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Abstract 
Microbiome data are undergoing exponential growth powered by 
rapid technological advancement. As the scope and depth of 
microbiome research increases, cross-disciplinary research is urgently 
needed for interpreting and harnessing the unprecedented data 
output. However, conventional research settings pose challenges to 
much-needed interdisciplinary research efforts due to barriers in 
scientific terminologies, methodology and research-culture. To breach 
these barriers, our University of South Florida OneHealth Codeathon 
was designed to be an interactive, hands-on event that solves real-
world data problems. The format brought together students, 
postdocs, faculty, researchers, and clinicians in a uniquely cross-
disciplinary, team-focused setting. Teams were formed to encourage 
equitable distribution of diverse domain-experts and proficient 
programmers, with beginners to experts on each team. To unify the 
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intellectual framework, we set the focus on the topics of microbiome 
interactions at different scales from clinical to environmental sciences, 
leveraging local expertise in the fields of genetics, genomics, clinical 
data, and social and geospatial sciences. As a result, teams developed 
working methods and pipelines to face major challenges in current 
microbiome research, including data integration, experimental power 
calculations, geospatial mapping, and machine-learning classifiers. 
This broad, transdisciplinary and efficient workflow will be an example 
for future workshops to deliver useful data-science products.

Keywords 
hackathon, codeathon, data science, transdisciplinary, gut 
microbiome, oral microbiome, human migration microbiome, Clinical 
Informatics, Bioinformatics, Operational Taxonomic Unit (OTU), 16S 
rRNA, machine learning, Geographic Information Systems (GIS)
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Introduction
OneHealth Codeathon: Genesis of a working model for 
applied, interdisciplinary problem-solving
The National Institutes of Health National Center for Biotechnol-
ogy Information (NIH NCBI) model for codeathons—intensely 
collaborative, time-limited data workshops which encourage 
teams of participants to produce software prototypes to solve 
problems related to a common biomedical topic—are an effec-
tive avenue for the generation of software prototypes in the bio-
medical informatics space. Our previous “Iron Hack” event1,  
centered on rare iron-related diseases, was a transdisciplinary 
twist on this NCBI model designed to complement and unite 
local University of South Florida (USF) research programs, 
inspiring participation from clinicians, genetic counsellors, and 
researchers from a diversity of biomedical fields at all different  
career-stages.

We set out to further expand on the more traditional founda-
tion of codeathons for this year’s event, working with the local 
research-community to select challenges that would encour-
age and more heavily utilize skillsets less-traditionally drawn to 
codeathons (e.g. social science researchers), while also support-
ing emerging USF research initiatives and addressing wider chal-
lenges in biomedical data science. This year’s event (dubbed the  
USF OneHealth Codeathon) therefore focused on the fast-evolving  
field of host-microbiome interactions, with concepts for our 
team-projects designed around data-centric problems encoun-
tered by our interdisciplinary participants in their research and 
practice. The event took place on USF’s Tampa campus over  
February 26–28, 2020.

As a result of these intense collaborative efforts, teams devel-
oped resources that are relevant not only to microbiome studies, 
but also general bioinformatics problems. The objective of this 
report is to demonstrate the utility of a codeathon model to rap-
idly develop tools for human and environmental health research, 
with the added community-building benefits of (1) providing 
opportunities for meaningful, long-term, cross-departmental inter-
actions that stimulate collaborations and creative project design, 
and (2) offering in-depth exposure to applied data-science for  
members of traditionally less-computational fields.

Critical gaps OneHealth Codeathon projects sought to 
address
We addressed challenges related to the host microbiome, includ-
ing the great need for novel genomics tools to handle large, 
recently generated heterogenous microbiome datasets. We 
established six OneHealth Codeathon teams to develop six 
computational-tool prototypes broadly focused on (1) power 
calculation for microbiome study design, (2) geographical infor-
mation systems-analysis of microbiome data and associated 
risk factors, (3) mining archaeological microbiome data, and 
(4) searching for ecological drivers of earth microbiomes 
(Figure 1). These team-efforts have led to the convergence of 
social science, ecology and medical communities with genom-
ics data-science researchers to produce promising computational 
tools, strengthened through an iterative process of soliciting 
ideas and feedback from domain experts.

The remainder of this report is organized into subsections by 
project, beginning with a detailed description for the six projects, 
the motivations behind them, and the gaps they seek to fill. We 
next describe the methodologies and implementations of the 
projects into usable software applications, how to operate the 
software applications, and results produced using the software 
applications. Finally, we discuss the pros and cons of this new 
highly interdisciplinary and community-driven twist on more  
traditional hackathons.

Team 1 – MicroPower Plus
Project title: Microbiome power-calculation tool for biologists: 
towards rigorous, reproducible microbiome study-design

Rationale: Measured differences between sample groups can 
result from any number of experimental artifacts not reflec-
tive of actual biology, including differing definitions of what a 
clinical population signifies within different studies, how sam-
ples are prepared, and analytical decisions (e.g., bioinformatic 
and statistical tool-selection, parameter-settings2–4). Statisti-
cal power calculations are a key part of quality study-design,  
informing the sample-size required to have sufficient statistical 
power to detect differences between experimental groups. The 
size of this difference between groups—the effect size—should 
also be taken into account during experimental planning; smaller 
effects are more sensitive to being obscured by experimental 
noise. Sufficiently powered studies are critical for robust bio-
logical conclusions, and funding agencies increasingly require 
power and sample-size analyses to consider applications for  
support. 

R-based software packages enabling power analyses modeling 
relationships between sample-size and detectable effect-size 
using PERMANOVA-based methods have been developed to 
estimate required samples for microbiome experimental design5, 
given input data from pilot studies. These handy tools are not 
generally accessible to biologists with limited computational 
experience and/or a more cursory grasp of statistics. We sought 
to build on these methods to create a more intuitive calculator/
guide for biologists, who often need only a quick point-and-click  
reference for experimental planning.

Goal: To provide an intuitive power- and effect-size calculator-tool 
for biologists with limited computational experience.

Methods
Data-sources and processing
Predicted effect sizes detectable at a range of sample sizes and 
power-levels were precomputed on OTU tables from a vari-
ety of human body-site datasets from the Human Microbiome 
Project (HMP) using the R package micropower (v0.4) (Jaccard 
distance method)5,6. We used these precomputed data as a refer-
ence for quick and interactive power calculations for commonly  
used sample sizes by body-site.

We added additional functionality for calculating the effect size 
of the experimental intervention given a control group vs. an 
experimental group using linear modeling. Our tool computes the  
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Bray-Curtis distance between all samples, then uses the Adonis 
function from the vegan package (v2.5.6) to calculate the  
correlation parameter Pearson’s R7.

A conceptual overview of MicroPower Plus functionality is  
provided in Figure 2.

Operation and Implementation
The MicroPower Plus8 workflow is implemented in a user-friendly 
R-Shiny web application. RStudio and the R packages shiny, 
plotly and tidyverse are required to operate MicroPower Plus9–12.  
Further documentation and a tutorial are available at the  
GitHub repository as listed in the code-availability section.

After installation of required packages, all necessary tutorial 
files can be downloaded from GitHub onto the user’s local com-
puter, and MicroPowerPlus can be launched by opening the  
“app.R” file in RStudio.

Use cases
MicroPower Plus8 is most useful as a statistical reference-
guide for biologists to make quick calculations to aid in experi-
mental design of microbiome studies. We built a user-interface 
around the human gut microbiome reference dataset that allows 
the user to visualize the relationship between sample size, effect 

size and statistical power as a proof of concept using R Shiny10.  
Resulting effect size is reported as a bar graph, with reference 
to effect sizes reported in the literature for comparisons. We cre-
ated an additional tool that allows the user to input their own 
data, calculate the effect size from their experiment and report it 
as a bar graph. Future iterations of this tool will include interac-
tive visualizations for the pre-computed reference data from other  
body-sites.

The provided tutorial walks the user through an example power 
calculation (Figure 3) and effect size calculation (Figure 4) using  
the pre-computed human gut microbiome datasets.

Team 2 – GEO
Project title: Environmental Chemicals: Impact on Human  
Microbiomes

Rationale: Environmental exposures to chemicals have been a 
public health concern due to the ubiquitous nature of its effects 
on human health and the environment. Industries and manu-
facturing sectors contribute to chemical exposures by releas-
ing these chemicals into the environment. Chemicals commonly 
found in commercial products, such as heavy metals and chlo-
rinated hydrocarbon solvents, can persist in the environment  
for extended periods, increasing the latency of exposure13.

Figure 1. Scope of human holobiont interactions with microbiomes in various contexts explored through USF’s OneHealth 
Codeathon. Two teams (Teams MicroPower Plus and Zero) focused on developing practical computational tools for microbiome study-
design and data-analysis. Four teams (Teams Geo, Animal, Track and Yolo) focused on exploring different aspects of host-microbiome 
interactions from environmental consequences to clinical presentations.
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Figure 2. MicroPower Plus functionality conceptual overview. Input-data are OTU or ASV tables selected from curated, published 
microbiome studies of various human body-sites from which effect size has been pre-calculated for several common sample-sizes using 
complementary methodologies. The user can then use the interactive, graphical output to explore the relationships between effect-size, 
sample size and statistical power to use as a quick reference for their own experimental planning.

Figure 3. MicroPower Plus power-calculation interface. The user selects the sample type, the sample size for each group and a 
distance measure. When the user moves the power slider, the estimated effect-size graph (red) changes to the minimum effect size required 
to attain the given power level. The gray bars reference effect sizes calculated from the indicated sources. By comparing the estimated 
effect size to the reference effect sizes, the user can get a sense of how large a difference would have to be between their samples to detect 
significance using different experimental designs.

A lack of information led to relatively few rules for handling 
and disposing of chemicals in the first part of the 20th century, 
which resulted in the random release of these hazardous chemi-
cals and toxins into the environment. Knowledge of toxic waste 
dumps and their associated human health and environmen-
tal health consequences received national attention in the late  
1970’s14. In response to public outcry, Congress created “Super-
fund” in the 1980’s to fund toxic waste clean-up at industrial 

sites14,15. Superfund sites require long-term remediation efforts,  
and sites are evaluated for eligibility on a point-based system 
requiring a preliminary assessment and site-inspection (known as 
the Hazard Ranking System, or HRS)16. Reporting from the public 
or an agency is also considered in assessing a site for the quali-
fication. Superfund sites are prioritized by HRS score onto the 
National Priority List (NPL)16. Currently there are 1335 NPL sites  
around the U.S., each having specific chemical contaminations.
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Human exposure to toxic chemicals has been shown to elicit 
different effects depending on the host’s immune response, 
with long-term exposures associating with a range of serious 
maladies varying from cancers acting on various bodily tis-
sues to neurological effects17. The gut microbiome is hypoth-
esized to have a unique role in enhancing and maintaining host  
health through the microbiome-gut-brain axis and can impact 
endocrine, immunological and nutrient signals18. Microbiome dys-
biosis can occur with exposure to toxic environmental contami-
nants via ingestion or inhalation and can lead to several chronic 
conditions. Due to its diverse functions in the body, the gut 
microbiome acts as an indicator for health, and there is a grow-
ing body of literature exploring the interactions of environmental  
contaminants with the host microbiome13,17,18.

Environmental contaminants present in Superfund sites around 
the U.S. can significantly affect the health of the population 
in the surrounding areas. To illustrate this effect, we created a 
tool for visualizing the impact of environmental toxicants on  
the gut microbiome.

Goals: 1) To illustrate the trends of environmental chemi-
cal exposures from U.S. Superfund sites over time. 2) to create 

a tool for visualizing the impact of exposure to environmental  
chemicals on the gut microbiome around the U.S.

Methods
Implementation and Operation
Data-sources and processing: We processed and combined 
datasets from the American Gut Project (AGP), census data, and 
EPA Superfund data to search for informative patterns using the 
R package phyloseq 1.30.019. We identified most abundant taxa 
by Superfund site/geographic location. We then performed basic 
association analyses to assess relationships between abundant/
rare taxa, various Superfund sites and contaminants. Archived  
code are available, see Software availability20.

1) American Gut Project data: The American Gut Project (AGP) 
is a large-scale, crowdsourced project (n =29778) of micro-
bial sequence data with the aim of characterizing the human 
gut microbiome including associated mitigating factors rang-
ing from diet, lifestyle, overall health, and the broader environ-
ment. The metadata file obtained from AGP sample information  
(file 04-meta). was reduced to responses from participants within 
the United States only. Important variables that have been previ-
ously found to be associated with differential phenotypes mediated  

Figure 4. MicroPower Plus effect-size calculation (concept). The user uploads a matrix of their microbiome measurements, enters the 
names of the groups that can be used to distinguish the sample columns by group. MicroPower Plus then calculates the effect size for the 
experiment (red bar). The gray bars are effect sizes calculated from the indicated literature. Comparing the red bar to the gray bars allows 
the user to get a sense of the magnitude of their experimental effect.
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by air pollution in microbial communities in published stud-
ies were also selected and included in subsequent testing  
for associations with Superfund-site proximity.

2) Superfund data: Superfund sites and associated contamination 
data for current NPL sites were retrieved from EPA data using 
the R superfundr 0.0.0.9000 package. The data were prepared 
and transformed using Statistical Analysis Software (SAS v 9.4, 
Cary, NC). We focused on 10 priority chemicals listed by the  
EPA.

3) Census data: Select data from the American Community Sur-
vey (ACS) were downloaded from the U.S. Census Bureau: 
American FactFinder website via the download center (U.S. 
Census Bureau, 2020). This population-based data source pro-
vides descriptive socio-demographic data (e.g., sex, race, ethnic-
ity, economic indicators, etc.) by zip code across the nation. Once 
all datasets were downloaded for each variable, all variables were 
then merged by a linking variable (i.e., zip code) that each data-
set had in common. After data-cleaning, percentages were cal-
culated for each variable. All data-cleaning was conducted using  
Statistical Analysis Software (SAS v 9.4).

Loading and filtering OTU tables was memory-intensive, as 
the initial dataset is very large. Initial attempts for loading the 
OTU table with a 16 GB laptop were insufficient. To solve the 
problem, we performed this filtering on a high-performance  
computation cluster with 180 GB of memory.

Merging data across disparate datasets: Several distinct datasets 
across the AGP, Superfund, and ACS provided unique informa-
tion connected only by geographic location and could be merged 
by an appropriate linking variable (e.g., zip code). Data from all 
three sources were combined for a total of ~1000 samples. We 
further reduced the dataset to only samples that were directly 
related to the gut for downstream prediction using machine  
learning approaches.

ArcMap version 10.7 (2020) was used to create choropleth 
maps from the combined ACS and Superfund datasets to evalu-
ate the association of chemicals found at EPA Superfund sites 
with select population-based socio-demographic data by zip code 
overtime. An open source software can be used for the same 
work is QGIS Geographic Information System, at Open Source  
Geospatial Foundation Project (http://qgis.org).

Machine learning analysis on data collected from individu-
als near Superfund sites: We selected individuals that were 
self-identified to be within 5 km of Superfund sites from the final 
combined dataset. We next performed a classification analysis 
using random forests implemented via the R package ranger21. 
For each contaminant, we classified each individual as exposed 
or unexposed based on their proximity to a Superfund site with 
that contaminant. We then performed 10-fold cross-fold valida-
tion and reported the accuracy of the most and least informative  
contaminants in regard to the microbiome.

Results
Geographic distribution of select Superfund-site contaminants 
and abundance of Bacteriodetes OTUs are shown in Figure 5. We  
next explored a potential relationship between abundance of this 
bacterial phylum and individual contaminants, and further pos-
sible predictive efficacy of contaminants for certain OTUs, using 
proof-of-concept modeling. We restricted samples to those within 
5 km of a Superfund site for these analyses. We constructed a 
random forest using each contaminant as a binary predictor-
variable. We found a strong relationship between several con-
taminants and microbial composition. The two most predictive 
contaminants were polycyclic aromatic hydrocarbons and poly-
chlorinated biphenyls (PAH, 94% and PCB, 81%, respectively). The  
contaminant with the lowest accuracy was lead (60%).

It is worth noting that PAH are known to bio-amplify as they 
go through food-webs. Other health outcomes linked to PAH 
exposure are various forms of cancer, as well as developmen-
tal impacts. PCB have been banned in the manufacturing process 
since 1979, yet they do not readily break down and remain a haz-
ard over long periods of time. Because of these properties, they 
are commonly listed as Superfund contaminants of high concern. 
In conclusion, we found that for several contaminants the micro-
bial composition varied significantly among individuals living 
near Superfund sites with high or low levels of PAH and PCB,  
respectively.

Team 3 - ZERO
Project title: Creating a web app to study human gut microbiome 
variation across geographic regions of the world

Project Rationales, Descriptions and Goals

Rationale: The human gut microbiome is one of the most 
densely populated sites by bacteria in the human body. It per-
forms numerous functions, and its dysbiosis has been associated 
with several diseases. A major goal of microbiome research-
ers has been to understand the diversity of the gut microbiome 
across human populations. Although several studies have been 
undertaken for this purpose, these studies are limited in scope  
and comparative ability. Therefore, the rationale of the present 
work was to create a web tool which will be equipped with ref-
erence databases, populations and necessary scripts for the users 
to upload, analyze and visualize their own microbiome data at 
the server, with additional options to compare with the refer-
ence populations. Results can subsequently be downloaded by 
the user. Finally, all the reference population data is to be made 
available for download, along with necessary scripts to enable 
the user to run the program on their local computers, without 
the need to upload their raw data. Such a tool will be extremely 
useful to any interdisciplinary researchers who may have  
microbiome-related research questions but are not experi-
enced in writing code, handling large microbiome datasets or 
who do not have access to advanced computational facilities. 
The codes, instructions and guidelines are available through a 
GitHub repository. The flowchart summarizing the approach is  
provided in Figure 6.
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Figure 5. Contaminant associations with the most dominant bacterial phylum. Geographic distribution of select Superfund-site 
contaminants (circles color-coded by contaminant) and abundance of Bacteriodetes OTUs (underlying heatmap) from samples collected 
within 5km of a Superfund site. We found a strong relationship between several contaminants and microbial composition.

Figure 6. Proposed Team Zero web-app workflow. Users will be able to upload fastq files for analyses and choose reference-datasets 
for comparison. The in-built pipeline will then generate the Amplicon Sequence Variants (ASVs) from which the most informative for 
differentiating populations will be chosen using a Gaussian-Mixture EM algorithm followed by unsupervised K-means clustering. Heatmaps 
and PCA-plots describing the data will be generated and made available for download. 
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Goals: 1) To download raw microbiome data (V4 region of 16S 
rRNA gene) from various world populations and generate ampli-
con sequence variant (ASV) table for comparison purposes.  
2) Construct simple, but informative plots such as heatmaps 
and principle component analysis (PCA) plots to visualize rela-
tionships/patterns in the data through the proposed web app.  
3) Provide all raw sequencing data, bash scripts and R scripts 
to run all steps of the analyses, as well as appropriate docu-
mentation and guidelines for an easy and error-free run of the  
pipeline on the user’s local computer.

Methods
Data sources and processing
We first mined microbiome data from various world populations 
by geographical region. We narrowed our focus to studies on 
the human gut microbiome involving the V4 region of the 16S 
rRNA gene. A total of 1428 samples spanning populations from 
China, the Indian subcontinent (Himalayan region), Brazil and 
Europe meeting these criteria were incorporated. Raw data were 
downloaded from the European Nucleotide Archive (Accessions: 
China, PRJNA396815; Indian subcontinent, PRJEB29137; Europe,  
PRJNA497734; Brazil, PRJEB19103) (Table 1).

Despite this initial filtration step, analysis-time was still esti-
mated to be too high to move forward under Codeathon time-
restrictions. Thus, in a second step to reduce data volume, 5000 
sequences were subsampled using Seqtk 1.3-r115-dirty22 from 
each of the forward and reverse fastq files for each of the sam-
ples. All the downstream analyses were based on the subsampled 
reads. The fastq files were analyzed using the standard DADA2 
1.14.1 pipeline23 to generate the distribution of ASVs observed 
in this dataset. The corresponding classification of each ASV was 
obtained using the Silva database (v132)24. The bacterial count  
table was further utilized for downstream analysis.

The resulting ASV table contained 1,428 samples with 2,655 
bacterial taxa. Considering the very sparse data in the ASV table 
(only 1.231% of ASV elements exhibit reads numbers > 0), we 
used a Gaussian-mixture model to remove the bacteria with 
lower reads-coverage. A total of 1,783 taxa were removed and 
the remaining ASV table was normalized for each sample by 
the proportion of reads in each taxon using orders-of-magnitude  
multipliers (1-e8). The distribution of standard deviation in 
reads-number was calculated, and taxa at the tail-ends of the  

distribution were eliminated, leaving 237 taxa. Similarly, indi-
vidual samples at the extreme low-end of the reads-number 
distribution (365 samples) were also removed using the  
Gaussian-mixture model. Unfortunately, all Chinese-population 
samples were eliminated during this step, and all downstream 
analyses were performed only on the populations from Europe,  
Brazil and the Indian subcontinent.

Modeling relationships between population and 
bacterial taxa
We used the resulting filtered dataset to perform K-means clus-
tering to determine the optimal number of categories, finding 
k=18 to be most informative for the data. The Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC)  
were utilized to measure model robustness.

Operation and implementation
We incorporated a set of unsupervised machine learning back-end 
computational methods to investigate the datasets for encoded 
geographical information. We used python v3.6.9 along with 
the django web framework and conda 4.7.12 to build our work-
flow. The machine learning components of the workflow to 
identify ASVs distinguishing populations by geography are per-
formed using TensorFlow225. Data preprocessing and data visu-
alization are mediated through R scripts (see Implementation and  
Software Availability).

Herein we implemented a web-based application26 for the dep-
osition and rapid analysis of microbiome data. Importantly, 
users are able to (1) download a prepared database along with 
the server source code, or (2) construct their own database for 
analysis. The web-based application source code, the preproc-
essing and data visualization scripts, and instructions for their 
usage are available online as listed in the Software availability  
section.

Results
The unsupervised classification algorithm indicates 
strong bacterial association with geographic 
populations
Our k-means parameter-exploration indicated 18 classes within  
the sample ASV data. The result indicates at least one or two bac-
terial groups are enriched for each class (Figure 7A). Classifica-
tion further indicated differences in community composition by 
geographical location (Figure 7B). We performed a PCA to further 
characterize the relationship between sample categories detected 
via clustering. We found that the samples from classes 1, 6, 9 
and 14 form clearly distinct clusters from each other (Figure 7C),  
further indicative of underlying geographic patterns. We identi-
fied important bacterial taxa contributing to sample classifica-
tion (Figure 8) and plotted relative contribution of each ASV 
(classified up to genus-level) driving ordination (Figure 9). Dif-
ferential relative abundance of these ASVs across all geographic 
populations indicated distinct geographical patterns, with several 
ASVs strongly associating with Indian, Brazilian, or European 
(to a lesser extent) populations (Figure 9). The classification of  
the ASVs corresponding to Figure 9 are provided in Table 2.

Table 1. Team Zero web-app data-sources by 
population.

Population ENA study 
accession No.

No. of 
samples

China PRJNA396815 200

Indian subcontinent PRJEB29137 77

Europe PRJNA497734 1000

Brazil PRJEB19103 150
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Figure 7. Samples cluster distinctly by OTU composition and geographic population. The color scales indicate the 18 categories 
used for the classification and normalized reads-number for the studied samples. (A) The heatmap indicates enrichment for at least one 
or two bacterial OTUs in each cluster. (B) Enrichment of K-means category by geographic location. The 18 classes showed maximum 
differential abundance across the three studied populations. (C) The PCA plot shows the sample affinities for the classes 1, 6, 9 and 14 which 
showed the greatest geographical pattern.

Figure 8. Bacteria driving sample classification.  The X-axis shows the major ASVs, and their relative contribution to the PCA  
(Figure 7B) is shown on the Y-axis.

Conclusions 
Our work was aimed at creating a web app to study the geo-
graphical patterns of the human microbiome and selecting fea-
tures which could be useful to distinguish the populations. Using  

publicly available resources, we were able to include different  
geographical populations and select features to identify differences 
across groups. The resources for our study are deposited in our  
GitHub repository (see Software availability). Limitations of 

Page 11 of 26

F1000Research 2020, 9:1478 Last updated: 15 FEB 2021



this study include that factors such as age, gender and other par-
ticipant phenotypes which could be contributing to geographical 
patterns were not included in these analyses. However, we were 
able to create a web-app prototype for identifying features from 
the composition of the human gut microbiome related to geo-
graphical population. In the future, this work can be extended to 
include other variable regions of the 16S rRNA gene, as well as 

including other body sites such as the oral cavity, skin, etc. Simi-
larly, batch-effect correction-tools need to be incorporated for  
unbiased comparison across different studies.

Team 4 - YOLO
Project title: A web-based machine learning pipeline for  
disease prediction using microbial data

Figure 9. The top 13 bacterial taxa driving sample-classification have strong population associations. The color of the boxplot 
indicates geographic affiliations. The X-axis indicates the top 13 ASVs and the Y-axis shows the corresponding number of normalized 
reads.

Table 2. Classification of ASVs displaying highest geographical patterns as shown in Figure 9. Classification 
only up to genus level were obtained since the studied region was limited to V4 of the 16S rRNA gene. When two 
ASVs were affiliated with the same genus, they were distinguished by adding a serial number as suffix. For example, 
Bacteroides_1 and Bacteroides_2 belong to the same genus.

ASV Phylum Class Order Family Genus

ASV_1 Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium

ASV_2 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides_1

ASV_3 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides_2

ASV_4 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium_1

ASV_5 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium_2

ASV_6 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia/Shigella

ASV_7 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

ASV_8 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9

ASV_9 Firmicutes Clostridia Clostridiales Lachnospiraceae NA

ASV_15 Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter

ASV_17 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides_3

ASV_26 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_10

ASV_45 Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinivibrio
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Project Rationales, Descriptions and Goals

Rationale: High-throughput sequencing technologies have 
resulted in the generation of an increasing amount of micro-
bial data, such as microbiome data. Using these data, machine 
learning methods are powerful in identifying functionally active 
microbes and predicting disease status. Even though machine 
learning algorithms are popular approaches to investigate micro-
biome, to adopt these methods effectively usually requires 
specialized training. In addition, model selection and hyper- 
parameter tuning can be time-consuming even for experienced 
practitioners. Thus, our project focused on the efficiency of 
AI in solving big-data problems and facilitating humans to per-
form other cognition-demanding tasks by developing a GUI-based 
pipeline for training machine learning algorithms on taxonomic 
microbiome data. Our pipeline expands access of computational 
tools to researchers in non-computational disciplines to improve 
cross-disciplinary study. As a proof of concept, we successfully 
utilized our pipeline to train a predictive algorithm for obes-
ity rates based upon orthogonal taxonomic units which may be 
applied toward generating health-related features from clini-
cal, historical, or forensic samples. Our code utilizes three 
methods: K-nearest neighbors (KNN), support vector machine 
(SVM), and adaptive boosting (AdaBoost) to achieve respec-
tive accuracies near eighty-four, ninety-one, and eighty-six per-
cent. Both KNN and SVM utilized a 10-fold cross-validations to 
prevent overtraining. Under this method, training was achieved 
near instantaneously on a 16 GB MacBook to demonstrate 
feasibility. Outputs are processed into interactive graphical visu-
alizations to improve ease-of-use. Although previous projects 
have utilized these computational techniques toward process-
ing microbiome data, our pipeline removes barriers to use for 
researchers without coding backgrounds while streamlining 
efficiency for all users.

Studies have revealed significant diversity in the gut microbi-
ome composition related to various phenotypes. Obesity has 
been associated with changes in the microbiota at phylum-
level, reduction in bacterial diversity, and different representa-
tions of bacterial genes. For example, studies of lean and obese 
mice suggest a strong relationship between gut microbiome and  
obesity. Phylogenetic marker genes uncovered by 16S rRNA gene 
amplicon sequencing have revolutionized the field of microbial 
ecology. This PCR-based method has the advantage of identify-
ing difficult to culture bacterial organisms. Various bioinformatic 
pipelines can then group these sequences into clusters called 
OTUs. OTUs are based on their sequence similarity to each 
other rather than a reference taxonomic dataset which may be  
biased towards existing taxonomic classification27.

Goals: We were interested in finding out if there is an asso-
ciation between gut microbiome OTUs and obesity. Addi-
tionally, we wanted to be able to use this data to distinguish  
between lean, overweight, and obese phenotypes in humans. 
We were able to successfully develop a machine-learning based 
pipeline that shows the association between gut microbiome 
OTUs and obesity with high accuracy. Furthermore, this pipe-
line can predict whether sample OTU data comes from a lean, 

overweight, or obese human phenotypes. Our work is significant 
because a heavy coding background is not required for use of  
high-accuracy machine learning tools.

Methods
Data preprocessing
To develop our pipeline28, sample microbiome data was retrieved 
from 29. First, we cleaned the data by removing duplicate 
entries which leaves us with 151 samples. Second, to deal with 
the sparsity of OTU count data, we added a random small posi-
tive number to all 0 entries. Third, data was normalized using 
the centered log-ratio (CLR) transformation30. Then, the dimen-
sionality reduction was performed. We chose to use the Max-min  
Markov Blanket method to recursively select a small subset 
of features that are important to the outcome of interest (Obes-
ity or lean in this case). A total of 10 highly informative OTUs 
were selected during this process and various machine learning 
methods were explored based on a recent review article31.

Data transformations and machine learning methods
Principal component analysis (PCA) is an unsupervised dimen-
sionality reduction technique that finds relationships in the 
dataset, then transforms and reduces them into principal com-
ponents (i.e. uncorrelated features that embody the informa-
tion contained within the dataset) that do not have redundant  
information.

Random forest describes a supervised machine learning strat-
egy that splits samples into successively smaller groups based 
on specific features and associated threshold values. This  
method is in the planning phase for future versions.

SVM is a method of supervised machine learning that is useful 
for classification, regression, and detection of outliers. SVMs are 
effective in higher dimensions where the dimensions are greater 
than the numbers of samples. Linear Support Vector Machine 
(SVM) classifier was used to project samples into a higher dimen-
sional space so that they are linearly separable. Linear SVM  
was performed using 10-fold cross-validation with 3 repeats.

KNN is a machine learning algorithm that can be used for clas-
sification and regression. In our pipeline, KNN classifier was 
used for the classification of disease-status, with classification  
determined by majority-vote of close-by data points (n = K).

AdaBoost is a machine learning meta-algorithm that can be 
used to improve performance of other machine learning algo-
rithms. AdaBoost classifier was used to train multiple tree clas-
sifiers (where each tree has a subset of available features) to 
iteratively add more weight to those misclassified samples in the 
next training loop. GitHub readme and description are available  
in the software accessibility section.

Operation and implementation
We implemented various machine learning models, namely k 
Nearest Neighbor, AdaBoost, and Support Vector Machines, 
to predict disease from the microbiome pre-processed data. It 
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includes three main steps. 1) Users can prepare the biome OTU 
table to perform downstream analysis, such as PCA and machine 
learning. 2) In the next step, the processed data can be used to 
perform PCA for exploratory analysis. 3) The data is fed into 
machine learning models to select the highly predictive features  
and for the final prediction of disease-status.

Feature selection and machine learning were implemented 
using MXM 1.4.532 and caret 6.0-85 R packages33, respectively, 
in R version 3.6. To make it easy for others to use this imple-
mentation, we designed a shiny application with an intuitive 
graphical user interface (GUI). Users can plot, visualize, and  
download their results generated through the app.

Results
We show that machine learning can be used to differentiate dis-
ease from the normal states using OTU information. We used 
pre-processed data from a twin study with 281 samples and 
5462 OTUs29. For exploratory analysis we performed PCA  
(Figure 10 and Figure 11; analyses and plots generated using our 
Shiny app) as shown in Figure 10 and Figure 11. This analysis 
and plots are generated using the Shiny app. We performed fea-
ture selection to select the highly significant features, shown in 
Table 3. Abundance of significant OTUs is shown in Figure 12. 
By using a set of predefined hyperparameters for each model, we 
achieved 10-fold cross validated accuracy of 0.936 using a linear 
support vector machine (Figure 13). Additionally, 10 OTUs we 
identified as important to obesity-status are provided in Table 3.  
While we do not have assigned significant functional annota-
tions for them in the current development, future studies could 
use them as candidate functional groups to aid experimen-
tal design for validating clinical and public health microbiome  
findings.

Team 5 - TRACK
Project title: Tracking ancient global epidemics

Project Rationales, Descriptions and Goals

Rationale: As the collection of human microbiome data grows, 
developing user-friendly tools to search proteomics databases 
has become critical. Bridging the gap between computer sci-
ence and biological science expertise will facilitate microbiome 
analysis for both explanatory and predictive purposes, mak-
ing significant additions to general knowledge in this field. Such 
effective and convenient methods of sifting through vast datasets  
would be well-suited to the investigation of not only modern-
day microbiome samples, but also preserved historical micro-
bial and proteomic data retrieved from ancient populations at 
archaeological sites worldwide. Proteomic determination of the 
microbes of deceased individuals would provide another dimen-
sion to forensic analysis by uncovering the pathogens that might 
have been responsible for their death. The significance of this 
determination goes beyond simply detecting the presence of  
bacterial peptides, also extending to tracking the migration  
and virulence of diseases over time in human populations.

Exploring ancient or paleolithic host-microbiome interac-
tions is an emerging approach to explore widespread microbial  
infectious diseases, and even pandemics, by identifying patho-
gen-expressed proteins in human dental calculus. This approach 
is supplemented by data from metabolomic analyses, anthropo-
logical and paleopathological data from the skeletal material, 
archaeological contexts, and archival data. Examining protein 
content of dental calculus has typically given insight into diet and  
oral health of communities of past generations34–36.

Figure 10. A principal component analysis of microbiome data from over 5400 OTUs involving 281 individuals by disease-class. 
PCA plot tries to identify linear combinations of different OTUs (features) corresponding to microbiome composition discriminating by 
disease class. PC1 and PC2 explain only a small amount of the variance in OTUs observed across different disease classes.
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Since dental calculus is formed as a result of bacterial plaque 
accumulation around the gingiva, dental calculus consists pri-
marily of bacteria. Thus, dental calculus lends itself well to oral 
microbiome analysis. For example, it was found in a medieval 
sample that 85–95% of the calculus was composed of bacterial 
proteins36. This indicates a novel method of examining the con-
stituents of the oral microbiome and its variation across cultures,  
geographies, and various historical periods.

The availability of a unique set of data from the first quaran-
tine in the world will enable substantial focus on infectious dis-
eases and the modeling of ancient epidemics (Figure 14). All 
of the approximately 1500 individuals for this project died of 

an infectious disease, we know this from archival records. The 
addition of body responses to the environment and diseases  
(metabolites), as well as dietary data (stable isotopes to detect 
malnutrition), will be trialed, providing the best chance to rec-
ognize the pathogen responsible and its overall effects. In genet-
ics and medicine, the combination of code, workflow, logic and 
available data will provide over 300 years of data on epidem-
ics (especially bubonic plague) including the first influenza pan-
demic, dated 1580, and outbreaks of typhus and measles. It will 
be possible to reach ca. 600 years of data at one location using 
historical and medical records. The plague and other similar ill-
nesses provoking fever are replaced by smallpox, measles and flu 
in later times, as medicine provides therapies, mobility increases 

Figure 11. PCA plot explaining variation for ancestry between African Americans (AA) and Europeans (EA). The same number 
of OTUs and individuals are used as in Figure 10 for different classes. This PCA plot shows more separation in the OTU clusters based on 
ancestry than by different disease classes (shown in Figure 10).

Table 3. Informative OTUs identified by the feature selection process. These 10 OTUs are all bacteria which 
come from 2 distinct phyla. Most of the OTUs identified are at genus-level.

Phylum Class Order Family Genus Species

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Eubacterium Biforme 

Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium Prausnitzii 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia NA

Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium NA

Firmicutes Clostridia Clostridiales NA NA NA

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae NA NA

Firmicutes Clostridia Clostridiales Veillonellaceae Megasphaera NA

Firmicutes Clostridia Clostridiales Lachnospiraceae NA NA

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Copri 

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae NA NA
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Figure 12. Abundance of significant OTUs selected by machine learning These OTUs are highly predictive for the classification of 
disease vs. normal class.

Figure 13. Cross-validation using the support vector regression approach. The model showed the best cross-validation score with 
cost=5 (accuracy = 0.936). 

and diet changes with many plants cultivated in different conti-
nents from where they originated. Our TRACK prototypes will 
enable investigations related to pathogen evolution, microbiome  
adaptations and human immunity responses changes.

Goals: To achieve the transdisciplinary goals inherent to the 
nature of this paleo-omics project, a central database able to con-
tain different data types is required. Towards this objective, we 
created and implemented a paleo-omics workflow consisting  
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of: 1) a search engine to query the multi-data database, 2) a 
retrieving pipeline for paleo proteins, and 3) a query gateway for  
microbiome-human host interactions (Figure 15).

While mass spectrometry (MS), shotgun sequencing, and 16S 
rRNA sequencing data can be employed in paleo-omics, we 
focused on an MS-based meta-proteomics approach for proof-
of-concept demonstration of our prototype within the time con-
straints of the Codeathon, which we applied to data derived from 
human dental calculus protein-samples taken from archeological  
sites.

Methods
Data sources and processing
MS data and shotgun sequencing data obtained from ancient  
human dental calculus samples were used for these analyses36,37.

(1) MS data: peptides were identified from raw data files by com-
paring spectra from the second spectrometer of a tandem-MS 
(MS2) to reference spectra available in protein databases. Many 
existing proteomics software packages, such as MaxQuant, have 
been designed for analyzing large MS data sets, such as the  
MaxQB database, and thus can perform this task38.

(2) Shotgun sequencing data: the resulting short reads in 
FASTQ data format have been initially verified if they corre-
spond to human DNA sequences, sequence reads were aligned 
to a human reference genome (Genome Reference Consortium 
Human Build 38) to verify human sequences using the Bowtie 
version 1.3.0 and BWA programs version 0.7.1739,40. Reads not 

aligning to the human reference genome were characterized as  
non-human.

All processed data were stored in a high-performance database 
for future analysis. A web user interface and a search/analysis  
engine41 were developed to access these data.

Assessing presence of select pathogens
We performed targeted pathogen searches for sequences of 
oral pathogenic microbes and other human pathogens, includ-
ing the major human malaria parasite Plasmodium falciparum. 
We identified pathogenic oral microbes similar to previously 
published results, but no significant hits to P. falciparum from 
these two test-sets were identified. We additionally searched 
for marker oral microbiome species for other human infectious  
diseases as reported in detail in the results section.

Operation and Implementation
Source-code for our prototype is available through our GitHub 
repository (see Software availability section). This implemen-
tation requires the following software packages to reproduce: 
Python version 3.6.0; Flask version 1.1; R version 3.4.4; Perl  
version 5.26.1; BLAST version 2.10.0.

Results
To test our prototype41, we searched for pathogen sequences 
against the two archaeological samples in the database, one from 
Denmark 1100-1450 AD36 and one from the United Kingdom 
1770-1855 AD34. The medieval Danish samples were used with a 
complete set of dental pathology characterization and individual 

Figure 14. Mask worn by doctors visiting people in quarantine in Venice to protect themselves during the 17th century.  Left: 
Masque porté vers 1630 par les médecins visitant les pestiférés from R. Blanchard, in Archives de parasitologie, 1900. Pl. V. Right: drawing 
of a doctor wearing the mask. From Thomas Bartholin, Plague doctor, Thomæ Bartholini Historiarum anatomicarum rariorum, Hafniae: 
Sumptibus P. Hauboldt, 1654, p. 143
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data. Consistent with the reported results36, there are oral disease 
pathology and bacteria normally found in the oral microbiome  
that can be recovered (Figure 16). For instance, the species 
Porphyromonas gingivalis is frequently present in individu-
als with orthodontic diseases, while Streptococcus sanguinis 
is present in both medieval and contemporary individuals with  
satisfactory oral health.

This approach can also be used to discover other bacteria linked 
to health and possibly reveal other correlations between micro-
biome bacteria and health status as well as recent evolution-
ary changes. In archaeology, the current focus is on revealing 
specific pathogens and there is no established reference mate-
rial to investigate the past microbiome or its effects on health.  
Even in recent studies, any conclusions on medieval or older 
individuals is based on direct comparison with the contempo-
rary microbiome. By using archaeological methods (chronologi-
cal seriation) together with software developed from our code, 
it will be possible to investigate any correlation between micro-
biome and health searching individuals dating to older periods. 
Such work could provide a reference standard for archaeologists, 
and evolutionary data to health professionals. For example, using 
the existing data, we found the opportunistic respiratory patho-
gen Haemophilus parainfluenzae43,44 present less frequently in this 
set of medieval samples (Wilcoxen test, p < 0.05), raising inter-
esting questions about human society transition and infectious 
diseases. This group appears in Neolithic agrarian human oral  
microbiomes (7440 BCE)45, but is at low levels in human 
groups practicing hunting and gathering (2000 BCE, modern 
day South Africa). Questions of interest to both health profes-
sionals and archaeologists that could be answered by employ-
ing our code may be when this pathogen became more frequent  
and why.

Understanding the origins and evolution of pathogens is very 
important to prepare for future pandemics. The only success-
ful work attempted on combining archaeology with genetics and 
health studies to investigate past pathogens, the reconstruction 
of the 1918 flu pathogen46 proved to be both technically chal-
lenging and costly even though fewer than a hundred years had 
passed since the pandemic because that work tried to reproduce 
an active virus now extinct. It was also very useful to demon-
strate that the strong virulence reported in historical sources, but  
unconfirmed in medicine, was real. Since 1919, only COVID-19 
has demonstrated a similar virulence, proving that data from his-
torical record can be critical in addressing new types of known 
viruses and pathogens, which can regain traits unseen for a cen-
tury or more within that category of pathogens (respiratory viruses 
with flu-like symptoms in this case). That work has shown also 
how the choice of suitable burial grounds is essential for such 
work. Our work uses new -omics analyses that are providing new 
sources of data and could prove equally valuable, revealing the 
history of recent pathogens, characteristics that may have been 
present only occasionally, and their successes and failures. Future 
pathogens might reuse and re-combine successful traits (symp-
toms, virulence) from past epidemics and therefore our prepared-
ness depends on knowing what to expect, on learning from the  
past.

The results of our work are therefore limited to making pos-
sible future interdisciplinary research and open up a path to 
answer new questions. Sequencing proteomic and metabo-
lomic data from pre-modern individuals is still rare and there is 
no existing database, besides data from a few academic papers, 
that our software code could search. Yet, making possible 
new studies through a working proof-of-concept will acceler-
ate the production of databases for ancient individuals. Existing  

Figure 15. Prototype paleo-data center workflow. Data derived from laboratory-based analyses of biopaleological samples are 
processed and analyzed by established analytical software. Results from these analyses are then compared to existing databases, such as 
RefSeq, and both the known and unknown information are stored in a centralized Paleo-pathology database. A search engine and a web 
user interface (UI) then provides users access to this centralized Paleo-pathology database. The dedicated proteomics database can be 
expanded and rebuilt by data scientists with new data sets and novel data structures. Abbreviations: BLAST (Basic Local Alignment Tool): a 
popular algorithm for comparing biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA 
RNA sequences42. CIGAR (Concise Idiosyncratic Gapped Alignment Report): a string format used to represent information such as which 
bases align (either a match/mismatch) with the reference, are deleted from the reference, and are insertions that are not in the reference. 
MaxQuant: a quantitative proteomics software package designed for analyzing large mass-spectrometric data sets.
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archaeological studies have borne out of early full sequencing 
of genomes and have been severely limited by such approaches. 
The benefits deriving from new -omics analyses combined with 
our approach can provide valuable information on older patho-
gens. Future work may focus on epidemics initially, but with a 
potential also for revealing and understanding more subtle and  
complex relationships between human microbiome and health.

Team 6 - Animal
Project title: Capturing ecological and host drivers of  
microbiomes

Project Rationales, Descriptions and Goals

Rationale: One primary goal of host-microbiome studies is to 
capture and understand ecological and host drivers of microbial  

Figure 16. Medieval oral microbiome with bacterial species as markers for oral diseases. A. A total of over 200 bacterial species 
have been recovered from a metaproteomics study using medieval dental calculus36. The Label- free protein quantitation (LFQ) was used to 
quantify all samples and conduct comparative analysis. The taxa abundance levels were normalized on a scale from 0 to 10; and the circle 
sizes indicate the frequency of taxa occurrences in the study B. Representative species of oral diseases (e.g. Porphyromonas gingivalis and 
Filifactor alocis ), oral health ( Cardiobacterium hominis and Streptococcus sanguinis), and potential respiratory disease markers (Haemophilus 
spp.)43,44. Modern day oral microbiomes from dental plagues and calculus are from the HMP database.

Page 19 of 26

F1000Research 2020, 9:1478 Last updated: 15 FEB 2021



diversity. Research on host-microbiome associations across 
host species has been facilitated by the increasing accessibil-
ity of high-throughput sequencing techniques and the availability 
of integrated microbiome datasets, such as the Earth Microbi-
ome Project dataset47. These have yielded useful insights on how  
host-microbiome associations are impacted by host diet48, host 
taxonomy or phylogeny49, host immune system50, and environ-
mental factors51. However, host species traits vary immensely 
across species and such diversity has been under sampled in 
microbiome studies. As a result, the effects of other host 
factors, including body mass and life history, in relation to pre-
viously characterized host and environmental effects, on host- 
microbiome associations have been understudied.

Goal: In this project, we aim to investigate the effects of vari-
ous host traits, including diet, host taxonomy, body mass, and 
longevity, in relation to environmental factors, on the intestine, 
fecal, foregut, and stomach microbiomes of Metazoan (animal) 
species. We first mined available microbiome and metadata data-
sets, then applied unsupervised learning directly on rarefied OTU 
abundance data to uncover clusters of microbial community  
similarity among animals.

Methods
Data sources and processing
Rarefied OTU table (1000 reads per sample) and metadata 
of internal animal microbiomes from the Earth Microbiome 
Project47 was obtained from Woodhams et al.52. The OTU table 
was filtered to remove plant samples (Kingdom Plantae), OTUs 
with <10 total counts across samples, and OTUs occurring in  
<2 samples.

Metadata collection
For each sequenced species in our dataset, we added metadata for 
body mass and maximum longevity, if available. Body mass data 
was collected from the Pantheria archives53, the Caviede Vidal 
dataset54, and the Encyclopedia of Life. Body mass data was cat-
egorized to create three equally sized groups (excluding Homo 
Sapiens): big (> 58.7 kg), medium (>19.57 kg, ≤ 58.7 kg), and 
small (≤ 19.57 kg). Maximum longevity data was obtained from  
AnAge55.

Unsupervised learning analysis
To explore distinct microbial composition structures across sam-
ples, an unsupervised cluster analysis was performed on the 
processed OTU table. OTUs present in less than 5% samples 
were discarded to obtain robust clusters. Sample-wise distance 
matrix was then computed using Jensen-Shannon distance on 
the OTU table of relative abundance. The PAM (partition around 
medoids) clustering analysis was completed using the cluster  
version 2.1.0 package in R software version 3.6.156. The optimal 
number of clusters was determined to maximize the Silhouette 
coefficient57. To visualize results of the cluster analysis, prin-
cipal component analysis was completed using ade4 version 
1.7-13 package in R software. Individual samples were depicted  
on the space of top two principal components.

ANOVA F-test and correlation analysis
For feature selection, ANOVA F-tests were implemented in 
python to identify quantitative metadata variables with signifi-
cant means variance differences between clusters. Pearson cor-
relation analysis was also performed in python to evaluate linear  
relationships between metadata variables.

Operation and implementation
The analyses can be performed on a local computer or server 
with R and Python installed. A step-by-step tutorial of the unsu-
pervised clustering approach is available at https://enterotype.
embl.de/enterotypes.html. R markdown and Python codes used 
for analyses are also available as listed in the Software availability  
section58.

Results
We analyzed 726 samples spanning 199 terrestrial and fresh-
water Metazoan species within seven classes (Figure 17). Our 
unsupervised learning approach generated three sample clusters  
(Figure 18). The largest and most diverse cluster (cluster 1) com-
prised ~92% of all samples (n=667) from 21 Metazoan orders. 
These included lepidoptera (butterflies and moths; n=165), pri-
mates (n=85), anura (n=79), chiroptera (bats; n=44), carnivora 
(n=41), passeriformes (perching birds; n=37), hymenoptera (n=27), 
artiodactyla (n=26), diprotodontia (n=24), rodentia (n=23), lago-
morpha (n=19), columbiformes (n=18), cypriniformes (n=18),  
squamata (n=17), anseriformes (n=9), gasterosteiformes (n=9), 
coleoptera (n=7), pilosa (n=7), cingulata (n=6), casuariiformes 
(n=5), and hemiptera (n=1). Cluster 2 comprised 34 samples 
from bats (n=16), butterflies and moths (n=10), perching birds 
(n=6), the dung beetle Teuchestes fossor (n=1), and the giant  
anteater Myrmecophaga tridactyla (n=1). Cluster 3 was the  
smallest (n=25) and exclusively comprised butterfly and moth  
samples belonging to seven species. These included Macu-
linea alcon (n=9), Durbania amakosa (n=5), Spalgis epeus 
(n=5), Lycaena clarki (n=2), Surendra vivarna (n=2), Anthene  
usamba (n=1), and Rapla iarbus (n=1).

ANOVA analysis indicated that clusters had the most signifi-
cant mean differences in microbial alpha diversity, Simpson 
diversity, Shannon diversity, Faith’s phylogenetic diversity, 
and Chao 1 diversity (Table 4). Digestive habitat type, host tax-
onomy/phylogeny, immune complexity, and life stage, were also  
significantly different between clusters, along with DNA extrac-
tion methods and environmental variables. Notably, body 
mass and maximum longevity were also significantly different  
between clusters.

Cluster-specific correlation analyses showed that alpha diversity 
in clusters 1 and 2 was consistently positively correlated with host 
taxonomy, immune complexity, diet, maximum longevity and 
latitude. Body mass, vegetation index, terrain complexity, mean 
temperature of the driest quarter and precipitation of the warm-
est and coldest quarters showed positive correlations with alpha 
diversity in cluster 1, but not cluster 2. Latitude and country were 
positively correlated with alpha diversity in cluster 2, but not  

Page 20 of 26

F1000Research 2020, 9:1478 Last updated: 15 FEB 2021

https://eol.org/
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=ade4
https://enterotype.embl.de/enterotypes.html
https://enterotype.embl.de/enterotypes.html


Figure 17. Number of samples (y-axis) analyzed for each host class (x-axis) in this study.

Figure 18. Principal component analysis (PCA) plot showing the three animal clusters. The data clusters were generated by the 
Partitioning Around Medoids (PAM) clustering algorithm on Jensen-Shannon divergence calculated from OTU relative abundances. Each 
point on the plot represents a sample, and each cluster was labelled with its general taxonomic composition and sample sizes.

cluster 1. Alpha diversity in cluster 3, which comprised butter-
flies and moths, was positively correlated with environmental 
variables (terrain complexity, mean diurnal temperature range, 
precipitation seasonality, elevation) and host factors (digestive  
habitat type and diet).

The results support our premise that host traits, including but 
not limited to body mass and maximum longevity, are under  
sampled in microbial diversity studies. Understudied host traits 
could also shape animal internal microbiomes together with well-
characterized host traits and environmental variables. Based on 
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our results, we propose comprehensive sampling of host traits 
in future microbiome studies, which may yield new and unex-
pected patterns of microbial community organization serving as a  
baseline for deeper investigations.

Lessons learned
Throughout this process we identified several areas where 
improvements could be made for future disease-focused hacka-
thons. A few of these are described below.

Collaboration across domains requires extensive communica-
tions with minimum use of jargons, and active learning from 
diverse backgrounds. We aimed to further expand on the tradi-
tional foundation of codeathons, and we generated novel tools by 
leveraging research strengths of the local community. However, 
there has been some challenges in the six teams to efficiently 
work together, with barriers in communicating the feasibility and 
significance of particular problems. In-depth and succinct expla-
nation of the technical problems are critical for the successful  
operations.

Scalability of R has been called into question during the proto-
type development. For large dataset computations, more effi-
cient implementation can be developed once the prototype has 
proven to be useful for the community. However, the granu-
larity of solutions available in R make it the preferred tool for  
designing and experimenting with different solutions.

Meticulous documentation of each analysis step remains cru-
cial for effective dissemination of our approach and results. These  
necessary components of any project are also excellent opportu-
nities to apply the skillsets of non-coders, as well as to heighten 
engagement of trainees by reinforcing project rationale. Good 
documentation, including simple flowcharts, are very useful  
tools for keeping focus. Non-coding participants who want to 
gain some experience can often quickly learn markdown language  
and be vital contributors to repositories.

Conclusion and next steps
Interdisciplinary collaborations have proven to be very produc-
tive as shown by our six working prototypes addressing broad 
microbiome related challenges, ranging from power calculations,  
AI classifiers, GIS integration and large data set visualizations. 
Although working across fields has been a challenging task, 
we found that parsing a complex question into distinct parts can 
help different domain-experts to work together and accomplish 
tasks none of the individuals could accomplish in isolation. The 
codeathon workflow is thus a useful research model for many 
urgent societal problems that suffer from knowledge-transfer and  
communication issues. We have made all data and code publicly 
available for further exploration of these tools. Importantly, we 
are developing impactful projects to further pursue intersectional 
research spurred by this event, including microbiome-related 
machine learning, and data mining across archaeological time  
and geography.

Data availability
All data underlying the results are available as part of the article  
and no additional source data are required.

Software availability
Team 1
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/Team1_MicroPowerPlus.

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.40317708.

Table 4. PERMANOVA F scores and p-values of metadata 
variables significantly associated (p<0.05) with cluster 
groupings.

Metadata Variable F Score p value

Simpson diversity 135.93 7.71E-51

Shannon diversity 85.60 4.30E-34

Digestive habitat type (intestine,fecal,for
egut,stomach)

43.29 1.75E-18

Faith’s phylogenetic diversity 33.94 8.14E-15

Host phylum 28.96 7.99E-13

Host phylogeny (nDMS proxy) 28.95 8.03E-13

Immune complexity (ordinal score) 27.31 3.67E-12

Observed OTUs 26.29 9.49E-12

Lifestage (larvae,juvenile/pupae, infant, 
adult)

20.40 2.40E-09

Chao1 diversity 20.26 2.76E-09

Preservation method (ethanol, freezing, 
RNAlater, others)

17.91 2.55E-08

Maximum temperature of the warmest 
month

17.38 4.25E-08

Host family 14.50 6.68E-07

Longitude 11.64 1.06E-05

Body mass 10.50 3.19E-05

Mean diurnal temperature range 10.46 3.33E-05

Surrounding habitat (freshwater, 
terrestrial)

5.55 0.004051

Host order 5.24 0.005518

Mean temperature of the driest quarter 5.08 0.006419

Maximum longevity 3.73 0.024552

Precipitation seasonality 3.39 0.034152

DNA extraction method (DNeasy 
Powersoil, EZna Stool Dna Kit, 
PowerFecal, QIAamp DNA Stool Mini Kit, 
ZR Fecal DNA Miniprep Kit)

3.16 0.042965

Vegetation index (NDVI MODIS) 3.14 0.043888
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License: GNU General Public License 3.0.

Team 2
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/Team2_GEO

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.403446620.

License: GNU General Public License 3.0.

Team 3
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/projectZer0.

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.403178026

License: GNU General Public License 3.0.

Team 4
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/Team-YOLO 

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.403177628

License: GNU General Public License 3.0.

Team 5
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/Team5_MinhRays

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.403178541.

License: GNU General Public License 3.0.

Team 6
Source code available from: https://github.com/USFOneHealth-
Codeathon2020/Team6_LimSharma

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.403177858.

License: GNU General Public License 3.0.
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