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ARTICLE

The radius of the umbrella cloud helps characterize
large explosive volcanic eruptions
Robert Constantinescu1✉, Aurelian Hopulele-Gligor2, Charles B. Connor1, Costanza Bonadonna 3,

Laura J. Connor1, Jan M. Lindsay4, Sylvain Charbonnier1 & Alain C. M. Volentik5,1

Eruption source parameters (in particular erupted volume and column height) are used by

volcanologists to inform volcanic hazard assessments and to classify explosive volcanic

eruptions. Estimations of source parameters are associated with large uncertainties due to

various factors, including complex tephra sedimentation patterns from gravitationally

spreading umbrella clouds. We modify an advection-diffusion model to investigate this effect.

Using this model, source parameters for the climactic phase of the 2450 BP eruption of

Pululagua, Ecuador, are different with respect to previous estimates (erupted mass: 1.5–5 ×

1011 kg, umbrella cloud radius: 10–14 km, plume height: 20–30 km). We suggest large

explosive eruptions are better classified by volume and umbrella cloud radius instead of

volume or column height alone. Volume and umbrella cloud radius can be successfully

estimated from deposit data using one numerical model when direct observations (e.g.,

satellite images) are not available.
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The main evidence for past volcanic eruptions' size and
intensity comes from the interpretation of their tephra
deposits. Explosive eruptions can be compared by volume

of tephra erupted, which varies by many orders of magnitude and
creates impacts on local to continental scales. High mass flow
rates, associated with high volcanic plumes, cause tephra to dis-
perse widely, resulting in gradual thinning of deposits and gra-
dual fining in granulometry of deposits with distance from the
volcanic vent. Volcanic hazard assessments place a premium on
the interpretation of deposits because they inform us about the
nature of the past activity and help forecast future eruptions. The
better we can reconstruct the nature of past eruptions from
deposit data, the better we can anticipate potential future volcanic
hazards.

The challenge is to estimate eruption source parameters (ESPs)
from the geological interpretation of deposits. ESPs include
erupted volume and mass, plume height, total grain-size dis-
tribution, mass flow rate, and eruption duration. Eruption volume
is commonly estimated using alternative statistical models (e.g.,
exponential, power-law, or Weibull distribution) to describe the
thinning of a tephra deposit with distance from the vent1–7.
Plume height can be estimated from the distribution of the largest
lithic or pumice clasts in the deposit and plume dynamics8–10,
and is typically used to derive the mass flow rate11–13. However,
statistical methods used to estimate eruption volume and column
height are sensitive to deposit erosion14. In particular, older
deposits are often eroded, reworked, or sparsely sampled, leading
to uncertainty and bias in volume and column height
estimates15,16, which may result in misclassification of older
eruptions17.

Numerical models of tephra dispersal and sedimentation
attempt to address potential bias using the advection–diffusion
equation to estimate ESPs, by matching observed deposit features
with numerical model output18–22. Using inversion techniques,
deposit data (i.e., mass per unit area, thickness, local grain-size
distribution) are used to estimate the erupted mass, plume height,
and total grain-size distribution5,18,19,23–26. One advantage of
these models is that they can better estimate ESPs with uncer-
tainty quantification25,27.

Success in estimating ESPs is evaluated based on how well the
model, statistical or numerical, fits the observed data18,23–30.
However, model assumptions, again either statistical or
numerical, also may lead to biased estimates of ESPs. In par-
ticular, many numerical models assume that tephra is released
from either a point, a vertical line atop the volcano or as dif-
fusion along a vertical line18–21,30,31 and that the deposit thins
monotonically from the vent, with the exception of secondary
maxima associated with ash aggregation or local topography
and low atmosphere wind fields7,32–37. Large explosive eruption
plumes deviate significantly from these simplified plume geo-
metries by producing laterally spreading umbrella clouds
around the level of neutral buoyancy13,38–44. A laterally
spreading cloud transports a large volume of tephra rapidly
away from the volcano in all directions, reaching radii of
10–100 s of kilometers and markedly changing the distribution
of tephra on the ground.

If the lateral spreading of the umbrella cloud is not taken into
account, other ESPs estimated with the numerical model must
compensate, resulting in biased estimates of their values. For
example, advection–diffusion models may overestimate eruption
column height from deposits if the gravitational spreading of
umbrella clouds is not accurately described in the model26,28,45.
Diffusion itself, represented in most models by a diffusion coef-
ficient, may be overestimated to compensate for the rapidly
spreading umbrella cloud26. We address this issue by modifying
the advection–diffusion algorithm of tephra sedimentation in

Tephra219,23, to model particle release from a disk source rather
than from a vertical source. The disk model infers the geometry of
the laterally spreading cloud and refines the estimate of eruption
volume.

Here we show how to estimate the radius of the umbrella cloud
from tephra deposits, thus improving our estimation of other
ESPs, using data from the climactic phase deposit of the 2450 BP
eruption of Pululagua (Ecuador) as a case study. We find that an
erupted mass between 1.5–5 × 1011 kg, umbrella cloud radius
between 10 and 14 km, and eruption column height of 20–30 km
can describe the thinning of the Pululagua deposit with distance
from the vent. This modeling effort suggests that observed var-
iations in the thickness of tephra deposits of large eruptions are
better modeled using a disk source and that the radius of the
umbrella cloud, rather than the height of the erupting column, is
the primary factor controlling the sedimentation. A tephra
advection–diffusion–sedimentation model using a disk source can
be successfully used to estimate eruption volume, plume height,
and umbrella cloud radius, reducing parameter compensation,
and reducing uncertainty.

This outcome has potential implications for how volcanic
eruptions are classified and used to compile hazard scenarios. The
Volcanic Explosivity Index (VEI)46,47 is a commonly applied
scale that uses volume to classify eruptions on a binned quasi-
logarithmic scale (VEI 0–8) and provides indications of the plume
height. We propose that the VEI scale be updated to include the
umbrella cloud radius as a metric to characterize large explosive
eruptions, acknowledging that any single ESP cannot completely
categorize the nature of large explosive eruptions.

Results
Estimation of the optimal ESPs for Pululagua. The 2450 BP
caldera-forming event of Pululagua was a Plinian eruption of
dacitic composition, that, allegedly, occurred in a negligible wind
field (Supplementary Note 126,48). Previous studies of the strati-
graphic sequence of this eruption26,48 indicate the activity started
with small phreatomagmatic explosions followed by three Plinian
phases overlain by a final fine ash layer. Although the isopach
maps of some eruptive phases suggest deposition under a slight
north-westerly wind, the near-circular isopach map of the cli-
mactic phase indicates deposition in still atmosphere. This con-
clusion is also supported by the deposition of the uniform fine ash
layer at the end of the eruption. The fine ash has a longer settling
time, which would have made it susceptible to dispersion in a
disturbed atmosphere. We assume the previous interpretations of
the eruptive conditions of the climactic phase were correct and
model the tephra data set collected by Volentik et al.26 using a
disk source (Fig. 1) and invert for optimal ESPs using a grid
search, which is appropriate given the limited number of model
parameters.

Our simulations with a disk source yield a range of ESPs that
explain thickness variation of the deposit: a mass estimate of
1.5–5 × 1011 kg (i.e., a bulk volume of 0.15–0.5 km3, for a deposit
density of 1000 kg m−3 26), umbrella cloud radius of 10–14 km
and an eruption column height ranging between 20-30 km
(Fig. 2a). We use the chi-square cost function for the goodness
of fit for which a value closer to 0 indicates a better agreement
between the field measurements and modeled data. We find that a
mass of 2.5 × 1011 kg (0.25 km3), an umbrella cloud radius of
10 km, an eruption column height of 25 km, and a diffusion
coefficient of 9500 m2 s−1, give a best fit for the distribution of
data and yield a VEI 4 classification for the eruption. This range
of erupted mass and volume are consistent with estimates by
other statistical and numerical methods (Supplementary Note 1
and Supplementary Table 1)26.
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Assessment of the model’s fit. We evaluate model performance
using all data from measured stratigraphic sections of the deposit
(Fig. 2b). The regression model shows a coefficient of determi-
nation of 0.71 and a coefficient of correlation of 0.84. Ideally, the
modeled data should fit the observed data perfectly and yield a
slope of 1; the best-fit line slope in our case, 0.68 (95% confidence

interval 0.58–0.79) suggests that the model tends to slightly
underestimate observed thicknesses, especially for a few large
values. Wilcoxon sign and signed-rank tests49 are used to assess
the frequency with which the residuals are negative or positive
(i.e., over- or under-estimations of the thickness of the deposit)
and the impact of the outliers on the model fit18,28. For the sign

Fig. 1 Schematic representation of an idealized umbrella cloud. The umbrella cloud is represented as a disk of uniform thickness and density, discretized
in equally spaced grid cells (dx = dy) of equal mass fractions (gray disk) (see “Methods” section). Tephra is released from the center of each grid cell within
this disk (lowercase c in inset). Other source geometries are represented as a point source (green dot labeled C), line source (orange dots stacked along a
vertical line), and diffusion along a vertical line (blue inverted cone). H is the tephra release height (disk height), C is the center of the disk, and R the disk
radius, corresponding to the radius at which wind velocity exceeds radial spreading velocity. The different models of tephra fallout from different source
geometries are represented by dots of different colors. Note, also, the relative dispersion of particles from their respective source geometries (not to scale).
The inset figure represents a 2D view from above of the disk source, resembling the umbrella cloud.

Fig. 2 Tephra thickness with distance from vent. a The plot shows the minimum and maximum range (shaded area) of erupted mass (M), disk height (H),
and umbrella cloud radius (R) that can explain the mapped deposit of the climactic phase of the Pululagua 2045 BP eruption. The red dashed line shows the
best-fit model. Thickness of the deposit was obtained from mass/area using a bulk deposit density of 1000 kgm−3 26. The χ2—criterion for the goodness of
fit is 9300 and 3600 for the maximum and minimum of the estimated range of ESPs, respectively, while for the best fit is ~1800 (a value closer to 0
indicating a better agreement between observed and modeled data). b The relationship between the observed and modeled tephra deposit thickness. The
dashed line represents a correlation of 1 and the solid line represents the best fit between the observed and modeled data. Both root mean square error
(RMSE) and the coefficient of determination (r2) indicate the quality of fit between the modeled and observed thicknesses.
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test, we have 46 negatives out of 72 residuals (observed −
modeled), which indicates that the model tends to overestimate
the deposit thickness. For the signed-rank test, we set a null
hypothesis that there is no difference between the observed
accumulation and the modeled one18,28. For n= 72 samples, we
calculate the sum ranked of the positives T+= 1197. From this
sum, we can estimate the expected value of E(T+) at 1314 and the
variance Var(T+)= 181, Z=−0.64 (i.e., p > 0.26 for a one-tailed
hypothesis), higher than the significance level of 0.05 (5% con-
fidence). Thus, our null hypothesis cannot be rejected, and
we consider that the over-estimation of the deposit is caused
by outliers in the thickest part of the deposit. We conclude
that although our model has a tendency to underestimate thick-
ness proximal to the vent, it reasonably reproduces the overall
thickness variation of the deposit. This is encouraging considering
that over time several processes (i.e., reworking, compaction,
erosion of the fines) have affected the thickness of the Pululagua
deposit.

Duration for the umbrella cloud emplacement. Several explo-
sive eruptions in recent decades produced large umbrella clouds
that spread quickly across vast distances. Satellite measurements
at Pinatubo, 1991, showed that the umbrella cloud reached a 280
km diameter within the first hour of the eruption50 yielding a
spreading rate of ~4.6 kmmin−1. Although our model does not
account for the dynamics of lateral spreading clouds, we can
estimate how long it took for the estimated umbrella cloud of
Pululagua to reach the model radius. Using models for the rate of
a spreading umbrella cloud40,41,51 and the previously estimated
mass flow rate for Pululagua26, we calculate that the umbrella
cloud formed in 135–335 s after the onset of the eruption. This
yields a 2.5–4.4 kmmin−1 spreading rate for a 10–14 km radius
umbrella cloud. High spreading rates of radial (or asymmetrical)
clouds facilitate the transport of coarser tephra particles to larger
distances resulting in coarser-grained deposits over vast
areas13,52; the bulk of particles ejected during a volcanic eruption
will fall from this umbrella region13,36.

Discussion
Modeling tephra sedimentation using a disk source geometry
provides a better estimation of the ESPs without resorting to the
use of highly implausible physical parameters (e.g., very high
eruption columns; very high diffusion coefficients). Although still
simplified in source geometry, our model results are in agreement
with the umbrella cloud model, whereby the bulk of tephra
sedimentation occurs in regions directly under the leading edge of
the cloud10 with sedimentation occurring past this point largely
due to atmospheric diffusion. When compared with other source
geometries our model provides an overall better fit of the deposit
than models without a disk source. We compare the disk source
with a point and vertical line sources in Fig. 3. For this com-
parison, we keep identical input parameters across the three
simulations (i.e., erupted mass, total grain-size distribution, dif-
fusion coefficient, and particle release height (Supplementary
Table 2)). We find that both point and line sources tend to
overestimate deposit thickness near the vent and show expo-
nential decay of thickness with distance from the vent (Fig. 3). In
the Pululagua deposit, there is a significant variation in thickness
near the vent in different outcrops (>20 cm) and a slower decay in
deposit thickness than expected for exponential thinning. Line
and point sources can model this change in deposit thickness with
distance from the vent, but only if the model compensates for the
narrow source by greatly increasing the diffusion coefficient
parameter, thus, smoothing the modeled deposit26,34.

The diffusion coefficient is an empirical value used to char-
acterize complex processes occurring in a convective plume and
during atmospheric diffusion. Often, the diffusion coefficient in
advection–diffusion models is used to increase the dispersal of
fine ash in simulations19,26,40. Our simulations with a disk source
show that high diffusion coefficients (e.g., >20,000 m2 s−1)
underestimate the rate of thinning with distance and produce a
flat deposit, whereas lower values (e.g., <10,000 m2 s−1) fit the
observed thinning (Fig. 4a, b). By introducing the disk source, the
observed deposit thickness variation is explained without
resorting to a very high diffusion coefficient (e.g., >104 m2 s−1)53.

Modeling the disk radius with a low diffusion coefficient is
useful because it allows us to directly estimate the umbrella cloud
radius, defined as the radius the cloud reaches before advection is
dominated by wind velocity13,52. Our model of the Pululagua
deposit constrains disk radius within a few kilometers of uncer-
tainty. An umbrella cloud radius of 10–14 km gives the lowest
relative error between the observed and modeled deposit thick-
nesses (Fig. 2a). We find the model fit is quite sensitive to disk
radius; significantly poorer fit is achieved with disk radii that are
smaller or larger than this range (Fig. 4a).

Interestingly, introducing the disk radius parameter decreases the
model sensitivity to eruption column height. A higher eruption
column allows for a longer settling time for finer particles,
increasing the distribution of tephra. Our simulations show that a
considerable range of eruption column heights (i.e., 10–35 km)
equally explain deposit thickness within the uncertainty of the
observations, especially at distances >15 km from the vent (Fig. 4c),
where the risk to infrastructure and people is likely greater.

We note that sometimes very high volcanic eruption columns
(40–60 km, e.g., the Ilopango, Toba, Campanian, and Taupo
eruptions) are invoked to explain the observed thinning of very
large eruption deposits53–56. High eruption columns are required by
these models to increase the total fall time of tephra and to explain
the slow thinning of the deposit. The properties of the atmosphere

Fig. 3 Sensitivity to source geometry. The difference in thinning of the
deposit with radial distance from the vent simulated with a point source,
line source, and disk source. The vertical line represents the location of the
disk edge (radius). The simulated parameters include mass (M) 2.5 × 1011

kg, column height (H) 25 km, disk radius (R) 10 km, and diffusion coefficient
(K) 9500 m2 s−1. The RMSE and the χ2—criterion for the goodness of fit
indicate that a better fit of the deposit is obtained by modeling with a disk
source, primarily because of better fit at R < 10 km.
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at these very high altitudes are, however, inconsistent with the
particle settling characteristics. Tephra fallout models assume that
particles reach their settling velocities as a function of atmospheric
density. The atmosphere at very high altitudes has such a low
density that particles fall from the high altitude into the denser
lower atmosphere before they actually reach their settling velocities.
This means that increasing the eruption column height is not
actually an effective way to increase tephra dispersion very far from

the vent. Instead, we suggest that a disk source model for sedi-
mentation is more consistent with the physics of large explosive
eruptions as shown by models for laterally spreading umbrella
clouds40–42. Previous models for lateral spreading clouds showed
the implications the umbrella has for the accountability of tephra
fallout at larger distances from the vent in short time periods40,41.
Using the Ash3D numerical model, Mastin et al.40 noted that for
large explosive eruptions umbrella clouds control the dispersal of

Fig. 4 Sensitivity to eruption source parameters. a The differences in the deposit thinning based on changes in disk radius. M, H, and K values are the
same used in Fig. 3, only radius, R, changes between curves. The χ2—criterion for the goodness of fit for R = 10 km is 1800, whereas for R = 5 km χ2 is
2200. b The thinning of the deposit using different diffusion coefficients K; M, H, and R values are the same as in Fig. 3. c Change in the deposit based on
different column (disk) heights: M, K, and R are the same as in Fig. 3, only H is varied.

Table 1 Volcanic Explosivity Index updated with umbrella cloud radius as an additional classification criterion.

Criteria | VEI 0 1 2 3 4 5 6 7 8

Volume of ejecta (m3) <104 <106 <107 <108 <109 <1010 <1011 <1012 >1012

Column height (km) <0.1 0–1 1–5 3–15 10–25 >25 – – –
Umbrella cloud radius (km) – <10b <10b <10 10–100 100–200 200–500 500–1000 >1000

aAdapted from Newhall and Self47.
bPlumes of transient eruptions will also develop gravitationally spreading clouds at the neutral buoyancy level, although of limited radii due to lower mass discharge rates.

Table 2 Umbrella cloud radii and VEI indexes of severala observed and bpast eruptions.

Eruption VEI Volume (km3) Radius (km)

Calbuco, Chile, 2015a 4 0.58 bulk volume63

0.38 bulk volume64
~50–6063

Kelut, Indonesia, 2014a 4 0.1 bulk volume65 ~40 (upwind)66

Grímsvötn, Iceland, 2011a 4 0.6–0.8 bulk volume
0.2–0.3 DRE67

~25–5067

Cordón Caulle, Chile, 2011a 4–5 1.1 ± 0.2 tephra fallout volume27 ~35–60 (crosswind)27

Sarychev Peak, Kurile, Russia, 2009a 4 0.4 bulk volume68 ~2569

Okmok, Alaska, U.S., 2008a 4 0.26 DRE70 ~32.571

Manam, Papua New Guinea, 2005a 4 – ~9072

Reventador, Ecuador, 2002a 4 0.3 bulk volume73 ~42.571

Pinatubo, Philippines, 1991a 6 8.4–10.4 bulk volume74

3.7–5.3 DRE74
~250 (upwind)75

Redoubt, Alaska, U.S., 1990a 3 – ~17 (co-ignimbrite cloud)57

Mount St. Helens, U.S., 1980a 5 1.3 tephra fallout volume76

0.73 tephra fallout volume77
~15 (upwind)78

Tambora, Indonesia, 1815b 7 ~100 tephra fallout volume79 ~50079

Campanian eruption, Italy, ~40 ka B.P.b 7 ~210 tephra fallout volume56 ~43056
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tephra in simulations and that simulations are less sensitive to
eruption column height. New models to estimate eruption column
height from maximum clast dispersal also indicate that the distance
traveled by a clast could be explained by a lower lateral spreading
cloud instead of a higher sub-vertical plume8,9.

Here we confirm, using field data and a revised numerical model,
that observed variations in the thickness of tephra deposits of large
eruptions are better explained using a disk source. Our analysis of
the Pululagua deposit indicates that the radius of the umbrella
cloud, rather than the height of the erupting column, is the primary
factor controlling the sedimentation. Furthermore, the diffusion
coefficient becomes less important in simulations; the thinning of
the deposit is driven mainly by the spreading plume with only the
distal portion of the cloud being significantly advected by the wind.
Altogether, a tephra advection–diffusion–sedimentation model
using a disk source can be successfully used to estimate eruption
volume, plume height, and umbrella cloud radius and better
account for uncertainties in these ESPs.

Our findings have implications for the way volcanologists
evaluate large explosive eruptions and offer improvements to
volcanic hazard assessments. We suggest for example that the use
of the most common eruption magnitude scale, the VEI46, can be
improved by coupling erupted volume and umbrella cloud radius
as metrics to characterize and classify large eruptions (e.g., VEI >
4), rather than relying only on eruption column height to classify
the intensity of such events. An additional category dedicated to
umbrella clouds can be inserted in the VEI scale (Table 1) using
radii ranges based on umbrella clouds observed in near real-time
satellite imagery data, and values estimated from field deposits of
past eruptions (Table 2). Table 1 shows a tentative update to the
VEI scale based on a limited number of observed eruptions and
existing published estimations of umbrella clouds of past VEI 7
eruptions. This proposed rubric is semi-logarithmic for critical
umbrella cloud radii 10–1000 km as umbrella radius increases
more slowly than eruption volume. It is admittedly complicated
by factors such as substantial co-pyroclastic density currents
plumes from relatively small-volume eruptions (e.g., 1990
Redoubt eruption57), and tentative due to the current sparsity of
plume radii estimates from tephra deposit data.

Based on the Pululagua analysis, umbrella cloud radii can be
approximated from field deposits with lower uncertainty than
eruption column height, and eruption volume can be estimated
simultaneously using a single numerical model. Ultimately, the
method presented here can be used to further constrain the
relationship between volume and umbrella cloud radii of large
eruptions. Subsequently, numerical inversions can be conducted to
estimate the ESPs of a sufficient number of large past eruptions to
update the VEI scale. At the same time, real-time satellite imagery
can be used to extract valuable information on the extension of
umbrella clouds of modern eruptions. An updated VEI scale that
includes an umbrella cloud radius as a metric for large eruptions
would better inform models for tephra sedimentation and make
these more robust tools for future hazard assessment.

Methods
Advection–diffusion–sedimentation model (ADS). We modify the Tephra2
algorithm18,19, an Eulerian model that uses the advection–diffusion-sedimentation
(ADS) equation3,14,18,21,58 to estimate the ground accumulation of particles
released from a source above the volcano. The source describes the volcanic plume
(i.e., source term) that in sedimentation models comprises a series of empirically
derived parameters—total erupted mass (MT), total grain-size distribution (TGSD),
column height (H). Typically, the source term assumes simplified geometries such
a point or a line source, but other geometries have been tested (e.g., horizontal line,
disk59). We developed a Python algorithm in which we implement a disk-shaped
source term to account for large volcanic umbrella clouds observed in nature. The
umbrella cloud is inserted as a disk and does not account for the laterally spreading
plume dynamics (i.e., not modeling the ash transportation and diffusion within the

plume). Instead, we assume the cloud is already emplaced (i.e., the cloud spreading
velocity is equal or lower than surrounding wind velocity44) and the modeling of
particles’ sedimentation starts with the particles falling under gravity from the
height at the base of the cloud (H in Fig. 1). We refer the reader to Connor et al.23

and Bonadonna et al.19 for a more detailed description of the equations used in the
Tephra2 code, including particle settling velocities and particle mass fraction cal-
culations, which remain unchanged in the Python model. Here we describe the
implementation of the umbrella cloud source term.

We assume a well-mixed radially spreading cloud of uniform thickness and
density13,44,60,61 with a total mass of:

MT ¼ πR2hη; ð1Þ
where R is the radius of the umbrella cloud and η the mass fraction of tephra in the
cloud60. Next, we discretize the disk in a number of equally spaced grid cells (Fig. 1,
inset). The distribution of particle classes in the cloud is uniform and based on the
values published by Volentik et al.26. The mass of tephra in each grid cell (mcj)
encompassed within the disk radius will be:

mcj
¼ MT

Ncj

; ð2Þ

where Ncj is the total number of cells describing the disk.
Once the geometry of the source and the distribution of mass are assigned, the

code calculates an analytical solution of the ADS equation by integrating for
different particle sizes (ϕ) released from the cells describing the umbrella cloud (cj).
We now calculate the accumulation of particles at one point on the ground using:

fcj ;ϕðx; yÞ ¼
Smcj ;ϕ

4πHK
exp �

x � X0 þ uH
Sϕ

� �� �2
þ y � Y0 þ vH

Sϕ

� �� �2

4K H
Sϕ

2
64

3
75; ð3Þ

where S is the particle settling velocity, K is the atmospheric diffusion coefficient,
and u, v wind field components (direction and speed). In the end, we integrate over
a range of particles sizes released from different grid cells and calculate the total
mass accumulation of tephra on the ground:

Mðx; yÞ ¼
Xcjmax

cj¼1

Xϕmax

ϕmin

fcj ;ϕðx; yÞ: ð4Þ

Due to the high complexity of the natural processes governing tephra dispersal
and deposition, this model is simplified through several assumptions: the
surrounding topography is uniform (i.e., flat); particles are released from specific
points in the designed disks and fall according to their own settling velocity, which
varies with atmospheric density62, through an atmosphere with a constant
diffusion and no vertical wind.

Tephra transport in umbrella cloud models. We used the density-driven cloud
model13,40,41,51,57 to see if the umbrella cloud radius obtained from our model can
be explained given the estimated mass flow rates reported for Pululagua26. We
implement in code the following equations to estimate the radius of an umbrella
cloud and time of emplacement:

R ¼ 3λNq
2π

� �1
3

t
2
3; ð5Þ

where λ is an empirical constant evaluated at 0.241,51, N is Brunt–Väisälä frequency
estimated at 0.0240,41,51. The volumetric flow rate in the umbrella cloud is repre-
sented by q and can be estimated using:

q ¼ C
ffiffiffi
k

p M
3
4

N
5
8

; ð6Þ

where M is the mass discharge rate and k efficiency of air entrainment40,41,51. We
used C = 0.5 × 1010 m3 kg−3/4 s−7/8, a proportionality constant for eruptions in
tropical regions41,51.

Data availability
The field data used in simulations are available to download at https://github.com/
robertoon/umbrella_cloud_model/tree/main/data, or by request to the corresponding
author.

Code availability
The Python code developed to simulate sedimentation from an umbrella cloud and
instructions for its use are available to download at https://github.com/robertoon/
umbrella_cloud_model, or by request to the corresponding author.
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