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Assistive Force Feedback for Path Following in 3D Space for  

Upper Limb Rehabilitation Applications 
 
 

Ramya Swaminathan 
 
 

ABSTRACT 
 
 
 

The primary objective of this research was the design of an easy to use C++ 

Graphical User Interface (GUI) which helps the user to choose the task that he/she wants to 

perform. This C++ application provides a platform intended for upper arm rehabilitation 

applications. The user can choose from different tasks such as: 

• Assistive Function in 3D Space to Traverse a Linear Trajectory 

• User Controlled Velocity Based Scaling 

• Fitts’ Task in X, Y, Z Directions  

According to a study conducted by the scientific journal of the American Academy of 

Neurology, stroke patients aided by robotic rehabilitation devices gain significant 

improvement in movement [1]. They also indicate that both initial and long term recovery 

are greater for patients assisted by robots during rehabilitation. This research aims to 

provide a haptic interface C++ platform for clinicians and therapists to study human arm 

motion and also to provide assistance to the user. The user would get to choose and 
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perform repetitive tasks aimed at improving his/her muscle memory. About eight healthy 

volunteers were chosen to perform a set of preliminary experiments on this haptic 

integrated C++ platform. These experiments were performed to get an indication of the 

effectiveness of the assistance functions provided in this C++ application. The eight 

volunteers performed the Fitts’ Task in X, Y and Z directions. The subjects were divided 

into two groups, where one of the groups was given training without assistance and the 

other was given training with assistance. The execution time for both the groups was 

compared and analyzed. The experiments performed were preliminary, however some 

trends were observed: the people who received training with assistive force feedback took 

less execution time compared to those who were given training without any assistance. 

The path following error was also analyzed. These preliminary tests were performed to 

demonstrate the haptic platform’s use as a therapeutic assessment application, a 

rehabilitation tool and a data collection system for clinicians and researchers.
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1. Introduction 
 
 
 

1.1 Motivation 
 
 
 
 The concept of applying robotics to rehabilitation has come a long way. 

Earlier, robotics research emphasized robot motion control and then focus shifted to the 

force control of a robot and the dynamics of robot interaction with the object it 

manipulates [1]. This research aims at developing a user friendly platform that has 

multiple applications for a robotic rehabilitation tool. Robot assisted devices are 

increasingly being used in stroke rehabilitation. The robotic tools help in the study of 

functional adaptation after a stroke. The greatest impact of the application of robotics to 

rehabilitation is not just the devices themselves, but also the infrastructure supporting 

rehabilitation. The concept of machines guiding people who are partially abled is not 

new, but what we present here is a useful modification in upper arm rehabilitation to help 

perform Activities of Daily Living (ADL). The main advantage of robot assisted therapy 

is that, they allow semi-autonomous practice of therapeutic tasks. Now, when we apply 

haptic technology to robotics, we provide another dimension to upper arm rehabilitation. 

This project emphasizes the use of assistive technology using haptics, to help people 

identify the direction of arm movement which causes tremors and undergo rehabilitative 
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training accordingly. This project is user friendly and cost effective, and hence becomes 

suitable for providing a platform for rehabilitative training. The unique idea about this 

project is that, it combines different assistance functions in one platform from which the 

user can choose the task that he or she wants to perform. 

1.2 Problem Definition 
 
 

 
 There are a lot of robot assisted devices currently available to help people with 

arm disorder perform any of the simple ADL. This includes force assistance functions to 

help the user perform activities such as:  

• Moving an Object from, Position A to Position B 

• Grasping Objects  

But there are not many options given to a user in terms of the types of assist 

functions or even in terms of the functionality of the interface device. The current arm 

rehabilitation tools for stroke, recoveries, etc, unfortunately do not provide a good 

quantitative measure of the recovery process. Secondly, standard interface devices like 

the keyboard or mouse often pose problems to motion impaired users [5]. These devices 

are not appropriate to meet the diverse needs of people with varying physical capabilities. 

Moreover, the devices may not perform consistently for extended computer usage. These 

standard input devices rely only on visual feedback which maybe supported by sound. 

The motion impaired users may not find visual feedback sufficient enough to perform 

teleoperation with their already reduced motor control and muscle strength. This would 

increase the error output in terms of position precision along with a huge delay in the 

time taken for completing the task. Studies have also shown that the fewer the number of 
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degrees of freedom of input devices, fewer the interactions rates. This emphasizes the 

importance of incorporating more degrees of freedom like finger flexion, to improve the 

reaction time [6]. This shows the significance of input devices for rehabilitation purposes. 

To be more specific, there is no user friendly software to help identify and 

quantify the hand disability motion in any particular direction. The haptic device has been 

identified as a better and effective tool aimed at rehabilitation purposes. One such device 

called the Phantom is being widely used for the same. Moreover, the C++ application 

provides an immediate feedback on the quantitative measure of parameters which helps 

the clinician assess user performance during rehabilitation. The assist functions applied 

here also provide path assistance to facilitate the rehabilitation process. However, not 

many researchers have put the Phantom to its maximum use in terms of assistance based 

force feedback. The scaling of forces depending on factors such as the arm mobility of 

each individual or the type of teleoperation based task facilitates the user control and task 

performance. Even though there are a lot of haptic based rehabilitation application tools, 

not all have applied the concept of Multithreading to their applications. These haptic 

based rehabilitation tools will be discussed in the next chapter. The current scenario of 

haptic teleoperation with assistive techniques offers very few choices in terms of ease of 

operation, time of task execution, type of assistive functions, and extent of user control. 

That is the reason, why this area of research presents a high scope for advanced haptic 

teleoperation and rehabilitation. 

 



    

4 
 

1.3 Objectives 
  
 
 

The objective is to create a haptic integrated PC based platform in C++ that unites 

different kinds of assistive functions intended for upper arm rehabilitation applications. 

Then, different types of assistive functions were studied and applied. 

This application was designed to provide different types of virtual tasks for the 

user to perform. Also, the user can perform these tasks either with or without any 

assistance. Three virtual tasks in this application were designed and modeled based on a 

well known model of human psychomotor behavior called the Fitts’ Task. It is very 

important to design a virtual task based on a mathematical model so that we can validate 

the accuracy of the task. Now, the human arm has seven degrees of freedom, three 

degrees of freedom in the shoulder, three in the wrist and one degree of freedom in the 

elbow. We try to replicate at least three translational movements, in other words, three 

degrees of freedom of the human arm based for a 3 degree of freedom Fitts’ Task. 

Finally, the goal was to conduct experiments to validate the assistance concept and 

position accuracy among a sample population of eight subjects. The Fitts’ Task 

implemented with force feedback aim at giving training to improve the speed-accuracy 

ratio of the arm disabled users apart from quantifying human dexterity [7]. The Fitts’ 

Task test preliminary results later show a trend that the assist functions help reduce the 

task execution time and maintain the accuracy of user motion.  

 

 

 



    

5 
 

The objectives are summarized in points as shown below: 

• To create a haptic integrated PC based platform in C++ that unites different 

kinds of assistive functions intended for upper arm rehabilitation applications. 

• To study and implement some of the different types of assistive forces.  

• To implement the well known model of human psychomotor behavior called 

the Fitts’ Task in a virtual environment. 

• To replicate three translational movements (3 DOF) of the human arm based 

with the Fitts’ Task. 

• To validate the assistance concept and position accuracy. 

The GUI application in C++ also provides various test options to the user, in a 

very easy to use menu. This project intends to enable a robust haptic control with 

assistive technology primarily designed for motion impaired users. The various options 

presented in this GUI are as follows: 

• Linear Constraint Motion 3D 

• Velocity Scaling Assistance (User Controlled Scaling) 

• Fitts’ Task Implemented in X, with Assistance 

• Fitts’ Task Implemented in Y, with Assistance 

• Fitts’ Task Implemented in Z, with Assistance 

• No Assistance Applied to any of the Above Tasks       

The GUI is displayed in a later part of this thesis. 

 

 



    

6 
 

1.4 Thesis Outline 
 
 
 

 The current chapter is an introduction to robotics in rehabilitation, and a small 

outline of the research work. The related work or background in haptics and non haptics 

based upper arm rehabilitation, forms the crux of the second chapter. The third chapter 

presents a background on the different kinds of assistance concepts. The fourth chapter 

talks about the background of the Fitts’ Law. The fifth chapter presents the experimental 

set-up with an introduction to the hardware, software part used in this research. The sixth 

chapter presents two virtual tasks that were designed along with a descriptive explanation 

of the concepts applied here. The seventh chapter describes the three Fitts’ Tasks 

designed for the application and gives an introduction on the assistive concepts applied 

here. The eighth chapter presents the results and the conclusions. The Fitts’ experiments 

were performed on a group of eight people. All the results with the graphs are provided in 

the eighth chapter. The last chapter talks about the future work that is integrated to this 

research.
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2. Background 
 
 
 

The Background work for this research was done in four different areas of interest 

such as: 

• Haptics Based Therapy 

• Non Haptics Based Therapy 

• Assistance Concepts 

• Fitts’ Law 

 
In this chapter, the background details of haptics based therapy and non haptics 

based therapy will be discussed. 

2.1 Introduction 
 
 
 

 As far as rehabilitation is concerned, robotics has come a long way. Stroke 

rehabilitation is one of the main areas where robot assisted devices are extensively used. 

They help in the study of functional adaptation after a stroke. About 10% of the world 

population is affected with arm disabilities like stroke, tremors and disabled hand motor 

functions. Tremor is the most common cause of movement disorder. Tremors can be 

triggered by normal aging, drugs, Parkinson’s disease, and Multiple Sclerosis or 
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excessive stress. The severity of the hand disability increases in the case of a spinal cord 

injury leading to neurological deficit conditions. In such a condition, a human would face 

difficulties in accomplishing simple ADL. Tremors are classified into Rest and Action 

types. Action tremors are further divided into Postural, Isometric and Kinetic. The tremor 

syndromes are further classified into Physiological, Essential, drug induced Parkinson’s, 

Cerebellar and Pschycogenic. There exist a number of tremor syndrome diagnostic tools 

like Surface Electromyography, Accelerometers, Potentiometers and Handwriting 

Tremor Analysis but these are useable only in research or in some specialty centers. They 

require more technical knowledge to be operated upon and hence may not be user 

friendly. Even new technologies like Positron Emission Tomography and Single Photon 

Emission have limited applications and require more investigation. They can hardly be 

used on a daily basis. Here, we propose an efficient way to find the direction of motion in 

which the user faces difficulty in moving the arm. This research work aims at providing a 

platform for the clinicians and therapists to study arm motion and also to provide 

assistance to a user. This research helps to provide more precise, objective and detailed 

data on what actually happens during recovery. This in turn, would provide a better 

understanding of the key biomechanical and neurological factors required for successful 

rehabilitation.  

2.2 Haptics Based Upper Arm Rehabilitation 
 
 
 

The term haptic is derived from the Greek word haptesthai, meaning “to touch”. 

The haptic sensory system employs both Cutaneous and Kinesthetic Receptors when 
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engaged in an active procedure. Basically, any kind of touch becomes “active”, when the 

sensory inputs are combined with controlled body motion. Haptic rendering is defined as 

the process of computing and generating forces in response to user interactions with 

virtual objects. They offer important applicability in engineering and medical training 

tasks. The past research [8] in haptic interface implemented several forms of assistance 

functions designed to augment human performance. The test bed used for these tasks 

consisted of a six degree of freedom force reflecting haptic interface device called the 

Phantom, with the GHOST SDK software produced by Sensable Tech. More recently, 

this company developed the Omni Phantom which is a more affordable haptic interface 

and it uses the OpenHaptics toolbox for programming. Pernalete [8] demonstrated that 

for a set of chosen tasks, the assistance functions significantly reduced execution times 

and enhanced the individual’s performance. Arsenault et al [9] implemented a haptic 

device interface to test eye-hand coordination during the manipulation of any 3D object 

in the virtual world. They proved that haptic rendering of virtual objects improved the 

eye-hand coordination for user interactions. 

 In teleoperation applications, a user is able to perform complex tasks in a remote 

environment. For example removal of bombs, mines and inspection of underwater 

structures require the intervention of a remote operator. The visual feedback plays an 

important role for these task executions and Morris [10] proved that the use of a haptic 

Interface with force feedback assistance increases the user’s perception of the virtual 

environment. Yu [12] developed a telemanipulation system using intelligent mapping 

from a haptic user interface to a remote manipulator. The mapping is referred to as an 
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assistance function, and was derived on the basis of user’s motion intention. He applied 

the Hidden Markov Model for classifying the user’s motion intention in a teleoperation 

task. In order to characterize the skill of the upper limb motion, Yu chose a simple task 

such as human movement along a virtual labyrinth. Although this is an excellent 

example, he implements the motion only in the X-Y plane, which limits the arm 

movement. We have developed a platform where the user can get haptic assistance in X, 

Y and Z directions. 

One of the simplest of rehabilitation applications using haptics was the upper limb 

rehabilitation program using a basic motion training program [14]. The users were made 

to execute a simple task called the POINT task where time, viscosity and friction were 

measured when the user moved and pointed to 9 small circles displayed on the screen. 

The same task was performed with assistance. However, the entire task takes place only 

in the X and Y directions completely ignoring the Z axis. 

Another interesting haptic exercise designed for post stroke arm rehabilitation is 

an application called the “The Labyrinth” which combines virtual environment with 

haptics. This [13] task was found to be very encouraging and motivating to the stroke 

patients. The users had to guide a stylus through a virtual maze using the Phantom device 

from one panel to the other without touching the walls as shown in Figure 2.1. Though 

this is very good exercise for the affected upper arm, the lack of a suitable model to 

quantify human motion performance might leave the clinician with very less information.  
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Figure 2.1: The Phantom Omni with “THE LABYRINTH”(Ref:[10]) 
 

The Rutgers Master II (RMII) glove [14] is another interesting rehabilitation 

device which provides resistive forces to the user wearing it. This glove, as shown in 

Figure 2.2, is integrated to a novel multipurpose haptic interface along with a tracker. 

This device helps the user perform a set of physical therapy and rehabilitation exercises. 

 

Figure 2.2: The Prototype Developed at Rutgers, The State University of New Jersey, 
Rutger’s Glove (Ref:[14]) 

 
The MIT Manus [18] robot is a direct drive five bar linkage Selective Compliance 

Assembly Robot Arm (SCARA) mechanism which provides two translational degrees of 

freedom for the elbow and forearm motion. It also provides wrist rotation movements. 
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The Manus needs an occupational therapist to physically guide the patient initially in 

executing simple tasks. The Manus can be seen in Figure 2.3. 

 

Figure 2.3: Commercial Version of the MIT Manus [Ref:Journal of Neuroengineering 
and Rehabilitation 2004] 

 

Our project, also guides the patient in executing simple tasks like, approaching a 

trajectory path, following a trajectory path, Fitts’ X, Fitts’ Y, Fitts’ Z and user controlled 

force scaling. Another significant difference between the Manus project and the 

rehabilitation tool presented here is that, there is no need of a therapist to guide the user 

to perform the above mentioned tasks. The Phantom device used as a haptic input device 

is very user friendly.  
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2.3 Non Haptics Based Upper Arm Rehabilitation 
 
 
 

The development of rehabilitation robot manipulators began in the late 1960’s 

itself. One of the first successful rehabilitation robot manipulators is the Rancho “Golden 

arm” developed in California [16]. One of the earliest examples of the workstation based 

approach to implement robotic systems was the Heidelberg Manipulator [16]. In line with 

the workstation based robotic device, the most commonly used system was the Robot for 

Assisting the Integration of the Disabled (RAID) [17]. This involved a set of 

preprogrammed tasks like moving books from one shelf to another using the robot 

controlled by a joystick. Another such robot used for occupational therapy is the Assisted 

Rehabilitation and Measurement (ARM) Guide device. 

 

Figure 2.4: Photo of the ARM Guide (Ref:[11]) 
 
 

The ARM Guide [19] is a four degree of freedom robotic device which consists of 

a hand piece attached to an oriented linear track as seen in Figure 2.4. A force sensor can 

record the forces and torques at the interface between the device and the subject. This 
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device was primarily used to measure hand movements. Another interesting robotic 

device for arm rehabilitation is the Robotic Assisted Upper Extremity Repetitive Therapy 

(RUPERT) [20]. This arm is powered by four pneumatic muscles and has four actuated 

degrees of freedom. It can be adjusted to fit the patient body size. The arm is used to 

assist patients wearing them, to perform simple ADL and to move the arm in 3D space. 

The RUPERT arm can be seen in Figure 2.5. 

 

 
Figure 2.5: a)Version II of RUPERT Device b) Computer Simulation of Version III  

c) Version III of RUPERT Device (Ref:[12]) 
 

The Armin rehabilitation robotic arm designed for therapy [21] had a target 

population consisting of patients with orthopedic and neurological conditions. This is a 

six degree of freedom robotic arm designed like a human arm, fitted with position and 

force sensors. This arm did not provide any kind of force assistance to guide the user. So, 

the training sessions lasted longer. These robotic rehabilitation arms were either bulky or 

complicated to be operated upon. These are the major limitations of the established 

rehabilitation arms. That is why this research concentrates on the creation of a system 

that is simple and user friendly.The non haptic therapy devices do not provide a sense of 

touch to the user while performing tasks.  
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3. Assistance Concepts 
 
 
 
3.1 Introduction 
 
 
 

This chapter is an overview of the various types of forces that can be generated 

using the Phantom device and each of them is explained briefly here. In the later part of 

the research, the assistance concepts discussed here is eventually applied in the Fitts’ 

experiments. The force feedback device used in this research is the three degree of 

freedom device called the phantom. The Assistance function concept is a way of assisting 

a user in task execution without overriding his or her command to the operator. The 

following chapter presents an introduction on the types of assistance concepts. In order to 

make our haptic tasks and teleoperation more accessible to people with arm disabilities, it 

was decided that assistance functions would be incorporated into the proposed 

simulations experiments.  

The importance of assistance functions is emphasized in the following lines. In 

his study, J. Schuyler [22] concluded that even a slight increase in manipulation ability 

and strength would improve the job scope of the disabled individual. T. Kesavadas and 

Hari Subramanium [24] developed a system of virtual tools that one could use to 

interactively perform tasks in 3D with just click of a mouse on a computer screen. They 

performed experiments with tools with and without attributes. Here the ones with 
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attributes had pre-defined guide planes which would control the motion of the end-

effector depending on the path. The task execution time was computed using Fitts’ Task 

algorithm as it involved the tapping of blocks in 3D space. The Fitts’ Task is used to 

model human movement based on speed and accuracy. The experiment was performed 

without any kind of assistance and the execution time was noted. They inferred from their 

results that the user performance improved when toll guided features were used. The 

importance of haptic assistance was further emphasized by K. Maclean [25] who 

determined that force reflection, sense of touch, made the haptic devices most suitable for 

applications in human augmentation, filtering and for manual activities performed by the 

differently abled. Thus, the assistance function concepts play a very important role in 

robotic tele-operation. The position and velocity mappings between the slave and 

manipulator are the basis of assistance function concepts [27]. 

The assistance functions can be classified as: 

• Force Assistance Function or Regulation of Contact Forces 

• Regulation of Velocity 

• Regulation of Position 

3.2 Force Assistance Function/Force Feedback Design 
 
 
 

This helps to augment the user’s hand dexterity by imposing some constraints 

based on attractive or repulsive potential fields. The attractive or repulsive forces are 

implemented as virtual constraints in the master’s workspace so that user cannot move in 

any undesired direction.  
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The force vector is a unit of output for a haptic device. The three different ways of 

simulating forces are motion dependent, time dependent and motion and time dependent. 

3.2.1  Motion Dependent  
 
 
 

This is computed based on the motion of the haptic device. The motion dependent 

forces are classified as follows: 

3.2.1.1 Spring Force 
 
 
 

 The spring force is the simplest of force calculation techniques and is easily 

applied. The spring force is calculated based on the Hooke’s Law which can be described 

as follows,                       

                                                     xkF rr
*=                                                                    (3.1) 

Where: 

• F
r

 = Spring Force Vector 

• k = Stiffness Constant 

• =xr Displacement Vector = 10 xx rr
−  

• 0xr = Fixed Anchor Position 

• 1xr  = Device Position 

The virtual spring is attached between the fixed anchor position p0 and device 

position p1. The surface of the object that the user is touching usually forms the fixed 

anchor position. 

The spring tries to restore itself to its original length from the displaced length and 

this mathematical displacement value is used to compute the restoring force of the spring 
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which is conveniently called as spring force. This force will always be directed towards 

the fixed anchor position. The stiffness constant k, determines how aggressively the 

spring would try to restore itself to its rest length. The behavior of this type of force is 

easy to predict and understand as it is based on the physical analogy of a spring. This 

force could be applied to either push two points in the virtual world from each other or 

just attract them towards each other which made this force suitable for our project as it 

could help the user to move towards any point on the trajectory or move away from it. 

Moreover, the data obtained from spring type force displayed aesthetic criteria like 

uniform edge length, uniform vertex distribution and symmetry. 

3.2.1.2 Force Based on Exponential Law  
 
 
 

This force is computed based on an exponential relationship between the haptic 

end-effector and the target object or trajectory. The relationship can be explained as, 

                                                          DistaekF 1*1 −=                                                    (3.2)          

                                                          DistaekF 2*2 −=                                                   (3.3)                          

                                                          DistaekF 2*3 −=                                                    (3.4)                        

Where: 

• =3,2,1 FFF  Force Components in X, Y, Z Direction 

• 3,2,1 aaa  = Scaling Factors in the X, Y, Z Directions 

• =k  Scaling Factor 

• Dist = Distance Between Haptic End-Effector and Target Object 



    

19 
 

Hence, as the exponential force increases with decrease in distance and vice versa. 

The incorporation of a negative sign would change the direction of force vector which 

depends on the location of the end-effector and target on 3D screen. This force is 

considered to be an ideal force during trajectory approach because; the force is high only 

when the user is near the trajectory. This would prevent any sudden high force rendering 

in the beginning of trajectory approach itself. The user would not feel any jerks or 

unwanted pulling forces at the beginning itself. This slow increasing force would create a 

very smooth motion during trajectory or target approach. 

3.2.1.3 Force Based on Projected Velocity 
 
 
 

 

Figure 3.1: Representation of Force Assistance Function [13] 
 

These forces are calculated based on the projection vector of the Cartesian 

position of the end-effector on the desired trajectory. They are important set of forces 

because they allow the user to stay on a perfect line of trajectory. The attractive force is 

computed as: 

                                                   )( Pr ojectionVVkF
rr

−=                                                     (3.5) 
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Where: 

• k = Scaling Factor 

• ctorVelocityVeV =
v

of the End-Effector 

• ctorVelocityVeV ojection =Pr

v
 Projected on to the Trajectory Vector. 

This is then multiplied by a scaling factor depending upon the direction of motion. 

That is, the scaling value is higher for the component of the force (F) vector which is in 

the direction of required motion of master. The lesser scaling values applied in the other 

two direction constraint the force in those directions respectively. Thus, while the 

attractive force enhances the motion in one or two directions, the master will have to fight 

high torques on the constraint directions.  

3.2.1.4 Force Assistance Based on Constant Force Projection 
 
 
 

As indicated above, a force based on exponential law is exerted on the user to 

assist his or her motion towards the trajectory. Once the user is on the trajectory, a 

constant force is projected in the direction of the trajectory as follows: 

                                            TTFF DP

rrrr
*)/(

2
−=                                                             (3.6) 

Where: 

• =PF
r

Projected Force 

• TFFD

rrr
•= ,  Dot product of a Constant Force Vector with the Trajectory 

Vector 

• =
2

T
r

Square of the Magnitude of Trajectory Vector 

•  =T
r

Vector along the Desired Trajectory Path 
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3.2.1.5 Force Assistance Based on Velocity Based Force Projection 
 
 
 

The exponential based force is provided to the user to assist trajectory approach as 

in the above two cases. A force based on the haptic velocity of the approaching sphere is 

determined. The haptic velocity is obtained using a haptic command and projected in the 

direction of trajectory as shown in the next page. 

                                                        TTVF DP

rrrr
*)/(

2
−=                                                  (3.7) 

Where: 

• TVVD

rrr
*= , Dot Product of Haptic Velocity Vector with the Trajectory Vector 

• =
2

T
r

Square of the Magnitude of Trajectory Vector 

• =T
r

Vector along the Desired Trajectory Path 

 This force projection assists the user in moving on the trajectory path.                                                        

3.2.1.6 Damper  
 
 
 

The Damper, as the name suggests damps or opposes motion. The strength of 

Damper is proportional to end-effector velocity. The Damper equation is, 

                                                           VbF
rr

*−=                                                          (3.8)                         

Where: 

• b = Damping Constant 

• V
v

= Velocity of End-Effector 

This force always points in the opposite direction of motion. This force can be 

very useful when the user wants to control the scaling of forces sent to him during 
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teleoperation. Basically, user controlled scaling requires a factor which defines user 

motion to compute forces for every frame per second. The velocity of the user is the best 

factor which can determine user intention and scale up or scale down the forces 

accordingly. If the user velocity is low, then the Damper force applied is also low, based 

on the equation so that user controlled motion is not hindered. If the user velocity is high, 

then to prevent him or her from exceeding the velocity limits, a higher damping force is 

computed accordingly and sent to the user. 

3.2.2 Friction 
 
 
 

The haptic device can be used to simulate the following kinds of frictional forces: 

Columbic Friction, Viscous Friction, Static Friction, Dynamic Friction, and Inertia. The 

Frictional forces play an important role in rehabilitation based training tasks using haptic 

technology for people with hand disabilities. They can especially help haptic users with 

hand tremors to move in 3D space smoothly in any direction. Here is a description of the 

different types of frictional forces: 

3.2.2.1 Columbic Friction  
 
 
 

This basic kind of force opposes the direction of motion with a force that is 

computed by:                               

                                                       )(VsignCF
rr

×−=                                                     (3.9) 
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Where: 

• V
r

 = Velocity of End-Effector 

• C = Frictional Constant 

• )(Vsign
r

 =Direction of Vector V
r

 

This frictional force helps to create a smooth transition when changing directions, 

since friction will be proportional to velocity for slow movement. Here the damping 

constant is high, with a small constant force clamp.  

3.2.2.2 Viscous Friction 
 
 
 

This force is very similar to the Columbic force. This is also computed with 

damping constant and constant force clamp. The only difference here is that, the damping 

constant is low with a high clamp value. The Static and Dynamic Friction is also referred 

to as the stick-slip friction as the friction model switches between no relative motion and 

resisted relative motion. This force opposes lateral motion along a surface, and the 

magnitude of the frictional force is always proportional to the perpendicular (normal) 

force of contact. 
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3.2.3 Inertia  
 
 
 

This force is associated with any moving mass. In a given trajectory, one can 

calculate the force during that motion using Newton’s second law of motion:    

                                                          amF rr
∗=                                                             (3.10)                         

Where: 

• F
r

= Force in Newton 

• m= Mass 

• ar = Acceleration 

 

3.2.4 Time Dependent  
 
 
 

Any force that is computed as a function of time is called Time Dependent. The 

following are the different ways of rendering Time Dependent forces: 

3.2.4.1 Constant Force  
 
 
 

This is a force with fixed magnitude and direction. This force is used for gravity 

compensation so that the end-effector feels weightless. This force can also be used to 

make the end-effector feel heavier than normal. 

3.2.4.2 Periodic Force  
 
 
 

This force is produced by applying a pattern that repeats over time. The patterns 

vary from a Saw Tooth Wave, Sinusoidal Wave or Square Wave. The Periodic force is 
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defined by a time constant and amplitude. The time constant controls the period of the 

patterns cycle whereas the amplitude determines how strong the force will be at the peak 

of the cycle. 

3.2.5  Impulses  
 
 
 

These are forces which are applied instantaneously. This force is more effective 

because, nerves are more sensitive to discontinuities in force rather than steady-state 

force. This is why, a larger derivative of force with lower magnitude is more compelling 

than a smaller force derivative with higher magnitude.  The impulse force can be very 

useful when it comes to computing average impact forces during collision. Given, the 

end-effector velocity of the Phantom, and the assumed mass of the end-effector, the 

impulse force could be calculated as follows: 

                                             )/(* tVmF ΔΔ=
rr

                                                    (3.11) 

 Where: 

•  =m Mass of the End-Effector 

• =ΔV
r

 Change in End-Effector Velocity     

• =Δt  Change in Time     

3.3  Velocity Assistance Function 
 
 
 

The Velocity assistance function serves two purposes:  assistance in approach to a 

target and the assistance in avoidance of an obstacle. The velocity scaling is varied 
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according to whether the motion in that particular direction is achieving the desired effect 

of the motion. The scaling is applied in two different ways such as: 

•  Constant Scaling Factors of 0 and 1: The scaling was performed only if it 

assisted the user in the desired direction of travel. 

•  Variable Scaling Factor: Here, the scaling factor is computed for every new 

position of the haptic end-effector and multiplies the velocity vector. 

According to [26], an estimate of the desired scaling can be obtained as 

follows: 

 The scaling can be applied in two different ways: 

                                           MaxVXVS mSs /)(max =                                           (3.12)                             

Where: 

• =maxsS Scaling Factor 

• )(XVS = Desired Velocity of Approach 

• MaxVm = Maximum Expected Master Velocity 

The velocity assistance with scaling is given by: 

                                           )(*)1( tVKtV SCALED

rr
=+                                             (3.13) 

Where: 

• cityScaledVeloVSCALED =
v

vector 

• ctorVelocityVeV =
r

 

• rScaleFactoK =  
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3.4  Position Assistance Function  
 
 
 

The Position Assistance Function also known as Position scaling, involves the 

enlargement or reduction of slave workspace as compared to master workspace.  

There are two types of Position Assistance Functions: 

• Planar Assistance Function 

•  Linear Assistance Function 

In the above cases, the motion constraint was designed to lie along a line or in a 

plane. This was designed for people with disabilities so that they could operate in a more 

stable manner. In Planar Assistance Function, the whole workspace is scaled up or down 

depending on the master workspace requirements. In Linear Assistance Function, just the 

linear path end-effector points are scaled up or down with respect to the master 

workspace. 

The force assistance concepts used in this project are: 

• Spring Type Force Feedback 

• Exponential Type Force Feedback 

• Constant Force Projection 

• Velocity Scaling Based Assistance 

These different concepts are explained in detail in a later chapter in this 

document. The concepts are also accompanied by detailed diagrams. 

.
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4. Implementation of Fitts’ Task 
 
 
 

The reason to choose the Fitts’ Task as the rehabilitation task is because its one of 

the most commonly used mathematical model of human movement. This experiment is 

simple in nature but yet provides a large amount of information regarding the user 

performance. This is the important phase of the project where three Fitts’ experiments 

were designed on the haptic interfaced C++ application platform. The Fitts’ experiments 

were used as a validation tool for this system which also illustrates the use of the system 

for rehabilitation applications. This application is very versatile because the Fitts’ is 

designed in 3 degrees of freedom, which means in all three directions of motion, X, Y 

and Z. Three Fitts’ experiments were designed based on the direction of motion. Eight 

volunteers were asked to perform experiments based on these three Fitts’ Tasks. The 

motive behind designing these Fitts’ Tasks was to measure the user performance after 

training with and without assistance. 

4.1 Introduction 

 
 

The Fitts’ Task was proposed by Paul M. Fitts’ (1912-1965) who was a 

Psychologist at Ohio State University. This widely known human model of movement is 

based on rapid, aimed movement and is a well studied mathematical model of human 
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motion [7]. The Fitts’ model is a formal relationship which describes speed/accuracy 

tradeoffs in aimed one dimensional translational movement in upper extremity tasks. 

 
Figure 4.1: Descriptive Representation of Fitts’ Law 

 
Mathematically, Fitts’ Task is expressed as follows: 

                                          )/2(log2 BATmove βα +=                                                   (4.1) 
 
Where:  
 

• =moveT Time for a Given Number of Traversals between the Two Goals 
 

• =βα , Constants Fit to the Experimental Data 
 

• A = Distance between the Two Goals 
 

• B = Width of Each Goal 

 
As seen in the above equation, the Fitts’ model can predict the time required to 

rapidly move from a starting position to a final target area, as a function of the distance to 

the target and the size of the target.  
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Another important aspect of Fitts’ law is the Index of difficulty (ID) which 

provides a measure of the difficulty of a motor task. The ID is given as follows: 

                                         ID = )/2(log2 BA                                                            (4.2) 

This law is applied to human movements involving pointing both in the real world 

and in simulation tasks. This relationship means that at increased difficulty, more 

accurate movements require longer aiming time [28]. Initially, proposed as a method of 

quantifying human dexterity [35], Fitts’ Task has found wide applications since then, in 

the area of robotics and rehabilitation. 

4.1.1 Existing Models of Predicting Human Movement 
 
 
 

Now, let us see why the Fitts’ Task was chosen among the existing mathematical 

models of human movement. The existing models of human movement are classified into 

Predictive models and Descriptive models. The Predictive models, also known as 

engineering models or performance models, determine metrics of human performance 

analytically. On the other hand, the Descriptive models help to provide a framework for 

describing a problem or a situation. The Predictive models are classified into Hick-

Hymann Law, Key Stroke Level Model and Fitts’ Law. The Descriptive models are Key-

Action Model, Three State Model of Graphical Input, Model for Mapping Degrees of 

Freedom to Dimensions and Guiards Model of Bimanual Skill. 

The effect of spatial uncertainty on motor planning was studied using a queing 

method in a reaching task [29]. The results showed that the relationship between average 

reaction time and number of cues was poorly described by the Hick-Hymann Law [29]. 

The Key Stroke Level Model [30] did not require any specialized psychological 
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knowledge. However, this model had lot of limitations. They could predict only one 

aspect of user computer interaction namely, time of interaction. Moreover, this model 

required a complete error free performance time on routine tasks and also a high user 

expertise. The Descriptive models do not provide any empirical or analytical data as 

mentioned above. However, they are used to understand any problem or situation better. 

With all these considerations, the significance of the Fitts’ Task in human computer 

interactions is discussed next. 

4.1.2 Significance of the Fitts’ Task   
 
 
 

The technological advancement in human-computer interfaces has evoked an 

interest in developing a reliable prediction model of movement time in computer input 

tasks [31]. In our study, the human interfaces like cursor keys and function keys are 

replaced by GUI. The Fitts’ Task satisfies the need to measure and quantify human 

movement in virtual space. Previous experiments have shown that kinematic patterns of 

human movement change in a systematic manner. These kinematic patterns displayed a 

relationship between simple oscillatory motion and informational flow in task space 

during rhythmic pointing tasks [32]. 

This Task has found prominence in many experiments to validate speed, accuracy 

and time coordination involving movement time. Movement time is defined as the time 

taken to complete a task. Sommer Gentry, Eric Feron and Roderick Murray Smith [33] 

report that two person teams, also known as dyads can achieve lower movement time 

(MT) for cyclical, continuous aiming movements’. One of their experiments was based 
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on a cyclic task formulated with Fitts’ model. In the cyclic task, the user had to aim 

successively at each pair of targets as rapidly as possible without overshooting or 

undershooting. This was as opposed to the discrete task where the person was asked to 

aim at and come to a stop within a given target. The haptically coupled cyclic Fitts’ Task 

involved two people to control the motion of the pointer and target respectively. The 

experimental setup involved a standard computer driving wheel fixed to a desk, with a 4 

foot long wooden dowel attached to create a lever. The screen displayed two targets as 

sectors of a circle and the current position as a pointer. The authors did two experiments, 

one with dyads and one with solo subjects. 

 While the solo subjects individually tried to move the pointer to the target, the 

dyads performed the cyclic task together with one person on either side of the rotating 

handle. Here, each person had his own target and pointer display. The data analysis led 

them to conclude that dyads performed significantly better at a minimum time cyclical 

aiming task than individuals. This because, the dyads could concentrate on their 

individual targets better. 

Steven Edward Everett [34] performed some experiments like the surface impact 

and Fitts’ Task to demonstrate the efficacy of his assistance algorithms in performing 

radioactive waste tank cleanup. Everett’s test bed consisted of two dark rectangles 

representing the goals on a white table. He measured the transit time in moving from the 

left goal to the right and back again for different values of distance (D) between the goals 

and width (W) of the goal regions. Then, he experimentally determined the best fit 

theoretical lines for the time versus (D/W) ratio. This was done for both constant and 
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variably scaled velocity mappings. The findings of his research suggested that the 

assistance functions resulted in smaller task execution times as compared to the 

performance of tasks without assistance functions. 

4.2 A Unique Implementation of Fitts’ Task 

 
 

The implemented Fitts’ Task is designed to detect tremors in any direction in 3D 

space. Fitts’ model describes a relationship developed by applying the information theory 

of physical communication systems to the sensory-motor system [7]. The reason why 

Fitts’ Task was chosen to be a part of this project is two-fold. One, to validate the 

assistance functions which were developed previously and secondly, to provide 

parameters like Movement Time (MT), Index of Difficulty (ID), Index of Performance 

(IP) which provides very useful information to the human factors engineers and 

biomedical engineers [35]. The Human movement has been shown to display a tradeoff 

between speed and accuracy in target directed movements [36, 37]. This trade-off could 

be traced back to pschycomotor delay. 

Sensory transduction, latencies in central processing and motor output could be 

the reason for motor circuit delays. This is due to a synaptic delay between two single 

neurons which may range between 1-2 ms. The conduction along an axon could also be 

the cause of the delay in motor circuit. The factors which determine axon conduction 

would be length of axon, and if the axon is myelinated or non-myelinated. This explains 

one of the possible reasons of time delay in task execution.  

The Fitts’ Law [35] has been shown to provide an indirect estimate of the delay 

within the motor circuit. They applied the natural relationship developed between the 
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underlying physiology and ( βα , ), the coefficients of Fitts’ Law to observe human motor 

performance and also to provide an indirect estimate of delay within the motor circuit. 

Thus, researchers [35] have shown that the coefficients of Fitts’ Law can be used to study 

human-motor behavior. This understanding of the human motor behavior through Fitts’ 

Law could also lead to improved robotic aids for teleoperation and rehabilitation 

applications. Fitts’ Law has many applications in Human Computer Interactions (HCI) 

like developing methods for target acquisition in virtual worlds, conceptual extension of 

Fitts’ model with the help of multiscale pointing in zoomable surfaces [36]. With all 

these factors in mind, the Fitts’ Task was incorporated in the GUI. In the user interface, 

the user could choose from any of the three Fitts’ Tasks provided. These tasks were 

classified as Fitts’ Task X, Fitts’ Task Y, Fitts’ Task Z, three dimensional force scaling 

and user controlled velocity based scaling technique. Each of these tasks were subdivided 

into two options. One option did not provide any kind of assistance to the user while the 

other one provided force assistance in performing the same task. All these options were 

provided in the C++ GUI. 

The Fitts’ Task can be classified into discrete and cyclical motion types. Given, 

two targets in the virtual space, when the user moves towards a target and comes to a stop 

within the same target, then the motion is called a discrete type motion. On the other 

hand, if the user has to move towards each of the pair of targets successively in a rapid 

motion, the task becomes a cyclical kind of motion. 

 Researchers [33] have proved that cyclic aiming reduces the Movement Time 

(MT) compared to the discrete aiming. This was due to the sinusoidal motion of the 
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cyclic Fitts’ Task which permits storage and reuse of kinetic energy that a user has 

generated. Hence, a cyclic task puts the user at an advantage physically. G. P. Van Galen 

and J. Duysens [39] conducted a study to compare discrete versus cyclic movements for 

different target widths. The sample population used for the study consisted of 24 healthy 

participants. They found that the Index of Performance (IP) and movement velocity were 

almost twice as large in cyclic compared to discrete movements. The predicted Index of 

Performance (IP) constant was found not to hold for rapid cyclic movements. Their 

studies clearly indicated that cyclic movements exploit the energetic and physiological 

properties of the neuromotor system. This is the reason why cyclic Fitts’ Task was 

implemented for the rehabilitation part of this project. 

4.2.1 Fitts’ Task X 
 
 
 

In Fitts’ Task X, the OpenGL scene consisted of two goal regions represented by 

two rectangular blocks drawn with a pre-defined distance between them. The linear 

trajectory connecting the two goal points was drawn in the X direction. The user could 

move the Phantom end-effector over the line from one goal point to another to first 

determine if he or she had any difficulty in that particular direction for hand motion. In 

other words, the user could detect motion abnormalities in the horizontal direction. In 

Fitts’ X, the user moved in the X-Y plane while traveling on the trajectory. The flowchart 

in Figure 4.2 describes the assistive function applied in Fitts’ Task X. 
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Figure 4.2: Flowchart Depicting Assistive Function in Fitts’ Task X 

 
 In order to understand the flowchart, we should first understand the terminology 

applied here. 
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4.2.1.1 Terminology Used in Fitts’ X 
 
 
 
EffectorPos is a vector representing the current user position in a virtual space. Fitts’Start 

is a vector representing the point at the start of the trajectory. Fitts’End is a vector 

representing the point at the end of the trajectory. PrevPos is a vector representing the 

previous position of the user. DistRight is the distance between the EffectorPos and the 

Fitts’End when the user is on the right side of the centre of the trajectory. DistLeft is the 

distance between the EffectorPos and the Fitts’Start when the user is on the left side of 

the centre of the trajectory. LimitX is a point which defines the limits of the middle space 

on the trajectory where null force exists. 

4.2.1.2 Explanation of the Flowchart in Fitts’ X  
 
 
 
The steps involved are described as follows: 
 

• Step 1: First, the code checks if the effector X and Y coordinate lies in a range 

of 10 units on either side of the trajectory. 

• Step 2: Then it is determined if the effector position is greater or lesser than 

the previous position. This determines the direction of motion of the user. The 

Phantom provides assistance in both directions of motion. 

• Step 3: This code does not generate any force in a small region in the middle 

of the trajectory in Fitts’ Task. That is why, the code calculates whether the 

user is beyond the limits of the middle region. 
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• Step 4: If yes, then an exponential force is provided to assist the user in the 

direction of motion which is totally controlled by the user. 

• Step 5: If no, that is if the user is in the middle region, then no force is given 

so that the user can easily disengage from the task. 

Any irregularity like tremors in the hand in this particular direction of motion 

qualified for assistance. Then the user could choose the assistance option from GUI. The 

user was given force assistance to move from the center of the trajectory to the left goal 

point and vice versa. Similarly, a spring type force was given when the user began to 

approach the right hand side goal point. This resulted in smooth acceleration during 

transit, lessening any deviations from the trajectory or any unwanted vibrations. 

4.2.2  Fitts’ Task Y 
 
 
 

The Fitts’ Task Y had a graphical scene similar to the previous one except for the 

fact that the trajectory connecting the two goal points was drawn in the direction of the Y 

axis. Here also, the movement was made in the X-Y plane. This experiment was designed 

to test the effectiveness of the human hand motion in the Y direction or up-down motion. 

People with hand motor dysfunctions in this direction would have difficulty in 

performing this Fitts’ Task. The assistance option along with this task provided assistive 

force to the user to move towards the goal point in an upward motion and also to come 

back to the starting point from the goal. These forces were also made effective when the 

user wanted to travel to the goal point in the lower end of the trajectory in a smooth 

motion.
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Figure 4.3: Flowchart Describing Assistance Function in Fitts’ Task Y
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4.2.3 Fitts’ Task Z 
 
 
 

The final one, Fitts’ Task Z was implemented to help the user identify any kind of 

hand motion difficulties in the Z direction. This meant that the user could detect motion 

abnormalities for movement towards the screen. The trajectory vector was drawn in the Z 

direction. The assistance option for this task was also provided in the GUI. The user 

could overcome the hand motor difficulties in approaching a virtual object in space in the 

Z direction with the help of the assistive forces. Here the plane of motion is the Y-Z 

plane. The terminology for this task remains the same as the previous two experiments. 

The flowchart representing the sequence of events in Fitts’ Y is shown in Figure 4.4. 

Here, the algorithm differs from that of Fitts’ X and Fitts’ Y as three conditions 

are checked instead of just two. That is, the algorithm in Fitts’ Z checks for the location 

of the end–effector with respect to the X, Y and Z directions.  
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Figure 4.4: Flowchart Describing Assistance Function in Fitts’ Task Z
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5. Experimental Test Set-Up 
 
 
 
5.1 Introduction 

 
 

The experimental set up consists of a C++ based application integrated with a 

haptic device called the Phantom from Sensable Technology. The Phantom is an ideal 

rehabilitation tool for this research because it provides force feedback in X, Y and Z 

directions. This force can be used to our advantage to provide constraint or assistance. 

Thus, the Phantom plays a very important role in this project and it becomes essential to 

learn about its libraries and capabilities. The rehabilitation tasks are simulated using 

OpenGL graphical software tools. A well know mathematical model of human movement 

called the Fitts’ Task was simulated in X, Y and Z directions separately. A stopwatch is 

used to measure the execution time of the eight subjects in completing all the Fitts’ 

Tasks. A C++ code is written to store the haptic position data of every user 

systematically.
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5.2 Hardware 
 
 
 
5.2.1 Phantom 3D-Touch Enabled Modeling System 
 
 
 

Earlier, haptic feedback was used mainly for flight simulator applications and 

Master-Slave tele-robotic application. These systems had mechanical linkages between 

the master and the slave. Then in 1954, Goertz and Thomson developed an electrical 

servomechanism that received feedback signals from sensors mounted on the slave. This 

servomechanism applied forces to the master. The founding stone for haptics tele-

operations was hence made. In the period of 1967-1990, the GROPE project at University 

of North Carolina created another breakthrough in haptic research [30]. This project 

initiated force feedback from simulated interactions. Here, the slave robot was substituted 

by a simulated system, in which forces were computed using physically based 

simulations. Thus, the concept of force feedback was implemented from a very long time 

back. Engineers just needed to develop a better user friendly device to incorporate these 

force feedback concepts. 

In 1980, Bejczy and Salisbury devised a computer based Cartesian control for 

tele-operator systems. This helped to develop separate kinematic configurations for the 

master and the slave. By 1991, Cartesian control was being used to manipulate simulated 

slave robots. Eventually, the research was directed towards interaction of forces with 

objects with rich geometrical information. Massie and Salisbury in 1994, designed the 

Phantom, a stylus based haptic device which was later commercialized.   
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5.2.2 Haptic Process Flow 
  
 
 

 
 

Figure 5.1: Phantom from Sensable Technologies [www.sensable.com] 
 

The concept of combining robotic and haptic technologies to touch and 

manipulate 3D data developed into a full fledged project in the early 1990s. This project 

evolved into the first ever haptic device called “Phantom”, a force feedback device. The 

development of Phantom since then has opened a new avenue for computer interaction 

techniques for visually impaired people and people with physical disabilities. Haptic 

technology makes it possible to extend the range of touch from the length of an arm to a 

virtually unlimited distance. The Phantom enables the user to control the robot with small 

movements of one finger and also feel some of the tasks that the robot performs. The 

Phantom interacts with the computer to interpret the user’s finger position in three 

dimensional spaces and applies an appropriate and variable resisting force.  

Three sensors located in the Phantom tracks the position of the user’s fingertip 

and send them to the computer. The computer calculates the necessary force and sends 
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them to the three DC motors which generate the force that could be felt by the user. The 

haptic process can be well described in the diagram that follows: 

 
 

 
Figure 5.2: Haptic Process Flow [www.sensable.com] 

 
This process is carried out 1000 times per second. The high frequency along with 

high resolution of the encoders makes it possible to feel almost any shape very 

realistically with a device like the Phantom.                 

5.3 Software 
 
 
 

The General Haptic Open Software (GHOST) SDK toolkit is a powerful C++ 

software toolkit that eases the task of developing touch-enabled applications. This 

software essentially takes care of the complex computations and helps the users deal with 

simple, high level objects and physical properties like location, mass, friction and 

stiffness. The GHOST SDK also consists of libraries of 3D prismatic objects, touch 

effects etc. Hence, all the computations necessary to simulate physical interaction with 

graphical objects is provided by these libraries. 
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The Sensable OpenHaptics toolkit enables software developers to add haptics and 

true 3D navigation to a broad range of applications. This software allows the user to add 

functionality to support new types of shapes. They can also integrate third party libraries 

such as physics/dynamics and collision detection engines. 

5.3.1 Open Haptic Overview 
 
 
 

The OpenHaptics toolkit mainly consists of the following libraries:  
 

• Haptic Device API (HDAPI)  
 

•  Haptic Library API (HLAPI) 
 

5.3.1.1 HDAPI 
 
 
 

 This provides low-level access to the haptic device renders direct force, controls 

run time behavior of the drivers. The HDAPI consists of two components, the device and 

the scheduler. The device allows any supported 3D haptic mechanism to be used with the 

HDAPI. The scheduler callbacks meanwhile, allows the user to enter commands that will 

be performed within the servo loop thread. The HDAPI is generally used to initialize a 

device, create scheduler callbacks to define force effects, enable forces and start the 

scheduler. An example of force effect is the query of position device at every scheduler 

tick and the calculation of force based on that. The device routines can be classified into 

device initialization, device safety and device state. The scheduler’s main purpose is the 

rendering of forces and retrieval of state information from the device. In order to create 

compelling and stable force feedback, the force updates need to be sent at 1000 Hz 

frequency. The scheduler interface allows the application to communicate effectively 
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performed in the servo loop thread in a thread safe manner. This also allows operations to 

be performed in the servo loop thread. 

5.3.1.2 HLAPI 
 
 
 

 The HLAPI allows rendering of geometric primitives along with haptic material 

properties. The haptic rendering machine uses this information along with data read from 

haptic device to calculate the appropriate forces to be sent to the haptic device. The 

HLAPI commands can modify the rendering state of haptic device and store important 

information like position and orientation. The API also has the ability to set event 

callback functions which the rendering engine can call whenever any event like, touching 

a shape or pressing the stylus button on the haptic device occurs. 

5.3.2 OpenGL Graphical Software 

 
 

OpenGL is a graphical software tool that can be used to develop interactive 2D 

and 3D graphical applications. We used the OpenGL graphical software to simulate the 

environment for the Fitts’ experiments in all X, Y and Z axis respectively. Moreover, 

walls and floor were also graphically drawn to give the user a sense of being inside a 

room. This made the whole experiment very real and visually very guiding. 
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Figure 5.3: OpenGL Visualization Programming Pipeline 
 

The graphical scene was simulated using OpenGL with very simple commands 

like: 

gluSphere(quadObj, VISITOR_SPHERE_RADIUS, 20, 20);     
 

This command generated a virtual sphere with a radius represented by 

VISITOR_SPHERE_RADIUS, and the remaining two arguments referred to slices and 

stacks which made the sphere visually realistic. 

 
glBegin(GL_QUADS); 
glLineWidth(10.0); 
   glVertex3d(pointstart.x-10.0,pointstart.y+40.0,pointstart.z); 
   glVertex3d(pointstart.x+10.0,pointstart.y+40.0,pointstart.z);  
   glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z);  
   glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z); 
glEnd; 
 

These OpenGL commands were used to draw each of the rectangular goal regions 

at the two ends of the linear path. The command glVertex3d is used to represent a point 

in a 2D or 3D Space. 
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5.3.3 Multithreading 

 
 

The concept of Multithreading is implemented here to enable real time generation 

of haptic data and to enable simultaneous running of the haptic and graphic loop. 

Multithreading is the concept of integrating the Phantom haptics thread with the graphics 

thread to work concurrently. The haptics needs to be updated more frequently than the 

graphics and hence the HLAPI creates two additional threads called the collision thread 

and servo thread. While the servo thread handles direct communication with the haptic 

device, the collision thread determines which geometric primitives are in contact with the 

proxy.  

The servo thread runs at a frequency of 1000 Hz while the collision thread runs at 

100 Hz. In this particular application, a synchronizer structure is created which stores 

variables that can be modified by the haptics thread and simultaneously used by the 

graphics thread. The synchronizer basically gets a snapshot of data from the haptics 

thread in a thread safe fashion. The synchronizer uses the same pointer to the haptic state 

as that used in the haptics loop. The graphics loop however, access the haptic state in a 

thread safe manner by using a synchronous callback. This callback is executed in a 

thread-safe and realtime fashion. This can be seen in the realtime force generated from 

Phantom.
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6. Description of the Different Assistive Functions 
 
 
 

We designed six types of tasks provided in a GUI from which the user can choose 

the one he or she wants to perform. The assistance concepts described before, are applied 

to the tasks described here in this chapter. 

6.1 Introduction 
 
 
 

This chapter describes the application of the various assistance concepts for 2D 

and 3D virtual tasks in a haptic environment. This is the basis of designing repetitive 

tasks like the Fitts’ Task with assistance functions for upper arm rehabilitation purposes. 

6.2 Trajectory Approach and Traversal 

 
 

One of the basic haptic experiments is where the user approaches a trajectory and 

moves along the same to reach the target. This system is designed to assist the user in 

trajectory approach and traversal with effective force feedback. The system is also 

designed in a way that human motion can control the movement when necessary. In this 

case, the user intentions are always considered. Here, the assistive functions have been 

used to enable the user to perform with ease without any unnecessary buzzing or jittery 

motion.
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6.2.1 Experimental Set-Up 
 
 
 
The experimental set-up consists of a display window depicting a linear trajectory 

and the end-effector represented by the blue sphere on a user interface (UI), as shown in 

Figure 6.1.   

 

 
 

Figure 6.1: UI with the Desired Trajectory and End-Effector 
 

This sphere follows the motion of the end-effector of the Phantom Omni device. 

The user controls the motion of the sphere with the haptic stylus. The goal of the user is 

to move the sphere towards the trajectory and move it along the linear path. The user 

traverses the trajectory path as shown in Figure 6.2. Here all the directions of motion is in 

the X-Y plane.   
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Figure 6.2: UI Showing the End-Effector on the Trajectory Path 

 
6.2.2 Terminology Used in Trajectory Approach Task 
 
 
 

Here is the terminology which clearly explains the logic behind this assistance  
 

concept: 
 

• )1,1,1( zyx  = Start Point of the User Defined Trajectory 
 

• (x2, y2, z2) = End Point of the User Defined Trajectory 
 

• ( nnn ZYX ,, ) = Point on the Trajectory Which is Closest to the User Controlled           
Phantom End – Effector Position. 

 
• ( ),, 321 UUU  = User Controlled Phantom End-Effector Position 

 
• =F

r
 Force Vector at the User Controlled Effector Position 

 
• =321 ,, FFF Force Components in the X, Y, and Z Directions Respectively 

 
• Line_Mag = Magnitude of the Length of the Trajectory Path 

 
• ( =),, 321 III  Closest Point on the Trajectory 
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6.2.3  Stiffness 
 
 
 

 This is the resistance of an elastic body to deflection or deformation by an 

applied force. This is defined as, 

                                                  δ/PStiffness =                                                             (6.1)                         
 
This is the stiffness of a body that deflects a distanceδ , under an applied force P. 
 

6.2.4  Distance 
 
 
 

 This is the distance between the user’s position and the closest point on the 

trajectory to the user. The closest distance is computed based on a point on the trajectory 

which lies on the normal to the trajectory path. 

If ( nnn ZYX ,, ) is the closest point on the trajectory to the user, and if ( ),, 321 UUU  

is the user’s end-effector position, then the distance can be represented as:  

 
                             2

3
2

2
2

1 )()()( nnn ZUYUXUDist −+−+−=                                  (6.2) 

 
6.2.5  Trajectory Vector 
 
 
 

 The trajectory vector is a vector defined in the direction of the trajectory path. It 

is given as follows: 

                                     kzzjyyixxt
rrrr

)()()( 121212 −+−+−=                                    (6.3) 
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6.2.6  Normal Vector 
 
 
 

 The Normal vector is the vector which is in the direction of the normal to the 

closest point on the trajectory. 

           kDistzzjDistyyiDistxxn
rrrr )/)(()/)(()/)(( 121212 −+−+−=                        (6.4) 

 
Where: 

 
• K = also known as the scaling factor, this value can be used to Scale up or 

 
 scale down the force to get the desired effect. 

 
• Y_start = this is the predefined point in the Y axis below which the user is  

 
allowed to approach the trajectory easily. 

 
• Y_end = this is the predefined point in the Y axis above which the user is  

 
allowed toleave the trajectory easily. 

 
Some of these variables will be described in a later section in this chapter. 
 
The following section describes how the distance between the end-effector and the 

closest point on the trajectory is determined. 

6.2.7 Determination of a Point on the Trajectory Closest to the User’s Position 
 
 
 
The length of the trajectory line Line_Mag, is determined as follows: 
 
                                  Line_Mag = 2

12
2

12
2

12 )()()( zzyyxx −+−+−                       (6.5) 

 
This mathematical computation is explained very descriptively in Figure 6.3. 
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Figure 6.3: Calculation of the Nearest Point on a Line to a Trajectory 

 
 
Next, the dot product P

r
 of the trajectory vector t

r
, and line joining the end-effector 

 
position, is computed as shown below. 
 

P = /))(*)()(*)()(*)(( 121312121211 zzzUyyyUxxxU −−+−−+−− Line_Mag (6.6) 
                                                                                                      
Then, the dot product is checked P is checked for perpendicularity. 
 
If (0 < P < 1), then the closest point on the trajectory is computed as follows: 
 
                                                 )(* 1211 xxPxI −+=                                                      (6.7) 
                                                 )(* 1212 yyPyI −+=                                                    (6.8) 
                                               )(* 1213 zzPzI −+=                                                       (6.9) 
 
If the condition is not true, then the closest point does not lie near the line segment.  
 
6.2.8 Assistance Concepts Applied to this System 
 
 
 

In order to understand the application of the assistance concepts, each instance of 

assistance application is descriptively explained next. The force algorithm applied when 

the user approaches the trajectory, is first explained here. The corresponding force flow 
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diagrams are also shown immediately. Next, we are going to explain all the assistance 

scenarios figuratively in five cases as follows. These five cases represent different 

scenarios of trajectory approach and traversal. The first scenario is one where the user 

approaches a trajectory and the forces that influence him or her in performing the same 

task. The force applied here is an exponential force which increases slowly as the 

distance between the user represented end-effector and trajectory is reduced. 

6.2.8.1  Case a: When the User Approaches the Trajectory 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          
 
 

 
Figure 6.4: Graphical Representation of a User Approaching a Trajectory 

 

 

Y_end 

Y start

(x1, y1, z1) 

(x2, y2, z2) 
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Figure 6.5: Negative Exponential Relationship between Force and Distance 
 

 
 

Figure 6.6: Graphical Representation of Force Direction in Case a 
 

 
                                                                                           (6.10) 
                                                   
                                                DistaeKF 2*2 −=                                                            (6.11) 
 
                                               DistaeKF 3*3 −=                                                             (6.12) 
 

Exponential Force 
 
High Spring Force 
 
High Spring Force + 
Projection Component 
 

Force 

Distance

DistaeKF 1*1 −=  
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Where:  
 

• F1, F2, F3 = Force Components in X, Y and Z Directions 
 

• K = Scaling Factor 
 

• 3,2,1 aaa  = Scaling Factor 
 

• Dist = Distance Between the Current Effector Position and the Closest Point 

on the Trajectory. 

The trajectory approach task has been graphically depicted in Figure 6.4. This 

exponential force is given to the user when the Y coordinate of the end-effector position 

falls within the Y-start limit. This force is intended to help the user approach the 

trajectory at its starting point. The exponential force increases as the user gets closer to 

the trajectory. This exponential force is represented by the red dashed line as shown in 

Figure 6.6. The Y-start is represented by a dashed line in the lower end as shown in 

Figure 6.4. The negative exponential relationship between force and distance is 

graphically shown in Figure 6.5. 
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6.2.8.2 Case b: When the User is Very Close to the Trajectory and Under the Y_Start 
Point. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.7: Graphical Representation when a User is Very Close to the Trajectory 

 
Figure 6.8: Graphical Representation of Force Vector Acting in Case b 

 

Exponential Force 
 
High Spring Force 
 
High Spring Force + 
Projection Component 
 

(x1, y1, z1) 

Y_start 

Y_end 

(x2, y2, z2) 
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           xnDistSTIFFNESSF rr
***0.181 =  ;                                         (6.11) 

                                  ;***0.182 ynDistSTIFFNESSF rr
=                                            (6.12)                         

           ;***0.183 znDistSTIFFNESSF rr
=                                            (6.13) 

 

Where, xn , yn , yn  are the three components of the line vector normal to the 

trajectory. The high spring force attracts the sphere to the trajectory at a very high 

magnitude such that the user feels a high pulling force to the trajectory. Figure 6.8 

contains the force diagram with the high spring force highlighted in red. 

6.2.8.3 Case c: When the User is On the Trajectory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9: Graphical Representation when a User is on the Trajectory and Above                          
Y_start 

 

(x2,y2,z2)

(x1,y1,z1)

Y_start 

Y_end 
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Figure 6.10: Graphical Representation of Forces Acting in Case c                                          
 
                   )*()***( tKnDistSTIFFNESSKF

rrr
+=                                                (6.12) 

Where: 
 

• )***( nDistSTIFFNESSK r = Spring Force Component which Assists the  
 
User to move towards the Trajectory Path and Stick to it. 

 
• =)*( tK

r
 Projected Force Component which Assists the User to Move Along  

 
the Trajectory Path to the End Point of the Specified Trajectory. 

 
• =K Scaling Factor 

 
When the user is on the trajectory, a projection force is applied in the direction of 

the trajectory so that the user gets assistance to reach the end of the trajectory as shown in 

Figure 6.9. Here, the spring force is scaled down a bit so that, buzzing is eliminated. The 

two component forces acting on the end-effector sphere are highlighted in red as shown 

in the force diagram in Figure 6.10. The next case study talks about the forces acting 

when the user is at very close proximity to the trajectory. In this scenario, the user is 

Exponential Force 
 
High Spring Force 
 
High Spring Force + 
Projection Component 
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expected to be above Y_start limit as shown in the Figure 6.11. There is a strong 

attractive force that pulls the user close to the trajectory path. This force is a high spring 

force applied in the direction of the path between the user represented end-effector and 

trajectory. 

6.2.8.4 Case d: When the User is at Very Close Proximity to the Trajectory    
 
 
                                                                     
                                                                                                                                                                        
  
 
 
                        
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11: Graphical Representation when a User is Near Trajectory and Above Y_start 
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Figure 6.12: Graphical Representation of Force Vector 

 
                                       nDistSTIFFNESSKF rr

***=                                             (6.13) 
  
               kDistzzjDistyyiDistxxn

rrrr )/)(()/)(()/)(( 121212 −+−+−=                   (6.14)          
 
              Here, Dist is the distance between the effective sphere and the closest point on 

the trajectory. This high magnitude spring force is applied on the left and right hand side 

of the trajectory as shown. These two forces become virtual walls and don’t allow the 

user to move beyond them. These virtual walls are designed at pre-defined distances from 

the trajectory.  The force on the right hand side of the trajectory is given at a magnitude 

lesser than the left side of virtual wall so that the user can pull away from the trajectory at 

any position of the end-effector. This force acts within the virtual wall. The virtual wall is 

clearly visible in Figure 6.11 and they basically prevent the end-effector from moving 

away from the trajectory path. The force diagram is given in Figure 6.12 where the active 

Exponential Force 
 
High Spring Force 
 
High Spring Force + 
Projection Component 
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force in this condition is highlighted. The next case describes the scenario where the user 

has reached the end of the trajectory path and is ready to move away from the same. 

6.2.8.5 Case e: When the User Reaches the End of the Trajectory Path 
 
                                                                                
                                                                                      (x2,y2,z2) 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             (x1,y1,z1) 
                 

 
 

Figure 6.13: Graphical Representation when a User Exceeds Y_end Position 
 
 
                                                  0.0=F                                                                    (6.15) 

 

When the user exceeds the Y_end position, all forces are made null as shown in 

equation 6.15. This enables the user to easily get out of the trajectory and back to the rest 

position. The Y_end point is represented by a dotted line at the upper end of the 

trajectory path. 

 

 

Y_start 

Y_end 
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6.3 Three Dimensional Force Scaling 
 
 
 
6.3.1 Description 

 
 

The graphical scene of the multidimensional trajectory path is similar to the 2D 

trajectory path. Here the user travels in X, Y and Z directions in 3D space. 

 
 

Figure 6.14: UI with End-Effector and a Three Dimensional Trajectory Path 
 

The multidimensional assistance concept was developed in a haptic and OpenGL 

environment as shown in the above figure. The room environment was simulated 

graphically using OpenGL commands. The walls were drawn in a way so that the user 

felt he or she was moving in the corner of a room. The visual enhancement helped in 

assisting users to respond to assistive forces in a better way. The trajectory path was 

drawn in this environment with the end coordinates varying in all three directions of X, Y 

and Z. The user thus would travel in a 3D space when moving on this trajectory path. The 

X 

Z 
Y 

A 

B 
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two rectangular blocks A, B were drawn to give the user a better sense of judgment of the 

start and end points of the trajectory line. 

6.3.2 Method 

 
 

This concept focused on providing assistance to the user for bidirectional 

movement on the trajectory. The first rectangular region was denoted as A and the second 

one was represented as B. If the user was near A and was proceeding to move towards the 

target B, then scaled forces were provided in X, Y and Z directions to push the user 

smoothly towards B. Similarly, when the user wanted to return to A from B, appropriate 

forces were provided to assist movement in the reverse direction. In the next page, there 

is a flowchart presenting the logic behind the 3D assistive concept. 
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Figure 6.15: Flowchart Describing Assistive Functions for Three Dimensional Trajectory 

Traversal 
 

 

 

EffectorPos,TrajStart,
TrajEnd, 

PrevPos,Dist 

If 
TrajStart[0]<EffectorPo

s[0]<TrajEnd[0]

If 
TrajStart[1]<EffectorPos

[1]< TrajEnd [1] 

If ((TrajStart [2]-LimitZ) 
<EffectorPos[2]<( 

TrajStart[2]+LimitZ))

If 
((Effector[0]>PrevPos[0])

&(EffectorPos[1]> 
PrevPos[1]))

DisteScaleF −= *  DisteScaleF −−= *  

End 

Yes 
 

Yes 
 

 
 

No 

No 

No 

No 

Yes 
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6.3.2.1 Terminology for 3D Force Scaling 
 
 
 

EffectorPos is a vector which represents the position of the Phantom end-effector 

in the haptic environment. EffectorPos [0], EffectorPos [1], EffectorPos [2] are the 

components of the vector in the X, Y, and Z directions respectively. TrajStart is a vector 

which represents the starting point of the three dimensional trajectory path. TrajStart [0], 

TrajStart [1], TrajStart [2] are the components of the vector in the X, Y, and Z directions 

respectively. TrajEnd is a vector which represents the end point of the three dimensional 

trajectory path. TrajEnd [0], TrajEnd [1], TrajEnd [2] are the components of the vector in 

the X, Y and Z directions respectively. PrevPos is a vector which represents the previous 

position of the haptic end -effector for any given current effector position. PrevPos [0], 

PrevPos [1], PrevPos [2] are the components of the vector in the X, Y and Z directions 

respectively. LimitZ is the range of Z values for which the assistive forces should be 

active. This limit in Z is parallel to the Z axis in OpenGL. Dist is the distance between the 

end-effector position and the closest point on the trajectory. 

6.3.2.2 Explanation of Flow Chart 
 
 
 

The first step was to check for the position of the end-effector. It was made sure 

that the effector fell within an agreeable range of X, Y and Z coordinates in the 3D space. 

If any of these conditions were not satisfied, then the program terminated. Once the user 

controlled effector sphere was within the assistance range, and going from A to B, the 

following force pushed him or her ahead. 
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The force computed here was based on the Exponential Law where: 
 
                                                DistaeKF 1*1 −=                                                           (6.16) 

 
                                               DistaeKF 2*2 −=                                                           (6.17) 

 
                                               DistaeKF 3*3 −=                                                           (6.18) 

 
Where: 
 

• F1, F2, F3 = Force Components in X, Y and Z Directions 
 

• 3,2,1 aaa = Scaling Factors in X, Y and Z Directions 
 

• Dist = Distance between the User Position and the Closest Point on the 
 

 Trajectory                                                                                                                     
  
If the user was moving from B to A, then a force in the opposite direction was 

implemented. 

                                                DistaeKF 1*1 −−=                                                           (6.19) 
 

                                               DistaeKF 2*2 −−=                                                           (6.20) 
 

                                               DistaeKF 3*3 −−=                                                           (6.21) 
 
The user just had to pull out of the trajectory to get out of the force region. 
 
6.4 User Controlled Velocity Based Force Scaling 
 
 
 
6.4.1 Experimental Set-Up  
 

The user-controlled velocity based force scaling has a similar environmental set 

up as that of the previous experiment. 
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Figure 6.16: User Controlled Velocity Based Force Scaling 
 
6.4.2 Method 
 
 
 

The user had to move the Phantom controlled end-effector sphere towards the 

starting point on the trajectory and move on the line towards the target point or end of the 

trajectory as shown in Figure 6.16. The force algorithm applied here is similar in concept 

to the logic applied in the trajectory approach and traversal experiment. The only 

difference here would be the addition of extra set of code statements to decide the scaling  

value in the force computation algorithm. The C++ application is designed in a way that 

the user’s haptic velocity can be determined as real time data and displayed 

simultaneously. The command to determine the user controlled end-effector velocity is 

given by the following command which falls in the next page. 

 
 
\ 
 

X 

Z 

Y 
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hdGetDoublev(HD_CURRENT_VELOCITY,vel); 
 
Then the software velocity limit of the Phantom was determined using the following  
 
command, 
 
hdGetDoublev(HD_SOFTWARE_VELOCITY_LIMIT,Vmax) 
 
Then the user velocity is compared to maximum allowable velocity to determine the level 

of scaling that would suit the user motion best. The application of user controlled force 

scaling enables the user to have more control and smoother motion in a haptic process.
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7. Experiments Based on Fitts’ Task 

 
 

These experiments are performed to validate the data which may indicate the 

significance of the assistance concepts applied here. These experiments are more like 

preliminary experiments which gives an indication of the versatility of application rather 

than restoring a person’s function. This chapter describes two types of experimental 

designs based on the Fitts’ Tasks. The experimental designs are: 

• Validation of Assistance Concept 

• Position Accuracy 

The sample population consists of 8 young, healthy subjects. They were divided 

into two groups, A and B. One group was given training with assistance, the other group 

was given rehabilitative training without assistance. The validation of the assistance 

concept experiment is designed to indicate that the Phantom based rehabilitation training 

with assistance helps the user to learn the task faster compared to those who were not 

given training with assistance. In the second experiment, we verify the accuracy of two of 

the eight volunteers. Among the two, one of them was from Group A, and the other from 

Group B. Now, this chapter talks in detail about the Fitts’ experimental setup.
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7.1 Experimental Set-Up 

 
 
7.1.1 Graphical User Interface 
 
 
 

The C++ GUI consists of a list of different types of assistive options such as, user 

controlled velocity based force scaling, multidimensional force scaling and the Fitts’ 

Task experiments in 3D. The interface is basically a popup menuhandler which is 

activated on the right click of the mouse on an OpenGL window. The interface is 

displayed on the screen as shown in the Figure 7.1. 

 

 
Figure 7.1: Graphical User Interface 

Fitts’ X-dir constraint 
Fitts’ Y-dir constraint 
Fitts’ Z-dir constraint 
Linear constraint motion in 3D 
Velocity scaling assistance 
No assistance provided 
Quit 
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We chose to perform the Fitts’ experiment which gives a meaningful insight into 

the speed and accuracy of human motion. The following section describes two 

experiments which were designed based on the Fitts’ Law. 

7.1.2  Validation of Assistance Concept 
 
 
 

 In this experiment, emphasis was laid on the observed experimental execution 

time when assistance was provided compared to the case when no assistance was 

provided. The sample population consisted of eight normal, healthy young people, who 

fell within an age group of 20-30 years. They were divided in an unbiased way into two 

groups, Group A and Group B. All the members of Group A and Group B were asked to 

perform Fitts’ Task X, Fitts’ Task Y, and Fitts’ Task Z for a total sum of seven trials in 

each direction for a total of 21 trials. Thus, each volunteer performed a total of 63 trials. 

The time was noted for a total of 63 trials. The observed time for all eight volunteers was 

recorded. Each of the three experiments was performed for three different (A/B) ratios. 

The (A/B) ratio is the ratio of the distance between the two targets and the width of each 

target. The Fitts’ Law essentially states that the time taken to move from one target to 

another can be described as a function of distance between the two targets and the width 

of each target. 

7.1.3 Baseline Time Values 
 
 
 

In the first trial, all the eight volunteers were asked to perform the Fitts’ 

experiment in all directions for three different A/B values without any assistance. The 
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time recorded here was noted as the baseline value for each. In the second trial, all the 

experiments were repeated with assistance provided to each of them. The time recorded 

here was observed as baseline time value with assistance for each. These time values 

were designated as it . 

7.1.4 Fitts’ Training 
 
 
 

Next, the eight volunteers were divided into groups, Group A and Group B. In the 

next three trials, Group A was given assistance in executing the same set of tasks again.  

Group B was not provided assistance in executing the same set of tasks. This is called the 

training stage where, Group B was given training in Fitts’ Task with assistance and 

Group A was given training in Fitts’ Task without assistance, and the average of 

observed time for both the groups was recorded separately. 

7.1.5 Final Task 
 
 
 

The last trial involved performing the same set of experiments without any 

assistance by all the volunteers in Group A and Group B. Again, all the volunteers were 

asked to perform the same set of experiments with assistance. The time recorded here for 

each one of the volunteers was designated as ft . 

DeltaT= fi tt −                                                                                                               (7.1) 
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Where: 

• it = Time taken at Baseline Task 

• ft =Time taken at the Final Task 

The average Delta T was calculated as shown above for each of the eight volunteers in all 

three directions of X, Y and Z.  

7.1.6  Determination of Position Accuracy  
 
 
 

This experiment involves just two subjects who were a part of the previous 

experiment. The first subject performed the Fitts’ experiment without assistance for six 

trials in X, Y and Z directions. The second subject repeated the same experiments but 

with assistance.  

In the next type of position accuracy experiment, time was kept constant and the 

haptic position data was recorded and plotted for both the subjects.  In the last experiment 

in position accuracy, the haptic position of the subjects was compared to themselves 

before and after training. Here is a brief description of the Fitts’ X, Y and Z Tasks. 
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7.2 Fitts’ Task X-Direction 
 
 
 

 
 

Figure 7.2: Schematic Representation of Fitts’ Task X 
 

The Fitts’ Task X was the first experiment conducted where the range of motion 

was constrained in the X direction alone in 3D virtual space. This is clearly depicted in 

Figure 7.2. The rectangular boxes shown in the above figure represented the goal points 

at the either end of the path. The blue sphere represented the end-effector of the Phantom 

which was user controlled. The scene consisted of two walls and a floor. This gave a 

realistic environment to the user. The user felt as if, he or she was moving a virtual object 

in a 3D room. The visual feedback has been proved to help the user perform better in 

virtual space. The distance and goal region width measurements were made. The distance 

between the centre of the two goal regions D1 and D2 was represented by A. The width 

of both D1 and D2 was made equal to each other and was represented by B. The Fitts’ 

Task in the X direction was conducted as follows. The user was first asked to haptically 

X

Z 

D1 D2 

Y 
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move towards the midpoint of D1. The task involved the user to move from mid point of 

D1 to the midpoint of D2 and trace the path back from midpoint of D2 to midpoint of D1 

without any stopping. About three different values of A/B ratio was computed. While 

Group A was provided with no kind of assistance, the Group B was given force 

assistance in performing the Fitts’ Task X. For each A/B ratio, the time taken to move 

from D1 centre to D2 centre and back again was measured using a stop watch. The time 

values are discussed in a later chapter. Meanwhile the average Delta T values were also 

computed for each of the eight participants and compared among Group A and Group B 

members using a histogram chart. This chart will be explained in the results chapter. The 

second experiment involving position accuracy was further classified into two types:  

• Non Constant Time  

• Constant Time 

7.3 Fitts’ Task Y-Direction 
 
 
 

The Fitts’ Task Y allowed the user to travel in the Y direction alone, as shown in 

Figure 7.3. The environmental set up for the task was the same as that of the previous 

experiment. The walls of the room were simulated haptically as before. The rectangular 

goal regions were displaced in the Y direction. D1 is the rectangular target which was 

drawn in the lower part of the trajectory and D2, at the upper end of the trajectory. The 

user was asked to perform the same task of moving from D1 to D2 and vice versa. 
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Figure 7.3: Schematic Representation of Fitts’ Task Y 
 

 
While Group A was not given any assistance while performing this experiment, 

Group B was provided assistance based on the logic explained in the previous chapter. 

The average Delta T was also computed here as previously described and plotted in the 

same histogram for all the eight subjects. The determination of position accuracy was 

performed for Fitts’ Task Y also. The real time position values of the two subjects were 

recorded haptically and compared to the trajectory points in the Y direction from D1 to 

D2. The position accuracy experiments were also performed in Fitts’ Y. 

 

 

 

 

 

X 

Y 
Z 

D1 

D2 
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7.4 Fitts’ Task Z-Direction 
 
 
 

 
 

Figure 7.4: Schematic Representation of Fitts’ Task Z before OpenGL Camera Rotation 
 
 

 

 
 

Figure 7.5: Schematic Representation of Fitts’ Task Z after OpenGL Camera Rotation 
 

The Fitts’ Task Z consists of a trajectory drawn in the Z axis  as shown in Figure 

7.4. The OpenGL camera location is changed and rotated at an angle such that viewer 

X 

Y 

Z 



    

81 
 

looks at the Z axis from a side view in Figure 7.5. This is because, the Z axis is located 

perpendicular to the OpenGL screen and hence the computer’s screen for the default 

OpenGL camera settings. The camera was thus rotated to visually map the Z axis of the 

OpenGL screen to the real world Z axis of the Phantom. The environmental set up for the 

task was the same as that of the previous experiment. The walls of the room were 

simulated haptically as before. The rectangular boxes were simulated at the two ends of 

the trajectory path. The lower and upper rectangular boxes were denoted as D1 and D2 

respectively. The time taken for the user to move from D1 to D2 and back to D1 was 

noted as T3. The experiment was repeated for all the eight participants in moving from 

D1 to D2 and from D2 to D1. The assistance concept was provided depending on which 

group they fell into. The theoretical time was calculated using the Fitts’ Law. The Delta T 

values were calculated as described in the previous experiments and added to the 

histogram. Meanwhile, the position accuracy test was also performed in the Z direction 

for the two subjects. Also, the haptic position data was compared to the trajectory 

position data both before and after training for both the subjects. The position accuracy 

experiments will be explained in the next chapter along with detailed graphs and tables.
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8. Results 

 
 

 The data obtained from the previous mentioned experiments are preliminary data 

and provide a basis of information for further testing. These results indicate the advantage 

of having this C++ based platform for future rehabilitation applications. The data 

presented in this chapter are indications of the effectiveness of the assistance concepts 

and intends to validate the assistance concepts. In the first experiment, the following 

observations were made: 

• The performance of assistance functions with respect to the C++ application 

was verified.  

• In the second experiment the position accuracy was tested to see how closely 

the subjects traveled near the trajectory path. The position accuracy is meanwhile 

divided into two types. 

•  In this chapter, we analyze and compare the performance of eight subjects for 

the previously mentioned experimental procedures.  

• Also, the reliability of the C++ application is tested here.  

• The experiments were performed to confirm the versatility of the system, in 

terms of the effectiveness of the assist functions, and the benefit of applying 

multithreading concepts. 
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The intention of this research is to show how the PC based system can be used as 

a rehabilitation tool in future. The following is a detailed explanation about the 

experimental framework. The Group A and Group B members first perform 18 trials as a 

part of their baseline task. Here, all of them perform Fitts’ X, Y and Z once with 

assistance and once without assistance. The next phase is the experimental phase where 

Group A performs 27 trials without assistance and Group B performs the same 27 trials 

with assistance. The last part is the Final task phase where all subjects again perform 

Fitts’ X, Y and Z once with assistance and once without assistance. This phase is 

important because it determines the actual performance of the subjects after their training 

sessions. The Fitts’ tasks can be described as follows: 

 

 

 

 

 

 

 

 

 

•  

 

 

Group A (For one A/B) (Without Assistance 
Training) 
• Baseline Task 
 

• Fitts’ X: wa, woa  :2  trials 
 
• Fitts’ Y: wa, woa  :2 trials 

 
• Fitts’ Z: wa, woa  :2 trials 

 
•  Fitts’ Training 
 

• Fitts’ X: woa: 3 trials 
 
• Fitts’ Y: woa :3 trials 

 
• Fitts’ Z: woa: 3 trials 
 

     Group B (For One A/B) (With Assistance  
     Training) 
• Baseline Task 
 

• Fitts’ X: wa, woa  :2  trials 
 
• Fitts’ Y: wa, woa  :2  trials 
 
• Fitts’ Z: wa, woa  :2 trials 
 

•  Fitts’ Training 
 

• Fitts’ X: wa: 3 trials 
 
• Fitts’ Y: wa: 3 trials 
 
•  Fitts’ Z: wa: 3 trials 
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• Final Task 

• Fitts’ X: woa, wa : 2 trials 

• Fitts’ Y: woa, wa : 2 trials 

• Fitts’ Z: woa, wa : 2 trials 

Total No of Trials for 1(A/B): 21 trials 

Total No of Trials for 3(A/B): 63 trials 

Delta T =                  where           Time Taken at Initial Task,    

         Time Taken at Final Task 

Three A/B values = 8.25, 7.75,7 

Hence every subject performed 63 trials including Fitts’ X, Y and Z. 

8.1 Validation of Assistance Concept 

 
 

The eight subjects were divided into two groups A and B with four members in 

each group. All the subjects in Group A were provided training without assistance 

whereas all the subjects in Group B were provided training with assistive concepts. Each 

of these eight subjects performed a total of 63 trials in Fitts’ X, Y and Z directions. The 

63 trials were divided into 21 for the Fitts’ X, Y and Z each. These 21 trials were further 

divided into 7 trials for three different (A/B) ratios each. In each of these 7 trials, the first 

two were called the baseline trial. Here all the subjects irrespective of their groups were 

asked to perform the experiment once with and without assistance. Then the next three 

trials were called the Fitts’ training session where Group A was given training without 

assistance and Group B was given training with assistance. The last two trials aptly called 

the final task is a repetition of the baseline task with the only difference being that it is 

fi tt − =it

=ft
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performed at the end of the training session. All these experiments are timed using a 

stopwatch. Now, the time difference between the baseline and final tasks was noted down 

as Delta time for Fitts’ X, Y, Z separately for each of the subjects. Then, the average 

Delta time values in Group A for Fitts’ X, Y, Z were determined separately. This was 

again repeated for Group B. The higher the Delta time value, the shorter the execution 

time at the end of the training session, and hence better performance in terms of speed. 

Group B was expected to show higher Delta time values signifying that they moved faster 

for the same number of training trials compared to Group A. For three different (A/B) 

ratios, the average Delta time values are tabulated as shown below. The average time 

values are determined separately for Fitts’ X, Y and Z. Table 8.1 displays the Delta time 

value between the baseline and final task when executed without any assistance. 

Table 8.1: Comparison of Average Delta Time Values when Performed without Any 
Assistance for Group A and Group B 

 
 Group A (Average Delta Time WOA) Group B(Average Delta Time WOA) 

A/B Fitts’ X Fitts’ Y Fitts’ Z Fitts’ X Fitts’ Y Fitts’ Z 

165/20 0.49975 -1.272 2.2815 1.3405 1.252 1.34675 

155/20 -0.75025 0.095 0.81835 0.4375 0.637 1.4505 

140/20 -0.50425 0.47575 0.5145 0.62675 0.68525 0.6565 

 

The Table 8.2 displays the average Delta time (baseline-final) values when performed 

with assistance for Group A and Group B. 
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Table 8.2: Comparison of Average Delta Time Values with Assistance for Group A and 
Group B 

 
 Group A(Average Delta Time(WA) Group B(Average Delta Time WOA) 

A/B Fitts’ X Fitts’ Y Fitts’ Z Fitts’ X Fitts’ Y Fitts’ Z 

165/20 0.44125 -0.46475 1.492 0.612 0.69475 1.130667 

155/20 0.07275 0.567 0.06045 0.118 0.1775 0.495775 

140/20 -0.05063 0.421375 0.6175 0.22825 0.2365 0.229 

 
 
From Table 8.1, the average Delta time values (without any assistance) of all the three 

(A/B) ratios are tabulated below: 

Table 8.3: Comparison of Average Delta Execution Time when Performed without  
Assistance 

 
 

Group A 
 

 
Group B 

 
 

Fitts’ X 
 

 
Fitts’ Y 

 

 
Fitts’ Z 

 

 
Fitts’ X 

 

 
Fitts’ Y 

 

 
Fitts’ Z 

 
-0.0217 0.084242 1.1585 0.651908 0.856975 1.151167 
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A bar chart depicting the above tabulated values is shown below. The values are taken  
 
from Table 8.3. 

 
Fitts’ Task 

 
Figure 8.1: Comparison of Average Delta (Baseline-Final) Execution Time when 

Performed without Assistance 
 

In Figure 8.1, we can see that the average Delta time value is greater for all the 

subjects in Group B compared to Group A in Fitts’ X and Fitts’ Y. All the volunteers in 

Group B received training with assistance. The subjects in Group A received training 

without assistance. When the final task after training was executed without assistance for 

all the subjects, Group B took less time to perform the same task except for in the Fitts’ Z 

Task. This is because the subjects in Group B trained with assistance, improved their 

speed and accuracy in less time compared to Group A. The exception in the Fitts’ Z 

direction can be explained by the visual perception error. The Phantom Z direction is 

visually mapped as the X axis on the haptic screen.  

 

 

Average  
Delta  
Time  
in  
Seconds 
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The next analysis involves the comparison of average Delta (baseline-final) 

execution time for tasks performed with assistance by Group A to the Fitts’ Tasks 

performed by Group B without assistance. This is a very interesting data analysis because 

we are going to compare the performance of Group A with assistance after training 

versus performance of Group B without assistance after training.  

Here, the Delta time is defined as: 

• Delta time (Group A) = Average of Baseline Time Value (with Assistance) 

Final (with Assistance) for Fitts’ X, Y, Z Each. 

• Delta time (Group B) = Average of Baseline Time Value (without Assistance) 

- Final (without Assistance) for Fitts’ X, Y, Z Each. 

From Table 8.4, the average Delta time values (with assistance) of all the three 

(A/B) ratios are tabulated below: 

Table 8.4: Comparison of Average Delta Execution Time when Group A Performed 
(WA) 

and Group B (WOA) 
 

 
Group A(WA) 

 

 
Group B(WOA) 

 
 

Fitts’ X 
 

 
Fitts’ Y 

 

 
Fitts’ Z 

 

 
Fitts’ X 

 

 
Fitts’ Y 

 

 
Fitts’ Z 

 
0.300709 -0.04687 0.97685 0.651908 0.856975 1.151167 
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The following is a histogram representation of the above data, 
 

 
Fitts’ Task 

 
Figure 8.2: Comparison of Average Delta (Baseline-Final) Execution Time when 

Performed with Assistance 
 

The volunteers in Group B took less time to perform the Fitts’ Task without 

assistance at the end of their training. It is reminded here that the training session 

involved inclusion of assistance function. The volunteers in Group A meanwhile, were 

given assistance once before the training and once after the training. Here again, they 

received training without assistance. Now from the above histogram chart, we learn that 

the Group B members when given no assistance perform better than Group A (given 

assistance) at the end of their respective training sessions.  

The performance of Group B subjects improves in a way that even when you 

remove assistance to them at the end of their training, they perform better than Group A 

when given assistance after training. Though the results are preliminary, this data trend 

shows that repetitive task helps the subjects to develop speed, which may lead to 

improved muscle memory sooner than expected. The only exception was found in Fitts’ 

Average  
Delta  
Time  
in  
Seconds 
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Task Z where the average Delta time values were almost equal to each other. This could 

be attributed to the visual perception error discussed previously. 

Next we compare the average Delta time values at every (A/B) for Fitts’ X, Y and 

Z. The analysis of performance in Group A and Group B at every (A/B) ratio with 

assistance in Fitts’ X, Y and Z is described here: 

 
Figure 8.3: Comparison of Average Delta Time with Assistance in Fitts’ X 

 
As shown in Figure 8.3, the average Delta time increases for small (A/B) ratio. 

This Delta time value is the difference between the baseline and final time taken to 

execute the Fitts’ Task with assistance. Now, the speed reduces in shorter distances 

because the subject tries not to overshoot the target location and hence moves slowly. 

Group B who received training with assistance displayed greater average Delta time at 

smaller (A/B) points indicating that they travel faster compared to Group A. Overall,  
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Group B displays a greater Delta time value compared to Group A for all the three 

Log(A/B) ratios. The slope and intercept values for the above experiment were -3.61578 

and 4.4.3138 respectively. The coefficient of significance for the above task was 0.48572. 

Figure 8.3 is a sample graph in Fitts’ X and the Fitts’ graphs in Y and Z directions are 

given in Appendix B. 

The following graphs display useful information with regards to the effectiveness 

of Fitts’ Task over time in a wide range of (A/B) ratios. The average Delta time taken by 

Group A (baseline-final) with assistance is compared with average Delta time taken by 

Group B (baseline-final) without assistance for all three (A/B) ratios. The Group B 

subjects performed better at smaller (A/B) ratios compared to Group A. 

In Fitts’ Y, the Group B subjects performed better at larger values of (A/B). The 

lesser increase in average Delta time for smaller values of (A/B) could be attributed to the 

error in human accuracy. Here is the performance of subjects in Group B. 
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Figure 8.4: Comparison of Average Delta (Baseline–Final) Time between Group A                      
(with Assistance) and Group B (without Assistance) in Fitts’ Y 

 
All these results indicate that, the subjects in Group B who received training with 

assistance performed better when the assistance was removed at the final session. They 

displayed greater average Delta time or shorter execution time as compared to Group A 

whose subjects received assistance at the end of their training session. The Group A 

members received training without any assistance during their training session.  

The intercept and slope parameters are computed for Fitts’ X, Y and Z 

experiments from the observed execution times. The observed execution times are fit to 

straight line in order to get the regression parameters. Now using these constants, the 

theoretical time values are calculated. The observed and theoretical time values were 

found to be almost equal in magnitude. Then, the theoretical time values were plotted and 

fit to get the experimental constants. The error percentage in βα ,   for observed versus 

the theoretical values was found to fall within 20-30%. 
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8.2 Determination of Position Accuracy 
 
 
 

The position accuracy experiment involves the tracing of the haptic position of the 

user with the user defined trajectory points to check how he or she followed the path 

between the two goal points. 

8.2.1 Comparison of Fitts’ with and without Assistance or without Time Constant 
 
 
 

This experiment involved two healthy subjects who were asked to move from D1 

to D2 in the Fitts’ Task X, Y and Z respectively. Let S1 denote the subject who was not 

given assistive force during task execution and let S2 denote the subject who was given 

assistive force during execution of each of the above tasks. Each of these subjects were 

not told if they were given assistance or not until they actually performed the task. Both 

S1 and S2 received rehabilitation training with a total of 63 trials each. While S1 received 

training without assistance, S2 received training with assistance. The haptic position data 

for both the subjects was recorded in a text file in the C++ application. This data was 

compared to the corresponding position data points on the trajectory implemented in the 

Fitts’ Task. The haptic real time data position values are compared to the trajectory path 

values for both the subjects. Subject S2 was given assistance to perform the experiment 

in Fitts’ X, Y and Z directions whereas subject S1 was not given any assistance to 

perform the same set of experiments. The real time haptic position and trajectory path 

value comparisons for the Fitts’ Task in all three directions are shown below graphically. 

First, let’s see the performance of S1 and S2 in Fitts’ X. 
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Figure 8.5: Trajectory Path Position Values Versus Haptic Real Time Data Positions in 

Fitts’ X 
 

The trajectory path in the Fitts’ X Task is represented by the red dotted lines as 

shown in the Figure 8.5. While the green line represents the movement of the haptic 

cursor controlled by subject S1, the blue line represents the position values of the haptic 

cursor when controlled by subject S2. As seen in the above graph, subject S2 has 

followed the trajectory path more closely than subject S1. S2 performed with a standard 

deviation of only 1.008 while S1 showed a higher standard deviation of 1.462. The scaled 

forces acting in the X direction of motion accelerate the user motion on the desired 

direction of motion. Exponential forces based on the distance between the starting 

position and target is applied on the user controlled sphere. The scaling factor is small at 

the ends of the trajectory compared to those applied at the centre of the trajectory. This is 

done so that no kind of buzzing noise is generated. Buzzing may be caused by high 

magnitude forces acting in small distance segments. 

S1 
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Figure 8.6: Trajectory Path Position Versus Haptic Real Time Data Positions in Fitts’ Y 

 
 

The Fitts’ Task in Y direction was comparatively easier for both the subjects. 

Even then, subject S2 followed the trajectory path in Y direction more closely when 

compared to subject S1 as shown in Figure 8.6. The red line represents the original 

trajectory path with the blue line and green line representing subject S2 and S1 

respectively. S2 traced the trajectory path with a standard deviation of 0.187, and S1 

displayed a standard deviation of 1.468. 
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Figure 8.7: Trajectory Path Position Versus Haptic Real Time Data Positions in Fitts’ Z 

 
The Fitts’ Task in the Z direction of motion was observed to be the most difficult 

task for all the volunteers. While subject S1 found it very difficult to move in the preset 

trajectory path in the Z direction without any assistance, subject S2 was guided along the 

entire trajectory path by the applied force algorithm effectively. This can be very clearly 

seen in Figure 8.7. While S1 showed a standard deviation of 18.88, S2 traced the 

trajectory path with a standard deviation of 4.52. The physical limitations of the Phantom 

here in the Z direction are effectively overcome by the forces generated in the Z 

direction. 

These results show that the C++ application provides an effective force feedback 

for the different assistance tasks. This shows the system’s reliability in terms of the 

number of times the force feedback has been provided. Moreover, the real-time aspect of 

the system allows the user’s to get immediate force feedback. Moreover, it is seen that 

the logic of assistance functions in X, Y and Z directions works fine. 
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8.2.2 Comparison of Accuracy (without Assistance) with Execution Time Kept                                        

Constant 

 
 

In this experiment, a comparison is made between the same two subjects S1 and 

S2 from Group A and Group B respectively. These are the same groups that we gave 

training in Fitts’ Task previously. These two subjects S1 and S2 were given more training 

because the performance in Fitts’ Task was said to improve over time. The more the 

number of trials, the better the learning curve while performing Fitts’ Task. Hence, we 

are going to look at the position accuracy of S1 and S2. It is reminded here that, Group A 

received training without assistance and Group B received training with assistance. 

8.2.2.1 Experimental Procedure 
 
 
 
         Both S1 and S2 had already completed 63 trials each. Now, they agreed to come 

again for two more sessions to perform 126 trials more. They completed their trials over 

three days. After their training sessions each, both subjects S1 and S2 had acquired 

training skills in Fitts’ X, Y and Z according to their training type. At the end of training, 

S1 and S2 were made to perform the Fitts’ X, Y and Z in three different distance ranges. 

The only difference in the experiment procedure was that, time was kept constant. The 

subjects were asked to move as much as they could in Fitts’ X, Y and Z for two seconds. 

Both the subjects were not given any assistance during these experiments. Their haptic 

position data in X, Y and Z were recorded and plotted against the trajectory data in Fitts’ 

X, Y and Z respectively. Here is the set of graphs representing the position accuracy of 
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S2 while performing the Fitts’ in X direction without assistance. The subject S2 had to 

move without assistance and cover as much 

 as possible in 2 seconds in three ranges of distances. The time was kept constant to 

compare accuracy between the subjects. As seen in Figure 8.8, 8.9 and 8.10, S2 displayed 

good accuracy for all the three distance ranges.  

                              

                                    
 
 
                    
 

Figure 8.8 : Position Accuracy of Subject S2 and S1 in Fitts’ X, Smaller Distance 
 

                                          
 

                          
 
 

Figure 8.9: Position Accuracy of Subject S2 and S1 in Fitts’ X, Medium Distance 
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Figure 8.10 : Position Accuracy of Subject S2 and S1 in Fitts’ X, Larger Distance 
  

In Figure 8.8, while S2 showed a standard deviation value of 1.008, S1 had a 

standard deviation of 4.007. In Figure 8.9 it is seen that, for medium distance S2 had a 

standard deviation of 0.97666 while S1 had a standard deviation of 2.005. In Figure 8.10, 

at a larger distance, S2 travels with a standard deviation of 1.463 whereas S1 showed a 

greater deviation of 29.9. When we compare the graphs for S1 and S2, it becomes 

obvious that, accuracy of S2 was as good as and in fact, better in the third distance, when 

compared to S1. This is attributed by the fact that S2 traveled greater distance when 

compared to S1 in two seconds. In Figure 8.8, S1 shows less accuracy because the subject 

tries to cover a greater distance in two seconds. This causes S1 to travel faster 

compromising on accuracy. Subject S2 performed with better accuracy in this 

distance.This shows that S2 improved with training session with Fitts’ compared to S1 

who did not receive any training with Fitts’. The Fitts’ improves the performance of the 

user on a longer period of time. 
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The subject S2 traveled with a standard deviation of 1.0562 whereas subject S1 

showed a standard deviation of 0.2289. In Figure 8.9, the standard deviations are less for 

S1 and S2 indicating that both performed better at a medium distance. The standard 

deviation values were 1.056 and 0.187 for S2 and S1 respectively. Here subject S1 

showed better accuracy compared to S2 but covered less distance in the same time as 

compared to S2. At a larger distance, S2 displayed a standard deviation of 1.4653 with S1 

moving much more away from the trajectory showed a higher standard deviation value of 

16.79. Subject S2 obviously covered greater distance in two seconds and also showed 

accuracy almost as equal to S1. S2 displayed better accuracy in the larger distance range 

as shown in Figure 8.10 and decent accuracy for the other two distances. The results were 

similar for Fitts’ Y and Z experiments. The corresponding graphs are given in Appendix 

B. 

8.2.3 Position Accuracy Before and After Training for S1 and S2 
 
 
 

The haptic position data for both S1 and S2 was recorded both before and after 

the training session. The subjects were not provided any kind of assistance during the 

recording of this haptic position. The haptic position data before the training session is 

the position data corresponding to the baseline time value when measured without any 

assistance. The haptic position data after the training session is the position data 

corresponding to the final task time value also measured without any assistance. 

Here is a comparison of the haptic position data of S1 before and after training 

plotted against the trajectory data points in Fitts’ X, Fitts’ Y and Fitts’ Z respectively. 
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Figure 8.11: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’ 
X 
 

While the green line represents the haptic position data after training, the blue line 

denotes the haptic position data before training. As evident in the Figure 8.11, the subject 

S1 who received training without assistance did perform better after the training. The 

subject S2 traveled closer to the trajectory path compared to S1 after training. S1 showed 

a standard deviation of 4.008 which reduced to 2.003 after training. S2 whereas, 

improved its standard deviation from 3.521 to 1.09. This means that subject S2 traveled 

almost close to the trajectory path compared to his counterpart S1 after their respective 

training sessions. This is because subject S2 moved with greater accuracy after the 

training with assistance compared to subject S1 who received training without assistance. 

The next set of graphs depicts the performance of S1 and S2 in Fitts’ Y Task. 

 

 

 

 

-60 -40 - 20     0        20   40      60 
Distance in X axis in mm 

20 
 
15 
10 
5 
0 
5 
 
10 
15 
20 
 

Dist      
in  
Y  
axis  
in  
mm 

12 11 10   9   8    7   6   4   3     2     1 
Distance in X axis in mm 

 
 
  4 
  3 
  2 
  1 
  0 
 -1 
 -2 
 -3 
 
 -4 
         

-5 

Dist 
in  
Y 
axis  
in 
mm 



    

102 
 

                          

 
 
 

Figure 8.12: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’ 
Y 

 

In Figure 8.12, the green line represents the movement after the training sessions 

and the blue one represents the movement before any training session and without any 

assistance. Let us take a look at the performance of subject S2 and compare to S1 and S2. 

As shown in Figure 8.12, both the subjects’ showed similar improvement both before and 

after performance. But, it is observed that, subject S2 still showed a tendency to move a 

accurately on the trajectory path when compared to subject S1. While the standard 

deviation of S2 improved from 1.056 to 0.187, S1 showed an improvement in standard 

deviation from 16.79 to 1.553 after training. Well, both S1 and S2 performed better after 

training here compared to Fitts’ X, which may be due to the ease with which the Phantom 

imitates motion in the Y direction. 

The Fitts’ Z is one of the most difficult tasks and it would be interesting to see if 

subject S2 performed more accurately than S1. Here are the graphs for S1 and S2 

recorded during the Fitts’ Z Task. 
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Figure 8.13: Haptic Position Data of Subject S2 and S1 before and after Training in Fitts’ 

Z 
 

While the green line denotes the haptic position data for the subject after training, 

the blue line presents the haptic position data before the training. Subject S1 did better as 

seen in Figure 8.13 but was not as accurate as S2 in path following. While S2 showed a 

standard deviation of 16.8 before training, the standard deviation value improved to 1.778 

after training. Meanwhile, S1 showed a standard deviation of 18.88 before training and 

6.99 after training. Hence, while position accuracy of S1 improved after training in the Z 

direction, it was not as good as the position tracking of S2. These graphs show the 

different ways to compare and analyze data. Hence this system provides an ideal platform 

for data analysis for any kind of haptic based rehabilitation tasks which could be added 

on later. Also, though these data are preliminary they show the potential of this system as 

a therapy tool. 
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8.2.3.1 Standard Deviation of S1 and S2 
 
 
 

It is reminded that subjects S1 and S2 who had performed position accuracy 

experiments had performed a total of 189 trials each. Excluding the baseline and final 

experiment, both S1 and S2 performed a total of 27 trials of training each. This means S1 

performed 9 trials without assistance in Fitts’ X, Y and Z each, while S2 performed 9 

trials with assistance in Fitts’ X, Y and Z directions each. The average time value of these 

9 trials was determined and the standard deviation of the sample set was determined for 

Fitts’ X, Y and Z. The values are tabulated below. 

Table 8.5: Standard Deviation of Subject S2 who Received Training with Assistance 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Fitts’ X Fitts’ Y Fitts’ Z 

 2.9621 4.1877 5.8033 

 4.267 4.398 10.14533 

 4.4087 4.032 9.0957 

Standard Deviation 0.79746 0.1837 2.2655 
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Table 8.6: Standard Deviation of Subject S1 who Received Training without Assistance 
 

 Fitts’ X Fitts’ Y Fitts’ Z 

 2.9621 4.1877 5.8033 

 4.267 4.398 10.14533 

 4.4087 4.032 9.0957 

Standard Deviation 0.79746 0.1837 2.2655 

 

The standard deviation values are low enough to show that the subjects were 

consistent for all the trials that they performed. On a final note, task oriented repetitive 

experiments may help in improving muscle skill and movement coordination [22] and 

this project shows that task execution with assistive forces may help people improve their 

speed and accuracy in task execution in a shorter period of time as compared to those 

who received training without assistance. The preliminary results help for future analysis 

in clinical studies. 
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9. Conclusions and Future Work 

 
 
9.1 Conclusions 
 
 

 
The following are indications of the data trend observed from performing the 

predefined preliminary experiments. All these inferences basically validate the future use 

of this haptic integrated C++ application for rehabilitation purposes. Here is a summary 

of the inferences:       

• Group B took less execution time compared to Group A subjects in Fitts’ X, 

Fitts’ Y and Fitts’ Z Tasks (Delta T was computed for without assistance tasks). 

•  Group B (without assistance) Delta T was greater than Group A (with 

assistance) Delta T. Group B learnt the task faster than Group A subjects. 

• The position accuracy of Group B subject S2, improved considerably after 

training and it was as good and in some cases, better than the improvement in 

Group A subject S1 after training. 

• The Group B subject S2, not only improved in position accuracy but also 

improved in speed maintaining his or her accuracy. The Group A subject S1 

showed good improvement in position accuracy but did not improve in speed.
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• Improved user performance in smaller distances: Higher Delta T at smaller 

distances in Fitts’ X. 

• Position accuracy in Fitts’ Z improved after training for subject S2. 

These inferences provide a platform for future research for making this 

application a full fledged rehabilitation tool. These results indicate a positive response 

with respect to the effectiveness of the assistance functions and the C++ code. The 

system developed here also provides a good data collection tool for clinicians. 

9.2 Future Work 
 
 
 

The haptics based assistive technology provides an amazing scope in haptic 

teleoperation and for use in rehabilitative applications. Here, is a list of suggested future 

work based on the research work presented here. 

9.2.1  3D Simulation of Pre-Set Activities of Daily Living Tasks 
 
 
 

The simulated ADL tasks help people with hand disabilities in the following 
ways: 
 

• To Assist in any ADL task. 
 

• To Rehabilitate the Hand as Well as the Arm. 
 

• To Learn the Movements Involved in any Activities of Daily Living Task                                 
 

before Actually Executing it. 
 

The assistance concepts in this thesis could be applied to any type of Pre-Set ADL 

tasks. One very good example is a Handwriting Expert software tool. This tool should 

contain a Graphical User Interface consisting of all the alphabets from A-Z. The OpenGL 
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frame work could be used to simulate a path which traces the chosen alphabet. Then, 

appropriate forces could be applied to the path so that the user is assisted while tracing 

the path of the chosen alphabet. The user hence, learns to move the hand in the shape of 

an alphabet and thus exercises the hand muscles required to write an alphabet. Thus, 

electronic handwriting combined with assistive technology would enable users with hand 

disabilities write coherently. Another good example is the maze, whose path consists of 

twists and turns. The assistance concepts would be applied to a curvilinear path as against 

to a straight line path which is described in this thesis. The user receives assistance in 

tracing the non-linear path of the maze and to finally reach the goal at the end of the 

maze. The Fitts’ Task could also be used to test the accuracy of the above two 

experiments. The Fitts’ Law was applicable only in translational movements but studies 

[40] have shown that this law could be extended to describe angular motion. Hence, be it 

a linear or angular motion in a maze, it is going to be possible to verify the accuracy of 

experiments set up in these non linear paths using the modified Fitts’ Law. It would be 

interesting to design the peg in hole experiment in 3D virtual space like the Fitts’ task. 

The experiment consists of a cylindrical peg which could be moved alternately between 

the two holes [41]. The time taken by the user to insert a peg would be a reliable measure 

of the subject’s skill and performance. The assistive concepts described in this project 

would definitely reduce the time taken for this task when applied properly. 
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9.2.2  Addition to this Research Work 
 
 
 

Now, we are going to take a look at the various suggestions that can improve this 

research work. We validate the system performance, in terms of effective force feedback, 

real time application and choice in terms of assistance functions. The experimental data 

are still preliminary and here is a look at the various steps that may lead to proper clinical 

testing using this haptic integrated C++ application. This project only shows a data trend, 

and further work is required to conclude on the actual benefit of using this application for 

people with disabilities. This is a set of preliminary experiments and it requires more 

experiments to actually get conclusive data regarding human performance. Currently, this 

application is treated as an indication of the effect of assistance functions on normal 

healthy users. The experiments must be designed in a way such that there are more trials 

and practice sessions than the current number of trials. This should be done to ensure that 

enough practice is given before any conclusive evidence is made on user performance. 

Moreover, we should have better linear regression Fitts’ with acceptable significance 

values.                                                                                                                                                            

9.2.3 Robotic Teleoperation 
 
 
 

Now, haptics also plays a very significant role in force feedback in robotic 

teleoperation. The Phantom provides a user friendly interface device in robotic 

teleoperation. They generate force feedback based on the distance between the robotic 

end-effector and the target. The GUI and C++ haptic interface tool can be applied to 

control a simulation of any degree of freedom robotic arm (simulation or real world) and  
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provide different types of assistive forces. These assistive concepts could be based on the 

type of task involved during teleoperation. Thus, this project offers high scope for robotic 

teleoperation and future upper arm rehabilitative applications. A good example of robotic 

teleoperation is the control of a simulation of robotic arm called PUMA 560. This is a six 

degree of freedom robotic arm and it has been used previously to help surgical 

operations. It would be interesting to provide force assistance for this robotic arm while 

performing surgical procedures. 
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Appendix A. Fitts’ Coefficients  
 
 
 

βα ,  values for Fitts’ X, Fitts’ Y and Fitts’ Z. 
Comparison of Average Delta Time with Assistance in Fitts’ X Task 
 
Group B 
=α -3.61578 
=β 4.43138 

Coefficient of Significance: 0.48572 
 
Group A 
=α -4.9795 
=β 5.78188 

Coefficient of Significance: 0.19616 
 
 
Comparison of Average Delta Time with Assistance in Fitts’ Y Task 
 
Group B 
=α -4.35429 
=β 5.32013 

Coefficient of Significance: 0.41733 
 
 
Group A 
=α 9.29844 
=β -10.2735 

Coefficient of Significance: 0.43439 
 
Comparison of Average Delta Time with Assistance in Fitts’ Z Task 
 
Group B 
=α -8.80956 
=β 10.79132 

Coefficient of Significance: 0.19987 
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Appendix A (Continued) 
 
 
 

Group A 
=α -8.14036 
=β 9.9823 

Coefficient of Significance: 0.60341 
 
 
Comparison of Average Delta (Baseline – Final) Time between Group A (with 
Assistance) and Group B (without Assistance) in Fitts’ X 
 
 
Group B 
=α -3.61578 
=β 4.43183 

Coefficient of Significance: 0.48572 
 
 
Group A 
=α -4.9795 
=β 5.7818 

Coefficient of Significance: 0.19616 
 
 
Comparison of Average Delta (Baseline – Final) Time between Group A (with 
Assistance) and Group B (without Assistance) in Fitts’ Y 
 
Group B 
=α -4.9926 
=β 6.58912 

Coefficient of Significance: 0.39609 
 
Group A 
=α 9.29844 
=β -10.275 

Coefficient of Significance: 0.43439 
 
Comparison of Average Delta (Baseline – Final) Time between Group A (with 
Assistance) and Group B (without Assistance) in Fitts’ Z 
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Appendix A (Continued) 
 
 

 
Group B 
=α -6.26433 

 
=β 8.35144 

Coefficient of Significance: 0.39223 
 
 
Group A 
=α -8.14036 
=β 9.9823 

Coefficient of Significance: 0.60341
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Appendix B. Fitts’ Graphs      
 
 
 

 

Figure B-1: Comparison of Average Delta Time with Assistance in Fitts’ Y 

The above graph indicates that execution time has reduced significantly for 

greater values of (A/B) in Fitts’ Y Task. For smaller (A/B), the average Delta time for 

Group A was greater compared to Group B. This can be attributed to the fact that, in 

general, all the subjects performed well in Fitts’ Y direction. 
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Appendix B (Continued) 
 
 
 

 
Figure B-2: Comparison of Average Delta Time with Assistance in Fitts’ Z 

 
All the subjects in Group A and Group B found the Fitts’ Z Task comparatively 

difficult because of the previously mentioned reasons. Irrespective of this, the subjects in 

Group B showed greater average Delta time values compared to Group A.  
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Appendix B (Continued) 
 

 
 

Figure B-3: Comparison of Average Delta (Baseline – Final) Time between Group A 
(with Assistance) and Group B (without Assistance) in Fitts’ X 

 
 

The Fitts’ Z also showed better results at smaller values of (A/B) with group B 

taking lesser time compared to Group A. This can be seen in Figure B-3. 
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Appendix B (Continued) 
 
 
 

 
Figure B-4: Comparison of Average Delta (Baseline – Final) Time between Group A 

(with Assistance) and Group B (without assistance) in Fitts’ Z 
 

                                               
 
 
                                                                                                        
 
 

Figure B-5: Performance of S2 and S1 before and after Training 
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Appendix B (Continued) 
 

                                      
 
   

 
                   
 

Figure B-6: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Y, 
Medium Distance 

  

                                      
 
 
 
          
 
Figure B-7: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Y, 

Larger Distance 
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Appendix B (Continued) 
 

 

                                
 
 
 
                                                                                                                             
 
 
Figure B-8: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Z, 

Smaller Distance 
 

 
 

                                      
 
     
 
                                                                                                             
 
 
Figure B-9: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ Z, 

Medium Distance 
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Appendix B (Continued) 
 
 
 

                                      
 
              
                   
 

 
Figure B-10: Position Accuracy of Subject S2 and S1 before and after Training in Fitts’ 

Z, Larger Distance
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Appendix C. C++ Code 
 
 
 
#include <HL/hl.h> 
//ADDED NOW// 
#include <HDU/hduMatrix.h> 
//#include <dos.h> 
//#include <time.h> 
#include <malloc.h> 
#include "ConstantsSock.h" 
#include <cstdio> 
#include <GL/glut.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include "TrajectorySock.h" 
//#ifndef DataStruc.h 
#include "DataStruc.h" 
//#endif DataStruc.h 
//#include "udpSocketClass.h" //socket class definition 
 
//#include "udpSocketClass.h" 
//#include "DataStruc.h" 
//#define NP 50 
//#define BUFFERSIZE 256 
#define NP 2 
#define NPT 100 
#define  RECTSIZE 80 
double p,q,r; 
double smallest_dist=13.0; 
double px; 
int i,v;  
int value; 
/*USER CONTROLLED FORCE PROJECTION ON THE TRAJECTORY 
PATH.PARAMETERS USED.Testing on exp 6*/ 
 
double Proj_Scale; 
double xExp_Scale; 
double yExp_Scale; 
 
//#define FRAMECOUNTER 29 
 
/*typedef struct point_3d {   //3D in world coord sys 
   double x, y, z; 
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Appendix C (Continued) 
 
 
 

}POINT_3D; 
//POINT_3D *mpoints;*/ 
 
typedef struct point_3d {   //3D in world coord sys 
   double x, y, z; 
   }POINT_3D; 
 
typedef struct TrajP { 
 double x, y, z; 
 
 
 int indx; 
}TrajP_3D; 
 
TrajP_3D *TrajPoint; 
TrajP_3D ClosestPoint; 
TrajP_3D Next_Pt; 
 
 
POINT_3D pointstart; 
POINT_3D pointend; 
POINT_3D Intersection; 
POINT_3D hapticposition; 
POINT_3D nearest_pt; 
//POINT_3D TrajPoint; 
//ADDED NOW// 
 
//ADDED NOW// 
//hduVector3Dd vectorPoint; 
//ADDED ON MaRCH 27TH 
hduVector3Dd vectorPoint; 
hduVector3Dd dcentertoeffector; 
//hduVector3Dd Trajpoint; 
hduVector3Dd scalepoint; 
hduVector3Dd fixedcenter; 
//added on march 31st 
hduVector3Dd bezierpoint; 
hduVector3Dd secondpoint; 
hduVector3Dd m_chosenp; 
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Appendix C (Continued) 
 
 
 
hduVector3Dd m_zeroPosition; 
hduVector3Dd VScaled; 
hduVector3Dd VProjected; 
//Declarations for FITTS’ Task 
hduVector3Dd Fitts’_Start; 
hduVector3Dd Fitts’_End; 
hduVector3Dd Fitts’_Delta; 
double GoalDist; 
//hduVector3Dd m_TrajPoint; 
HDint m_gIDMenu; 
void displayFunction(void); 
void handleMenu(int); 
void handleIdle(void); 
void handleMouse(int, int, int, int); 
void drawLine(void); 
void displayWallsHaptically(void); 
POINT_3D findClosestPoint(void); 
void displayLine(void); 
//TrajP_3D displayLine(); 
double Magnitude(void); 
//double a1,b1,c1,a2,b2,c2,a3,b3,c3,a4,b4,c4; 
double CP[4][3] = { {100,100,0 }, //control points 
     {50,100,20 }, 
     { -50,0,0 }, 
     {-100,50,-
20}};double velocityMag; 
//Create checkboard texture// 
#define checkImageWidth 100 
#define checkImageHeight 100 
static GLubyte checkImage[checkImageHeight][checkImageWidth][4]; 
static GLuint texName; 
// haptic device and rendering context handles 
static HHD hHD = HD_INVALID_HANDLE; 
static HHLRC hHLRC = 0; 
// shape id for shape we will render hapticallyuint WallShapeId; 
//Fitts’’ Task (X-dir Constraint) -> option 1 
//#define FITTS’TASK1 
//Fitts’’ Task (Y-dir Constraint) -> option 1 
//Fitts’’ Task (Z-dir Constraint) -> option 2    
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Appendix C (Continued) 
 
 
 
// 3D motion & user controlled velocity scaling 
//#define TASK1 
 
#define REMOVEZ 
//#define INCLUDEZ 
 
#define NormalView 
//#define ZView 
 
#define XYZwalls 
//#define Zwalls 
 
 
#define TransNormal 
//#define TransZaxis 
//conditional compilation depending on type of assistance 
 
//#define EXP1 
//#define EXP2 
//#define EXP3 
//#define EXP4 
//#define EXP5 
//#define EXP6 
//#define EXP7 
//#define EXP8 
//#define EXP9 
//#define EXP10 
//#define EXP11 
 
 
/***********************************************************************
*************** 
************************************************************************
****************/ 
/*void makeCheckImage(void) 
{ 
 int i,j,c; 
 for(i=0;i<checkImageHeight;i++){ 
  for(j=0;j<checkImageWidth;j++){ 
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Appendix C (Continued) 
 
 

 
 checkImage[i][j][0] = (GLubyte) c; 
            checkImage[i][j][1] = (GLubyte) c; 

Appendix C (Continued) 
 
            checkImage[i][j][2] = (GLubyte) c; 
            checkImage[i][j][3] = (GLubyte) 255; 
  } 
 } 
}*/ 
 
/***********************************************************************
******** 
 GLUT initialization 
************************************************************************
*******/ 
 
void initGlut(int argc, char* argv[]) 
 
{ 
    glutInit(&argc, argv); /* Initialize GLUT. */ 
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); 
    glutInitWindowSize(600, 600); 
    glutCreateWindow("Sphere-sphere Contact Example"); 
 
    glutDisplayFunc(displayFunction); /* Setup GLUT callbacks. */ 
    glutMouseFunc(handleMouse); 
    glutIdleFunc(handleIdle); 
    glutCreateMenu(handleMenu);     
    //glutAddMenuEntry("About...", 0); 
 glutAddMenuEntry("Fitts’’ Task (X-dir Constraint)...", 0); 
 glutAddMenuEntry("Fitts’’ Task (Y-dir Constraint)...", 1); 
 glutAddMenuEntry("Fitts’’ Task (Z-dir Constraint)...", 2); 
 glutAddMenuEntry("Linear Constraint Motion in 3D...", 3); 
 glutAddMenuEntry("Velocity Scaling Assistance...", 4); 
 glutAddMenuEntry("No assistance provided...", 5); 
    glutAddMenuEntry("Quit", 6); 
    glutAttachMenu(GLUT_RIGHT_BUTTON); 
 
 
} 
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Appendix C (Continued) 
 
 
 
{ 
    HDErrorInfo error; 
 
    hHD = hdInitDevice(HD_DEFAULT_DEVICE); 
    if (HD_DEVICE_ERROR(error = hdGetError())) 
    { 
        hduPrintError(stderr, &error, "Failed to initialize haptic device"); 
        fprintf(stderr, "Press any key to exit"); 
        getchar(); 
        exit(-1); 
    } 
     
    hHLRC = hlCreateContext(hHD); 
    hlMakeCurrent(hHLRC); 
 
    // Enable optimization of the viewing parameters when rendering 
    // geometry for OpenHaptics 
    hlEnable(HL_HAPTIC_CAMERA_VIEW); 
 
    // generate id's for the three shapes 
    WallShapeId = hlGenShapes(1); 
 
    hlTouchableFace(HL_FRONT); 
} 
/***********************************************************************
********     
 Use the haptic device coordinate space as model space for graphics. 
 Define orthographic projection to fit it. LLB: Low, Left, Back point of device workspace  
 TRF: Top, Right, Front point of device workspace  
************************************************************************
*******/ 
void initGraphics(const HDdouble LLB[3], const HDdouble TRF[3]) 
{    glMatrixMode(GL_PROJECTION); /* Setup perspective projection. */ 
    glLoadIdentity(); 
    HDdouble centerScreen[3]; 
    centerScreen[0] = (TRF[0] + LLB[0])/2.0; 
    centerScreen[1] = (TRF[1] + LLB[1])/2.0; 
    centerScreen[2] = (TRF[2] + LLB[2])/2.0; 
    HDdouble screenDims[3]; 
    screenDims[0] = TRF[0] - LLB[0]; 
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Appendix C (Continued) 
 
 
 
    HDdouble maxDimXY = (screenDims[0] > screenDims[1] ? 
screenDims[0]:screenDims[1]); 
    HDdouble maxDim = (maxDimXY > screenDims[2] ? maxDimXY:screenDims[2]); 
    maxDim /= 2.0; 
 
    glOrtho(centerScreen[0]-maxDim, centerScreen[0]+maxDim,  
            centerScreen[1]-maxDim, centerScreen[1]+maxDim, 
            centerScreen[2]+maxDim, centerScreen[2]-maxDim); 
     
    printf("glortho %lf %lf %lf %lf %lf %lf\n", 
           centerScreen[0]-maxDim, centerScreen[0]+maxDim,  
           centerScreen[1]-maxDim, centerScreen[1]+maxDim, 
           centerScreen[2]+maxDim, centerScreen[2]-maxDim); 
 
    glShadeModel(GL_SMOOTH); 
 
    glMatrixMode(GL_MODELVIEW); /* Setup model transformations. */ 
    glLoadIdentity(); 
 
    glClearDepth(1.0); /* Setup background colour. */ 
    //before glClearColor(0.7, 0.7, 0.7, 0); //gray 
 
 //new 
 glClearColor(205.0/255.0, 179.0/255.0, 149.0/255.0, 0); 
  //238-203-173 
 
 //glClearColor(1.0, 1.0, 1.0, 0); //gray 
    glDisable(GL_DEPTH_TEST); 
 
 //glClearColor(0.0,0.0,0.0,0.0); 
 /*glShadeModel(GL_FLAT); 
 glEnable(GL_DEPTH_TEST); 
 makeCheckImage(); 
 glPixelStorei(GL_UNPACK_ALIGNMENT,1); 
 glGenTextures(1, &texName); 
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_RE
PEAT); 
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Appendix C (Continued) 
 
 
 

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); 
 glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,checkImageWidth,chec
kImageHeight,0,GL_RGBA,GL_UNSIGNED_BYTE,checkImage);*/ 
} 
 
 
/***********************************************************************
********     
    Setup graphics pipeline, lights etc. 
************************************************************************
*******/ 
void doGraphicsState() 
{ 
 
 
#ifdef NormalView     
  glMatrixMode(GL_MODELVIEW); /* Setup model 
transformations. */  
#endif 
 
#ifdef ZView     
  glMatrixMode(GL_MODELVIEW); /* Setup model 
transformations. */  
        //glRotatef(-3.1416/1.5,0.0,1.0,0.0); 
        glRotatef(-3.1416/1.34,0.0,1.0,0.0); 
#endif      
 // glMatrixMode(GL_MODELVIEW); // Setup model 
transformations.  
  //glRotatef(-3.1416/2,0.0,1.0,0.0); 
       //n glRotatef(-3.1416/1.5,0.0,1.0,0.0); 
        //gluLookAt(0.0,10.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0); 
     
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
    glEnable(GL_COLOR_MATERIAL); 
 //add texture to the graphics 
    //glColor3f(1.0f,0.0f,0.0f); 
 //glEnable(GL_TEXTURE_2D); 
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Appendix C (Continued) 
 
 
 
  glColor3f(0.0, 0.7, 0.7); //gray 
  glTexCoord2f(0.0,0.0);glVertex3f(-300.0,500.0,0.0); 
  glTexCoord2f(0.0,1.0);glVertex3f(-10.0,500.0,187.0); 
  glTexCoord2f(1.0,1.0);glVertex3f(-10.0,-60.0,187.0); 
  glTexCoord2f(1.0,0.0);glVertex3f(-300.0,-210.0,0.0); 
 glEnd(); 
 //right wall glBegin(GL_QUADS); 
  glColor3f(0.0, 0.75, 0.75);  
 
  glTexCoord2f(0.0,0.0);glVertex3f(-10.0,500.0,187.0); 
  glTexCoord2f(0.0,1.0);glVertex3f(310.0,500.0,187.0); 
  glTexCoord2f(1.0,1.0);glVertex3f(310.0,-60.0,187.0); 
  glTexCoord2f(1.0,0.0);glVertex3f(-10.0,-60.0,187.0); 
 glEnd();*/ 
    //glShadeModel(GL_SMOOTH); 
 
    glEnable(GL_LIGHTING); 
    glEnable(GL_NORMALIZE); 
    glEnable(GL_LIGHT_MODEL_TWO_SIDE); 
    glShadeModel(GL_SMOOTH); 
     
    GLfloat lightZeroPosition[] = {10.0, 4.0, 100.0, 0.0}; 
    //GLfloat lightZeroColor[] = {0.6, 0.6, 0.6, 1.0}; /* green-tinted */ 
 GLfloat lightZeroColor[] = {0.1, 1.0, 0.1, 1.0}; /* green-tinted */ 
    GLfloat lightOnePosition[] = {-1.0, -2.0, -100.0, 0.0}; 
    GLfloat lightOneColor[] = {0.6, 0.6, 0.6, 1.0}; /* red-tinted */ 
     
     
    GLfloat light_ambient[] = {0.8, 0.8, 0.8, 1.0}; /* White diffuse light. */ 
    GLfloat light_diffuse[] = {0.0, 0.0, 0.0, 1.0}; /* White diffuse light. */ 
    GLfloat light_position[] = {0.0, 0.0, 100.0, 1.0}; /* Infinite light loc. */ 
     
    glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); 
    glLightfv(GL_LIGHT0, GL_POSITION, lightZeroPosition); 
    glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor); 
    glLightfv(GL_LIGHT1, GL_POSITION, lightOnePosition); 
    glLightfv(GL_LIGHT1, GL_DIFFUSE, lightOneColor); 
    glEnable(GL_LIGHT0); 
    glEnable(GL_LIGHT1); 
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Appendix C (Continued) 
 
 
 
//glFlush(); 
 //glDisable(GL_TEXTURE_2D); 
 
} 
 
/***********************************************************************
********     
 Draw Slave Sphere, at given position. 
************************************************************************
*******/ 
void displayVisitorSphere(GLUquadricObj* quadObj, const double position[3]) 
{  
 //char buffer[BUFFERSIZE]; 
    glMatrixMode(GL_MODELVIEW);   
 glPushMatrix(); 
 
 /*hlBeginFrame(); 
    hlCheckEvents(); 
    HLboolean buttDown = false; 
    hlGetBooleanv(HL_BUTTON2_STATE,&buttDown); 
 if (buttDown==true) 
    { 
  fprintf(stdout, "i am ok\n"); 
 } 
 hlEndFrame();*/ 
 
         //Display one sphere to represent the haptic cursor and the dynamic  
          //charge.  
         #ifdef TransNormal 
         glTranslatef(position[0], position[1], position[2]); 
         p = position[0]; 
      q = position[1]; 
      r = position[2];  
         #endif 
   //MODIFIED FOR Z AXIS FITTS’ TASK 
IMPLEMENTATION 
         #ifdef TransZaxis 
         glTranslatef(position[0], position[1],position[2]); 
         p = position[0]; 
      q = position[1]; 
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Appendix C (Continued) 
 
 
 

//Modified by Ramya in order to assign the position vector in variables p,q,r. 
       
   //Slave object is blue.  
  glColor4f(0.1, 0.1, 0.9, 1.0); 
 
        // The center sphere.  
        gluSphere(quadObj, VISITOR_SPHERE_RADIUS, 20, 20);      
        glPopMatrix(); 
  
} 
/***********************************************************************
************* 
Draw the quadrilaterals haptically so that we can give a sanse of touch to the walls. 
************************************************************************
**************/ 
void displayWallsHaptically(void) 
{ 
    hlBeginFrame(); 
 
    // set material properties for the shapes to be drawn 
    hlMaterialf(HL_FRONT, HL_STIFFNESS, 0.7f); 
    hlMaterialf(HL_FRONT, HL_DAMPING, 0.1f); 
 
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
    //glEnable(GL_COLOR_MATERIAL); 
 //add texture to the graphics 
    //glColor3f(1.0f,0.0f,0.0f);  
 //glEnable(GL_TEXTURE_2D); 
 //glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_R
EPLACE); 
 //glBindTexture(GL_TEXTURE_2D,texName); 
 //left wall 
 
#ifdef XYZwalls 
 
    hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, WallShapeId); 
 glBegin(GL_QUADS); 
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  glVertex3f(-0.0f,500.0f,187.0f); 
  glVertex3f(-0.0f,-60.0f,187.0f); 
  glVertex3f(-290.0f,-210.0f,0.0f);  
 
          
  glColor3f(0.0, 0.75, 0.75);  
  glVertex3f(-0.0f,500.0f,187.0f); 
  glVertex3f(300.0f,500.0f,187.0f); 
  glVertex3f(300.0f,-60.0f,187.0f); 
  glVertex3f(-0.0f,-60.0f,187.0f); 
 glEnd(); 
   hlEndShape(); 
 
#endif 
 
 
#ifdef Zwalls 
 
 
    hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, WallShapeId); 
 glBegin(GL_QUADS); 
         
  glColor3f(0.0, 0.7, 0.7); //gray 
        glVertex3f(-290.0f,500.0f,0.0f); 
  glVertex3f(-0.0f,500.0f,187.0f); 
  glVertex3f(-0.0f,-60.0f,187.0f); 
  glVertex3f(-290.0f,-210.0f,0.0f);  
 
          
  glColor3f(0.0, 0.75, 0.75);  
  glVertex3f(-0.0f,500.0f,187.0f); 
  glVertex3f(300.0f,500.0f,187.0f); 
  glVertex3f(300.0f,-60.0f,187.0f); 
  glVertex3f(-0.0f,-60.0f,187.0f); 
 glEnd(); 
   hlEndShape(); 
#endif 
 
   hlEndFrame(); 
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/***********************************************************************
******************************** 
To compute the Magnitude between two points 
************************************************************************
********************************/ 
double Magnitude(POINT_3D pointend,POINT_3D pointstart) 
{ 
 double Magnitude; 
 double r,s,t; 
 r = pointend.x-pointstart.x; 
 s = pointend.y-pointstart.y; 
 t = pointend.z-pointstart.z; 
    Magnitude = sqrt((r*r)+(s*s)+(t*t)); 
 return Magnitude; 
} 
 
/***********************************************************************
********************************** 
Draw a straight line and compute the distenace between haptic point and any point on the 
straight line 
************************************************************************
*********************************/ 
void displayLine(void) 
{    
   //if (m_gIDMenu == 4) { 
   #ifdef TASK1 
  //pointstart.x = -200.0; 
    pointstart.x = -200.0; 
    pointstart.y = 0.0; 
    pointstart.z = 0.0; 
    //pointend.x = 0.0; 
    pointend.x = 200.0; 
    pointend.y = 300.0; 
    pointend.z = 0.0; 
   //to draw a straight line based on the above computed points using OpenGL// 
   glMatrixMode(GL_MODELVIEW); //Setup model transformations. 
   glPushMatrix(); 
   glColor3f(1.0,0.0,0.0); 
   //hlTouchModel(HL_CONSTRAINT); 
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 glBegin(GL_LINE_STRIP); 
   glVertex3d(pointstart.x,pointstart.y,pointstart.z); 
   glVertex3d(pointend.x,pointend.y,pointend.y);  

Appendix C (Continued) 
 

 
   glEnd();  
 
   #endif 
 
/***********************************************************************
*************************************** 
Draw a second line for the Fitts’ Task...FITTS’ TASK IMPLEMENTATION,SETTING 
************************************************************************
*************************/     
   //if (m_gIDMenu == 0) { 
 #ifdef FITTS’TASK1 
 //pointstart.x = -200.0; 
    pointstart.x = -95.0; 
    pointstart.y = 0.5; 
    pointstart.z = 0.0; 
    //pointend.x = 0.0; 
    pointend.x = 95.0; 
    pointend.y = 0.5; 
    pointend.z = 0.0; 
   //to draw a straight line based on the above computed points using OpenGL// 
   glMatrixMode(GL_MODELVIEW); //Setup model transformations. 
   glPushMatrix(); 
   glColor3f(1.0,0.0,0.0); 
   //hlTouchModel(HL_CONSTRAINT); 
   //hlTouchModelf(HL_SNAP_DISTANCE,1.5); 
   glBegin(GL_LINE_STRIP); 
   glLineWidth(10); 
   glVertex3d(pointstart.x,pointstart.y,pointstart.z); 
   glVertex3d(pointend.x,pointend.y,pointend.z);  
   glEnd(); 
   glColor3f(0.0,0.0,0.9);    
   glBegin(GL_QUADS); 
   glLineWidth(10.0); 
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   glVertex3d(pointstart.x+10.0,pointstart.y+10.0,pointstart.z);  
   glVertex3d(pointstart.x+10.0,pointstart.y-10.0,pointstart.z);  
   glVertex3d(pointstart.x-10.0,pointstart.y-10.0,pointstart.z);  
   //glEnd(); 
   glColor3f(0.0,0.0,0.9);      
   glVertex3d(pointend.x-10.0,pointend.y+10.0,pointend.z); 
   glVertex3d(pointend.x+10.0,pointend.y+10.0,pointend.z); 
 
   glVertex3d(pointend.x+10.0,pointend.y-10.0,pointend.z);  
   glVertex3d(pointend.x-10.0,pointend.y-10.0,pointend.z);  
   glEnd();   
   //}//end if gIDMenu == 0 
   #endif   
/***********************************************************************
*********** 
   FITTS’ TASK with the line implemented in the Y direction/motion. 
   
************************************************************************
**********/ 
   #ifdef FITTS’TASK2 
 //if (m_gIDMenu == 1) { 
    pointstart.x = 0.0; 
    pointstart.y = -60.0; 
    pointstart.z = 0.0;     
    pointend.x = 0.0; 
    pointend.y = 130.0; 
    pointend.z = 0.0; 
   //to draw a straight line based on the above computed points using OpenGL// 
   glMatrixMode(GL_MODELVIEW); //Setup model transformations. 
   glPushMatrix(); 
   glColor3f(1.0,0.0,0.0); 
   //hlTouchModel(HL_CONSTRAINT); 
   //hlTouchModelf(HL_SNAP_DISTANCE,1.5); 
   glBegin(GL_LINE_STRIP); 
   glLineWidth(10); 
   glVertex3d(pointstart.x,pointstart.y,pointstart.z); 
   glVertex3d(pointend.x,pointend.y,pointend.z);  
   glEnd(); 
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   glColor3f(0.0,0.0,0.9);    
   glBegin(GL_QUADS); 
   glLineWidth(10.0); 
   glVertex3d(pointstart.x-12.0,pointstart.y+10.0,pointstart.z); 
   glVertex3d(pointstart.x+12.0,pointstart.y+10.0,pointstart.z);  
   glVertex3d(pointstart.x+12.0,pointstart.y-10.0,pointstart.z);  
   glVertex3d(pointstart.x-12.0,pointstart.y-10.0,pointstart.z); 
   //glEnd(); 
   glColor3f(0.0,0.0,0.9);      
   glVertex3d(pointend.x-12.0,pointend.y+10.0,pointend.z); 
   glVertex3d(pointend.x+12.0,pointend.y+10.0,pointend.z); 

Appendix C (Continued) 
 
   glVertex3d(pointend.x+12.0,pointend.y-10.0,pointend.z);  
   glVertex3d(pointend.x-12.0,pointend.y-10.0,pointend.z);  
   glEnd();   
 //} 
 
   #endif   
/***********************************************************************
*********** 
   FITTS’ TASK with the line implemented in the Z direction/motion. 
   
************************************************************************
**********/ 
 #ifdef FITTS’TASK3: 
 //if (m_gIDMenu == 3) { 
    pointstart.x =-190.0; 
    //pointstart.x =-100.0; 
    pointstart.y = 18.0; 
    //pointstart.z = 180.0;     
    pointstart.z = -5.0;         
    //pointend.x = 20.0; 
    pointend.x = 60.0; 
    //pointend.y = 80.0; 
     pointend.y =110.0; 
    //pointend.z = 0.0; 
    pointend.z = -40.0; 
   /* pointstart.x =0.0; 
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   glVertex3d(pointend.x,pointend.y,pointend.z);  
   glEnd(); 
 
   glColor3f(0.0,0.0,0.9);    
   glBegin(GL_QUADS); 
   glLineWidth(10.0); 
   glVertex3d(pointstart.x-12.0,pointstart.y+10.0,pointstart.z+10.0); 
   glVertex3d(pointstart.x+12.0,pointstart.y+10.0,pointstart.z+10.0);  
   glVertex3d(pointstart.x+12.0,pointstart.y,pointstart.z-10.0);  
   glVertex3d(pointstart.x-12.0,pointstart.y,pointstart.z-10.0);  
   //glEnd(); 
   glColor3f(0.0,0.0,0.9);   
    
   glVertex3d(pointend.x-12.0,pointend.y+10.0,pointend.z+10.0); 
   glVertex3d(pointend.x+12.0,pointend.y+10.0,pointend.z+10.0);  
   glVertex3d(pointend.x+12.0,pointend.y,pointend.z-10.0);  
   glVertex3d(pointend.x-12.0,pointend.y,pointend.z-10.0);  
   glEnd();  
    
 //} 
 
   #endif 
 
 
  
/***********************************************************************
*********** 
   FITTS’ TASK with the line implemented in the Z direction/motion. 
   
************************************************************************
**********/ 
//if (m_gIDMenu == 2) { 
 
 #ifdef FITTS’TASK4: 
  
    pointstart.x =0.0; 
    //pointstart.x =-100.0; 
    pointstart.y =0.0; 
    //pointstart.z = 180.0;     
    pointstart.z =-50.0;     
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    //pointend.y = 80.0; 
     pointend.y =0.0; 
    //pointend.z = 0.0; 
    pointend.z =75.0; 
      
 
   /* pointstart.x =0.0; 
    pointstart.y = 0.0; 
    pointstart.z = -180.0;     
   // pointstart.z = -150.0;   
    
    pointend.x = 0.0; 
    pointend.y = 0.0; 
    pointend.z =240.0; 
    //pointend.z =300.0;*/ 
   //to draw a straight line based on the above computed points using OpenGL// 
   glMatrixMode(GL_MODELVIEW); //Setup model transformations. 
   glPushMatrix(); 
   glColor3f(1.0,0.0,0.0); 
   //hlTouchModel(HL_CONSTRAINT); 
   //hlTouchModelf(HL_SNAP_DISTANCE,1.5); 
   glBegin(GL_LINE_STRIP); 
   glLineWidth(10); 
   glVertex3d(pointstart.x,pointstart.y,pointstart.z); 
   glVertex3d(pointend.x,pointend.y,pointend.z);  
   glEnd(); 
 
   glColor3f(0.0,0.0,0.9);    
   glBegin(GL_QUADS); 
   glLineWidth(10.0); 
   glVertex3d(pointstart.x,pointstart.y+10.0,pointstart.z+10.0); 
   glVertex3d(pointstart.x,pointstart.y+10.0,pointstart.z-10.0);  
   glVertex3d(pointstart.x,pointstart.y-10.0,pointstart.z-10.0);  
   glVertex3d(pointstart.x,pointstart.y-10.0,pointstart.z+10.0); 
    
   /*glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0); 
   glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z+10.0);  
   glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z+10.0);  
   glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z-10.0);*/  
 



    

144 
 

Appendix C (Continued) 
 

 
 

 glColor3f(0.0,0.0,0.9);   
   glVertex3d(pointend.x,pointend.y+10.0,pointend.z+10.0); 
   glVertex3d(pointend.x,pointend.y+10.0,pointend.z-10.0);  
   glVertex3d(pointend.x,pointend.y-10.0,pointend.z-10.0);  
   glVertex3d(pointend.x,pointend.y-10.0,pointend.z+10.0); 
    
 
   /*glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z+10.0); 
   glVertex3d(pointstart.x+10.0,pointstart.y,pointstart.z-10.0);  
   glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0);  
   glVertex3d(pointstart.x-10.0,pointstart.y,pointstart.z-10.0);*/  
 
 
   glEnd();   
//} 
 
   #endif 
} 
 
 
/***********************************************************************
**************************************** 
To compute the point on the line which is closest to the haptic device based on the 
perpendicularity condition. 
************************************************************************
**********************************/ 
//POINT_3D IntersectionPoint(const double position[3],POINT_3D 
pointstart,POINT_3D pointend) 
POINT_3D IntersectionPoint() 
{ 
 double LineMag; 
 double U; 
 

 
 

    /*hapticposition.x=position[0]; 
    hapticposition.y=position[1]; 
    hapticposition.z=position[2];*/ 
    hapticposition.x=p; 
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    hapticposition.z=r; 
    
 LineMag = Magnitude(pointend,pointstart); 

Appendix C (Continued) 
 
 U= (((hapticposition.x - pointstart.x)*(pointend.x - pointstart.x))+ 
  ((hapticposition.y - pointstart.y)*(pointend.y - 
pointstart.y))+ 
  ((hapticposition.z - pointstart.z)*(pointend.z - 
pointstart.z)))/(LineMag*LineMag); 
     
 if(U<0.0 || U>1.0) 
 { 
  
  //printf ("U = %d,x =%d\n", U, hapticposition.x);  
  printf ("closest point does not fall within the line 
segment\n"); 
 } 
 else{ 
     Intersection.x = pointstart.x+ (U *(pointend.x-
pointstart.x)); 
      Intersection.y = pointstart.y+ (U *(pointend.y-
pointstart.y)); 
      Intersection.z = pointstart.z+ (U *(pointend.z-
pointstart.z)); 
  //printf ("near x = %3.4f, near y = %3.4f \n", Intersection.x, 
Intersection.y); 
 } 
  
  
 return Intersection; 
     
} 
 
 
/***********************************************************************
********************** 
This is the  algorithm to divide the trajectory into 50 equal points and store them in 
TrajPoint. 
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    pointstart.x = -200.0; 
    pointstart.y = 0.0; 
    pointstart.z = 0.0; 
    //pointend.x = 0.0; 
    pointend.x = 200.0; 
    pointend.y = 300.0; 
    pointend.z = 0.0; 
 
 
 
    //allocate memory for bezier points 
  TrajPoint = (TrajP_3D*)malloc(sizeof(TrajP_3D)*(NPT+1));  
 
///////////////////////////start compute trajectory points///////////////////////////////////////// 
  
 int i,j,k; 
 double t;  
 double DeltaX,DeltaY,DeltaZ; 
    TrajPoint[0].x = pointstart.x ; 
    TrajPoint[0].y = pointstart.y; 
 TrajPoint[0].z =0.0; 
 TrajPoint[0].indx = 0; 
 
    TrajPoint[NPT].x=pointend.x; 
    TrajPoint[NPT].y=pointend.y; 
    TrajPoint[NPT].z=0.0; 
 TrajPoint[NPT].indx = NPT; 
 
    DeltaX= (pointstart.x-pointend.x)/NPT; 
    DeltaY= (pointstart.y-pointend.y)/NPT; 
    DeltaZ=0.0; 
 nearest_pt = IntersectionPoint();  
 
 for (i= 1;i<NPT;i++) 
 { 
     t = (double)i/(NPT-1);  
    
   TrajPoint[i].x=t*DeltaX; 
      TrajPoint[i].y=t*DeltaY; 
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 }   
   glMatrixMode(GL_MODELVIEW); //Setup model transformations. 
   glPushMatrix(); 
   glColor3f(1,0,0); 
   //hlTouchModel(HL_CONSTRAINT); 
   //hlTouchModelf(HL_SNAP_DISTANCE,1.5); 
   glBegin(GL_LINE_STRIP); 
   glVertex3d(pointstart.x,pointstart.y,pointstart.z); 
   glVertex3d(pointend.x,pointend.y,pointend.y);  
   glEnd();     
    
 
}*/ 
////////////////////TESTING////////////////////////////////////////////// 
void ContactModel::UpdateEffectorPosition(const hduVector3Dd visitor) 
{ 
 double dx, dy, dz,Dist; 
 HDdouble mtime; 
    m_currentDistance = 0.0; 
    m_effectorPosition = visitor; 
 int m_springlength = 20; 
 double DAMPING = 0.00225; 
 double THRESHOLD = 20.00; 
 double SPRING_END = 80.00; 
 double DIST; 
 double Res; 
 int index; 
 //int m_springlength = 100; 
 //double scale; 
    //smallest_dist=13;  
  
 hduVector3Dd inv; 
    hduVector3Dd hapticinv; 
    hduVector3Dd TrueDist;  
    hduVector3Dd VelocityProjected; 
    hduVector3Dd TrajVec; 
 hduVector3Dd Force; 
    hduVector3Dd ForceProjected; 
    hduVector3Dd DeltaVel; 
    hduVector3Dd mforceproj; 
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 hduVector3Dd m_modified; 
    hduVector3Dd Normal_Vel; 
    hduVector3Dd D1; 
    hduVector3Dd Normal_pos; 
    hduVector3Dd Num; 
    hduVector3Dd Denom; 
    hduVector3Dd distance; 
 hduVector3Dd Normal; 
    hduVector3Dd norm_velocity; 
    hduVector3Dd EndPoint; 
    hduVector3Dd n_vector; 
    hduVector3Dd Deltaxyz; 
    hduVector3Dd n_traj; 
    hduVector3Dd Delta_Dist; 
    hduVector3Dd Delta_rightside; 
    hduVector3Dd dx_OtherSide; 
    hduVector3Dd second_vector; 
    hduVector3Dd third_vector; 
    hduVector3Dd Traj_left; 
    hduVector3Dd Traj_right; 
 
    hduVector3Dd Dist_Goal; 
 
 
    hduVector3Dd g_vector; 
    hduVector3Dd Dist_Goalleft; 
    hduVector3Dd Dist_Goalright; 
 hduVector3Dd Previous_Xcoordinate; 
    hduVector3Dd Mid_Point; 
  
    double Dist_left; 
 double Dist_right; 
 
 double m_mass; 
 double m_kStiffness; 
 //double m_kDamping; 
 double Distance; 
 double Distance2; 
    double DeltaX,DeltaY,DeltaZ; 
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 //HDdouble MaxForce; 
    
    //double ForceDotProd; 
    double Square; 
 double dt = 0.001; 
  
    //double SCALING = 0.00001; 
    double SCALING = 1.0; 
 double m_force; 
 bool firstTime = true; 
    double SpringLimitDistance =20.0; 
    double scaleForceFactor = 0.8;  
 double dismag; 
 double mass = 0.001;//kg 
 double m_stiffness = 0.5; 
 double m_damping = 2*sqrt(mass*m_stiffness); 
 double mDist,oldDist,o_Dist,yDist; 
    OmniLocalStruct gOmni;  
 int timer = 1 ; 
    bool FirstTime = true; 
 bool f_Time = true; 
    bool firstTrip; 
    
    m_effectorPosition = visitor; 
 m_visitorPosition = m_effectorPosition; 
 
 nearest_pt = IntersectionPoint();  
    //printf("%3.6f %3.6f\n",nearest_pt.x,nearest_pt.y); 
 
 /***********************************************************
**************************** 
 RAMYA:The code where we determine the point on the trajectory which 
is closest to the 
 effector sphere and the next adjacent point to the closest point.These 
points are stored  
 in TrajPoint and can read from there by pulling out the proper index 
 ************************************************************
*****************************/ 
  
 



    

150 
 

Appendix C (Continued) 
 

 
 
    ClosestPoint=TrajPoint[i]; 
    
   } 
 ClosestPoint=displayLine(); 
 index=ClosestPoint.indx; 
 Next_Pt.x=nearest_pt.x+DeltaX; 
 Next_Pt.y=nearest_pt.y+DeltaY; 
 Next_Pt.z=nearest_pt.z+DeltaZ;*/ 
     
    //printf("%3.6f\n",Distance2); 
 
  
  
 //printf("%3.4f %3.4f %3.4f 
%3.4f\n",ClosestPoint.x,ClosestPoint.y,Next_Pt.x,Next_Pt.y); 
 
    /*Closest3DPoint[0]=nearest_pt.x; 
    Closest3DPoint[1]=nearest_pt.y; 
    Closest3DPoint[2]=0;*/ 
#ifdef REMOVEZ 
 
   DeltaX= (pointstart.x-pointend.x)/NPT; 
    DeltaY= (pointstart.y-pointend.y)/NPT; 
    DeltaZ=0.0; 
 Delta_Dist[0]=DeltaX; 
 Delta_Dist[1]=DeltaY; 
 Delta_Dist[2]=DeltaZ; 
 Distance2=Delta_Dist.magnitude(); 
 vectorPoint[0] = nearest_pt.x; 
 vectorPoint[1] = nearest_pt.y; 
 vectorPoint[2] = 0; 
    dx =vectorPoint[0]-m_visitorPosition[0]; 
 dy =vectorPoint[1]-m_visitorPosition[1]; 
    dz = 0;  
#endif 
#ifdef INCLUDEZ 
    DeltaX= (pointstart.x-pointend.x)/NPT; 
    DeltaY= (pointstart.y-pointend.y)/NPT; 
    DeltaZ=(pointstart.z-pointend.z)/NPT;; 
 Delta_Dist[0]=DeltaX; 
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 Delta_Dist[1]=DeltaY; 
 Delta_Dist[2]=DeltaZ; 
 Distance2=Delta_Dist.magnitude(); 
 vectorPoint[0] = nearest_pt.x; 
 vectorPoint[1] = nearest_pt.y; 
 vectorPoint[2] = nearest_pt.z; 
    dx =vectorPoint[0]-m_visitorPosition[0]; 
 dy =vectorPoint[1]-m_visitorPosition[1]; 
    dz =vectorPoint[2]-m_visitorPosition[2];  
 
#endif 
 
 //The algorithm which would store the end-point on the trajectory in a hdu 
vector format// 
 EndPoint[0] = pointend.x; 
    EndPoint[1] = pointend.y; 
    EndPoint[2] = pointend.z; 
 
  
     
 //test 
 
 Deltaxyz[0]=EndPoint[0]-m_effectorPosition[0]; 
 Deltaxyz[1]=EndPoint[1]-m_effectorPosition[1]; 
    Deltaxyz[2]=EndPoint[2]-m_effectorPosition[2]; 
 
    //Algorithm to compute the direction vector of the imaginary straight line on the right 
 //side of the trajectory path. 
 Delta_rightside[0]=(EndPoint[0]+VISITOR_SPHERE_RADIUS)-
(m_visitorPosition[0]); 
 Delta_rightside[1]=EndPoint[1]-m_visitorPosition[1]; 
    Delta_rightside[2]=EndPoint[2]-m_visitorPosition[2]; 
 
 Dist_rightside=Delta_rightside.magnitude(); 
 
    second_vector[0]=Delta_rightside[0]/Dist_rightside; 
 second_vector[1]=Delta_rightside[1]/Dist_rightside; 
    second_vector[2]=Delta_rightside[2]/Dist_rightside; 
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  dx_OtherSide[0]=(vectorPoint[0]-VISITOR_SPHERE_RADIUS)-
(m_visitorPosition[0]-VISITOR_SPHERE_RADIUS); 
  dx_OtherSide[1]=vectorPoint[1]-m_visitorPosition[1]; 
     dx_OtherSide[2]=vectorPoint[2]-m_visitorPosition[2];   
     Dist_leftside=dx_OtherSide.magnitude(); 
     third_vector[0]=dx_OtherSide[0]/Dist_rightside; 
  third_vector[1]=dx_OtherSide[1]/Dist_rightside; 
     third_vector[2]=dx_OtherSide[2]/Dist_rightside; 
 
 Distance =Deltaxyz.magnitude();  
 n_traj[0]=Deltaxyz[0]/Distance; 
 n_traj[1]=Deltaxyz[1]/Distance; 
 n_traj[2]=Deltaxyz[2]/Distance; 
  
    TrueDist[0] = dx; 
 TrueDist[1] = dy; 
 //TrueDist[2] = 0.0; 
    TrueDist[2] = dz; 
 Dist = TrueDist.magnitude(); 
 
 n_vector[0]=TrueDist[0]/Dist; 
 n_vector[1]=TrueDist[1]/Dist; 
 n_vector[2]=TrueDist[2]/Dist; 
 
    
 m_currentDistance = Dist; 
     
 TrajVec[0]=pointend.x-pointstart.x; 
    TrajVec[1]=pointend.y-pointstart.y; 
    TrajVec[2]=pointend.z-pointstart.z; 
        
 //printf("%3.6f\n", gOmni.option); 
 
    //m_currentDistance = 0.0; 
    //m_effectorPosition = visitor; 
    //_centerToEffector = m_effectorPosition ;//- m_fixedCenter; 
 //double SpringLimitDistance = 80; 
     
    //m_currentDistance =  m_centerToEffector.magnitude(); 
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    //if(m_currentDistance > SpringLimitDistance) 
 if (firstTime==true) { 

Appendix C (Continued) 
  firstTime = false; 
  mtime = 0.0; 
  oldDist=Dist; 
 } 
    mDist=(oldDist+Dist)/2; 
    //The distance computed based on the extreme right side of the sphere  
 //and the point on the trajectory. 
 /*if (firstTime==true) { 
  firstTime = false; 
  mtime = 0.0; 
  oldDist=Dist_rightside; 
 } 
    mDist=(oldDist+Dist_rightside)/2;*/ 

 
     if (f_Time==true) { 
  f_Time = false; 
  mtime = 0.0; 
  o_Dist=Dist_leftside; 
 } 
    yDist=(o_Dist+Dist_leftside)/2; 
 
  #ifdef EXP1: 
    
  if(m_currentDistance > 130.0) 
  { 
  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
  { 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
  if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+5.0)) 
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               if(m_effectorPosition[1]<Y_Limit) 
      {  
     m_forceOnVisitor[0]= 
18.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
18.0*STIFFNESS*Dist*n_vector[1]; 

Appendix C (Continued) 
 
     m_forceOnVisitor[2]= 
18.0*STIFFNESS*Dist*n_vector[2];   
      
     
      } 
      else 
      { 
       
if(m_effectorPosition[1]>Y_End) 
       { 
                    m_forceOnVisitor[0]= 
5.0*STIFFNESS*Dist*n_vector[0]+(0.0015*TrajVec[0]); 
        m_forceOnVisitor[1]= 
5.0*STIFFNESS*Dist*n_vector[1]+(0.0015*TrajVec[0]); 
        m_forceOnVisitor[2]= 
5.0*STIFFNESS*Dist*n_vector[2]+(0.0015*TrajVec[0]);   
       } 
       else 
       { 
                    m_forceOnVisitor[0]= 
15.0*STIFFNESS*Dist*n_vector[0]+(0.0015*TrajVec[0]); 

 
 
 
        m_forceOnVisitor[1]= 
15.0*STIFFNESS*Dist*n_vector[1]+(0.0015*TrajVec[0]); 
       m_forceOnVisitor[2]= 
15.0*STIFFNESS*Dist*n_vector[2]+(0.0015*TrajVec[0]);  
       } 
 
                  
      } 
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              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
     { 
 

Appendix C (Continued) 
 
       
        m_forceOnVisitor.set(-1.2*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0); 
      
                  
     } 
 
     else 
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End)) 
               
     { 
       
                   
                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
                 
     } 
   } 
  } 
 
  else 
  { 
    if(m_effectorPosition[1]<Y_Limit) 
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    } 
 
 
  } 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 
     
   
    m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0); 
    
 //m_forceOnVisitor.set(0.0,0.0,0.0); 
   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 
   } 
         
   
   } 
      
   
  } 
  else if(m_effectorPosition[0]<vectorPoint[0]) 
  { 
    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
     
  } 
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/***********************************************************************
************ 
Test 2 with just the projection component on the trajectory without the high spring force. 
************************************************************************
****************/ 
#ifdef EXP2if(m_currentDistance > 130.0) 
  { 
  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
 
 
 
  { 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
  if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+8.0)) 
   { 
 
               if(m_effectorPosition[1]<Y_Limit) 
      {  
     m_forceOnVisitor[0]= 
18.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
18.0*STIFFNESS*Dist*n_vector[1]; 
     m_forceOnVisitor[2]= 
18.0*STIFFNESS*Dist*n_vector[2];   
      
     
      } 
      else 
      { 
 
                m_forceOnVisitor[0]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(0.002*TrajVec[0]); 
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     m_forceOnVisitor[1]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(0.002*TrajVec[1]); 
 
     m_forceOnVisitor[2]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(0.002*TrajVec[2]); 
 
                  
      } 
 
              
      
 
              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
     { 
       
        m_forceOnVisitor.set(-1.5*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0); 
      
                  
     } 
 
     else 
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End)) 
               
     {      
 
                
                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
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     } 
   } 
  } 
 
  else 
  { 
    if(m_effectorPosition[1]<Y_Limit) 
    { 
     
            m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);            
//m_forceOnVisitor.set(0.0,0.0,0.0); 
            
    } 
          else if(m_effectorPosition[1]>Y_Limit) 
    {       
                m_forceOnVisitor.set(0.0,0.0,0.0);    
  
                 
    } 
 
 
  } 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 
     
   
    m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0); 
    
 //m_forceOnVisitor.set(0.0,0.0,0.0); 
   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 }         
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  else if(m_effectorPosition[0]<vectorPoint[0]) 
  { 
    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
     
  } 
#endif 
 
/*********************************************************************** 
Test 3 with just the projection component on the trajectory getting normalized. 
************************************************************************
****************/ 
#ifdef EXP3 
if(m_currentDistance > 130.0) 
  { 
  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
  { 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
  if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+5.0)) 
   { 
 
               if(m_effectorPosition[1]<Y_Limit) 
      {  
     m_forceOnVisitor[0]= 
18.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
18.0*STIFFNESS*Dist*n_vector[1]; 
     m_forceOnVisitor[2]= 
18.0*STIFFNESS*Dist*n_vector[2];      
     
      } 
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      else 
      { 
 
                 m_forceOnVisitor[0]=-0.9; 
                m_forceOnVisitor[1]=0.0; 
             m_forceOnVisitor[2]=0.0; 
                
ForceDotProd=(m_forceOnVisitor[0]*TrajVec[0])+(m_forceOnVisitor[1]*TrajVec[1])+(
m_forceOnVisitor[2]*TrajVec[2]); 
             Square=(TrajVec.magnitude())*(TrajVec.magnitude()); 
             ForceProjected=-(ForceDotProd/ Square)*TrajVec; 
                m_forceOnVisitor[0]=0.5*ForceProjected[0]; 
                m_forceOnVisitor[1]=ForceProjected[1]; 
 
 
                m_forceOnVisitor[2]=ForceProjected[2]; 
                printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
      } 
 
              
      
 
              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
     { 
       
        m_forceOnVisitor.set(-1.2*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0); 
      
                  
     } 
 
     else 
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End)) 
               
     { 
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                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
                 
     } 
   } 
  } 
 
  else 
  { 
    if(m_effectorPosition[1]<Y_Limit) 
    { 
     
            m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);            
//m_forceOnVisitor.set(0.0,0.0,0.0); 
            
    } 
          else if(m_effectorPosition[1]>Y_Limit) 
    {       
                m_forceOnVisitor.set(0.0,0.0,0.0);    
  
                 
    } 
 
  } 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 
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   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 
   } 
         
   
   } 
      
   
  } 
  else if(m_effectorPosition[0]<vectorPoint[0]) 
  { 
    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
     
  } 
#endif 
 
/***********************************************************************
************ 
Test 4 with just the high spring force on the trajectory without any projection assistance 
************************************************************************
****************/ 
#ifdef EXP4:  
if(m_currentDistance > 130.0) 
  { 
  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
  { 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
 



    

164 
 

Appendix C (Continued) 
 
 
 
 if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 

Appendix C (Continued) 
 
 
 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+5.0)) 

 
 
 

   {              
        
     
if(m_effectorPosition[1]<Y_End) 
      {  
     m_forceOnVisitor[0]= 
19.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
19.0*STIFFNESS*Dist*n_vector[1]; 
     m_forceOnVisitor[2]= 
19.0*STIFFNESS*Dist*n_vector[2];   
      
     
      } 
      else 
      { 
                   m_forceOnVisitor.set(0.0,0.0,0.0); 
                 
                  
      }             
      
 
              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
     { 
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                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
                 
     } 
   } 
  } 
 
  else 
  { 
    if(m_effectorPosition[1]<Y_Limit) 
    { 
 
     
            m_forceOnVisitor.set(-1.2*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);            
//m_forceOnVisitor.set(0.0,0.0,0.0); 
            
    } 
          else if(m_effectorPosition[1]>Y_Limit) 
    {       
                m_forceOnVisitor.set(0.0,0.0,0.0);    
  
                 
    } 
 
 
  } 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 
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 //m_forceOnVisitor.set(0.0,0.0,0.0); 
   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 
   } 
         
   
   } 
      
   
  } 
  else if(m_effectorPosition[0]<vectorPoint[0]) 
  { 
    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
  
  } 
#endif 
/***********************************************************************
************ 
Test 5 with just the projection component on the trajectory without the high spring 
force/User 
Controlled Velocity based force scaling. 
************************************************************************
****************/ 
//#ifdef EXP5:  
if (m_gIDMenu == 3) 
 
{ 
  if(m_currentDistance > 130.0) 
  { 
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  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
  { 
      //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
  if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+8.0)) 
   { 
 
               if(m_effectorPosition[1]<Y_Limit) 
      {  
     m_forceOnVisitor[0]= 
18.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
18.0*STIFFNESS*Dist*n_vector[1]; 
     m_forceOnVisitor[2]= 
18.0*STIFFNESS*Dist*n_vector[2];   
        //printf("%3.6f 
%3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
     //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
      } 
      else 
      { 
                m_forceOnVisitor[0]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(0.002*TrajVec[0]); 
 
     m_forceOnVisitor[1]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(0.002*TrajVec[1]); 
 
     m_forceOnVisitor[2]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(0.002*TrajVec[2]); 
                 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
                  //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
    } 
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              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
 
 
     { 
       
        m_forceOnVisitor.set(-1.5*exp(-
mDist/70.0), 1.2*exp(-mDist/70.0), 0.0); 
     //printf("%3.6f 
%3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]);  
                  //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
     } 
 
     else 
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End)) 
               
     { 
       
                   
                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
                //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
                //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
 
     } 
   } 
  } 
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    if(m_effectorPosition[1]<Y_Limit) 
    { 
     
            m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-mDist/70.0), 0.0);            
//m_forceOnVisitor.set(0.0,0.0,0.0); 
            //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
            //printf("%3.6f %3.6f\n",m_effectorPosition[0],vectorPoint[0]); 
 
    } 
          else if(m_effectorPosition[1]>Y_Limit) 
    {       
                m_forceOnVisitor.set(0.0,0.0,0.0); 
       //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],vectorPoint[0]);  
                 
    } 
 
 
  } 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 

 
 

   
    m_forceOnVisitor.set(-1.5*exp(-mDist/70.0), 1.2*exp(-
mDist/70.0), 0.0); 
    
 //m_forceOnVisitor.set(0.0,0.0,0.0); 
   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 
   } 
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  } 
  else if(m_effectorPosition[0]<vectorPoint[0]) 
  { 
    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
     
  } 
 
} 
//#endif 
 
/***********************************************************************
************ 
Test 6 with just the projection component on the trajectory without the high spring force. 
************************************************************************
****************/ 
//#ifdef EXP6:  
if (m_gIDMenu == 4)//velocity scaling assistance// 
{ 
  
 //code for USER CONTROLLED SCALING// 
 
 if (velocityMag<0.0) 
 { 
       velocityMag= -(velocityMag); 
 
 } 
   if (velocityMag<m_VelocityLimit) 
   { 
       printf("%3.6f %3.6f\n",velocityMag,m_VelocityLimit); 
    //When the user is travelling at a velocity which is greater value than 
90% of the 
     //velocity limit 
      if (velocityMag>(m_VelocityLimit*0.09)) 
 
   {  
           Proj_Scale = 0.002; 
           yExp_Scale = 1.1; 
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        xExp_Scale = -1.0; 
   } 
      else 
   { 
           //When the user is travelling at a velocity which is greater than 80% of the 
          //velocity limit 
            if (velocityMag>(m_VelocityLimit*0.08)) 
   { 
               //Proj_Scale = 0.001; 
                 Proj_Scale = 0.002; 
                 yExp_Scale = 1.1; 
              //xExp_Scale = -1.3; 
                 xExp_Scale = -2.3; 
  } 
  else 
  { 
 
            //When the user is travelling at a velocity which is greater than 70% of the 
         //velocity limit 
            if (velocityMag>(m_VelocityLimit*0.05)) 
   { 
              //Proj_Scale = 0.0015; 
             Proj_Scale = 0.002; 
              yExp_Scale = 1.1; 
           //xExp_Scale = -1.5; 
                xExp_Scale = -3.5; 
   } 
   else 
   { 
 
               if (velocityMag>(m_VelocityLimit*0.009)) 
      { 
                   Proj_Scale = 0.002; 
                   yExp_Scale = 1.1; 
                //xExp_Scale = -2.0; 
                   xExp_Scale = -4.5; 
      } 
      else 
      { 
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                  Proj_Scale = 0.002; 
                   yExp_Scale = 1.2; 
                //xExp_Scale = -2.5; 
                    xExp_Scale = -5.5; 
      } 
   } 
 
  } 
 
 
 
  } 
  
 } 
 else 
 { 
    //When the user had crossed the velocity limit// 
    //fprintf(stdout,"The user has crossed the velocity limit"); 
 
  Proj_Scale = 0.0; 
     yExp_Scale = 0.0; 
  xExp_Scale = 0.0; 
 } 
  
   
 //fprintf(stdout,"%3.3f %3.3f mm/s\n", velocityMag,m_VelocityLimit); 
 
if(m_currentDistance > 130.0) 
  { 
  m_forceOnVisitor[0]=m_forceOnVisitor[1]=m_forceOnVisitor[2]=0.0; 
  } 
  //else if((m_currentDistance>10.0)&&(m_currentDistance10.0)) 
  else if(m_effectorPosition[0]>vectorPoint[0]) 
  { 
   if(m_effectorPosition[0]<(vectorPoint[0]+20.0)) 
   { 
  if(m_effectorPosition[0]<(vectorPoint[0]+10.0)) 
  { 
  
 if(m_effectorPosition[0]<(vectorPoint[0]+8.0)) 
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               if(m_effectorPosition[1]<Y_Limit) 
      {  
     m_forceOnVisitor[0]= 
18.0*STIFFNESS*Dist*n_vector[0]; 
     m_forceOnVisitor[1]= 
18.0*STIFFNESS*Dist*n_vector[1]; 
     m_forceOnVisitor[2]= 
18.0*STIFFNESS*Dist*n_vector[2];   
      
     
      } 
      else 
      { 
 
                m_forceOnVisitor[0]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[0])+(Proj_Scale*TrajVec[0]); 
 
     m_forceOnVisitor[1]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[1])+(Proj_Scale*TrajVec[1]); 

Appendix C (Continued) 
 

 
 
     m_forceOnVisitor[2]= 
scaleForceFactor*(5.0*STIFFNESS*Dist*n_vector[2])+(Proj_Scale*TrajVec[2]); 
 
                  
      } 
 
              
      
 
              //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
   } 
   else 
   { 
              if(m_effectorPosition[1]<Y_Limit) 
     { 
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        m_forceOnVisitor.set(xExp_Scale*exp(-
mDist/70.0), yExp_Scale*exp(-mDist/70.0), 0.0); 

 
 

 
      
                  
     } 
 
     else 
if((m_effectorPosition[1]>Y_Limit)&&(m_effectorPosition[1]<Y_End)) 
               
     { 
       
                   
                m_forceOnVisitor[0]= 
0.1*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
 
          m_forceOnVisitor[1]= 
0.8*scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
 
                m_forceOnVisitor[2]= 
scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
                 
     } 
   } 
  } 
 
  else 
  { 
    if(m_effectorPosition[1]<Y_Limit) 
    { 
     
            m_forceOnVisitor.set(xExp_Scale*exp(-mDist/70.0), yExp_Scale*exp(-
mDist/70.0), 0.0);            //m_forceOnVisitor.set(0.0,0.0,0.0); 
            
    } 
          else if(m_effectorPosition[1]>Y_Limit) 
    {       
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    } 
 
 
  } 
 
   } 
   else 
   { 
         if(m_effectorPosition[1]<Y_Limit) 
   { 
     
   
    m_forceOnVisitor.set(xExp_Scale*exp(-mDist/70.0), 
yExp_Scale*exp(-mDist/70.0), 0.0); 
    
 //m_forceOnVisitor.set(0.0,0.0,0.0); 
   } 
         else if(m_effectorPosition[1]>Y_Limit) 
   { 
       
           m_forceOnVisitor.set(0.0,0.0,0.0); 
      
                 
   } 
         
   
   } 
      
   
  } 
  else if(m_effectorPosition[0]<vectorPoint[0]) 
  {    
      m_forceOnVisitor[0]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[0]); 
      m_forceOnVisitor[1]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[1]); 
      m_forceOnVisitor[2]= scaleForceFactor*(15.0*STIFFNESS*Dist*n_vector[2]); 
     
  } 
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//#endif 
/***********************************************************************
***************Test 7:Fitt’s Task/To determine the time taken to execute the task, 
with assistance and  
 
************************************************************************
****************/ 
#ifdef EXP7:   double scale=0.1;  double Proj_Scale=0.08; 

 
 

 
  double y_limit=10.0; 
 
  Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0)); 
 
  Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0)); 
 
  Traj_left[2] = 0.0; 
 
 
  Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0)); 
 
  Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0)); 
 
  Traj_right[2] = 0.0; 
 
  Fitts’_Start[0] =pointstart.x; 
  Fitts’_Start[1]= pointstart.y; 
  Fitts’_Start[2]= pointstart.z; 
 
  Fitts’_End[0]=pointend.x; 
  Fitts_End[1]= pointend.y; 
  Fitts_End[2]= pointend.z; 
 
  //Trajectory vector between the two goal points// 
  Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0]; 
 
  Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1]; 
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  GoalDist= Fitts_Delta.magnitude(); 
  //Normal vector along the trajectory path 
  /*g_vector[0]=Fitts_Delta[0]/GoalDist; 
  g_vector[1]=Fitts_Delta[1]/GoalDist; 
  g_vector[2]=Fitts_Delta[2]/GoalDist;*/ 
   
  //Distance between effector position and left goal point 
   
  Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0]; 
  Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1]; 
  Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2]; 

 
 

 
 
 g_vector[0]=Dist_Goalleft[0]/Dist_left; 
  g_vector[1]=Dist_Goalleft[1]/Dist_left; 
  g_vector[2]=Dist_Goalleft[2]/Dist_left;   
 
 
  Dist_left=  Dist_Goalleft.magnitude(); 
 
  //Distance between effector position right goal point 

 
 

 
  Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0]; 
  Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1]; 
  Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2]; 
  Dist_right=Dist_Goalright.magnitude(); 
  
    
//if((m_effectorPosition[0]>Fitts_Start[0])&&(m_effectorPosition[0]<Fitts_Start[0]+40.0
)&&(m_effectorPosition[1]>Fitts_Start[1]-
30.0)&&(m_effectorPosition[1]<(Fitts_Start[1]+30.0))) 
    if(m_effectorPosition[1]>(Fitts_Start[1]-10.0)) 
 { 
       if(m_effectorPosition[1]<(Fitts_Start[1]+10.0)) 
    {           
 



    

178 
 

Appendix C (Continued) 
 

 
 
                 //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
      } 
     
   } 
   else 
   { 
   
 if(m_effectorPosition[0]>(Fitts_End[0]-130.0)) 
    { 
    
 if(m_effectorPosition[0]>(Fitts_End[0]-40.0)) 
     {  
                      //m_forceOnVisitor.set(-0.7*exp(-Dist_right/70.0),0.7*exp(-
Dist_right/70.0),0.0); 
     
 m_forceOnVisitor.set(0.09*exp(-Dist_right/70.0),0.1*exp(-
Dist_right/70.0),0.0); 
                        //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
     
     } 
           else 
     { 
      
      
                      m_forceOnVisitor.set(2.0*exp(-Dist_right/70.0), 0.1*exp(-Dist_right/70.0), 
0.0); 
                      //printf("%3.6f %3.6f\n",m_forceOnVisitor[0],m_forceOnVisitor[1]); 
     } 
       
    } 
    Else 
 
 
    { 
                   m_forceOnVisitor.set(0.0,0.0,0.0); 
    } 
 
   } 
   } 
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    { 
         m_forceOnVisitor.set(0.0,0.0,0.0); 
    } 
 } 
 else 
 { 
      m_forceOnVisitor.set(0.0,0.0,0.0); 
 }   
#endif 
 
/***********************************************************************
************************** 
Test 8:FITTS TASK/The execution of FITTS TASK without any kind of assistance 
provided to the user 
************************************************************************
**************************/ 
//#ifdef EXP8: 
if (m_gIDMenu == 5)//no assistance provided 
{ 
 m_forceOnVisitor.set(0.0,0.0,0.0); 
 printf("%3.6f %3.6f 
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1],m_effectorPosition[2]);  
 
} 
//#endif 
/***********************************************************************
************************** 
Test 9:FITTS TASK/The execution of FITTS TASK with assistance provided to the user 
************************************************************************
**************************/ 
//#ifdef EXP9:  
if (m_gIDMenu == 0) 
{ 
   
  double scale=0.1; 
  double Proj_Scale=0.08; 
  double y_limit=10.0; 
  bool OneTrip = false; 
  //HDdouble m_PreX = 0.0; 
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  Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0)); 
 
  Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0)); 
 
  Traj_left[2] = 0.0; 
 
 
  Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0)); 
 
  Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0)); 
 
  Traj_right[2] = 0.0; 
 
  Fitts_Start[0] =pointstart.x; 
  Fitts_Start[1]= pointstart.y; 
  Fitts_Start[2]= pointstart.z; 
 
  Fitts_End[0]=pointend.x; 
  Fitts_End[1]= pointend.y; 
  Fitts_End[2]= pointend.z; 
 
  //Trajectory vector between the two goal points// 
  Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0]; 
 
  Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1]; 
 
  Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2]; 
 
  GoalDist= Fitts_Delta.magnitude(); 
  //Normal vector along the trajectory path 
  /*g_vector[0]=Fitts_Delta[0]/GoalDist; 
  g_vector[1]=Fitts_Delta[1]/GoalDist; 
  g_vector[2]=Fitts_Delta[2]/GoalDist;*/ 
   
  //Distance between effector position and left goal point 
   
  Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0]; 
  Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1]; 
  Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2]; 
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  g_vector[0]=Dist_Goalleft[0]/Dist_left; 
  g_vector[1]=Dist_Goalleft[1]/Dist_left; 
  g_vector[2]=Dist_Goalleft[2]/Dist_left;  
 
 
  Dist_left=  Dist_Goalleft.magnitude(); 
 
  //Distance between effector position right goal point 
  Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0]; 
 
  Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1]; 
  Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2]; 
  Dist_right=Dist_Goalright.magnitude(); 
 
 
  /*if (firstTrip==true) { 
   firstTrip = false; 
   Previous_Xcoordinate[0]= 0.0; 
 }*/ 
 
 
  
  if(m_effectorPosition[1]>(Fitts_Start[1]-10.0)) 
 { 
     if(m_effectorPosition[1]<(Fitts_Start[1]+10.0)) 
  { 
      
       if(m_effectorPosition[0]<m_PreX[0]) 
    { 
           if(m_effectorPosition[0]<(Fitts_Start[0]+180.0)) 
     { 
         
        //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_PreX[0]);  
              if(m_effectorPosition[0]<(Fitts_Start[0]+135.0)) 
     { 
                 if(m_effectorPosition[0]<(Fitts_Start[0]+40.0)) 
     { 
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                   //m_forceOnVisitor.set(0.0,0.0,0.0); 
          //m_forceOnVisitor.set(-0.7*exp(-
Dist_left/70.0),0.7*exp(-Dist_left/70.0),0.0);  
       m_forceOnVisitor.set(-
0.6*exp(-Dist_left/70.0),0.0,0.0);  
       
 
     }   
              else 
     { 
                    //m_forceOnVisitor.set(0.0,0.0,0.0); 
             //m_forceOnVisitor.set(-2.0*exp(-Dist_left/70.0), 
1.2*exp(-Dist_left/70.0), 0.0); 
                   m_forceOnVisitor.set(-1.8*exp(-Dist_left/70.0),0.0, 0.0); 
                     
 
     }  
   
     }           
     }  
     else 
     {  
             if(m_effectorPosition[0]>(Fitts_Start[0]+180.0)) 
    {   
     //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_PreX[0]); 

Appendix C (Continued) 
 
                if(m_effectorPosition[0]>(Fitts_End[0]-135.0)) 
    { 
                   if(m_effectorPosition[0]>(Fitts_End[0]-40.0)) 
       { 
                       //m_forceOnVisitor.set(0.0,0.0,0.0); 
             //m_forceOnVisitor.set(-0.7*exp(-
Dist_right/70.0),0.8*exp(-Dist_right/70.0),0.0); 
       
m_forceOnVisitor.set(-0.6*exp(-Dist_right/70.0),0.0,0.0);  
              //printf("%3.6f 
%3.6f\n",Previous_Xcoordinate[0]);             
       }   
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                     //m_forceOnVisitor.set(0.0,0.0,0.0); 
                //m_forceOnVisitor.set(-2.0*exp(-
Dist_right/70.0),1.2*exp(-Dist_right/70.0), 0.0); 
                      m_forceOnVisitor.set(-1.8*exp(-Dist_right/70.0),0.0, 0.0); 
               // m_forceOnVisitor.set(-1.8*exp(-
Dist_right/70.0),1.2*exp(-Dist_right/70.0), 0.0); 
                       //printf("%3.6f\n",Previous_Xcoordinate[0]); 
       }  
   
    } 
 
    } 
           
     }  
    } 
 
 
   else 
   { 
  if(m_effectorPosition[0]> m_PreX[0]) 
  { 
           if(m_effectorPosition[0]<(Fitts_Start[0]+180.0)) 
     {  //printf("%3.6f 
%3.6f\n",m_PreX[0],m_effectorPosition[0]); 
              if(m_effectorPosition[0]<(Fitts_Start[0]+135.0)) 
    { 
                   if(m_effectorPosition[0]<(Fitts_Start[0]+40.0)) 
       { 
                      //m_forceOnVisitor.set(0.0,0.0,0.0); 
                //m_forceOnVisitor.set(0.5*exp(-
Dist_left/70.0),0.7*exp(-Dist_left/70.0),0.0); 
        
m_forceOnVisitor.set(0.6*exp(-Dist_left/70.0),0.0,0.0);  
                      //Previous_Xcoordinate[0]= m_effectorPosition[0];                
       }  
                else 
       { 
                        //m_forceOnVisitor.set(0.0,0.0,0.0); 
                //m_forceOnVisitor.set(2.0*exp(-Dist_left/70.0), 
1.2*exp(-Dist_left/70.0), 0.0); 
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       }  
   
     } 
     } 
     else 
     { 
                if(m_effectorPosition[0]>(Fitts_Start[0]+180.0)) 
    {                  //printf("%3.6f 
%3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                     //if(m_effectorPosition[0]<(Fitts_Start[0]+135.0)) 
                     if(m_effectorPosition[0]>(Fitts_End[0]-135.0)) 
      { 
                        if(m_effectorPosition[0]>(Fitts_End[0]-40.0)) 
     
 { 
                           //m_forceOnVisitor.set(0.0,0.0,0.0); 
                     //m_forceOnVisitor.set(0.5*exp(-
Dist_right/70.0),0.6*exp(-Dist_right/70.0),0.0); 
           
m_forceOnVisitor.set(0.6*exp(-Dist_right/70.0),0.0,0.0);  
                           //Previous_Xcoordinate[0]= m_effectorPosition[0];                
     
 }   
                     else 
     
 { 
                           // m_forceOnVisitor.set(0.0,0.0,0.0); 
                    //m_forceOnVisitor.set(2.0*exp(-
Dist_right/70.0), 0.8*exp(-Dist_right/70.0), 0.0); 
                           m_forceOnVisitor.set(1.8*exp(-Dist_right/70.0), 0.0, 0.0); 
                          //Previous_Xcoordinate[0]= m_effectorPosition[0]; 
                          //printf("%3.6f\n",m_PreX); 
     
 }     
      } 
    } 
     } 
  } 
   }   } 
     else 
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 { 
   m_forceOnVisitor.set(0.0,0.0,0.0); 
 }     
 
} 
   
 
//Previous_Xcoordinate[0]= m_effectorPosition[0];    
//#endif 
 
/***********************************************************************
************************** 
Test 10:Fitts’ Task/The execution of Fitts’ Task implemented in the Y direction with 
assistance 
************************************************************************
**************************/ 
 
//#ifdef EXP10:  
if (m_gIDMenu == 1) 
{  
  double scale=0.1; 
  double Proj_Scale=0.08; 
  double y_limit=10.0; 
  bool OneTrip = false; 
  //HDdouble m_PreX = 0.0; 
 
  Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0)); 
 
  Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0)); 
 
  Traj_left[2] = 0.0; 
 
 
  Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0)); 
 
  Traj_right[1] = ((pointstart.y-10.0)-(pointstart.y-40.0)); 
 
  Traj_right[2] = 0.0; 
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  Fitts_Start[2]= pointstart.z; 
 
  Fitts_End[0]=pointend.x; 
  Fitts_End[1]= pointend.y; 
  Fitts_End[2]= pointend.z; 
 
  //Trajectory vector between the two goal points// 
  Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0]; 
 
  Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1]; 
 
  Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2]; 
  GoalDist= Fitts_Delta.magnitude(); 
  //Normal vector along the trajectory path 
  /*g_vector[0]=Fitts_Delta[0]/GoalDist; 
  g_vector[1]=Fitts_Delta[1]/GoalDist; 
  g_vector[2]=Fitts_Delta[2]/GoalDist;*/ 
   
  //Distance between effector position and left goal point 
 
  Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0]; 
  Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1]; 
  Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2]; 
 
  g_vector[0]=Dist_Goalleft[0]/Dist_left; 
  g_vector[1]=Dist_Goalleft[1]/Dist_left; 
  g_vector[2]=Dist_Goalleft[2]/Dist_left; 
   
 
 
  Dist_left=  Dist_Goalleft.magnitude(); 
 
  //Distance between effector position right goal point 
  Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0]; 
  Dist_Goalright[1]=Fitts_End[1]-m_effectorPosition[1]; 
  Dist_Goalright[2]= Fitts_End[2]-m_effectorPosition[2]; 
  Dist_right=Dist_Goalright.magnitude(); 
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   Previous_Xcoordinate[0]= 0.0; 
 }*/ 
 
  
  if(m_effectorPosition[0]>(Fitts_Start[0]-5.0)) 
 { 
     if(m_effectorPosition[0]<(Fitts_Start[0]+5.0)) 
  { 
      
       if(m_effectorPosition[1]<m_PreX[1]) 
    { 
            
           if(m_effectorPosition[1]<(Fitts_Start[1]+175.0)) 
     { 
              //printf("%3.6f %3.6f\n",m_effectorPosition[1],m_PreX[1]); 
         
        //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_PreX[0]);  
              if(m_effectorPosition[1]<(Fitts_Start[1]+ 155.0)) 
     { 
                 //printf("%3.6f %3.6f\n",m_effectorPosition[1],m_PreX[1]); 
                 if(m_effectorPosition[1]<(Fitts_Start[1]+20.0)) 
     { 
                     //m_forceOnVisitor.set(0.0,0.0,0.0);  
           //m_forceOnVisitor.set(-0.05*exp(-
Dist_left/70.0),-0.5*exp(-Dist_left/70.0),0.0); 
    
 m_forceOnVisitor.set(0.0,-0.5*exp(-Dist_left/70.0),0.0); 
           //printf("%3.6f 
%3.6f\n",m_effectorPosition[1],m_PreX[1]);           
     }              else 
     { 
      
//m_forceOnVisitor.set(0.0,0.0, 0.0); 
               //m_forceOnVisitor.set(-0.1*exp(-Dist_left/70.0),-
2.0*exp(-Dist_left/70.0), 0.0); 
                       m_forceOnVisitor.set(0.0,-2.0*exp(-Dist_left/70.0), 0.0); 
                      //printf("%3.6f\n",Previous_Xcoordinate[0]); 
     }  
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                m_forceOnVisitor.set(0.0,0.0,0.0); 
     }           
     }  
     else 
     {  
             if(m_effectorPosition[1]>(Fitts_Start[1]+175.0)) 
    {   
     //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_PreX[0]); 
 
                if(m_effectorPosition[1]>(Fitts_End[1]-90.0)) 
    { 
                   //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_PreX[0]); 
                   if(m_effectorPosition[1]>(Fitts_End[1]-20.0)) 
       { 
                      //m_forceOnVisitor.set(0.0,0.0,0.0); 
             //m_forceOnVisitor.set(0.05*exp(-
Dist_right/70.0),-0.5*exp(-Dist_right/70.0),0.0); 
        
m_forceOnVisitor.set(0.0,-0.5*exp(-Dist_right/70.0),0.0);  
              //printf("%3.6f 
%3.6f\n",Previous_Xcoordinate[0]);             
       }   
                else 
       { 
                        //m_forceOnVisitor.set(0.0,0.0,0.0); 
                //m_forceOnVisitor.set(0.1*exp(-Dist_right/70.0),-
2.0*exp(-Dist_right/70.0), 0.0); 
                       m_forceOnVisitor.set(0.0,-2.0*exp(-Dist_right/70.0), 0.0); 
                       //printf("%3.6f\n",Previous_Xcoordinate[0]); 
       }  
   
    } 
 
    } 
    else 
    { 
                m_forceOnVisitor.set(0.0,0.0,0.0); 
    } 
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   { 
  if(m_effectorPosition[1]> m_PreX[1]) 
  { 
    if(m_effectorPosition[1]> Fitts_Start[1]) 
    { 
           //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 
             if(m_effectorPosition[1]<(Fitts_Start[1]+175.0)) 
    {  //printf("%3.6f 
%3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                 //printf("%3.6f %3.6f\n",m_effectorPosition[1],Fitts_Start[1]+100.0); 
                if(m_effectorPosition[1]<(Fitts_Start[1]+155.0)) 
    { 
      //printf("%3.6f 
%3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                   if(m_effectorPosition[1]<(Fitts_Start[1]+20.0)) 
       { 
                      //m_forceOnVisitor.set(0.0,0.0,0.0); 
                      //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                //m_forceOnVisitor.set(0.05*exp(-
Dist_left/70.0),0.9*exp(-Dist_left/70.0),0.0); 
        
m_forceOnVisitor.set(0.0,0.9*exp(-Dist_left/70.0),0.0);   
                      //Previous_Xcoordinate[0]= m_effectorPosition[0];  
        
//m_forceOnVisitor.set(-1.0*exp(-Dist_left/70.0), 2.0*exp(-Dist_left/70.0), 0.0); 
       }   
                else       { 
                      //m_forceOnVisitor.set(0.0,0.0,0.0); 
                      //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 
               //m_forceOnVisitor.set(0.1*exp(-Dist_left/70.0), 
2.0*exp(-Dist_left/70.0), 0.0); 
                     m_forceOnVisitor.set(0.0, 2.0*exp(-Dist_left/70.0), 0.0); 
                     //Previous_Xcoordinate[0]= m_effectorPosition[0]; 
                     //printf("%3.6f\n",m_PreX); 
                        
       }  
   
     } 
        else 
     { 



    

190 
 

Appendix C (Continued) 
 
 
 
     else 
     { 
                if(m_effectorPosition[1]>(Fitts_Start[1]+175.0)) 
    {     //printf("%3.6f 
%3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                     //if(m_effectorPosition[0]<(Fitts_Start[0]+135.0)) 
                     if(m_effectorPosition[1]>(Fitts_End[1]-90.0)) 
      { 
                        //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                        if(m_effectorPosition[1]>(Fitts_End[1]-20.0)) 
     
 { 
                           //m_forceOnVisitor.set(0.0,0.0,0.0); 
                           //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 

 
 
                     //m_forceOnVisitor.set(0.05*exp(-
Dist_right/70.0),0.9*exp(-Dist_right/70.0),0.0);  
         
m_forceOnVisitor.set(0.0,0.9*exp(-Dist_right/70.0),0.0);  
                           //Previous_Xcoordinate[0]= m_effectorPosition[0];                
     
 }   
                     else 
     
 { 
                           //m_forceOnVisitor.set(0.0,0.0,0.0); 
                          //printf("%3.6f %3.6f\n",m_PreX[0],m_effectorPosition[0]); 
                    //m_forceOnVisitor.set(0.1*exp(-
Dist_right/70.0), 2.0*exp(-Dist_right/70.0), 0.0); 
                            m_forceOnVisitor.set(0.0, 2.0*exp(-Dist_right/70.0), 0.0); 
                          //Previous_Xcoordinate[0]= m_effectorPosition[0]; 
                          //printf("%3.6f\n",m_PreX); 
     
 }     
      } 
      else 
      { 
                       m_forceOnVisitor.set(0.0,0.0,0.0); 
      } 
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   } 
   else 
   { 
      m_forceOnVisitor.set(0.0,0.0,0.0); 
   }  
  }  
 else 
 { 
   m_forceOnVisitor.set(0.0,0.0,0.0); 
 }  
} 
//#endif 
/***********************************************************************
************************** 
Test 11:FITTS TASK/The execution of FITTS TASK implemented in the Z direction 
with assistance 
************************************************************************
**************************/ 
//#ifdef EXP11  
if (m_gIDMenu == 2) 
 
{   
  double scale=0.1; 
  double Proj_Scale=0.08; 

 
 
  double y_limit=10.0; 
  bool OneTrip = false; 
  //HDdouble m_PreX = 0.0; 
 
  Traj_left[0] = ((pointend.x+10.0)-(pointend.x+40.0)); 
 
  Traj_left[1] = ((pointend.y+10.0)-(pointend.y+40.0)); 
 
  Traj_left[2] = ((pointend.z+10.0)-(pointend.z+40.0)); 
 
 
  Traj_right[0] = ((pointstart.x-10.0)-(pointstart.x-40.0)); 
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  Traj_right[2] = ((pointstart.z-10.0)-(pointstart.z-40.0)); 
 
  Fitts_Start[0] =pointstart.x; 
  Fitts_Start[1]= pointstart.y; 
  Fitts_Start[2]= pointstart.z; 
 
  Fitts_End[0]=pointend.x; 
  Fitts_End[1]= pointend.y; 
  Fitts_End[2]= pointend.z; 
 
  //Trajectory vector between the two goal points// 
  Fitts_Delta[0]=Fitts_End[0]-Fitts_Start[0]; 
 
  Fitts_Delta[1]=Fitts_End[1]-Fitts_Start[1]; 
 
  Fitts_Delta[2]=Fitts_End[2]-Fitts_Start[2]; 
 
  GoalDist= Fitts_Delta.magnitude(); 
  //Normal vector along the trajectory path 
  //g_vector[0]=Fitts_Delta[0]/GoalDist; 
  //g_vector[1]=Fitts_Delta[1]/GoalDist; 
  //g_vector[2]=Fitts_Delta[2]/GoalDist; 
   
  //Distance between effector position and left goal point 
   
  Dist_Goalleft[0]= Fitts_Start[0]-m_effectorPosition[0]; 
  Dist_Goalleft[1]= Fitts_Start[1]-m_effectorPosition[1]; 
  Dist_Goalleft[2]= Fitts_Start[2]- m_effectorPosition[2]; 
  g_vector[0]=Dist_Goalleft[0]/Dist_left; 
  g_vector[1]=Dist_Goalleft[1]/Dist_left; 
  g_vector[2]=Dist_Goalleft[2]/Dist_left; 
   
 
 
  Dist_left=  Dist_Goalleft.magnitude(); 
 
 
  //Distance between effector position right goal point 
  Dist_Goalright[0]= Fitts_End[0]-m_effectorPosition[0]; 
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  Mid_Point[0]= Fitts_Start[0]+((Fitts_End[0]-Fitts_Start[0])/2.0); 
  Mid_Point[1]= Fitts_Start[1]+((Fitts_End[1]-Fitts_Start[1])/2.0); 
 
 
    
  
  if((m_effectorPosition[0]>(Fitts_Start[0]-
50.0))&&(m_effectorPosition[0]<(Fitts_End[0]+50.0))) 
 {      
       //printf("%3.6f %3.6f\n",m_effectorPosition[3],Fitts_End[0]); 
    if((m_effectorPosition[1]>(Fitts_Start[1]-
50.0))&&(m_effectorPosition[1]<(Fitts_End[1]+50.0))) 
    {    
     //printf("%3.6f 
%3.6f\n",m_effectorPosition[2],m_effectorPosition[2]);                                  
           
             if(m_effectorPosition[2]> Mid_Point[2]) 
             //if((m_effectorPosition[0]<((Fitts_End[0]-
Fitts_Start[0])/(1.4)))&&(m_effectorPosition[1]<((Fitts_End[1]-Fitts_Start[1])/(1.4)))) 
       { 
                       
                         //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_effectorPosition[2]); 
     
                              //printf("%3.6f %3.6f\n",m_effectorPosition[2],m_PreX[2]); 
                 
if(m_effectorPosition[2]>m_PreX[2]) 
        
{ 
                            m_forceOnVisitor.set(0.0,0.0,1.5*exp(-Dist_right/100.0)); 
                            //m_forceOnVisitor.set(0.0,0.0,0.0); 
                            //printf("%3.6f %3.6f\n",m_effectorPosition[2],m_effectorPosition[2]); 
        
}     
                    else if(m_effectorPosition[2]<m_PreX[2]) 
        
{ 
                             //m_forceOnVisitor.set(0.0,0.0,0.0); 
                             m_forceOnVisitor.set(0.0,0.0,-1.3*exp(-Dist_right/70.0)); 
                             //printf("%3.6f %3.6f\n",m_effectorPosition[0],m_effectorPosition[1]); 
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       { 
         
        
if(m_effectorPosition[2]<(Mid_Point[2]-3.0)) 
        { 

Appendix C (Continued) 
 

                               if(m_effectorPosition[2]<m_PreX[2]) 
      
    {  
                                   //m_forceOnVisitor.set(0.0,0.0,0.0);  
      
     m_forceOnVisitor.set(0.0,0.0,-0.5*exp(-Dist_left/70.0));  
                                    
                                   //m_forceOnVisitor.set(0.1*exp(-Dist_left/100.0),-0.38*exp(-
Dist_left/100.0),-0.5*exp(-Dist_left/70.0)); 
                                   //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1]); 
                                  
      
    }     
                         else if(m_effectorPosition[2]>m_PreX[2]) 
       
      
    { 
      
     //m_forceOnVisitor.set(0.0,0.0,0.0);  
                                     
                                    m_forceOnVisitor.set(0.0,0.0,0.7*exp(-Dist_left/70.0));  
                                   //m_forceOnVisitor.set(-0.1*exp(-Dist_left/100.0),-0.4*exp(-
Dist_left/100.0),0.9*exp(-Dist_left/70.0)); 
                                   //printf("%3.6f 
%3.6f\n",m_effectorPosition[0],m_effectorPosition[1]); 
      
    } 
        } 
       } 
 
    } 
    else 
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      m_forceOnVisitor.set(0.0,0.0,0.0);  
  } 
 } 
 
//#endif 
} 
 
/***********************************************************************
******** 
 Gets the force on the visitor particle, given the current displacement. 
************************************************************************
*******/ 
hduVector3Dd ContactModel::GetCurrentForceOnVisitor() 
{ 
        return m_forceOnVisitor; 
} 
 
/***********************************************************************
******** Retrieve the current contact point, i.e. the center of the visitor 
 
 sphere. 
************************************************************************
*******/ 
hduVector3Dd ContactModel::GetCurrentContactPoint() 
{ 
     
        return m_visitorPosition; 
} 
 
/***********************************************************************
******** 
 Retrieve the current velocity of the end effector 
************************************************************************
*******/ 
hduVector3Dd ContactModel::GetCurrentEndEffectorVelocity() 
{ 
     
        return m_velocityVec; 
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/***********************************************************************
******** 
 Retrieve the current velocity of the end effector 
************************************************************************
*******/ 
hduVector3Dd ContactModel::GetLastVelocity() 
{ 
     
        return m_lastvelocityVec; 
} 
 
/***********************************************************************
******** 
 Retrieve the scheduler ticks 
************************************************************************
*******/ 
HDdouble ContactModel::GetSchedulerTime() 
{ 
     
        return schedulerTime; 
} 
 
/***********************************************************************
******** 
 Retrieve the maximum velocity 
************************************************************************
*******/ 
HDdouble ContactModel::GetMaxVel() 
{ 
     
        return m_VelocityLimit; 
        
} 
 
/***********************************************************************
******* 
Retrieve the UDP socket option 
************************************************************************
**********/ 
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} 
 
/***********************************************************************
******* 
Retrieve the Current Button State 
************************************************************************
**********/ 
HDint ContactModel::GetCurrentButtons() 
{ 
 return m_CurrentButtonState; 
} 
/***********************************************************************
******* 
Retrieve the Last Button State 
************************************************************************
**********/ 
HDint ContactModel::GetLastButtons() 
{ 
 return m_LastButtonState; 
} 
/***********************************************************************
******* 
Retrieve the MenuID 
************************************************************************
**********/ 
HDint ContactModel::GetIDMenu() 
{ 
 return  m_gIDMenu; 
} 
 
/***********************************************************************
******** 
 Save force components to a file 
************************************************************************
*******/ 
 
/*char *ContactModel::recordCallback(void *pUserData){ 
hduVector3Dd mforce; 
hdGetDoublev(HD_CURRENT_FORCE, mforce); 
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 return c; 
}*/ 
 
//FILE *pFile = 
//fopen("c:\\temp\\recordServoLoopData.txt","w"); 
//hdStartRecord(pFile,recordCallback,NULL,5000); 
 
 
//MODIFIED// 
/***********************************************************************
******** 
 Retrieve the current contact point, i.e. the center of the visitor 
 sphere. 
************************************************************************
*******/ 
 
/*hduVector3Dd ContactModel::GetCurrentContactPoint() 
{ 

 
         hlBeginFrame(); 
         hlCheckEvents(); 
         HLboolean buttDown = false; 
      hlGetBooleanv(HL_BUTTON2_STATE,&buttDown); 
      if (buttDown) 
   {  
   fprintf(stdout,"button is down\n"); 
           return m_visitorPosition; 
   } 
 
        hlEndFrame(); 
  return m_zeroPosition; 
 
}*/ 
 
//MODIFIED//     
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************************************************************************
*******/ 
hduVector3Dd ContactModel::Getlastpos() 
{ 
        return m_lastpos; 
} 
/***********************************************************************
**********/ 
HDdouble ContactModel::GetinstRate() 
{ 
        return  m_UpdateRate; 
} 
/***********************************************************************
********* 
Retrieve the current (previous last x position) 
************************************************************************
*********/ 
/*HDdouble ContactModel::GetPrevious_Xcoordinate() 
{ 
        return  m_PreX; 
        printf("%3.6f\n",m_PreX[0]); 
}*/ 
 
/***********************************************************************
********** 
Udpate end effector velocity/velocity scaling 
************************************************************************
**********/ 
 
/////////////start here///////////// 
void ContactModel::UpdateEndEffectorVelocity(const hduVector3Dd vel) 
{ 
    m_velocityVec = vel; 
     
    hduVector3Dd TrajVec; 

 
 
 double SCALE = 2.0; 
 double DotProduct; 
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 velocityMag=m_velocityVec.magnitude(); 
    //fprintf(stdout,"V=%3.4f\n",velocityMag); 
 
    
 TrajVec[0]=pointend.x-pointstart.x; 
    TrajVec[1]=pointend.y-pointstart.y; 
    TrajVec[2]=pointend.z-pointstart.z; 
 
 //Projection of velocity vector in the direction of trajectory// 
    DotProduct = 
(m_velocityVec[0]*TrajVec[0])+(m_velocityVec[1]*TrajVec[1])+(m_velocityVec[2]*Tr
ajVec[2]); 
    SquareTraj=(TrajVec.magnitude())*(TrajVec.magnitude()); 
 VProjected= (DotProduct/ SquareTraj)*TrajVec; 
    //VScaled = VProjected; 
    //fprintf(stdout,"Vx = %3.4f Vy = %3.4f Vz = 
%3.4f",m_velocityVec[0],m_velocityVec[1],m_velocityVec[2], VScaled[0], VScaled[1], 
VScaled[2]);  
 
 
} 
 
/***********************************************************************
********** 
Udpate Last end effector velocity 
************************************************************************
**********/ 
 
/////////////start here///////////// 
void ContactModel::UpdateLastEndEffectorVelocity(const hduVector3Dd lastvel) 
{ 
    m_lastvelocityVec = lastvel; 
     
} 
/***********************************************************************
************* 
Update the scheduler ticks 
************************************************************************
*************/ 
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} 
 
/***********************************************************************
************* 
Update the scheduler ticks 
************************************************************************
*************/ 
void ContactModel::UpdateRate(const double instRate){ 
 
   m_UpdateRate=instRate; 
 
} 
 
/***********************************************************************
******** 
 Constructor. Force model depends on relative position of two objects, 
 a fixed and a visitor. Constructor initializes center positions, and it  
 assumes that initially there is no contact. It also initializes radii 
 for both spheres. 
************************************************************************
*******/ 
 
ContactModel::ContactModel(double fixedRadius, 
                            const hduVector3Dd fixed, 
                            double visitorRadius, 
                            const hduVector3Dd visitor) 
{ 
  //allocate memory for bezier points 
// mpoints = (POINT_3D*)malloc(sizeof(POINT_3D)*(NP+1));  
 
    m_fixedCenter = fixed; 
 
    /* Intersection of two spheres is equivalent to intersection 
       of a point and a sphere of effective radius (arms length)  
       equal to the sum of the two radii. */ 
    m_armsLength = fixedRadius + visitorRadius; 
 
 
 UpdateEffectorPosition(visitor); 
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/***********************************************************************
********** 
Retrieve the UDP OPTION that is being clicked 
************************************************************************
**********/ 
void ContactModel::UpdateUDP(const HDint option) 
{ 
 m_option=option; 
} 
/***********************************************************************
********** 
Retrieve the UDP OPTION that is being clicked 
************************************************************************
**********/ 
void ContactModel::UpdateVel_Limit(const double Vmax) 
{ 
 m_VelocityLimit=Vmax; 
} 
/***********************************************************************
********** 
Retrieve the UDP OPTION that is being clicked 
************************************************************************
**********/ 
void ContactModel::UpdatePrevious_Xcoordinate(const hduVector3Dd lastpos) 
{ 
 m_PreX=lastpos; 
    //printf("%3.6f\n",m_PreX[0]); 
 
} 
/***********************************************************************
********** 
Retrieve the current button state  
************************************************************************
**********/ 
void ContactModel::UpdateButtonState(const HDint nCurrentButtons) 
{ 
 m_CurrentButtonState=nCurrentButtons; 
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/***********************************************************************
********** 
Retrieve the last button state that is being clicked 
************************************************************************
**********/ 
 
void ContactModel::UpdateLastButtonState(const HDint nLastButtons) 
{ 
 m_LastButtonState = nLastButtons; 
} 
/***********************************************************************
********** 
Retrieve the menu option that chooses the required experiment 
************************************************************************
**********/ 
 
void ContactModel::UpdateIDMenu(const HDint gIDMenu) 
{ 
 m_gIDMenu = gIDMenu; 
} 
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