Fitts’ X Fitts’ Y Fitts’ Z Fitts’ X Fitts’ Y Fitts’ Z

165/20 0.44125 -0.46475 1.492 0.612 0.69475 1.130667

155/20 0.07275 0.567 0.06045 0.118 0.1775 0.495775

140/20 -0.05063 0.421375 0.6175 0.22825 0.2365 0.229

From Table 8.1, the average Delta time values (without any assistance) of all the three

(A/B) ratios are tabulated below:

Table 8.3: Comparison of Average Delta Execution Time when Performed without
Assistance

Group A

Group B

Fitts’ X

Fitts’ Y

Fitts’ Z

Fitts’ X

Fitts’ Y

Fitts’ Z

-0.0217 0.084242 1.1585 0.651908 0.856975 1.151167

87

A bar chart depicting the above tabulated values is shown below. The values are taken

from Table 8.3.

Fitts’ Task

Figure 8.1: Comparison of Average Delta (Baseline-Final) Execution Time when

Performed without Assistance

In Figure 8.1, we can see that the average Delta time value is greater for all the

subjects in Group B compared to Group A in Fitts’ X and Fitts’ Y. All the volunteers in

Group B received training with assistance. The subjects in Group A received training

without assistance. When the final task after training was executed without assistance for

all the subjects, Group B took less time to perform the same task except for in the Fitts’ Z

Task. This is because the subjects in Group B trained with assistance, improved their

speed and accuracy in less time compared to Group A. The exception in the Fitts’ Z

direction can be explained by the visual perception error. The Phantom Z direction is

visually mapped as the X axis on the haptic screen.

Average
Delta
Time
in
Seconds

88

The next analysis involves the comparison of average Delta (baseline-final)

execution time for tasks performed with assistance by Group A to the Fitts’ Tasks

performed by Group B without assistance. This is a very interesting data analysis because

we are going to compare the performance of Group A with assistance after training

versus performance of Group B without assistance after training.

Here, the Delta time is defined as:

• Delta time (Group A) = Average of Baseline Time Value (with Assistance)

Final (with Assistance) for Fitts’ X, Y, Z Each.

• Delta time (Group B) = Average of Baseline Time Value (without Assistance)

- Final (without Assistance) for Fitts’ X, Y, Z Each.

From Table 8.4, the average Delta time values (with assistance) of all the three

(A/B) ratios are tabulated below:

Table 8.4: Comparison of Average Delta Execution Time when Group A Performed
(WA)

and Group B (WOA)

Group A(WA)

Group B(WOA)

Fitts’ X

Fitts’ Y

Fitts’ Z

Fitts’ X

Fitts’ Y

Fitts’ Z

0.300709 -0.04687 0.97685 0.651908 0.856975 1.151167

89

The following is a histogram representation of the above data,

Fitts’ Task

Figure 8.2: Comparison of Average Delta (Baseline-Final) Execution Time when

Performed with Assistance

The volunteers in Group B took less time to perform the Fitts’ Task without

assistance at the end of their training. It is reminded here that the training session

involved inclusion of assistance function. The volunteers in Group A meanwhile, were

given assistance once before the training and once after the training. Here again, they

received training without assistance. Now from the above histogram chart, we learn that

the Group B members when given no assistance perform better than Group A (given

assistance) at the end of their respective training sessions.

The performance of Group B subjects improves in a way that even when you

remove assistance to them at the end of their training, they perform better than Group A

when given assistance after training. Though the results are preliminary, this data trend

shows that repetitive task helps the subjects to develop speed, which may lead to

improved muscle memory sooner than expected. The only exception was found in Fitts’

Average
Delta
Time
in
Seconds

90

Task Z where the average Delta time values were almost equal to each other. This could

be attributed to the visual perception error discussed previously.

Next we compare the average Delta time values at every (A/B) for Fitts’ X, Y and

Z. The analysis of performance in Group A and Group B at every (A/B) ratio with

assistance in Fitts’ X, Y and Z is described here:

Figure 8.3: Comparison of Average Delta Time with Assistance in Fitts’ X

As shown in Figure 8.3, the average Delta time increases for small (A/B) ratio.

This Delta time value is the difference between the baseline and final time taken to

execute the Fitts’ Task with assistance. Now, the speed reduces in shorter distances

because the subject tries not to overshoot the target location and hence moves slowly.

Group B who received training with assistance displayed greater average Delta time at

smaller (A/B) points indicating that they travel faster compared to Group A. Overall,

91

Group B displays a greater Delta time value compared to Group A for all the three

Log(A/B) ratios. The slope and intercept values for the above experiment were -3.61578

and 4.4.3138 respectively. The coefficient of significance for the above task was 0.48572.

Figure 8.3 is a sample graph in Fitts’ X and the Fitts’ graphs in Y and Z directions are

given in Appendix B.

The following graphs display useful information with regards to the effectiveness

of Fitts’ Task over time in a wide range of (A/B) ratios. The average Delta time taken by

Group A (baseline-final) with assistance is compared with average Delta time taken by

Group B (baseline-final) without assistance for all three (A/B) ratios. The Group B

subjects performed better at smaller (A/B) ratios compared to Group A.

In Fitts’ Y, the Group B subjects performed better at larger values of (A/B). The

lesser increase in average Delta time for smaller values of (A/B) could be attributed to the

error in human accuracy. Here is the performance of subjects in Group B.

92

Figure 8.4: Comparison of Average Delta (Baseline–Final) Time between Group A
(with Assistance) and Group B (without Assistance) in Fitts’ Y

All these results indicate that, the subjects in Group B who received training with

assistance performed better when the assistance was removed at the final session. They

displayed greater average Delta time or shorter execution time as compared to Group A

whose subjects received assistance at the end of their training session. The Group A

members received training without any assistance during their training session.

The intercept and slope parameters are computed for Fitts’ X, Y and Z

experiments from the observed execution times. The observed execution times are fit to

straight line in order to get the regression parameters. Now using these constants, the

theoretical time values are calculated. The observed and theoretical time values were

found to be almost equal in magnitude. Then, the theoretical time values were plotted and

fit to get the experimental constants. The error percentage in βα , for observed versus

the theoretical values was found to fall within 20-30%.

93

8.2 Determination of Position Accuracy

The position accuracy experiment involves the tracing of the haptic position of the

user with the user defined trajectory points to check how he or she followed the path

between the two goal points.

8.2.1 Comparison of Fitts’ with and without Assistance or without Time Constant

This experiment involved two healthy subjects who were asked to move from D1

to D2 in the Fitts’ Task X, Y and Z respectively. Let S1 denote the subject who was not

given assistive force during task execution and let S2 denote the subject who was given

assistive force during execution of each of the above tasks. Each of these subjects were

not told if they were given assistance or not until they actually performed the task. Both

S1 and S2 received rehabilitation training with a total of 63 trials each. While S1 received

training without assistance, S2 received training with assistance. The haptic position data

for both the subjects was recorded in a text file in the C++ application. This data was

compared to the corresponding position data points on the trajectory implemented in the

Fitts’ Task. The haptic real time data position values are compared to the trajectory path

values for both the subjects. Subject S2 was given assistance to perform the experiment

in Fitts’ X, Y and Z directions whereas subject S1 was not given any assistance to

perform the same set of experiments. The real time haptic position and trajectory path

value comparisons for the Fitts’ Task in all three directions are shown below graphically.

First, let’s see the performance of S1 and S2 in Fitts’ X.

94

Figure 8.5: Trajectory Path Position Values Versus Haptic Real Time Data Positions in

Fitts’ X

The trajectory path in the Fitts’ X Task is represented by the red dotted lines as

shown in the Figure 8.5. While the green line represents the movement of the haptic

cursor controlled by subject S1, the blue line represents the position values of the haptic

cursor when controlled by subject S2. As seen in the above graph, subject S2 has

followed the trajectory path more closely than subject S1. S2 performed with a standard

deviation of only 1.008 while S1 showed a higher standard deviation of 1.462. The scaled

forces acting in the X direction of motion accelerate the user motion on the desired

direction of motion. Exponential forces based on the distance between the starting

position and target is applied on the user controlled sphere. The scaling factor is small at

the ends of the trajectory compared to those applied at the centre of the trajectory. This is

done so that no kind of buzzing noise is generated. Buzzing may be caused by high

magnitude forces acting in small distance segments.

S1

95

Figure 8.6: Trajectory Path Position Versus Haptic Real Time Data Positions in Fitts’ Y

The Fitts’ Task in Y direction was comparatively easier for both the subjects.

Even then, subject S2 followed the trajectory path in Y direction more closely when

compared to subject S1 as shown in Figure 8.6. The red line represents the original

trajectory path with the blue line and green line representing subject S2 and S1

respectively. S2 traced the trajectory path with a standard deviation of 0.187, and S1

displayed a standard deviation of 1.468.

96

Figure 8.7: Trajectory Path Position Versus Haptic Real Time Data Positions in Fitts’ Z

The Fitts’ Task in the Z direction of motion was observed to be the most difficult

task for all the volunteers. While subject S1 found it very difficult to move in the preset

trajectory path in the Z direction without any assistance, subject S2 was guided along the

entire trajectory path by the applied force algorithm effectively. This can be very clearly

seen in Figure 8.7. While S1 showed a standard deviation of 18.88, S2 traced the

trajectory path with a standard deviation of 4.52. The physical limitations of the Phantom

here in the Z direction are effectively overcome by the forces generated in the Z

direction.

These results show that the C++ application provides an effective force feedback

for the different assistance tasks. This shows the system’s reliability in terms of the

number of times the force feedback has been provided. Moreover, the real-time aspect of

the system allows the user’s to get immediate force feedback. Moreover, it is seen that

the logic of assistance functions in X, Y and Z directions works fine.

97

8.2.2 Comparison of Accuracy (without Assistance) with Execution Time Kept

Constant

In this experiment, a comparison is made between the same two subjects S1 and

S2 from Group A and Group B respectively. These are the same groups that we gave

training in Fitts’ Task previously. These two subjects S1 and S2 were given more training

because the performance in Fitts’ Task was said to improve over time. The more the

number of trials, the better the learning curve while performing Fitts’ Task. Hence, we

are going to look at the position accuracy of S1 and S2. It is reminded here that, Group A

received training without assistance and Group B received training with assistance.

8.2.2.1 Experimental Procedure

 Both S1 and S2 had already completed 63 trials each. Now, they agreed to come

again for two more sessions to perform 126 trials more. They completed their trials over

three days. After their training sessions each, both subjects S1 and S2 had acquired

training skills in Fitts’ X, Y and Z according to their training type. At the end of training,

S1 and S2 were made to perform the Fitts’ X, Y and Z in three different distance ranges.

The only difference in the experiment procedure was that, time was kept constant. The

subjects were asked to move as much as they could in Fitts’ X, Y and Z for two seconds.

Both the subjects were not given any assistance during these experiments. Their haptic

position data in X, Y and Z were recorded and plotted against the trajectory data in Fitts’

X, Y and Z respectively. Here is the set of graphs representing the position accuracy of

98

S2 while performing the Fitts’ in X direction without assistance. The subject S2 had to

move without assistance and cover as much

 as possible in 2 seconds in three ranges of distances. The time was kept constant to

compare accuracy between the subjects. As seen in Figure 8.8, 8.9 and 8.10, S2 displayed

good accuracy for all the three distance ranges.

Figure 8.8 : Position Accuracy of Subject S2 and S1 in Fitts’ X, Smaller Distance

Figure 8.9: Position Accuracy of Subject S2 and S1 in Fitts’ X, Medium Distance

-60 -40 -20 0 20 40
Distance in X axis in mm

20
15

10
5

0
-
5-
10
-
15

Dist
in y
axis
in
mm

-90 -80 - 70 -60 -50 -40 -30 -20
 Distance in X axis in mm

 20
 15

 10
 5

 0
 -5
-10
-15

-20

 -60 -40 -20 0 20 40 60
Distance in X axis in mm

20
15
10

 5

 0
 -5

-10
-15
-20

Dist
in y
axis
in
mm

-90 -80 -70 - 60 -50 - 40 -30 -20 -10
Distance in X axis in mm

20
15
10

 5

 0
-5

-10

-15

S2 S1

S2 S1

Dist
in y
axis
in
mm

Dist
in y
axis
in
mm

99

Figure 8.10 : Position Accuracy of Subject S2 and S1 in Fitts’ X, Larger Distance

In Figure 8.8, while S2 showed a standard deviation value of 1.008, S1 had a

standard deviation of 4.007. In Figure 8.9 it is seen that, for medium distance S2 had a

standard deviation of 0.97666 while S1 had a standard deviation of 2.005. In Figure 8.10,

at a larger distance, S2 travels with a standard deviation of 1.463 whereas S1 showed a

greater deviation of 29.9. When we compare the graphs for S1 and S2, it becomes

obvious that, accuracy of S2 was as good as and in fact, better in the third distance, when

compared to S1. This is attributed by the fact that S2 traveled greater distance when

compared to S1 in two seconds. In Figure 8.8, S1 shows less accuracy because the subject

tries to cover a greater distance in two seconds. This causes S1 to travel faster

compromising on accuracy. Subject S2 performed with better accuracy in this

distance.This shows that S2 improved with training session with Fitts’ compared to S1

who did not receive any training with Fitts’. The Fitts’ improves the performance of the

user on a longer period of time.

-80 -60 -40 -20 0 20 30
Distance in X axis in mm

 20

 15

10
 5
 0
-5
-10
-15
-20

Dist
in
Y
axis
in
mm

-60 -40 -20 0 20 40 60 80
Distance in X axis in mm

20
15
10
 5
 0

 -5
-10
-15
-20

Dist
 in
Y
axis
in
mm

S2 S1

100

The subject S2 traveled with a standard deviation of 1.0562 whereas subject S1

showed a standard deviation of 0.2289. In Figure 8.9, the standard deviations are less for

S1 and S2 indicating that both performed better at a medium distance. The standard

deviation values were 1.056 and 0.187 for S2 and S1 respectively. Here subject S1

showed better accuracy compared to S2 but covered less distance in the same time as

compared to S2. At a larger distance, S2 displayed a standard deviation of 1.4653 with S1

moving much more away from the trajectory showed a higher standard deviation value of

16.79. Subject S2 obviously covered greater distance in two seconds and also showed

accuracy almost as equal to S1. S2 displayed better accuracy in the larger distance range

as shown in Figure 8.10 and decent accuracy for the other two distances. The results were

similar for Fitts’ Y and Z experiments. The corresponding graphs are given in Appendix

B.

8.2.3 Position Accuracy Before and After Training for S1 and S2

The haptic position data for both S1 and S2 was recorded both before and after

the training session. The subjects were not provided any kind of assistance during the

recording of this haptic position. The haptic position data before the training session is

the position data corresponding to the baseline time value when measured without any

assistance. The haptic position data after the training session is the position data

corresponding to the final task time value also measured without any assistance.

Here is a comparison of the haptic position data of S1 before and after training

plotted against the trajectory data points in Fitts’ X, Fitts’ Y and Fitts’ Z respectively.

101

Figure 8.11: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’
X

While the green line represents the haptic position data after training, the blue line

denotes the haptic position data before training. As evident in the Figure 8.11, the subject

S1 who received training without assistance did perform better after the training. The

subject S2 traveled closer to the trajectory path compared to S1 after training. S1 showed

a standard deviation of 4.008 which reduced to 2.003 after training. S2 whereas,

improved its standard deviation from 3.521 to 1.09. This means that subject S2 traveled

almost close to the trajectory path compared to his counterpart S1 after their respective

training sessions. This is because subject S2 moved with greater accuracy after the

training with assistance compared to subject S1 who received training without assistance.

The next set of graphs depicts the performance of S1 and S2 in Fitts’ Y Task.

-60 -40 - 20 0 20 40 60
Distance in X axis in mm

20

15
10
5
0
5

10
15
20

Dist
in
Y
axis
in
mm

12 11 10 9 8 7 6 4 3 2 1
Distance in X axis in mm

 4
 3
 2
 1
 0
 -1
 -2
 -3

 -4

-5

Dist
in
Y
axis
in
mm

102

Figure 8.12: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’
Y

In Figure 8.12, the green line represents the movement after the training sessions

and the blue one represents the movement before any training session and without any

assistance. Let us take a look at the performance of subject S2 and compare to S1 and S2.

As shown in Figure 8.12, both the subjects’ showed similar improvement both before and

after performance. But, it is observed that, subject S2 still showed a tendency to move a

accurately on the trajectory path when compared to subject S1. While the standard

deviation of S2 improved from 1.056 to 0.187, S1 showed an improvement in standard

deviation from 16.79 to 1.553 after training. Well, both S1 and S2 performed better after

training here compared to Fitts’ X, which may be due to the ease with which the Phantom

imitates motion in the Y direction.

The Fitts’ Z is one of the most difficult tasks and it would be interesting to see if

subject S2 performed more accurately than S1. Here are the graphs for S1 and S2

recorded during the Fitts’ Z Task.

-20 -15 -10 -5 0 5 10 15 20

Distance in X axis in mm

 80

 60
 40

 20
 0

-20

-40
-60

Dist
 in
Y
axis
 in
mm

 -20 -15 -10 -5 0 5 10 15 20

Distance in X axis in mm

-20
-25

-30
-35
-40

-45
-50

-55
-60

Dist
 in
Y
axis
 in
mm

103

Figure 8.13: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’

Z

While the green line denotes the haptic position data for the subject after training,

the blue line presents the haptic position data before the training. Subject S1 did better as

seen in Figure 8.13 but was not as accurate as S2 in path following. While S2 showed a

standard deviation of 16.8 before training, the standard deviation value improved to 1.778

after training. Meanwhile, S1 showed a standard deviation of 18.88 before training and

6.99 after training. Hence, while position accuracy of S1 improved after training in the Z

direction, it was not as good as the position tracking of S2. These graphs show the

different ways to compare and analyze data. Hence this system provides an ideal platform

for data analysis for any kind of haptic based rehabilitation tasks which could be added

on later. Also, though these data are preliminary they show the potential of this system as

a therapy tool.

-50 -40 -20 0 20 40 60
Distance in Y axis in mm

80
70

60
50
40

30

20

Dist
 in
Z
axis
in
mm

-25 -20 -15 -10 -5 0 5 10 15 20 25
Distance in Y axis in mm

 60
 50
 40
 30
 20
 10
 0
 -10
 -20

-30

S2 S1

Dist
 in
Z
axis
in
mm

104

8.2.3.1 Standard Deviation of S1 and S2

It is reminded that subjects S1 and S2 who had performed position accuracy

experiments had performed a total of 189 trials each. Excluding the baseline and final

experiment, both S1 and S2 performed a total of 27 trials of training each. This means S1

performed 9 trials without assistance in Fitts’ X, Y and Z each, while S2 performed 9

trials with assistance in Fitts’ X, Y and Z directions each. The average time value of these

9 trials was determined and the standard deviation of the sample set was determined for

Fitts’ X, Y and Z. The values are tabulated below.

Table 8.5: Standard Deviation of Subject S2 who Received Training with Assistance

 Fitts’ X Fitts’ Y Fitts’ Z

 2.9621 4.1877 5.8033

 4.267 4.398 10.14533

 4.4087 4.032 9.0957

Standard Deviation 0.79746 0.1837 2.2655

105

Table 8.6: Standard Deviation of Subject S1 who Received Training without Assistance

 Fitts’ X Fitts’ Y Fitts’ Z

 2.9621 4.1877 5.8033

 4.267 4.398 10.14533

 4.4087 4.032 9.0957

Standard Deviation 0.79746 0.1837 2.2655

The standard deviation values are low enough to show that the subjects were

consistent for all the trials that they performed. On a final note, task oriented repetitive

experiments may help in improving muscle skill and movement coordination [22] and

this project shows that task execution with assistive forces may help people improve their

speed and accuracy in task execution in a shorter period of time as compared to those

who received training without assistance. The preliminary results help for future analysis

in clinical studies.

106

9. Conclusions and Future Work

9.1 Conclusions

The following are indications of the data trend observed from performing the

predefined preliminary experiments. All these inferences basically validate the future use

of this haptic integrated C++ application for rehabilitation purposes. Here is a summary

of the inferences:

• Group B took less execution time compared to Group A subjects in Fitts’ X,

Fitts’ Y and Fitts’ Z Tasks (Delta T was computed for without assistance tasks).

• Group B (without assistance) Delta T was greater than Group A (with

assistance) Delta T. Group B learnt the task faster than Group A subjects.

• The position accuracy of Group B subject S2, improved considerably after

training and it was as good and in some cases, better than the improvement in

Group A subject S1 after training.

• The Group B subject S2, not only improved in position accuracy but also

improved in speed maintaining his or her accuracy. The Group A subject S1

showed good improvement in position accuracy but did not improve in speed.

107

• Improved user performance in smaller distances: Higher Delta T at smaller

distances in Fitts’ X.

• Position accuracy in Fitts’ Z improved after training for subject S2.

These inferences provide a platform for future research for making this

application a full fledged rehabilitation tool. These results indicate a positive response

with respect to the effectiveness of the assistance functions and the C++ code. The

system developed here also provides a good data collection tool for clinicians.

9.2 Future Work

The haptics based assistive technology provides an amazing scope in haptic

teleoperation and for use in rehabilitative applications. Here, is a list of suggested future

work based on the research work presented here.

9.2.1 3D Simulation of Pre-Set Activities of Daily Living Tasks

The simulated ADL tasks help people with hand disabilities in the following
ways:

• To Assist in any ADL task.

• To Rehabilitate the Hand as Well as the Arm.

• To Learn the Movements Involved in any Activities of Daily Living Task

before Actually Executing it.

The assistance concepts in this thesis could be applied to any type of Pre-Set ADL

tasks. One very good example is a Handwriting Expert software tool. This tool should

contain a Graphical User Interface consisting of all the alphabets from A-Z. The OpenGL

108

frame work could be used to simulate a path which traces the chosen alphabet. Then,

appropriate forces could be applied to the path so that the user is assisted while tracing

the path of the chosen alphabet. The user hence, learns to move the hand in the shape of

an alphabet and thus exercises the hand muscles required to write an alphabet. Thus,

electronic handwriting combined with assistive technology would enable users with hand

disabilities write coherently. Another good example is the maze, whose path consists of

twists and turns. The assistance concepts would be applied to a curvilinear path as against

to a straight line path which is described in this thesis. The user receives assistance in

tracing the non-linear path of the maze and to finally reach the goal at the end of the

maze. The Fitts’ Task could also be used to test the accuracy of the above two

experiments. The Fitts’ Law was applicable only in translational movements but studies

[40] have shown that this law could be extended to describe angular motion. Hence, be it

a linear or angular motion in a maze, it is going to be possible to verify the accuracy of

experiments set up in these non linear paths using the modified Fitts’ Law. It would be

interesting to design the peg in hole experiment in 3D virtual space like the Fitts’ task.

The experiment consists of a cylindrical peg which could be moved alternately between

the two holes [41]. The time taken by the user to insert a peg would be a reliable measure

of the subject’s skill and performance. The assistive concepts described in this project

would definitely reduce the time taken for this task when applied properly.

109

9.2.2 Addition to this Research Work

Now, we are going to take a look at the various suggestions that can improve this

research work. We validate the system performance, in terms of effective force feedback,

real time application and choice in terms of assistance functions. The experimental data

are still preliminary and here is a look at the various steps that may lead to proper clinical

testing using this haptic integrated C++ application. This project only shows a data trend,

and further work is required to conclude on the actual benefit of using this application for

people with disabilities. This is a set of preliminary experiments and it requires more

experiments to actually get conclusive data regarding human performance. Currently, this

application is treated as an indication of the effect of assistance functions on normal

healthy users. The experiments must be designed in a way such that there are more trials

and practice sessions than the current number of trials. This should be done to ensure that

enough practice is given before any conclusive evidence is made on user performance.

Moreover, we should have better linear regression Fitts’ with acceptable significance

values.

9.2.3 Robotic Teleoperation

Now, haptics also plays a very significant role in force feedback in robotic

teleoperation. The Phantom provides a user friendly interface device in robotic

teleoperation. They generate force feedback based on the distance between the robotic

end-effector and the target. The GUI and C++ haptic interface tool can be applied to

control a simulation of any degree of freedom robotic arm (simulation or real world) and

110

provide different types of assistive forces. These assistive concepts could be based on the

type of task involved during teleoperation. Thus, this project offers high scope for robotic

teleoperation and future upper arm rehabilitative applications. A good example of robotic

teleoperation is the control of a simulation of robotic arm called PUMA 560. This is a six

degree of freedom robotic arm and it has been used previously to help surgical

operations. It would be interesting to provide force assistance for this robotic arm while

performing surgical procedures.

111

References

[1] American Academy of Neurology, 1999, “Robots Improve Movement in Stroke
Patients, ” ScienceDaily. Retrieved October 31, 2007, from http://www.sciencedaily.com
/releases/1999/11/991112064413.html.

[2] Bamford, J. M., Sandercock, P., and Dennis, M., 1988, “A Prospective Study of
Acute Cerebrovascular Disease in the Community: The Oxfordshire Community Stroke
Project 1981-1986: Methodology, Demography, and Incident Cases of First Ever Stroke,”
J Neurol Neurosurg Psychiatry, pp. 1373-1380.

[3] Zesiewicz, T. A., and Hauser, 2001, “Phenomenology and Treatment of Tremor
Disorders,” Neurol Clin 2001, pp. 651-680.

[4] Smaga, S., M. D., 2003, ”Tremor,” American Family Physician, PVP-Vol. 68,
Number 8.

[5] Keates, S., Langdon, P., Clarkson, J., and Robinson, P., 2000, “Investigating the Use
of Force Feedback for Motion–Impaired Users,” 6th ERCIM Workshop, CNR-IROE,
Italy, pp. 25-26.

[6] Zhai, Buxton, W., 1996, ”The Influence of Muscle Groups on Performance of
Multiple-Degree-of-Freedom,” Input. In: Proceedings of CHI ‘96(Vancouver, Canada),
Addison Wesley, pp. 308-315.

[7] Fitts’, P. M., 1954, “The Information Capacity of the Human Motor System in
Controlling the Amplitude of Movement,” Journal of Experimental Psychology, pp. 381-
391.

[8] Pernalete, N., Yu, W., Dubey, R., and Moreno, W., 2002, ” Development of a Robotic
Haptic Interface to Assist the Performance of Vocational Tasks by People with
Disabilities,” Proceedings of the IEEE.

[9] Arsenault, R., and Ware, C., 2000, “Eye-Hand Co-ordination with Force Feedback,”
CHI Letters, PVP- Vol. 2, Issue 1, pp. 1-6.

112

[10] Morris, D., Hong, T., Barbagli, F., Chang, T., and Salisbury, K.,” Haptic Feedback
Enhances Force Skill Learning,” Department of Computer Science, Stanford University,
Haptic Interface Research Laboratory, Purdue University.

[11].Otaduy, A., and Lin, C.,”Introduction to Haptic Rendering,” Department of
Computer Science, University of North Carolina at Chapel Hill.

[12] Yu., W., Dubey, R., and Pernalete, N., 2004, ”Telemanipulation Enhancement
through User’s Motion Intention Recognition and Fixture Assistance,” International
Conference on Intelligent Robots and Systems, PVP- Vol. 3, pp. 2235-2240.

[13] Lovquist, E., and Dreifaldt, U., 2006, ”The Design of a Haptic Exercise for Post
Stroke Arm Rehabilitation,” Proceedings of the Sixth International Conference of
Disability, Virtual Reality and Assoc Tech, Denmark.

[14] Popescu1, V., Burdea1, G., Bouzit, M., Girone1, M., and Hentz, V., ” PC-based
Telerehabilitation System with Force Feedback,” ECE department, Rutgers University,
Division of Hand and Upper Extremity Surgery, Stanford University Medical Center.

[15] Leifer, L., 1981, ” Rehabilitation Robots,” Robotics Age, pp. 4 - 15.

[16] Roesler, H., Kuppers, H. J., and Schmalenbach, E., 1978, “The Medical Manipulator
and Its Adapted Environment: A System for the Rehabilitation of Severely
Handicapped,” in IRIA Proc.Int.Conf.Telemanipulators for the Physically Handicapped,
pp.73 - 77.

[17] Dallaway, J. L., and Jackson, R. D., 1992,” RAID a Vocational robotic workstation,”
in ICORR 92-Conference Proceedings.

[18] Hogan, N., Krebs, H. I., Chamnarong, J., Srikrishna, P., and Sharon, A., 1992, “
MIT-MANUS . A Workstation for Manual Therapy and Training,“ Neman Laboratory
for Biomechanics and Human Rehabilitation , MIT, Cambridge, MA, USA, June 12.

[19] Reinkensmeyer, D. J., Kahn, L. E., Averbuch, M., McKenna-Cole, A. N., Schmit, B.
D., and Rymer, S., 2000, ” Understanding and Treating Arm Movement Impairment after
Chronic Brain Injury: Progress with The ARM Guide,” Journal of Rehabilitation
Research and Development, PVP-Vol .37, pp. 653-662.

[20] Sugar, T. G., Koeneman, E. J., Herman, J. B., Schultz, R. S., Herring, D. E.,
Wanberg, J., Swenson, S., and Ward, P., 2007, “Design and Control of RUPERT, A
Device for Robotic Upper Extremity Repetitive Therapy,” IEEE Transactions on
Rehabilitation Engineering, PVP-Vol 15, Issue 3, pp 336-346.

113

[21] Nef, T., and Reiner, R., 2005, ”ARM-in Design of a Novel Arm Rehabilitation
Robot,” Proceedings of the 2005 IEEE, 9th International Conference on Rehabilitation
Robotics, Chicago, Illinois, USA.
[22] Schuyler, R. M., and Mahoney, R., 1995, ”Job Identification and Analysis for
Vocational Robotics Application,” Proceedings RESNA.

[23] Takahashi, Y., Terada, T., Inoue, K., Ito, Y., Lee, H., Ikeda, Y., and Komeda, T.,
2003, ”Upper-Limb Rehabilitation System Using Haptic Device with Basic Motion
Training Program,” Proceedings of the 25th Annual International Conference of the IEEE
EMBS, Mexico, September 17-21.

[24] Kesavadas, T., and Subramanium, H., 2003, ”Development and Pilot Testing for
Virtual Manufacturing Tools with Intelligent Attributes,” pp. 933-940.

[25] MacLean, K. E., 2000, “Designing with Haptic Feedback,” Robotics and
Automation, Proceedings.ICRA, IEEE.

[26] Pernalete, N., Yu, W., Dubey, R., and Moreno, W., 2002, ”Development of A
Robotic Haptic Interface to Assist The Performance of Vocational Tasks by People with
Disabilities,” Proceedings of the 2002 IEEE, International Conference on Robotics &
Automation, Washington, DC.

[27] Everett, S. E., 1998, ”Human-Machine Cooperative Telerobotics Using Uncertain
Sensor or Model Data,” Proceedings of the 1998 IEEE, International Conference on
Robotics and Automation, PVP-Vol. 2, Issue, pp. 1615-1622.

[28] Gentry, S., Feron, E., and Murray-Smith, R., 2005, ”Human-Human Haptic
Collaboration in Cyclical Fitts’ Tasks,” Proceedings of the IEEE, International
Conference on Intelligent Robot and Systems, pp. 3402-3407.

[29] Pellizer, G., and Hedges, J., 2003, ”Motor Planning: Effect of Directional
Uncertainty with Discrete Spatial Cues,” Biomedical Life Sciences, Springer, PVP-Vol
150 June, pp. 276-289.

[30] Card, K., Moran, P., and Newell, A., 1980, ”The Keystroke Level Model for User
Performance Time with Interactive Systems,” Communications of the ACM, PVP-Vol
23, Issue 7, pp. 396-410.

[31] Accott, J., and Zhai, S., 1997, ”Beyond Fitts’ Law: Models Based on Trajectory
Based HCI Tasks,” Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, PVP-Vol. 23, Issue 7, pp. 295-302.

114

[32] Bootsma, R. J., Fernandez, L., and Mottet, D., 2004, ”Behind Fitts’ Law: Kinematic
Patterns in Goal Directed Movements,” International Journal of Human Computer
Studies, Science Direct, PVP-Vol. 61, Issue 6, pp. 811-821.

[33] Gentry, S., and Murray-Smith, R., 2005,”Human Human Haptic Collaboration in
Cyclical Fitts’ Tasks,” Proceedings of the IEEE Conference on Intelligent Robot and
Systems.

[34] Everett, S. E., and Dubey, R. V., 1998, ”Human Machine Cooperative Telerobotics
using Uncertain Sensor and Model Data,” Proceedings of the IEEE International
Conference on Robotics and Automation, PVP-Vol 2, pp. 1615-1622.

[35] Phillips, C. A., and Repperger, D. W., 1997, ”Why Engineers Should Know and Use
Fitts’ Law,” Proceedings -19th International Conference, IEEE/EMBS, Oct 3, Chicago,
IL.USA.

[36] Beamish, D., Bhatti, S. A., Scott, I., and MacKenzie, Wu. J., 2006, ”Fifty Years
Later: A Neurodynamic Explanation of Fitts’ Law,” J.R.Soc.Interface, pp. 649-654, 18.

[37] Woodworth, R. S., 1899, “The Accuracy of Voluntary Movement,” Psychol. Rev. 3
(Monograph Supl.), pp. 1-119.

[38] Guiard, Y., and Beaudouin-Lafon, M., 2004, ”Fitts’ Law 50 Years Later:
Applications and Contributions from Human-Computer Interaction,” International
Journal of Human-Computer Studies, PVP-Vol 61, Issue 6, pp. 747-750.

[39] Smits-Engelsman, B. C. M., Van Galen, G. P., and Duysens, J., 2002, ”The
Breakdown of Fitts’ Law in Rapid, Reciprocal Aiming Movements,” Springer-Verlag.

[40] Kondraske, G. V., 1994, “An Angular Motion Fitts’ Law for Human Performance
Modeling and Prediction,” Proceedings of the 16th Annual International Conference of
the IEEE, pp. 307-308.

[41] Amirabdollahian, Gomes, F., and Johnson, G. T., 2005, ”The Peg- In -Hole: A VR -
Based Haptic Assessment for Quantifying Upper Limb Performance and Skills,”
Rehabilitation Robotics, 9th International Conference On, pp. 422-425.

115

Appendices

116

Appendix A. Fitts’ Coefficients

βα , values for Fitts’ X, Fitts’ Y and Fitts’ Z.
Comparison of Average Delta Time with Assistance in Fitts’ X Task

Group B
=α -3.61578
=β 4.43138

Coefficient of Significance: 0.48572

Group A
=α -4.9795
=β 5.78188

Coefficient of Significance: 0.19616

Comparison of Average Delta Time with Assistance in Fitts’ Y Task

Group B
=α -4.35429
=β 5.32013

Coefficient of Significance: 0.41733

Group A
=α 9.29844
=β -10.2735

Coefficient of Significance: 0.43439

Comparison of Average Delta Time with Assistance in Fitts’ Z Task

Group B
=α -8.80956
=β 10.79132

Coefficient of Significance: 0.19987

117

Appendix A (Continued)

Group A
=α -8.14036
=β 9.9823

Coefficient of Significance: 0.60341

Comparison of Average Delta (Baseline – Final) Time between Group A (with
Assistance) and Group B (without Assistance) in Fitts’ X

Group B
=α -3.61578
=β 4.43183

Coefficient of Significance: 0.48572

Group A
=α -4.9795
=β 5.7818

Coefficient of Significance: 0.19616

Comparison of Average Delta (Baseline – Final) Time between Group A (with
Assistance) and Group B (without Assistance) in Fitts’ Y

Group B
=α -4.9926
=β 6.58912

Coefficient of Significance: 0.39609

Group A
=α 9.29844
=β -10.275

Coefficient of Significance: 0.43439

Comparison of Average Delta (Baseline – Final) Time between Group A (with
Assistance) and Group B (without Assistance) in Fitts’ Z

118

Appendix A (Continued)

Group B
=α -6.26433

=β 8.35144

Coefficient of Significance: 0.39223

Group A
=α -8.14036
=β 9.9823

Coefficient of Significance: 0.60341

119

Appendix B. Fitts’ Graphs

Figure B-1: Comparison of Average Delta Time with Assistance in Fitts’ Y

The above graph indicates that execution time has reduced significantly for

greater values of (A/B) in Fitts’ Y Task. For smaller (A/B), the average Delta time for

Group A was greater compared to Group B. This can be attributed to the fact that, in

general, all the subjects performed well in Fitts’ Y direction.

120

Appendix B (Continued)

Figure B-2: Comparison of Average Delta Time with Assistance in Fitts’ Z

All the subjects in Group A and Group B found the Fitts’ Z Task comparatively

difficult because of the previously mentioned reasons. Irrespective of this, the subjects in

Group B showed greater average Delta time values compared to Group A.

121

Appendix B (Continued)

Figure B-3: Comparison of Average Delta (Baseline – Final) Time between Group A
(with Assistance) and Group B (without Assistance) in Fitts’ X

The Fitts’ Z also showed better results at smaller values of (A/B) with group B

taking lesser time compared to Group A. This can be seen in Figure B-3.

122

Appendix B (Continued)

Figure B-4: Comparison of Average Delta (Baseline – Final) Time between Group A

(with Assistance) and Group B (without assistance) in Fitts’ Z

Figure B-5: Performance of S2 and S1 before and after Training

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

60
40

20

0
-20

-40

-60

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

 60

 40

 20
 0

 -20

 -40

-60

Y
value
in
mm

S2 S1

Y
value
in
mm

123

Appendix B (Continued)

Figure B-6: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Y,
Medium Distance

Figure B-7: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Y,

Larger Distance

S2 S1

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

100

80
60
40
20
0
-20
-40

-60

Y
value
in
mm

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

 0

-10

-20
-30
-40

-50

-60

Y
value
in
mm

S2 S1

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

100
80
60
40
20
0
-20
-40
-60
-80

Y
valu
e in
mm

-20 -15 -10 -5 0 5 10 15 20
 X value in mm

-20

-25
-30
-35
-40
-45
-50

-55

-60

Y
val
ue
in
mm

124

Appendix B (Continued)

Figure B-8: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Z,

Smaller Distance

Figure B-9: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Z,

Medium Distance

-30 -20 -10 0 10 20 30
 Y value in mm

90
80
70
60
50
40
30
20
10
0
-10
-20

Z
valu
e in
mm

-30 -20 -10 0 10 20 30
 Y value in mm

60
50

40

30

20
10
0
-10
-20
-30
-40

Z
value
in
mm

S2 S1

-30 -20 -10 0 10 20 30
 Yvalue in mm

80

60

40

20
0

-20
-40

-60

Z
val
ue
in
mm

-30 -20 -10 0 10 20 30
 Yvalue in mm

-5
-5.5
-6
-6.5
-7
-7.5
-8
-8.5
-9
-9.5
-10

Z
val
ue
in
m
m

S2 S1

125

Appendix B (Continued)

Figure B-10: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’

Z, Larger Distance

S1 S2

-30 -20 -10 0 10 15 20
Y value in mm

80

60
40
20
0

-20

-40

-60

Z
Value
 in mm

-30 -20 -10 0 10 20 30
 Y value in mm

90
85
80
75
70
65
60
55
50
45
40

Z
val
ue
in
mm

126

Appendix C. C++ Code

#include <HL/hl.h>
//ADDED NOW//
#include <HDU/hduMatrix.h>
//#include <dos.h>
//#include <time.h>
#include <malloc.h>
#include "ConstantsSock.h"
#include <cstdio>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include "TrajectorySock.h"
//#ifndef DataStruc.h
#include "DataStruc.h"
//#endif DataStruc.h
//#include "udpSocketClass.h" //socket class definition

//#include "udpSocketClass.h"
//#include "DataStruc.h"
//#define NP 50
//#define BUFFERSIZE 256
#define NP 2
#define NPT 100
#define RECTSIZE 80
double p,q,r;
double smallest_dist=13.0;
double px;
int i,v;
int value;
/*USER CONTROLLED FORCE PROJECTION ON THE TRAJECTORY
PATH.PARAMETERS USED.Testing on exp 6*/

double Proj_Scale;
double xExp_Scale;
double yExp_Scale;

//#define FRAMECOUNTER 29

/*typedef struct point_3d { //3D in world coord sys
 double x, y, z;

127

Appendix C (Continued)

}POINT_3D;
//POINT_3D *mpoints;*/

typedef struct point_3d { //3D in world coord sys
 double x, y, z;
 }POINT_3D;

typedef struct TrajP {
 double x, y, z;

 int indx;
}TrajP_3D;

TrajP_3D *TrajPoint;
TrajP_3D ClosestPoint;
TrajP_3D Next_Pt;

POINT_3D pointstart;
POINT_3D pointend;
POINT_3D Intersection;
POINT_3D hapticposition;
POINT_3D nearest_pt;
//POINT_3D TrajPoint;
//ADDED NOW//

//ADDED NOW//
//hduVector3Dd vectorPoint;
//ADDED ON MaRCH 27TH
hduVector3Dd vectorPoint;
hduVector3Dd dcentertoeffector;
//hduVector3Dd Trajpoint;
hduVector3Dd scalepoint;
hduVector3Dd fixedcenter;
//added on march 31st
hduVector3Dd bezierpoint;
hduVector3Dd secondpoint;
hduVector3Dd m_chosenp;

128

Appendix C (Continued)

hduVector3Dd m_zeroPosition;
hduVector3Dd VScaled;
hduVector3Dd VProjected;
//Declarations for FITTS’ Task
hduVector3Dd Fitts’_Start;
hduVector3Dd Fitts’_End;
hduVector3Dd Fitts’_Delta;
double GoalDist;
//hduVector3Dd m_TrajPoint;
HDint m_gIDMenu;
void displayFunction(void);
void handleMenu(int);
void handleIdle(void);
void handleMouse(int, int, int, int);
void drawLine(void);
void displayWallsHaptically(void);
POINT_3D findClosestPoint(void);
void displayLine(void);
//TrajP_3D displayLine();
double Magnitude(void);
//double a1,b1,c1,a2,b2,c2,a3,b3,c3,a4,b4,c4;
double CP[4][3] = { {100,100,0 }, //control points
 {50,100,20 },
 { -50,0,0 },
 {-100,50,-
20}};double velocityMag;
//Create checkboard texture//
#define checkImageWidth 100
#define checkImageHeight 100
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLuint texName;
// haptic device and rendering context handles
static HHD hHD = HD_INVALID_HANDLE;
static HHLRC hHLRC = 0;
// shape id for shape we will render hapticallyuint WallShapeId;
//Fitts’’ Task (X-dir Constraint) -> option 1
//#define FITTS’TASK1
//Fitts’’ Task (Y-dir Constraint) -> option 1
//Fitts’’ Task (Z-dir Constraint) -> option 2

129

Appendix C (Continued)

// 3D motion & user controlled velocity scaling
//#define TASK1

#define REMOVEZ
//#define INCLUDEZ

#define NormalView
//#define ZView

#define XYZwalls
//#define Zwalls

#define TransNormal
//#define TransZaxis
//conditional compilation depending on type of assistance

//#define EXP1
//#define EXP2
//#define EXP3
//#define EXP4
//#define EXP5
//#define EXP6
//#define EXP7
//#define EXP8
//#define EXP9
//#define EXP10
//#define EXP11

/***

**
****************/
/*void makeCheckImage(void)
{
 int i,j,c;
 for(i=0;i<checkImageHeight;i++){
 for(j=0;j<checkImageWidth;j++){

130

Appendix C (Continued)

 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;

Appendix C (Continued)

 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 }
 }
}*/

/***

 GLUT initialization
**
*******/

void initGlut(int argc, char* argv[])

{
 glutInit(&argc, argv); /* Initialize GLUT. */
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(600, 600);
 glutCreateWindow("Sphere-sphere Contact Example");

 glutDisplayFunc(displayFunction); /* Setup GLUT callbacks. */
 glutMouseFunc(handleMouse);
 glutIdleFunc(handleIdle);
 glutCreateMenu(handleMenu);
 //glutAddMenuEntry("About...", 0);
 glutAddMenuEntry("Fitts’’ Task (X-dir Constraint)...", 0);
 glutAddMenuEntry("Fitts’’ Task (Y-dir Constraint)...", 1);
 glutAddMenuEntry("Fitts’’ Task (Z-dir Constraint)...", 2);
 glutAddMenuEntry("Linear Constraint Motion in 3D...", 3);
 glutAddMenuEntry("Velocity Scaling Assistance...", 4);
 glutAddMenuEntry("No assistance provided...", 5);
 glutAddMenuEntry("Quit", 6);
 glutAttachMenu(GLUT_RIGHT_BUTTON);

}

131

Appendix C (Continued)

{
 HDErrorInfo error;

 hHD = hdInitDevice(HD_DEFAULT_DEVICE);
 if (HD_DEVICE_ERROR(error = hdGetError()))
 {
 hduPrintError(stderr, &error, "Failed to initialize haptic device");
 fprintf(stderr, "Press any key to exit");
 getchar();
 exit(-1);
 }

 hHLRC = hlCreateContext(hHD);
 hlMakeCurrent(hHLRC);

 // Enable optimization of the viewing parameters when rendering
 // geometry for OpenHaptics
 hlEnable(HL_HAPTIC_CAMERA_VIEW);

 // generate id's for the three shapes
 WallShapeId = hlGenShapes(1);

 hlTouchableFace(HL_FRONT);
}
/***

 Use the haptic device coordinate space as model space for graphics.
 Define orthographic projection to fit it. LLB: Low, Left, Back point of device workspace
 TRF: Top, Right, Front point of device workspace
**
*******/
void initGraphics(const HDdouble LLB[3], const HDdouble TRF[3])
{ glMatrixMode(GL_PROJECTION); /* Setup perspective projection. */
 glLoadIdentity();
 HDdouble centerScreen[3];
 centerScreen[0] = (TRF[0] + LLB[0])/2.0;
 centerScreen[1] = (TRF[1] + LLB[1])/2.0;
 centerScreen[2] = (TRF[2] + LLB[2])/2.0;
 HDdouble screenDims[3];
 screenDims[0] = TRF[0] - LLB[0];

132

Appendix C (Continued)

 HDdouble maxDimXY = (screenDims[0] > screenDims[1] ?
screenDims[0]:screenDims[1]);
 HDdouble maxDim = (maxDimXY > screenDims[2] ? maxDimXY:screenDims[2]);
 maxDim /= 2.0;

 glOrtho(centerScreen[0]-maxDim, centerScreen[0]+maxDim,
 centerScreen[1]-maxDim, centerScreen[1]+maxDim,
 centerScreen[2]+maxDim, centerScreen[2]-maxDim);

 printf("glortho %lf %lf %lf %lf %lf %lf\n",
 centerScreen[0]-maxDim, centerScreen[0]+maxDim,
 centerScreen[1]-maxDim, centerScreen[1]+maxDim,
 centerScreen[2]+maxDim, centerScreen[2]-maxDim);

 glShadeModel(GL_SMOOTH);

 glMatrixMode(GL_MODELVIEW); /* Setup model transformations. */
 glLoadIdentity();

 glClearDepth(1.0); /* Setup background colour. */
 //before glClearColor(0.7, 0.7, 0.7, 0); //gray

 //new
 glClearColor(205.0/255.0, 179.0/255.0, 149.0/255.0, 0);
 //238-203-173

 //glClearColor(1.0, 1.0, 1.0, 0); //gray
 glDisable(GL_DEPTH_TEST);

 //glClearColor(0.0,0.0,0.0,0.0);
 /*glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 makeCheckImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT,1);
 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_RE
PEAT);

133

Appendix C (Continued)

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,checkImageWidth,chec
kImageHeight,0,GL_RGBA,GL_UNSIGNED_BYTE,checkImage);*/
}

/***

 Setup graphics pipeline, lights etc.
**
*******/
void doGraphicsState()
{

#ifdef NormalView
 glMatrixMode(GL_MODELVIEW); /* Setup model
transformations. */
#endif

#ifdef ZView
 glMatrixMode(GL_MODELVIEW); /* Setup model
transformations. */
 //glRotatef(-3.1416/1.5,0.0,1.0,0.0);
 glRotatef(-3.1416/1.34,0.0,1.0,0.0);
#endif
 // glMatrixMode(GL_MODELVIEW); // Setup model
transformations.
 //glRotatef(-3.1416/2,0.0,1.0,0.0);
 //n glRotatef(-3.1416/1.5,0.0,1.0,0.0);
 //gluLookAt(0.0,10.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glEnable(GL_COLOR_MATERIAL);
 //add texture to the graphics
 //glColor3f(1.0f,0.0f,0.0f);
 //glEnable(GL_TEXTURE_2D);

134

Appendix C (Continued)

 glColor3f(0.0, 0.7, 0.7); //gray
 glTexCoord2f(0.0,0.0);glVertex3f(-300.0,500.0,0.0);
 glTexCoord2f(0.0,1.0);glVertex3f(-10.0,500.0,187.0);
 glTexCoord2f(1.0,1.0);glVertex3f(-10.0,-60.0,187.0);
 glTexCoord2f(1.0,0.0);glVertex3f(-300.0,-210.0,0.0);
 glEnd();
 //right wall glBegin(GL_QUADS);
 glColor3f(0.0, 0.75, 0.75);

 glTexCoord2f(0.0,0.0);glVertex3f(-10.0,500.0,187.0);
 glTexCoord2f(0.0,1.0);glVertex3f(310.0,500.0,187.0);
 glTexCoord2f(1.0,1.0);glVertex3f(310.0,-60.0,187.0);
 glTexCoord2f(1.0,0.0);glVertex3f(-10.0,-60.0,187.0);
 glEnd();*/
 //glShadeModel(GL_SMOOTH);

 glEnable(GL_LIGHTING);
 glEnable(GL_NORMALIZE);
 glEnable(GL_LIGHT_MODEL_TWO_SIDE);
 glShadeModel(GL_SMOOTH);

 GLfloat lightZeroPosition[] = {10.0, 4.0, 100.0, 0.0};
 //GLfloat lightZeroColor[] = {0.6, 0.6, 0.6, 1.0}; /* green-tinted */
 GLfloat lightZeroColor[] = {0.1, 1.0, 0.1, 1.0}; /* green-tinted */
 GLfloat lightOnePosition[] = {-1.0, -2.0, -100.0, 0.0};
 GLfloat lightOneColor[] = {0.6, 0.6, 0.6, 1.0}; /* red-tinted */

 GLfloat light_ambient[] = {0.8, 0.8, 0.8, 1.0}; /* White diffuse light. */
 GLfloat light_diffuse[] = {0.0, 0.0, 0.0, 1.0}; /* White diffuse light. */
 GLfloat light_position[] = {0.0, 0.0, 100.0, 1.0}; /* Infinite light loc. */

 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
 glLightfv(GL_LIGHT0, GL_POSITION, lightZeroPosition);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor);
 glLightfv(GL_LIGHT1, GL_POSITION, lightOnePosition);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightOneColor);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

135

Appendix C (Continued)

//glFlush();
 //glDisable(GL_TEXTURE_2D);

}

/***

 Draw Slave Sphere, at given position.
**
*******/
void displayVisitorSphere(GLUquadricObj* quadObj, const double position[3])
{
 //char buffer[BUFFERSIZE];
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 /*hlBeginFrame();
 hlCheckEvents();
 HLboolean buttDown = false;
 hlGetBooleanv(HL_BUTTON2_STATE,&buttDown);
 if (buttDown==true)
 {
 fprintf(stdout, "i am ok\n");
 }
 hlEndFrame();*/

 //Display one sphere to represent the haptic cursor and the dynamic
 //charge.
 #ifdef TransNormal
 glTranslatef(position[0], position[1], position[2]);
 p = position[0];
 q = position[1];
 r = position[2];
 #endif
 //MODIFIED FOR Z AXIS FITTS’ TASK
IMPLEMENTATION
 #ifdef TransZaxis
 glTranslatef(position[0], position[1],position[2]);
 p = position[0];
 q = position[1];

136

Appendix C (Continued)

//Modified by Ramya in order to assign the position vector in variables p,q,r.

 //Slave object is blue.
 glColor4f(0.1, 0.1, 0.9, 1.0);

 // The center sphere.
 gluSphere(quadObj, VISITOR_SPHERE_RADIUS, 20, 20);
 glPopMatrix();

}
/***

Draw the quadrilaterals haptically so that we can give a sanse of touch to the walls.
**
**************/
void displayWallsHaptically(void)
{
 hlBeginFrame();

 // set material properties for the shapes to be drawn
 hlMaterialf(HL_FRONT, HL_STIFFNESS, 0.7f);
 hlMaterialf(HL_FRONT, HL_DAMPING, 0.1f);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 //glEnable(GL_COLOR_MATERIAL);
 //add texture to the graphics
 //glColor3f(1.0f,0.0f,0.0f);
 //glEnable(GL_TEXTURE_2D);
 //glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_R
EPLACE);
 //glBindTexture(GL_TEXTURE_2D,texName);
 //left wall

#ifdef XYZwalls

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, WallShapeId);
 glBegin(GL_QUADS);

137

Appendix C (Continued)

 glVertex3f(-0.0f,500.0f,187.0f);
 glVertex3f(-0.0f,-60.0f,187.0f);
 glVertex3f(-290.0f,-210.0f,0.0f);

 glColor3f(0.0, 0.75, 0.75);
 glVertex3f(-0.0f,500.0f,187.0f);
 glVertex3f(300.0f,500.0f,187.0f);
 glVertex3f(300.0f,-60.0f,187.0f);
 glVertex3f(-0.0f,-60.0f,187.0f);
 glEnd();
 hlEndShape();

#endif

#ifdef Zwalls

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, WallShapeId);
 glBegin(GL_QUADS);

 glColor3f(0.0, 0.7, 0.7); //gray
 glVertex3f(-290.0f,500.0f,0.0f);
 glVertex3f(-0.0f,500.0f,187.0f);
 glVertex3f(-0.0f,-60.0f,187.0f);
 glVertex3f(-290.0f,-210.0f,0.0f);

 glColor3f(0.0, 0.75, 0.75);
 glVertex3f(-0.0f,500.0f,187.0f);
 glVertex3f(300.0f,500.0f,187.0f);
 glVertex3f(300.0f,-60.0f,187.0f);
 glVertex3f(-0.0f,-60.0f,187.0f);
 glEnd();
 hlEndShape();
#endif

 hlEndFrame();

138

Appendix C (Continued)

/***

To compute the Magnitude between two points
**
********************************/
double Magnitude(POINT_3D pointend,POINT_3D pointstart)
{
 double Magnitude;
 double r,s,t;
 r = pointend.x-pointstart.x;
 s = pointend.y-pointstart.y;
 t = pointend.z-pointstart.z;
 Magnitude = sqrt((r*r)+(s*s)+(t*t));
 return Magnitude;
}

/***

Draw a straight line and compute the distenace between haptic point and any point on the
straight line
**
*********************************/
void displayLine(void)
{
 //if (m_gIDMenu == 4) {
 #ifdef TASK1
 //pointstart.x = -200.0;
 pointstart.x = -200.0;
 pointstart.y = 0.0;
 pointstart.z = 0.0;
 //pointend.x = 0.0;
 pointend.x = 200.0;
 pointend.y = 300.0;
 pointend.z = 0.0;
 //to draw a straight line based on the above computed points using OpenGL//
 glMatrixMode(GL_MODELVIEW); //Setup model transformations.
 glPushMatrix();
 glColor3f(1.0,0.0,0.0);
 //hlTouchModel(HL_CONSTRAINT);

139

Appendix C (Continued)

 glBegin(GL_LINE_STRIP);
 glVertex3d(pointstart.x,pointstart.y,pointstart.z);
 glVertex3d(pointend.x,pointend.y,pointend.y);

Appendix C (Continued)

 glEnd();

 #endif

/***

Draw a second line for the Fitts’ Task...FITTS’ TASK IMPLEMENTATION,SETTING
**
*************************/
 //if (m_gIDMenu == 0) {
 #ifdef FITTS’TASK1
 //pointstart.x = -200.0;
 pointstart.x = -95.0;
 pointstart.y = 0.5;
 pointstart.z = 0.0;
 //pointend.x = 0.0;
 pointend.x = 95.0;
 pointend.y = 0.5;
 pointend.z = 0.0;
 //to draw a straight line based on the above computed points using OpenGL//
 glMatrixMode(GL_MODELVIEW); //Setup model transformations.
 glPushMatrix();
 glColor3f(1.0,0.0,0.0);
 //hlTouchModel(HL_CONSTRAINT);
 //hlTouchModelf(HL_SNAP_DISTANCE,1.5);
 glBegin(GL_LINE_STRIP);
 glLineWidth(10);
 glVertex3d(pointstart.x,pointstart.y,pointstart.z);
 glVertex3d(pointend.x,pointend.y,pointend.z);
 glEnd();
 glColor3f(0.0,0.0,0.9);
 glBegin(GL_QUADS);
 glLineWidth(10.0);

140

Appendix C (Continued)

 glVertex3d(pointstart.x+10.0,pointstart.y+10.0,pointstart.z);
 glVertex3d(pointstart.x+10.0,pointstart.y-10.0,pointstart.z);
 glVertex3d(pointstart.x-10.0,pointstart.y-10.0,pointstart.z);
 //glEnd();
 glColor3f(0.0,0.0,0.9);
 glVertex3d(pointend.x-10.0,pointend.y+10.0,pointend.z);
 glVertex3d(pointend.x+10.0,pointend.y+10.0,pointend.z);

 glVertex3d(pointend.x+10.0,pointend.y-10.0,pointend.z);
 glVertex3d(pointend.x-10.0,pointend.y-10.0,pointend.z);
 glEnd();
 //}//end if gIDMenu == 0
 #endif
/***

 FITTS’ TASK with the line implemented in the Y direction/motion.

**
**********/
 #ifdef FITTS’TASK2
 //if (m_gIDMenu == 1) {
 pointstart.x = 0.0;
 pointstart.y = -60.0;
 pointstart.z = 0.0;
 pointend.x = 0.0;
 pointend.y = 130.0;
 pointend.z = 0.0;
 //to draw a straight line based on the above computed points using OpenGL//
 glMatrixMode(GL_MODELVIEW); //Setup model transformations.
 glPushMatrix();
 glColor3f(1.0,0.0,0.0);
 //hlTouchModel(HL_CONSTRAINT);
 //hlTouchModelf(HL_SNAP_DISTANCE,1.5);
 glBegin(GL_LINE_STRIP);
 glLineWidth(10);
 glVertex3d(pointstart.x,pointstart.y,pointstart.z);
 glVertex3d(pointend.x,pointend.y,pointend.z);
 glEnd();

141

Appendix C (Continued)

 glColor3f(0.0,0.0,0.9);
 glBegin(GL_QUADS);
 glLineWidth(10.0);
 glVertex3d(pointstart.x-12.0,pointstart.y+10.0,pointstart.z);
 glVertex3d(pointstart.x+12.0,pointstart.y+10.0,pointstart.z);
 glVertex3d(pointstart.x+12.0,pointstart.y-10.0,pointstart.z);
 glVertex3d(pointstart.x-12.0,pointstart.y-10.0,pointstart.z);
 //glEnd();
 glColor3f(0.0,0.0,0.9);
 glVertex3d(pointend.x-12.0,pointend.y+10.0,pointend.z);
 glVertex3d(pointend.x+12.0,pointend.y+10.0,pointend.z);

Appendix C (Continued)

 glVertex3d(pointend.x+12.0,pointend.y-10.0,pointend.z);
 glVertex3d(pointend.x-12.0,pointend.y-10.0,pointend.z);
 glEnd();
 //}

 #endif
/***

 FITTS’ TASK with the line implemented in the Z direction/motion.

**
**********/
 #ifdef FITTS’TASK3:
 //if (m_gIDMenu == 3) {
 pointstart.x =-190.0;
 //pointstart.x =-100.0;
 pointstart.y = 18.0;
 //pointstart.z = 180.0;
 pointstart.z = -5.0;
 //pointend.x = 20.0;
 pointend.x = 60.0;
 //pointend.y = 80.0;
 pointend.y =110.0;
 //pointend.z = 0.0;
 pointend.z = -40.0;
 /* pointstart.x =0.0;

142

Appendix C (Continued)

 glVertex3d(pointend.x,pointend.y,pointend.z);
 glEnd();

 glColor3f(0.0,0.0,0.9);
 glBegin(GL_QUADS);
 glLineWidth(10.0);
 glVertex3d(pointstart.x-12.0,pointstart.y+10.0,pointstart.z+10.0);
 glVertex3d(pointstart.x+12.0,pointstart.y+10.0,pointstart.z+10.0);
 glVertex3d(pointstart.x+12.0,pointstart.y,pointstart.z-10.0);
 glVertex3d(pointstart.x-12.0,pointstart.y,pointstart.z-10.0);
 //glEnd();
 glColor3f(0.0,0.0,0.9);

 glVertex3d(pointend.x-12.0,pointend.y+10.0,pointend.z+10.0);
 glVertex3d(pointend.x+12.0,pointend.y+10.0,pointend.z+10.0);
 glVertex3d(pointend.x+12.0,pointend.y,pointend.z-10.0);
 glVertex3d(pointend.x-12.0,pointend.y,pointend.z-10.0);
 glEnd();

 //}

 #endif

/***

 FITTS’ TASK with the line implemented in the Z direction/motion.

**
**********/
//if (m_gIDMenu == 2) {

 #ifdef FITTS’TASK4:

 pointstart.x =0.0;
 //pointstart.x =-100.0;
 pointstart.y =0.0;
 //pointstart.z = 180.0;
 pointstart.z =-50.0;

143

Appendix C (Continued)

 //pointend.y = 80.0;
 pointend.y =0.0;
 //pointend.z = 0.0;
 pointend.z =75.0;

 /* pointstart.x =0.0;
 pointstart.y = 0.0;
 pointstart.z = -180.0;
 // pointstart.z = -150.0;

 pointend.x = 0.0;
 pointend.y = 0.0;
 pointend.z =240.0;
 //pointend.z =300.0;*/
 //to draw a straight line based on the above computed points using OpenGL//
 glMatrixMode(GL_MODELVIEW); //Setup model transformations.
 glPushMatrix();
 glColor3f(1.0,0.0,0.0);
 //hlTouchModel(HL_CONSTRAINT);
 //hlTouchModelf(HL_SNAP_DISTANCE,1.5);
 glBegin(GL_LINE_STRIP);
 glLineWidth(10);
 glVertex3d(pointstart.x,pointstart.y,pointstart.z);
 glVertex3d(pointend.x,pointend.y,pointend.z);
 glEnd();

 glColor3f(0.0,0.0,0.9);
 glBegin(GL_QUADS);
 glLineWidth(10.0);
 glVertex3d(pointstart.x,pointstart.y+10.0,pointstart.z+10.0);
 glVertex3d(pointstart.x,pointstart.y+10.0,pointstart.z-10.0);
 glVertex3d(pointstart.x,pointstart.y-10.0,pointstart.z-10.0);
 glVertex3d(pointstart.x,pointstart.y-10.0,pointstart.z+10.0);

 /*glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0);
 glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z+10.0);
 glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z+10.0);
 glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z-10.0);*/

144

Appendix C (Continued)

 glColor3f(0.0,0.0,0.9);
 glVertex3d(pointend.x,pointend.y+10.0,pointend.z+10.0);
 glVertex3d(pointend.x,pointend.y+10.0,pointend.z-10.0);
 glVertex3d(pointend.x,pointend.y-10.0,pointend.z-10.0);
 glVertex3d(pointend.x,pointend.y-10.0,pointend.z+10.0);

 /*glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z+10.0);
 glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z-10.0);
 glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0);
 glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0);*/

 glEnd();
//}

 #endif
}

/***
**
To compute the point on the line which is closest to the haptic device based on the
perpendicularity condition.
**
**********************************/
//POINT_3D IntersectionPoint(const double position[3],POINT_3D
pointstart,POINT_3D pointend)
POINT_3D IntersectionPoint()
{
 double LineMag;
 double U;

 /*hapticposition.x=position[0];
 hapticposition.y=position[1];
 hapticposition.z=position[2];*/
 hapticposition.x=p;

145

Appendix C (Continued)

 hapticposition.z=r;

 LineMag = Magnitude(pointend,pointstart);

Appendix C (Continued)

 U= (((hapticposition.x - pointstart.x)*(pointend.x - pointstart.x))+
 ((hapticposition.y - pointstart.y)*(pointend.y -
pointstart.y))+
 ((hapticposition.z - pointstart.z)*(pointend.z -
pointstart.z)))/(LineMag*LineMag);

 if(U<0.0 || U>1.0)
 {

 //printf ("U = %d,x =%d\n", U, hapticposition.x);
 printf ("closest point does not fall within the line
segment\n");
 }
 else{
 Intersection.x = pointstart.x+ (U *(pointend.x-
pointstart.x));
 Intersection.y = pointstart.y+ (U *(pointend.y-
pointstart.y));
 Intersection.z = pointstart.z+ (U *(pointend.z-
pointstart.z));
 //printf ("near x = %3.4f, near y = %3.4f \n", Intersection.x,
Intersection.y);
 }

 return Intersection;

}

/***

This is the algorithm to divide the trajectory into 50 equal points and store them in
TrajPoint.

146

Appendix C (Continued)

 pointstart.x = -200.0;
 pointstart.y = 0.0;
 pointstart.z = 0.0;
 //pointend.x = 0.0;
 pointend.x = 200.0;
 pointend.y = 300.0;
 pointend.z = 0.0;

 //allocate memory for bezier points
 TrajPoint = (TrajP_3D*)malloc(sizeof(TrajP_3D)*(NPT+1));

///////////////////////////start compute trajectory points///

 int i,j,k;
 double t;
 double DeltaX,DeltaY,DeltaZ;
 TrajPoint[0].x = pointstart.x ;
 TrajPoint[0].y = pointstart.y;
 TrajPoint[0].z =0.0;
 TrajPoint[0].indx = 0;

 TrajPoint[NPT].x=pointend.x;
 TrajPoint[NPT].y=pointend.y;
 TrajPoint[NPT].z=0.0;
 TrajPoint[NPT].indx = NPT;

 DeltaX= (pointstart.x-pointend.x)/NPT;
 DeltaY= (pointstart.y-pointend.y)/NPT;
 DeltaZ=0.0;
 nearest_pt = IntersectionPoint();

 for (i= 1;i<NPT;i++)
 {
 t = (double)i/(NPT-1);

 TrajPoint[i].x=t*DeltaX;
 TrajPoint[i].y=t*DeltaY;

147

Appendix C (Continued)

 }
 glMatrixMode(GL_MODELVIEW); //Setup model transformations.
 glPushMatrix();
 glColor3f(1,0,0);
 //hlTouchModel(HL_CONSTRAINT);
 //hlTouchModelf(HL_SNAP_DISTANCE,1.5);
 glBegin(GL_LINE_STRIP);
 glVertex3d(pointstart.x,pointstart.y,pointstart.z);
 glVertex3d(pointend.x,pointend.y,pointend.y);
 glEnd();

}*/
////////////////////TESTING//
void ContactModel::UpdateEffectorPosition(const hduVector3Dd visitor)
{
 double dx, dy, dz,Dist;
 HDdouble mtime;
 m_currentDistance = 0.0;
 m_effectorPosition = visitor;
 int m_springlength = 20;
 double DAMPING = 0.00225;
 double THRESHOLD = 20.00;
 double SPRING_END = 80.00;
 double DIST;
 double Res;
 int index;
 //int m_springlength = 100;
 //double scale;
 //smallest_dist=13;

 hduVector3Dd inv;
 hduVector3Dd hapticinv;
 hduVector3Dd TrueDist;
 hduVector3Dd VelocityProjected;
 hduVector3Dd TrajVec;
 hduVector3Dd Force;
 hduVector3Dd ForceProjected;
 hduVector3Dd DeltaVel;
 hduVector3Dd mforceproj;

148

Appendix C (Continued)

 hduVector3Dd m_modified;
 hduVector3Dd Normal_Vel;
 hduVector3Dd D1;
 hduVector3Dd Normal_pos;
 hduVector3Dd Num;
 hduVector3Dd Denom;
 hduVector3Dd distance;
 hduVector3Dd Normal;
 hduVector3Dd norm_velocity;
 hduVector3Dd EndPoint;
 hduVector3Dd n_vector;
 hduVector3Dd Deltaxyz;
 hduVector3Dd n_traj;
 hduVector3Dd Delta_Dist;
 hduVector3Dd Delta_rightside;
 hduVector3Dd dx_OtherSide;
 hduVector3Dd second_vector;
 hduVector3Dd third_vector;
 hduVector3Dd Traj_left;
 hduVector3Dd Traj_right;

 hduVector3Dd Dist_Goal;

 hduVector3Dd g_vector;
 hduVector3Dd Dist_Goalleft;
 hduVector3Dd Dist_Goalright;
 hduVector3Dd Previous_Xcoordinate;
 hduVector3Dd Mid_Point;

 double Dist_left;
 double Dist_right;

 double m_mass;
 double m_kStiffness;
 //double m_kDamping;
 double Distance;
 double Distance2;
 double DeltaX,DeltaY,DeltaZ;

149

Appendix C (Continued)

 //HDdouble MaxForce;

 //double ForceDotProd;
 double Square;
 double dt = 0.001;

 //double SCALING = 0.00001;
 double SCALING = 1.0;
 double m_force;
 bool firstTime = true;
 double SpringLimitDistance =20.0;
 double scaleForceFactor = 0.8;
 double dismag;
 double mass = 0.001;//kg
 double m_stiffness = 0.5;
 double m_damping = 2*sqrt(mass*m_stiffness);
 double mDist,oldDist,o_Dist,yDist;
 OmniLocalStruct gOmni;
 int timer = 1 ;
 bool FirstTime = true;
 bool f_Time = true;
 bool firstTrip;

 m_effectorPosition = visitor;
 m_visitorPosition = m_effectorPosition;

 nearest_pt = IntersectionPoint();
 //printf("%3.6f %3.6f\n",nearest_pt.x,nearest_pt.y);

 /***

 RAMYA:The code where we determine the point on the trajectory which
is closest to the
 effector sphere and the next adjacent point to the closest point.These
points are stored
 in TrajPoint and can read from there by pulling out the proper index
 **
*****************************/

150

Appendix C (Continued)

 ClosestPoint=TrajPoint[i];

 }
 ClosestPoint=displayLine();
 index=ClosestPoint.indx;
 Next_Pt.x=nearest_pt.x+DeltaX;
 Next_Pt.y=nearest_pt.y+DeltaY;
 Next_Pt.z=nearest_pt.z+DeltaZ;*/

 //printf("%3.6f\n",Distance2);

 //printf("%3.4f %3.4f %3.4f
%3.4f\n",ClosestPoint.x,ClosestPoint.y,Next_Pt.x,Next_Pt.y);

 /*Closest3DPoint[0]=nearest_pt.x;
 Closest3DPoint[1]=nearest_pt.y;
 Closest3DPoint[2]=0;*/
#ifdef REMOVEZ

 DeltaX= (pointstart.x-pointend.x)/NPT;
 DeltaY= (pointstart.y-pointend.y)/NPT;
 DeltaZ=0.0;
 Delta_Dist[0]=DeltaX;
 Delta_Dist[1]=DeltaY;
 Delta_Dist[2]=DeltaZ;
 Distance2=Delta_Dist.magnitude();
 vectorPoint[0] = nearest_pt.x;
 vectorPoint[1] = nearest_pt.y;
 vectorPoint[2] = 0;
 dx =vectorPoint[0]-m_visitorPosition[0];
 dy =vectorPoint[1]-m_visitorPosition[1];
 dz = 0;
#endif
#ifdef INCLUDEZ
 DeltaX= (pointstart.x-pointend.x)/NPT;
 DeltaY= (pointstart.y-pointend.y)/NPT;
 DeltaZ=(pointstart.z-pointend.z)/NPT;;
 Delta_Dist[0]=DeltaX;

151

Appendix C (Continued)

 Delta_Dist[1]=DeltaY;
 Delta_Dist[2]=DeltaZ;
 Distance2=Delta_Dist.magnitude();
 vectorPoint[0] = nearest_pt.x;
 vectorPoint[1] = nearest_pt.y;
 vectorPoint[2] = nearest_pt.z;
 dx =vectorPoint[0]-m_visitorPosition[0];
 dy =vectorPoint[1]-m_visitorPosition[1];
 dz =vectorPoint[2]-m_visitorPosition[2];

#endif

 //The algorithm which would store the end-point on the trajectory in a hdu
vector format//
 EndPoint[0] = pointend.x;
 EndPoint[1] = pointend.y;
 EndPoint[2] = pointend.z;

 //test

 Deltaxyz[0]=EndPoint[0]-m_effectorPosition[0];
 Deltaxyz[1]=EndPoint[1]-m_effectorPosition[1];
 Deltaxyz[2]=EndPoint[2]-m_effectorPosition[2];

 //Algorithm to compute the direction vector of the imaginary straight line on the right
 //side of the trajectory path.
 Delta_rightside[0]=(EndPoint[0]+VISITOR_SPHERE_RADIUS)-
(m_visitorPosition[0]);
 Delta_rightside[1]=EndPoint[1]-m_visitorPosition[1];
 Delta_rightside[2]=EndPoint[2]-m_visitorPosition[2];

 Dist_rightside=Delta_rightside.magnitude();

 second_vector[0]=Delta_rightside[0]/Dist_rightside;
 second_vector[1]=Delta_rightside[1]/Dist_rightside;
 second_vector[2]=Delta_rightside[2]/Dist_rightside;

152

Appendix C (Continued)

 dx_OtherSide[0]=(vectorPoint[0]-VISITOR_SPHERE_RADIUS)-
(m_visitorPosition[0]-VISITOR_SPHERE_RADIUS);
 dx_OtherSide[1]=vectorPoint[1]-m_visitorPosition[1];
 dx_OtherSide[2]=vectorPoint[2]-m_visitorPosition[2];
 Dist_leftside=dx_OtherSide.magnitude();
 third_vector[0]=dx_OtherSide[0]/Dist_rightside;
 third_vector[1]=dx_OtherSide[1]/Dist_rightside;
 third_vector[2]=dx_OtherSide[2]/Dist_rightside;

 Distance =Deltaxyz.magnitude();
 n_traj[0]=Deltaxyz[0]/Distance;
 n_traj[1]=Deltaxyz[1]/Distance;
 n_traj[2]=Deltaxyz[2]/Distance;

 TrueDist[0] = dx;
 TrueDist[1] = dy;
 //TrueDist[2] = 0.0;
 TrueDist[2] = dz;
 Dist = TrueDist.magnitude();

 n_vector[0]=TrueDist[0]/Dist;
 n_vector[1]=TrueDist[1]/Dist;
 n_vector[2]=TrueDist[2]/Dist;

 m_currentDistance = Dist;

 TrajVec[0]=pointend.x-pointstart.x;
 TrajVec[1]=pointend.y-pointstart.y;
 TrajVec[2]=pointend.z-pointstart.z;

 //printf("%3.6f\n", gOmni.option);

 //m_currentDistance = 0.0;
 //m_effectorPosition = visitor;
 //_centerToEffector = m_effectorPosition ;//- m_fixedCenter;
 //double SpringLimitDistance = 80;

 //m_currentDistance = m_centerToEffector.magnitude();

153

Appendix C (Continued)

 //if(m_currentDistance > SpringLimitDistance)
 if (firstTime==true) {

Appendix C (Continued)
 firstTime = false;
 mtime = 0.0;
 oldDist=Dist;
 }
 mDist=(oldDist+Dist)/2;
 //The distance computed based on the extreme right side of the sphere
 //and the point on the trajectory.
 /*if (firstTime==true) {
 firstTime = false;
 mtime = 0.0;
 oldDist=Dist_rightside;
 }
 mDist=(oldDist+Dist_rightside)/2;*/

 if (f_Time==true) {
 f_Time = false;
 mtime = 0.0;
 o_Dist=Dist_leftside;
 }
 yDist=(o_Dist+Dist_leftside)/2;

 #ifdef EXP1:

 if(m_currentDistance > 130.0)
 {
 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))
 {

 if(m_effectorPosition[0]<(vectorPoint[0]+5.0))

154

Appendix C (Continued)

 if(m_effectorPosition[1]<Y_Limit)
 {
 m_forceOnVisitor[0]=
18.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
18.0*STIFFNESS*Dist*n_vector[1];

Appendix C (Continued)

 m_forceOnVisitor[2]=
18.0*STIFFNESS*Dist*n_vector[2];

 }
 else
 {

if(m_effectorPosition[1]>Y_End)
 {
 m_forceOnVisitor[0]=
5.0*STIFFNESS*Dist*n_vector[0]+(0.0015*TrajVec[0]);
 m_forceOnVisitor[1]=
5.0*STIFFNESS*Dist*n_vector[1]+(0.0015*TrajVec[0]);
 m_forceOnVisitor[2]=
5.0*STIFFNESS*Dist*n_vector[2]+(0.0015*TrajVec[0]);
 }
 else
 {
 m_forceOnVisitor[0]=
15.0*STIFFNESS*Dist*n_vector[0]+(0.0015*TrajVec[0]);

 m_forceOnVisitor[1]=
15.0*STIFFNESS*Dist*n_vector[1]+(0.0015*TrajVec[0]);
 m_forceOnVisitor[2]=
15.0*STIFFNESS*Dist*n_vector[2]+(0.0015*TrajVec[0]);
 }

 }

155

Appendix C (Continued)

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

Appendix C (Continued)

 m_forceOnVisitor.set(-1.2*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);

 }

 else
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End))

 {

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
 }
 }

 else
 {
 if(m_effectorPosition[1]<Y_Limit)

156

Appendix C (Continued)

 }

 }
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0);

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }

 }
 else if(m_effectorPosition[0]<vectorPoint[0])
 {

 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }

157

Appendix C (Continued)

/***

Test 2 with just the projection component on the trajectory without the high spring force.
**
****************/
#ifdef EXP2if(m_currentDistance > 130.0)
 {
 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])

 {
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))
 {

 if(m_effectorPosition[0]<(vectorPoint[0]+8.0))
 {

 if(m_effectorPosition[1]<Y_Limit)
 {
 m_forceOnVisitor[0]=
18.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
18.0*STIFFNESS*Dist*n_vector[1];
 m_forceOnVisitor[2]=
18.0*STIFFNESS*Dist*n_vector[2];

 }
 else
 {

 m_forceOnVisitor[0]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(0.002*TrajVec[0]);

158

Appendix C (Continued)

 m_forceOnVisitor[1]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(0.002*TrajVec[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(0.002*TrajVec[2]);

 }

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.5*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);

 }

 else
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End))

 {

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

159

Appendix C (Continued)

 }
 }
 }

 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);
//m_forceOnVisitor.set(0.0,0.0,0.0);

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0);

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

160

Appendix C (Continued)

 else if(m_effectorPosition[0]<vectorPoint[0])
 {

 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
#endif

/***
Test 3 with just the projection component on the trajectory getting normalized.
**
****************/
#ifdef EXP3
if(m_currentDistance > 130.0)
 {
 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))
 {

 if(m_effectorPosition[0]<(vectorPoint[0]+5.0))
 {

 if(m_effectorPosition[1]<Y_Limit)
 {
 m_forceOnVisitor[0]=
18.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
18.0*STIFFNESS*Dist*n_vector[1];
 m_forceOnVisitor[2]=
18.0*STIFFNESS*Dist*n_vector[2];

 }

161

Appendix C (Continued)

 else
 {

 m_forceOnVisitor[0]=-0.9;
 m_forceOnVisitor[1]=0.0;
 m_forceOnVisitor[2]=0.0;

ForceDotProd=(m_forceOnVisitor[0]*TrajVec[0])+(m_forceOnVisitor[1]*TrajVec[1])+(
m_forceOnVisitor[2]*TrajVec[2]);
 Square=(TrajVec.magnitude())*(TrajVec.magnitude());
 ForceProjected=-(ForceDotProd/ Square)*TrajVec;
 m_forceOnVisitor[0]=0.5*ForceProjected[0];
 m_forceOnVisitor[1]=ForceProjected[1];

 m_forceOnVisitor[2]=ForceProjected[2];
 printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.2*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);

 }

 else
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End))

 {

162

Appendix C (Continued)

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
 }
 }

 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);
//m_forceOnVisitor.set(0.0,0.0,0.0);

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

163

Appendix C (Continued)

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }

 }
 else if(m_effectorPosition[0]<vectorPoint[0])
 {

 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
#endif

/***

Test 4 with just the high spring force on the trajectory without any projection assistance
**
****************/
#ifdef EXP4:
if(m_currentDistance > 130.0)
 {
 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {

164

Appendix C (Continued)

 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))

Appendix C (Continued)

 {

 if(m_effectorPosition[0]<(vectorPoint[0]+5.0))

 {

if(m_effectorPosition[1]<Y_End)
 {
 m_forceOnVisitor[0]=
19.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
19.0*STIFFNESS*Dist*n_vector[1];
 m_forceOnVisitor[2]=
19.0*STIFFNESS*Dist*n_vector[2];

 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

165

Appendix C (Continued)

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
 }
 }

 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);
//m_forceOnVisitor.set(0.0,0.0,0.0);

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

166

Appendix C (Continued)

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }

 }
 else if(m_effectorPosition[0]<vectorPoint[0])
 {

 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
#endif
/***

Test 5 with just the projection component on the trajectory without the high spring
force/User
Controlled Velocity based force scaling.
**
****************/
//#ifdef EXP5:
if (m_gIDMenu == 3)

{
 if(m_currentDistance > 130.0)
 {

167

Appendix C (Continued)

 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])
 {
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]);
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))
 {

 if(m_effectorPosition[0]<(vectorPoint[0]+8.0))
 {

 if(m_effectorPosition[1]<Y_Limit)
 {
 m_forceOnVisitor[0]=
18.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
18.0*STIFFNESS*Dist*n_vector[1];
 m_forceOnVisitor[2]=
18.0*STIFFNESS*Dist*n_vector[2];
 //printf("%3.6f
%3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],vectorPoint[0]);
 }
 else
 {
 m_forceOnVisitor[0]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(0.002*TrajVec[0]);

 m_forceOnVisitor[1]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(0.002*TrajVec[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(0.002*TrajVec[2]);
 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]);
 }

168

Appendix C (Continued)

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)

 {

 m_forceOnVisitor.set(-1.5*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);
 //printf("%3.6f
%3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]);
 }

 else
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End))

 {

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);
 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]);

 }
 }
 }

169

Appendix C (Continued)

 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);
//m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]);

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],vectorPoint[0]);

 }

 }
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0);

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

170

Appendix C (Continued)

 }
 else if(m_effectorPosition[0]<vectorPoint[0])
 {

 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }

}
//#endif

/***

Test 6 with just the projection component on the trajectory without the high spring force.
**
****************/
//#ifdef EXP6:
if (m_gIDMenu == 4)//velocity scaling assistance//
{

 //code for USER CONTROLLED SCALING//

 if (velocityMag<0.0)
 {
 velocityMag= -(velocityMag);

 }
 if (velocityMag<m_VelocityLimit)
 {
 printf("%3.6f %3.6f\n",velocityMag,m_VelocityLimit);
 //When the user is travelling at a velocity which is greater value than
90% of the
 //velocity limit
 if (velocityMag>(m_VelocityLimit*0.09))

 {
 Proj_Scale = 0.002;
 yExp_Scale = 1.1;

171

Appendix C (Continued)

 xExp_Scale = -1.0;
 }
 else
 {
 //When the user is travelling at a velocity which is greater than 80% of the
 //velocity limit
 if (velocityMag>(m_VelocityLimit*0.08))
 {
 //Proj_Scale = 0.001;
 Proj_Scale = 0.002;
 yExp_Scale = 1.1;
 //xExp_Scale = -1.3;
 xExp_Scale = -2.3;
 }
 else
 {

 //When the user is travelling at a velocity which is greater than 70% of the
 //velocity limit
 if (velocityMag>(m_VelocityLimit*0.05))
 {
 //Proj_Scale = 0.0015;
 Proj_Scale = 0.002;
 yExp_Scale = 1.1;
 //xExp_Scale = -1.5;
 xExp_Scale = -3.5;
 }
 else
 {

 if (velocityMag>(m_VelocityLimit*0.009))
 {
 Proj_Scale = 0.002;
 yExp_Scale = 1.1;
 //xExp_Scale = -2.0;
 xExp_Scale = -4.5;
 }
 else
 {

172

Appendix C (Continued)

 Proj_Scale = 0.002;
 yExp_Scale = 1.2;
 //xExp_Scale = -2.5;
 xExp_Scale = -5.5;
 }
 }

 }

 }

 }
 else
 {
 //When the user had crossed the velocity limit//
 //fprintf(stdout,"The user has crossed the velocity limit");

 Proj_Scale = 0.0;
 yExp_Scale = 0.0;
 xExp_Scale = 0.0;
 }

 //fprintf(stdout,"%3.3f %3.3f mm/s\n", velocityMag,m_VelocityLimit);

if(m_currentDistance > 130.0)
 {
 m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0;
 }
 //else if((m_currentDistance>10.0)&&(m_currentDistance10.0))
 else if(m_effectorPosition[0]>vectorPoint[0])
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+20.0))
 {
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0))
 {

 if(m_effectorPosition[0]<(vectorPoint[0]+8.0))

173

Appendix C (Continued)

 if(m_effectorPosition[1]<Y_Limit)
 {
 m_forceOnVisitor[0]=
18.0*STIFFNESS*Dist*n_vector[0];
 m_forceOnVisitor[1]=
18.0*STIFFNESS*Dist*n_vector[1];
 m_forceOnVisitor[2]=
18.0*STIFFNESS*Dist*n_vector[2];

 }
 else
 {

 m_forceOnVisitor[0]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(Proj_Scale*TrajVec[0]);

 m_forceOnVisitor[1]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(Proj_Scale*TrajVec[1]);

Appendix C (Continued)

 m_forceOnVisitor[2]=
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(Proj_Scale*TrajVec[2]);

 }

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

174

Appendix C (Continued)

 m_forceOnVisitor.set(xExp_Scale*exp(-
mDist/70.0), yExp_Scale*exp(-mDist/70.0), 0.0);

 }

 else
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End))

 {

 m_forceOnVisitor[0]=
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);

 m_forceOnVisitor[1]=
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);

 m_forceOnVisitor[2]=
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }
 }
 }

 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(xExp_Scale*exp(-mDist/70.0), yExp_Scale*exp(-
mDist/70.0), 0.0); //m_forceOnVisitor.set(0.0,0.0,0.0);

 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

175

Appendix C (Continued)

 }

 }

 }
 else
 {
 if(m_effectorPosition[1]<Y_Limit)
 {

 m_forceOnVisitor.set(xExp_Scale*exp(-mDist/70.0),
yExp_Scale*exp(-mDist/70.0), 0.0);

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 else if(m_effectorPosition[1]>Y_Limit)
 {

 m_forceOnVisitor.set(0.0,0.0,0.0);

 }

 }

 }
 else if(m_effectorPosition[0]<vectorPoint[0])
 {
 m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]);
 m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]);
 m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]);

 }

176

Appendix C (Continued)

//#endif
/***
***************Test 7:Fitt’s Task/To determine the time taken to execute the task,
with assistance and

**
****************/
#ifdef EXP7: double scale=0.1; double Proj_Scale=0.08;

 double y_limit=10.0;

 Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0));

 Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0));

 Traj_left[2] = 0.0;

 Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0));

 Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0));

 Traj_right[2] = 0.0;

 Fitts’_Start[0] =pointstart.x;
 Fitts’_Start[1]= pointstart.y;
 Fitts’_Start[2]= pointstart.z;

 Fitts’_End[0]=pointend.x;
 Fitts_End[1]= pointend.y;
 Fitts_End[2]= pointend.z;

 //Trajectory vector between the two goal points//
 Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0];

 Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1];

177

Appendix C (Continued)

 GoalDist= Fitts_Delta.magnitude();
 //Normal vector along the trajectory path
 /*g_vector[0]=Fitts_Delta[0]/GoalDist;
 g_vector[1]=Fitts_Delta[1]/GoalDist;
 g_vector[2]=Fitts_Delta[2]/GoalDist;*/

 //Distance between effector position and left goal point

 Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0];
 Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1];
 Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2];

 g_vector[0]=Dist_Goalleft[0]/Dist_left;
 g_vector[1]=Dist_Goalleft[1]/Dist_left;
 g_vector[2]=Dist_Goalleft[2]/Dist_left;

 Dist_left= Dist_Goalleft.magnitude();

 //Distance between effector position right goal point

 Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0];
 Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1];
 Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2];
 Dist_right=Dist_Goalright.magnitude();

//if((m_effectorPosition[0]>Fitts_Start[0])&&(m_effectorPosition[0]<Fitts_Start[0]+40.0
)&&(m_effectorPosition[1]>Fitts_Start[1]-
30.0)&&(m_effectorPosition[1]<(Fitts_Start[1]+30.0)))
 if(m_effectorPosition[1]>(Fitts_Start[1]-10.0))
 {
 if(m_effectorPosition[1]<(Fitts_Start[1]+10.0))
 {

178

Appendix C (Continued)

 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }

 }
 else
 {

 if(m_effectorPosition[0]>(Fitts_End[0]-130.0))
 {

 if(m_effectorPosition[0]>(Fitts_End[0]-40.0))
 {
 //m_forceOnVisitor.set(-0.7*exp(-Dist_right/70.0),0.7*exp(-
Dist_right/70.0),0.0);

 m_forceOnVisitor.set(0.09*exp(-Dist_right/70.0),0.1*exp(-
Dist_right/70.0),0.0);
 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);

 }
 else
 {

 m_forceOnVisitor.set(2.0*exp(-Dist_right/70.0), 0.1*exp(-Dist_right/70.0),
0.0);
 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);
 }

 }
 Else

 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }

 }
 }

179

Appendix C (Continued)

 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
#endif

/***

Test 8:FITTS TASK/The execution of FITTS TASK without any kind of assistance
provided to the user
**
**************************/
//#ifdef EXP8:
if (m_gIDMenu == 5)//no assistance provided
{
 m_forceOnVisitor.set(0.0,0.0,0.0);
 printf("%3.6f %3.6f
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1],m_effectorPosition[2]);

}
//#endif
/***

Test 9:FITTS TASK/The execution of FITTS TASK with assistance provided to the user
**
**************************/
//#ifdef EXP9:
if (m_gIDMenu == 0)
{

 double scale=0.1;
 double Proj_Scale=0.08;
 double y_limit=10.0;
 bool OneTrip = false;
 //HDdouble m_PreX = 0.0;

180

Appendix C (Continued)

 Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0));

 Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0));

 Traj_left[2] = 0.0;

 Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0));

 Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0));

 Traj_right[2] = 0.0;

 Fitts_Start[0] =pointstart.x;
 Fitts_Start[1]= pointstart.y;
 Fitts_Start[2]= pointstart.z;

 Fitts_End[0]=pointend.x;
 Fitts_End[1]= pointend.y;
 Fitts_End[2]= pointend.z;

 //Trajectory vector between the two goal points//
 Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0];

 Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1];

 Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2];

 GoalDist= Fitts_Delta.magnitude();
 //Normal vector along the trajectory path
 /*g_vector[0]=Fitts_Delta[0]/GoalDist;
 g_vector[1]=Fitts_Delta[1]/GoalDist;
 g_vector[2]=Fitts_Delta[2]/GoalDist;*/

 //Distance between effector position and left goal point

 Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0];
 Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1];
 Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2];

181

Appendix C (Continued)

 g_vector[0]=Dist_Goalleft[0]/Dist_left;
 g_vector[1]=Dist_Goalleft[1]/Dist_left;
 g_vector[2]=Dist_Goalleft[2]/Dist_left;

 Dist_left= Dist_Goalleft.magnitude();

 //Distance between effector position right goal point
 Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0];

 Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1];
 Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2];
 Dist_right=Dist_Goalright.magnitude();

 /*if (firstTrip==true) {
 firstTrip = false;
 Previous_Xcoordinate[0]= 0.0;
 }*/

 if(m_effectorPosition[1]>(Fitts_Start[1]-10.0))
 {
 if(m_effectorPosition[1]<(Fitts_Start[1]+10.0))
 {

 if(m_effectorPosition[0]<m_PreX[0])
 {
 if(m_effectorPosition[0]<(Fitts_Start[0]+180.0))
 {

 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_PreX[0]);
 if(m_effectorPosition[0]<(Fitts_Start[0]+135.0))
 {
 if(m_effectorPosition[0]<(Fitts_Start[0]+40.0))
 {

182

Appendix C (Continued)

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(-0.7*exp(-
Dist_left/70.0),0.7*exp(-Dist_left/70.0),0.0);
 m_forceOnVisitor.set(-
0.6*exp(-Dist_left/70.0),0.0,0.0);

 }
 else
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(-2.0*exp(-Dist_left/70.0),
1.2*exp(-Dist_left/70.0), 0.0);
 m_forceOnVisitor.set(-1.8*exp(-Dist_left/70.0),0.0, 0.0);

 }

 }
 }
 else
 {
 if(m_effectorPosition[0]>(Fitts_Start[0]+180.0))
 {
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_PreX[0]);

Appendix C (Continued)

 if(m_effectorPosition[0]>(Fitts_End[0]-135.0))
 {
 if(m_effectorPosition[0]>(Fitts_End[0]-40.0))
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(-0.7*exp(-
Dist_right/70.0),0.8*exp(-Dist_right/70.0),0.0);

m_forceOnVisitor.set(-0.6*exp(-Dist_right/70.0),0.0,0.0);
 //printf("%3.6f
%3.6f\n",Previous_Xcoordinate[0]);
 }

183

Appendix C (Continued)

 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(-2.0*exp(-
Dist_right/70.0),1.2*exp(-Dist_right/70.0), 0.0);
 m_forceOnVisitor.set(-1.8*exp(-Dist_right/70.0),0.0, 0.0);
 // m_forceOnVisitor.set(-1.8*exp(-
Dist_right/70.0),1.2*exp(-Dist_right/70.0), 0.0);
 //printf("%3.6f\n",Previous_Xcoordinate[0]);
 }

 }

 }

 }
 }

 else
 {
 if(m_effectorPosition[0]> m_PreX[0])
 {
 if(m_effectorPosition[0]<(Fitts_Start[0]+180.0))
 { //printf("%3.6f
%3.6f\n",m_PreX[0],m_effectorPosition[0]);
 if(m_effectorPosition[0]<(Fitts_Start[0]+135.0))
 {
 if(m_effectorPosition[0]<(Fitts_Start[0]+40.0))
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(0.5*exp(-
Dist_left/70.0),0.7*exp(-Dist_left/70.0),0.0);

m_forceOnVisitor.set(0.6*exp(-Dist_left/70.0),0.0,0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];
 }
 else
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(2.0*exp(-Dist_left/70.0),
1.2*exp(-Dist_left/70.0), 0.0);

184

Appendix C (Continued)

 }

 }
 }
 else
 {
 if(m_effectorPosition[0]>(Fitts_Start[0]+180.0))
 { //printf("%3.6f
%3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //if(m_effectorPosition[0]<(Fitts_Start[0]+135.0))
 if(m_effectorPosition[0]>(Fitts_End[0]-135.0))
 {
 if(m_effectorPosition[0]>(Fitts_End[0]-40.0))

 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(0.5*exp(-
Dist_right/70.0),0.6*exp(-Dist_right/70.0),0.0);

m_forceOnVisitor.set(0.6*exp(-Dist_right/70.0),0.0,0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];

 }
 else

 {
 // m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(2.0*exp(-
Dist_right/70.0), 0.8*exp(-Dist_right/70.0), 0.0);
 m_forceOnVisitor.set(1.8*exp(-Dist_right/70.0), 0.0, 0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];
 //printf("%3.6f\n",m_PreX);

 }
 }
 }
 }
 }
 } }
 else

185

Appendix C (Continued)

 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }

}

//Previous_Xcoordinate[0]= m_effectorPosition[0];
//#endif

/***

Test 10:Fitts’ Task/The execution of Fitts’ Task implemented in the Y direction with
assistance
**
**************************/

//#ifdef EXP10:
if (m_gIDMenu == 1)
{
 double scale=0.1;
 double Proj_Scale=0.08;
 double y_limit=10.0;
 bool OneTrip = false;
 //HDdouble m_PreX = 0.0;

 Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0));

 Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0));

 Traj_left[2] = 0.0;

 Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0));

 Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0));

 Traj_right[2] = 0.0;

186

Appendix C (Continued)

 Fitts_Start[2]= pointstart.z;

 Fitts_End[0]=pointend.x;
 Fitts_End[1]= pointend.y;
 Fitts_End[2]= pointend.z;

 //Trajectory vector between the two goal points//
 Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0];

 Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1];

 Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2];
 GoalDist= Fitts_Delta.magnitude();
 //Normal vector along the trajectory path
 /*g_vector[0]=Fitts_Delta[0]/GoalDist;
 g_vector[1]=Fitts_Delta[1]/GoalDist;
 g_vector[2]=Fitts_Delta[2]/GoalDist;*/

 //Distance between effector position and left goal point

 Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0];
 Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1];
 Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2];

 g_vector[0]=Dist_Goalleft[0]/Dist_left;
 g_vector[1]=Dist_Goalleft[1]/Dist_left;
 g_vector[2]=Dist_Goalleft[2]/Dist_left;

 Dist_left= Dist_Goalleft.magnitude();

 //Distance between effector position right goal point
 Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0];
 Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1];
 Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2];
 Dist_right=Dist_Goalright.magnitude();

187

Appendix C (Continued)

 Previous_Xcoordinate[0]= 0.0;
 }*/

 if(m_effectorPosition[0]>(Fitts_Start[0]-5.0))
 {
 if(m_effectorPosition[0]<(Fitts_Start[0]+5.0))
 {

 if(m_effectorPosition[1]<m_PreX[1])
 {

 if(m_effectorPosition[1]<(Fitts_Start[1]+175.0))
 {
 //printf("%3.6f %3.6f\n",m_effectorPosition[1],m_PreX[1]);

 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_PreX[0]);
 if(m_effectorPosition[1]<(Fitts_Start[1]+ 155.0))
 {
 //printf("%3.6f %3.6f\n",m_effectorPosition[1],m_PreX[1]);
 if(m_effectorPosition[1]<(Fitts_Start[1]+20.0))
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(-0.05*exp(-
Dist_left/70.0),-0.5*exp(-Dist_left/70.0),0.0);

 m_forceOnVisitor.set(0.0,-0.5*exp(-Dist_left/70.0),0.0);
 //printf("%3.6f
%3.6f\n",m_effectorPosition[1],m_PreX[1]);
 } else
 {

//m_forceOnVisitor.set(0.0,0.0, 0.0);
 //m_forceOnVisitor.set(-0.1*exp(-Dist_left/70.0),-
2.0*exp(-Dist_left/70.0), 0.0);
 m_forceOnVisitor.set(0.0,-2.0*exp(-Dist_left/70.0), 0.0);
 //printf("%3.6f\n",Previous_Xcoordinate[0]);
 }

188

Appendix C (Continued)

 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 }
 else
 {
 if(m_effectorPosition[1]>(Fitts_Start[1]+175.0))
 {
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_PreX[0]);

 if(m_effectorPosition[1]>(Fitts_End[1]-90.0))
 {
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_PreX[0]);
 if(m_effectorPosition[1]>(Fitts_End[1]-20.0))
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(0.05*exp(-
Dist_right/70.0),-0.5*exp(-Dist_right/70.0),0.0);

m_forceOnVisitor.set(0.0,-0.5*exp(-Dist_right/70.0),0.0);
 //printf("%3.6f
%3.6f\n",Previous_Xcoordinate[0]);
 }
 else
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //m_forceOnVisitor.set(0.1*exp(-Dist_right/70.0),-
2.0*exp(-Dist_right/70.0), 0.0);
 m_forceOnVisitor.set(0.0,-2.0*exp(-Dist_right/70.0), 0.0);
 //printf("%3.6f\n",Previous_Xcoordinate[0]);
 }

 }

 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }

189

Appendix C (Continued)

 {
 if(m_effectorPosition[1]> m_PreX[1])
 {
 if(m_effectorPosition[1]> Fitts_Start[1])
 {
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);
 if(m_effectorPosition[1]<(Fitts_Start[1]+175.0))
 { //printf("%3.6f
%3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //printf("%3.6f %3.6f\n",m_effectorPosition[1],Fitts_Start[1]+100.0);
 if(m_effectorPosition[1]<(Fitts_Start[1]+155.0))
 {
 //printf("%3.6f
%3.6f\n",m_PreX[0],m_effectorPosition[0]);
 if(m_effectorPosition[1]<(Fitts_Start[1]+20.0))
 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //m_forceOnVisitor.set(0.05*exp(-
Dist_left/70.0),0.9*exp(-Dist_left/70.0),0.0);

m_forceOnVisitor.set(0.0,0.9*exp(-Dist_left/70.0),0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];

//m_forceOnVisitor.set(-1.0*exp(-Dist_left/70.0), 2.0*exp(-Dist_left/70.0), 0.0);
 }
 else {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //m_forceOnVisitor.set(0.1*exp(-Dist_left/70.0),
2.0*exp(-Dist_left/70.0), 0.0);
 m_forceOnVisitor.set(0.0, 2.0*exp(-Dist_left/70.0), 0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];
 //printf("%3.6f\n",m_PreX);

 }

 }
 else
 {

190

Appendix C (Continued)

 else
 {
 if(m_effectorPosition[1]>(Fitts_Start[1]+175.0))
 { //printf("%3.6f
%3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //if(m_effectorPosition[0]<(Fitts_Start[0]+135.0))
 if(m_effectorPosition[1]>(Fitts_End[1]-90.0))
 {
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);
 if(m_effectorPosition[1]>(Fitts_End[1]-20.0))

 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);

 //m_forceOnVisitor.set(0.05*exp(-
Dist_right/70.0),0.9*exp(-Dist_right/70.0),0.0);

m_forceOnVisitor.set(0.0,0.9*exp(-Dist_right/70.0),0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];

 }
 else

 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]);
 //m_forceOnVisitor.set(0.1*exp(-
Dist_right/70.0), 2.0*exp(-Dist_right/70.0), 0.0);
 m_forceOnVisitor.set(0.0, 2.0*exp(-Dist_right/70.0), 0.0);
 //Previous_Xcoordinate[0]= m_effectorPosition[0];
 //printf("%3.6f\n",m_PreX);

 }
 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }

191

Appendix C (Continued)

 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 }
 else
 {
 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
}
//#endif
/***

Test 11:FITTS TASK/The execution of FITTS TASK implemented in the Z direction
with assistance
**
**************************/
//#ifdef EXP11
if (m_gIDMenu == 2)

{
 double scale=0.1;
 double Proj_Scale=0.08;

 double y_limit=10.0;
 bool OneTrip = false;
 //HDdouble m_PreX = 0.0;

 Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0));

 Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0));

 Traj_left[2] = ((pointend.z+10.0)-(pointend.z+40.0));

 Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0));

192

Appendix C (Continued)

 Traj_right[2] = ((pointstart.z-10.0)-(pointstart.z-40.0));

 Fitts_Start[0] =pointstart.x;
 Fitts_Start[1]= pointstart.y;
 Fitts_Start[2]= pointstart.z;

 Fitts_End[0]=pointend.x;
 Fitts_End[1]= pointend.y;
 Fitts_End[2]= pointend.z;

 //Trajectory vector between the two goal points//
 Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0];

 Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1];

 Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2];

 GoalDist= Fitts_Delta.magnitude();
 //Normal vector along the trajectory path
 //g_vector[0]=Fitts_Delta[0]/GoalDist;
 //g_vector[1]=Fitts_Delta[1]/GoalDist;
 //g_vector[2]=Fitts_Delta[2]/GoalDist;

 //Distance between effector position and left goal point

 Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0];
 Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1];
 Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2];
 g_vector[0]=Dist_Goalleft[0]/Dist_left;
 g_vector[1]=Dist_Goalleft[1]/Dist_left;
 g_vector[2]=Dist_Goalleft[2]/Dist_left;

 Dist_left= Dist_Goalleft.magnitude();

 //Distance between effector position right goal point
 Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0];

193

Appendix C (Continued)

 Mid_Point[0]= Fitts_Start[0]+((Fitts_End[0]-Fitts_Start[0])/2.0);
 Mid_Point[1]= Fitts_Start[1]+((Fitts_End[1]-Fitts_Start[1])/2.0);

 if((m_effectorPosition[0]>(Fitts_Start[0]-
50.0))&&(m_effectorPosition[0]<(Fitts_End[0]+50.0)))
 {
 //printf("%3.6f %3.6f\n",m_effectorPosition[3],Fitts_End[0]);
 if((m_effectorPosition[1]>(Fitts_Start[1]-
50.0))&&(m_effectorPosition[1]<(Fitts_End[1]+50.0)))
 {
 //printf("%3.6f
%3.6f\n",m_effectorPosition[2],m_effectorPosition[2]);

 if(m_effectorPosition[2]> Mid_Point[2])
 //if((m_effectorPosition[0]<((Fitts_End[0]-
Fitts_Start[0])/(1.4)))&&(m_effectorPosition[1]<((Fitts_End[1]-Fitts_Start[1])/(1.4))))
 {

 //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_effectorPosition[2]);

 //printf("%3.6f %3.6f\n",m_effectorPosition[2],m_PreX[2]);

if(m_effectorPosition[2]>m_PreX[2])

{
 m_forceOnVisitor.set(0.0,0.0,1.5*exp(-Dist_right/100.0));
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 //printf("%3.6f %3.6f\n",m_effectorPosition[2],m_effectorPosition[2]);

}
 else if(m_effectorPosition[2]<m_PreX[2])

{
 //m_forceOnVisitor.set(0.0,0.0,0.0);
 m_forceOnVisitor.set(0.0,0.0,-1.3*exp(-Dist_right/70.0));
 //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_effectorPosition[1]);

194

Appendix C (Continued)

 {

if(m_effectorPosition[2]<(Mid_Point[2]-3.0))
 {

Appendix C (Continued)

 if(m_effectorPosition[2]<m_PreX[2])

 {
 //m_forceOnVisitor.set(0.0,0.0,0.0);

 m_forceOnVisitor.set(0.0,0.0,-0.5*exp(-Dist_left/70.0));

 //m_forceOnVisitor.set(0.1*exp(-Dist_left/100.0),-0.38*exp(-
Dist_left/100.0),-0.5*exp(-Dist_left/70.0));
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1]);

 }
 else if(m_effectorPosition[2]>m_PreX[2])

 {

 //m_forceOnVisitor.set(0.0,0.0,0.0);

 m_forceOnVisitor.set(0.0,0.0,0.7*exp(-Dist_left/70.0));
 //m_forceOnVisitor.set(-0.1*exp(-Dist_left/100.0),-0.4*exp(-
Dist_left/100.0),0.9*exp(-Dist_left/70.0));
 //printf("%3.6f
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1]);

 }
 }
 }

 }
 else

195

Appendix C (Continued)

 m_forceOnVisitor.set(0.0,0.0,0.0);
 }
 }

//#endif
}

/***

 Gets the force on the visitor particle, given the current displacement.
**
*******/
hduVector3Dd ContactModel::GetCurrentForceOnVisitor()
{
 return m_forceOnVisitor;
}

/***
******** Retrieve the current contact point, i.e. the center of the visitor

 sphere.
**
*******/
hduVector3Dd ContactModel::GetCurrentContactPoint()
{

 return m_visitorPosition;
}

/***

 Retrieve the current velocity of the end effector
**
*******/
hduVector3Dd ContactModel::GetCurrentEndEffectorVelocity()
{

 return m_velocityVec;

196

Appendix C (Continued)

/***

 Retrieve the current velocity of the end effector
**
*******/
hduVector3Dd ContactModel::GetLastVelocity()
{

 return m_lastvelocityVec;
}

/***

 Retrieve the scheduler ticks
**
*******/
HDdouble ContactModel::GetSchedulerTime()
{

 return schedulerTime;
}

/***

 Retrieve the maximum velocity
**
*******/
HDdouble ContactModel::GetMaxVel()
{

 return m_VelocityLimit;

}

/***

Retrieve the UDP socket option
**
**********/

197

Appendix C (Continued)

}

/***

Retrieve the Current Button State
**
**********/
HDint ContactModel::GetCurrentButtons()
{
 return m_CurrentButtonState;
}
/***

Retrieve the Last Button State
**
**********/
HDint ContactModel::GetLastButtons()
{
 return m_LastButtonState;
}
/***

Retrieve the MenuID
**
**********/
HDint ContactModel::GetIDMenu()
{
 return m_gIDMenu;
}

/***

 Save force components to a file
**
*******/

/*char *ContactModel::recordCallback(void *pUserData){
hduVector3Dd mforce;
hdGetDoublev(HD_CURRENT_FORCE, mforce);

198

Appendix C (Continued)

 return c;
}*/

//FILE *pFile =
//fopen("c:\\temp\\recordServoLoopData.txt","w");
//hdStartRecord(pFile,recordCallback,NULL,5000);

//MODIFIED//
/***

 Retrieve the current contact point, i.e. the center of the visitor
 sphere.
**
*******/

/*hduVector3Dd ContactModel::GetCurrentContactPoint()
{

 hlBeginFrame();
 hlCheckEvents();
 HLboolean buttDown = false;
 hlGetBooleanv(HL_BUTTON2_STATE,&buttDown);
 if (buttDown)
 {
 fprintf(stdout,"button is down\n");
 return m_visitorPosition;
 }

 hlEndFrame();
 return m_zeroPosition;

}*/

//MODIFIED//

199

Appendix C (Continued)

**
*******/
hduVector3Dd ContactModel::Getlastpos()
{
 return m_lastpos;
}
/***
**********/
HDdouble ContactModel::GetinstRate()
{
 return m_UpdateRate;
}
/***

Retrieve the current (previous last x position)
**
*********/
/*HDdouble ContactModel::GetPrevious_Xcoordinate()
{
 return m_PreX;
 printf("%3.6f\n",m_PreX[0]);
}*/

/***

Udpate end effector velocity/velocity scaling
**
**********/

/////////////start here/////////////
void ContactModel::UpdateEndEffectorVelocity(const hduVector3Dd vel)
{
 m_velocityVec = vel;

 hduVector3Dd TrajVec;

 double SCALE = 2.0;
 double DotProduct;

200

Appendix C (Continued)

 velocityMag=m_velocityVec.magnitude();
 //fprintf(stdout,"V=%3.4f\n",velocityMag);

 TrajVec[0]=pointend.x-pointstart.x;
 TrajVec[1]=pointend.y-pointstart.y;
 TrajVec[2]=pointend.z-pointstart.z;

 //Projection of velocity vector in the direction of trajectory//
 DotProduct =
(m_velocityVec[0]*TrajVec[0])+(m_velocityVec[1]*TrajVec[1])+(m_velocityVec[2]*Tr
ajVec[2]);
 SquareTraj=(TrajVec.magnitude())*(TrajVec.magnitude());
 VProjected= (DotProduct/ SquareTraj)*TrajVec;
 //VScaled = VProjected;
 //fprintf(stdout,"Vx = %3.4f Vy = %3.4f Vz =
%3.4f",m_velocityVec[0],m_velocityVec[1],m_velocityVec[2], VScaled[0], VScaled[1],
VScaled[2]);

}

/***

Udpate Last end effector velocity
**
**********/

/////////////start here/////////////
void ContactModel::UpdateLastEndEffectorVelocity(const hduVector3Dd lastvel)
{
 m_lastvelocityVec = lastvel;

}
/***

Update the scheduler ticks
**
*************/

201

Appendix C (Continued)

}

/***

Update the scheduler ticks
**
*************/
void ContactModel::UpdateRate(const double instRate){

 m_UpdateRate=instRate;

}

/***

 Constructor. Force model depends on relative position of two objects,
 a fixed and a visitor. Constructor initializes center positions, and it
 assumes that initially there is no contact. It also initializes radii
 for both spheres.
**
*******/

ContactModel::ContactModel(double fixedRadius,
 const hduVector3Dd fixed,
 double visitorRadius,
 const hduVector3Dd visitor)
{
 //allocate memory for bezier points
// mpoints = (POINT_3D*)malloc(sizeof(POINT_3D)*(NP+1));

 m_fixedCenter = fixed;

 /* Intersection of two spheres is equivalent to intersection
 of a point and a sphere of effective radius (arms length)
 equal to the sum of the two radii. */
 m_armsLength = fixedRadius + visitorRadius;

 UpdateEffectorPosition(visitor);

202

Appendix C (Continued)

/***

Retrieve the UDP OPTION that is being clicked
**
**********/
void ContactModel::UpdateUDP(const HDint option)
{
 m_option=option;
}
/***

Retrieve the UDP OPTION that is being clicked
**
**********/
void ContactModel::UpdateVel_Limit(const double Vmax)
{
 m_VelocityLimit=Vmax;
}
/***

Retrieve the UDP OPTION that is being clicked
**
**********/
void ContactModel::UpdatePrevious_Xcoordinate(const hduVector3Dd lastpos)
{
 m_PreX=lastpos;
 //printf("%3.6f\n",m_PreX[0]);

}
/***

Retrieve the current button state
**
**********/
void ContactModel::UpdateButtonState(const HDint nCurrentButtons)
{
 m_CurrentButtonState=nCurrentButtons;

203

Appendix C (Continued)

/***

Retrieve the last button state that is being clicked
**
**********/

void ContactModel::UpdateLastButtonState(const HDint nLastButtons)
{
 m_LastButtonState = nLastButtons;
}
/***

Retrieve the menu option that chooses the required experiment
**
**********/

void ContactModel::UpdateIDMenu(const HDint gIDMenu)
{
 m_gIDMenu = gIDMenu;
}

	Assistive force feedback for path following in 3D space for upper limb rehabilitation applications
	Scholar Commons Citation

	List of Tables
	List of Figures
	ABSTRACT
	
	1. Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Objectives
	
	1.4 Thesis Outline
	2. Background
	2.1 Introduction
	2.2 Haptics Based Upper Arm Rehabilitation
	2.3 Non Haptics Based Upper Arm Rehabilitation
	

	3. Assistance Concepts
	3.1 Introduction
	
	3.2 Force Assistance Function/Force Feedback Design
	3.2.1 Motion Dependent
	3.2.1.1 Spring Force
	3.2.1.2 Force Based on Exponential Law
	3.2.1.3 Force Based on Projected Velocity
	3.2.1.4 Force Assistance Based on Constant Force Projection
	3.2.1.5 Force Assistance Based on Velocity Based Force Projection
	3.2.1.6 Damper

	3.2.2 Friction
	3.2.2.1 Columbic Friction
	3.2.2.2 Viscous Friction

	3.2.3 Inertia
	3.2.4 Time Dependent
	3.2.4.1 Constant Force
	3.2.4.2 Periodic Force

	3.2.5 Impulses

	3.3 Velocity Assistance Function
	3.4 Position Assistance Function

	4. Implementation of Fitts’ Task
	4.1 Introduction
	4.1.1 Existing Models of Predicting Human Movement
	4.1.2 Significance of the Fitts’ Task

	4.2 A Unique Implementation of Fitts’ Task
	4.2.1 Fitts’ Task X
	4.2.1.1 Terminology Used in Fitts’ X
	4.2.1.2 Explanation of the Flowchart in Fitts’ X

	4.2.2 Fitts’ Task Y
	4.2.3 Fitts’ Task Z

	5. Experimental Test Set-Up
	5.1 Introduction
	5.2 Hardware
	5.2.1 Phantom 3D-Touch Enabled Modeling System
	5.2.2 Haptic Process Flow

	5.3 Software
	5.3.1 Open Haptic Overview

	
	5.3.1.1 HDAPI
	5.3.1.2 HLAPI

	5.3.2 OpenGL Graphical Software
	5.3.3 Multithreading

	6. Description of the Different Assistive Functions
	6.1 Introduction
	
	6.2 Trajectory Approach and Traversal
	6.2.1 Experimental Set-Up
	6.2.2 Terminology Used in Trajectory Approach Task
	6.2.3 Stiffness
	6.2.4 Distance
	6.2.5 Trajectory Vector
	6.2.6 Normal Vector
	6.2.7 Determination of a Point on the Trajectory Closest to the User’s Position
	6.2.8 Assistance Concepts Applied to this System
	6.2.8.1 Case a: When the User Approaches the Trajectory
	6.2.8.2 Case b: When the User is Very Close to the Trajectory and Under the Y_Start Point.
	6.2.8.3 Case c: When the User is On the Trajectory
	6.2.8.4 Case d: When the User is at Very Close Proximity to the Trajectory
	6.2.8.5 Case e: When the User Reaches the End of the Trajectory Path

	6.3 Three Dimensional Force Scaling
	6.3.1 Description
	6.3.2 Method
	6.3.2.1 Terminology for 3D Force Scaling
	6.3.2.2 Explanation of Flow Chart

	6.4 User Controlled Velocity Based Force Scaling
	6.4.1 Experimental Set-Up
	6.4.2 Method

	7. Experiments Based on Fitts’ Task
	7.1 Experimental Set-Up
	7.1.1 Graphical User Interface
	7.1.2 Validation of Assistance Concept
	7.1.3 Baseline Time Values
	7.1.4 Fitts’ Training
	7.1.5 Final Task
	7.1.6 Determination of Position Accuracy

	7.2 Fitts’ Task X-Direction
	7.3 Fitts’ Task Y-Direction
	7.4 Fitts’ Task Z-Direction

	8. Results
	8.1 Validation of Assistance Concept
	8.2 Determination of Position Accuracy
	8.2.1 Comparison of Fitts’ with and without Assistance or without Time Constant
	8.2.2 Comparison of Accuracy (without Assistance) with Execution Time Kept Constant
	8.2.2.1 Experimental Procedure

	8.2.3 Position Accuracy Before and After Training for S1 and S2
	8.2.3.1 Standard Deviation of S1 and S2

	9. Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work
	9.2.1 3D Simulation of Pre-Set Activities of Daily Living Tasks
	9.2.2 Addition to this Research Work
	
	9.2.3 Robotic Teleoperation
	

	References
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Appendices
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Appendix A. Fitts’ Coefficients
	Appendix B. Fitts’ Graphs
	Appendix C. C++ Code

