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Abstract: Urban forests are often heavily populated by street trees along right-of-ways (ROW),
and monitoring efforts can enhance municipal tree management. Terrestrial photogrammetric
techniques have been used to measure tree biometry, but have typically used images from various
angles around individual trees or forest plots to capture the entire stem while also utilizing local
coordinate systems (i.e., non-georeferenced data). We proposed the mobile collection of georeferenced
imagery along 100 m sections of urban roadway to create photogrammetric point cloud datasets
suitable for measuring stem diameters and attaining positional x and y coordinates of street trees. In a
comparison between stationary and mobile photogrammetry, diameter measurements of urban street
trees (N = 88) showed a slightly lower error (RMSE = 8.02%) relative to non-mobile stem measurements
(RMSE = 10.37%). Tree Y-coordinates throughout urban sites for mobile photogrammetric data
showed a lower standard deviation of 1.70 m relative to 2.38 m for a handheld GPS, which was
similar for X-coordinates where photogrammetry and handheld GPS coordinates showed standard
deviations of 1.59 m and the handheld GPS 2.36 m, respectively—suggesting higher precision for
the mobile photogrammetric models. The mobile photogrammetric system used in this study to
create georeferenced models for measuring stem diameters and mapping tree positions can also be
potentially expanded for more wide-scale applications related to tree inventory and monitoring of
roadside infrastructure.
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1. Introduction

Municipal forest management occurs at various scales throughout the urban landscape, but it often
includes the direct management of individual trees. While conventional forestry is generally focused on
increasing production at the stand level, urban forestry is more concerned with maximizing public forest
benefits (e.g., aesthetics, shade, and property value) and minimizing tree-related risks. More recently,
urban forest management practices have been placing a greater emphasis on the value of urban forests
as related to their associated ecosystem services [1,2]. While models have been created to place a
monetary value on the ecosystem services offered by urban forests [3], municipal management efforts
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are still largely shaped by a desire to limit property damage and operation expenses [4,5]. As such,
urban forest managers often focus their management efforts on roadside planting areas, sites where
trees may require increased levels of care to become established and grow [6,7]. This management
often includes the collection of street tree inventory data as a means of establishing a baseline for future
monitoring and assessment [8].

The tree and site conditions monitored in a tree inventory can vary greatly among municipalities
based on management objectives. However, tree species, vitality, risk rating, geographic location
(i.e., coordinates), and diameter at breast height (DBH) were shown by Östberg et al. [9] to be the most
common inventory parameters by researchers, city officials, and arborists that work within urban
forestry. More detailed data collection for these parameters comes at the price of increased labor, and
there is always a trade-off between allocating resources toward conducting inventories and other
management efforts that could benefit from inventory data (e.g., planting, pruning, and removal).
Limited municipal resources can limit inventory efforts leading to many municipalities foregoing street
tree inventories altogether [10,11].

Recent integration and advances in the accessibility of geospatial techniques, monitoring strategies,
remote sensing, and geographic information systems (GIS) have led to new and more cost-effective
monitoring strategies in urban forestry [12]. Coordinates for individual trees have become increasingly
integral to urban tree inventories with the availability of global navigation satellite systems (GNSS),
such as the US Global Positioning System (GPS); allowing for an easier transfer to GIS programs and
integration with complementary datasets [8]. Urban tree canopy (UTC) cover, transportation and
infrastructure, and property boundaries can be interpreted and measured together [13–15]. Techniques
utilizing remotely-sensed aerial and satellite data have worked well to characterize UTC and prioritize
tree planting efforts [16,17]. At the same time, terrestrial remote sensing techniques have even been
utilized by non-professional volunteers to attain urban forest inventory data [18]. Advanced data
processing techniques for analyzing forest crowns have taken advantage of high-resolution imagery [19],
hyperspectral imagery [20,21], three-dimensional scanned data [22–24], and combinations of these
datasets [25–27] to identify individual trees and collect measurements (e.g., species identification,
crown dimensions, leaf area index, etc.) [28].

Aerial remote sensing data has fundamentally changed the analysis of urban forests, but traditional
inventory methods are often still preferred for detailed data collection on individual trees (e.g., street
trees) [1]. Nielsen et al. [29] noted that studies employing aerial and satellite data generally require
ground-level field data for interpretation. Even with the integration of high-quality imagery and aerial
laser scanning data, Tanhuanpää et al. [24] were only able to accurately identify 88.8% of all trees in an
inventory along roadways. Similarly, Wu et al. [30] had a detection rate of 83.6% from a purely aerial
laser scanning dataset. These results suggest that individual tree identification methods from aerial
remote sensing are progressing, but have some room for improvement. Moreover, measurements like
DBH, ground coordinates, and species identification from aerial laser scanning and aerial imagery
still typically lack the accuracy and precision that can be attained from traditional field inventories
conducted on the individual tree level [1,29,31].

Terrestrial remote sensing is less common but may be more applicable for managing individual
trees. Terrestrial laser scanning utilizes light detection and ranging (LiDAR) to rapidly measure
distances between a scanning unit and illuminated objects to create 3D representations of scanned
areas. This technology has been utilized for many surveying applications to measure geologic
features, ground surface, vegetation, archeological sites, and property planning for various types of
infrastructure [32–35]. It has been adapted to accurately measure key forest inventory parameters
(e.g., tree height, DBH, and leaf area index) [36]. In contrast with managed forest stands that serve
as the backdrop for most existing research [36], urban environments are often compositionally more
heterogeneous, and problems related to occlusion and poor scanning geometry tend to be more
common. For example, Moskal and Zheng [37] showed urban terrestrial laser scanning point cloud
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measurements for DBH to be correlated (R2 = 0.68) with physical measurement, while Yao et al. [38]
showed a range of correlations (R2 = 0.62−0.88) taken from a forest plot within a national park.

Additionally, terrestrial laser scanning data were collected from a stationary, tripod-mounted
unit for many of the past studies [39] making data collection a time-intensive process [36]. Mobile
laser scanning from a terrestrial perspective has allowed for datasets to be collected over large
areas with survey-grade, centimeter-level accuracy under relatively short durations of time [40].
Holopainen et al. [41] showed that 79.22% of trees could be manually located in mobile laser scanning
datasets with a root mean square error (RMSE) of 0.49 m when compared to terrestrial laser
scanned datasets.

Applications of photogrammetry predate the use of LiDAR, but until recently, programs
did not exist that could quickly produce photogrammetric models. However, this has changed
with the development of inexpensive and commercially-available Structure-from-Motion (SfM)
programs that use computer vision image-matching algorithms and user-interpreted ‘targets’ to
generate three-dimensional photogrammetric models. These programs make it possible to create
three-dimensional models with little more than a consumer-grade camera and a home desktop
computer. Computer vision-assisted photogrammetry programs have been used from an aerial
perspective to generate digital surface models (DSM) for applications in forestry and environmental
monitoring [42,43]. Mapping with these models can be used to create estimates for tree height and
other metrics of canopy cover [44].

More recently, ground-based, stationary photogrammetry has also been used to measure volume,
height, diameter, and surface area for individual trees [45–47], trees positioned within forest plots [48–52],
and root systems [53] (Table 1). Even when the photogrammetric process is conducted to create models
of stems along roadways [54], the process for attaining model measurements is more intensive than
traditional field measurements. Beyond this limitation, photogrammetric methods may have difficulty
in assessing certain aboveground vegetation parameters (e.g., canopy width, tree height, etc.) due
to shade, geometric limitations, and canopy occlusion; as Surový et al. [49] showed, stems modeled
within a close-range photogrammetry program from a forest study plot showed a stem diameter RMSE
of 0.59 cm, and noted error was associated with low visibility areas.

Table 1. Comparison of tree features modeled with close-range photogrammetry.

Study Feature RMSE (%) RMSE in Units Accuracy

Bauwens et al. (2017) stem diameter 4.5–4.6 5.8–5.9 cm -
Koeser et al. (2016) root system volume 12.3 40.37 cm3 -
Liang et al. (2014) DBH 6.6 2.39 cm -

tree detection rate - - 88%
Mikita et al. (2016) tree positional accuracy - - 0.071—0.951 m

DBH - 0.911–1.797 cm -
stem volume - 0.082–0.180 m3 -

Miller et al. (2015) DBH 9.6 0.99 mm -
height 3.74 5.15 cm -

crown spread 14.76 4.1 cm -
crown depth 11.93 2.53 cm -
stem volume 12.33 115.45 cm3 -

branch volume 47.53 138.59 cm3 -
total volume 18.53 266.79 cm3 -

Mokroš et al. (2018) tree detection rate - - 80.60%
Mokroš et al. (2018) stem diameter 0.9–1.85 - -

stem perimeter 0.21–0.99 - -
Morgenroth and Gomez (2014) DBH 3.7 3 cm -

height 2.59 9 cm -
Roberts et al. (2018) DBH 7.04–12.35 0.97–3.10 cm -
Surový et al. (2016) DBH NA 0.59 cm -

Close-range photogrammetry has the potential to become an efficient means of inventorying and
measuring street trees while avoiding the high equipment costs associated with terrestrial laser scanning
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that range from tens of thousands to ~$/€100,000. While others have demonstrated the potential
of using fixed cameras to capture the imagery needed to model trees, there are few if any studies
that have looked at mobile SfM photogrammetry techniques to measure woody vegetation in urban
environments. For this study, we compared the location and stem diameter measurements derived
from both georeferenced mobile SfM photogrammetry and stationary SfM data. The results from both
methods were then compared to field-derived DBH and location measurements. In conducting this
study, we hoped to demonstrate the potential of mobile SfM photogrammetry to inventory street trees
in urban conditions.

2. Materials and Methods

2.1. Study Site and Field Methods

Data were collected from ten sites along 100 m transects. One site was located along a windbreak
composed of loblolly pine (Pinus taeda L.) trees (N = 52) at the University of Florida (UF) Gulf Coast
Research and Education Center in Wimauma, FL (~27◦45′40” N and ~82◦13′40” W). The remaining nine
sites were randomly selected 100 m sections of right-of-way along designated hurricane priority routes
within Tampa, FL (27◦57′50.97” N, 82◦27′9.38” W). The windbreak site provided relatively uniform
conditions to test the photogrammetric set-up (e.g., non-occluded stems, relatively circular pine stems,
uniform light conditions, etc.), while the urban sites represented a greater range of challenges to
the set-up and post-processing. The spacing of urban stems was sparser along urban right-of-ways,
requiring more study area to test the proposed set-up under a variety of heterogeneous urban conditions
and achieve a comparable sample size. The street trees (N = 88) representing the urban sites included
Quercus virginiana Mill. (31.5%), Quercus laurifolia Michx. (27.0%), Washingtonia robusta H.Wendl.
(11.2%), Ulmus parvifolia Jacq. (7.9%), Acer rubrum L. (4.5%), Sabal palmetto (Walt.) Lodd. (4.5%), Prunus
caroliniana (Mill.) Aiton (4.5%), Pinus elliottii Engelm. (3.4), Syagrus romanzoffiana (Cham.) Glassman
(3.4%), Quercus laevis Walter (1.1%), and Dalbergia sissoo Roxb. (1.1%). Stem DBH measurements
were collected with a DBH tape as a control. Control measurements for stem position were visually
interpreted from very high resolution (i.e., 0.65 m) orthoimages originally captured from the QuickBird
satellite (DigitalGlobe, Inc., Longmont, CO, USA). However, some stems were occluded by canopy, so
objects (e.g., street signs, light poles, fire hydrants, transformer boxes, etc.) or conspicuous ground
features (e.g., sidewalk cracks, road markers, etc.) in the field were used as ‘anchor points’ to measure
compass heading direction and distance with a laser rangefinder (TruPulse 200—Laser Technology Inc.,
Centennial, CO, USA). These measurements could then be used to approximate the occluded stem
position from the visible ‘anchor point’ within a GIS (specifically, Google Earth) using the ruler tool to
interpret heading and distance. An additional set of coordinates were measured with a handheld GPS
unit with a circular error probability of 1–1.5 m (GNSS Surveyor—Bad Elf, LLC, Tariffville, CT, USA)
to also include geospatial positional measurements often taken during standard tree inventories as
a comparison.

Imagery for photogrammetric data was collected with two stereoscopic camera set-ups.
The stationary camera set-up used a surveying rod to secure a digital single-lens reflex (DSLR)
camera (Canon EOS Rebel T3—Canon Inc., Tokyo, Japan). Two passes along the transect were made to
ensure high overlap between different tree positions—a pass with the camera mounted on a surveying
rod at 1.6 m and tilted downward at a −25◦ angle, and another at 2.0 m at a −30◦ angle. In this manner,
data collection simulated a two camera photogrammetric set-up (Figure 1). Images were captured
at ~0.33 m intervals along each transect pass. Similarly, the mobile photogrammetric set-up utilized
a two DSLR camera (Nikon D300—Nikon Co., Tokyo, Japan) system for image capture along the
sampled right-of-ways (ROW; i.e., publicly-managed corridor) areas. The mobile set-up was similar
to the system used by Abd-Elrahman et al. [55] and Abd-Elrahman et al. [56], where a second DSLR
camera was used to replace the hyperspectral camera used in the original system. The mobile images
were collected in concert with a similarly-positioned survey-grade (i.e., centimeter-level) GPS unit
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(Hyperlite+, Topcon Corp., Tokyo, Japan) and a timing GPS antennae (Accutime Gold™, Trimble
Navigation Ltd., Sunnyvale, CA, USA), in order to retroactively assign coordinate metadata to each
image in post-processing (Figure 2). Similar to the stationary set-up, the cameras were positioned
at 1.6 m and tilted downward at a −25◦ angle and 2.0 m at a −30◦ angle. Mobile images were also
captured along straight sections of road moving in the direction of traffic at every ~0.33 m for adequate
image overlap, which required the vehicle to travel at ~10 km/h over 3 separate passes with the utilized
camera settings. High overlap (Equation (1)) is needed for photogrammetric camera positioning.

Overlap = (G − B)/G (1)

where B is the distance between photos (i.e., orthogonal to the direction that the camera is aimed) and
G is photo coverage in the direction of camera movement. Photos were taken at ~0.33 m intervals,
hence, photos ranged between 83 and 96% overlap based on the distances of trees from the roadway
camera position, ranging from 2 m to 8.5 m, respectively.
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Figure 1. Schematic of the experimental stereoscopic mobile camera set-up. Representation of image
capture with a mobile vehicle (left) and stationary image capture with a surveying pole (right).

2.2. Model Processing and Measurements

All datasets were processed with close-range, photogrammetry software, (Photoscan Professional,
AgiSoft LLC, St., Petersburg, Russia) to generate 3D models. Mobile datasets utilized kinematic GPS
data post processing to assign image positions based on synchronized timing from camera metadata
and GPS (Figure 2). The resulting point clouds were already georeferenced and suitable for use within
supporting GIS programs. Stationary datasets were not georeferenced, but the scale was established
via a measuring ruler with control point marks of known distance. The mobile imagery utilized the
coordinates taken from the geodetic grade GPS receiver, which allowed the position of each photo
location to be set, and photogrammetrically aligned, prior to point cloud generation. Vertical sections
of the stems were excised from the point clouds via hand measurement at approximately 1.4 m above
the ground with the “point selection” tool in CloudCompare. The “point selection tool” was then also
used to manually measure diameter from stem sections with the “point selection” tool by measuring
the distance of points representing one side of the stem to points along the opposite side.
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Figure 2. Mounted vehicle set-up used for mobile photogrammetry in this study.

2.3. Data Analysis

All data were analyzed in the Microsoft Excel [57]. Similar to previous publications that assessed
the accuracy of modeled vegetation, root mean square error (RMSE) (Equation (2)) and bias (Equation (3))
were used to test model accuracy of DBH [46].

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(2)

Bias =

∑n
i=1(yi − ŷi)

n
(3)

These equations were executed with the number of estimates (n), the value estimated by the
models (yi), and the physical measurement (ŷi). A linear regression analysis was also used to compare
DBH measurements derived from close-range photogrammetry to their physical measurements with
the lm() function in R (www.r-project.org).

3. Results

3.1. General Site and Point Cloud Observations

Stems from urban sites showed greater diversity in size relative to the windbreak site, as the
average DBH was 27.1 cm with a range of 59.7 cm (min. = 4.6 cm, max. = 64.3 cm). There were 52 stems
from the windbreak site of one species (Pinus taeda L.), and were likely from a single relatively recent
planting event; so overall DBH size (mean = 14.2 cm) and variation (min. = 5.6 cm, max. = 22.9 cm)
were lower than the sampled urban trees.
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