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PROBABILISTIC MODELING OF QUANTUM-DOT CELLULAR AUTOMATA

Saket Srivastava

ABSTRACT

AsCMOS scaling faces atechnological barrier in the near future, novel design paradigms
are being proposed to keep up with the ever growing need for computation power and speed.
Most of these novel technologies have device sizes comparable to atomic and molecular
scales. At these levels the quantum mechanical effects play a dominant role in device per-
formance, thusinducing uncertainty. The wave nature of particle matter and the uncertainty
associated with device operation make a case for probabilistic modeling of the device. As
the dimensions go down to a molecular scale, functioning of a nano-device will be gov-
erned primarily by the atomic level device physics. Modeling a device at such a small
scale will require taking into account the quantum mechanical phenomenon inherent to the

device.

In this dissertation, we studied one such nano-device: Quantum-Dot Cellular Automata
(QCA). We used probabilistic modeling to perform a fast approximation based method to
estimate error, power and reliability in large QCA circuits. First, we associate the quantum
mechanical probabilities associated with each QCA cell to design and build a probabilistic
Bayesian network. Our proposed modeling is derived from density matrix-based quantum
modeling, and it takes into account dependency patterns induced by clocking. Our model-
ing scheme is orders of magnitude faster than the coherent vector simulation method that

uses quantum mechanical simulations. Furthermore, our output node polarization values

Xi



match those obtained from the state of the art simulations. Second, we use this model to
approximate power dissipated in a QCA circuit during a non-adiabatic switching event and
also to isolate the thermal hotspots in a design. Third, we also use a hierarchical proba
bilistic macromodeling scheme to model QCA designs at circuit level to isolate weak spots
early in the design process. It can aso be used to compare two functionally equivalent
logic designs without performing the expensive quantum mechanical simulations. Finally,
we perform optimization studies on different QCA layouts by analyzing the designs for
error and power over arange of kink energies.

To the best of our knowledge the non-adiabatic power model presented in this disser-
tation is the first work that uses abrupt clocking scheme to estimate realistic power dissi-
pation. All prior works used quasi-adiabatic power dissipation models. The hierarchical
macromodel design is also the first work in QCA design that uses circuit level modeling
and is faithful to the underlying layout level design. The effect of kink energy to study
power-error tradeoffs will be of great use to circuit designers and fabrication scientists in

choosing the most suitable design parameters such as cell size and grid spacing.
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CHAPTER 1
INTRODUCTION

In late 1960's Gordon Moore, of Intel Corporation, predicted that the transistor density
or the number of transistors on an IC chip will grow exponentialy over time [1]. This
trend of semiconductor scaling has been the benchmark for the growth of research and
development activity all over the world. Until recently, semiconductor industry has been
able to keep up with Moore's law over the years, packing more and more computational
power into our microprocessors. With transistor size shrinking to nanometer scales, it has
been a hard battle in the recent years for the industry to keep up with the scaling process.
The smallest transistors in production today operate despite quantum effects. In the near
future, the operation of transistors will be dominated by the physics of quantum world.
Physical limitations of conventional transistors including power dissipation, interconnects
and fabrication are becoming increasingly difficult to surmount with each technology gen-
eration [2, 3]. Therewill be an urgent need in the near future to replace the current device,
the CMOS transistor, by one that embraces these quantum effects and takes advantage of
the nanoscal e physics. Keeping thisin mind, novel design paradigms are being proposed to
keep up with the ever growing need for computation power and speed. There needs to be
a change in perspective from the designers and fabrication scientists alike to look beyond

CMOS.



1.1 Motivation

While even the current generation CMOS technology is nanoscale, the issues related
to doping regions, oxide thickness, sticking layers, diffusion barriers, power dissipation,
and leakage currents etc. have put a big question on the feasibility of pursuing with CMOS
technology in future [4, 5]. The big question for nanotechnology is, what happens after that
and what kind of nanotechnology will be used to replace the standard CMOS transistors?

The question has two answers. In order to stay on the roadmap with its inexorable
progress, nanotechnology is already required. It is clear that CMOS scaling will continue
for at least 10 more years till around 2018 [6]. This will require the increasing use of
nanotechnology in new materials for dielectrics, gates, interconnects, and channels. There
will be new processes, materials, and structures that require engineering at the nanoscale.
Thus, for at least 10 years, nanotechnology will extend and enhance standard CMOS VLSI
technology. While in a decade or more much of the standard approach will be nanoscale,
though it will not be a revolution but like an rapid evolution, it will still be a continuation
of what has gone on before.

S0 the question again arises, what happens after that? Which device will be the new
switch? Candidates include Quantum Cellular Automata [7],Carbon Nanotube Transis-
tors [8, 9], silicon nanowires [10], spin transistors [11], superconducting electronics [12,
13], molecular electronics[14, 15], Single Electron Transistors[16, 17], Resonant Tunnel-
ing Devices[18] and Tunneling Phase Logic [19] as portrayed in Fig 1.1. The International
Technology Roadmap for Semiconductors (ITRS) describes how these technologies work
and discuss some of the challengesin implementing them. The ITRS roadmap [6] presents
the " best current estimate” based on an industry-wide consensus of its R&D needs for the

next 15 years. It is considered to be an unbiased document that is used by industry and
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research groups al around the world to keep themselves updated about the current level of
research in several technologies.

ThetableshowninFig 1.2. showstheresultsof the critical review assessment of emerg-
ing logic technologies highlighted in [6]. It is clear that a number of devices show a great
promise for future research. Each of them can be considered novel and some even revo-
lutionary. Some technologies offer tremendous scope for computation with high packing
densities, while others offer extremely low power dissipation. At present it is required to
continue research for devices that will be most suited [20] to support the ever growing
computation needs by offering small sizes and high packing densities and at the same time
providing tremendous saving in power dissipation. This will eliminate the bottleneck that
existsin the scaling of CMOS devices.

Most of the proposed novel technologies discussed above have device sizes compara-
ble to atomic and molecular scale. At these levels the quantum mechanical effects play
adominant role in device performance and induce uncertainty. Quantum-dot Cellular Au-
tomata (QCA) is one such emerging nanotechnol ogy that offersarevolutionary approach to
computing at nano-level. QCA technology tries to exploit the inevitable nano-level issues,
such as deviceto device interaction, to perform computing. In the current technologiesthis
device to deviceinteraction at nano-level is one of the biggest roadblocksin further scaling
of CMOS devices. Other advantages of QCA include: the lack of interconnects, potential
for implementation in metal, and using molecules. Since QCA concept does not involve
transfer of electrons, it has a potential for extremely low-power computing, even below the
traditional kgT [21]. Magnetic and molecular implementations of QCA have a potential

for room temperature operation.



Table 1. Emerging Research Logic Devices—Projected Parameters.

Availability Sequence 1 2 2-3 2-3 4 5 B
Device
O > [ .
N\ :
Resonant
Tunneling
FETIA RSFEI3-5] 1-D structures  Devices SET [30.31] Molecular QCAI39.4049]  gpin transistor
Types * 5i CMOS e JJ * CNT FET * RTD-FET * SET * 2-terminal ¢ E: QCA * Spin FET
* NVW FET * RTT * 3-terminal ¢ \: GCA [SFET)
* MW hetero- FET * Spin-valve
structures * 3-terminal transistor
* Crosshar bipolar SV
nanostructure transistor
* NEMS
* Molecular QCA
Supported ® Conventional * Pulse ® Corwentional ~ ® Conventional ~  CNN ® Memory-based ¢ QCA * [uantum
Architectures ® Cross-bar * CNN * (CA * Programmable
logic
Cell Size 150 nm* 0.3 um 150 nrm* 150 nrr* 40 nm Naot known B0 nm 150 nm*
(spatial pitch)
Density 4 5E9 1E6 4.5E9 4.5E9 BE10 1E12 3E10 4.5E9
(device/cm?)
Switch Speed 9THz 1.2 THz Not known 1 THz [26] 1 GHz Not known 30 MHz 700 GHz
Circuit Speed 53 GHz 250-800GHz B3 GHz 53 GHz 1GHz <1 MHz (NEMS) 1 MHz 53 GHz
Switching 3x 1018 2x10-19INbl 3 x 108 =3x10-"8 1% 10-"®  Not known E:>1x 3x10-18
Energy, J*** {=1.4x10-17p= {(=1.5x10-"7p+ 10181481
M: 10717 1491
Binary 238 04 238* 238* 10 NAA 0.06 238*
Throughput,
GBit/ns/cm?
Gain Must be 51 for all devices. See Table 2 for experimental values
Operational RT ¢ 4K [Nb) AT RT 20 K RT E: QCA * Cryogenic
Temperature ¢ 77 K HTS) Cryogenic [SFET)
* 20 KiMgB,) M: QCA RT * AT (SVT)
CO Tolerance Critical Not critical Not critical Very critical Very critical ~ Not critical Very critical ~ Critical
< 2% (M: QCA)
Materials Si Nb CNT 1= = Organic Al/AlaOs  |II-V (SFET)
System HTS Si Si-Ge Si molecules (E: GCA) * Si/FM (SVT)
-V
Advantages ¢ \lery high ¢ Density * |dentity of ¢ Morphological
circuit speed [smaller cell individual simplicity
size) switches on
sub-nm level
* Patential
solution to
interconnect
problem
Challenges * Cryogenic ® Stand-by * Cryngenic * Low spin
operations power operations injection
* Process efficiency
integration ® Short
coherence
time

Figure 1.2. Performance Evaluation for Emerging Logic Device Technologies. Image from

[6]




1.2 Novelty of thisWork

The underlying uncertainty in nanoscal e device operation makes a case for probabilistic
modeling of these technologies. In this work we develop a fast, Bayesian probabilistic
computing model [22, 23] that exploits the induced causality of a clocked QCA circuit
to arrive at a model with the minimum possible complexity. The probabilities directly
model the quantum-mechanical steady-state probabilities (density matrix) or equivalently,
the cell polarizations. The attractive feature of this model is that not only does it model
the strong dependencies among the cells, but it can be used to compute the steady state cell
polarizations, without iterationsor the need for temporal simulation of quantum mechanical
equations. The impact of our proposed modeling is that it is based on density matrix-
based quantum modeling, takes into account dependency patterns induced by clocking,
and isnon-iterative. It allowsfor quick estimation and comparison of quantum-mechanical
quantities for a QCA circuit, such as QCA-state occupancy probabilities or polarizations
at any cell, their dependence on temperature, or any parameter that depends on them. This
will enable one to quickly compare, contrast and fine tune clocked QCA circuits designs,
before performing costly full quantum-mechanical simulation of the temporal dynamics.
In [24, 25], it was shown that layout-level QCA cell probabilities can be modeled using
Bayesian probabilistic networks.

In other words, we make use of afast Bayesian computing model in which each QCA
cell is defined by the quantum mechanical probabilities associated with the cell and its
neighbors and the causality of the design is derived from the direction of propagation of
clock signal. This probabilistic model has been shown to accurately capture the device
characteristics and provide results that are orders of magnitude faster than the traditional
methods involving time consuming quantum mechanical simulations. The research pre-

sented in this can be broadly categorized in the following areas:



e We use the Bayesian probabilistic model to estimate power dissipated in a QCA
circuit during a non adiabatic switching event. To the best of our knowledge, this
work is the first work that provides a realistic estimate of power dissipation using a
non-adiabatic clocking scheme. We have termed this power dissipation as worst case

power.

e The hierarchical circuit design scheme presented in this work makes use of proba-
bilistic macromodels to design a QCA circuit. This not only reduces the complexity
of circuit design by orders of magnitude, it has shown to be much more time efficient
with results comparabl e to the layout level design. To the best of our knowledge, this
isthefirst work in QCA that is used to isolate weak spotsin adesign at early onin a
design process. It can also be used to perform design space exploration to compare

two functionally equivalent circuits without having to design it at layout level.

e Device parameter variation to perform tradeoff studies have been the hallmark of
research in CMOS and other technologies. It is natural to perform such studies to
eval uate the optimum design parametersfor aQCA circuit. Inthiswork we undertake
one such study in QCA design by varying the maximum kink energy of a QCA

design.

1.3 Contribution of this Dissertation

In this section we provide a more detailed description of the novel contributions out-
lined in the previous section. As a developing technology, there are a number of research

areasin QCA. We targetted the following three areas in this work.



1.3.1 Power Dissipation Model

Since QCA is afield-coupled computing paradigm, states of a cell change due to mu-
tual interactions of either electrostatic or magnetic fields. Due to their small sizes, power
is an important design parameter. We derive an upper bound for power loss to estimate
power dissipated in large QCA circuits. We categorize power loss in clocked QCA cir-
cuits into two well known groups. switching power and leakage power. Leakage power
loss is independent of input states and occurs when the clock energy is raised or lowered
to depolarize or polarize a cell. Switching power is dependent on input combinations and
occurs when the cell actually changes state. Total power loss can be made very small by
controlling the rate of change of the clock, i.e. adiabatic clocking. Our model provides a
realistic estimate of power lossin a QCA circuit under non-adiabatic clocking scheme. We
derive expressions for upper bounds of switching and leakage power that are easy to com-
pute. Upper bounds obviously are pessimistic estimates, but are necessary to design robust
circuits, leaving room for manufacturing variability. Given that thermal issues are critical
to QCA designs, we show how our model can be valuable for QCA design automation in
multiple ways. It can be used to quickly locate potential thermal hot spotsin a QCA circuit.
The model can also be used to correlate power loss with different input vector switching;
power loss is dependent on the input vector. We can study the trade-off between switching
and leakage power in QCA circuits. And, we can use the model to vet different designs of

the same logic, which we demonstrate for the full adder.

1.3.2 Hierarchical Circuit Design

To advance design with QCA, it is necessary to look beyond the layout level. Hier-
archical design at multiple levels of abstraction, such as architectural, circuit, layout, and

device levels, has been a successful paradigm for the design of complex CMOS circuits. It
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isonly natural to seek to build asimilar design structure for emerging technology. Hender-
son et a. [26] proposed a hierarchical CMOS-like top-down approach for QCA blocks that
are analyzed with respect to the output logic states; this is somewhat similar to functional
logic verification performed in CMOS (Fig 1.3.). We aso advocate building a hierarchical
design methodology for QCA circuits. However, such a hierarchy should be built based on
not just the functionality of the circuit, but it should also allow the abstraction of important
nano-device parameters [27, 28].

Recognizing that the basic operation of QCA is probabilistic in nature, we propose
probabilistic macromodels for standard QCA circuit elements based on conditional prob-
ability characterization, defined over the output states given the input states. Any circuit
model is constructed by chaining together the individual logic element macromodels, form-

ing a Bayesian network, defining a joint probability distribution over the whole circuit.



We demonstrate three uses for these macromodel based circuits. First, the probabilistic
macromodels allow us to model the logical function of QCA circuits at an abstract level;
the' circuit-level’ above the current practice of layout level in a time and space efficient
manner. We show that the circuit level model is orders of magnitude faster and requires
less space than layout level models, making the design and testing of large QCA circuits
efficient and relegating the costly full quantum-mechanical ssmulation of the temporal dy-
namics to a later stage in the design process. Second, the probabilistic macromodels ab-
stract crucial device level characteristics such as polarization and low-energy error state
configurations at the circuit level. We demonstrate how this macromodel based circuit level
representation can be used to infer the ground state probabilities, i.e. cell polarizations, a
crucial QCA parameter. This allows us to study the thermal behavior of QCA circuits at
a higher level of abstraction. Third, we demonstrate the use of these macromodels for er-
ror analysis. We show that that low-energy state configuration of the macromodel circuit
matches those of the layout level, thus allowing us to isolate weak pointsin circuits design

at the circuit level itsalf.

1.3.3 Study of Kink Energy Variation in QCA Design

While there have been experimental studies related to defect and fault talerance in
QCA [29, 30, 31], not much work has been done to study the effects of variation device
parameters on error and power in QCA design. Similar studies of his kind have been the
hallmark of CMOS research over the years that contributed significantly in the develop-
ment of CMOS technology. It is natural to perform such a study with respect to parameter
variations in QCA. We perform a study of error and power dissipation in a clocked QCA
design by varying one of the most crucial parameter in QCA design; the kink energy. Kink
energy isthe energy cost of keeping two adjacent cells in opposite polarization and varies

with the size of a QCA cell and the grid spacing. We analyze the effects of kink energy
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with a design perspective to help designers and fabrication scientists to choose the most

optimum size of QCA cell and spacing between adjacent QCA cells.

1.4 Organization

This dissertation is organized as follows: Chapter 2 provides an overview of QCA
technology and the logic logic asscociated with it. It also includes a brief discussion of
various types of QCA implementation, currently under research. Chapter 3 describes the
probabilistic model of QCA developed in thiswork. It elaborates the derivation of quantum
mechanical probabilities associated with each QCA cell taking into account the dependancy
patterns induced by clocking. These probabilities are then used to derive an overall joint
probability distribution function of a QCA circuit represented as a Bayesian network. In
chapter 4, we use this model to approximate power dissipated in a QCA circuit during
a non-adiabatic switching event. In chapter 5, we make use of hierarchical probabilistic
macromodeling scheme to model QCA designs at cirsuit level. We show the use of this
hierarchical design scheme to isolate weak spots early on in the design process. Finadly,
in chapter 6, we show a set of studies related to error-power tradeoffs in QCA design.

Concluding remarks are listed in chapter 7.
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CHAPTER 2
QUANTUM-DOT CELLULAR AUTOMATA

The concept of a cellular automaton operating on quantum mechanical principles dates
back to Richard Feynman [32], who suggested an initial approach to quantizing a model
of cellular automata. Gerhard Grssing and Anton Zeilinger introduced the term ” quantum
cellular automata’ to refer to amodel they defined in 1988 [33] however, their model has
very little in common with the concepts developed in quantum computation after David
Deutsch’s formal development of that subject in 1989 [34] and so has not been devel oped
significantly as amodel of computation.

A proposal for implementing classical cellular automata by systems designed with
guantum dots has been proposed under the name " Quantum Cellular Automata” by Paul
Tougaw and Craig Lent, as areplacement for classical computation using CMOS technol-
ogy [35, 36]. In order to better differentiate between this proposal and models of cellular
automata which perform quantum computation, many authors working on this subject now
refer to this as a Quantum-dot Cellular Automata.

QCA offers a revolutionary approach to computing at nano-level [37, 38]. It triesto
exploit, rather than treat as nuisance properties, the inevitable nano-level issues, such as
device to device interaction, to perform computing. Other advantages include the lack of
interconnects, potential for implementation in metal [39], and using molecules [40, 41].
Magnetic and molecular implementationsof QCA have potential for room temperature op-

erations.
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There are a number of research groups in leading research labs around the world work-
ing on QCA. The research group at University of Notredame has been spearheading QCA
research for more than a decade. Another group credited with the advancement of QCA
research is from University of Pisa, Italy. This group lead by Dr. M. Macucci conducted
ainvestigative research in QCA involving several institutions all over the world under the
QUADRANT project. Fig 2.1. shows some of the leading research groups currently in-
volved in different areas of QCA research. As we can see from the figure, most of the
research groups are either involved in QCA testing and other architectural issues or in the
fabrication of QCA. At thelogic level, QCA research received a great boost from the work
done at the University of Calgary, under Dr. Konrad Walus. This group introduced the
first ever smulator known as QCADesigner [42]. Even today QCADesigner is amongst

the leading QCA design and simulation tool used all over the world.

2.1 QCA Basics

In aQCA Caell, two electrons occupy diagonally opposite dotsin the cell due to mutual
repulsion of like charges. A ssmple unpolarized QCA cell consists of four quantum dots
arranged in a square, shown in Fig 2.2.. Dots are ssmply places where a charge can be
localized. There are two extra electrons in the cell that are free to move between the four
dots. Tunneling in or out of acell is suppressed. The numbering of the dotsin the cell goes
clockwise starting from the dot on the top right. A polarization P in a cell, which measures
the extent to which the electronic charge is distributed among the four dots, is therefore
defined as:

pP1+p2+p3+ps
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Figure 2.2. An simple 4-dot unpolarized QCA cell

Figure 2.3. Two polarized states of a4-dot QCA cell

Where p; is the electronic charge in each dot of afour dot QCA cell. Once polarized,
a QCA cell can be in any one of the two possible states depending on the polarization of
chargesinthe cell. Because of coulumbic repulision, the two most likely polarization states
of QCA can be denoted as P = +1 and P = -1 as shown in Fig 2.3. The two states depicted
here are called "most likely” and not the only two polarization states is because of the small
(almost negligible) likelihood of existance of an erroneous state.

In QCA architecture information is transferred between neighboring cells by mutual
interaction from cell to cell. Hence, if we change the polarization of the driver cell (left
most cell a'so know asinput cell), first itsnearest neighbor changesits polarization, then the
next neighbor and so on. Fig 2.4. depicts the transfer of polarization between neighboring
QCA cells. Whenthedriver cell (input) isP=-1 (or P=+1), alinear transfer of information

amongst its neighboring cells leadsto all of them being polarized to P=-1 (or P = +1).
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Figure 2.4. Transfer of polarization between adjacent QCA cells when the polarization of
the driver cell ischanged fromP=+1toP=-1
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Figure 2.5. Temperature dependence on the polarization of a QCA cell with respect to the
change in poalization of the driver cell.
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As we can see, a change in polarization of the driver cell prompts all the neighboring
cells to change polarization in order to attain the most stable configuration. The above
example shows how information can be transferred in alinear fashion over a”line” of QCA
cells. Such aline of cellsisused as interconnects between various QCA logic components
that we will see in the following section. The speed of change in polarization of a QCA
cell depends on anumber of factors such as temperature, kink energy, clock energy and the
guantum relaxation time. Fig 2.5. shows the thermal dependance of the polarization of a

QCA cell with respect to the polarization of the driver cell.

2.2 Physicsof QCA Device Operation

In order to understand the operation of a simple 4-dot QCA cell we first study the
motion of an electron in an infinite potential well. The walls of this potential well prevent
electron to tunnel between adjacent dots. Electrons in an infinite potential well exist as
a wave function W(x,y, z) that gives us the probability of finding an electron within that
potential well. Thisprobability isproportional to |\¥(x,y, 2)| 2 Solution to the Schrodinger's
wave equation for afree electron (V=0) is given by:

d?¥  2m

o TR E-V)¥=0 (22

WhereV isthe potential acting on the paerticle, E isthe energy of the particleand mis

the mass. Taking V=0 for free electron we get:

d2y 2m

T EEY=0 (2.3)

Using k? = 2m/h? this reduces to
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Figure 2.6. The various quantized energy states of an electron in aone dimensional infinite
potential well. For each quantized state the possible wavefunctions and probability distri-
butions for the el ectron are shown. Image redrawn from Principles of Electronic Materials
and Devices [43].

dj—j +k?¥ =0 (2.4)
Solution of Schrodinger’s equation for this wave function is a sin/cos function and it
also gives the value of the energy of an electron within a potential well. The electron can
only have certain discrete energies (E,,) matching the allowed wave functions. A lower
(higher) energy electron will have a smaller (larger) value of k (wavevector) and a larger
(smaller) wavelength.
Since the boundary conditions demand the wavefunction to be zero at the walls of the
well, the wavevector can only take discrete quantities and hence the electron can only exist

in quantized energy levels. The spacing between adjacent energy levels depends on the
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width of the potential well. If we consider the height of the potential well asfinite, thereis
apossibility of electrons tunneling out of the potential well. Fig 2.7. shows an example of
an electron tunneling across afinite potential well. The potential energy (PE) of point A is
less than that of point D. Hence a car released from point A can at most make it to C but
not E. When the car is at the bottom of the hill its energy is totally Kinetic Energy (KE).
The energy barrier (between C and D) prevents the car from making it to E. In quantum
theory, on the other hand, there is a chance that the car could tunnel through (leak) the
energy barrier between C and E and emerge on the other side of the hill at E. Fig 2.7.(b)
shows the the wavefunction of the electron when it is incident on a PE barrier (V,). The
interference of the incident and reflected waves give y; (x). There is no reflected wave in
region I11. In region Il the wavefunction decays with x because E < V.

Solving the Schrodinger equation for the finite barrier region (1) yields an exponential
decay function. Thisis the main difference to the outer regions of the infinite well, where
the wavefunction must be zero. Solutions for | and 111 are the same as for the infinite
potential well. However, boundary conditions now demand that the wave function match
the exponential function in region |1, causing non-zero amplitude in region I11. Since the
probability of finding an electron is proportional to the square of the amplitude, therefore,
there is a non-zero probability to find the electron on the outside, i.e. it can escape from
region I.

Taking thisinto account we now look at asimple QCA cell with two electrons placed in
neighboring potential wells (called dots). Incase of an infinite potential barrier between the
dots, electrons are not allowed to tunnel within the dots. Asthe potential barrier decreases,
the possibility of an electron to tunnel across the potential barrier increases. When the
potential barriers are very low, electrons can tunnel freely across the two quantum dots.
In QCA technology, clock energy is provided as a means to lower or raise the tunneling

barriers aswe will seein Section 2.5. Fig 2.8. shows how the tunneling barriers between
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Figure 2.7. An an example of an electron tunneling across a finite potential well. Image
redrawn from Principles of Electronic Materials and Devices [43].

two dots are lowered (raised) when the clock energy supplied to the QCA cell is raised
(lowered).

The work done in raising and lowering of tunneling barriers controlled by the clock
energy can be termed as leakage power dissipation as thiswill take place even if the QCA
cell does not switch state. Inasimilar way a clock controlsthe tunneling barriersin a4-dot
QCA cdl used in thiswork.

Since in practice it is not possible to implement an infinite potential well to prevent
the electrons from tunneling across, there is dways a finite possibility of some electronic
charge escaping the QCA cell over along period of time. However, in this work we have
neglected any loss of charge. Electronsin higher energy states within a potential well are
more prone to tunnel acrossif the tunneling potential isof finite height. Thermal errors are
caused when the electrons to settle in higher energy orbits and are more likely to tunnel
across the barriers as compared to when they are in ground state. We will see in later

chapters how the output node polarization probability falls with the rise in temperature.
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Figure 2.8. Controlling the tunneling barrier by variation of clock energy. As the clock
energy supplied to a QCA cell increases, the tunneling barriers lower, making it possible
for electron to tunnel across tot he other side.

2.3 Implementation of a QCA Céll

The basic element for QCA computation isabistable cell capable of interacting with its
local neighbors. The cell is not required to remain quantum-mechanically coherent at all
times; therefore, many non-quantum-mechanical implementations of QCA have emerged.
Generally speaking, there arefour different classes of QCA implementations: Metal-1sland,
Semiconductor, Molecular and Magnetic. In this section, a brief description of each imple-

mentation is provided with its advantages and disadvantages.

2.3.1 Metal Isand

The Metal-1dand implementation [44, 39, 45] was the first fabrication technology cre-
ated to demonstrate the concept of QCA. It was not originally intended to compete with
current technology in the sense of speed and practicality, as its structural properties are
not suitable for scalable designs. The method consists of building quantum dots using

aluminum islands. Earlier experiments were implemented with metal islands as big as 1
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Figure 2.9. (a) SEM image of aMetallic Dot QCA and (b) Schematic diagram. Image from:
Orlov et.al. [44]

micrometer in dimension. Because of the relatively large-sized islands, Metal-1sland de-
vices had to be kept at extremely low temperaturesfor quantum effects (el ectron switching)
to be observable. Again, this method only served as means to prove that the concept is at-
tainablein practice[46, 47]. A SPICE model development methodology for QCA cellswas
proposed in [48].

2.3.2 Semiconductor

Semiconductor (or solid state) QCA implementations [50] could potentially be used to
implement QCA devices with the same highly advanced semiconductor fabrication pro-
cesses used to implement CMOS devices [51]. Semiconductor quantum dots are nanos-
tructures created from standard semiconductive materials such as InAsSGaAs [52] and
GaAgAlGaAs[53, 54]. These structures can be modeled as 3-dimensiona quantum wells.

Asaresult, they exhibit energy quantization effects even at distances several hundred times
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Figure 2.10. Example quantum dot pyramid created with INAS/GaAs. Image from: Univer-
sity of Newcastle: Condensed Matter Group [49]

larger than the material system lattice constant. Cell polarization is encoded as charge po-
sition, and quantum-dot interactions rely on electrostatic coupling [55]. Today, most QCA
prototyping experiments are done using this implementation technology [56].

Advantages:

e Easier to integrate in the fabrication process because of the success of semiconduc-

torsin microelectronics for which many tools and techniques have been devel oped.
e Easier to use existing facilities and methods to create a viable QCA solution.
Disadvantages:

e Current semiconductor processes have not yet reached a point where mass production

of deviceswith such small features( 20 nanometers) is possible.

e Seriadl lithographic methods, however, make QCA solid state implementation achiev-
able, but by no means practical. Seria lithography is slow, expensive and unsuitable

for mass-production of solid-state QCA devices.
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Figure 2.11. (a) Electron micrograph of a GaAs/AlGaAs QCA cell. (b) Simplified circuit
equivaent of the four-dot cell. Image from: Perez-Martinez et.al. [53]

Figure 2.12. Two views of Molecule 1 asa QCA cell. Image from: Lent et.al. [57]
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2.3.3 Molecular QCA

Molecular QCA [58, 41, 57, 59] concept consists of building QCA devicesout of single
molecules. Mg ority of the work so far has been presented by the research group at Notre
Dame.

The basic cell for Molecular QCA in [57] consists of a pair of identical molecules
(Fig 2.12.). The molecule of our discussion is Molecule 1 which isformally known as 1,4-
diallyl butane radical cation. This molecule is comprised of two alyls connected to butyl
bridge on one end and two more alyls connected to the same bridge on the other end. This
particular molecule is neutral on one end while the other end behaves as a cation.

These molecules have an extra electron or hole that can tunnel from one side of the
molecule to the other. By placing an electric field near one side of the molecule on can
force the hole to either be attracted or repelled, this can be called the driver cell. 1t has been
calculated that Molecule 1 has nonlinear switching characteristicsmaking it anideal switch.
If the molecules can be placed very close to each other, about 7 angstroms, the el ectrostatic
interactions will cause the holes to be at opposite ends. This allows propagation of the a
state to other cells. The Fig 2.13. shows the different possible states the molecule can be
in (@) showsa+1 (c) showsa-1 and (b)a non-ideal state that isaunwanted state.

While fabrication methods are currently being researched, no one method has been pre-
dominate. Efforts are on to fabricate molecular QCA circuits using self assembly mono-
layer methods [60, 61, 62, 63]. The molecules themselves are produced by standard chem-
ical procedure [64, 65, 66, 67, 68].

Advantages:

e Room temperature operation
e Ultrasmall devices. density of device can be very high.

e Fast Switching: device should be able to operate in the Gigahertz range
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Figure 2.13. Different possible states of Molecule 1 (a) showsa+1 state (b)anon-ideal state
that is a unwanted state and (c) shows a-1 state. Image from: Lent et.al. [57]

e Low Power consumption: The only power needed isto drive the input and for some

type of clocking mechanism.

e Low Power loss: Calculations state that there should be low power loss due to heat

produced from switching.
Disadvantages.

e Single Moleculesare in existence and have been produced but the placement of these

moleculesin aregular pattern or fashion has not been done.

e Because of the size of the of the devices, to drive the input to a certain state and
sensing the outputs can be very difficult. One does not want to influence other cells

besides the intended driver cell and the output cells.

e Clocking Method: Though theoritical clocking methods have been proposed [69], no

practical clocking method has been demonstrated.
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Figure 2.14. (a) SEM image of a room temperature MQCA network shown in (Cowburn
et.a. [74]) (b) Magjority gates designed for testing al input combinations of the majority-
logic operation. The arrows drawn superimposed on the SEM imagesillustrate the resulting
magnetization direction due toa horizontally applied external clock-field (Imreet.a. [79])

2.34 Magnetic QCA

A basic cell in Magnetic QCA is a nano-magnet [70, 71]. These nano-magnets are ar-
ranged in various grid-like fashions to accomplish computing [72]. Cellsin Magnetic QCA
are enumerated based on their single domain magnetic dipole moments and are inherently
energy minimums [73]. There are several popular schemes of Magnetic QCA that have
been proposed: Cowburn and Wellands nanodot QCA Automata [74], Parish and Forshaws
Bi-stable Magnetic QCA [75, 76], and Csaba et a., Field Couple Nanomagnets [77, 78].
Cowburn and Wellands have fabricated the Magnetic QCA model that has been described
here.

A nano-magnet consists of a single circular nanodot. These nanodots were made of
a magnetic SuperMalloy (mainly Ni). The nanodots are 110nm in diameter and had a
thickness of 10nm. In order to have a single domain in the nanodots it was found that the

nanodots must have asize of about 100nm and bel ow. Single domainswere important when
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analyzing the hysteresis loops and retaining information with no external energy present.
The nanodots were fabricated using high resolution electron beam lithography.

The basic cell consists of a single nanodot. These nanodots were place about 20nm
apartinastraight lineasshownin Fig 2.14.(a) An elongated dot was placed at the beginning
of the chain, thiswas used as the input dot. There was an oscillating field applied to dots
which was +25 and -25 Oe. There was also a-10 Oe bias along the chain of dots. For this
experiment if the dotswere pointing to theright it wasalogical 1, to the left was considered
a 0. When the inputs where set to 1 a response was found where as when the dots where
set to 0 no response was present.

There have been some progress recently in fabricating amagority logic gate using nano-
magnets [79]. Fig 2.14.(b) shows the implementation of a majority gate using nanodots by
Imreet a. Thelr approach to MQCA issimilar to Cowburn et.al., but they use an additional
shape-induced anisotropy component to separate the directions for magnetic information
representation and information propagation in the array.

Advantages:

e Room temperature operation: Because Magnetic QCA use magnetostatic forces in-

stead of columbic, this scheme can operate at room temperature

e Less stringent fab requirements than other QCA: Since it is not necessary to have

feature sizes like 5-10nm and spacing of 2nm for operation

¢ High Density when compared to CMOS: Future outlook have been predicted to have

device density as high as 250,000 million per squared cm

e Highly researched area: Other devices such as hard drives and memory use mag-

netism as their primary mechanism.
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e Low power loss: Once the input is set the nanodots can settle into a local energy

minimum needing no external energy to keep their state.

e Higher thermal robustness than other QCA: Currently other QCA implementations
require cryogenic temperatures to operate. This scheme states 40kgT will keep ther-

mal errors below 1 per year.

e 3D Architectures Possible: Since the magnetic forces from the nanodots are in plane

it is possible to have stacked multiple planes
Disadvantages.

e Individual sensing of dots. The sensing of states is done by measuring the total re-

sultant magnetic field of the entire wire of dots and not asignal point on the wire.

e Frequency: Estimated speed of operation of magetic devices is lower than current
technologies [75]. Even though thisis not very fast it would have a nice niche for

devices.

e Unknown under the 20nm sizes: Current predictions state that nanodots might be-

come unstable under 20nm.

2.4 Logical Devicesin QCA

Aswe know that present day logic architectures are based on Boolean algebra. In order
to perform logical operation using QCA, we denote the two polarization states in terms
of Boolean logic. We take P = -1 configuration as "HIGH” and P = +1 configuration as
"LOW”. In Boolean logic the AND gate, the OR gate and Inverter form the most basic
logic components. In QCA architecture, the majority gate and inverter form the most basic
logic components[80]. There has also been alot of research recently to present novel logic

designs using QCA [81, 82, 83].
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Figure 2.16. QCA magjority gate logic with different inputs

A three input majority gate consists of three inputs and one output. The output is said
to be HIGH (LOW) if at least two out of the three inputs are HIGH (LOW) and vice versa.
Here HIGH (LOW) refers to the polarization state P = +1 (P = -1).

A Magjority gate of threeinputs A, B and C is denoted as:

Maj(A,B,C) =A.B+B.C+CA

Fig 2.15. shows a simple three input majority gate in QCA. Different input configura-
tions of a QCA majority gateisshownin Fig 2.16..

A QCA inverter designisshownin Fig 2.17.. The purpose of an inverter isto take one
input and produceitsinverse. So if the input isHIGH (LOW) the output is LOW (HIGH).

Using mgority gates and inverters we can build logic circuits having similar function-
ality as that of functions implemented using the conventional logic gates (such as AND,

OR and NOT). An AND gate and an OR gate can be easily built using a Majority gate by

30



O Oojo ojo o
o O0jooj0 O
0 0J]0 OjO O O O JoOrO
0 O0J0 OjJO O O O JONO
O O0jooOj0 O
O Oojo ojo o

Figure 2.17. A QCA inverter
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Figure 2.18. AND and OR gate representation of amajority gate by fixing one of the inputs
as P=-1 or P=+1 respectively

setting one of itsinputsto either P=-1 or P=+1 (LOW or HIGH) respectively. Once we
fix the polarization of one of the inputs, the majority gate acts as a smple two input AND
gate or an OR gate(Fig 2.18.).

Now that we have shown how we can implement an AND gate, OR gate and an Inverter,
we can build any Boolean logic circuit in QCA. We show asmall example of aNAND gate
in QCA usingaAND gateand Inverter in Fig. 2.19.. Infact, it ispossibleto implement most
of the Boolean logic circuitsin QCA using only three input majority gatesand inverters[84,
85).

There are several synthesis algorithms [86, 87] available to convert a Boolean logic
function to a Majority gate logic function. A single-bit adder circuit implemented using

only Majority gates and invertersis shownin Fig 2.20..
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Figure 2.19. QCA NAND gate using an AND gate and an inverter

25 Clockingin QCA

A QCA cell can only bein one of two states and the conditional change of statein acell
isdictated by the state of its adjacent neighbors. However, a method to control dataflow is
necessary to define the direction in which state transition occursin QCA cells. The clocks
of a QCA system serve two purposes: providing power to the circuit, and controlling data
flow direction. Like stated before, QCA requires very small amounts of power. Thisis
due to the fact that cells do not require external power apart from the clocks. These clocks
are areas of conductive material under the QCA lattice, modulating the electron tunneling
barriersin the QCA cells above it.

A QCA clock [88] induces four stages in the tunneling barriers of the cells aboveit. In
the first stage, the tunneling barriers start to rise (clock signal goes low). The second stage
isreached when the tunneling barriers are high enough to prevent el ectrons from tunneling.
Thethird stage occurs when the high barrier startsto lower (clock beginstoriseagain). And
finaly, in the fourth stage, the tunneling barriers allow electrons to freely tunnel again. In
simple words, when the clock signal is high, electrons are free to tunnel. When the clock
signal islow, the cell becomeslatched. Fig 2.21. showsa clock signal with its four stages.

A typical QCA circuit requiresfour clocks, each of whichiscyclically 90 degrees out of

phase with the prior clock as shown in Fig 2.22.. If avertical wire consisted of say, 8 cells
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Figure 2.23. Flow of information in QCA line controlled by clock propagation

and each consecutive pair, starting from the top were to be connected to each consecutive
clock, datawould naturally flow from top to bottom. Thefirst pair of cellswill stay latched
until the second pair of cells gets latched and so forth. In this way, data flow direction is
controllable through clock zones [89]. This processisdepicted in Fig 2.23..

In [90], Lent et.al. examine the efficacy of Landauer-Bennett clocking approach in
molecular QCA circuits. Landauer clocking involves the adiabatic transition of a molecu-
lar cell from the null state to an active state carrying datathat can result in power dissipation
lesssthan kgTIn(2). Landauer showed that for logically reversible computation there is no
necessary minimum energy dissipation associated with reading abit, but rather with erasing
information. Bennett extended the Landauer result by showing that in principle any compu-

tation could be embedded in alogically reversible operation. This method suggests QCA as
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apractical meansto implement reversible computing. Bennett clocking scheme can reduce
the power dissipated to much less than kg T1n(2) without changing circuit complexity.

Fig 2.24. shows Landauer and Bennett clocking of QCA circuits. Each figure repre-
sents a snapshot in time as the clocking fields move information across the circuit. The
left column (L1)-(L5) represents Landauer clocking. A wave of activity sweeps across the
circuit as the clocking field causes different cells to switch from null to active. The circuit
shown includes a shift register on top and a three-input majority gate on the bottom. The
right column (B1)-(B7) represents Bennett clocking for a computational block. Here asthe
computational edge moves across the circuit intermediate results are held in place. When
the computation is complete (B4), the activity sweeps backwards, undoing the effect of the
computation. This approach results in minimum energy dissipation.

There have been experimental studies to demonstrate the clocked QCA shift registers
[91, 92]. Single walled CNTs have been proposed as a possible mechanism to provide
clocking in QCA circuits [93]. Not only does a QCA clock clock provide a means to
control data flow direction and power to the circuit, it has been also seen that clock energy
also plays a significant role in the overall power dissipated by a circuit. This effect is less
prominent if the the clocking schemeisadiabatic [94] however, if a non-adiabatic clocking
scheme is applied to the circuit [95, 96], it contributes significantly to the overall power

dissipated in the circuit, as we will seein the later part of this dissertation.

2.6 QCA Architecture

For any technology, architectural design is one of the most important parameters of
its success. Any technology can prove to be reliable and efficient in terms of scaling and
power requirements, but it is of little use unless one can implement architectural designsin

it. QCA isconsidered to be one of the most compl ete emerging technol ogies when it comes
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to architecture. Several novel architectures have been proposed both in logic and memory
design. The mgority logic design involved in QCA architecture presented an interesting
challenge for researchers to design complex architectures [97] that used different logic
compared with Boolean logic (NAND/NOR) used in CMOS.

Intitial logic gates and adder designs were proposed by Lent et.al. in [80, 98, 99].
While most of the recent work in QCA architecture has been performed under Dr. Kogge's
group at University of Notredame, there are several other groups that have contributed
significantly in the development of QCA based designs over the years. A number of
combinational [100, 101] and sequential designs [102] have been proposed and simu-
lated. Most prominent logic design that has been implemented in QCA is a single bit
adder [103, 104, 105]. Severa other complex architectural designs have been proposed in
QCA such as asingle bit ALU [106] and a simple 12 microprocessor design [107, 108].
Other logical designs proposed in QCA include multiplexers, decoders and shift registers.
Many simple and complex QCA architectural designs are presented in later chapters.

QCA relies on novel design concepts such as ” memory in motion” and ” processing in
wire” to implement unique paradigms[109, 110, 111]. Lack of interconnects and potential
implementation of logic in wire makes QCA a very attractive technology for memory de-
sign[112]. A simple memory element is shown in Fig 2.25. As QCA isimplemented on a
grid based architecture, some promising FPGA and application specific architectures have
also been proposed [113, 114, 115].

A number of groups also work in mgjority synthesisalgorithms[87, 116] that provide a
majority logic solution of common Boolean expressions. Once the logical expressions are

synthesized they can be used for design circuitsin QCA.
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Figure 2.25. A QCA Memory Cell (Walus et.al. [42])

2.7 Defect Tolerance

Recently there has been alot of work done in nano-level issuesin QCA design relating
to design issues such as cell size, polarization and defect tolerance [117, 118, 119]. Defect
tolerance studies are crucia for any nanoscale technology because defects in layout are
unavoidable. The QCA approach is inherently robust and can be made even more so by
simply using wide (3- or 5-cell) wiresto build in redundancy at every stage. Other defect-
tolerant strategies in QCA are under investigation.

In [30] presents a study of defect characterization in QCA designs. Effects of defects
are investigated at the logic level. Testing of QCA is also compared with testing of con-
ventional CMOS implementations of these logic devices. Fig 2.26. shows the different
configurations of a defective majority gate. Another work in [120] explores the use of

enlarged lines and majority gatesto study defectsin coplanar crossingsin QCA design.
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Figure 2.26. Different configurations of displaced QCA cellsin a mgjority gate. Configu-
ration (a) isfault free (Tahoori et.al. [30])
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2.8 Modeing QCA Designs

There are several approximate simulators available at the layout level, such as the
bistable simulation engine and the nonlinear approximation methods. These methods are
iterative and do not produce steady state polarization estimates. In other words, they esti-
mate just state assignments and not the probabilities of being in these states. The coherence
vector based method does explicitly estimate the polarizations, but it is appropriate when
one needs full temporal dynamics simulation (Bloch equation), and hence is extremely
slow. Perhaps, the only approach that can estimate polarization for QCA cells, without
full quantum-mechanical simulation is the thermodynamic model proposed in [121], but it
is based on semi-classical I1sing approximation. In the next chapter we demonstrate how
we can use a Bayesian probabilistic computing model to exploit the induced causality of

clocking in a QCA design to arrive at a model with the minimum possible complexity.

One of the mgor advantages of QCA logic design is that it is capable of extremely
low power computation. Lent et al. proposed a model to estimate power dissipation dur-
ing quasi-adiabatic switching event in a QCA shift register. Perhaps the most pure power
model is the quantum-mechanical model of the temporal dynamics of power derived by
Timler and Lent. They identified three components of power: clock power, cell to cell
power gain, and power dissipation. While this model gives us physically close estimates,
it is computationally expensive to estimate. When designing QCA circuits, we would like
estimate power quickly in order to choose among many different alternatives and parame-
ters. The need for full blown gquantum-mechanical estimation will be relegated to the very
end of the design process. To this end, some studies present lower bounds of power dis-
sipated that are easy to compute. However, from a design automation point of view it is

important to design for the worst case, leaving us with margin for errors due to process
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variability. Here worst case refersto the power dissipated during a non-adiabatic clocking
scheme. For worst case considerations, the upper bound for power is more relevant. Inthis
dissertation, we present the results of this non-adiabatic power model in chapter 4.

As research progresses, it is natural to look beyond device level issuesin QCA designs
and explore circuit level issues so as to scope out the types of circuits that can be built.
However, QCA modeling toolsavailable for such designs have been at the layout level. The
operations of nanoscale devices are dominated by quantum mechanics, making it difficult
to model variousissues, such as error or power dissipation with deterministic state models.
Thishasimplicationsin the structure of the design methodology to be applied. Hierarchical
design at multiple levels of abstraction, such as architectural, circuit, layout, and device
levels, is probably still possible. However, the nature of coupling of the issues between
levelswould be different and stronger.For this, we need computing models at higher levels
of abstraction that are strongly determined by layout-level quantum-mechanical models.
We present a hierarchical design scheme that uses probabilistic macromodels to implement
circuit level QCA architecture in chapter 5. The probabilistic macromodels used as circuit
blocks in this design scheme are derived from the layout level graphical models that are

presented in the next chapter.
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CHAPTER 3
PROBABILISTIC BAYESIAN NETWORK MODELING

3.1 Introduction

In this chapter [24, 25] we develop a fast, Bayesian Probabilistic Computing model
that exploits the induced causality of clocking to arrive at a model with the minimum pos-
sible complexity. The probabilities directly model the quantum-mechanical steady-state
probabilities (density matrix) or equivalently, the cell polarizations. The attractive feature
of this model is that not only does it model the strong dependencies among the cells, but
it can be used to compute the steady state cell polarizations, without iterations or the need
for temporal simulation of quantum mechanical equations.

Our proposed modeling is based on density matrix-based quantum modeling, which
takes into account dependency patternsinduced by clocking, and is non-iterative. It allows
for quick estimation and comparison of quantum-mechanical quantities for a QCA circuit,
such as QCA-state occupancy probabilities or polarizations at any cell, their dependence
on temperature, or any parameter that depends on them. This will enable one to quickly
compare, contrast and fine tune clocked QCA circuits designs, before performing costly
full quantum-mechanical simulation of the tempora dynamics.

We validate our modeling with coherence vector based temporal simulation for various
QCA systems (Fig. 3.5.). We aso show, using the clocked mgjority gate, how the model

can used to study dependencies with respect to temperature and inputs (Fig. 3.5.).
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3.2 Quantum Mechanical Probabilities

Following Tougaw and Lent [36] and other subsequent works on QCA, we use the two-
state approximate model of a single QCA cell. We denote the two possible, orthogonal,
eigenstates of a cell by |1) and |0). The state at timet, which is referred to as the wave-
function and denoted by |¥(t)), is alinear combination of these two states, i.e. |'¥(t)) =
c1(t)|1) + c2(t)|0). Note that the coefficients are function of time. The expected value of
any observable, (A(t)), can be expressed in terms of the wave function as
(A) = (W(1)]A(t)|¥(t)) or equivalently as Tr[A(t)|¥)(t) (¥(t)[], where Tr denotes the trace
operation, Tr[---] = (1|---|1) 4+ (0| ---|0). Theterm |W¥(t))(¥(t)| is known as the density
operator, p(t). Expected value of any observable of a quantum system can be computed if
p(t) isknown.

A 2 by 2 matrix representation of the density operator, in which entries denoted by
pij(t) can be arrived at by considering the projections on the two eigenstates of the cell, i.e.

pij(t) = (i|p(t)|]). Thiscan be simplified further.

pij(t) = (ilp®)i)
= ([FO)XFYO1) = C¥O) (¥ )" (3.1)
= ci(t)cj(t)

The density operator isafunction of time and using L oiuville equations we can capture the

temporal evaluation of p(t) in Eqg. 3.2.

N2p(t) =Hp(t) —p(t)H (3.2)



where H isa 2 by 2 matrix representing the Hamiltonian of the cell and using Hartree

approximation. Expression of Hamiltonian is shownin Eq. 3.3 [36].
L | EERG v | 3EP al 33)

Y 32 ER -y 3EP

where the sums are over the cells in the local neighborhood. E is the “kink energy” or
the energy cost of two neighboring cells having opposite polarizations. f; isthe geometric
factor capturing electrostatic fall off with distance between cells. P, is the polarization of
thei-th cell. And, yisthe tunneling energy between two cell states, which is controlled by
the clocking mechanism. The notation can be further simplified by using P to denote the
weighted sum of the neighborhood polarizations Y; R, f;. Using this Hamiltonian the steady

state polarization is given by

_ 2p2 2
PS = _AS =p$5 - pp = = tanh( ) (3.4)
E2P2 + 4y2 KT

Eqg. 3.4 can be written as

s« E
P = S tanh(a) (35)

where E = 0.53; ExP, i, total kink energy and Rabi frequency Q = /EZP?/4+72 and
A= % isthe thermal ratio. We will use the above equation to arrive at the probabilities of
observing (upon making a measurement) the system in each of the two states. Specifically,

p33 = 0.5(1+ P=) and pgg = 0.5(1 — P%), where we made use of the fact that pgg + p$5 = 1.

3.3 Bayesian Modeling

We propose a Bayesian Network based modeling and inference for the QCA cell po-
larization. A Bayesian network[122, 22, 23] is a Directed Acyclic Graph (DAG) in which
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Figure 3.1. A small Bayesian network

the nodes of the network represent random variables and a set of directed links connect
pairs of nodes. The links represent causal dependencies among the variables. Each node
has a conditional probability table (CPT) except the root nodes. Each root node has a prior
probability table. The CPT quantifies the effect the parents have on the node. Bayesian
networks compute the joint probability distribution over all the variables in the network,
based on the conditional probabilities and the observed evidence about a set of nodes.

Fig. 3.1. illustrates a small Bayesian network that is a subset of a Bayesian Network
for a majority logic. In general, x; denotes some value of the variable X; and in the QCA
context, each X; is the random variable representing an event that the cell is at steady-state
logic “1” or at steady state logic “0". The exact joint probability distribution over the

variablesin this network is given by Eqg. 3.6.

P(X5,X4,X3,%2,X1) = P(X5|X4,X3,%2,X1)
P(Xa|X3, X2, X1)P(X3|X2, X1) (3.6)

P(X2|X1) P(X]_) .
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In this BN, the random variable, X5 is independent of X;, given the state of its parents X4

This conditional independence can be expressed by Eq. 3.7.

P(Xs|x4,X3,%2,X1) = P(Xs5/X4) (3.7)

Mathematically, thisis denoted as | (Xs, {Xs}, {X1,X2,X3}). In general, in a Bayesian net-
work, given the parents of anode n, n and its descendents are independent of all other nodes
in the network. Let U bethe set of all random variablesin anetwork. Using the conditional
independencies in Eq. 3.7, we can arrive at the minimal factored representation shown in
Eqg. 3.8.
P(Xs5,X4,X3,X2,X1) = P(X5|X4)P(X4|X3,X2,X1)
P(x3)P(x2)P(x1).

(3.8)

In general, if x; denotes some value of the variable X; and pa(x;) denotes some set
of values for X;'s parents, the minimal factored representation of exact joint probability

distribution over m random variables can be expressed asin Eq. 3.9.

m

P(X) = l}_[ P(x¢|pa(xq)) (39
=1

Note that, Bayesian Networks are proven to be minimal representation that can model
al the independencies in the probabilistic model. Also, the graphical representation in
Fig. 3.1. and probabilistic model match in terms of the conditional independencies. Since
Bayesian Networks uses directional property it isdirectly related to inference under causal-
ity. In aclockless QCA circuit, cause and effect between cells are hard to determine as the
cellswill affect one another irrespective of the flow of polarization. Clocked QCA circuits
however have innate ordering sense in them. Part of the ordering isimposed by the clock-

ing zones. Cellsin the previous clock zone are the drivers or the causes of the change in
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polarization of the current cell. Within each clocking zone, ordering is determined by the
direction of propagation of the wave function [36].

Let Ne(X) denote the set of al neighboring cells that can effect a cell, X. It consists
of all cellswithin a pre-specified radius. Let C(X) denote the clocking zone of cell X. We
assume that we have phased clocking zones, as has been proposed for QCAs. Let T(X)
denote the time it takes for the wave function to propagate from the nodes nearest to the
previous clock zone or from the inputs, if X shares the clock with the inputs. Note that
only the relative values of T(X) are important to decide upon the causal ordering of the
cells. Thus, given a set of cells, we can exactly predict (dependent on the effective radius
of influence assumed) the parents of every cell and all the non-parent neighbors. In this
work, we assume to use four clock zones. We denote this parent set by Pa(X). This parent

set islogically specified as follows.
Pa(X) = {Y[Y € Ne(X), (C(Y) <mods C(X)) V (T(Y) < T(X))} (3.10)

The causes, and hence the parents, of X are the cellsin the previous clocking zone and the
cells are nearer to the previous clocking zone than X. The children set, Ch(X), of anode,
X, will be the neighbor nodes that are not parents, i.e. Ch(X) = Ne(X) /Pa(X).

The next important part of a Bayesian network specification involves the conditional
probabilities P(x|pa(X)), where pa(X) represents the values taken on by the parent set,
Pa(X).

We choose the children states (or polarization) so asto maximize Q = /Ei§I52/47L Y,
which would minimize the ground state energy over all possible ground states of the cell.

Thus, the chosen children states are

ch*(X) = argmax Q = arg max S EP (3.11)
ch(X) h(X) i< (PaX)UCh(X))
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Figure 3.2. Clocked QCA magjority gate layout

The steady state density matrix diagonal entries (Eq. 3.5 with these children state assign-
ments are used to decide upon the conditional probabilitiesin the Bayesian network (BN).
P(X = 0|pa(X)) = p(pa(X), ch*(X
(X =0lpa(X)) = pE(pa(X),ch (X)) 612
P(X = 1|pa(X)) = pT1 (Pa(X),ch*(X))
Once we compute al the conditional probabilities, we provide prior probabilities for
the inputs. We can then infer the Bayesian Networks to obtain the steady state probability

of observing al the cellsincluding the outputsat “1” or “0”.

3.4 Experimental Results

In this section, we discuss the results of our model with a small example of three input
majority gate as the cell layout of for QCA can be effectively drawn with synthesis using
inverter and majority gates. Fig. 3.4 showsthe cell layout of a clocked majority gate. The
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Figure 3.3. Bayesian net dependency structure corresponding to the QCA majority gate
with nodes corresponding to the individual cells and links denoting direct dependencies.

Bayesian Network structure is shown in Fig 3.3. Note that we obtain the structure based
on the causal flow of the wave function and the information regarding the clock zone. We
use "Genie” [123] software tool for Bayesian inference. We present the extended view of
the Bayesian Network shown in Fig. 3.4. with the polarization of each cell shown for a
particular input set.

In Fig 3.5., we report the steady state probabilities of the correct outputs w.r.t temper-
ature and we show that the probability of correct output vary with the input space. Aswe
can see that the temperature plays a key role in obtaining correct signal behavior. More
effect of temperature islessfor someinputssay {0,1,1} than {0,0,1}. Also, the input set
{0,0,1} and {0, 1,0} shows different sensitivity. Hence layout plays an important role in
the error behavior of QCA. We validated our model with respect to the QCADesigner (Fig
3.6.) and received the same accuracy using the tempora simulation. However, the time for

the simulationis an order of magnitude faster.
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Figure 3.4. Exploded view of the Bayesian net structure, laying bare the directed link struc-
ture and the node information.
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Figure 3.5. Dependence of probability of correct output of the majority gate with tempera-
ture and inputs. Note the dependence on inputs.
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of correct output are compared for basic circuit elements
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CHAPTER 4
POWER DISSIPATION IN QCA

4.1 Introduction

For computation mechanisms that involve the transfer or flow of electrons, such as
CMOS gates, it has been shown that with continued scaling if single electrons are involved
in the computation the power per gate would approach the KT limit but the power density
would be extremely high [124, 125]. Unlike computation mechanisms that involve the
transfer or flow of electrons, such as CMOS gates, QCA computation does not involve
electron transfer between adjacent QCA cells. Since only few electrons are involved in
QCA computations, it is susceptible to thermal issues. Therefore it is important to model
and to consider power as an important parameter during the QCA design processat multiple
levels of design abstraction.

While work on defect and faults in QCA circuits, which are other important issues,
have started [117, 118, 119], power issues have not been considered extensively. Perhaps
the most pure power model is the quantum-mechanical model of the tempora dynamics of
power derived by Timler and Lent [126, 127]. They identified three components of power:
clock power, cell to cell power gain, and power dissipation. While this model gives us
physically close estimates, it is computationally expensive to estimate. When designing
QCA circuits, we would like estimate power quickly in order to choose anong many dif-
ferent alternativesand parameters. The need for full blown quantum-mechanical estimation

will be relegated to the very end of the design process. To this end, some studies [128, 90]
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present lower bounds of power dissipated that are easy to compute. However, from a de-
sign automation point of view it isimportant to design for the worst case, leaving us with
margin for errors due to process variability. Here worst case refersto the power dissipated
during a non-adiabatic clocking scheme. For worst case considerations, the upper bound
for power ismore relevant. We derive such an upper bound and show how it can be relevant
for QCA design automation. Some other relevant power related works include the energy
vs. speed trade-off study in[129] for different clocking schemes, however, in the context of
reversible computing. In [130], aRC model for a clocked QCA chain isused to investigate
power dissipation under adiabatic clocking scheme.

Under the Hartree-Fock quantum mechanical approximation, which has been found to
be adequate, the dynamics of a collection of QCA cells can be expressed in terms of the
dynamics of individua cells. As a result, the power dissipation for a QCA circuit can
expressed as the sum of power estimates computed on a per-cell basis. Each cell ina QCA
circuit sees three types of events: (i) clock going from low to high so as to “depolarize’
acell, (ii) input or cellsin previous clock zone switching states, and (iii) clock changing
from high to low, latching and holding the cell state to the new state. Each of these events
are associated with power loss. An interesting point is that the power dissipated during
the first and the third transitions is due to the clock changing and occurs even if the state
of a cell does not change. Thisis analogous to “leakage” power in CMOS circuits. The
power loss due to the second event can be termed as the “switching” power since it is
dependent on the cells actually changing state. Clock energy needs to be high to drive
the cell into an intermediate, depolarized state. In afully depolarized state, the change in
driver polarization has no effect on the driven cell, hence the “switching” power is zero.
Thisisthe ideal case. However, to achieve this the clocking energy needs to be high and,
consequently, the associated “leakage’ power would be high. Thus, these two components

of power areinversely related. The upper bounds derived in this paper will help us quantify
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this relationship. However, areal clock implementation will also add to power loss in the
clocking circuit itself. Thiswill add to the overall power dissipation in a QCA circuit. In
this study we do not account for this power |oss.

A shortened version of this bound derivation is presented in in [95], however, using
very small QCA logic elements. The theoretical contributions of this work are (i) the
computation of upper bound of power dissipated in a QCA cell representing the worst
case input switching vector set and (ii) the characterization of power into two components:
leakage and switching. This upper bound, which is easy to compute, can be used in the
QCA circuit design process. Further, we demonstrate how these estimates can be used (iii)
to characterize the power dissipationin basic QCA elementsliketheinverter, mgority gate,
and crossbar, (iv) to compare two functionally equivalent adder circuits in terms of power
dissipated during any switching event, (v) to compute power inlarge QCA circuit likea4x1
Multiplexer and asingle bit ALU, (vi) to study variation of power expended with different
input states, and (vii) to locate the thermal weak spotsin adesign.

The organization of this chapter is as follows. Section 4.2 summarizes the quantum
formulation of the power dissipation in QCAs as presented in [126]. Using this expression,
we derive in Section 4.3 the upper bound for the power dissipated in a QCA cell during
each clock cycle. We then use this per cell bound to estimate the power in the whole circuit
as described in Section 4.4. In Section 4.5 we show simulation results using this upper
bound. We first validate the bound using quantum mechanical simulations and show that
the bound holds. We then demonstrate power the estimation process and study the power
dissipation in a number of logic elements such as majority gates, inverter, single bit adders

and also for large QCA circuits such as a 4x1 multiplexer and asingle bit ALU [131].
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4.2 Quantum M echanical Power

We denote the eigen states of a cell, corresponding to the two ground states, of each
cell by |0) and |1). This could represent the ground state of a cell with one electron
in two dots, as in molecular-QCA, or a cell with two electrons with four dots. An ar-
ray of cells can be modeled fairly well by considering cell-level quantum entanglement
of these two states and just Coulombic interactions with nearby cells, using the Hartee-
Fock (HF) approximation [36, 132]. This alows one to characterize the evolution of
the individual wave functions. The state of a cell at time t, which is referred to as the
wave-function and denoted by [¥(t)), is a linear combination of these two states, i.e.
|W(t)) = co(t)|0) 4+ c1(t)|1). The coefficients, co(t) and cy(t), are functions of time. The
expected value of any observable, (A(t)), can be expressed in terms of the wave function as
(A) = (W(1)]A(t)|¥(t)) or equivalently as Tr[A(t)|¥(t))(¥(t)]], where Tr denotes the trace
operation, Tr[---] = (0|---]|0) + (1|---|1). Theterm |\ (t))(¥(t)| is known as the density
operator, p(t). Expected value of any observable of a quantum system can be computed if
p(t) isknown.

The entries of the density matrix, pij(t), is defined by ci(t)cj(t) or p(t) = c(t)c(t)",
where * denotes the conjugate transpose operation. Note that the density matrix is Hermi-
tian, i.e. p(t) = p(t)*. Each diagonal term, pi;(t) = |ci(t)|?, represents the probability of
finding the system in state |i). It can be easily shown that poo(t) + p11(t) = 1. In QCA
device modeling literature, one uses the concept of polarization, s, to characterize the state
of acell and is simply p11(t) — poo(t), the difference of the two probabilities. It ranges
from-1to 1.

The density operator is a function of time, p(t), and its dynamics is captured by the

Loiuvilleeqguation or the von Neumann equation, which can derived from the basic Schrodinger
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equations that capture the evolution of the wave function over time, \¥(t).

ngp(t) = Hp(t)—p(t)H (4.1)

where H isa 2 by 2 matrix representing the Hamiltonian of the cell. For arrangements of
QCA cdlls, it iscommon to assume only Coulombic interactions between cells and use the
Hartree-Fock approximation to arrive at the matrix representation of the Hamiltonian given

by [36]

H— —3 % Esfi —Y | -3S v 4.2)
v ;NS —y 3S

where the sums are over the cells. Ey is the energy cost of two neighboring cells with
opposite polarizations; this is aso referred to as the “kink energy”. f; is the geometric
factor capturing electrostatic fall off with distance between cells. s; is the polarization of
the i-th neighboring cell. The tunneling energy between the two states of a cell, which is
controlled by the clocking mechanism, is denoted by y. For notational simplification, we
will use Sto denote the total kink energy due to the polarized neighbors.

To arrive at amore compact mathematical representation we use the Bloch formulation
of the Schrodinger equation that expresses the evolution of quantum systems in operator
gpaces. The density operator can be expressed as a linear combination of the SU(2), the
Pauli’s spin operators 6;s

3
p(t) = D i (4.3)
i=1

Here 6; are the Pauli’s spin matrices given by:

01 0 1 -1 0
01 = ,02 = ,03 = (4.4)
10 -1 0 0 1
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The combination coefficients form the coherence vector (1) can be expressed by
Ai =Tr{pGi}. (4.5
The two state Hamiltonian can be projected onto the basis of generators to form a rea

three-dimensional energy vector I", whose components are

_ Tr{H&}

1
r = =:ﬁ{—2% 0, s]. (4.6)

The Bloch equation governing the evolution of the coherence vector can be derived

from the Liouville equation to be

| o

A=Tx24 (4.7)

o

t

This formulation does not account for the effect of dissipative coupling with heat bath.
One reasonable approximation is to add an inhomogeneous linear term to this equation to
account for damping.

-

A=T xA+EL+T (4.8)

Q.|Q_

t

We choose the parameters £ and 1} so that they represent inelastic dissipative heat bath

coupling (open world), with the system moving towards the ground state [36, 132].

Al
o
o O

ﬁ:%issandiz—

Al

(4.9)

o O
o
Al

where ASS isthe steady-state coherence vector and t isthe energy relaxation time. If T — oo,
it represents the absence of any dissipation. Lower the value of t, faster the heat dissipation

away from the cell. The steady-state coherence vector can be derived from the steady-state
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density matrix at thermal equilibrium.

B g—H /KT

SS

p (4.10)

where k isthe Boltzman constant and T is the temperature. The corresponding steady state

coherence vector is given by

=

S =Tr{pSc} = —% tanhA (4.12)

where A = &2, is the thermal ratio, with Q = /42 + S, the energy term (also known as
the Rabi frequency).

The expected value of the Hamiltonian at each time instant is given by
E=(H)==I"24 (4.12)

The equation for the instantaneous power is given by

d h/d=\ - h- /d>

The first term captures the power in and out of the clock and cell to cell power flow. The

second term represents the dissipated power. It isthis quantity that we are interested in.

Past) = 510 ( 100 ) (414)
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Figure4.1. Polarization change (top plot) and power loss (bottom plot) in asingle cell when
its polarization changes from (a) -1to 1 (or 0 to 1 logic) and (b) -1 to -1 (remains at state
0) during a quasi-adiabatic clocking scheme.

4.3 Upper Bound for Power Dissipation

Coupling the expression for power dissipation with the damped Bloch equation we see

that

Paiss(t) = —Z—h;f(t)- (i(t) - XSS(")) (4.15)

If the instantaneous coherence vector tracks the steady state coherence vector for that time
instant, i.e. i(t) R~ iss(t) then the power dissipated is very low. Fig. 4.1.(a) (bottom plot)
shows the instantaneous power dissipation when the driver polarization switchesfrom -1 to
1. Thetop plot of Fig. 4.1.(a) showsthe change in the driver polarization and the associated
change in the steady state polarization X?(t). Note that in this case, the cell polarization
Xg(t) tracks the steady state value quite well. The bottom plot of Fig. 4.1.(a) shows the
clock energy change and the power dissipated. We note that there is only very slight loss
of power during the switching of the driver polarization. Fig. 4.1.(b), which isfor the case

of no change in driver polarization, also tells the same story of low power loss.
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Figure 4.2. Polarization change (top plot) and power loss (bottom plot) in asingle cell when
its polarization changesfrom (a) -1to 1 (or Oto 1 logic) and (b) -1to -1 (no change in state)
during non-adiabatic clocking scheme

High dissipation situation arises when A(t) lags the changing Ass(t). From Eq. 4.11
we can see that ASS changes whenever the underlying Hamiltonian changes, which happens
when (i) clock goes from low to high (y. — y4) S0 as to “depolarize” a cell, (ii) input or
cellsin previous clock zone switches states (S- — S;), and (iii) clock changes from high
to low (yq4 — L), latching and holding the cell state to the new state. Fig. 4.2.(a) shows
the switching behavior and power dissipation for abrupt change in driver polarization and
clocking. As we can see from the graph, the steady state polarization _7:.3('[) of the cell is
not able to follow the corresponding steady state polarization. Thereissome lag and ripple
associated with the change. This leads to power loss, which is shown in the bottom plot
of Fig. 4.2.(a) Note that there is power loss for all the three events. Fig. 4.2.(b) shows
the same switching behavior and power dissipation in the cell during a non adiabatic event
even when the driver polarization remains the same (-1 to -1 switching). As we can see
from the graphs, the total power dissipated by the cell occurs not only when its polarization
changes, but a significant amount of power loss aso occurs when the clock energy barriers

are raised and lowered. The faster the changesinvolved in these events, the more the power
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dissipation. To arrive at the upper bound of the power loss, we consider the limiting case
of instantaneous change; we model these events using as step functions.

We derive the energy dissipated for each of these three events by integrating around
them. Without loss of generality, let the event under consideration be centered at t = 0.
We integrate over [—D, D], such that D >> t, i.e. the integration time period is much
larger than the relaxation time constant. This, of course, places limit on the clock speed.
This constraint is natural also for correct operation; clock period should be larger than the
relaxation time constants otherwise errors will arise. Energy dissipated over a time period

[—D, D] can be arrived at by integrating Pyiss(t).

D di
Ediss = g/Dert
L -1D D. dT
_ R , _ b
_ 0 [r x]_D /_ R dtdt) (4.16)
= g F+ )\,+—1—‘7 7\,—/D —dt)

where we use the notation I"_ and T",. to denote I'(—D) and T'(D), and similarly for .
This dissipated power to the bath will be maximum when the rate of change of I is the

maximum, i.e. non-adiabatic. We model this mathematically using the delta function.
o= (ﬁ —f,) 3(t) (4.17)

whereI", and I'_ are the values of the Hamiltonian “before” and the “after” the transition.
Using this model and the integral property of the delta function, [ f(t)d(t)dt = f(0), we

have

Ediss < g(ﬁ-m—f,-L—X(O)-(f;—r,)) (4.18)
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Table 4.1. Bloch Hamiltonian before and after a change in clock or the neighboring polar-
ization

Clock Up Driver Polarization Clock Down

YL —VH S =S TH— N
F = f[-21, 0 S| £ 2m OS] f-2m O S|
o= gl-2m 0 S | gl-2m 0 S| [ 21 0 S|

As mentioned before, we assume that D >> 1, i.e. the system is in equilibrium with
the heat bath at t = —D and t = D. In such case, we have A(0) = A_ = A¥ and A = A

Using these observations, we can show that

ﬁ_, — —
Ediss h - ry A | r AT |
Te 2T. © ( T | KT | KT (4.20)

where we have characterized the power dissipation as the energy per clock cycle; Te is
the clock period. Asis evident, the power upper bound can be derived once we have the
before and after Hamiltonian for the three power dissipating events. These values of the
Hamiltonian are as shown in Table 4.2. The “leakage” power dissipated (energy per clock
cycle) is the energy dissipated during the first and the third event associated with clock
change. And, the “switching” power (energy per clock cycle) isthe energy loss due to the

second event.

4.4 Energy Dissipated per Clock Cyclein a QCA Circuit

Since the physics governing the power dissipation at each cell in a QCA circuitissimi-
lar, we can compute thetotal power (energy per clock cycle) by aggregating the power com-

puted for each cell. The effect of cells on each other is captured through the electrostatic
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kink energy between them. Let us consider a circuit with N cells, denoted by X1, - -, XN,
with the first r of them representing the input cells. Let the polarization of thei-th cell be
denoted by x; € [—1,1]. For each switching of the input cells, we compute the power by
keeping track of the before and after polarization of the cells. Let X; be the polarization of
thei-th cell for the k-th possible input combination. We can compute this polarization using
any of the simulation methods that are available for QCA circuits [42]. In our experiments
we use the Bayesian Network modeling techniquein [25] to probabilistically determine the
polarizations in an efficient manner. Since in this work, we are interested in a hard upper
bound on the total power dissipated in acircuit, hence we actually round off the computed
polarization of each cell to the nearest pure value, i.e. -1 or 1 value.

To compute the power dissipated at each cell, we need to compute the effective kink
energy of rest of the cells, S_ and S, as the input switches from k-th combination to the

m-th combination. Thisis easily computed as

S-= Y EfixxandSy= Y EfiXjm (4.21)
jeNe(X)) jeNe(X)

where the sum can be restricted to a local neighborhood of the cell since the distance
related term, fj, falls off as 5-th power of the distance from the cell. Using these values,
and knowledge of the low and the high clock energies, y. and yq, we can compute the
leakage (P ) and the switching (H?Q"lcnf,‘l) power (energy per clock cycle) boundsat each
cell (Eq. 4.20). Given these estimates we can compute different design related parameters
asoutlined below. Note that the quantities we compute are actually bounds of the respective

guantities; we do not emphasi ze the bound aspect to reduce notational clutter.



Total Dissipated Power: for transition from the k-th input state to the m-th input state

isgiven by

tot _ switch
kam Z I kﬁm‘*_ PI ,k—m

=(r+1)

Average Power (over al input transitions): is given by

1
P SR,

k,m

Maximum Power (over al input transitions): is given by

max __ tot
P nk]?nx I:)k—>m

Hot Spots: Power is not uniformly dissipated at each cell.

(4.22)

(4.23)

(4.24)

It is important from a

thermal error analysis point of view to identify the cellsin a design where the power

dissipation is high. Once we compute the average power dissipation at each cell over

all input transitions, we can identify the hot-spot as the cells with k maximum power

dissipation.

k,m

45 Results

(4.25)

We first present empirical validation of the power bounds by computing exact power
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of one QCA cell under different clocking conditions and show that the bound holds. We
follow this by showing examples of how this bound estimate can be used for QCA design
automation. The size of QCA cellsused in thisstudy is20nm x 20nm with agrid spacing of
20nm.We compute power dissipation bounds for some basic QCA logic elements such as

the majority gate, inverter, AND gate, OR gate, crossbar and clocked mgjority gate. Since
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Figure4.3. Variation of (a) switching power and (b) leakage power dissipatedin asinglecell
with different amount of clock smoothing for different clock energy v levels. Adiabaticity
of the switching processis controlled by smoothness of the clock transition. The horizontal
line plots the upper bounds for each case as computed using the derived expressions.

power is dependent on the inputs, we show the maximum, minimum and average power
dissipated in each of these circuits over all possible input transitions. Further, we make
use of the power model to estimate power dissipated in two different designs of single bit
adders and the thermal layout for both designs. Finally, we demonstrate the model for some
large circuits — the 4x1 multiplexer and a single bit ALU design [131]. The ALU design
consists of seven inputs and two outputs. The single bit ALU can be used to perform logical
operations such a AND, OR and inversion. It can also perform mathematical operations

such as addition and subtraction between two single bit numbers.

45.1 Energy Dissipation per Clock Cyclein a Single QCA Cell

The power dissipated at each cell isafunction of therate of change of the clock and the
clock energy. We estimated the actual power dissipated using quantum model for various
values of these parameter and compared them with the power bounds. Fig. 4.3.(a) and (b)

shows the variation of switching and leakage power dissipation with varying amount clock
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Figure 4.4. Dependence of energy dissipated (upper bound) in a cell with clock energy for
different clock transitions. (a) 0—0 (b) 0—1 (c) 1—0and (d) 1—1. Note that the plotsfor
cases (a) and (d) overlap completely and so does the plots for cases (b) and (c).

smoothing and for different values of clock energy. The power bounds, which are functions
of the clock energy(y), are shown as horizontal lines. Adiabaticity of the system is directly
proportiona to the amount of clock smoothing. Higher clock smoothing implies more
adiabaticity. We see that bounds do indeed hold and are reached when the clock smoothing
iszero, i.e. abrupt clock changes, representing the fully non-adiabatic case.

Fig. 4.4. shows how the dissipated energy bound is different for different state transi-
tions (&) 0—0 (b) 0—1 (c) 1—0 and (d) 1—1, as the clock energy supplied to the cell is
increased from 0.05E to 2Ey. Note that energy is dissipated even if the state of a cell does
not change, i.e. for cases (a) and (d). This is because the high clock state only partially
depolarizes a cell and there is change in this partial polarization with input change. Asthe
high clock energy isincreased, the cell gets depolarized to a greater extent and the contri-
bution to overall dissipation due to switching statesisless. However, aswe seein Fig. 4.4.,
the total dissipated energy aso increases; thisis due to the contribution of dissipative event
associated with clock transitions, i.e. “leakage power.” So, even though high clock energy

is desirable to depolarize the cell and ensure when the clock energy supplied to the cell is
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increased from 0.05E to 2Ey for correct operation, it has to be limited from power con-
siderations. Hence there is a trade-off between power and error when choosing the clock

energy.

45.2 Energy Dissipation per Clock Cyclein Basic QCA Circuits

We consider arrangements of QCA cells implementing crucial QCA circuit elements.
In Table 4.2. for each circuit, we visualize the energy dissipated at each cell, averaged over
different input transitions. We use grayscale shading to visualize the dissipation at each
cell —darker the cell, more the dissipation. We will refer to thiskind of visualization asthe
thermal layout. Note that the dissipation scale for each circuit is different. We can clearly
see that not all the cells of the circuits dissipate same amount of energy.

In addition to the energy dissipation, averaged over all input combinations, we also
show the maximum dissipation over all input conditions and the minimum dissipation over
al input conditions. The minimum energy dissipation case is when the input cells do
not switch. These three quantities convey some idea about the overal variability of the
dissipation with input. We have tabul ated these results for three values of E.

The number of cellsin the table refer to the number of cells that participate in energy
dissipation. We do not include input cells in calculating the total energy dissipation. We
can see, that in case of aclocked mgjority gate shownin Table 4.2.(a) even though the total
energy dissipated is much higher than that of an inverter shownin Table 4.2.(b), weak spots
in the inverter design dissipate higher amount of energy than in a majority logic. Thisis
evident from the scale associated with the color code. Hence the inverter design is more
susceptible to thermal breakdown.

We can al so see that even though the energy dissipated for the circuitslistedin Table 4.2.

greatly depends on the number of cells for each design, still the average (over al input
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Table 4.2. Thermal layout visualizing the energy dissipated at each cell averaged over dif-
ferent input transitions for some basic QCA logic elements. Darker the color, more the
dissipation.

(a) Clocked Mgjority (b) Inverter (c) Crossbar
No. of Cells 16 9 10
Thermal 2
Layout at u 18
v/Ex=0.5 u 16
DlSS|paI|0n OmmEN . T EEEE 12
scale is in - , - !
3 0.8
;_e(;gsev) Of O EEEN 15 . 25 . 06
n 1 N N " ] 04
05 . N .
CEEE 0 bs O ZZ
| v/Ex | 0.5 | 1.0 | 15 || 0.5 | 1.0 | 15 || 0.5 | 1.0 | 15
Avg 3291 | 39.10 | 47.48 17.41 21.26 26.16 1758 |26.01 |35.70
Ediss(MmeV)
Max 7199 | 73.84 | 77.76 31.76 33.54 36.58 2852 |[33.67 |41.36
Egiss(MeV)
Min 4.27 13.86 | 25.49 3.06 8.97 15.75 6.97 18.37 | 29.98
Egiss(MeV)
(d) Simple Magjority (e) AND Gate (f) OR Gate
No. of Cells 3 4 4
Thermal 16
Layout at [] , [] 16 [] e
Y/Ex=0.5 ; o .
(Energy ml B | EmEEm | DEEE
Dissipation o o4
scale is in [] [] 52 [] 2.2
terms of
103 eV)
| v/Ex | 0.5 | 1.0 | 15 || 0.5 | 1.0 | 15 || 0.5 | 1.0 | 15
Avg 5.99 7.19 8.78 6.20 8.09 10.46 6.20 8.09 10.46
Egiss(MeV)
Max 14.71 15.03 15.70 18.72 18.61 19.21 18.72 18.61 19.21
Egiss(MeV)
Min 0.75 2.46 457 0.99 3.30 6.16 0.99 3.30 6.16
Ediss(MmeV)

69



Average Energy Dissipation per cell at Clock_High = 0.5 Ek
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Figure 4.5. Energy dissipation bounds per cell for different QCA logic elements, averaged
over different input combinations. The number of cellsfor each circuit refersto the number
of cells that dissipate energy during a switching event. The graph shown here is for y/Ex
= 0.5. Note that the color mapping scale for each circuit is different.

combinations) energy dissipation per cell for clocked majority gate, inverter, crossbar and

simple mgjority gate does not vary greatly as can be seen from the graph shownin Fig 4.5.

45.3 Energy Dissipation per Clock Cyclein QCA Adder Circuits

Table 4.3. shows the comparative study of energy dissipated in two different QCA
adders designs. Aswe can see from the table, Adder-1 has much higher energy dissipation,
as it has 359 energy dissipating QCA cells present in its layout as compared to Adder-2
design that has only 165 such cells. We can see from the table that thermal energy layout
for each design shows that the highest average energy dissipation for any particular cell in
both designs is amost the same, even though the Adder-2 design has comparatively larger
number of such "high energy dissipation’ dissipating cells present initslayout. We can also
seefromthe graph in Fig. 4.5. that even though the total energy dissipation for both designs

may vary greatly, still the average (over al input) power dissipation per cell is amost the
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Table 4.3. Thermal layout visualizing the energy dissipation at each cell, averaged over al
possible input combinations for two QCA adder designs.

(a) Adder 1 (b) Adder 2
No. of Cells 359 165
Thermal N | A
Layout at S N PR - 35 I
Y/Exk=05 | .. : . . . *
(Energy mresiresneensieeneis 25 e 3
Di$ipation ................... : . . 25
male iS in == ": E 2 EEEECTEEEEEER -----: [ 5
terms  of R B ' R
1073eV) | e e 1 : .
: 05 et 05
..... ) 0
| v/Ex | 05 | 1.0 | 15 | 05 | 1.0 | 15
Avg Eg4iss | 857.74 1110.45 1421.66 379.56 499.44 645.18
(meV)
Max Egiss | 1524.42 1655.32 1868.33 671.80 736.98 840.29
(meV)
Min  Egiss | 203.82 576.53 984.33 97.42 271.06 458.34
(meV)
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same for both designs. For both designs, the maximum energy dissipation occurred when
the input combinations switched from 000—111.

Thisresult seem to be interesting because it has been already shown in [27] that Adder-2
designismore proneto error than Adder-1 design. Whereas, we can see that when it comes
to power, Adder-2 is more energy efficient even though it has more hot-spots present in its

layout.

45.4 Energy Dissipation per Clock Cyclein Large QCA Circuits

In order to demonstrate that this work is applicable to even larger designs, we also
present the results for a 4x1 multiplexer and a single bit ALU designs. The ALU design
consists of over 800 QCA cells. Fig. 4.6. shows the thermal layout for average power
dissipated at each cell in a 4x1 multiplexer design and Fig. 4.7. shows the thermal layout
for a single bit adder design. We can clearly see the thermal hot-spots in both designs.
These hot spots dissipate large power, averaged over all input combinations, and in order to
make the designs less susceptible to thermal breakdowns, designers can target these weak
spotsin the design for further reinforcements. The fabrication scientists can aso use these
results to select different types of devices.

In order to evaluate the multiplexer and ALU design we ran a simulation to model all
possible input vector combinations and determine the average power dissipation over all
possible input vector set transitions. In case of 4x1 multiplexer there were 6 inputs and
hence we have a vector set comprising of 64 input vectors. In case of ALU since there are
seven inputs, hence we have 128 possibleinput combinations. Table 4.4. showsthe average
(over all input combinations), maximum (over al input combinations), and minimum (over
all input combinations) power dissipation boundsfor these designsat y= 0.5Ek, y= 1.0Ex
and y= 1.5Ek. Since the ALU design has much larger number of cells as compared to the

multiplexer design, it obviously dissipates more energy compared to the multiplexer. It can
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12.5
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10.5

Figure4.6. Thermal Layout for average energy dissipated in each cell of a4x1 MUX circuit.
The dark spotsare the onesthat dissipate larger amount of energy on an average. The layout
was obtained by simulating over all possibleinput switching combinationsfrom 000000 —
111111 for y/Ex = 0.5. The energy dissipation scale for each cell isin terms of 1073 eV.

11.5

seenieenn L los

Figure 4.7. Thermal Layout for average energy dissipated in each cell of asingle bit ALU
circuit. The dark spots are the ones that dissipate larger amount of energy on an average.
The layout was obtained by simulating over al possibleinput switching combinationsfrom
0000000 — 1111111 for y/Ek = 0.5. The energy dissipation scale for each cell isin terms
of 103 ev.
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Table 4.4. Statistics of the energy dissipation per cell for a4x1 MUX and asingle bit ALU
over al possibleinput combinations and for different possible clock energies. We show the
average, maximum, and minimum energy per cell over al input combinations.

(a) SingleBit ALU (b) 4x1 MUX
No. of Cells 801 270
v/Ex 0.5 | 1.0 | 15 0.5 | 1.0 | 15
Avg Egiss | 1781.97 2370.33 3083.37 668.67 850.92 1080.00
(meV)
Max Egiss | 319291 3525.86 4030.15 1174.97 1274.37 1432.77
(meV)
Min  Egiss | 456.62 1279.19 2185.83 136.69 404.03 707.49
(meV)

be seen that the per cell energy dissipation still remains more or less the same for both
designs (in Fig. 4.5.). We also see from the thermal layout of the two designs that some
of the cellsin multiplexer dissipate much higher energy on an average than any cell in the
ALU design.

Apart from calculating the thermal layout for the average energy dissipationinan ALU
design, we also studied the thermal energy layout in case of maximum and minimum en-
ergy, over al input transitions. In Fig 4.8.(a) and (b) we show the thermal layout of ALU
circuit for the maximum and minimum energy dissipation cases, respectively. The dark
spots are the ones that dissipate larger amount of energy. The layout was obtained by
simulating worst case and best case input switching vectors at y/Ex = 0.5. The energy
dissipation scale in Fig 4.8.(b) is much smaller than that in Fig 4.8.(a) since energy is
dissipated only due to leakage component and hence is much less than Fig 4.8.(a) where
switching energy playsadominant rolein total energy dissipation of acell. It can be clearly
seen from the layouts that the energy dissipated in almost al cells of Fig. 4.8.(a) is more
than that of cell dissipating highest energy in Fig 4.8.(b) On an average each cell in Fig
4.8.(a) dissipates a magnitude higher energy than that in case of Fig 4.8.(b) The reason be-
hind thisisthat in case of minimum power dissipation, none of the input cells switch state.

And the total energy dissipated at each cell in this case is only the leakage energy (which
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Figure 4.8. Thermal Layout for energy dissipated in each cell of an ALU circuit for (a)
Maximum energy dissipating input combination and (b) for least energy dissipating input
combination. Energy dissipation scale isin multiples of 103
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Figure 4.9. Graphs showing energy dissipated in a QCA ALU circuit (a) Shows the varia-
tion of leakage and switching components of energy dissipated for various values of y/Ek
(b) Shows the variation in maximum and minimum energy dissipated for various values of

Y/Ek
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is quite low compared to the switching component of energy). However, this conclusion is
not valid for higher clock energies.

In Fig. 4.9.(a) we plot the variation of the dissipation (averaged over al input transi-
tions) with clock energy. We see that switching component of energy reduces when we
increase the clock energy, but the leakage component increases much more significantly,
resulting in overall increase in power dissipation. Aty ~ 0.9E, the leakage component of
energy and switching component contribute equally to the total energy dissipation of the
circuit. Beyond this value of v, the leakage component of energy dissipation contributes
more than the switching component towards total energy dissipation. This result will be of
great use to designers or even circuit fabricators to choose the most optimum clock energy
to be supplied to aQCA circuit. Fig 4.9.(b) showsthe variation of maximum and minimum
energy dissipationin a QCA ALU design with respect to the clock energy. We can see that
while it is desirable to have higher clock energy in order to reduce errors in QCA opera-
tion, it can be seen clearly from the results that if the clock energy is raised significantly,

the energy dissipation is high.
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CHAPTER S

HIERARCHICAL DESIGN IN QCA USING PROBABILISTIC
MACROMODELING

5.1 Introduction

Time is ripe to look beyond just device level research in emerging devices such as
QCA and explore circuit level issues so as to scope out the types of circuits that can be
built [133, 86, 134, 87, 110, 111]. However, QCA modeling tools available for such de-
signs have been at the layout level. There are several approximate simulators available
at the layout level, such as the bistable simulation engine and the nonlinear approxima-
tion methods [135, 136, 42]. These methods are iterative and do not produce steady state
polarization estimates. In other words, they estimate just state assignments and not the
probabilities of being in these states. The coherence vector based method [126, 42] does
explicitly estimate the polarizations, but it is appropriate when one needs full temporal
dynamics simulation (Bloch equation), and hence is extremely slow; for a full adder de-
sign with about 150 cells it takes about 500 seconds for 8 input vectors. Perhaps, the only
approach that can estimate polarization for QCA cells, without full quantum-mechanical
simulation is the thermodynamic model proposed in[121], but it is based on semi-classical
Ising approximation. In [24, 137, 25], it was shown that |ayout-level QCA cell probabilities
can be modeled using Bayesian probabilistic networks.

To advance design with QCA, it is necessary to look beyond the layout level. Hier-
archical design at multiple levels of abstraction, such as architectural, circuit, layout, and

device levels, has been a successful paradigm for the design of complex CMOS circuits. It
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is only natural to seek to build a similar design structure for emerging technology. Hen-
derson et al. [26] proposed an hierarchical CM OS-like top-down approach for QCA blocks
that are analyzed with respect to the output logic states; this is somewhat similar to func-
tional logic verification performed in CMOS. We also advocate building an hierarchical
design methodology for QCA circuits. However, such an hierarchy should be built based
on not just the functionality of the circuit, but it should also allow the abstraction of im-
portant nano-device parameters. It is not sufficient just to abstract a QCA circuit in terms
of 0-1 boolean logic based mgjority gates and other logic components, we have to aso
represent the probabilistic nature of the operations. Thus, for each logic variable X, we
have to assign the probabilities associated with thelogic values, i.e. P(X = 1) or P(X = 0).
In the parlance of QCA, the specific design variable is the “polarization” of cell, which is
P(X =1) — P(X = 0). These probabilities (or polarizations), which are governed by quan-
tum mechanics, are dependent on temperature, which is an important design variable for
QCAs that needs to be represented at upper design levels. Another need for probabilistic
representations arise due to the nature of the QCA operations. QCA circuits are designed
so that the intended logic is mapped to the lowest-energy (ground state) of the cell ar-
rangement. So, it isimportant that the circuit be kept near ground state during operations,
using mechanisms such as four-phased adiabatic clocking. Logical errorsin QCA circuits
can arise due to the failure to the settle to the ground state. It is important to compute
the difference between the probability of lowest-energy state configuration that results in
correct output and the lowest-energy state configuration that results in erroneous outpuit.
It would indeed be useful to be able to compute these erroneous configurations at higher
levels of design. Building a device-level characterization sensitive macromodel will facili-
tate answering the following kinds of questions at higher design levels of abstraction itself.
What is expected polarization of the outputs? How does it change with temperature? How

sensitive is the design with respect to operational errors?
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In this chapter [27, 28], we formulate a probabilistic framework for higher level of ab-
straction of QCA circuits that would enable one to characterize designs with respect to
thermal profiles and errors, the two most important design issues in nano-circuit design.
Standard QCA circuit elements such as mgority logic, lines, wire-taps, cross-overs, invert-
ers, and corners are represented using conditional probability distributions defined over the
output states given the input states. The probabilistic macromodels allow usto model QCA
circuits at an abstract level above the current practice of layout level; we term this higher
level asthe “circuit” level. The full circuit level model is constructed by chaining together
the individua logic element macromodels. This circuit represented using the graphical
probabilistic models known as Bayesian networks, where the nodes of the graphs are the
individual macromodels and the links represent the connection between them. The nodes
are quantified by the macromodel conditional probabilities. The complete network repre-
sents a joint probability distribution over the whole circuit. Since conditional distribution
over the inputs and outputs are obtained based on quantum mechanical probabilistic char-
acterization, the circuit level model is also faithful to the underlying quantum-mechanical
phenomena.

Computations using the macromodel translates to different kinds of probabilistic infer-
ence problems. For instance, computation of ground state polarization is done using the
average likelihood propagation on the built Bayesian network macromodel. Similarly, the
most-likely configuration of the internal nodes corresponding to first-excited, also called
near-ground state or the most likely error state at the outputs, can be isolated at the macro-
model circuit level itself using maximum likelihood propagation on the same Bayesian
network macromodel. We demonstrate and validate our model using commonly studied
QCA circuits and elements, whose behaviors are pretty well understood by others. First,
we show that the ground state polarization probabilities of the output nodes as well as the

intermediate nodes in the macromodel of the QCA logic circuit closely match with those
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obtained from a full layout level implementation [24] at different temperatures. We show
examples of characterization of thermal behavior of a QCA logic circuit that can be carried
out. Second, we demonstrate that both the ground and the next excited (error) state config-
uration of the macromodel exactly match the corresponding configurations of the detailed
layout cells. The mismatch between the ground and the next excited error state configura-
tion can be used to identify weak spotsin circuit design. Using the macromodel, this can
now be done at an higher level of abstraction. Isolation of error-prone components would
be useful in applying redundancy selectively to the necessary componentsrather than to the
whole circuit. Third, we use the circuit level implementation to vet between alternate de-
sign choices. We show examples of this design space exploration process with the example
of two adders. We find that one adder design, Adder-1, in spite of itslarger area, isbetter in
terms of polarization which is an extremely important measure for the QCA circuits. Also,
we see that for Adder-1, number of error-prone components is less than a second adder
design, Adder-2, and hence the needed redundancy measures would be less for Adder-1.
The organization of this chapter is as follows. In Section 5.2, we begin by explaining
the hierarchical modeling scheme used in this work. Then we proceed in subsection 5.2.1
to summarize the quantum-mechanical nature of the probabilities associated with the QCA
cells. In Section 5.2( 5.2.2), we show how an arrangement of QCA cells can be mod-
eled by ajoint probability function, represented as a Bayesian network. Further down in
Section 5.2( 5.2.3) we present the theory behind the macromodels. We demonstrate how
using these macromodels we can (i) model full circuits Section 5.2( 5.2.4), (ii) explore de-
sign space exploration in QCA circuit layouts (Section 5.4( 5.4.3)), and (iii) conduct error
studies (Section 5.3). We comment on the computational advantage of the circuit level

representation over the layout level one in Section 5.4 and we conclude with Section 7.
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5.2 Modeing Theory

In this section, we explain the hierarchical modeling scheme. We focus on two levels:
the layout level and the circuit level, where groups of QCA cells, corresponding to abasic
logic element, are represented as one macroblock. For both these levels, we will use the
graphical probabilistic model called Bayesian Networks to represent the underlying joint
probability of the entire set of nodes. Note that probabilistic representation is essential to
capture the inherently uncertain nature of the computing with QCAs.

Bayesian Networkg[122] are efficient representations of the joint probability distribu-
tion over a set of random variables using a Directed Acyclic Graph (DAG). Each random
variable of interest is represented as a node and links between the nodes denote direct de-
pendencies (cause-effect interactions) between the random variables. For our problem, the
random variables are the states of the QCA cells at the layout level or the /O states of the
macromodels. The links are guided by the interaction neighborhood of the cells and the
logical flow of information from inputs to the outputs. For QCA circuits these cause-effect
directions would be determined by direction of propagation of quantum-mechanical infor-
mation propagation with change in input. Clocks determine the causal order between cells.
Within each clock zone, ordering is determined by the direction of propagation of the wave
function [36]. Since the Coulombic interaction between cells fall off faster than the fifth
power of the distance between them, we need to consider links between cellsthat are within
asmall neighborhood of each other, typically 2 cell distance.

InFig 5.1.(a), we show the QCA layout of a NAND gate. Fig 5.1.(b) showsthe layout
level Bayesian representation. Note that we have 18 random variables representing the
state of 18 QCA cells. Fig 5.1.(c) showsthe circuit level abstraction of aNAND gate. The
Bayesian representation of circuit level abstraction as shown in Fig. 5.1.(d) has fewer cells.

Note that each node at the circuit level isthe collection of cells from the layout level.
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Figure 5.1. A NAND logic gate (@) QCA layout (b) Bayesian model of QCA layout (c)
Macromodel block diagram (d) Bayesian network of macromodel block diagram.

In this work, we will use X to represent the random variable denoting the states of
a QCA cdl at the layout level (Fig. 5.1.(b)). The input cell states will be denoted by
X1, -, %X, thenon-input QCA cellswill be X, 11, - - - Xy and Xs will denote one of the output
cell wherer +1 > s> N. Similarly for the circuit level, we will use 'Y to represent the
random variable denoting the line states. The Y1,---,Y, are set of input cells, Y;;1,---Yu
are the non-input QCA cells and Ys denotes one of the output cell wherer +1> s> M.

The nodes of the Bayesian network are quantified by the conditional probabilities. At
the layout level, we need to specify the conditional probability of the state of a cell given
the states of parent neighbors, i.e. P(x|pa(X)) where Pa(X) are the direct causes of the
random variable X or the parents of the node X in the directed graph representation. We
use lowercase to indicate value of arandom variable. i.e. P(x) denotes the probability of
the event X = x or P(X = x). We estimate this using the quantum mechanical modeling
of QCA cells. At the circuit level, we need to specify the conditional probability of the
output states of a macromodel given the states of the inputs, P(y|Pa(Y')). These conditional
probabilities are estimated from the conditional probabilities for in the layout level model

of the QCA cells comprising the macromodel, at different temperatures.
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In general, aBayesian network encodesthe joint probability function asaset of factored
conditional probabilities, of minimal representational complexity. Proof of minimality can

be found in standard Bayesian network texts such as[122].

m

P(X1,-",Xn) = H P(X«|pa(x«)) (5.1)
k=1

In the conditional probability term P(x|pa(X)), pa(X) represents the values taken on
by the parent set, Pa(X).

Inference or computation with Bayesian networks exploitsthe sparsely connected graph
structure. The most common schemes involve passing messages among the nodes. Aswe
shall see, for we will need to conduct both average case and maximum likelihood infer-
ences. For both the average and maximum likelihood propagation, we adopt the cluster
based exact inference scheme. We refer the reader to [122, 138, 137] for details on the
inference scheme. However, it suffices to note that the propagation schemes are based on
message passing and are similar, differing only in the kinds of messages that are passed.
The original Bayesian network, which isa DAG structure, isfirst transformed into ajunc-
tion tree of cliques and then marginal probabilities are computed by local message passing
between the neighboring cliques. These methods result in exact inference of probabilities.

In the rest of this section, we provide details of the process. We start with discussion of
the macromodel construction process by the Bayesian network model at the layout level,
which was proposed in [137]. Then, we present the construction of the macromodels and

circuit level Bayesian representation.

83



5.21 Quantum Mechanical Probabilities

We sketch how the state probabilities of a QCA cell are dependent on the state proba-
bilities of its layout neighbors, distance to the neighbors, and temperature. Each cell has
2 electrons that can occupy 4 possible dots. Among all the possible occupancy configura-
tions, there are two lowest energy configurations corresponding to the diagonal occupancy
of the cells. These represent the two logica states, 0 or 1. So, following Tougaw and
Lent [36] and other subsequent works on QCA, we use the two-state approximate model
of a single QCA cell. We denote the two possible, orthogonal, eigenstates of a cell by
|1) and |0). The state at timet, which is referred to as the wave-function and denoted by
|'\¥'(t)), isalinear combination of these two states, i.e. |'P'(t)) = c1(t)|1) + c2(t)|0). Note
that the coefficients are function of time. The expected value of any observable, (A(t)), can
be expressed in terms of the wave function as (A) = (¥(t)|A(t)|¥(t)) or equivalently as
Tr[A(t)|¥)(t) (¥(t) ], where Tr denotes the trace operation, Tr[---] = (1] --- |1) + (0| ---|0).
The term |W(t))(¥(t)| is known as the density operator, p(t). Expected value of any ob-
servable of a quantum system can be computed if p(t) isknown.

A 2 by 2 matrix representation of the density operator, in which entries denoted by

pij(t) can be arrived at by considering the projections on the two eigenstates of the cell, i.e.

pij(t) = (i|p(t)|]). Thiscan be simplified further.

pij(t) = (ip(®)[i)
= ([FO)YO) = (MO) (¥ ()" (52)
= ci(t)cj(t)

The density operator isafunction of time and using Loiuville equations we can capture the

temporal evaluation of p(t) in Eq. 5.3.



n2p(t) =Hp(t) —p(t)H (5.3)

where H isa 2 by 2 matrix representing the Hamiltonian of the cell and using Hartree

approximation. Expression of Hamiltonian is shownin Eq. 5.4 [36].
Lo | ZEERG v | 2EP al 54

v 3XERf -y 3EP

where the sums are over the cells in the local neighborhood. E is the “kink energy” or
the energy cost of two neighboring cells having opposite polarizations. f; isthe geometric
factor capturing electrostatic fall off with distance between cells. P, is the polarization of
thei-th cell. And, yisthe tunneling energy between two cell states, which is controlled by
the clocking mechanism. The notation can be further simplified by using P to denote the
weighted sum of the neighborhood polarizations ¥; P, fi. Using this Hamiltonian the steady

state polarization is given by

— 2p2 2
PS = _AS =p$§ - p = = tanh( ) (5.5)
EZP2+ 4y2 KT

« E
P = S tanh(a) (5.6)

Eqg. 5.5 can be written as

where E = 0.53; ExP fi, the total kink energy, Q = |/EZP2/4+ 72, the Rabi frequency,
and A= % isthe thermal ratio. We use the above equation to arrive at the probabilities of
observing (upon making a measurement) the system in each of the two states. Specificaly,
P(X=1) =p3] = 0.5(1+P%*) and P(X = 0) = pgy = 0.5(1— P*), where we made use of

the fact that pgy +p33 = 1.
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Figure5.2. Mgjority logic (a) QCA cell layout (b) Bayesian network model (c) Macromodel
(d) Probability of the correct output valuefor a5 cell majority gate at different temperatures
and for different inputs.

5.2.2 Layout Level Model of Cell Arrangements

To enable us to form macromodels of various cell arrangements, we need to represent
the joint state probabilities of a collection of cells at the layout level. In this section, we
summarize how this joint probability can be efficiently represented using Bayesian net-
works, as shown in [137, 24]. We will use the majority logic arrangement of QCA cellsin
Fig. 5.2.(a) toillustrate the process.

Each cell isrepresented by a random variable, taking on two possible values, shown in
the Bayesian network in Fig. 5.2.(b). Each nodein the network hasaconditional probability
table (CPT), capturing the probabilities of that node, given the states of the parent (cause)
nodes. For example, the center node X4, will be associated with the conditional probability
P(x4|x1,x2,x3). The product of these CPTs determine the joint probability distribution
over al the variables in the network. Thus, the joint probability P(x1,x2,x3,x4,X5) =
P(x4|x1,x2,x3)P(x5|x4,x3,x2,x3). The polarization of the output cell X5 is a function
of the remaining four cells in the layout. The center node X4 is actually the one which
gets polarized based on the mgority of inputs. The output cell depicted here receives
the polarization of the central cell X4 and aso the three inputs, X1, X2, and X3. The
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interaction between the output cell and the central cell will be much more than the inputs.
This is because the kink energy (which determines the amount of interaction between two
neighboring cells), decays as the fifth power of distance.

For a given set of possible parent node assignments, the conditional probability values
are computed using the Hartree-Fock approximation, applied locally. The parent states are
constrained to be as specified in the required conditional probability. We fix the children
states (or polarization) so as to maximize Q = /EEF72/47L 2, which would minimize the
ground state energy over all possible ground states of the cell. Thus, the chosen children
states are

ch*(X) = argmax Q = arg max > EP (5.7)
ch(X) ch(X)ie(Pa(x)LCh(X))

The steady state density matrix diagonal entries (Eq. 5.6 with these children state assign-

ments are used to decide upon the conditional probabilitiesin the Bayesian network (BN).

P(X = 0[pa(X)) = pgo(Pa(X), ch*(X))
P(X = 1|pa(X)) = p11 (Pa(X),ch*(X))

(5.8)

Note that once the conditional probabilities between the nodes and its parents are obtained
the Bayesian Network is quantified completely. Some of the important parameters used
in this model that effect the polarization of a cell apart from temperature are: relative
permitivity = 12.9, radius of effect = 4, cell dimension = 20nm, cell to cell pitch = 10nm,
CLOCK_HIGH = 6.1% 10 2eV and CLOCK _LOW = 1.9x10 ev.

5.2.3 Macromode

The basic circuit elements of a QCA circuit consists of typical logic elements, such
as Mgority, NAND, AND, OR, and NOT, and QCA specific elements such as wires and

crosshars. The macromodels of different circuit e ements are the conditional probability of

87



Table 5.1. Macromodel design blocks

Macromode

QCA Layout

Bayesian Model

Block
gram

Dia-

Thermal Properties

@
Clocked
Majority

ow>

Pout

(b)

verter

Out

Pout

(c) Corner

ONO)l O O
© © e

Out

Pout

(d) Line

Gxollo oforofo oforofo oforo:
Yoo oforofo oo ofo oforo:

Pout

Temperature (K)

e
verter
Chain

0 0
oo o]
o o

Out

]

— nput=on

Pout

Temperature (K)

88




Table 5.2. Macromodel design blocks
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output cells given the values of the input cells. We compute this by marginalizing over the
internal cells. The underlying premise of the macromodeling is that if the joint probability
distribution function P(x1, ---,Xn) over al the n cells in the layout is available, using the
process outlined in the previous subsection 5.2.2, then we can always obtain the exact
distribution over subset of cells by marginalizing the probabilities over rest of the variables.

For instance, the joint probability over just three cells, xi, Xj, and X, can be obtained by

PO, X, %) = D, P(Xa,+,%n) (5.9)
me,m;éi,j,k

Hence, at the circuit level, we do not represent all the m internal cells. Note that at cir-
cuit level, we only represent P(x;,Xj,Xx) and represent them with different variable Y,
which essentially captures the input-output dependence but is faithful to the layout level
quantum interaction since the macromodel is built by marginalizing the layout level cells.
This marginalizing is achieved by conducting average likelihood inference [122, 138] on
the Bayesian network representation over all the cells in the macromodel unit. Note that
Eqg. 5.9 will yield different results at different temperatures and we store the conditional
probabilities at various temperature points.

Fig. 5.2.(d) shows the thermal models for the majority gate in Fig. 5.2.(a). The macro-
model probability distribution is defined over the output and the 3 input nodes. At atem-
perature of 1K, if inputs are 0, 0 and O then the probability of output node is at state O is
70.999963". As the temperature is increased, this probability decreases. We aso notice
that the thermal behavior is dependent on the input values. Note that, for correct operation,
the probability of correct output should be greater than 0.5.

In the rest of this section, we present results for other basic building blocks: clocked
majority gate (Table. 5.1.(a)),inverter (Table. 5.1.(b)), line (Table. 5.1.(c)), corner (Ta
ble. 5.1.(d)), inverter chain (Table. 5.1.(e)), eventap (Table. 5.2.(a)), odd tap (Table. 5.2.(b)),
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crossbar (Table. 5.2.(c)), AND gate (Table. 5.2.(d)) and OR gate (Table. 5.2.(€)). For each
macro-cell, we show the QCA layout, layout level Bayesian model, circuit level input-
output relation and magnitude of polarization drop with temperature. All the conditional
probabilities are stored at various point of temperatures.

We make three important observations. First, a clocked majority gate, which is neces-
sary to synchronize all the input signals reaching the majority gate, has weaker polarization
at higher temperature compared to the simple mgjority shown in Fig. 5.2.(d) as number of
cells are higher in the clocked majority gate. Hence if inputs to a majority gate are arrive
at the same time, then simple majority yields better polarizations at higher temperatures.
Second, inverters have larger drop of polarization over the odd-tap structure at higher tem-
peratures. Third, the crossbar structure, which allows two signal to cross each other in a

coplanar way, has adifferent drop for the two signals.

5.2.4 Circuit Level Modeling

Table 5.3. lists al the symbols used for macromodel design blocks that we have used
in our designs. A macromodel library stores the input-output characteristics (output node
probabilities for each input vector set) of each macromodel block based on temperature.
That means for each temperature, we have a library of macromodel blocks listed in the
Table 5.3.. Once we know the logic components required to build a circuit, we simply
extract the macromodel logic blocks and the required connectivity blocks (e.g. Line, Cor-
ner, Inverter Chain, etc.) from the library at a given temperature and use them to build the
logic circuit. We form a Bayesian macromodel using the input-output probabilities of each
block. The output from one macromodel block is fed to the input(s) of next macromodel
block.

We illustrate the process using the full adder circuit, Adder-1, shown in Fig. 5.3.(a).

It consists of five majority gates with no inverters. Fig. 5.3.(b) shows the corresponding
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Table 5.3. Abbreviations used for Macromodel Blocks for designing QCA architectures of
Full Addersand Multiplier

[ Symbol | Macromodel |
Maj Simple Majority Gate
CM Clocked Magjority

Gate
Inv Inverter
Line Line Segment
CO Corner
IC Inverter Chain
oTr Odd Tap
ET Even Tap
CB Crossover

AND And Gate
OR Or Gate
ZL z-line

layout level Bayesian network. We model the circuit level QCA macromodel shown in
Fig. 5.3.(c) whichisthe circuit level abstraction of Fig. 5.3.(a). The Bayesian macromodel
isshown in Fig. 5.3.(d). Each signal (node) can either be a primary input, or an output cell
of amacroblock like line, inverter etc. Thelinksare directed from the input to the output of
each macroblock and are quantified by the device macromodels. Thus, we arrive at directed

acyclic graph easily from the circuit model in Fig. 5.3.(c).

5.3 Error Computation

Apart of the computation of the polarization of each QCA cell or macromodel line,
which we can arrive at by using average case propagation, another analysis of interest when
comparing designs is the comparison of the least energy state configuration that results
in correct output versus those that result in erroneous outputs. What is the probability
of the minimum energy configuration that results in error at the output, xs, for a given
input assignment, Xx1,---,%? This can be arrived at by conditional maximum likelihood

propagation. In essence, we compute argmaXy, x, -..x. P(Xr+1,- -, XN|X1,- - -, X, Xs) and the
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minimum energy configuration of al the cells that generates the erroneous output Xs is
{X3,%6, - X1, - X} }- This configuration corresponds to the most likely error state at the
output xs. Whenever we have X’ # x¢, the ith cell is considered sensitive to error at output
Xs (also termed as weak spots).

The above computational problem of maximization of a product of probability func-
tions can be factored as product of the maximization over each probability functions, these
maximizations can also be computed by local message passing [122]. The exact maxi-
mum likelihood inference scheme is based on local message passing on a tree structure,
whose nodes are subsets (cliques) of random variablesin the original DAG [138]. Thistree
of cliques is obtained from the initial DAG structure via a series of transformations that
preserve the represented dependencies. The details of the inference scheme can be found
in[137]. At thistransformed point, we have atree of cliques where each cliqueis a sub-set
of random variables. Two adjacent cliques that share a few common variable play a key
role in inference. The joint probability of all the variables can be proven to be the prod-
uct of individual cligue probabilities. Since the problem of maximization of a product of
probability functions can be factored as product of the maximization over each probability
functions, this maximization can also be computed by local message passing [138]. The
overall message passing scheme involves the neighboring cliques using the maximum op-
erator where the clique probabilities are updated till the marginal probability of the shared
variables are the same.

This kind of maximum likelihood analysis can be conducted both at the layout and
the circuit levels. Let us say that the circuit level macroblocks have Yi,---,Y; as inputs
and Y;11,--+,Ym asinternal circuit level lines (nodes). Let us say that the ground state
macroblock cell polarizations are denoted by {y3,y3,--Y¥ 1,---Yy}. With respect to the

the erroneous output ys, let the minimum energy configuration is {yg,¥5,--¥¢ 1, Y }-
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Asin the case of layout, whenever we have y? #* y‘f the j-th cell is considered sensitive to
error at output ys.

In the next section, we will presents results that show that the error modes of the circuit
and layout levels match. That is, whenever Y; is sensitive to the first-excited error state for
output Ys, the corresponding layout level model, shows the set of {X;} that constituted the
macroblock Y; is also sensitive . Thisis an extremely important finding that indicates that
weak spot in the design can be identified at the circuit level itself without obtaining the cell
layout. Also thisisan important design metrics and can be used to vet one design over and

above the thermal profile of the output polarization.

5.4 Results

We present results using the full adder design, which has been widely studied by others.
We also use amultiplier design, which isasomewhat larger design. First, wewill show that
the ground state polarization probabilities of the output nodes as well as the intermediate
nodes in the macromodel of the QCA logic circuit closely match with those obtained from
afull layout level implementation [24] at various temperatures. Second, we demonstrate
that both the ground and the next excited (error) state configuration of the macromodel ex-
actly match the corresponding configurations of the detailed layout cellsfor two full adders
designs. Third, we use the circuit level implementation to vet between alternate design
choices. We show examples of this design space exploration process with the example of

two adders.

541 Polarization

Fig. 5.4. plots the polarization estimates at the layout and the circuit levels for various

temperature, and for different inputs for Adder-1 architecture shown inFig. 5.3.a (layout
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Figure 5.4. Probability of correct output for sum and carry of Adder-1 based on the layout-
level Bayesian net model and the circuit level macromodel, at different temperatures, for
different inputs (a) (0,0,0) (b) (0,0,1) (c¢) (0,1,0) (d) (0,1,1).
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Figure 5.5. A QCA Full Adder circuit (Adder-2) (@) QCA Fulladder cell layout (b) Macro-
model representation (c) Macromodel Bayesian network. Note: Node elements are generic.
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Figure 5.6. Probability of correct output for sum and carry of Adder-2 based on the layout-
level Bayesian net model and the circuit level macromodel, at different temperatures, for
different inputs (a) (0,0,0) (b) (0,0,1) (c) (0,1,0) (d) (0,1,1).
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level) and Fig. 5.3.c (circuit level). Fig. 5.5.(a) shows second adder architecture (Adder-2),
consisting of three mgjority gates and two inverters [139]. Fig. 5.6. plots the polarization
estimates at the layout and the circuit levels for various temperature, and for different in-
puts. We see that the difference in probability of correct output node between circuit and
layout level model design is low for both the adders. We also see that in both layout and
circuit level designs, the probability of the output node is dependent on the input vector set.

Similar trends is also seen for the 2x2 multiplier circuit shown in Fig. 5.7.(a). The
multiplier circuit is somewhat larger than the full adder circuit and consists of two AND
gates and two half adders. We made use of a half adder similar to Adder-2 full adder
design, for the simple reason that it occupies less area. The polarization of the output
nodes in the multiplier layout is almost similar to that obtained at the outputs of multiplier
circuit designed using the macromodel blocks. In Fig. 5.9. and 5.10., we show the variation
of output nodes C0O,C1,C2 and C3 of the multiplier with respect to temperature for both

layout and macromode! design.

5.4.2 Error Modes

We compute the near-ground state configurationsthat resultsin error in the output carry
bit Coy; Of the QCA full adders (Adder-1 and Adder-2) using both the layout and circuit
level models. These are shown in Fig. 5.11. and 5.12. and Fig 5.13. and 5.14. We show
four cases, for input vectors (0,0,0), (1,0,0), (0,1,0) and (1,1,1). The other four input vector
setswill have similar results due to symmetry in design. We use red marker to point to the
components that are weak (high error probabilities) in both the layout and circuit level. We
can easily see that the nodes with high error probabilitiesin QCA layout are the ones that
are clustered to form an erroneous node in the macromodel circuit design. In other words,
if a node (a macromodel block) in macromodel circuit layout is highly error prone for a

given input set, then some or al the QCA cells forming that macromodel block are highly

97



prone to error. This indicates that weak spot in the design can be identified early in the

design process, at the circuit level itself.

5.4.3 Design Space Exploration

We show that even at the macromodel circuit level, we have the ability to explore the
design space with respect to different criteria. In addition, to obvious criteria such as gate
count, we can use polarization as a design metric. The probabilistic macromodel allows us
very fast estimates of polarization that correlate very well with layout level estimates. As
an example we use the two adders in Fig. 5.3.(a) and Fig. 5.5.(a). The two adders shown
here have been designed using different macromodel blocks, occupying different design
areas.

The outputs of Adder-1 circuit is given by

Sum = A.B-Cin+A-B-Cin+A-B-Cn+A-B-Cp
= m(m('A_‘u 87 Cin)7 m(A7 B; Ci_n)7 m(A7 B_7 Cin)) (510)
COUt - m(A7 BaCin)

where m(A, B,Ciy)) is the majority gate containing A,B and Cj, as inputs. Similarly, for

Adder-2 circuit the outputs are given by [139]

Sum = m(Cout,Cin, M(A, B,Cin))
Cout = m(AaB’Cin)

(5.11)

We see that Adder-1 circuit uses five mgjority gates and three inverters for implemen-
tation while Adder-2 circuit uses three mgjority gates and two inverters. Hence the design
circuit design of Adder-2 is certainly superior to Adder-1 in terms of area. However, asit
can be seen from the thermal study, inverter has one of the worst polarization drop with

respect to temperature and invertersin series path will reduce the overall polarization by a
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Figure 5.7. A QCA 2x2 Multiplier circuit(a) QCA multiplier cell layout (b) Macromodel
representation

99



Figure 5.8. Macromodel Bayesian network of a QCA 2x2 Multiplier circuit. Note: Node

elements are generic.
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Figure 5.9. Probability of correct output at the four output nodes of 2x2 Multiplier circuit
based on the layout-level Bayesian net model and the circuit level macromodel, at different
temperatures, for different inputs (a) (0,0),(0,1) (b) (0,0),(1,1) (¢) (0,1),(0,1) (d) (0,1),(1,1)
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Figure 5.10. Probability of correct output at the four output nodes of 2x2 Multiplier circuit
based on the layout-level Bayesian net model and the circuit level macromodel, at different
temperatures, for different inputs (8)(1,0),(0,1) (b) (1,0),(1,1) (c) (1,1),(0,1) (d) (1,1),(1,2).
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Figure 5.12. Error-prone nodes for first-excited state at carry output QCA Adder
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Figure 5.13. Error-prone nodes for first-excited state at carry output QCA Adder-2 Circuit
and its Macromodel design. It can be seen that the erroneous nodes in the layout are
effectively mapped in the macromodel design. Input vector set for (a) and (b) is (0,0,0) and
that for (c) and (d) is(1,0,0). Note: Node elements are generic.
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great extent. Hence for larger circuits, adesign criteriamight look at Adder-1 in adifferent
light.

Note that in the context of error modes, presented earlier, we saw that Adder-1 again
shows less number of error-prone nodes than Adder-2 (Fig. 5.11. shows error-prone nodes
for first-excited state at carry output) for most likely errorsin the outputs. Note that, ideally
this conclusion requires the detailed layout, however, maximum-likelihood propagation of
the circuit level Bayesian Network yields the same error modes as the detailed layout. This
measure indicates that cost of addition error correction required for Adder-2 would be more
than that of Adder-1.

Last but not the least, we observe that an odd tap shown in Section 5.2. is a good target
for one inverter asthe polarization lossis less than an inverter and an even tap works better
than an even number of inverter chains. The multiplier design that we show, utilizes these
factsto arrive at better design with respect to output polarization and this, in turn, improves

the multiplier’sthermal characteristics.

5.4.4 Computational Advantage

To quantify the computational advantage of a circuit level macromodel with a layout
level model, we consider the complexity of the inference based on the Bayesian net mod-
els for each of them. As we mentioned earlier, in the cluster-based inference scheme, the
Bayesian Network isconverted into ajunction tree of cliquesand the probabilistic inference
is performed on the junction tree by local computation between the neighboring cliques of
the junction tree by local message passing [122, 24]. Space complexity of Bayesian infer-
ence is O(n.2/%=/) where n is the number of variables, |Crax| i the number of variables
in the largest clique. Time complexity is O(p.2[Cmx'), where p is the number of cliquesin
the junction tree. We tabul ate the complexity terms for the two adder designsin Table 5.4.,

along with the corresponding values for n, p and |Cyax|. We can see that macromodel is
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Table 5.4. Layout and macromodel time (T¢) and space (Ts)complexities. Please see text
for an explanation Cyax|, N, and p.

Adder 1 Adder 2 Multiplier
Parameters Layout Macromode]| Layout Macromode]| Layout Macromode
model model model
Cmax 15 8 10 5 15 5
p 215 57 96 30 436 119
n 278 64 125 34 539 130
Te = p.2/Cm] 7045120 | 14592 98304 960 14286848 | 3808
Ts = n.2/Cmax] 9109504 | 16384 128000 | 1088 17661952 | 4160

order of magnitude faster especially due to the reduction in |Cpax| Which would be impor-
tant in synthesizing larger networks of QCA cells. Another observation isthat Adder 2 is
less expensive in terms of computation even though polarization drops are more due to the
presence of inverters.

As we can see from the Table 5.5., the simulation time required to evaluate a circuit is
orders of magnitude lower than that in QCADesigner tool. Moreover, we see that the sim-
ulation timing for bayesian macromodels of the adder circuit are much lower than bayesian
full layout model. The graphsdepictedinFig. 5.4., Fig. 5.6., Fig. 5.9. and Fig. 5.10. present
the crux of thiswork. The drooping characteristic of output node polarization with risein
temperature is a universaly known fact. What we have shown in this work (as depicted
in these graphs) is that the polarization of the output node in our macromodel design is
showing the same drooping characteristics and is almost the same as that of the full layout.
We can see that macromodel is order of magnitude faster specially due to the reduction
in |Crax| which would be important in synthesizing larger networks of QCA cells. An-
other observation is that Adder 2 is less expensive in terms of computation even though

polarization drops are more due to the presence of inverters.
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Table 5.5. Comparison between simulation timing (in seconds) of a Full Adder and Mullti-
plier circuitsin QCADesigner(QD) and Genie Bayesian Network(BN) Tool for Full Layout

and Macromodel Layout

[ Simulation Time | Adder-1 | Adder-2 | 2x2Multiplier ||
278 cells 125 cells 539 cells
QD Coherence Vector 566 253 966
QD Bistable Approx. 5 3 15
QD Nonlinear Approx. 35 2 8
BN Full Layout model 0.240 0.030 0.801
BN Macromodel Layout 0.010 0.000 0.08
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CHAPTER 6
EFFECT OF KINK ENERGY IN QCA DESIGN

In chapter 3 we showed how to cal cul ate the ground state polarization probabilities and
build a graphical probabilistic model based on that. We used these graphical probabilistic
models to detemine thermal error at the output at different temperatures. In [140], an
efficient method, based on graphical probabilistic models was presented, to compute the
N-lowest energy modes of a clocked QCA circuit. In QCA, an erroneous state may result
due to the failure of the clocking scheme to switch portions of the circuit to its new ground
state with change in input. This error state of a single cell in turn causes the error in the
neighboring cells resulting in an erroneous output. Due to the quantum mechanical nature
of operation of a QCA device, temperature plays an important role in determining the
ground state polarization of each cell. Power dissipation in a QCA circuit primarily results
due the the application of a non-adiabatic clocking scheme. We have also seen in chapter 4,
how clock energy affects the overall power dissipation in a QCA circuit.

In this chapter we perform studies to determine the error and power tradeoff in a QCA
circuit design by studying the effect of kink energy on the output error and power dissipa-
tionin a QCA circuit. We use three different sizes of QCA cells and grid spacing to study
the polarization and power dissipation for basic QCA circuits using these cells.

We first ssmulate a number of basic QCA circuits such as mgjority gate and inverter to
study the polarization error at the output for each input vector set. We also determine the
power dissipation in these circuits for different kink energies. All other parameters such

as temperature and clock energy are kept constant. We show how this study can be used
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Figure 6.1. Kink energy between two neighboring QCA cells

Kink Energy (Ey) =

b

by comparing two single bit adder designs. The study will be of great use to designers
and fabrication scientists to choose the most optimum size and spacing of QCA cells to

fabricate QCA logic designs.

6.1 Kink Energy

Two electronsin a a simple four dot QCA cell occupy diagonally opposite dots in the
cell due to mutual repulsion of like charges. A QCA cell can be in any one of the two
possible states depending on the polarization of charges in the cell. The two polarized
states are represented as P = +1 and P = -1. Electrostatic interaction between charges in

two QCA Ceéllsisgiven as:

0 1 4 4 Qimij

= — 6.1
dneoer (5 (S Inim—rjK] ©.1)

Thisinteraction is determines the kink energy between two cells.
Exink = Eopp. polarization — Esamepolarization (6-2)

Kink energy (Fig 6.1.) isthe energy cost of two neighboring QCA cells having opposite
polarization. Kink energy between two cells depends on the dimension of the QCA cell as

well as the spacing between adjacent cells. It does not depend on the temperature.
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Table 6.1. Different types of QCA cells and grid spacing used in this study

[ QCA cell | Size | Grid Spacing | Associated Kink Energy ||
Cell-1 10nm 5nm Ein = 4B«
Cdl-2 20nm 10nm Exo = 2E¢
Cell-3 40nm 20nm Ews = Ex
6.2 Results

In this section we present the results obtained from the study of variation of kink energy
on error and power dissipated in the circuits. We obtained these results by simulating each
of the circuits at a constant temperature of 2K. The three different types of cell sizes used
in this study are elaborated in Table 6.1.

Here Ey1 isthe maximum kink energy for the cell layout with smallest cell dimensions
(and grid spacing). Similarly, Exs is the maximum kink energy for the QCA layout with
largest cell dimensions (and grid spacing). As we can see from the table, Ex; = 2Ex» =

AE,s.

6.2.1 Node Polarization Error

We quantify the error in a circuit as a measure of its output node polarization. In
chapter 3, using temperature as a variable and keeping the kink energy constant we have
shown how the output node polarization drops steadily with rise in temperature leading to
more erroneous outputs. This effect becomes more and more significant with the increase
in the number of cellsin adesign. Hence two different designs representing similar logic
but having unequal number of cellswill have different polarizations at the output nodes.

Similarly, in this study, by varying the kink energy of the circuit and keeping the tem-
perature constant we see that the gain (drop) in output node polarization of a circuit is

directly proportional to the increase (decrease) in maximum kink energy (Ex)of the circuit.
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Table 6.2. Output node polarization of a simple majority gate for different Kink Energies

Maximum Kink Energy (Ek)
Input Ex3=075meV | Eo=15meV [ Exa=30meV |
000 0.9278 0.9999 1.0000
001 0.9880 0.9999 1.0000
010 0.9880 0.9999 1.0000
011 0.9075 0.9999 1.0000
100 0.9075 0.9999 1.0000
101 0.9880 0.9999 1.0000
110 0.9880 0.9999 1.0000
111 0.9278 0.9999 1.0000

Table 6.3. Output node polarization of a QCA Inverter for different Kink Energies

Maximum Kink Energy (Ek)
Input Ex3=075meV | Eo=15meV [ Exa=30meV |
0 0.9750 0.9998 1.0000
1 0.9843 0.9998 1.0000

Hereincreasein Ey refersto decreasein QCA cell size and grid spacing. Similar effect was
seen for different values of temperature.

As an example, refer to the output node polarization of a simple majority gate shown
in Table 6.2. As we have shown earlier, we first form a Bayesian network of the QCA
circuit and use a graphical simulator to obtain the polarization probability for each QCA
cell (represented as anode) in the design. We can see that the polarization probability at the
output of the Bayesian network rises with the increase in kink energy. Hence, we can infer
that designs with lower value of maximum kink energy are more prone to error and this
error is more significant when the number of cellsin a design increase or the temperature
israised. Table 6.3. shows the output node polarization probability of a QCA inverter. We
would liike to make a clarification on the term error used in this study. In chapter 5, we
used the term error to signify the first excited state of a QCA cell. Here error refersto the

drop in polarization probability at the output node of a QCA design.
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Table 6.4. Power dissipation in QCA majority gate for different Kink Energies

Maximum Kink Energy (Ek)
E3=30meV [ Ee=15meV [ Ex=075meV |
Max Egiss (in meV) 0.0294 0.0147 0.0051
Avg Egiss (in meV) 0.0120 0.0060 0.0018
Min Egiss (in meV) 0.0015 0.0008 0.0002
Avg Ejeqk (in meV) 0.0018 0.0009 0.0003
Avg Egy (in meV) 0.0102 0.0051 0.0015

Table 6.5. Power dissipationin QCA Inverter for different Kink Energies

Maximum Kink Energy (Ex)
Exs=30meV | Ep=15meV | Eq=0.75meV |
Max Egiss (in meV) 0.0785 0.0392 0.0196
Avg Egiss (in meV) 0.0425 0.0213 0.0106
Min Egiss (in meV) 0.0066 0.0033 0.0016
Avg Ejeak (in meV) 0.0066 0.0033 0.0016
Avg Egy (inmeV) 0.0359 0.0180 0.0090

6.2.2 Switching Power

We performed an exhaustive study on the effect of varying kink energy on the power
dissipated during a switching event in a QCA circuit. While we have presented the result
of power dissipated in aQCA circuit with varying clock energy in chapter 4, in this chapter
we intend to analyze the effect of the size of aQCA cell and the kink energy associated with
it on the power dissipated in the circuit. As can be seen from in Table 6.4., increasing the
value of kink energy inacircuit leadsto an increasein the overall average power dissipated
inthecircuit. Table 6.5. showsthe energy dissipationin a QCA inverter for different values
of kink energy.

Some very interesting observations were obtained from this study of effect of kink en-
ergy on the overall power dissipation and probability of error in QCA circuit design. We
have seen that while it is desirable to design circuits with lower error probabilities (by
increasing the kink energy between cells), it inadvertently increases the power dissipated

in the circuit. This effect is more pronounced in larger circuits such as single bit adders.
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Table 6.6. Output node polarization at SUM output node of Adder-1 and Adder-2 QCA
designs

0 | Exz = 1.09meV | Exo = 2.18meV | Ex1 = 4.36meV |
Input Adder-1 Adder-2 Adder-1 Adder-2 Adder-1 Adder-2
000 0.9110 0.8095 0.9998 0.9964 1.0000 1.0000
001 0.7311 0.8058 0.9935 0.9965 1.0000 1.0000
010 0.7440 0.6833 0.9944 0.9667 1.0000 0.9991
011 0.7090 0.6312 0.9931 0.9569 1.0000 0.9989
100 0.7090 0.6312 0.9931 0.9569 1.0000 0.9989
101 0.7440 0.6833 0.9944 0.9667 1.0000 0.9991
110 0.7311 0.8058 0.9935 0.9965 1.0000 1.0000
111 0.9110 0.8095 0.9998 0.9964 1.0000 1.0000

Table 6.7. Non-Adiabatic Energy dissipation in Adder-1 and Adder-2 QCA designs

[ | Ea=436meV | Ep=218meV | FEz=109mevV |

Adder-1 | Adder-2 || Adder-1 | Adder-2 || Adder-1 | Adder-2
Max Egiss (in meV) 3.0939 1.3556 1.5404 0.6778 0.8127 0.3389
Avg Egiss (in meV) 1.7398 0.7650 0.8665 0.3825 0.4556 0.1912
Min Egiss (in meV) 0.4083 0.1949 0.2038 0.0974 0.1041 0.0487
AvQ Ejeax (in meV) 0.4089 0.1956 0.2041 0.0978 0.1043 0.0489
Avg Egy (in meV) 1.3309 0.5693 0.6624 0.2847 0.3513 0.1423

Table 6.6. compares the results of output polarization at SUM node of two adders for dif-
ferent kink energies. Aswe can see that even though Adder-2 has a more efficient design
and uses less number of cells, the polarization at its output is worse than that of Adder-1
for different input vector sets. Similarly, Table 6.7. compares the energy dissipation in the
two adder designs. Power dissipation in Adder-2 is greater than that of Adder-1 since it
has significantly more number of cells. However, we do see that the energy dissipationin
a QCA circuit isalmost linearly proportational to the maximum kink energy of the circuit.

Aswe can see from the results the output node polarization error improves while power
dissipation deteriorateswhen the kink energy isincreased. Hence designers need to choose
the size of QCA cells based on circuit requirements to optimize power and error. Thisis
different from thermal studies performed on QCA circuits which resulted in increase in

output error and power dissipation at higher temperatures. From the results obtained for
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polarization and power dissipation in small and big QCA circuits, we have clearly seen that
kink energy is an important factor to design most optimum circuits at a given temperature
and clock energy. Hence designers need to make careful use of kink energy as parameter

for designing QCA circuits to optimize error and power.
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CHAPTER 7
CONCLUSION AND FUTURE WORKS

In this dissertation, we proposed an efficient Bayesian Network based probabilistic
schemefor QCA circuit design that can estimate cell polarizations, ground state probability,
and lowest-energy error state probability, without the need for computationally expensive
guantum-mechanical computations. Bayesian modeling captures the inherent causal nature
of QCA devices and offers afast approximation based method to estimate error, power and
reliability in QCA design.

Some of the limitations and scope of thiswork are listed below:

¢ In hierarchical macromodeling it is assumed that the designer has some idea the

layout level design of the same circuit

¢ Inthe power model we ave not taken into account the power dissipation in the clock

circuit itsalf.

e Inerror-power tradeoff study by variation of maximum kink energy we have assumed

that this model will accurately capture all the effects even at a smaller scale.

e Finaly, the scope of thiswork islimited to a 4-dot electronic QCA implementation.
Themodel will be different for other types of implementati ons such as molecular and

magnetic QCAS.
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For the purpose of this work we verified the ground truth using the coherence vector
based method in QCADesigner simulator. A summary of important contributions of this

dissertation is summarized below

e To the best of our knowledge, our non-adiabatic power dissipation modeling scheme
is the first work in a QCA design which provides a redlistic estimate of worst case
power dissipated during a switching event. This model can be used to quickly com-
pute the worst case power dissipated at each individual cell in a QCA layout for any
input vector transition. This enables usto locate cellsin alayout, early on in the de-
sign process, that are critical in terms of power dissipation and also identify the input
vector transitions that result in large power dissipations. We have also demonstrated

the effect of clock energy on overall power dissipated in a QCA design.

e To the best of our knowledge, the macromodel design scheme is the first work to
model QCA designs at a hierarchical circuit level. Our results demonstrated that
both the polarization and the error mode estimates at the circuit level match those
at the layout level. The developed models in this work can be used to selectively
identify weak components in a design early in the design process. It would then
be possible to reinforce those weak spots in the design using reliability enhancing

strategies.

e Study the effect of Kink energy on circuit design. We performed error-power tradeoff
studiesto by varying the kink energy of aQCA circuit. We found that the output node
polarization error as well as the power dissipation decrease when the kink energy is
increased. Thisisdifferent from thermal studieswhich resulted in increase in output

error and power dissipation at higher temperatures.
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One interesting future study using this model could be to see the effect of highly error-
prone cells on the thermal hotspotsin a QCA design. That isto seeif the highly error-prone
cells are the same cells that cause the maximum energy dissipation.

Another possible future direction of this work involves the extension of the BN model
to handle sequential logic. Thisis possible using an extension called the dynamic Bayesian
networks, which have been used to model switchingin CMOS sequential logic [141].

There is also a vast scope to conduct probabilistic modeling to estimate error, power
and other design related issues on other emerging nanotech devices such as magnetic and

molecular QCA, spintronics, nano-CMOS and photonic devices.
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