
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

2007 

Comparative effects of the toxic dinoflagellate, Karenia brevis, on Comparative effects of the toxic dinoflagellate, Karenia brevis, on 

bivalve molluscs from Florida bivalve molluscs from Florida 

James R. Leverone 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the American Studies Commons 

Scholar Commons Citation Scholar Commons Citation 
Leverone, James R., "Comparative effects of the toxic dinoflagellate, Karenia brevis, on bivalve molluscs 
from Florida" (2007). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/2260 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F2260&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F2260&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Comparative Effects of the Toxic Dinoflagellate, Karenia brevis, 
 

on Bivalve Molluscs from Florida 
 
 
 

by 
 
 
 

James R. Leverone 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Biological Oceanography 

College of Marine Science 
University of South Florida 

 
 
 

Major Professor:  Norman J. Blake, Ph.D 
Sandra E. Shumway, Ph.D, D.Sc. 

Gabriel A. Vargo, Ph.D. 
Joseph J. Torres, Ph.D. 

Richard H. Pierce, Ph.D. 

 

 

Date of Approval: 
April 2, 2007 

 
 
 

Keywords:  harmful algae, molluscs, larvae, juveniles, mortality, clearance rate, 
histopathology 

 
 
 

© Copyright 2007, James R. Leverone



Dedication 

 This dissertation is wholeheartedly dedicated to my gracious wife, Barbara.  

Throughout my graduate studies, she has steadfastly supported me through all my trials 

and tribulations.  Whenever an experimental procedure went awry, especially in the 

beginning, she was always there to put things in perspective, reminding me that through 

apparent failures, progress and learning took root.  And at times when I was not making 

even the slightest progress or was not paying proper attention to my work, she would 

gently push me to keep going.  Even at times when I had doubts, she never wavered.  She 

had complete trust and confidence in me at times when I questioned myself.  

Furthermore, she always maintained a convivial home and family life which provided a 

welcome respite from my studies.  I will be  forever grateful to her for her support and 

hope she may share in the joy of my accomplishment. 

 May this work be an inspiration to any student contemplating a return to graduate 

school later in life.  May you have a partner who will encourage and support you as my 

wife did me. 



 
 
 
 

Acknowledgments 
 

There are many people to whom I owe a debt of appreciation for their support 

during the pursuit of this dissertation.  I wish to thank Dr. Norman J. Blake and Dr. 

Sandra E. Shumway for their guidance throughout this process, as well as my remaining 

committee members, Drs. Gabe Vargo, Jose Torres and Rich Pierce.  Candice Way and 

Noland Elsaesser at USF provided cultured bay scallop larvae and juveniles.  Curt 

Hemmel of Bay Shellfish Company supplied quahog larvae and juveniles, while John 

Suppan was very gracious in providing oyster larvae.  Many personnel from Mote Marine 

Laboratory were truly remarkable in extending their support and encouragement.  Dana 

Wetzel provided valuable climate-controlled laboratory space.  Mike Henry and Trish 

Blum extracted toxins from numerous algal cultures and performed brevetoxin analyses; 

Chris Higham and Val Palubok maintained phytoplankton cultures.  Jim Gelshleiter 

helped me acquire a modicum of skill in histological techniques and absorbed the cost 

laboratory supplies.  I am very honored to have had the continual support of Dr. Ernest 

Estevez, Director of the Center for Coastal Ecology, as I attempted to juggle my dual role 

of staff biologist at Mote Marine Laboratory and student at the University of South 

Florida.  Dr. Estevez maintained enthusiastic support and encouragement for my 

academic quest.  Finally, this degree could not have been completed without the support 

and financial assistance of the president, Dr. Kumar Mahadevan, and board of directors 

of Mote Marine Laboratory.  I am deeply appreciative and truly thankful to all of you.



i 

 
 

 
 
 

Table of Contents 
 

List of Tables ....................................................................................................................  iii 

List of Figures ....................................................................................................................  v 

Abstract ...........................................................................................................................  viii 

 

Chapter One:  Introduction ................................................................................................. 1 

Chapter Two:  Literature Review ....................................................................................... 4 

Bivalve Mortality Associated with Harmful Algal Species.................................... 5 
Behavioral Responses of Bivalves to Harmful Algal Species .............................. 10 
Feeding Responses of Bivalves Exposed to Harmful Algal Species.................... 12 
Cytotoxic Effects of Harmful Algal Species to Bivalves ..................................... 20 

Chapter Three:  Larval Studies ........................................................................................  24 

Introduction........................................................................................................... 24 
Materials and Methods.......................................................................................... 25 

Collection and Maintenance of Bivalves .................................................. 25 
Maintenance of Algal Cultures ................................................................. 26 
Preparation of Lysed Culture .................................................................... 26 
Determination of Cell and Brevetoxin Concentrations............................. 27 
Three-Day Static Exposure ....................................................................... 27 
Seven-Day Static Exposure ...................................................................... 29 
Statistical Analysis.................................................................................... 30 

Results................................................................................................................... 30 
Toxin Profile of Karenia brevis Cultures ................................................. 30 
Three-Day Static Exposure ....................................................................... 31 
Seven-Day Static Exposure ...................................................................... 32 

Discussion............................................................................................................. 33 

Chapter  Four:  Juvenile Studies ....................................................................................... 49 

Introduction........................................................................................................... 49 
Materials and Methods.......................................................................................... 51 

Collection and Maintenance of Juveniles ................................................. 51 
Maintenance of Algal Cultures ................................................................. 51 
Preparation of Lysed Culture .....................................................................52 
Determination of Cell and Brevetoxin Concentrations............................. 52 
Clearance Rate Studies ............................................................................. 53 



ii 

Static Exposure Experiments ........................................................ 54 
Flow-Through Exposure Experiments.......................................... 55 

Results................................................................................................................... 57 
Static Exposure Experiments .................................................................... 57 

Bay scallops (Argopecten irradians) ............................................ 58 
Green mussels (Perna viridis) ...................................................... 58 
Northern quahogs (Mercenaria mercenaria)................................ 59 
Eastern oysters (Crassostrea virginica)........................................ 59 

Flow-Through Exposure Experiments...................................................... 60 
Discussion............................................................... .............................................. 61 

Chapter Five:  Histopathology Studies ............................................................................  81 

Introduction........................................................................................................... 81 
Materials and Methods.......................................................................................... 83 
Results................................................................................................................... 85 
Discussion.... ......................................................................................................... 86 

Chapter Six: General Discussion .....................................................................................  95 

Bivalve Larvae………………………………………………………………………97 
Juvenile Bivalves…………………………………………………………………104 
Conclusion and Significance………………………………………………………109 

Impacts from Different Culture Preparations……………………………...109 
Possible Mechanisms of Toxic Activity…………………………………...111 
Implications for Fisheries Management…………………………………...114 

Literature Cited ............................................................................................................... 118 

About the Author. .................................................................................................. End Page 



iii 

 
 
 
 

List of Tables 
 
Table 1.     Cell density, sample matrix and brevetoxin composition of Karenia 

brevis (Wilson clone) cultures used in larval experiments for each 
species.  (Brevenal is considered a brevetoxin antagonist). ........................... 38 

 
Table 2.     Mean (+ SD) number of live and dead larvae, larval stage and percent 

survival for Argopecten irradians after exposure to Karenia brevis for 
three days.  Treatments consisted of whole and lysed cultures of K. 
brevis at three concentrations: 10,100 and 1,000 cells . ml-1.  (n = 5). ........... 39 

 
Table 3.     Mean (+ SD) number of live and dead larvae, larval stage and percent 

survival for Mercenaria mercenaria after exposure to Karenia brevis 
for three days.  Treatments consisted of whole and lysed cultures of K. 
brevis at three concentrations: 10,100 and 1,000 cells . ml-1.  (n = 5). ........... 40 

 
Table 4.     Mean (+ SD) number of live and dead larvae, larval stage and percent 

survival for Crassostrea virginica after exposure to Karenia brevis for 
three days.  Treatments consisted of whole and lysed cultures of K. 
brevis at three concentrations: 10,100 and 1,000 cells . ml-1.  (n = 5). ........... 41 

 
Table 5.     Effect of Karenia brevis concentration and culture preparation on 

percent survival in three-day-old bivalve larvae.  A) Two-way 
ANOVA (α = 0.05).  B) Tukey's (ω) multiple comparison test.  
Underlined treatments are not significantly different (p > 0.05). ................... 42 

 
Table 6.     Effect of Karenia brevis concentration on percent survival in seven-

day-old bivalve larvae.  A) One-way ANOVA (α = 0.05).  B) Tukey’s 
(ω) multiple comparison test.  Underlined treatments are not 
significantly different (p > 0.05)..................................................................... 48 

 
Table 7.     Experimental conditions, bivalve species, sample matrix, cell and 

brevetoxin concentration of laboratory cultures of K. brevis (Wilson 
Clone) used for juvenile feeding experiments. n.d. = not detected. ............... 67 

 
Table 8.     Decline in Isochrysis galbana cell counts (cells ml-1) for juvenile 

bivalve molluscs exposed to different concentrations and preparations 
of Karenia brevis under static conditions.  Starting seawater volume in 
each replicate was 500 ml. .............................................................................. 68 

 
 
Table 9.     Filtration and clearance rates of juvenile bivalve molluscs exposed to 



iv 

whole and lysed culture of Karenia brevis under static conditions.  
Starting seawater volume in each replicate was 500 ml. ................................ 69 

 
Table 10.   Species, treatment, clearance rate and amount of toxin (µg) each 

species was exposed to during static feeding experiments.  Amount of 
toxin exposure is based on culture cell concentration and amount of 
toxic (w/v) in each culture. .............................................................................. 75 

 
Table 11.   Experimental design for two-week exposure of Argopecten irradians to 

Karenia brevis.  (I. galbana is a common nutritional chrysophyte algae). .....89 
 
Table 12.  Schedule for the removal of Argopecten irradians from each 

experimental tank during the two-week exposure to Karenia brevis.  
Values represent shell height (mm) of individuals removed for fixation 
(shaded) or dead (unshaded) on that day. ........................................................90 

 
Table 13.    Scoring of hemocyte inflitration intensity in the digestive diverticula 

of A. irradians exposed to various scenarios of K. brevis. ..............................91 
 
Table 14.   The effects of Karenia brevis on molluscs. ...................................................116



v 

 
 
 
 
 

List of Figures 
 

Figure 1.  Percent survival (mean + SD) of Argopecten irradians larvae after 
exposure to Karenia brevis for seven days.  Treatment with an asterisk 
was significantly different (p < 0.05).  Larvae were seven days old at 
start of experiment.............................................................................................43 

 
Figure 2.  Percent survival (mean + SD) of Mercenaria mercenaria larvae after 

exposure for seven days to Karenia brevis.  Treatments with the same 
letter were not significantly different (p < 0.05).  Larvae were seven 
days old at start of experiment. .........................................................................44 

 
Figure 3.  Percent of total Mercenaria mercenaria larvae that survived to the 

umboveliger (   ) and pediveliger     ) stages after exposure to Karenia 
brevis for seven days.  Larvae were seven-day-old umboveligers at start 
of experiment.....................................................................................................45 

 
Figure 4.  Percent survival (mean + SD) of Crassostrea virginica larvae after 

exposure to Karenia brevis for seven days.  Treatment with an asterisk 
was significantly different (p < 0.05).  Larvae were seven days old at 
start of experiment.............................................................................................46 

 
Figure 5.  Percent of total Crassostrea virginica larvae that survived to the 

umboveliger (   ), pediveliger (   ) and spat (   ) stages after exposure to 
Karenia brevis for seven days.  Larvae were seven-day-old 
umboveligers at start of experiment. ................................................................47 

 
Figure 6.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile bay 

scallops (Argopecten irradians) exposed to three concentrations and 
two preparations of Karenia brevis.  Treatments with the same letter are 
not significantly different (p > 0.05).  n = 10.  Two-way ANOVA; 
Tukey’s Multiple Comparison Test...................................................................70 

 
Figure 7.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile green 

mussels (Perna viridis) exposed to three concentrations and two 
preparations of Karenia brevis.  Treatments with the same letter are not 
significantly different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s 
Multiple Comparison Test.................................................................................71 

 
 
Figure 8.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile 



vi 

northern quahogs (Mercenaria mercenaria) exposed to three 
concentrations and two preparations of Karenia brevis.  Treatments 
with the same letter are not significantly different (p > 0.05).  n = 10.  
Two-way ANOVA; Tukey’s Multiple Comparison Test..................................72 

 
Figure 9.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile eastern 

oysters (Crassostrea virginica) exposed to three concentrations and two 
preparations of Karenia brevis.  Treatments with the same letter are not 
significantly different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s 
Multiple Comparison Test.................................................................................73 

 
Figure 10.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile 

bivalves exposed to (A) whole and (B) lysed cultures of Karenia. brevis 
under static conditions.  ● = Argopecten irradians; ▲ = Perna viridis; 

 = Mercenaria mercenaria; and  = Crassostrea virginica.  (n = 10)............74 
 
Figure 11.  Regression of clearance rates for juvenile Argopecten irradians 

against the amount of brevetoxin exposure under static conditions.  
Solid line represents regression equation for whole culture of Karenia 
brevis; dashed line represents regression equation for lysed culture of 
K. brevis.  (n = 5)...............................................................................................76 

 
Figure 12.  Regression of clearance rates for juvenile Perna viridis against the 

amount of brevetoxin exposure under static conditions.  Solid line 
represents regression equation for whole culture of Karenia brevis; 
dashed line represents regression equation for lysed culture of K. 
brevis.  (n = 5). ..................................................................................................77 

 
Figure 13.  Regression of clearance rates for juvenile Mercenaria mercenaria 

against the amount of brevetoxin exposure under static conditions.  
Solid line represents regression equation for whole culture of Karenia 
brevis; dashed line represents regression equation for lysed culture of 
K. brevis.  (n = 5)...............................................................................................78 

 
Figure 14.  Regression of clearance rates for juvenile Crassostrea virginica 

against the amount of brevetoxin exposure under static conditions.  
Solid line represents regression equation for whole culture of Karenia 
brevis; dashed line represents regression equation for lysed culture of 
K. brevis.  (n = 5)...............................................................................................79 

 
Figure 15.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) of juvenile 

bivalves exposed to whole (top) and lysed (bottom) cultures of K. 
brevis under flow-through conditions.  Species include (A) Argopecten 
irradians, (B) Perna viridis, (C) Mercenaria mercenaria, and (D) 
Crassostrea virginica.  Concentrations of K. brevis in each treatment 
are:  Control (○), 100 (▲) and 1,000 ( ) cells . ml-1. (n = 6).  Clearance 



vii 

rates were measured twice a day (9 A.M. and 5 P.M.) and calculated 
from inflow and outflow concentrations of a supplemental food algae, 
Isochrysis galbana.............................................................................................80 

 
Figure 16.  (A)  The protist, Nematopsis sp? (arrow) and (B) a Rickettsial-like 

bacterial microcolony in the gill epithelia of A. irradians.  
Magnification equals 400x. ...............................................................................92 

 
Figure 17.  An unidentified parasite encysted within the digestive diverticula.  

Magnification equals 400x. ...............................................................................92 
 
Figure 18.  Digestive diverticula from A. irradians exposed to lysed culture of K. 

brevis and T. Isochrysis.  (A and B = day 7; C and D = day 9).  
Hemocyte aggregations (arrows) displaying inflammatory response.  
Magnification equals 400x. ...............................................................................93 

 
Figure 19.  Epithelial layer of the digestive diverticula in A. irradians from 

different exposure scenarios to K. brevis.  A)  control scallop at 14 
days; B) scallop exposed to whole culture of K. brevis at day 12.  
Magnification equals 400x. ...............................................................................93 

 
Figure 20.  Gill tissue from A. irradians showing A) the distal portions of the 

ordinary filaments (note the lateral cilia) and B) interconnecting vessels 
of the dorsal expansion......................................................................................94 

 
Figure 21.  Mantle tissue from A. irradians showing A) the epithelia of the mantle 

margin and B) section through an eye on the middle fold of the mantle 
margin................................................................................................................94



viii 

 
 
 

Comparative Effects of the Toxic Dinoflagellate, Karenia brevis, on Bivalve 

Shellfish from Florida 

 

James R. Leverone 

Abstract 

 

The effects of the toxic dinoflagellate, Karenia brevis (Wilson clone), on larval 

survival and development of the northern quahog (= hard clam, Mercenaria mercenaria), 

eastern oyster (Crassostrea virginica) and bay scallop (Argopecten irradians) were 

studied in the laboratory.  The effects of K. brevis on feeding activities of juveniles from 

these species plus the green mussel (Perna viridis) were also examined.  Finally, adult 

bay scallops were exposed to K. brevis for two weeks to investigate possible cytotoxic 

effects. 

Survival of 3-day-old larvae was generally > 85% for all shellfish species at 

Karenia brevis densities of 100 cells . ml-1 or less, and not significantly different between 

whole and lysed culture.  At 1,000 cells . ml-1, survival was significantly less in lysed 

culture than whole culture for both M. mercenaria and C. virginica.  Survival of 7-day-

old larvae in all species was not significantly affected at densities up to 1,000 cells . ml-1. 

 At 5,000 cells . ml-1, however, survival was reduced to 37, 26 and 19% for A. irradians, 

M. mercenaria and C. virginica, respectively.  Development of C. virginica and M. 

mercenaria larvae was protracted at K. brevis densities of 1,000 cells . ml-1. 

Clearance rates of juveniles were determined under static and flow-through 



ix 

conditions using whole and lysed cultures of K. brevis.  The bay scallop was most 

sensitive, exhibiting a 79% reduction in clearance rate at 1,000 cells . ml-1 of whole 

culture.  The eastern oyster was least responsive, showing a 38% reduction in clearance 

rate between the same treatments.  The green mussel and the northern quahog displayed 

intermediate responses.  Similar results were observed during longer (2 day) exposures to 

a continuous supply of K. brevis.  Bay scallops showed a significant decline in clearance 

rate at 100 cells . ml-1 after 24 hr exposure; clearance rate of oysters was not affected by 

K. brevis at this concentration.  No mortality was observed for any species during these 

brief exposures. 

Adult bay scallops exposed to K. brevis for two weeks showed degenerative and 

inflammatory changes in the digestive gland, including reduced thickness of the 

epithelium, increased size of digestive tubule lumens and hemocytic infiltration.  The 

prospect for recovery of bay scallop populations in Florida may be hampered by 

recurring blooms of K. brevis. 
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Chapter One 
 

Introduction 

The dinoflagellate, Karenia brevis (formally Gymnodinium breve, Davis) 

(Daugbjerg et al., 2001) is responsible for one of the oldest reported harmful algal 

blooms in North America (Ingersoll, 1882), yet shellfish poisonings in the Gulf of 

Mexico from this algal species were considered rare and infrequent as late as forty years 

ago.  At that time, it was not known whether shellfish could actually feed upon K. brevis 

or accumulate the toxins in their tissues.  In 1967, laboratory experiments in Texas (Ray 

and Aldrich, 1967) and field studies from Sarasota, FL (Cummins et al., 1971) both 

demonstrated that eastern oysters (Crassostrea virginica) could consume K. brevis and 

become toxic.  Partly as a result of these findings, the state of Florida began monitoring 

shellfish for toxicity from outbreaks of harmful algae in the 1970’s. 

Today, advances are being made in our knowledge and comprehension of the 

human health impacts from exposure to Florida red tides, which occur either through the 

consumption of contaminated shellfish or by inhalation of toxin-laden aerosols (Pierce et 

al., 1990; Pierce et al., 2005).  We now know that K. brevis produces at least twelve and 

possibly fourteen potent neurotoxins (=brevetoxins) that are lethal to fish and cause 

neurotoxic shellfish poisoning (NSP) in humans from the consumption of contaminated 

shellfish (Baden, 1988; Steidinger et al., 1998; Bourdelais et al., 2004).  Through these 

human health related studies, we are learning more about how shellfish accumulate, 

metabolize and eliminate brevetoxins.  Of particular interest is the discovery that eastern 
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oysters may remain toxic for several months after dissipation of a bloom (Dickey et al., 

1999; Wang, 2004).  The literature on the human health effects of Florida red tides has 

been recently reviewed by Kirkpatrick et al. (2004). 

Not surprisingly, progress in understanding how blooms of K. brevis affect the 

health of individual bivalve species lag considerably behind the human health 

ramifications of these same blooms; today, however, these red tides have led to greater 

concerns about the long-term effects these blooms are having on local fisheries, including 

critical species of bivalve molluscan shellfish (Landsberg, 1996).  For instance, we 

currently do not know whether K. brevis affects critical early life stages, growth and 

development of juveniles, or reproductive development and fecundity of adults for any 

species of bivalve mollusc from Florida.  Information on possible cytotoxic effects of K. 

brevis on bivalves is also critically lacking.  Does exposure to K. brevis affect feeding 

and behavior in bivalves, or render them more susceptible to predation?  What are the 

effects on population dynamics, particularly larval dispersal and recruitment?  We still do 

not even know if K. brevis causes mortality in any species of bivalve, particularly the bay 

scallop, Argopecten irradians.  Any deleterious effect of exposure to blooms of K. brevis 

would potentially threaten Florida’s valuable shellfish resources and negatively impact 

the state’s growing bivalve aquaculture industry (Blake et al., 2000; Adams and Sturmer, 

2004). 

The objectives of this research were to investigate the effects of the toxic 

dinoflagellate, Karenia brevis, on four important species of bivalve mollusc from Florida. 

The bivalve species selected for study were the bay scallop (Argopecten irradians), 

northern quahog (= hard clam, Mercenaria mercenaria), eastern oyster (Crassostrea 
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virginica) and green mussel (Perna viridis).  This research was divided into the following 

separate investigations of the specific effects of K brevis on bivalves:  1) survival and 

development in larvae, 2) feeding rates in juveniles, and 3) histopathology in adult bay 

scallops from long-term, sublethal exposure.  All studies were conducted under 

controlled laboratory conditions using a specific culture (Wilson clone) of K. brevis.  In 

each instance, experiments were designed to distinguish between effects caused by the 

toxic dinoflagellate and the effects of its associated toxins (=brevetoxins). 
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Chapter Two 
 

Literature Review 

 

The initial motivation for research on toxigenic algae was the potential human 

health impacts associated with these blooms (Hemmert, 1975; Bicknell and Walsh, 1975; 

Price et al., 1991; Todd, 1993; Fremy et al., 1999; Fernandez,  2000; Garthwaite,  2000). 

 Human health problems generally result from the consumption of bivalve molluscan 

shellfish rendered toxic by filtering and ingesting harmful microalgae (Shumway, 1995; 

Bricelj and Shumway, 1998) or by the inhalation of aerosolized brevetoxins incorporated 

in marine aerosol by bubble-mediated (Pierce et al., 1990; Pierce et al, 2005).  Not very 

long ago, bivalves were thought to accumulate toxins in their tissues without any 

apparent negative consequences (Prakash et al., 1971; Quayle, 1969).  That impression, 

however, has since been abandoned as researchers have taken a more thorough look at 

the chronic, sublethal effects of harmful algae on bivalves and how these interactions 

affect shellfish populations, mariculture activities and coastal ecosystems (Shumway et 

al., 1985; Shumway and Cucci, 1987; Shumway and Cembella, 1993; Bricelj and 

Shumway, 1998; see reviews by Shumway, 1990 and Landsberg, 2002). 

Bivalves accumulate microalgal toxins in their tissues through filter-feeding.  The 

way in which they respond to the presence of toxic algae depends upon the species of 

bivalve as well as the algal species encountered (Shumway and Cucci, 1987; Smolowitz 
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and Shumway, 1997; Gainey and Shumway, 1988; Bricelj et al., 1991; Lesser and 

Shumway, 1993).  In turn, behavioral and physiological differences among bivalves in 

feeding response also depend upon a number of factors.  These factors include, but are 

not limited to, history of exposure (Shumway and Cucci, 1987; Bricelj et al., 2000), 

season (Lesser and Shumway, 1993), algal toxicity (Bricelj et al., 1996) toxin content 

(Bricelj et al., 1991; Li and Wang, 2001), algal cell concentration (Bricelj et al., 2004), 

cell selectivity (Shumway et al., 1985; Shumway et al., 1990), cell size (Lesser and 

Shumway, 1993), and differences in digestive function (Wikfors and Smolowitz, 1993). 

 

Bivalve Mortality Associated with Harmful Algal Species 

 

 Global accounts of the lethal, sublethal and chronic effects of harmful algal 

blooms on shellfish and other molluscs may be found in Shumway and Cucci (1987) and 

also in two comprehensive reviews (Shumway, 1990; Landsberg, 2002).  Reports of 

massive shellfish mortality linked to harmful dinoflagellate blooms must be interpreted 

with caution since there can be other unfavorable events or conditions associated with 

algal blooms.  Most often, prolonged periods of low dissolved oxygen (=hypoxia) or 

even the absence of oxygen (=anoxia) in bottom waters will accompany or follow an 

algal bloom as cells lyse or fish decompose.  These conditions generate a high 

biochemical oxygen demand, which may also be a causative factor in shellfish mortalities 

associated with toxic algal blooms.   

 In a report on red water organisms (= dinoflagellates) from the Pacific Northwest, 

Nightengale (1936) listed some of the earliest records of harmful algal blooms and 
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shellfish that were “destroyed” (see Table).  In 1929, Nightengale (1936) personally  

 
Table of historical harmful algal events and affected bivalves reported in Nightengale 
(1936) 
 
Year Locality Harmful Alga Shellfish Affected 
1891 Pt. Jackson, Australia Glenodinium 

rubrums 
Oysters and mussels 

1893 Gokasho Bay, Japan Gymnodinium (?) Pearl oysters 
1902 Santa Barbara to San Diego, 

CA 
Gonyaulax species Fish and bottom fauna 

1907 San Pedro to San Diego ,CA Gonyaulax polyedra Pearl oysters, fish and 
shellfish 

1910 Gokasho Bay, Japan Gymnodinium (?) Pearl oysters 
 

observed losses of oysters in Oakland Bay, Washington during a bloom of Gymnodinium 

splendens.  Although the cause of mortality (toxins or oxygen depletion) in all of these 

instances was not established, decomposition of organic debris (and concomitant 

depletion of oxygen?) was suspected as the primary cause.  The only reported bivalve 

mortalities associated with Alexandrium catenella were white mussels (Donax serra) and 

black mussels (Chloromytilus meridionalis) off the southern coast of South Africa 

(Horstman, 1981).  Koray (1992) reported unidentified shellfish mortalities due to 

Alexandrium minutum in Izmir Bay, Turkey.  Wardle et al. (1975) observed dead 

surfclams (Spisula solidissima) and eastern oysters (Crassostrea virginica) among an 

assemblage of invertebrate and fish fatalities associated with a bloom of Gonyaulax 

monilata off Galveston, Texas from 1971-72.  In this instance, affected species were 

either sessile, sedentary or weakly motile, suggesting the more motile species were able 

to avoid the bloom area before accumulating lethal amounts of toxin.  Unfortunately, 

dissolved oxygen was not monitored during these mass mortality events.  Species of 

Alexandrium, reportedly toxic to a host of pectinid ( = scallop) species (see Table 1 in 
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Shumway and Cembella, 1993), have not been linked to scallop mortalities in nature. 

 Mass mortalities of bivalves are occasionally associated with blooms of nontoxic 

algal species.  Mortality in these instances is more often than not due to the subsequent 

decline in dissolved oxygen that accompanies these blooms.  A bloom of the 

dinoflagellate, Ceratium tripos, in New York Bight during the summer of 1976 was 

followed by mass mortalities of surfclams (Spisula solidissima), ocean quahog (Arctica 

islandica), sea scallops (Placopecten magellanicus), American lobster (Homarus 

americanus) and fish (Mahoney and Steimle, 1979).  Mortalities from this event were 

attributed to extensive oxygen depletion resulting from degradation of the algal bloom, 

and not a toxic response to the algal bloom.  Several species of Gonyaulax have been 

implicated in shellfish mortalities worldwide even when other environmental factors, 

particularly low dissolved oxygen, were at least partially at play during these events.  In 

South Africa, both Gonyaulax grindleyi (=Protoceratium reticulatum) and G. 

polygramma blooms resulted in massive quantities of dead invertebrates and fish, 

including a variety of mussels and abalone (Grindley and Nel, 1968; Grindley and 

Taylor, 1964).  Separate G. polygramma blooms were associated with mussel mortalities 

in Venezuela (Ferraz-Reyes et al., 1979; La Barbera-Sanchez et al., 1993), Japan 

(Koizumi et al., 1996; Schwimmer and Schwimmer, 1968) and Hong Kong (Lam and 

Yip, 1990).  Forbes (1990) reported shellfish mortality in connection with a bloom of G. 

spinifera in 1990.  In nearly all of these events, mortality was associated with low 

dissolved oxygen levels; thus, the cause of death could not be directly attributed to the 

dinoflagellate.  Furthermore, during a PSP event in Venezuela during 1988, HPLC 

analysis of G. polygramma samples did not reveal any toxins, supporting the idea that 
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two other species, namely A. tamarensis and G. catenatum, which were present during 

that PSP event, were the toxigenic organisms (La Barbera-Sanchez et al., 1993). 

 Species of Gymnodinium, on the other hand, have been implicated in shellfish 

mortalities, especially the queen scallop (Pecten maximus) in European waters.  High 

mortalities of larvae, post-larvae and juveniles (Lassus and Berthome, 1988; Erard-

LeDenn et al., 1990) and inhibited growth and reproduction in adults (Erard-LeDenn et 

al., 1990) have been documented from France and Ireland in association with 

Gymnodinium cf. aureolum blooms. Abbott and Ballantine (1957) detailed queen scallop 

mortality in the presence of G. veneficum in the laboratory.  The softshell clam, Mya 

arenaria, suffered 30-40% mortality as a result of a Gyrodinium aureolum 

(=Gymnodinium aureolum) bloom in Maquoit Bay, Brunswick, Maine in 1988 (Heinig 

and Campbell, 1992).  The blue mussel, Mytilus edulis, was also affected.  Again, 

mortality was attributed to both low dissolved oxygen and toxin production by G. 

aureolum.  Mortality of (unidentified) shellfish was observed in association with a bloom 

of Gymnodinium sp. in southern Brazil during April, 1978.  Shellfish collected during 

this episode were found to contain saxitoxins (Machado, 1979). 

 In 1987, North Carolina experienced its first recorded red tide outbreak, caused 

by the dinoflagellate, Gymnodinium breve (=Karenia brevis) (Tester et al., 1991).  Strong 

circumstantial evidence suggested that the red tide caused mortality of both adult and 

newly recruited bay scallops (Summerson and Peterson, 1990), leading to recruitment 

failure in subsequent years in the state’s most productive scallop beds (Peterson and 

Summerson, 1992).  No other information on the effects of K. brevis on bay scallops has 

been published. 
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 Mass mortality of marine animals due to Karenia brevis red tides was first 

reported from the west coast of Florida in 1946-47 by Gunter et al. (1947).   The total 

number of dead fish from the entire area was estimated to be over 50,000,000.  Accounts 

of dead invertebrates were limited to the statements:  “Oysters, clams, crabs, shrimp, 

barnacles, and coquinas were also killed.  The clam industry at Marco … [did] not appear 

to be involved”.  During a red tide outbreak near Sarasota, Florida in 1978, Tiffany and 

Heyl (1978) reported numerous surf clams (Spisula solidissima similis) and coquina 

(Donax variabilis) washed up on local beaches.  Peak Gymnodinium breve (= Karenia 

brevis) cell counts during the outbreak reached 5 x 106 cells . L-1.  Sufficient dissolved 

oxygen was present in offshore bottom waters during the red tide suggesting that 

mortality was due to the toxic dinoflagellate.  Simon and Dauer (1972) observed the near 

complete destruction of the benthic infaunal community in Old Tampa Bay during a 

severe (up to 17.7 x 106 cells . L-1) K. brevis bloom in 1971.  Oxygen depletion 

accompanying the massive fish kill could not be ruled out as a causative factor.  

Interestingly, the bivalve Mulinia lateralis was one of the least impacted species in the 

assemblage, but this may be due to the ability of this species to withstand short periods of 

anoxia (Shumway et al., 1983).  The authors concluded that laboratory studies were 

needed to confirm the field observations.  Under laboratory conditions, Sievers (1969) 

showed that Crassostrea virginica exhibited no mortality when exposed to K. brevis 

concentrations up to 9.9 x 106 cells . L-1 for 48 hours.  Additional laboratory studies are 

necessary to delineate the direct effects of K. brevis on mortality in Florida shellfish 

populations. 
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Behavioral Responses of Bivalves to Harmful Algal Species 

 

 Measures of behavioral responses of organisms can provide insight into how they 

cope with potentially harmful conditions; in this case, exposure to harmful or toxic algae. 

 Behavior patterns can provide a useful index of in vivo sensitivity to these algae and 

their toxins (Bricelj et al., 1996).  Many species of bivalve mollusc exhibit a variety of 

responses to the presence of toxic dinoflagellates, including changes in shell valve 

activity, siphon retraction, byssal thread production, burrowing activity, oxygen 

consumption, and heart rates (Shumway and Cucci, 1987). 

 Shell valve activity in the Pacific oyster (Crassostrea gigas) was inhibited when 

oysters were fed the toxic dinoflagellate Alexandrium minutum for 8 to 15 days (Lassus 

et al., 1999), but there was an immediate and significant increase in shell valve activity 

when the A. minutum diet was followed by a nontoxic food source.  This same oyster 

species, however, displayed vigorous clapping of shell valves when exposed to A. 

catenella (Dupay and Sparks, 1968), although two other oyster species (Crassostrea 

virginica and Ostrea edulis) remained open and continued to filter in the presence of 

Alexandrium tamarensis (Shumway and Cucci, 1987), each species exhibited unique 

behaviors in the presence of this toxic dinoflagellate.  In O. edulis, there was an initial, 

partial adduction of the shell valves followed by periodic ‘snaps’ which continued until 

clean seawater was introduced.  Eastern oysters (C. virginica) responded by initially 

closing their shell valves, followed by a gradual reopening.  This pattern repeated itself, 

although complete closure never occurred.  Eastern oysters rarely opened and did not 

filter when exposed to Gonyaulax monilata (=Alexandrium monilatum), but opened 
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frequently in the presence of Karenia brevis (Ray and Aldrich, 1967). 

 It was first suggested by Twarog and Yamaguchi (1975), and given further 

credence by Shumway and Cucci (1987), that a number of molluscan species from 

locales that periodically experience toxic algal blooms have evolved mechanisms that 

allow them to exploit the toxic algae as a food source.  Mussels (Mytilus edulis) from 

Maine, which have a history of exposure to toxic algal blooms, showed no evidence of 

shell-valve closure when exposed to Protogonyaulax tamarensis ( = Alexandrium 

tamarense) in the laboratory, while the majority of mussels from Rhode Island and Spain, 

which are not subjected to toxic algal blooms in their native locales, showed initial erratic 

shell-valve activity followed by complete shell closure (Shumway and Cucci, 1987).  In 

addition, exhalent siphons from many of the mussels from both Rhode Island and Spain 

were closed, while the mantle edges in otherwise ‘open’ animals were retracted.  Mussels 

from Rhode Island and Spain also produced copious amounts of a white, mucus-like 

material in the presence of A. tamerense.  Many eventually died. 

 Populations of bivalves from the west coast of Florida (northern quahogs and 

eastern oysters, in particular) have become established in locations which are 

undoubtedly exposed to a higher frequency of recurring blooms of K. brevis than other 

populations which rarely, if ever, come in contact with these blooms.  An understanding 

of a species’ exposure history to harmful algal episodes must be taken into account when 

attempting to explain the interactions between a toxic alga and a particular bivalve 

species. 

 The sea scallop (Placopecten magellanicus) showed dramatic activity patterns 

when exposed to Alexandrium tamarense (Shumway and Cucci, 1987).  Most individuals 
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exhibited an immediate closure of the shell valves followed by either violent swimming 

activity, partial, sustained shell-valve closure, or a combination of the two.  Swimming / 

clapping activity lasted less than one hour, possibly a result of fatigue.  Sea scallops 

showed a similar response when subjected to starfish extracts, in addition to an 

accelerated heart rate, increased stroke volume and an enhanced cardiac output 

(Thompson et al., 1980).  Sea scallops also produced copious amounts of a white mucus-

like substance when exposed to bloom conditions of A. tamerense (Shumway and Cucci, 

1987).  Activity patterns of bay scallops (Argopecten irradians) in the presence of toxic 

dinoflagellates have not been investigated. 

 The northern quahog ( = hard clam) Mercenaria mercenaria, showed an initial 

retraction of the siphons followed by complete closure of the shell valves in the presence 

of Alexandrium tamarense (Shumway and Cucci, 1987).  The animals did not re-open 

until they were returned to clean sea water. 

 

Feeding Responses of Bivalves Exposed to Harmful Algal Species 

 

 Harmful algae have significant impacts on the feeding activity of bivalve 

molluscs (Shumway and Cucci, 1987; Bricelj et al., 1996; Lassus et al., 1996; Lassus et 

al., 1999; Li and Wang, 2001).  The exact response depends on the species of bivalve as 

well as the algal species encountered (Shumway and Cucci, 1987; Gainey and Shumway, 

1988; Bricelj et al., 1996; Lesser and Shumway, 1993; Bardouil et al., 1993; Bardouil et 

al., 1996; Smolowitz and Shumway, 1997; Lassus et al., 1999).  Changes in feeding 

activity can provide an indication of the sensitivity of bivalves to toxins and thus 
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potential for toxin uptake of various species (Bricelj et al., 1996).  Feeding rate 

measurements may also be useful in looking at the response within a species to variation 

in dinoflagellate cell toxicity (Bricelj and Shumway, 1998). 

 The simplest and most common measure of feeding activity in bivalve molluscs is 

the clearance rate, which is a measure of the volume of water “cleared” of particles per 

unit time.  Filtration rate is usually defined as the number of particles removed from 

suspension per unit time.  The clearance rate is a measure of an individual’s ability to 

remove particles from suspension.  When no pseudofeces are produced (no captured 

particles are rejected), the clearance rate equals the ingestion rate. 

 Oysters.  Early studies on oysters led to erroneous conclusions that they were able 

to avoid the accumulation of toxic algae and were thus considered to be less prone to 

becoming toxic than other bivalves (see Shumway et al., 1990 for review).  Today, 

however, there is much more convincing evidence demonstrating that feeding rates in 

oysters are, indeed, affected by toxic dinoflagellates.  These feeding responses, 

particularly clearance rates, may be quite variable and sometimes contrary (Bardouil et 

al., 1993; Shumway and Cucci, 1987).  The European oyster, Ostrea edulis, exhibited 

significantly higher clearance rates when fed a mixed nontoxic algal diet plus 

Alexandrium tamarense, when compared to an identical diet without the toxic 

dinoflagellate (Shumway and Cucci, 1987).  The opposite was true for Crassostrea 

virginica when subjected to identical experimental conditions; the diet containing A. 

tamarense resulted in lower clearance rates (Shumway and Cucci, 1987). 

 Bardouil et al. (1993) offered unialgal cultures of toxic and nontoxic microalgae 

to Crassostrea gigas under conditions similar in design to Shumway and Cucci (1987).  
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The same batch of adult C. gigas was exposed successively to non-toxic and toxic 

Alexandrium tamarense, and a different group was exposed to nontoxic Scrippsiella 

trochoidea and toxic A. minutum.  Mean algal concentrations were based on field values 

observed during red tide phenomena.  Mean clearance rates showed significant 

differences between toxic and nontoxic A. tamarense as well as between S. trochoidea 

and A. minutum.  Clearance rates of juvenile C. virginica fed separately on unialgal 

cultures of two toxic dinoflagellates (A. tamarense and Gyrodinium (= Gymnodinium) 

aureolum) were significantly different from one another and significantly lower than the 

clearance rates on the nontoxic alga Isochrysis sp. (Lesser and Shumway, 1993).  In the 

same experiment, post-hoc multiple comparison tests showed clearance rates of Ostrea 

edulis which were fed the same two toxic dinoflagellates grouped together, and were also 

significantly lower than clearance rates of Isochrysis sp. 

 Bardouil et al. (1996) continued their studies on the feeding habits of Crassostrea 

gigas by investigating the effects of two strains (toxic and nontoxic) of the dinoflagellate 

Alexandrium tamarense in combination with the diatom Thalassiosira weissflogii.  When 

compared to a unialgal diet of T. weissflogii, a diatom/toxic dinoflagellate ratio as low in 

biomass as 90/10 reduced clearance rates in C. gigas by twenty percent.  Clearance rates 

were slightly, but significantly, lower for a 50/50 diatom/toxic dinoflagellate mixture, 

while a unialgal toxic dinoflagellate diet resulted in complete inhibition of filtration, 

ingestion and absorption (Bardouil et al., 1996). 

 Following the work of Bardouil et al. (1996), Lassus et al. (1999) evaluated the 

feeding behavior of Crassostrea gigas on toxic algal diets over a longer time period (up 

to 30 days) to ascertain whether physiological behavior returned to normal during 
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detoxification.  Oysters fed Alexandrium minutum for 8 to 15 days exhibited significant 

reductions in clearance rate, filtration rate and biodeposition rate as compared to a 

nontoxic dinoflagellate, Scrippsiella trochoidea.  When the A. minutum diet was followed 

by a diet of either flagellates or diatoms, clearance and filtration rates did not return to 

their pre-exposure levels (Lassus et al., 1999). 

 The probability of Eastern oysters becoming exposed to Karenia brevis 

(=Gymnodinium breve) is less than other shellfish because oyster beds are typically 

located in the more oligohaline, upper reaches of an estuary.  In the Gulf of Mexico, 

optimum growth and reproduction occurs in oyster reefs with a salinity of 12 to 30 ppt, 

but oyster abundance is greatest at salinities between 10 and 20 ppt (Butler, 1954).  The 

salinity preference of K. brevis is > 24 ppt (Tester and Fowler, 1990), which effectively 

provides a salinity barrier against K. brevis for many oysters.  Ray and Aldrich (1965) 

first noted that the optimum salinity for oysters is lower than that for K. brevis; however, 

this does not mean that oysters are never exposed to K. brevis nor are they always free of 

brevetoxins (Shumway et al., 1990).  Cummins and Hill (1969) found that oysters 

accumulated 89 – 95 % of K. brevis in 2-4 hours with an original concentration of 2.4 x 

106 cells . L-1.  Eastern oysters not only survived, but exhibited normal behavior during a 

48 hour exposure to K. brevis at cell concentration of 9.9 x 106 cells . L-1 (Sievers, 1969). 

 Brevetoxin metabolites have now been isolated and identified in C. virginica from 

shellfish harvesting areas after a bloom of K. brevis in the Gulf of Mexico in 1996 

(Dickey et al., 1999) and in Sarasota Bay in 2001 (Pierce et al., 2004).  No data have 

been published on the effects of K. brevis on clearance rates in eastern oysters. 

 Mussels.  Following a bloom of Gyrodinium (=Gymnodinium) aureolum off 
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Plymouth, England in 1978, Widdows et al. (1979) examined the effects of this 

dinoflagellate on the physiological and cytological responses of the mussel Mytilus edulis 

in the laboratory.  They showed that the dinoflagellate either produced or contained a 

substance which was cytotoxic to M. edulis.  It had an acute effect on the clearance rate 

and caused marked cellular damage to the gut; however, the mussels were capable of 

rapid recovery when G. aureolum cell concentrations declined. 

 Shumway and Cucci (1987) examined the effects of the toxic dinoflagellate 

Protogonyaulax tamerensis (=Alexandrium tamarense) on feeding in several species of 

commercially important bivalve mollusc.  Each species was fed a mixture of nontoxic 

algae and clearance rates were calculated.  The same individuals were purged in filtered 

seawater overnight and fed an identical algal mixture with the addition of A. tamerense 

(clone GT 429) the following day.  The mussel, Mytilus edulis, showed relatively little 

change in clearance rates when exposed to A. tamerense, but this response seemed partly 

affected by the locality of each mussel population.  Mussel populations from Maine 

showed no selection for or against the toxic dinoflagellates; A. tamerense was readily 

filtered and appeared in both the pseudofeces and feces.  Mussels from other populations 

showed varying behavioral responses to the presence of A. tamerense (summarized in the 

previous section), suggesting that feeding rates in these populations were negatively 

affected by this particular dinoflagellate culture. 

 Clearance rates of juvenile Mytilus edulis fed unialgal cultures of either 

Alexandrium tamarense or Gyrodinium aureolum were significantly lower than clearance 

rates on a unialgal diet of Isochrysis sp. (Lesser and Shumway, 1993).  Results were 

similar in experiments conducted during the winter (5o C) and spring (10o C). 
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 In Japan, the clearance rate of the mussel Mytilus galloprovincialis was 

significantly reduced when exposed to Heterocapsa circularisquama, even at a 

dinoflagellate cell density of only 50 cells . ml-1 (Matsuyama et al., 1997).  The reduction 

in clearance rate did not seem to be caused by size, density, or shape of H. 

circularisquama cells since no inhibitory effect was observed when mussels were 

exposed to other morphologically similar dinoflagellates.  Repression of clearance rate 

was not observed when M. galloprovincialis were exposed to a filtrate of H. 

circularisquama culture or cultures where the cell walls had been removed by 

centrifugation, indicating that the source of toxicity of H. circularisquama is localized on 

the cell surface (Matsuyama et al., 1997). 

 Li and Wang (2001) employed a radiotracer technique to determine the selective 

feeding behavior of the mussel Perna viridis and the clam Ruditapes philippinarum on an 

algal mixture containing both toxic and nontoxic Alexandrium tamarense.  Both bivalves 

had similar clearance and ingestion rates between the two A. tamarense cultures.  No 

selective ingestion of either algal preparation was observed, indicating that the two 

bivalves were unable to distinguish the particles based on their toxicity.  These findings 

support earlier reports on Mytilus californianus, which was observed to ingest both toxic 

and nontoxic dinoflagellates in natural sea water (Buley, 1936; Fox and Coe, 1943). 

 Scallops.  Shumway and Cembella (1993) provide a comprehensive review of the 

impact of toxic algae on scallop culture and fisheries.  Less is known about the effects of 

toxic algae on scallop feeding physiology, particularly clearance and filtration rates, 

compared to other bivalve molluscs. 

Li and Wang (2000) suggested that high PSP toxin levels in the scallop Chlamys 
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nobilis were partly due to its relatively high clearance rate of Alexandrium tamarense.  

Feeding behavior in the king scallop (Pecten maximus), after switching from a diet of A. 

tamarense to a nontoxic diet, changed drastically depending on the algal species used to 

detoxify the scallops (Bougrier et al., 2000).  A diet based on Tetraselmis suecica 

appeared to stimulate clearance and filtration rates, whereas one based on Isochrysis 

galbana had the opposite effect. 

The sea scallop, Placopecten magellanicus, continued to feed normally when 

exposed to toxic Alexandrium tamarense (Shumway and Cucci, 1987).  However, most 

exhibited striking behavioral responses including violent swimming activity.  While this 

increased activity may provide temporary escape from predators, it does not provide 

protection from prolonged toxic algal blooms.  The associated increase in heart rate, 

stroke volume and other physiological stresses may actually prove to be detrimental to P. 

magellanicus Thompson et al., 1980).  Feeding rates for P. magellanicus on A. tamarense 

and Gyrodinium (=Gymnodinium) aureolum were significantly different from one 

another, but still significantly lower than feeding rates on Isochrysis sp. (Lesser and 

Shumway, 1993).
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Juvenile and adult bay scallops (Argopecten irradians) did not exhibit feeding inhibition 

during a two week exposure to the toxic epibenthic dinoflagellate Prorocentrum lima, a 

known producer of diarrhetic shellfish poisoning (DSP) (Bauder et al., 2001).  Clearance 

rates were similar for bay scallops exposed to equivalent biovolume cell concentrations 

of P. lima and the non-toxic diatom Thalassiosira weissflogii.  In contrast, clearance rates 

of A. irradians fed two species of toxic dinoflagellate (Alexandrium tamarense and 

Gyrodinium aureolum) were significantly higher than bay scallops fed Isochrysis sp. 

(Lesser and Shumway, 1993).  No information is available on the effects of Karenia 

brevis on feeding behavior in bay scallops (Shumway, personal communication).   

 Clams.  Northern quahogs (Mercenaria mercenaria) retracted their siphons and 

completely closed their shell valves when exposed to Alexandrium tamarense (Shumway 

et al., 1985).  The valves remained closed and clams did not feed until the addition of 

clean seawater.  In a separate study, however, M. mercenaria was shown to clear A. 

tamarense at very low clearance rates during spring and even less so during winter 

(Lesser and Shumway, 1993).  When exposed to a diet composed solely of A. fundyense, 

M. mercenaria closed their shells and did not resume pumping until a low density of 

Thallasiosira weissflogii was added (Bricelj et al. 1990).  Quahogs ingested T. weissflogii 

and A. fundyense in the same proportion as offered in the algal suspension, thus 

exhibiting no ingestion selectivity.  Quahogs ingested up to 3.4 x 105 toxic cells . g-1 . 

day-1 (Bricelj et al. 1990).  From these studies it appears that a supply of nontoxic algae 

is necessary to entice northern quahogs to extend their siphons and commence feeding in 

the presence of certain species of toxic dinoflagellate. 

The softshell clam, Mya arenaria, filtered 7.6 x 103 cells h-1 g dry wt-1 in the 
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presence of Gonyaulax (=Alexandrium) tamarense, a 47% reduction compared to the 

same individuals fed the same diet without the toxic dinoflagellate (Shumway and Cucci, 

1987).  Mya arenaria were not able to clear nontoxic algal cells in the presence of A. 

tamarense. 

During a 1973-74 Karenia brevis bloom in Sarasota, FL, shellfish suspected of 

being contaminated were processed and analyzed for the presence of toxins (Hemmert, 

1975).  The surfclam (Spisula solidissima raveneli) had a toxicity of 75 MU and the 

southern hard clam (Mercenaria campechaenis) had a toxicity of 96 – 118 MU, 

indicating their ability to filter and ingest K. brevis and to accumulate brevetoxins. 

 

Cytotoxic Effects of Harmful Algal Species to Bivalves 

 

While the role of harmful algal blooms is well documented in human shellfish 

poisonings and aquatic organism mass mortality events, there is far less information 

concerning chronic, lethal or sublethal effects on shellfish caused by bioaccumulated or 

biomagnified algal toxins.  This paucity of information also concerns whether such 

harmful algal blooms render shellfish susceptible to disease (Landsberg, 1996).   

One of the earlier studies demonstrating the cytotoxic impacts of harmful algae on 

bivalves was conducted by Widdows et al. (1979) who observed cellular damage to the 

gut of adult Mytilus edulis after a short (< 24 h) exposure to bloom conditions of 

Gyrodinium (=Gymnodinium) aureolum. 

More comprehensive studies have centered on the pathological effects of bivalve 

exposure to the toxic dinoflagellate, Prorocentrum minimum (Bardouil et al., 1993; 
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Luckenbach et al., 1993; Wikfors and Smolowitz, 1993; Wikfors and Smolowitz, 1995).  

Wikfors and Smolowitz (1993) showed that P.  minimum, when offered as a food source 

in combination with Isochrysis sp., was poorly ingested by juvenile bay scallops (A. 

irradians) and resulted in 100% mortality after a four-week exposure.  After one week, 

there were appreciable differences in tissues between scallops feeding on Isochrysis sp. 

and those fed a mixed Isochrysis/P. minimun diet.  Affected scallops had poorly 

developed digestive diverticula, severe attenuation of epithelial cells associated with 

absorptive-cell necrosis and sloughing of cells into central lumens.  Residual cells were 

more numerous.  Large melanized hemocyte clots were present in the open vascular 

system of the mantle, digestive diverticula, heart, gill, and kidney tissues.  Collectively, 

these findings suggested that P. minimum produced an enterotoxin that gradually affected 

absorptive cells (Wikfors and Smolowitz, 1993).  Juvenile hard clams (Mercenaria 

mercenaria), on the other hand, ingested both P. minimum and the congener P. micans 

under identical conditions and survived well under all feeding conditions.  No 

histological examinations of hard clam tissues were made (Wikfors and Smolowitz, 

1993).   

Luckenbach et al. (1993) observed that juvenile eastern oysters (C. virginica) 

exposed to 100% P. minimum bloom density (8.9 x 103 to 2.5 x 105 cells . ml-1)died 

within 14 days, and 43% exposed to 33% bloom density died within 22 days, but oysters 

exposed to 5% bloom density had good shell growth and no mortality.  Wikfors and 

Smolowitz (1995) further examined the histopathology of embryos, larvae, spat and 

juveniles of the eastern oyster (C. virginica) fed different diet combinations of P. 

minimum and Isochrysis sp.  Feeding larvae showed poor growth and poor development 
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of the digestive system on a P. minimum diet only.  Growth of oyster larvae fed a 1:1 P. 

minimum/Isochrysis diet was intermediate, while a 1:2 P. minimum/Isochrysis diet 

resulted in distinctive changes in the anatomy of the digestive system (Wikfors and 

Smolowitz, 1995).  Oyster spat fed a 1:2 P. minimum/Isochrysis diet showed an abnormal 

accumulation of lipid in the stomach epithelium.  Absorptive cells in the digestive glands 

of both larvae and spat contained accumulation bodies, often with a laminated, fibrous 

appearance.  Accumulation bodies were periodic acid-Schiff (PAS) positive and may 

have corresponded to autolysosomal bodies within P. minimum cells.  The linkage of 

accumulation bodies within absorptive cells of oyster digestive diverticula and 

dinoflagellate autolysosomal bodies suggests a mechanism by which some dinoflagellates 

interfere with feeding in phytoplankton grazers (Wikfors and Smolowitz, 1995). 

Flat oysters (Ostrea rivularis), which had died following a Prorocentrum bloom 

in southern China (Yomgjia et al. 1995), exhibited a pathology consistent with a systemic 

toxicosis resulting from the absorption of toxins by the digestive gland (Landsberg, 

1996).  The most intense lesion was formed by hemocytes that accumulated in and 

around the hemolymph channels, infiltrated the walls of the blood sinus, and formed 

intravascular thrombi.  Interestingly, this pathology was similar to that found in C. 

virginica by Wikfors and Smolowitz (1993).  These studies suggest that Prorocentrum 

spp. may induce pathological effects in the hematopoietic system of oysters (Landsberg, 

1996).  Finally, spat of the Pacific oyster (C. gigas) showed abnormal histopathologies in 

the gut and gill when exposed for 21 days to a diet of cultured Prorocentrum rhathymum 

at 1.2 x 104 cells . L-1 (Pearce et al., 2005).   

Other toxic algae have caused histopathologies in bivalves.  Elevated lysosomal 
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destabilization rates, which indicate damage to the hepatopancreas, have been reported in 

eastern oysters (C. virginica) exposed to algal blooms dominated by the raphidophyte 

Heterosigma akashiwo (Keppler et al., 2005) as well as the dinophyte, Kryptoperidinium 

foliaceum (Lewitus et al., 2003). 

Smolowitz and Shumway (1997) examined gut tissues from juveniles of eight 

species of bivalve that had been exposed to Gyrodinium aureolum and found the impact 

to be species-specific.  The eastern oyster (Crassostrea virginica) and the bay scallop 

(Argopecten irradians) were most severely affected.  Several C. virginica showed mantle 

and gill lesions.  Bay scallops exhibited decreased height of absorptive cells and 

increased lumen diameter after exposure, suggesting that G. aureolum was of poor food 

quality.  Evidence of toxic effects was not identified in the digestive gland.  Several bay 

scallops also showed variable amounts of inflammation in the kidney associated with 

protozoal infestations and variable amounts of predominately rod-shaped bacteria within 

the urinary space.  Another pectinid, the king scallop (Pecten maximus) developed 

obvious STX neoformation in kidneys after exposure to PSP toxins (Bougrier et al., 

2000).  Pectinids are apparently unaffected by disseminated neoplasia (Landsberg, 1996), 

and only one case of germinoma has been reported in bay scallops (Peters et al., 1996). 

Brevetoxins produced by Karenia brevis and which are responsible for neurotoxic 

shellfish poisoning (NSP) in the Gulf of Mexico, have not yet been shown to play a role 

in the development of neoplasia in bivalves (Landsberg, 1996).  Although brevetoxins are 

well known for their role in fish kills (Steidinger et al., 1973; see Landsberg, 2002 for 

review), their effect in developing histopathologies in bivalve molluscs is unknown.
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Chapter Three 

Larval Studies 

 

Introduction 

 

Recurring and persistent harmful algal blooms have raised increasing concerns 

about the long-term effects on local fisheries, including critical species of bivalve 

shellfish (Shumway and Cucci, 1987; Shumway, 1990; Landsberg, 1996).  The toxic 

dinoflagellate, Karenia brevis, causes periodic and extensive red tides along the south-

central Gulf coast of Florida (Steidinger et al., 1995) and produces potent neurotoxins 

(=brevetoxins).  These brevetoxins are lethal to fish and cause neurotoxic shellfish 

poisoning (NSP) in humans from the consumption of contaminated shellfish (Baden, 

1988; Steidinger et al., 1998).  At the same time, K. brevis blooms pose a potential threat 

to Florida’s shellfish resources and growing bivalve aquaculture industry (Blake et al., 

2000; Adams and Sturmer, 2004).  Red tides usually occur in the late summer and fall 

along the Florida west coast (Kirkpatrick et al., 2004) at a time when native shellfish 

species are spawning (Barber and Blake, 1983; Hesselman et al., 1989).  Shellfish 

populations could thus be exposed to K. brevis blooms at a critical stage in their life 

history, and the relative success or failure of recruitment could depend on whether there 

are detrimental effects of exposure to K. brevis on the developmental stages of affected 
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shellfish species.  Therefore, the effects of the NSP-producing alga, K. brevis, on survival 

and development of larvae were examined for three species of bivalve molluscs:  the 

northern quahog (= hard clams) (Mercenaria mercenaria), the bay scallop (Argopecten 

irradians) and the Eastern oyster (Crassostrea virginica).  Experiments were designed to 

specifically investigate whether differences in survival were due to the dinoflagellate 

itself or its constituent toxins. 

 

Materials and Methods 

  

Collection and Maintenance of Bivalves 

 

All adult bivalves used for broodstock were collected from the Florida Gulf 

Coast.  Bay scallops were collected from the Anclote estuary while northern quahogs 

were collected from Tampa Bay.  Oyster larvae were provided by John Supan, manager 

of the Grand Isle (Louisiana) Bivalve Hatchery.  Adults were transferred to one of the 

following facilities for maturation and spawning:  University of South Florida, St. 

Petersburg (bay scallops); Bay Shellfish Co., Palmetto, FL (northern quahogs).  Larvae 

were transferred to Mote Marine Laboratory, Sarasota, FL immediately after spawning 

for subsequent larval studies.   Larvae were maintained in 2L flasks at a density of five 

larvae . ml-1 under gentle aeration and fed Isochrysis galbana daily at a density of 10,000 

cells . ml-1 prior to experimentation. 
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Maintenance of Algal Cultures 

 

Batch cultures of Karenia brevis (= Gymnodinium breve) (Wilson clone) were 

grown in NH15 media without aeration.  Cultures of Isochrysis galbana (Tahitian clone) 

were grown in f/2 media plus Trimsa minus silica with aeration.  Seawater was collected 

locally, filtered through cartridge filters to remove particles > 0.2 μm, passed through an 

activated charcoal filter, sterilized with ultraviolet light and autoclaved.  Cultures were 

maintained at a temperature of 24 to 26o C and a salinity of 33 to 35 ppt (parts per 

thousand).  Lighting was provided by a combination of Cool-white and Gro-lite bulbs.  

Cultures of K. brevis were maintained on a 12:12 hour light: dark cycle, while I. galbana 

cultures were exposed to constant illumination.  All experiments used cultures in 

stationary growth phase, generally achieved two weeks after inoculation. 

 

Preparation of Lysed Culture 

 

Larval  experiments were conducted using both whole and lysed culture 

preparations of Karenia brevis.  Lysed preparations were produced by exposing a sample 

of K. brevis culture to ultrasonic disruption at 750 W for four minutes using a Sonics® 

Vibracell with 5 mm microtip probe.  A small subsample ( < 1 ml) was observed 

microscopically to verify that the cells had been disintegrated.  A 500 ml sample of lysed 

culture was then subjected to brevetoxin analysis by the same procedure as whole culture 

samples. 
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Determination of Cell and Brevetoxin Concentrations 

 

Cell concentration for each algal culture was determined prior to each experiment 

employing a Coulter® Multisizer IIE fitted with a 100 μm orifice.  The number of 

particles in a 500 μl sample of culture was ascertained for Isochrysis galbana (size range: 

 3.4 – 8.1 μm) and Karenia brevis (size range:  14.2 – 30.0 μm).  Three replicate counts 

were made and the mean value determined.  Cell concentrations were verified by 

microscopic enumeration using a counting chamber (Hausser Scientific Company). 

Brevetoxin concentration of each culture of K. brevis was determined by high 

performance liquid chromotography (HPLC).  Brevetoxins were extracted by passing a 

known volume (≅ 500 ml) of culture through a C-18 extraction disc placed inside a 

Teflon® filtering apparatus under vacuum (20 psi).  The C-18 disc was eluted with 

methanol to recover the brevetoxins and placed in a flask.  The flask was then placed on a 

Labonco® rotary evaporator and reduced to dryness.  Methanol was added to produce a 

final volume of 3 ml and the sample injected into a Shimadzu® LC-600 HPLC with a 

Shimadzu® SPD-M6A photodiode array UV-VIS detector.  Total brevetoxin 

concentrations were quantified using a C-18 column and an 85:15 methanol: water (1 

ml/min) isocratic elution at 215 nm according to the procedure of Pierce et al. (2005). 

 

Three-Day Static Exposure 

 

The first series of experiments consisted of exposing larvae to Karenia brevis for 
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three days.  Bivalve species used for larval studies were bay scallops (Argopecten 

irradians), northern quahogs (Mercenaria mercenaria) and eastern oysters (Crassostrea 

virginica).  Each experiment employed three concentrations of both whole and lysed 

culture of K. brevis and a control.  K. brevis concentrations were 10, 100 and 1,000 cells . 

ml-1.  Each treatment consisted of five replicates. 

Larvae were three days old at the start of the experiment.  For each replicate, 

approximately 500 larvae were transferred to a petri dish containing 100 ml filtered 

seawater.  Each dish was supplied with 1 x 104 cells . ml-1 of Isochrysis galbana.  K. 

brevis (whole or lysed culture) was added to each treatment to obtain the desired 

exposure concentration.  After inoculation with K. brevis, a small subsample (0.5 ml) was 

withdrawn and algal cells counted with a hemocytometer under a compound microscope 

to verify that the desired concentration was obtained. Each dish was covered and left 

undisturbed.  Dishes were neither stirred nor aerated. 

Each day, the contents of each dish were poured through a 35 μm sieve and gently 

rinsed with filtered seawater.  Larvae were transferred to a 100 ml graduated cylinder 

containing 50 ml of filtered seawater and brought to the appropriate volume prior to 

reinoculation.  Dishes were reinoculated with K. brevis and I. galbana, covered, and left 

undisturbed for 24 hours. 

The experiment was terminated after seventy-two hours and the larvae preserved 

in 2% buffered formalin.  Straight-hinged larvae which have been dead for as little as one 

hour have few internal details visible through the transparent shell and are easily 

separated from larvae preserved while living.  Larvae were considered dead if either 

empty shells or shells with decomposing tissues were found.  Larvae were considered 
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live if tissues were discernable and differentiated under magnification.  Developmental 

stage for each live and dead larva was determined.  A two-way analysis of variance with 

repeated measures was performed for each experiment to determine significant 

differences in mortality among cell concentration and culture treatment. 

 

Seven-Day Static Exposure 

 

Seven-day-old larvae were used in this series of experiments to investigate the 

effects of K. brevis on mortality, development and metamorphosis of each bivalve 

species.  Each experiment consisted of four concentrations of whole K. brevis culture and 

a control.  Each treatment consisted of five replicates.  The four K. brevis concentrations 

were:  10, 100, 1,000, and 5,000 cells . ml-1.  In each case, approximately 500 larvae were 

transferred to a 250 ml glass finger bowl (density = 5 larvae . ml-1).  Each bowl was 

supplied with 2 x 104 cells . ml-1 of Isochrysis galbana as a food source.  Whole culture 

of K. brevis was added to each bowl to obtain the desired exposure concentration.  A 

small subsample (0.5 ml) was withdrawn after inoculation and cells counted with a 

hemocytometer under a compound microscope to confirm that the desired concentration 

was achieved.  All bowls were covered and left undisturbed.  Bowls were neither stirred 

nor aerated. 

Each day, the contents of each bowl were poured through a 50 μm sieve and 

gently rinsed with filtered seawater.  Larvae were transferred to a 250 ml graduated 

cylinder containing 200 ml of filtered seawater and brought to the appropriate volume 

prior to reinoculation.  Bowls were reinoculated with K. brevis and I. galbana, covered, 
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and left undisturbed for 24 hours.  The experiment was terminated after seven days and 

the larvae preserved in 2% buffered formalin. 

The number of live and dead larvae (determined by marked morphological 

disintegration) was determined for each developmental stage.  Developmental stage 

depended upon the bivalve species and included straight-hinged veliger, umbonal veliger, 

pediveliger, and spat (Sastry, 1965 for A. irradians; Carriker, 2001 for M. mercenaria; 

Waller, 1981 for C. virginica). 

 

Statistical Analyses 

 

The square root of the proportion of live and dead larvae was arcsine transformed 

to satisfy the assumption of normality when dealing with percentages (Zar, 1996).  

Differences in mortality among cell concentration and culture treatments in the three-

day-exposure experiments were determined by two-way ANOVA with repeated 

measures.  Significant differences among treatments were analyzed using Tukey’s 

multiple comparison test.  A single factor ANOVA was performed to determine 

significant differences in mortality among cell concentrations in the seven-day-exposure 

experiments. 
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Results 

 

Toxin Profile of Karenia brevis Cultures 

 

Toxin profiles of  K. brevis cultures used in experiments are summarized in Table 

1.  Two brevetoxins and one antagonist were present in each culture:  PbTx-2, PbTx-3, 

and brevenal, a recently identified brevetoxin antagonist (Bourdelais et al., 2004).  Cell 

density, brevetoxin composition and total toxin concentration were similar among 

cultures used for experiments for each shellfish species.   Total toxin concentration was 

higher after cultures had been lysed. 

 

Three-Day Static Exposure 

 

Survival of bay scallop larvae exposed to K. brevis was > 90% in all treatments 

and > 80% of surviving larvae reached the umboveliger stage (Table 2).  Survival was 

significantly lower (p < 0.001) at the highest K. brevis concentration in both whole and 

lysed treatments (Table 5).  There was no treatment effect on survival of A. irradians 

larvae. 

Survival of M. mercenaria larvae was > 88% in all treatments (Table 3).  Most 

larvae survived to the umboveliger stage.  Percent survival was significantly lower (p < 

0.001) in the Lysed-1,000 cells . ml-1 treatment (Table 5).  There was a significant (p < 

0.05) concentration and culture effect on larval survival. 
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Larval survival for C. virginica ranged from 94 to 75%, with < 1% reaching the 

umboveliger stage (Table 4).  Survival decreased with increasing K. brevis concentration; 

survival was lower in lysed treatments than whole treatments at the same K. brevis  

concentration.  There was a significant (p < 0.05) concentration and culture effect on 

larval survival (Table 5). 

 

Seven-Day Static Exposure 

 

Exposure of A. irradians larvae to K. brevis concentrations up to 1,000 cells . ml-1 

for seven days did not greatly impact survival (Fig. 1).  When the quantity was increased 

to 5,000 cells . ml-1, survival declined to 37%.  All larvae had reached the pediveliger 

stage at the termination of the experiment. 

Survival of M. mercenaria larvae gradually decreased with increasing K. brevis 

concentration up to 1,000 cells . ml-1 (Fig. 2).  Larval survival at 5,000 cells . ml-1 

declined to 26%.  A higher percent of larvae from the low dose treatments developed into 

pediveligers than larvae from higher dose treatments (Fig. 3)  

Total survival of C. virginica larvae was 88% in the control, 75% in K. brevis 

concentrations up to 1,000 cells . ml-1, and only 19% at 5,000 cells . ml-1 (Fig 4).  Larval 

development was similar among exposure doses up to 1,000 cells . ml-1 (Fig. 5).  

Approximately 46% were umboveligers after seven days; 42% developed into 

pediveligers and 11% had settled as spat.  At 5,000 cells . ml-1, 67% of surviving larvae 

were still umboveligers, 32% were pediveligers, and only 1% had settled as spat. 

Table 6 summarizes the results from one-way ANOVA and Tukey’s Multiple 



33 

Comparison Test for each species.  All three species showed a significant difference in 

mortality at K. brevis concentrations of 5,000 cells . ml-1.  Only M. mercenaria showed a 

significant difference in mortality at K. brevis concentrations of 1,000 cells . ml-1. 

 

Discussion 

 

Studies on the interaction between toxic dinoflagellates and bivalves have focused 

primarily on juvenile and adult life stages (Shumway, 1990; Bricelj and Shumway, 1998; 

Landsberg, 1996).  Not until more recently has attention begun to focus on the effects of 

harmful algae on bivalve larvae (Wikfors and Smolowitz, 1995; Matsuyama et al., 2001; 

Yan et al., 2001; Yan et al., 2003; Jeong et al., 2004).  Bivalve larvae, with their 

planktonic existence and small size, can be expected to respond in unique ways 

(compared to their post-larval counterparts) when exposed to harmful algal blooms. 

In all three species of bivalve (A. irradians, M. mercenaria and C. virginica), 

survival of three-day-old larvae in the presence of K. brevis was concentration-

dependent.  At densities of 100 cells . ml-1 or less, survival was generally over 85% and 

not affected by treatment preparation; i.e., whole or lysed culture.  At 1,000 cells . ml-1, 

survival was significantly less in lysed treatments for both M. mercenaria and C. 

virginica.  Seven-day-old larvae showed a similar survival response after exposure to K. 

brevis for seven days.  A. irradians and C. virginica survival was not significantly 

reduced at K. brevis concentrations up to 1,000 cells/ml, while survival of M. mercenaria 

larvae was significantly lower at 1,000 cells . ml-1.  Survival in all three species was 

significantly reduced at 5,000 cells . ml-1.  Matsuyama et al. (2001) reported lethal effects 
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of Alexandrium tamarense, A. taylori, Gymnodinium mikimotoi and Heterocapsa 

circularisquama on larvae of the Pacific oyster, C. gigas, at cell densities of 100-1,000 

cells . ml-1. 

The process by which K. brevis affects larval survival is not clear, but several 

possible mechanisms may be involved.  Direct cell-to-cell contact with microalgae, either 

through exposure to toxins present on the cell surface or through mechanical damage to 

sensitive organs, particularly gills, may negatively affect bivalve larvae (Gallager et al., 

1989; see Landsberg, 2002 for review).  Mortality of C. virginica larvae in the presence 

of the dinoflagellate Cochlodinium heterolobatum was thought to be a result of increased 

physical contact between larvae and algal cells (Ho and Zubkoff, 1979).  Contact with 

toxic algal cells may also release an unknown inhibitory factor which could negatively 

affect survival (Yan et al., 2001).  Ultrasonic disruption (=lysing) produces cellular 

fragments as well as releasing intracellular toxins to the environment, thus making them 

available for encounters with bivalve larvae. 

Consumption (or ingestion) of toxic algal cells by bivalve larvae is dependent on 

a variety of factors, including algal species, cell size and concentration, and larval species 

and age.  Consumption of K. brevis cells may also explain the observed inhibitory effects 

on larval survival.  Larvae of the mussel, Mytilus galloprovincialis, readily ingested cells 

of several species of toxic dinoflagellates with mean equivalent spherical diameters of 

12-38 μm (Jeong et al., 2004).  Eastern oyster (C. virginica) larvae ingested P. minimum 

cells, although algal filtration was depressed in the presence of this toxic algae (Jeong et 

al., 2004), and ingestion of this toxic alga resulted in cytological changes in digestive 

tissues, including the deleterious development of cuboidal and squamous epithelial cells 
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in the stomach and intestine, reductions in the size of absorptive cells, and the presence 

of dense inclusions in the cytoplasm, indicating possible phagolytic reactions to 

dinoflagellate debris (Wikfors and Smolowitz, 1995).  Early D-shape larvae of two 

scallop species (Argopecten irradians concentricus and Chlamys farreri) were unable to 

feed on Alexandrium tamarense cells due to its relatively large size (Yan et al., 2001; 

Yan et al., 2003).  During the current study, larvae were fed an optimal ration (Lu and 

Blake, 1996) of the chrysophyte, I. galbana, a common alga used in bivalve culture, in 

addition to K. brevis.  Although larval feeding rates were not measured nor K. brevis 

consumption investigated, ingestion of  K. brevis cells was most likely negligible due to 

the relatively large cell size (ESD = 14-26 μm) and low density compared to I. galbana.  

However, the presence of K. brevis, especially at higher concentrations, could interfere 

with bivalve larvae by altering activity patterns (Yan et al., 2003) and/or feeding rates 

(Jeong et al., 2004), resulting in increased mortality and retarded metamorphosis 

(Matsuyama et al., 2001). 

Exposure of seven-day-old larvae to K. brevis had an effect on survival, 

development and metamorphosis.  Even though overall survival was identical in C. 

virginica larvae exposed to 100 and 1,000 cells . ml-1, a higher proportion from 100 cells . 

ml-1 had a) reached the pediveliger stage and b) completed larval development (i.e., 

settled as spat) than larvae from 1,000 cells . ml-1.  Almost ninety percent of larvae 

subjected to 5,000 cells . ml-1 did not live beyond the umboveliger stage.  Larval 

development of M. mercenaria was also affected by the presence of K. brevis cells.  In 

this case, progress to the pediveliger stage was inversely related to K. brevis 

concentration.  Similarly, larvae of the Pacific oyster, C. gigas, which did not show 
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significant mortality when exposed to Cochlodinium polykrikoides, did suffer retarded 

metamorphosis to the D-shaped larvae (Matsuyama et al., 2001).  Development of C. 

virginica larvae was also delayed when exposed to a laboratory clone of the 

dinoflagellate, P. minimum (Wikfors and Smolowitz, 1995).  While the mechanism for 

increased mortality of bivalve larvae remains unanswered, it is easy to see how the added 

stress associated with K. brevis and/or its toxins could be reflected in suboptimum 

development. 

Sixty percent of brevetoxins in laboratory cultures of K. brevis are extracellular in 

nature (Pierce et al., 2001).  Ultrasonic disruption, which releases the remaining 

intracellular toxins, resulted in a 20-24% increase in total brevetoxin in the current study. 

 Two brevetoxins and one antagonist were present in each culture:  PbTx-2, PbTx-3, and 

brevenal, a recently identified brevetoxin antagonist (Bourdelais et al., 2004).  The 

proportion of each brevetoxin remained unchanged after the cultures were lysed.  Except 

for the absence of PbTx-1, the relative brevetoxin composition of laboratory cultures 

closely resembled that from water samples collected during a red tide outbreak along the 

Gulf Coast of Sarasota,  FL in 2003 (Pierce et al., 2005). 

Larvae of all three bivalve species in this study responded similarly, but with 

different sensitivities, to cells of K. brevis and its suite of toxins.  Mortality was not 

necessarily dependent on ingestion of algal cells; rather it appears that the toxins were at 

least partially responsible for increased mortality and delayed larval development.  The 

presence of K. brevis cells at high densities may interfere with larval feeding processes, 

resulting in suboptimal clearance, inhibited growth and development, and mortality. 

Blooms of K. brevis may persist in coastal waters for many months (Steidinger et 
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al., 1995).  Our results clearly indicate that when these blooms and their toxins persist, 

shellfish larvae are at greater risk of mortality and may continue to be adversely affected 

even after the disappearance of K. brevis cells.  While K. brevis blooms may not directly 

cause mortality in adult shellfish, they do have the ability to disrupt a critical phase in the 

life cycle and consequently have important ramifications for recruitment and population 

stability.  The failure of bay scallops to successfully recruit in North Carolina, USA, was 

attributed to a bloom of Ptychodiscus brevis (= K. brevis), which interfered with either 

adult spawning, larval survival and settlement, or survival of newly settled spat 

(Summerson and Peterson, 1990).  Since we demonstrated negative impacts of K. brevis 

on larvae of northern quahogs (= hard clams) and eastern oysters, we might expect 

blooms of K. brevis to negatively impact recruitment in these species as well.  Thus, there 

is a clear need for continued research on the relationship between K. brevis and bivalve 

larvae, ranging from the mechanisms of toxicity to the effects on recruitment and 

population stability. 
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Table 1 
 
Cell density, sample matrix and brevetoxin composition of Karenia brevis (Wilson clone) cultures used in larval 
experiments for each species.  (Brevenal is considered a brevetoxin antagonist). 
 K. brevis Culture Brevetoxin Amount (ug . L-1) 
Species (Cells/ml) Matrix PbTx-2 PbTx-3 TOTAL Brevenal

Whole 20.03 5.07 25.10 30.23 Bay scallop (Argopecten irradians) 12,000 
Lysed 26.31 8.11 34.42 34.47 
Whole 23.36 2.46 25.82 29.17 Northern quahog (Mercenaria mercenaria) 12,800 
Lysed 32.33 2.42 35.32 35.32 
Whole 22.19 4.10 26.29 24.93 Eastern oyster (Crassostrea virginica) 10,000 
Lysed 32.94 0.97 33.91 33.90 
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Table 2 

Mean ( + SD) number of live and dead larvae, larval stage and percent survival for Argopecten irradians after exposure for 
three days to Karenia brevis.  Treatments consisted of whole and lysed cultures of K. brevis at three concentrations:  10, 100 
and 1,000 cells . ml-1.  (n = 5). 

 

 Straight-Hinged Veliger   Umboveliger Larvae Survival (%) 

Treatment Live Dead Live Dead Total Total Umboveliger 

Control 41.0  (24.7) 3.6   (3.0) 395.8  (125.6) 4.0 (3.1) 444.4   (128.3) 98.3 (0.8) 89.1   (5.9)

Whole-10 45.8  (19.4) 7.2   (2.9) 410.8  (140.9) 3.2 (2.0) 467.0   (125.0) 97.8 (1.4) 88.0   (7.8)

Lysed-10 47.6    (7.1) 3.6   (3.6) 350.0    (70.8) 3.6 (0.9) 404.8     (74.9) 98.2 (0.6) 86.5   (2.5)

Whole-100 61.0  (33.8) 4.6   (2.3) 475.6    (92.5) 1.2 (1.1) 542.4   (115.5) 98.9 (0.2) 87.7   (4.3)

Lysed-100 57.6    (5.5) 10.2   (2.8) 384.2    (95.9) 1.8 (2.7) 453.8   (101.5) 97.4 (0.7) 84.7   (2.4)

Whole-1,000 39.4  (16.4) 22.8 (10.4) 430.0    (76.4) 3.8 (2.8) 496.0     (77.9) 94.6 (2.3) 86.7   (4.5)

Lysed-1,000 63.2  (33.6) 21.8 (11.6) 402.2  (123.0) 5.4 (2.3) 492.6   (111.9) 94.5 (2.5) 81.6 (10.2)
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Table 3 

Mean ( + SD) number of live and dead larvae, larval stage and percent survival for Mercenaria mercenaria after exposure for 
three days to Karenia brevis.  Treatments consisted of whole and lysed cultures of K. brevis at three concentrations:  10, 100 
and 1,000 cells . ml-1.  (n = 5). 

 

 Straight-Hinged Veliger   Umboveliger Larvae Survival (%) 

Treatment Live Dead Live Dead Total Total Umboveliger 

Control 8.4  (2.0) 4.0  (2.9) 448.4    (41.6) 46.2  (17.0) 507.0    (53.8) 90.1  (2.1) 88.4  (0.7)

Whole-10 7.0  (4.2) 3.2  (2.3) 474.4    (90.0) 36.4    (6.9) 521.0    (91.5) 92.4  (1.3) 91.1  (0.5)

Lysed-10 4.8  (3.7) 0.4  (0.6) 428.4  (138.9) 48.8  (10.7) 482.4  (150.9) 89.8  (2.0) 88.8  (0.5)

Whole-100 5.2  (2.7) 1.0  (1.0) 454.0  (155.7) 41.0  (14.9) 501.2  (171.6) 91.6  (0.8) 90.6  (0.5)

Lysed-100 5.4  (2.7) 3.4  (1.3) 463.8  (158.9) 47.2  (19.0) 519.8  (177.9) 90.3  (1.0) 89.2  (0.8)

Whole-1,000 10.6  (4.0) 4.6  (2.9) 512.4  (129.5) 49.4    (9.1) 577.0  (142.6) 90.6  (0.8) 88.8  (0.6)
Lysed-1,000 7.4  (2.0) 5.0  (4.0) 539.6  (166.1) 68.6  (21.8) 620.6  (191.3) 88.1  (0.9) 86.9  (0.2)

 



41 

 

Table 4 

Mean ( + SD) number of live and dead larvae, larval stage and percent survival for Crassostrea virginica after exposure for three 
days to Karenia brevis.  Treatments consisted of whole and lysed cultures of K. brevis at three concentrations:  10, 100 and 1,000 
cells . ml-1.  (n = 5). 

 

 Straight-Hinged Veliger   Umboveliger Larvae Survival (%) 
Treatment Live Dead Live Dead Total Total Umboveliger 

Control 241.6  (56.7) 20.4   (6.9) 1.6  (3.0) 10.4  (9.2) 274.0  (59.2) 88.8  (3.1) 0.6  (1.1)
Whole-10 304.8  (74.1) 17.0   (7.9) 1.2  (0.8) 1.2  (1.1) 324.2  (81.1) 94.4  (1.8) 0.4  (0.3)
Lysed-10 259.4  (21.5) 15.8   (8.3) 0.4  (0.5) 0.2  (0.4) 275.8  (27.1) 94.2  (2.9) 0.1  (0.2)

Whole-100 299.0  (19.4) 42.0   (5.5) 0.0 0.4  (0.5) 341.4  (19.5) 87.6  (1.8) 0.0
Lysed-100 226.4  (27.0) 48.4  10.7) 0.0 1.6  (1.1) 276.4  (34.6) 81.9  (2.3) 0.0

Whole-1,000 252.6  (38.1) 46.4 (14.0) 0.6  (1.3) 1.4  (0.9) 301.0  (43.5) 84.1  (4.0) 0.2  (0.4)
Lysed-1,000 199.8  (16.8) 65.2   (9.5) 0.0 0.8  (0.8) 265.8  (12.4) 75.2  (4.1) 0.0
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Table 5                             

Effect of Karenia brevis concentration and culture preparation on percent survival in three-day-old bivalve larvae.  A) Two-way ANOVA 
(α = 0.05).  B) Tukey’s (ω) multiple comparison test.  Underlined treatments are not significantly different (p > 0.05). 
               
Argopecten irradians                            
Source of Variation SS df MS F P-value F crit   k = 7 q(alpha)= 4.541 
Concentration 0.063 2 0.0315 23.20 0.0000 3.40  v = 28 Sy =  0.0161 
Treatment 0.002 1 0.0015 1.14 0.2971 4.26  α = 0.05  ω = 0.0731 
Interaction 0.009 2 0.0045 3.28 0.0549 3.40        
Within 0.033 24 0.0014    L-1,000 W-1,000 L-100 W-10 Control L-10 W-100 
Total 0.106 29                       
               
Mercenaria mercenaria                            
Source of Variation SS df MS F P-value F crit   k = 7 q(alpha)= 4.464 
Concentration 17.053 2 8.5266 4.75 0.0183 3.40  v = 28 Sy =  0.6822 
Treatment 34.810 1 34.8101 19.39 0.0002 4.26  α 0.05  ω = 3.0455 
Interaction 3.614 2 1.8072 1.01 0.3804 3.40        
Within 43.086 24 1.7952    L-1,000 L-10 Control L-100 W-1,000 W-100 W-10 
Total 98.563 29          
               
Crassostrea virginica                            
Source of Variation SS df MS F P-value F crit   k = 7 q(alpha)= 4.541 
Concentration 0.284 2 0.1418 69.35 0.0000 3.40  v = 28 Sy =  0.0205 
Treatment 0.031 1 0.0308 15.07 0.0007 4.26  a = 0.05  ω = 0.0929 
Interaction 0.016 2 0.0082 4.02 0.0312 3.40        
Within 0.049 24 0.0020    L-1,000 L-100 W-1,000 W-100 Control L-10 W-10 
Total 0.380 29                
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Figure 1.  Percent survival (mean + SD) of Argopecten irradians larvae after exposure to Karenia brevis 
for seven days.  Treatment with an asterisk was significantly different (p < 0.05).  Larvae were seven 
days old at start of experiment.
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Figure 2.  Percent survival (mean + SD) of Mercenaria mercenaria larvae after exposure to Karenia 
brevis for seven days.  Treatments with the same letter were not significantly different (p < 0.05).  
Larvae were seven days old at start of experiment.
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Figure 3.  Percent of total Mercenaria mercenaria larvae that survived to the umboveliger (    ) and 
pediveliger  (    ) stages after exposure to Karenia brevis for seven days.  Larvae were seven-day-old 
umboveligers at beginning of experiment. 
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Figure 4.  Percent survival (mean + SD) of Crassostrea virginica larvae after exposure to Karenia brevis 
for seven days.  Treatment with an asterisk was significantly different (p < 0.05).  Larvae were seven 
days old at start of experiment.

*
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Figure 5.  Percent of total Crassostrea virginica larvae that survived to the umboveliger (    ), 
p diveliger (     and spat (    ) stages after exposure to Karenia brevis for seven days.  Larvae were 
seven-day-old umboveligers at start of experiment. 
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Table 6                           

Effect of Karenia brevis concentration and culture preparation on percent survival in seven-day-old shellfish larvae.  A) Two-way 
ANOVA (α = 0.05).  B) Tukey’s (ω) multiple comparison test.  Underlined treatments are not significantly different (p > 0.05). 

                            
A)  Two-Way ANOVA  B)  Tukey’s Multiple Comparison Test 

           
Argopecten irradians        k = 5 q(alpha)= 4.232 
Source of Variation SS df MS F P-value F crit   v = 20 Sy = 0.0567 
Between Groups 1.8261 4 0.4565 28.42 5.35E-08 2.87  a = 0.05  w = 0.2399 
Within Groups 0.3213 20 0.0161       
Total 2.1475 24      5000 1000 10 100 Control 
              
            
Mercenaria mercenaria        k = 5 q(alpha) = 4.232 
Source of Variation SS df MS F P-value F crit   v = 20 Sy = 0.0366 
Between Groups 0.8554 4 0.2139 31.92 2.00E-08 2.87  a = 0.05  w = 0.1549 
Within Groups 0.1340 20 0.0067       
Total 0.9894 24      5000 1000 100 10 Control 
              
Crassostrea virginica        k = 5 q(alpha) = 4.303 
Source of Variation SS df MS F P-value F crit   v = 17 Sy = 0.0679 
Between Groups 1.6176 4 0.4044 17.54 7.2665 2.96  a = 0.05  w = 0.2922 
Within Groups 0.3920 17 0.0231  5000 1000 100 10 Control 
Total 2.0096 21           
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Chapter  Four 

Juvenile Studies 

 

Introduction 

 

The effects of diets that include toxic dinoflagellates on feeding in bivalve 

molluscs have received increased attention in the past twenty years (Shumway and Cucci, 

1987; Gainey and Shumway, 1988; Bricelj et al., 1996; Lassus et al., 1996; Lassus et al., 

1999; Li and Wang, 2001; Lesser and Shumway, 1993; Bricelj and Shumway, 1998).  

The recurring conclusion is that bivalve responses are species-specific (Shumway and 

Cucci, 1987; Gainey and Shumway, 1988; Shumway, 1990; Lesser and Shumway, 1993; 

Smolowitz and Shumway, 1997), and depend upon a variety of factors, including the 

algal species encountered (Shumway and Cucci, 1987; Gainey and Shumway, 1988; 

Shumway, 1990; Lesser and Shumway, 1993), algal toxicity (Bricelj et al., 1991; 

Bardouil et al., 1993; Bricelj et al., 1996; Lassus et al., 1996; Li and Wang, 2001), algal 

concentration (Li et al., 2002), cell size and selectivity (Shumway et al., 1985; Shumway 

et al., 1990; Lesser and Shumway, 1993; Matsuyama et al., 1997), history of exposure 

(Shumway and Cucci, 1987; Chebib et al., 1993; Bricelj et al., 1996), season (Lesser and 

Shumway, 1993) and differences in digestive function (Wikfors and Smolowitz, 1993). 
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Blooms of K. brevis may be especially harmful to bay scallops (Argopecten 

irradians) (Summerson and Peterson, 1990), and could jeopardize efforts to restore 

Florida’s dwindling bay scallop populations (Geiger and Arnold, 2003; Leverone et al., 

2005) and the potential for a successful aquaculture program (Blake et al., 2000).  The 

burgeoning hard clam (= quahog) aquaculture industry in Florida (Adams and Sturmer, 

2004) has many lease sites in Pine Island Sound (Lee County), an estuary with a history 

of repeated red tide outbreaks (Tester and Steidinger, 1997).  The nonindigenous green 

mussel, Perna viridis, became established in Tampa Bay in 1999 (Ingrao et al., 2001), 

and has since spread south along the Florida Gulf Coast (Benson et al., 2001), the same 

geographic area where blooms of K. brevis are most frequent (Tester and Steidinger, 

1997).  Lastly, restoration and creation of oyster habitats (Crassostrea virginica) is 

receiving increased attention within this same region (Savarese et al., 2004).  The effects 

of K. brevis on oyster populations in Florida have not yet been examined. 

This study was undertaken to determine the effects of the toxic dinoflagellate, 

Karenia brevis, on the clearance rate of juveniles of four species of common bivalve 

molluscs from Florida:  the bay scallop (Argopecten irradians), northern quahog  (= hard 

clam , Mercenaria mercenaria), eastern oyster (Crassostrea virginica) and green mussel 

(Perna viridis).  Both short-term (one hour) and long-term (two day) effects were 

investigated.  We also examined the effects of whole culture (intact cells) and lysed 

culture (disrupted cells) of K. brevis on clearance rate to distinguish between the effects 

of the dinoflagellate and its toxins. 
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Materials and Methods 

 

Collection and Maintenance of Juveniles 

 

Juveniles of four species of bivalve were used in these experiments:  the bay 

scallop (Argopecten irradians), eastern oyster (Crassostrea virginica), northern quahog 

(Mercenaria mercenaria) and green mussel (Perna viridis).  Bay scallops and northern 

quahogs were obtained directly from the hatchery.  Eastern oysters and green mussels 

were collected from upper Tampa Bay, which had not experienced blooms of K. brevis 

for decades.  All bivalves were maintained in aerated aquaria at 25o C and fed Isochrysis 

galbana daily at a density of 2 x 104 cells . ml-1 prior to experimentation. 

 

Maintenance of Algal Cultures 

 

Batch cultures of Karenia brevis (= Gymnodinium breve) (Wilson clone) were 

grown in NH15 media without aeration.  Cultures of Isochrysis galbana (Tahitian clone) 

were grown in f/2 media plus Trimsa minus silica with aeration.  Seawater was collected 

locally, filtered through cartridge filters to remove particles > 0.2 μm, passed through an 

activated charcoal filter, sterilized with ultraviolet light and autoclaved.  Cultures were 

maintained at a temperature of 24 to 26o C and a salinity of 33 to 35 ppt (parts per 

thousand).  Lighting was provided by a combination of Cool-white and Gro-lite bulbs.  

Cultures of K. brevis were maintained on a 12:12 hour light: dark cycle, while I. galbana 

cultures were exposed to constant illumination.  All experiments used cultures in 
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stationary growth phase, generally achieved two weeks after inoculation. 

 

Preparation of Lysed Culture 

 

Larval and juvenile bivalve experiments were conducted using both whole and 

lysed culture preparations of Karenia brevis.  Lysed preparations were produced by 

exposing a sample of K. brevis culture to ultrasonic disruption at 750 W for four minutes 

using a Sonics® Vibracell with 5 mm microtip probe.  A small subsample ( < 1 ml) was 

observed microscopically to verify that the cells had been disintegrated.  A 500 ml 

sample of lysed culture was then subjected to brevetoxin analysis by the same procedure 

as whole culture samples. 

 

Determination of Cell and Brevetoxin Concentrations 

  

Cell concentration for each algal culture was determined prior to each experiment 

employing a Coulter® Multisizer IIE fitted with a 100 μm orifice.  The number of 

particles in a 500 μl sample of culture was ascertained for Isochrysis galbana (size range: 

 3.4 – 8.1 μm) and Karenia brevis (size range:  14.2 – 30.0 μm).  Three replicate counts 

were made and the mean value was determined.  Cell concentrations were verified by 

microscopic enumeration using a counting chamber (Hausser Scientific Company). 

Brevetoxin concentration of each culture of K. brevis was determined by high 

performance liquid chromotography (HPLC).  Brevetoxins were extracted by passing a 

known volume (≅ 500 ml) of culture through a C-18 extraction disc placed inside a 
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Teflon® filtering apparatus under vacuum (20 psi).  The C-18 disc was eluted with 

methanol to recover the brevetoxins and placed in a flask.  The flask was then placed on a 

Labonco® rotary evaporator and reduced to dryness.  Methanol was added to produce a 

final volume of 3 ml and the sample injected into a Shimadzu® LC-600 HPLC with a 

Shimadzu® SPD-M6A photodiode array UV-VIS detector.  Total brevetoxin 

concentrations were quantified using a C-18 column and an 85:15 methanol: water (1 ml . 

min-1) isocratic elution at 215 nm according to the procedure of Pierce et al., 2005). 

 

Clearance Rate Studies 

 

All feeding experiments were carried out at a temperature of 25o C and a salinity 

of 30 o/oo.  Two separate sets of feeding experiments were conducted for each bivalve 

species.  The first set consisted of short-term experiments under static conditions.  

Individuals were exposed to an initial set of conditions and left undisturbed for one hour. 

 Feeding rates were calculated at the end of the hour.  The second set consisted of long-

term experiments under flow-through conditions.  Individuals were subjected to 

experimental conditions that were continuously replenished over a 48 hour period.  

Feeding rates were calculated twice each day.  Complete details for each set of 

experiments are provided below. 
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 Static Exposure Experiments 

 

Separate static feeding experiments were carried out for each bivalve species 

under identical conditions.  Individuals were placed in separate beakers containing 500 

ml filtered seawater and allowed to acclimate for one hour.  Each beaker was lightly 

aerated. 

Experimental treatments included three concentrations and two culture 

preparations of K. brevis and a control (no K. brevis added).  Each treatment consisted of 

five replicates.  Cell densities of K. brevis were 10, 100, and 1,000 cells . ml-1 and culture 

preparations included lysed and whole cultures.  Isochrysis galbana, a common food 

alga, was added to each beaker at an initial concentration of 2-4 x 104 cells . ml-1.  

Beakers were left undisturbed and the reduction in cell concentration of both I. galbana 

and K. brevis was determined after one hour. 

At the end of each experiment, tissue dry weight (mg) was determined by drying 

soft tissues in preweighed aluminum pans at 103o C for 24 hours.  Weight specific 

clearance rates were calculated as:  CRdw (ml/hr) = (volume in ml) * (ln C1 – ln C2) / t, 

where C1 and C2 are the cell concentrations at the beginning and end of each time 

increment.  Weight-specific filtration rate (if no pseudofeces production was observed) 

was calculated as:  FRdw (cells/l/hr) = CRdw * (C1 + C2)/2, where C1 and C2 are the cell 

concentrations at the beginning and end of each time increment. 

A two-way analysis of variance with equal replication was performed to 

determine significant differences in weight-specific filtration and ingestion rates among 

cell concentrations and culture treatments.  Multiple comparison analyses were 
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performed using Tukey’s ω procedure (designed to prevent Type I errors) and Dunnett’s 

τ (designed to compare all means with a control). 

The amounts of brevetoxin to which individual bivalves were exposed were 

determined by multiplying the total toxin concentration of the culture (Table 10) by the 

amount (volume) of culture added to each treatment.  In this way, the relationship 

between clearance rate and toxin exposure could be determined for whole and lysed 

cultures of K. brevis for each species.  Significant differences between regression lines 

(whole vs. lysed cultures) were tested by a simple F test (for both residual variance and 

slope). 

 Flow-Through Exposure Experiments 

 

Continuous-flow feeding experiments were conducted using a test system 

developed by Singer et al. (1990).  This system operated by pumping the algal solution 

for each treatment through an enclosed 290-ml exposure vessel.  There were eighteen 

separate vessels available for any given experiment. 

Each test vessel consisted of two halves which are sealed using a silicon O-ring 

and a full-circumference clamp.  The top half had two ports.  One port was used as the 

inflow line and the second port was available for feeding or treatment injection if 

required.  When not in use, the second port was sealed with a Teflon-lined cap. The 

bottom half had a single port, which served as the outflow port.  The treatment solution 

flowed through the inlet into the top half of the vessel, through a fritted glass disk (40-60 

μm pore size) which was permanently fastened within the lower half of the vessel and 

finally through the outflow port.   



56 

Treatment solutions of K. brevis were prepared in 20L polypropylene carboys and 

allowed to mix by gentle aeration.  Treatment solutions were introduced into each 

chamber using an ISMATIC® MCP Pumpsystem Model 78002 multihead pump at a flow 

rate approximately two to three times the clearance rate of the control bivalves (i.e., the 

cell concentration in the outflow fell between 50 and 80% of the inflow concentration).  

All tubing used throughout the pump system was made of platinum-cured silicon.  The 

outflow (waste) solution was treated with bleach before disposal. 

Each experiment consisted of two treatments (six replicate chambers), a control 

(five replicate chambers) and a blank (one chamber).  Treatment concentrations were 100 

and 1,000 cells . ml-1 of K. brevis.  Isochrysis galbana, a common food alga, was added to 

each beaker at an initial concentration of 2-4 x 104 cells . ml-1.  Since there were a limited 

number of chambers available for a given experiment, consecutive experiments were run 

for each bivalve species, the first using whole cultures of K. brevis and the second using 

lysed cultures.  Each experiment ran for two days and feeding rates were calculated twice 

a day  (9 AM and 5 PM).  At the end of each experiment, tissue dry weight (mg) was 

determined.   

Weight-specific clearance  rates were calculated as:  CRdw  (ml . hr-1) = flow rate 

(ml . hr-1) * (Ci  - Co) / Ci, where Ci is the inflow concentration of I. galbana and Co is the 

outflow concentration from each experimental chamber.  Weight-specific filtration rates 

were calculated as:  FRdw (cells . hr-1) = CRdw * (Ci + Co)/2, where Ci  and Co are the 

inflow and outflow I. galbana cell concentrations during each feeding rate determination. 

A single factor analysis of variance was performed to determine significant 

differences in weight-specific clearance and filtration rates among cell concentrations. 
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Results 

 

Cell concentration of K. brevis cultures ranged from 2.1 – 2.2 x 104 cells . ml-1 for 

static experiments and from 2.0 – 2.5 x 104 cells . ml-1 for flow through experiments  

(Table 7).   Static experiments (run simultaneously for each species) used the same 

culture while flow-through experiments (run consecutively for each species) required 

separate cultures.  Total brevetoxin concentration  ranged from 23.1 – 80.3 μg . L-1 for 

static experiments and 29.7 – 75.1 μg . L-1 for flow-through experiments.  PbTx -2 and 

PbTx-3 were the most abundant brevetoxins in cultures of K. brevis for all experiments.  

PbTx-1, which was detected only cultures used in the static experiments, was present in 

concentrations < 8 μg . L-1.  Brevenal, a putative inhibitor of brevetoxin action, was not 

identified prior to the flow-through experiments; however, it is possible, even likely, that 

it was present, yet undetected, in cultures of K. brevis used in the static experiments.  

Total brevetoxin was typically higher after a culture was lysed. 

 

Static Exposure Experiments 

 

Table 8 summarizes the decline in I. galbana for each bivalve species exposed to 

different concentrations and preparations of K. brevis under static conditions.  Table 9 

summarizes filtration and clearance rates for each species.  No pseudofeces production 

was observed for any species under  any treatment condition.  Results for each species 

are discussed separately. 



58 

 

Bay scallops (Argopecten irradians) 
 

Mean dry weight for juvenile bay scallops ranged from 16.9 – 19.5 mg dry wt.  

Clearance rate was highest in the control (11.19 ml . hr-1 . mg dry wt-1) and lowest in the 

Whole-1,000 treatment (2.33 ml . hr-1 . mg dry wt-1) (Fig. 6).  This equals a 79% reduction 

in clearance rate between the two treatments.  There was a significant difference in 

clearance rate among treatments (ANOVA; p < 0.001).  A two-factor ANOVA showed a 

concentration effect (p < 0.001), a treatment effect (p < 0.001), and an interaction effect 

(p < 0.001).  Bay scallops filtered 3% of K. brevis over one hour at 1,000 cells . ml-1 

(calculated from Table 8). 

 

Green mussels (Perna viridis) 

 

Mean dry weight for juvenile green mussels ranged from 40.3 – 46.5 mg dry wt.  

Mean clearance rate was highest in the control (16.39 ml . hr-1 . mg dry wt-1) and lowest in 

the Whole-1,000 treatment (4.37 ml . hr-1 . mg dry wt-1) (Fig. 7), a 73% reduction in 

clearance rate between the two treatments.  There was a significant difference in 

clearance rate among treatments (ANOVA; p < 0.001).  A two-factor ANOVA showed a 

concentration effect (p < 0.001), a treatment effect (p < 0.001), and an interaction effect 

(p < 0.001).  Green mussels filtered 32% of K. brevis over one hour at 1,000 cells . ml-1 

(calculated from Table 8). 
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Northern quahogs (Mercenaria mercenaria) 

 

Mean dry weight for juvenile northern quahogs ranged from 13.8 – 16.3 mg dry 

wt.  Clearance rate was highest in the control (12.91 ml . hr-1 . mg dry wt-1) and lowest in 

Whole-1,000 (4.28 ml . hr-1 . mg dry wt-1), or a 73% reduction in clearance rate (Fig. 8).  

There was a significant difference in clearance rate among treatments (ANOVA; p < 

0.001).  A two-factor ANOVA showed a concentration effect (p < 0.001), a treatment 

effect (p < 0.001), and an interaction effect (p < 0.001).  Northern quahogs filtered 9% of 

K. brevis over one hour at 1,000 cells . ml-1 (calculated from Table 8). 

 

Eastern oysters (Crassostrea virginica) 

 

Mean dry weight for juvenile oysters ranged from 40.6 – 50.6 mg dry wt.  

Clearance rate was highest in the control (13.57 ml . hr-1 . mg dry wt-1) and lowest in the 

Whole-1,000 treatment (8.42 ml . hr-1 . mg dry wt-1) (Fig. 9).  This equals a 38% reduction 

in clearance rate between the two treatments.  There was a significant difference in 

clearance rate among treatments (ANOVA; p < 0.001).  A two-factor ANOVA showed a 

concentration effect (p < 0.001) but no treatment effect (p = 0.73).  Oysters filtered 54% 

of K. brevis over one hour at 1,000 cells . ml-1 (calculated from Table 8). 

Differences in mean clearance rate among the four bivalve species is summarized 

in Fig. 10A for whole cultures and Fig. 10B for lysed cultures.  Significant differences 

were found among species, K. brevis concentration and culture (p < 0.001).  There were 

also significant interaction differences (p < 0.001) among all factors (Multifactor 
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ANOVA; univariate test of significance for clearance rate). 

Relationships between clearance rate and brevetoxin concentration for each 

bivalve species are summarized in Figures 11 through 14.  Bay scallops showed a 

significant decrease in clearance rate with increasing brevetoxin concentration for both 

whole and lysed cultures of K. brevis (Fig. 11).  There was no significant difference (p > 

0.05) between the two culture treatments.  Green mussels (Fig. 12) and northern quahogs 

(Fig. 12) showed a decline in clearance rate with increasing brevetoxin concentration 

only for whole cultures.  There was a significant difference (p < 0.05) between the two 

cultures for both species.  Finally, eastern oysters showed a slight decline in clearance 

rate for both whole and lysed cultures of K. brevis (Fig. 14).  There was no significant 

difference (p > 0.05) between the two culture treatments. 

 

Flow-Through Exposure Experiments 

 

Figure 15 summarizes clearance rates for all species under continuous flow-

through exposure to whole (top) and lysed (bottom) cultures of K. brevis. 

Mean clearance rate of juvenile A. irradians was significantly reduced (p < 0.05) 

at K. brevis concentrations of 100 cells . ml-1 and higher in both whole (Fig 15A) and 

lysed (Fig 15B) experiments.  The bay scallop was the only bivalve species to show a 

concentration effect of lysed K. brevis culture on clearance rate.  This effect was delayed 

until day two, when there was a significant decrease in clearance rate at 100 cells . ml-1 

and higher. 

Mean clearance rate of P. viridis exposed to whole K. brevis culture (Fig 15B) 
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was significantly lower (p < 0.05) at 1,000 cells . ml-1.  There was no significant 

difference (p > 0.05) in clearance rate with lysed  K. brevis over time, although rates 

increased slightly during the two-day exposure. 

Mean clearance rate of M. mercenaria exposed to whole culture was significantly 

lower (p < 0.05) at 1,000 cells . ml-1 (Fig 15C).  There were no significant differences (p 

> 0.05) in clearance rate when M. mercenaria was exposed to lysed (Fig 15C) K. brevis. 

There was no significant difference (p > 0.05) in clearance rate of juvenile C. 

virginica exposed to different concentrations of lysed (Fig 15D) or whole (Fig 15D) K. 

brevis over time. 

 

Discussion  

 

The species-specific response of bivalve molluscs to the presence of toxic or 

noxious algae in their diet (Shumway and Cucci, 1987; Shumway, 1990) is supported in 

the current laboratory study.  Each of the four species responded differently when 

exposed to K. brevis at different concentrations and culture preparations.  Furthermore, 

each species responded similarly under two very different exposure regimes:  short-term 

(1 hr) exposure to a non-replenished supply of K. brevis and long-term (2 day) exposure 

to a continuous supply of K. brevis. 

In the present study, the bay scallop (A. irradians) was the most sensitive to the 

presence of  K. brevis in terms of clearance rate.  This was the only species that showed a 

significant reduction in clearance rate when fed K. brevis at a concentration of 100 cells . 

ml-1 , independent of culture preparation.  The response was immediate when exposed to 
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intact cells, but took 24 hr to be manifested with lysed cells.  Poor growth, 

histopathologies and mortality of A. irradians exposed to other toxic dinoflagellates 

suggest a systemic toxic effect (Wikfors and Smolowitz, 1993; Smolowitz and Shumway, 

1997; Lesser and Shumway, 1993).  The delayed feeding response to lysed K. brevis in 

our study was not related to any observed behavioral changes (e.g., shell valve closure 

Shumway and Cucci, 1987), but likely indicates an unknown cytotoxic or neurotoxic 

effect. 

Green mussels (Perna viridis) and northern quahogs (M. mercenaria) were 

intermediate in their feeding responses when exposed to K. brevis.  Both species showed 

significantly reduced clearance rates at 1,000 cells . ml-1 whole culture while neither 

species was affected by lysed culture.  In fact, the clearance rate of P. viridis increased 

gradually during the two-day exposure to lysed culture, regardless of concentration.  

Clearance rate in juvenile P. viridis was also unaffected by another toxic dinoflagellate, 

Alexandrium tamarense (Li et al., 2002); however, the congener, P. canaliculus, was able 

to clear, ingest and absorb laboratory cultures (EPA-JR strain) of K. brevis (Ishida et al., 

2004). 

The effects of toxic algae on feeding activity in the northern quahog (M. 

mercenaria) are more species-specific.  While M. mercenaria can ingest and survive 

exposure to potentially toxic strains of Prorocentrum (Wikfors and Smolowitz, 1993), 

ingestion of Alexandrium fundyense was low and could only be induced by the addition 

of a nontoxic diatom (Bricelj et al., 1990).  Additionally, feeding rates of M. mercenaria 

fed A. tamarense and Gyrodinium aureolum were low compared to rates when fed I. 

galbana, and exposure to G. aureolum resulted in significant mortalities (Lesser and 
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Shumway, 1993). 

Eastern oysters (C. virginica) were the least responsive bivalve when exposed to 

K. brevis with respect to clearance rate, although there was a significant concentration 

effect in the static experiment.  Of the four species of bivalves tested, oysters removed 

the highest percentage of K. brevis cells from the surrounding media.  Sievers (1969) 

showed that Eastern oysters maintained normal shell valve activity at high densities of K. 

brevis in the laboratory.  During red tides in the Gulf of Mexico, oysters became toxic 

(Cummins et al., 1971), easily accumulating (Dickey et al., 1999) and metabolizing (Poli 

et al., 2000) brevetoxins.  Oysters were more toxic than clams taken at the same time 

from the same location during a red tide outbreak in North Carolina (Tester and Fowler, 

1990).  Our results support the view that eastern oysters are relatively unharmed by 

exposure to bloom concentrations of K. brevis (Shumway et al., 1990). 

Overall, whole cultures of K. brevis (intact cells) had a greater effect than lysed 

cultures (disrupted cells) on clearance rate in all species except C. virginica, even though 

the amount of total brevetoxin was similar between the two preparations, suggesting that 

encounters with the dinoflagellate interfered with filtering capability.  The New Zealand 

cockle (Austrovenus stutchbury) and the greenshell mussel (P. viridis) were shown to 

assimilate brevetoxins from K. brevis culture as well as from the supernatant from 

disrupted culture (Ishida et al., 2004), but the effects of these preparations on feeding was 

not investigated.  Additional studies using recently isolated strains of K. brevis, including 

a non-toxic Wilson clone and two new isolates from Sarasota Bay (Florida, USA), could 

further elucidate these differences in bivalve feeding behavior. 

There was close within-species agreement in clearance rates between static and 
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flow-through systems;  however, the effects of K. brevis on  A. irradians was shown to be 

significantly affected by exposure time, whereby clearance rates at both medium (100 

cells . ml-1) and high (1,000 cells . ml-1) densities declined only after 24 hr exposure.  For 

this reason, continuous flow-through systems are generally preferred over static systems 

when measuring physiological performance.  With static systems, conditions are not held 

constant and therefore clearance rates may be affected if algal concentrations fall below a 

critical level (Widdows and Salkeld, 1993).  Conditions in flow-through systems can be 

held constant (i.e., algal concentration), thus enabling continuous monitoring of clearance 

rate over extended time periods which more closely reflect environmental conditions 

during algal blooms.  Additionally, flow-through systems allow for the monitoring of 

possible behavioral or physiological changes associated with long term exposure to toxic 

algae (Lassus et al., 1999).  Bardouil et al. (1996) suggested that longer exposure times 

are necessary to assess the effects of toxic algae on algal ingestion and toxin absorption 

in bivalve shellfish.  

Recurring blooms (= red tides) of  K. brevis are common along the Florida west 

coast (Tester and Steidinger, 1997; Kirkpatrick et al., 2004).  Our results showed that the 

effects of laboratory cultures of K. brevis on clearance rates of juveniles of four important 

bivalves were species-specific, suggesting that the ecological and fisheries impacts from 

these algal blooms could be quite different depending upon bivalve species, bloom 

concentration and duration.  The most sensitive species in the present study was the bay 

scallop, A. irradians.  A rare bloom of K. brevis in North Carolina during 1987-88 was 

implicated in the massive mortality and subsequent recruitment  failure of local bay 

scallop populations (Summerson and Peterson, 1990).  Recently, bay scallops have been 
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the focus of restoration activities in several southwest Florida estuaries (Geiger and 

Arnold, 2003; Wilbur et al., 2005; Leverone et al., 2005).  In 2001, a restoration project 

was irrevocably compromised when a dense (105 – 107 cells . L-1) bloom of K. brevis 

infiltrated Sarasota Bay, FL, resulting in complete mortality of captive scallops 

(Leverone, unpublished).  While more precise studies are necessary to resolve the 

relationship between red tide intensity and duration on bay scallop mortality, prediction 

and monitoring of algal blooms would be beneficial in identifying potential restorations 

sites that are less prone to chronic K. brevis blooms.  Florida’s hard clam (M. 

mercenaria) aquaculture industry would also benefit from improved red tide prediction 

and monitoring.  Relocating lease sites to areas less susceptible to red tides would benefit 

the industry twofold:  reduce the deleterious effects of high K. brevis concentrations on 

feeding rates which, in turn, would affect growth rates, and 2) reduce the probability that 

cultured clams will be prevented from reaching the market due to harvest closures 

(Shumway, 1990). Locating aquaculture sites in lower salinity waters might reduce the 

frequency and duration of exposure to red tides, which typically initiate in more saline 

offshore waters.  If a red tide does penetrate the estuary, the lower salinity further into the 

bay could serve as a potentially effective salinity barrier to a bloom of K. brevis.  

Similarly, reduced feeding rates in the green mussel (P. viridis) at high K. brevis 

concentrations should theoretically make it more difficult for mussel populations to 

remain established in estuaries where red tides are more frequent and/or severe.  

Emperical observations, however, suggest a different outcome.  An intense red tide 

during 2005-06 resulted in high mortality of green mussels attached to pilings and other 

structures in lower Tampa Bay (personal observation).  Intense recolonization by juvenile 
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green mussels, however, was observed in late 2006, several months after the bloom had 

dissipated.  The prolific and dynamic recruitment rates of green mussels and their ability 

to rapidly recolonize a previously inhabited space after a red tide has disappeared 

suggests populations of this exotic species have no difficulty overcoming the temporary 

effects of exposure to K, brevis.  Finally, the relative insensitivity of C. virginica feeding 

rates to K. brevis suggests that the structure and function of Eastern oyster habitats in 

southwest Florida should not suffer serious negative impacts from K. brevis blooms. 
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Table 7 

Experimental conditions, bivalve species, sample matrix, cell and brevetoxin concentration of laboratory cultures of K. brevis 
(Wilson Clone) used for juvenile feeding experiments.  n.d. = not detected. 

  
EXPERIMENT K. brevis Culture  Brevetoxin Amount (ug . L-1)  
Static Matrix (cells . ml-1) PbTx-1 PbTx-2 PbTx-3 Brevenal TOTAL 
Bay scallops Whole n.d. 32.9 1.0 33.9 67.8 
     (Argopecten irradians) Lysed 

22,000 
n.d. 12.2 4.1 24.9 41.2 

Green mussel Whole 1.9 17.6 3.6 ----- 23.1 
     (Perna viridis) Lysed 

21,650 
1.9 20.0 6.5 ----- 28.4 

Northern quahog Whole 0.7 17.4 22.2 ----- 40.3 
     (Mercenaria mercenaria) Lysed 

22,000 
5.9 36.2 18.4 ----- 60.5 

Eastern oyster Whole 5.9 36.6 21.1 ----- 63.5 
     (Crassostrea virginica) Lysed 

21,300 
7.6 52.7 20.1 ----- 80.3 

          
Flow-through         
Bay scallops Whole 19,600 n.d. 30.4 4.7 31.9 67.0 
     (Argopecten irradians) Lysed 21,800 n.d. 32.9 1.0 33.9 67.8 
Green mussel Whole 21,400 n.d. 10.7 9.2 9.7 29.7 
     (Perna viridis) Lysed 23,800 n.d. 34.4 5.5 13.9 53.8 
Northern quahog Whole 21,500 n.d. 32.9 1.0 33.9 67.8 
     (Mercenaria mercenaria) Lysed 23,100 n.d. 43.2 12.1 19.8 75.1 
Eastern oyster Whole 24,600 n.d. 24.8 5.3 31.8 61.9 
     (Crassostrea virginica) Lysed 23,300 n.d. 36.2 5.9 18.4 60.5 
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Table 8 
Decline in Isochrysis galbana cell counts (cells . ml-1) for juvenile bivalve molluscs exposed to 
different concentrations and preparations of Karenia brevis under static conditions.  Starting 
seawater volume in each replicate was 500 ml. 

 
Argopecten irradians 

Cell concentration    
(t=0 hr) (cells . ml-1) 

Cell concentration    
(t=1 hr) (cells . ml-1) 

Treatment 
Mean Dry Wt 

(mg) (SD) T. iso K. brevis T. iso K. brevis 

Reduction in cell 
concentration . 

mg dry wt-1 . hr-1 
(cells . ml-1) 

Control 19.5 (0.92) 25,758 ----- 16,671 ----- 466 
Whole-10 18.8 (1.34) 25,574 32 17,355 22 437 
Lysed-10 16.9 (1.95) 25,334 ----- 17,751 ----- 449 

Whole-100 18.2 (1.75) 25,343 142 22,181 115 174 
Lysed-100 18.4 (1.50) 25,728 ----- 21,520 ----- 229 

Whole-1,000 17.7 (1.28) 25,261 1,068 23,260 1,036 113 
Lysed-1,000 18.4 (1.02) 25,651 ----- 21,414 ----- 230 

Perna viridis 
Control 43.5 (3.87) 20,736 ----- 5,005 ----- 362 

Whole-10 44.9 (4.38) 21,547 27 5,589 14 355 
Lysed-10 43.3 (3.49) 20,928 ----- 5,388 ----- 359 

Whole-100 43.4 (6.18) 21,524 117 10,023 111 265 
Lysed-100 44.4 (1.90) 21,285 ----- 6,704 ----- 328 

Whole-1,000 46.5 (7.21) 22,298 1,132 14,891 770 153 
Lysed-1,000 40.3 (3.16) 20,944 ----- 7,092 ----- 344 

Mercenaria mercenaria 
Control 14.9 (1.43) 22,988 ----- 15,727 ----- 487 

Whole-10 16.3 (2.41) 23,600 13 16,601 13 429 
Lysed-10 16.0 (1.81) 24,098 ----- 17,610 ----- 406 

Whole-100 15.3 (1.01) 23,207 99 17,467 55 375 
Lysed-100 13.8 (0.98) 24,154 ----- 17,094 ----- 512 

Whole-1,000 16.1 (1.43) 22,820 979 19,897 889 182 
Lysed-1,000 15.2 (0.79) 23,787 ----- 17,370 ----- 422 

Crassostrea virginica 
Control 43.9 (5.88) 19,210 ----- 2,637 ----- 378 

Whole-10 40.6 (8.99) 18,986 9 3,193 8 389 
Lysed-10 47.1 (5.84) 18,800 ----- 3,355 ----- 328 

Whole-100 47.1 (5.43) 19,251 108 3,987 33 324 
Lysed-100 50.6 (6.54) 20,364 ----- 4,439 ----- 315 

Whole-1,000 48.3 (8.14) 20,447 1,035 5,557 560 308 
Lysed-1,000 45.7 (4.75) 20,493 ----- 5,053 ----- 338 
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Table 9 
Filtration and clearance rates of juvenile bivalve molluscs exposed to whole and lysed culture of 
Karenia brevis under static conditions.  Starting seawater volume in each replicate was 500 ml. 

 
Argopecten irradians 

Treatment 

Dry tissue 
(mg) Mean 

(SD) 
Filtration Rate 

(cells . hr-1) 
Clearance 

Rate (ml . hr-1)
Weight-Specific Clearance 
Rate (ml . hr-1 . mg dry wt-1) 

Control 19.5 (0.92) 9,087 218  11.19  
Whole-10 18.8 (1.34) 8,219 194  10.40  
Lysed-10 16.9 (1.95) 7,583 178  10.54  

Whole-100 18.2 (1.75) 3,161 67  3.69  
Lysed-100 18.4 (1.50) 4,207 89  4.89  

Whole-1,000 17.7 (1.28) 2,001 41  2.33  
Lysed-1,000 18.4 (1.02) 4,236 90   4.93   

 
Perna viridis 

Control 43.5 (3.87) 15,731 714  16.39  
Whole-10 44.9 (4.38) 15,958 679  15.13  
Lysed-10 43.3 (3.49) 15,540 682  15.80  

Whole-100 43.4 (6.18) 11,501 385  9.01  
Lysed-100 44.4 (1.90) 14,581 580  13.06  

Whole-1,000 46.5 (7.21) 7,407 205  4.37  
Lysed-1,000 40.3 (3.16) 13,852 545   13.60   

 
Mercenaria mercenaria 

Control 14.9 (1.43) 7,261 191  12.91  
Whole-10 16.3 (2.41) 6,999 176  10.99  
Lysed-10 16.0 (1.81) 6,488 157  9.93  

Whole-100 15.3 (1.01) 5,739 142  9.31  
Lysed-100 13.8 (0.98) 7,060 173  12.54  

Whole-1,000 16.1 (1.43) 2,923 69  4.28  
Lysed-1,000 15.2 (0.79) 6,417 157   10.37   

 
Crassostrea virginica 

Control 43.9 (5.88) 16,573 613  13.57  
Whole-10 40.6 (8.99) 15,794 530  11.91  
Lysed-10 47.1 (5.84) 15,444 497  11.76  

Whole-100 47.1 (5.43) 15,265 755  10.74  
Lysed-100 50.6 (6.54) 15,924 612  10.02  

Whole-1,000 48.3 (8.14) 14,889 245  8.42  
Lysed-1,000 45.7 (4.75) 15,440 548   8.95   

 



70 
 
 

Treatment

Control Whole-10 Lysed-10 Whole-100 Lysed-100 Whole-1,000 Lysed-1,000

C
le

ar
an

ce
 R

at
e 

(m
l .  h

r-1
 .  m

g 
dr

y 
w

t-1
)

0

2

4

6

8

10

12

14

 

Figure 6.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile bay scallops (Argopecten irradians) 
exposed to three concentrations and two preparations of Karenia brevis.  Treatments with the same letter are not 
significantly different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s Multiple Comparison Test. 
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Figure 7.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile green mussels (Perna viridis) exposed to 
three concentrations and two preparations of Karenia brevis.  Treatments with the same letter are not significantly 
different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s Multiple Comparison Test. 
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Figure 8.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile northern quahogs (Mercenaria 
mercenaria) exposed to three concentrations and two preparations of Karenia brevis.  Treatments with the same letter 
are not significantly different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s Multiple Comparison Test. 
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Figure 9.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile eastern oysters (Crassostrea virginica) 
exposed to three concentrations and two preparations of Karenia brevis.  Treatments with the same letter are not 
significantly different (p > 0.05).  n = 10.  Two-way ANOVA; Tukey’s Multiple Comparison Test. 
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Figure 10.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) for juvenile bivalves exposed to (A) whole and (B) lysed 
cultures of Karenia brevis under static conditions.  ● = Argopecten irradians; ▲ = Perna viridis;  = Mercenaria mercenaria; 
and  = Crassostrea virginica.  (n = 10).
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Table 10 
Species, treatment, clearance rate and amount of toxin (µg) each species was exposed to 
during static feeding experiments.  Amount of toxin exposure is based on culture cell 
concentration and amount of toxic (w/v) in each culture. 

      
  Clearance Rate Culture Toxins (µg . L-1)

Species Treatment (ml . min-1 . mg dry wt-1) 67.8 41.2 
Bay scallop (cells . ml-1) Whole Lysed Whole Lysed 
     (Argopecten irradians) 10 10.4 10.54 0.015 0.009

 100 3.69 4.89 0.154 0.094
  1,000 2.33 4.93 1.541 0.936

      
  Clearance Rate Culture Toxins (µg . L-1)

  Treatment (ml . min-1 . mg dry wt-1) 23.1 28.4 
Green mussel (cells . ml-1) Whole Lysed Whole Lysed
     (Perna viridis) 10 15.13 15.8 0.005 0.007

 100 9.01 13.06 0.053 0.066
  1,000 4.37 13.6 0.533 0.656

      
  Clearance Rate Culture Toxins (µg . L-1)

  Treatment (ml . min-1 . mg dry wt-1) 40.3 60.5 
Northern quahog (cells . ml-1) Whole Lysed Whole Lysed 
    (Mercenaria mercenaria) 10 10.99 9.93 0.009 0.014

 100 9.31 12.54 0.092 0.138
  1,000 4.28 10.37 0.916 1.375

      
  Clearance Rate Culture Toxins (µg . L-1)

  Treatment (ml . min-1 . mg dry wt-1) 63.5 80.5 
Eastern oyster (cells . ml-1) Whole Lysed Whole Lysed 
     (Crassostrea virginica) 10 11.91 11.76 0.015 0.019
  100 10.74 10.02 0.149 0.189
  1,000 8.42 8.95 1.491 1.890
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Figure 11.  Regression of clearance rates for juvenile Argopecten irradians against the amount of brevetoxin exposure under 
static conditions.  Solid line represents regression for whole culture of Karenia brevis ( ); dashed line represents regression 
for lysed culture of K. brevis (♦).  Regression equation shown for each line.  (n = 5).
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Figure 12.  Regression of clearance rates for juvenile Perna viridis against the amount of brevetoxin exposure under static 
conditions.  Solid line represents regression for whole culture of Karenia brevis ( ); dashed line represents regression for 
lysed culture of K. brevis (♦).  Regression equation shown for each line  (n = 5). 
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Figure 13.  Regression of clearance rates for juvenile Mercenaria mercenaria against the amount of brevetoxin exposure 
under static conditions.  Solid line represents regression for whole culture of Karenia brevis ( ); dashed line represents 
regression for lysed culture of K. brevis (♦).  Regression equation shown for each line  (n = 5). 
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Figure 14.  Regression of clearance rates for juvenile Crassostrea virginica against the amount of brevetoxin exposure under 
static conditions.  Solid line represents regression for whole culture of Karenia brevis ( ); dashed line represents regression 
for lysed culture of K. brevis (♦).  Regression equation shown for each line  (n = 5). 
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Figure 15.  Mean (± S.D.) clearance rate (ml . hr-1 . mg dry wt-1) of juvenile bivalves 
exposed to whole (top) and lysed (bottom) cultures of Karenia brevis under flow-
through conditions.  Species include (A) Argopecten irradians, (B) Perna viridis, 
(C) Mercenaria mercenaria, and (D) Crassostrea virginica.  Concentrations of K. 
brevis in each treatment are:  Control (○), 100 (▲) and 1,000 ( ) cells . ml-1. (n = 
6).  Clearance rates were measured twice a day (9 A.M. and 5 P.M.) and calculated 
from inflow and outflow concentrations of a supplemental food algae, Isochrysis 
galbana. 
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Chapter Five 

Histopathology  Studies 

 

Introduction 

 

Studies on bivalve exposure to harmful microalgae have mostly focused on short-

term acute and lethal effects.  The consequences of more long-term, chronic or sublethal 

contact with toxic algae and/or bioaccumulated toxins have received less attention 

(Shumway and Cucci, 1987; Shumway, 1990; Landsberg, 1996).  Chronic exposure to 

biotoxins typically leads to impaired feeding, avoidance behaviors, physiological 

dysfunction, weakened immune function and reduced growth and reproduction 

(Shumway, 1990; Wikfors and Smolowitz, 1993), which in turn may lead to an increased 

susceptibility to disease, abnormal development, histopathologies and the induction of 

neoplasia (Landsberg, 1996).  Types of histopathologies that have been observed include 

mantle and gill lesions (Nielsen and Strømgren, 1991; Smolowitz and Shumway, 1997), 

cellular changes and increased lumen diameter within the digestive diverticula (Wikfors 

and Smolowitz, 1993), reproductive abnormalities, protozoan and/or bacterial infections 

(Smolowitz and Shumway, 1997) and disseminated neoplasia  and germinomas (see 

Landsberg, 1996 for review; Barber, 2004). 

The impact of Gyrodinium aureolum on the histology of gut tissue from eight 

species of juvenile bivalve was species-specific (Smolowitz and Shumway, 1997).  The 



82 

eastern oyster (Crassostrea virginica) and the bay scallop (Argopecten irradians) were 

the most severely affected species.  Several C. virginica showed mantle and gill lesions.  

Bay scallops exhibited a decrease in the height of absorptive cells and an increase in 

lumen diameter after exposure, suggesting G. aureolum is of poor food quality.  Evidence 

of toxic effects was not identified in the digestive gland.  Several bay scallops also 

showed variable amounts of inflammation in the kidney associated with protozoal 

infestations and variable amounts of predominately rod-shaped bacteria within the 

urinary space. 

Bay scallops exposed to a Prorocentrum isolate also showed tissue abnormalities 

(Wikfors and Smolowitz, 1993).  Bay scallops fed mixed diet of P. minimum and 

Isochrysis galbana showed distinctive lesions.  Control scallops showed normal, well-

developed digestive diverticula while experimental scallops exhibited an assortment of 

abnormalities in this organ, including contracted absorptive cells, abnormal vacuolation, 

necrosis of absorptive cells and their exfoliation into the lumen.  All other organs (gills, 

muscle, kidney, foot and heart) in the experimental group appeared moderately to well 

developed (Wikfors and Smolowitz, 1993).  Another pectinid, the king scallop (Pecten 

maximus) developed obvious saxitoxin neoformation in kidneys after exposure to 

paralytic shellfish poisoning toxins (Bougrier et al., 2000). 

The mussel Mytilus edulis was shown to be cytotoxic in the presence of the 

dinoflagellate, Gyrodinium aureolum, which had an acute effect on the clearance rate and 

caused marked cellular damage to the gut (Widdows et al., 1979). Likewise, exposure of 

juvenile hard clams (Mercenaria mercenaria) and blue mussels (Mytilus edulis) to a toxic 

isolate of the picoplankter Aureococcus anophagefferens (which causes brown tides in 
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coastal bays of the mid-Atlantic USA) caused reduction in digestive epithelium height 

and overall appearance of absorptive cells (Bricelj et al. 2004).  These observations are 

similar to those in bivalves that have undergone starvation. 

 The effects of long-term exposure of bivalves to Karenia brevis have not yet been 

studied.  Consequently, we do not know if the brevetoxins produced by K. brevis, which 

are responsible for neurotoxic shellfish poisoning (NSP) in the Gulf of Mexico, have a 

role in the initiation of any specific pathologies in bivalve tissues (Landsberg, 1996).  

Although brevetoxins have been well known for their role in fish kills (Steidinger et al., 

1973), their role in developing histopathologies in bivalve molluscs is unknown.  Of the 

four bivalves studied in the present work, the bay scallop (Argopecten irradians) has 

been the most sensitive to K. brevis exposure.  Therefore, this chapter focuses on the 

histological effects of long-term exposure to K. brevis in adult  bay scallops.  

Furthermore, the effects of whole and lysed cultures of K. brevis, in unialgal and mixed 

suspensions, are examined in the following tissues:  digestive diverticulum, mantle and 

gill. 

 
 

Materials and Methods 

 

 Adult bay scallops (Argopecten irradians) were collected from the Anclote 

Anchorage (28o 17’N; 82o 45’W) and Hommosassa Springs (28o 43’N; 82o 43’W) on 

June 30, 2006 and transferred to Mote Marine Laboratory.  Scallops were gently 

scrubbed to remove any attached fauna or debris and equally divided into five separate 

25-liter aquaria.  Aquaria were mildly aerated and maintained at 32 ppt salinity and 27o C 
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in a temperature-controlled exposure room.  Scallops were suspended above the aquaria 

bottom by a mesh partition to allow for the settlement of feces.  Scallops were allowed to 

acclimate without food for two days prior to the start of the experiment. 

 Each aquarium held twenty-five scallops at the start of the experimental exposure. 

 For those treatments receiving Isochrysis galbana and Karenia brevis, algal 

concentrations were set at 1 x 105 cells . ml-1 and 5 x 102 cells . ml-1, respectively.  

Experimental conditions are summarized in Table 11.  A water exchange (ca. ninety 

percent) was made each day and algal concentrations adjusted to maintain the desired 

concentrations.  A sample (n = 4) of individuals was removed from each aquaria on days 

2, 7 and 14 and fixed for histology.  Scallops were observed daily and any individual 

showing signs of stress or abnormal behavior (i.e., shell gaping or mantle retraction) was 

immediately removed and fixed. 

 Shell height was measured before dissection.  Scallops were dissected and the 

mantle, gill and digestive gland were fixed in Davidson’s fixative (Howard and Smith, 

1983).  Tissues remained in fixative for 48 hours before being transferred to 70% ethanol 

where they remained until embedding.  Each tissue was processed in paraffin (Tissue 

Prep™ ), five μm sections prepared and stained with hematoxylin and eosin (Howard and 

Smith, 1983).   

Sections were observed under magnification to determine if any abnormalities 

had developed after a two week exposure to K. brevis.  Results are descriptive and 

qualitative in nature.  Photomicrographs accompany descriptive pathologies. 
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Results 

 

Table 12 summarizes the sampling schedule, withdrawals and mortality of A. 

irradians during the two-week exposure to K. brevis.  Mean shell height was 

approximately 50 mm in all treatments.  All scallops in every treatment survived the first 

week of exposure.  On day nine, several scallops began to show signs of stress, indicated 

by slight gaping of the shell valves and partial retraction of the mantle edges.  These 

included one scallop from Tank 3 ( K. brevis only) and two from Tank 5 (lysed K. brevis 

and T. iso).  At the end of day twelve, only scallops from Tank 1 (Control) and Tank 4 

(whole K. brevis and T. iso) were still alive.  Scallops from both of these treatments were 

still alive on day fourteen when the experiment was terminated. 

Various parasitic infections were observed in gill and digestive tissue from 

scallops in all treatments.  The most common infections were ciliates (Nematopsis sp?) 

and Rickettsias-like bacterial infections (Fig. 16).  An unidentified parasite within the 

digestive diverticula is pictured in Fig. 17. 

On the other hand, several histomorphologies, particularly in the digestive 

diverticula, were observed that appear to be associated with several of the exposure 

scenarios to K. brevis.  The most noticeable and pervasive of these pathologies was the 

presence of hemocyte aggregations and infiltrations in the digestive diverticulum.  This 

particular pathology, which is indicative of an inflammatory response, was found to some 

degree in all treatments, but was particularly associated with scallops that were either 

starved or exposed to lysed K. brevis and Isochrysis (Tank 5; Fig. 18).  This pathology 

first appeared on day 2 in starved scallops; in the other treatment it appeared on day 7 
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and was present through the remainder of the experiment.  The relative intensity of this 

inflammatory response was scored on a scale of 0 – 3+ and summarized in Table 13. 

The appearance of the epithelial layer in the digestive diverticula showed a range 

of atrophic degradation, including variously reduced thickness of the epithelial layer and 

reduced sizes of the digestive tubules.  These changes were pervasive throughout all 

treatments except the control and were noticeable from as early as day two in starved 

scallops.  The degree of modification of the epithelial layer is shown in Fig. 19. 

Gill and mantle tissue from A. irradians exposed to K. brevis did not show any 

obvious or noticeable histopathologies.  The epithelia of the ordinary filaments in the gill 

appeared normal, as did the supporting structures, septa and cilliary tracts (Fig 20A).  

The variously-shaped interconnecting vessels of the dorsal expansion of the gill also 

appeared normal and healthy (Fig 20B).  Finally, the free edge of the mantle, which is 

divided into three folds and two grooves, showed no deformities or abnormalities (Fig 

21). 

 

Discussion 

 

Bivalve parasites, notably the Rickettsiales and Protista, are commonly found in 

the epithelial cells of the gills and digestive diverticula of many species, including 

scallops (Chang et al., 1980).  Most infections appear benign, despite relatively dense 

colonization.  Light to moderate rickettsial-like infections of the gill have been 

previously found in wild, captive and cultured adult bay and sea scallops by Leibovitz et 

al. (1984).  The coccideans, Nematopsis ostrearum and N. duorari, have been found in 
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bay scallops, but no pathogenicity has been described for these infections (Kruse, 1966; 

Sprague, 1970).  In the present study, bacterial infections were not intense, nor were they 

predominant in any particular treatment or related to time of exposure to K. brevis.  The 

presence of bacterial and protist parasites did not appear to be positively associated with 

any of the observed cytological histopathologies in this study. 

This study showed distinctive and pervasive hemocytic infiltrations in the 

digestive diverticula of A. irradians, particularly in individuals that had either been 

starved or exposed to lysed culture of K. brevis.  Hemocytes are known to recruit from 

circulation to sites of inflammation and tissue damage (Cheng, 1967).  The fact that a 

higher incidence of inflammation occurred from exposure to lysed cultures suggests a 

cytotoxic response rather than a reaction to the actual dinoflagellate.  Damage to 

adsorptive cells in the digestive diverticula and systemic pathologies characteristic of 

toxin effects has previously been observed in juvenile bay scallops by Wikfors and 

Smolowitz (1993) after exposure to a diet which included Prorocentrum minimum.  

These scallops suffered rapid mortality.  Similar changes in the digestive cells of the 

mussel Mytilus edulis were noted during a bloom of Gyrodinium aureolum and were 

attributed to a toxic response rather than a result of starvation (Widdows et al., 1979).  

Additional studies are necessary to elucidate the mechanism by which toxicity from 

harmful algae leads to such rapid mortality in the bay scallop (as opposed to other 

bivalves). 

Decreased height of absorptive cells and increased lumen diameter suggest that K. 

brevis is, at best, a poor quality food (Smolowitz and Shumway, 1997).  Starved bivalves 

display similar changes in epithelia of the absorptive cells  (Wikfors and Smolowitz, 
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1995).  Smolowitz and Shumway (1997), however, did not observe sloughing of 

digestive epithelial cells in juvenile A. irradians exposed to Gyrodinium aureolum, 

leading them to conclude that there was probably no toxic effect.  In this study, there 

were signs of epithelial sloughing which lends support to an unknown toxic mechanism 

(in addition to poor nutritional processes) in the digestive diverticula of A. irradians 

exposed to K. brevis.  The use of a nontoxic dinoflagellate in addition to K. brevis in 

future feeding studies might help elucidate the histological differences between 

nutritional and toxic responses in bay scallop digestive tissues.
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Table 11.  Experimental design for two-week exposure of Argopecten irradians to 

Karenia brevis.  (Isochrysis galbana is a common nutritional chrysophyte algae). 

 

Treatment Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 

Isochrysis galbana 

 (1 x 105 cells . ml-1) 

Yes No No Yes Yes 

Karenia  brevis 

(5 x 102 cells . ml-1) 

No No Yes Yes Yes 

Whole or lysed Karenia brevis 
None None Whole Whole Lysed 
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Table 12.  Schedule for the removal of Argopecten irradians from each experimental 
tank during the two-week exposure to Karenia  brevis.  Values represent shell height 
(mm) of individuals removed for fixation (shaded) or dead (unshaded) on that day.   
 

Day Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 

  
Control (T. 

iso only) 
Starved (no 

algae) 
Whole K.b. 

only 
Whole K.b. 

+ T. iso 
Lysed K.b. 

+ T. iso 
0           
2 54.9 60.8 59.8 56.5 52.5
  52.4 58.9 56.0 57.1 55.6
  53.1 56.1 55.6 53.2 52.0
  46.4 50.1 46.8 50.1 46.5
3           
4           
5           
6         
7 31.3 40.9 44.1 41.4 40.2
  42.1 44.6 53.2 43.9 42.6
  49.7 48.7 48.8 46.1 48.6
  49.3 54.2 47.7 54.1 52.2
8 59.0     43.0 46.2
9     44.9   53.9
      57.3   45.2

10   52.9     52.2
11           
12   53.7 52.7    
    45.2 43.5    
     55.6      

13          
14 53.4     56.4  

 52.3     55.1  
 49.3     48.3   
   
Mean 49.7 51.5 51.4 51.5 50.8
S.D. 6.49 5.80 4.96 5.65 5.49
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Table 13.  Scoring of hemocyte infiltration intensity in the digestive diverticula of A. 
irradians exposed to various scenarios of K. brevis. 
 

  Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 

Day Control Starved 
Whole K. 

brevis only 
Whole K. 

brevis & T. Iso 
Lysed K. 

brevis & T. Iso
2 0 1 - 2+ 0 0 0 
 0 2 - 3+ 0 0  0 - 1+ 
 0  2+  0 - 1+  0 - 1+ 0 
  1+  1+  1+  2+ 0 
7 0 1 - 2+ 0  0 - 1+  2+ 
  1+  1+  0 - 1+  1+  2+ 
  1+  2+  0 - 1+  0 - 1 +  3+ 
 0  2+ 0  3 +  2+ 
9   0   2+ 
      3+ 

10     0 
12    0 - 1+   
   0   

14 0 - 1+   0  
 0    0 - 1+  
  1+   0  
 0     
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Figure 16.  (A)  The protist, Nematopsis sp? (arrow) and (B) a Rickettsial-like bacterial 
microcolony in the gill epithelia of A. irradians.  Magnification equals 400x. 
 
 

 

Fig. 17.  An unidentified parasite encysted within the digestive diverticula.  
Magnification equals 400x. 

 

A B
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Figure 18.  Digestive diverticula from A. irradians exposed to lysed culture of K. brevis 
and T. Isochrysis.  (A and B = day 7; C and D = day 9).  Hemocyte aggregations (arrows) 
displaying inflammatory response.  Magnification equals 400x. 
 

    

Figure 19.  Epithelial layer of the digestive diverticula in A. irradians from different 
exposure scenarios to K. brevis.  A)  control scallop at 14 days; B) scallop exposed to 
whole culture of K. brevis at day 12.  Magnification equals 400x.

BA 

C D

A 

BA 
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Figure 20.  Gill tissue from A. irradians showing A) the distal portions of the ordinary 
filaments (note the lateral cilia) and B) interconnecting vessels of the dorsal expansion. 
 
 
 
 

     
 
Figure 21.  Mantle tissue from A. irradians showing A) the epithelia of the mantle margin 
and B) section through an eye on the middle fold of the mantle margin.

A 

A 

B
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Chapter Six 

General Discussion 

 

Florida red tides caused by the dinoflagellate Karenia brevis are some of the 

oldest reported harmful algal blooms, with fish kills being reported since the middle of 

the nineteenth century (Ingersoll, 1882).  These massive fish mortalities are the most 

consistent observation from reports of red tides, and much has since been learned 

regarding the toxic mechanisms involved in fish mortality (see Landsberg, 2002 for 

review).  Filter feeding bivalve molluscs also become contaminated with these toxins 

during blooms of K. brevis, and cause a disease called neurotoxic shellfish poisoning in 

humans who consume contaminated shellfish.  The focus of previous research on K. 

brevis and bivalves has been on the human health consequences of eating shellfish 

contaminated with these toxins, called brevetoxins, or their analogs (Hemmert, 1975).  

Studies of K. brevis and its effects on bivalves themselves are much more limited and can 

be divided into three categories:  1) observations of bivalve mortalities from natural 

blooms (Simon and Dauer, 1972; Tiffany and Heyl, 1978); 2) toxicity of shellfish 

exposed to laboratory cultures (Ray and Aldrich, 1967; Sievers, 1969; Hemmert, 1975) or 

blooms in the field (Cummins et al., 1971; Tester and Fowler, 1990; Wang et al., 2004); 

and 3) the dynamics of toxin uptake, metabolism and elimination after controlled 

exposure to K. brevis cultures and/or pure toxins (Fletcher et al., 1998; Plakas et al., 

2002; Ishida et al., 2004).  These studies and their findings are summarized in Table 14. 
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Field observations of mortality from natural blooms demonstrate the ecological 

consequence of these perturbations on resident fauna, but rarely do they unequivocally 

relate mortality to the intensity and duration of exposure to K. brevis.  Invariably, there 

are other concommitant and complicating conditions that contribute to mortality, most 

notably severe and prolonged depressions in dissolved oxygen, which may or may not be 

monitored.  Monitoring of shellfish toxicity during red tides has provided valuable 

information on the toxicity of exposed bivalves, but no consideration has ever been given 

to the “health” of the shellfish.  Recent laboratory studies focusing on the identity of 

toxins and their derivatives have contributed greatly to our knowledge of how bivalves 

“process” brevetoxins; however, these studies did not investigate the behavioral or 

physiological responses, such as changes in feeding rate, that bivalves undergo when 

confronted with these toxic dinoflagellates. 

Not until the early work of Shumway and colleagues was attention given to the 

impacts of harmful and toxic algae on specific shellfish or to the potential long-term 

impacts to bivalve fisheries and culture (Shumway and Cucci, 1987; Shumway, 1990; 

Shumway et al., 1990).  These studies revealed no universal effects on bivalves from 

exposure to toxic algae; rather, the response depends on the interaction between specific 

alga and bivalve species.  It was also demonstrated that bivalve populations which are 

periodically exposed to toxic algal blooms may have evolved mechanisms permitting 

them to exploit the toxic organisms as food with no ill effects. 

Recurring blooms of  K. brevis have become common along the Florida west 

coast (Tester and Steidinger, 1997).  These blooms occur almost annually, usually in the 

late summer and autumn (see Kirkpatrick et al., 2004 for review).  At the same time, 
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populations of important bivalve species in Florida are under increasing threat from these 

persistent algal blooms.  For example, projects aimed at restoring bay scallops within 

several southwest Florida estuaries have increased in recent years (Geiger and Arnold, 

2003; Wilbur et al., 2005; Leverone et al, 2005).  The green mussel, Perna viridis, which 

is commercially exploited in its native New Zealand, became established in Tampa Bay 

in 1999 (Ingrao, 2001), and has since spread throughout the state and has been found as 

far as South Carolina along the Atlantic coast.  The state of Florida has developed a  

burgeoning clam (M. mercenaria) aquaculture industry in the past decade and is 

responsible for managing leases in coastal areas that coincide with the most frequent 

episodes of red tide.  Specific knowledge regarding the ecological consequences of 

prolonged or repeated exposure to K. brevis in Florida bivalve populations would help 

tremendously in developing responsible management plans for each of these valuable 

shellfish species.  This dissertation research was undertaken to add to the knowledge of 

how K. brevis affects the different life stages of important bivalve molluscs from Florida. 

 

Bivalve Larvae 

 

Most studies on the interaction between toxic dinoflagellates and bivalves have 

focused on juvenile and adult life stages (see reviews by Shumway, 1990; Bricelj and 

Shumway, 1998; Landsberg, 2002).  Recently, attention has been given to the effects of 

harmful algal on bivalve larvae (Wikfors and Smolowitz, 1995; Matsuyama et al., 2001; 

Yan et al., 2001; Yan et al., 2003; Jeong et al., 2004).  The veliger is an important and 

delicate stage in the early development of bivalve shellfish and is generally considered 
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more sensitive than its post-larval counterparts to perturbations and stressors, including 

exposure to harmful algal blooms (Yan et al., 2003; Wang et al, 2006). 

The research presented in this thesis demonstrated that survival of veliger larvae 

for all three bivalve species (Argopecten irradians, Mercenaria mercenaria and 

Crassostrea virginica) was dependent upon the cell concentration of Karenia brevis.   

Overall survival was quite high (85%) at K. brevis cell concentrations less than bloom 

strength (100 cells . ml-1 and less), but decreased to roughly 25% at high bloom 

concentrations (5,000 cells . ml-1).  Larval development was also protracted in surviving 

larvae of C. virginica and M. mercenaria at K. brevis densities of 1,000 cells . ml-1.  

Larval survival was generally higher when exposed to whole cultures of K. brevis 

compared to lysed cultures. 

Matsuyama et al. (2001) reported that certain species of harmful algae were lethal 

to larvae of the Pacific oyster, C. gigas, at cell densities (100-1,000 cells . ml-1) similar to 

those in the present study.  While certain dinoflagellates (Alexandrium tamarense, A. 

taylori, Gymnodinium mikimotoi and Heterocapsa circularisquama) were shown to be 

lethal, four other species (Chattonella antiqua, Gymnodinium catenatum, Heterosigma 

akashiwo and Scrippsiella trochoidea) did not affect the survival rate or development of 

oyster larvae at the same concentrations.  Interestingly, mortality did not necessarily 

relate to the toxicity of the dinoflagellate.  Alexandrium taylori had an extreme lethal 

effect on C. gigas larvae, but HPLC analysis of A. taylori cultures revealed no PSP 

toxins.  The PSP producer Gymnodinium catenatum, however, caused no harmful effects 

on oyster larvae even at abnormally high (above bloom) concentrations.  Exposure of C. 

gigas embryos to unfiltered seawater containing Gyrodinium aureolum for two days 
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resulted in poor (ten percent) survival to the veliger stage (Helm et al., 1974), suggesting 

evidence of toxicity. 

The process by which K. brevis affects larval survival is not clear, but several 

possible mechanisms have been suggested and may be involved.  The earliest studies on 

interactions between bivalve larvae and harmful algae suggested that a direct cell-to-cell 

contact with microalgae was responsible for larval mortality, either through exposure to 

toxins present on cell surfaces or through mechanical damage to sensitive organs, 

particularly gills.  Gallager et al. (1989) suggested that Argopecten irradians larvae must 

ingest or be in contact with whole cells of Aureococcus anophagefferens before elevated 

larval mortality is observed.  This same microalgae, however, had no effect on survival 

for larvae of the northern quahog, M. mercenaria, even at bloom conditions (Padilla et 

al., 2006).  Mortality of C. virginica larvae in the presence of the dinoflagellate 

Cochlodinium heterolobatum was thought to be a result of increased direct contact 

between larvae and algal cells (Ho and Zubkoff, 1979).  Cell-free filtrates of the two 

Alexandrium species (A. tamarense and A. taylori) had less effect on mortality of C. 

gigas larvae than their whole-cell counterparts (Matsuyama et al., 2001), implying the 

cause of toxicity was localized on the cell surface.  Yan et al. (2001) suggested that direct 

contact with toxic algal cells may also release an unknown inhibitory factor which could 

negatively affect survival.  Ultrasonic disruption (=lysing), which  produces cellular 

fragments as well as releasing intracellular toxins, should make the toxins more available 

for encounters with bivalve larvae.  Collectively, these studies strongly suggest that 

physical cell-to-cell contact between bivalve larvae and toxic dinoflagellates is, at least 

partially, responsible for observed increases in larval mortality. 
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In this study, lysed cultures produced higher mortality in M. mercenaria and C. 

virginica than whole cultures at the same cell concentrations.  Cell fragments in the lysed 

treatments were not removed from the experimental medium (either by centrifugation or 

filtration) after sonication.  Thus, these fragments (and any released intracellular toxins) 

were available to interact with the exposed larvae, thereby increasing the frequency of 

physical contact between “algae” and larvae.  This scenario might explain, at least 

partially, the observed increase in larval mortality associated with lysed treatments of K. 

brevis.  

Consumption (or ingestion) of harmful algal cells by bivalve larvae is dependent 

upon a variety of factors, including algal species, cell size and concentration, and larval 

species and age.  Consumption of K. brevis cells could also explain the observed 

inhibitory effects on larval survival in this study.  Larvae of the mussel, Mytilus 

galloprovincialis, readily ingested cells of several species of red-tide dinoflagellates with 

mean equivalent spherical diameters of 12-38 μm (Jeong et al., 2004).  However, mussel 

larvae did not feed on any dinoflagellate until at least nine days after fertilization.  

Eastern oyster (C. virginica) larvae ingested P. minimum cells, although filtration was 

depressed in the presence of this toxic algae (Wikfors and Smolowitz, 1995), and 

ingestion of these cells resulted in cytological changes in digestive tissues, including the 

deleterious development of cuboidal and squamous epithelial cells in the stomach and 

intestine, reductions in the size of absorptive cells, and the presence of dense inclusions 

in the cytoplasm.  All of these symptoms indicate possible phagolytic reactions to 

dinoflagellate debris (Wikfors and Smolowitz, 1995).  Early D-shape larvae of two 

scallop species (Argopecten irradians concentricus and Chlamys farreri) were unable to 
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feed on Alexandrium tamarense cells due to the relatively large algal cell size (Yan et al., 

2001; Yan et al., 2003).  During this study, larvae were fed an optimal ration (Lu and 

Blake, 1996) of the chrysophyte, I. galbana in addition to K. brevis, to ensure that the 

larvae were well-fed throughout the experiment and that any observed mortality was not 

due to starvation.  Although larval feeding rates were not measured nor K. brevis 

consumption investigated, ingestion of  K. brevis cells was most likely negligible due to 

the large cell size (ESD = 14-26 μm) and low density compared to I. galbana; however, 

the presence of K. brevis, especially at higher concentrations, could have altered activity 

patterns (Yan et al., 2003) and/or feeding rates (Jeong et al., 2004), resulting in increased 

mortality and retarded metamorphosis (Matsuyama et al., 2001).  The numerous cellular 

fragments in the lysed treatments could have been of an appropriate size for filtration and 

ingestion, further complicating feeding patterns and possibly initiating phagolytic 

reactions similar to those reported by Wikfors and Smolowitz (1995).  

In addition to affecting larval survival, K. brevis also negatively impacted larval 

development and metamorphosis.  For example, even though overall survival was 

identical in C. virginica larvae exposed to 100 and 1,000 cells . ml-1, a higher proportion 

from 100 cells . ml-1 had reached the pediveliger stage and completed larval development 

(i.e., settled as spat) than larvae from 1,000 cells . ml-1.  Almost ninety percent of larvae 

subjected to 5,000 cells . ml-1 did not live beyond the umboveliger stage.  Development of 

M. mercenaria larvae was also affected by the presence of K. brevis cells.  In this case, 

progress to the pediveliger stage was inversely related to K. brevis concentration.  

Similarly, larvae of the Pacific oyster, C. gigas, which did not show significant mortality 

when exposed to Cochlodinium polykrikoides, did suffer retarded metamorphosis to the 
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D-shaped larvae (Matsuyama et al., 2001).  Development of C. virginica larvae was also 

delayed when exposed to a laboratory clone of the dinoflagellate, P. minimum (Wikfors 

and Smolowitz, 1995).  Heavy metals have also been shown to delay metamorphosis in 

bivalve larvae.  Settlement of oyster (Crassostrea gigas) and bay scallop (Argopecten 

irradians) larvae was delayed in the presence of zinc (Boyden et al., 1975; Watling, 

1983) and development in northern quahog larvae (Mercenaria mercenaria) was delayed 

by exposure to nickel (Calabrese and Nelson, 1974).  While the mechanism for increased 

mortality of bivalve larvae remains unanswered, it is easy to see how the added stress 

associated with K. brevis and/or its toxins could be reflected in suboptimum 

development.  Since delayed metamorphosis has been observed in bivalve larvae exposed 

to heavy metals as well, these results may reflect a more general toxic response rather 

than one that is attributable to brevetoxins. 

Matsuyama et al. (2001) organized the effects of harmful algae on (oyster) larvae 

into three categories: 

 Type 1 = lethal to larvae at visible bloom density (red tide) 

 Type 2 = non-lethal effects but induce a delay in metamorphosis 

 Type 3 = no effect. 

Based on these categories, K. brevis exhibits a combination of Type 1 and Type 2 

responses in the three species of bivalve larvae in these studies. 

Sixty percent of brevetoxins in laboratory cultures of K. brevis are extracellular in 

nature (Pierce et al., 2001).  Ultrasonic disruption, which releases the remaining 

intracellular toxins, resulted in a 20-24% increase in total brevetoxin in the current study. 

 Three brevetoxin compounds were present in each culture:  PbTx-2, PbTx-3, and 
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brevenal, a recently identified brevetoxin antagonist (Bourdelais et al., 2004).  The 

proportion of each brevetoxin remained unchanged after the cultures were lysed.  Except 

for the absence of PbTx-1, the relative brevetoxin composition of laboratory cultures 

closely resembled that from water samples collected in 2003 during a red tide outbreak 

along the Gulf coast of Sarasota,  FL (Pierce et al., 2005). 

Larvae of all three bivalve species in this study responded similarly, but with 

different sensitivities, to cells of K. brevis and its suite of toxins.  Mortality was not 

necessarily dependent on ingestion of algal cells; rather it appears that the toxins were at 

least partially responsible for increased mortality and delayed larval development.  The 

presence of K. brevis cells at high densities may interfere with larval feeding processes, 

resulting in suboptimal clearance, inhibited growth and development, and mortality. 

Our results clearly indicate that when K. brevis and its toxins persist, shellfish larvae are 

at greater risk of mortality and may continue to be adversely affected even after the 

disappearance of K. brevis cells.  While K. brevis blooms may not directly cause 

mortality in adult shellfish, they do have the ability to disrupt a critical phase in the life 

cycle and consequently have important ramifications for recruitment and population 

stability.  The collapse of bay scallop populations in North Carolina, USA, in 1989 was 

attributed to a bloom of Ptychodiscus brevis (= K. brevis), which was blamed for higher 

than natural mortality in adults the previous year (Summerson and Peterson, 1990).  

Depletion of the adult spawner stock led to poor recruitment and failure of local 

population’s ability to recover quickly to previous levels of abundance (Peterson and 

Summerson, 1992).  These observations on population dynamics following a red tide did 

not even consider the additional, negative effects of K. brevis on larval growth and 
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survival that were ascertained in the present study.  Our demonstrated effects of K. brevis 

on the larvae of northern quahogs (= hard clams) and eastern oysters point to the 

potential for this toxic dinoflagellate to negatively impact recruitment in these species as 

well.  Thus, there is a clear need for continued research on the relationship between K. 

brevis and bivalve larvae, ranging from the mechanisms of toxicity to the effects on 

recruitment and population stability. 

 

Juvenile Bivalves 

 

There are surprisingly few studies which have focused on the interaction between 

K. brevis and bivalve molluscs.  Our current knowledge is limited to general field 

observations on the toxicity and/or mortality of shellfish during red tides (Gunter et al., 

1947; Cummins et al., 1971; Simon & Dauer, 1972; Hemmert, 1975) and a few 

laboratory studies on behavioral responses to K. brevis cultures (Sievers, 1969; Roberts 

et al. 1979).  More recently, a series of studies have focused on brevetoxin uptake and 

metabolism in the eastern oyster (Dickey et al., 1999; Poli et al., 2000; Plakas et al., 

2002; Pierce et al., 2004; Wang et al., 2004). 

Several general relationships between individual bivalve species and K. brevis 

have emerged from these collective studies.  During a bloom of K. brevis (= red tide), the 

eastern oyster becomes toxic through the accumulation and metabolizing of brevetoxins, 

northern quahogs also become toxic and bay scallops succumb to mortality. 

The current research lends further support to the species-specific response of 

bivalve molluscs in the presence of toxic or noxious algae (Shumway and Cucci, 1987; 
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see Table 1 in Shumway, 1990).  Each of the four species responded differently when 

exposed to K. brevis at different concentrations and culture preparations.  Furthermore, 

we found that each species responded similarly under two very different exposure 

regimes:  short-term (1 hr) exposure to a non-replenished supply of K. brevis and long-

term (2 day) exposure to a continuous supply of K. brevis. 

The bay scallop (A. irradians) was the most sensitive species to the presence of  

K. brevis in terms of clearance rate.  This was the only species that showed a significant 

reduction in clearance rate when fed K. brevis at a concentration of 100 cells . ml-1 , 

independent of culture preparation.  The response was immediate when exposed to intact 

cells, but took 24 hr to be manifested with lysed cells.  The delayed feeding response to 

lysed K. brevis in our study likely indicates an unknown cytotoxic or neurotoxic effect.  

Although no data are available for Florida populations of A. irradians, Summerson and 

Peterson (1990) implicated a bloom of K. brevis in massive mortalities of bay scallops in 

North Carolina.  This mass mortality led to recruitment failure of bay scallops in 

subsequent years (Peterson and Summerson, 1992).  No other information is available on 

how bay scallops are effected by K. brevis.  Our results showed that K. brevis had an 

appreciable effect on survival or development of A. irradians larvae at high (bloom) 

concentrations.  In addition, clearance rates in juvenile bay scallops exposed to K. brevis 

were the most sensitive of the bivalve species we tested.  These laboratory findings 

support reports from North Carolina on bay scallop recruitment failure after a red tide 

outbreak in that larval mortality is high and feeding in juvenile scallops is compromised. 

Longer-term exposure of adult A. irradians to K. brevis revealed deleterious 

histological changes in the digestive diverticula; most notably an accumulation of 
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hemocytes, but also cellular changes in the epithelial layer surrounding the lumen.  These 

observations strongly suggest a combination of poor nutrition and toxic effects from 

exposure to K. brevis.  Additional studies are necessary to elucidate these differences. 

The ability of green mussels to feed upon and metabolize K. brevis cultures was 

confirmed by Ishida et al. (2004) using an EPA strain of K. brevis and New Zealand 

populations of the greenshell mussel, Perna canaliculus.  Several brevetoxin metabolites 

have been identified and biosynthetic pathways proposed by Morohashi et al. (1995), 

Murata et al. (1998) and Ishida et al. (2004).  However, no other studies involving K. 

brevis or brevetoxin analyses have been conducted on the greenshell mussel congener, P. 

viridis, which has been a resident of Tampa Bay, FL since 1999.  Our data, along with 

personal observations of local populations, indicate that Florida green mussel populations 

may be susceptible to blooms of K. brevis.  In the laboratory, the clearance rate in 

juvenile P. viridis was significantly reduced at moderate (100 cells . ml-1) K. brevis cell 

concentrations, but not by lysed K. brevis culture.  In the field, a high degree of mortality 

was observed in green mussel populations throughout lower Tampa Bay during a 

prolonged red tide outbreak in 2005 (personal observation).  Additional studies are 

clearly needed to better understand the interactions between K. brevis and P. viridis. 

During a 1973-74 red tide in Sarasota, FL, shellfish suspected of being 

contaminated from a bloom of K. brevis were processed and analyzed for the presence of 

toxins (Hemmert, 1975).  Local surfclams (Spisula solidissima raveneli) and southern 

quahogs (Mercenaria campechaenis) were found to be toxic.  Poli et al. (2000) found 

toxic Mercenaria sp. during a rare red tide in the northern Gulf of Mexico.  Clams were 

less toxic than oysters taken at the same time from the same location during an unusual 
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red tide event in North Carolina (Tester and Fowler, 1990).  Pierce et al. (2004) found 

two brevetoxin metabolites in M. mercenaria in Sarasota Bay during a 2001 red tide, 

indicating that quahogs, like oysters, have the ability to consume and metabolize K. 

brevis and its toxins.  These are the only published data regarding the ability of clams to 

filter, ingest and accumulate brevetoxins from exposure to K. brevis.  Our results are in 

agreement with this limited information on M. mercenaria.  While clearance rate was 

depressed at high K. brevis concentrations, quahogs did continue to feed.  As a result, no 

mortality was observed in juvenile quahogs in our studies. 

Early laboratory studies showed that eastern oysters exhibited normal feeding 

behavior during exposure to K. brevis (Ray and Aldrich, 1967; Sievers, 1969), while 

oysters exposed  to K. brevis during a bloom become toxic (Cummins et al., 1971).  More 

recently, Plakas et al. (2002) and Wang et al. (2004) documented brevetoxin uptake and 

metabolism in C. virginica in the laboratory.  Oysters also eliminated brevetoxins once 

the oysters were removed from the algal source.  In the present study, oysters removed 

the highest percentage of K. brevis cells from the surrounding media of all bivalve 

species examined.  We showed that clearance rates in eastern oysters were reduced the 

least by exposure to K. brevis, which supports the general conclusion that C. virginica are 

not critically impacted by K. brevis (Shumway et al., 1990). 

Overall, whole cultures of K. brevis (intact cells) had a greater effect than lysed 

cultures (disrupted cells) on clearance rate in all species except C. virginica, even though 

the amount of total brevetoxin was similar between the two preparations, suggesting that 

encounters with the dinoflagellate interfered with filtering capability.  The New Zealand 

cockle (Austrovenus stutchbury) and the greenshell mussel (P. viridis) were shown to 
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assimilate brevetoxins from K. brevis culture as well as from the supernatant from 

disrupted culture (Ishida et al., 2004), but the effects of these preparations on feeding was 

not investigated.  Additional studies using recently isolated strains of K. brevis, including 

a non-toxic Wilson clone and two new isolates from Sarasota Bay (Florida, USA), could 

further elucidate these differences in bivalve feeding behavior. 

There was close within-species agreement in clearance rates between static and 

flow-through systems;  however, the effects of K. brevis on  A. irradians was shown to be 

significantly affected by exposure time, whereas clearance rates at both medium (100 

cells . ml-1) and high (1,000 cells . ml-1) densities declined only after 24 hr exposure.  For 

this reason, continuous flow-through systems are generally preferred over static systems 

when measuring physiological performance.  With static systems, conditions are not held 

constant and therefore clearance rates may be affected if algal concentrations fall below a 

critical level (Widdows and Salkeld, 1993).  Conditions in flow-through systems can be 

held constant (i.e., algal concentration), thus enabling continuous monitoring of clearance 

rate over extended time periods which more closely reflect environmental conditions 

during algal blooms.  Additionally, flow-through systems allow for the monitoring of 

possible behavioral or physiological changes associated with long term exposure to toxic 

algae (Lassus et al., 1999).  Bardouil et al. (1996) suggested that longer exposure times 

are necessary to assess the effects of toxic algae on algal ingestion and toxin absorption 

in bivalve shellfish. 

 

 

Conclusion and Significance 
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 Impacts from Different Culture Preparations 

 

 This research sought to determine whether there were differences in larval 

mortality and juvenile feeding for individual bivalve species, as well as bay scallop 

cytohistology, when exposed to two different culture preparations of K. brevis (Wilson 

clone).  The culture preparations included 1) whole, intact cell cultures and 2) cultures 

where the cells had been disrupted, or lysed, by ultrasound.  Each culture was analyzed 

for brevetoxin composition and concentration.  In essentially every case, lysed cultures 

had higher reported brevetoxin amounts than the corresponding whole culture.  Since the 

two preparations were obtained from the same batch culture, these differences in 

brevetoxin amounts are best explained by the extraction and recovery procedures.  One 

explanation for these differences is the possibility that there is better extraction efficiency 

when cultures are lysed prior to extraction.  An important observation from these data, 

however, is verification that a particular culture of K. brevis was not only toxic, but 

contained ratios of the major brevetoxins (PbTx-2 and PbTx-3) corresponding to 

previously analyzed cultures (Landsberg, 2002; Pierce et al., 2005). 

 These cultures also contained brevenal, a recently discovered polyether 

compound which, in fish, has been shown to competitively displace brevetoxin from its 

binding site thereby inhibiting the toxic effects of brevetoxins (Bourdelais et al., 2004).  

The absolute amount of brevenal reported in each sample is calculated in PbTx-3 

equivalents; whereby PbTx-3 is the standard used to develop the response factor upon 

which all fractions were quantified (Pierce, personal communication).  Thus, the amount 
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of brevenal indicated in a given sample is a relative, rather than absolute concentration.  

An important observation about the relative amount of brevenal in these cultures is that 

their concentration was approximately 10x higher than brevenal concentrations from 

water samples collected off Siesta Key, FL during a 2005 red tide (Pierce, unpublished).  

These reported differences in brevenal composition suggest that this laboratory culture of 

K. brevis may not be as toxic as natural blooms.  Results from this study, therefore, may 

be considered as conservative estimates of the effects of this toxic dinoflagellate on 

bivalve molluscs. 

 Lysed cultures of K. brevis did not undergo any additional processing, such as 

centrifugation or filtering, after sonification.  As a result, the solution contained 

byproducts of the lysing process, including cellular debris and fragments in addition to 

the liberated toxins.  It is reasonable to assume that these toxins, since they are 

lipophyllic, would adsorb onto these particles as they came in contact.  Juvenile bivalves 

exposed to these conditions during feeding experiments would conceivably have to 

process this toxin-laden particulate matter in addition to the nontoxic algae.  While it 

could be argued that removing this particulate matter prior to experimentation would 

have eliminated this variable, in reality, bivalves in nature must deal with intact toxic 

cells, particulate matter, extracellular toxins and whatever else is present during a bloom; 

consequently, what is learned from exposing bivalves to lysed treatments as they were 

prepared in this study are representative of natural exposure conditions. 

 Juvenile bivalve feeding studies showed a significant effect of culture preparation 

on clearance rate in the bay scallop, green mussel and northern quahog.  This difference 

was most noticeable in the green mussel and northern quahog at higher cell 
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concentrations.  In both cases, intact K. brevis produced significantly lower clearance 

rates while lysed K. brevis had only a slight effect on clearance rate .  Two possible 

explanations for these results are:  1) lysed cultures made the toxins less bioavailable, or 

2) the observed effects were due to the presence of the dinoflagellate and not the 

associated toxins.  Since bivalves in the field are exposed to a combination of these 

conditions during a bloom of K. brevis, it could be argued that the observed differences 

in clearance rate between culture preparations in the laboratory would not be as great in 

the wild. 

 

Possible Mechanisms of Toxic Activity 

 

 Brevetoxins are polyether ladder neurotoxins that bind to voltage-sensitive 

sodium channels in cell membranes.  Binding results in persistent activation of neuronal 

cells, skeletal muscle cells and cardiac cells (Baden, 1988).  The manners in which 

brevetoxins affect mollusc tissues, or specific ways in which molluscs may respond to 

brevetoxin exposure, have not been thoroughly investigated. 

 Observations from this research may be a direct result of brevetoxin interactions 

with specific tissues, particularly nerve cells, or they may be due to a secondary effect 

which may or may not include behavioral and physiological responses.  What follows is 

an attempt to explain what these interactions might include. 

 Juvenile bay scallops (A. irradians) were the most sensitive species to the 

presence of  K. brevis in terms of clearance rate.  Bay scallops are non-siphonate filter 

feeders and remain partially open when at rest.  Scallops also live in seagrass meadows of 
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the open coast and lower estuary where daily fluctuations in water quality are reduced.  

Northern quahogs and eastern oysters, on the other hand, can close their valves and 

survive anaerobically for extended periods of time.  Oysters also inhabit the intertidal 

zone and regularly experience long periods out of the water while quahogs bury in 

sediments throughout the coastal zone.  Oysters and quahogs are subjected to relatively 

greater daily fluctuations in water quality, particularly oxygen and temperature, than bay 

scallops. 

 Differences in morphology and ecology among these bivalves may partially 

explain how each species responds to Karenia brevis in the field.  Summerson and 

Peterson (1990) reported on recruitment failure of the bay scallop during an outbreak of  

K. brevis in North Carolina in 1987.  The authors did not, however, mention the 

mechanism behind these observations.  Since there are no other published reports on the 

effects of K. brevis on bay scallops in the field, insight into the physiological response 

might be obtained by looking at the response of scallops during exposure to brown tides, 

caused by the picoplantonic alga Aureococcus anophagefferens, in eastern Long Island, 

NY over the past several decades.  These responses also included recruitment failure, 

growth inhibition and decimation of local populations.  The negative impacts of this alga 

were attributed to an unknown, dopamine-mimetic, bioactive/toxic metabolite which 

suppresses the activity of gill lateral cilia (Gainey and Shumway, 1991) and thus 

negatively impacted clearance rates.  These effects were observed even in the presence of 

a mixed phytoplankton assemblage containing non-toxic algae similar to results from this 

research (Bricelj et al., 2004).  Unlike the results from this study, however, toxic effects 

from brown tides required direct contact with the algal cell and did not appear to be 
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associated with dissolved toxic exudates (Ward and Targett, 1989).  Gill cilliary 

inhibition by brown tide was not demonstrated during in vitro trials (Gainey and 

Shumway, 1991) even though natural populations of this species are known to be 

adversely affected by brown tides. 

 The most reasonable conclusion to draw from this body of information is that K. 

brevis also suppresses gill cilliary activity in the scallop.  This could occur by direct 

action on the gill neuronal cells similar to the mechanism described above or by a 

secondary, indirect action.  Perhaps more importantly, the effect of reducing gill cilliary 

activity also would affect oxygen uptake, thereby compounding the effects of K. brevis 

and/or its toxins on the bay scallop.  Scallop mortality in the field has been observed 

within the first two days after the onset of a red tide (personal observation), indicating 

that the cause of death is more likely due to a lack of oxygen rather than starvation.  

Scallops, unlike oysters and quahogs, do not have the ability to close their shells for 

extended periods and undergo facultative anaerobiosis.  Therefore, scallops are more 

vulnerable to blooms of K. brevis than other bivalves, in part, because of their inability to 

reduce or eliminate their exposure to this toxic dinoflagellate and its toxins. 
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 Implications for Fisheries Management 

Recurring blooms (= red tides) of  K. brevis are common along the Florida west 

coast (Tester and Steidinger, 1997; Kirkpatrick et al., 2004).  Results of these studies 

clearly demonstrate short-term, negative impacts of K. brevis on resident bivalve species, 

suggesting that the ecological and fisheries impacts from these algal blooms could be 

quite significant, depending upon bloom intensity and duration, and which bivalve 

species are exposed. 

Results from these studies on bivalve larvae and K. brevis are the first reported 

and while we plainly demonstrated a negative impact of K. brevis on larval survival and 

development, there is a clear need for continued research into the mechanisms underlying 

these interactions.  We also showed that feeding rates in juvenile bivalves were also 

negatively impacted by exposure to K. brevis, and that the response was species-specific. 

The most sensitive species in the present study was the bay scallop, A. irradians.  

A rare bloom of K. brevis in North Carolina during 1987-88 was implicated in the 

massive mortality and subsequent recruitment  failure of local bay scallop populations 

(Summerson and Peterson, 1990).  Recently, bay scallops have been the focus of 

restoration activities in several southwest Florida estuaries (Geiger and Arnold, 2003; 

Wilbur et al., 2005; Leverone et al., 2005).  In 2001, a restoration project was irrevocably 

compromised when a dense (105 – 107 cells . L-1) bloom of K. brevis infiltrated Sarasota 

Bay, FL, resulting in complete mortality of captive scallops (Leverone, unpublished).  

While more precise studies are necessary to resolve the relationship between red tide 

intensity and duration on bay scallop mortality, prediction and monitoring of algal 

blooms would be beneficial in identifying potential restorations sites that are less prone 
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to chronic K. brevis blooms.  Florida’s hard clam (M. mercenaria) aquaculture industry 

would also benefit from improved red tide prediction and monitoring.  Relocating lease 

sites to areas less susceptible to red tides would benefit the industry twofold:  reduce the 

deleterious effects of high K. brevis concentrations on feeding rates which, in turn, would 

affect growth rates, and 2) reduce the probability that cultured clams will be prevented 

from reaching the market due to harvest closures (Shumway, 1990).  Locating 

aquaculture sites in lower salinity waters might reduce the frequency and duration of 

exposure to red tides, which typically initiate in more saline offshore waters.  If a red tide 

does penetrate the estuary, the lower salinity further into the bay could serve as a 

potentially effective salinity barrier to a bloom of K. brevis.  Similarly, reduced feeding 

rates in the green mussel (P. viridis) at high K. brevis concentrations should theoretically 

make it more difficult for mussel populations to remain established in estuaries where red 

tides are more frequent and/or severe.  Emperical observations, however, suggest a 

different outcome.  An intense red tide during 2005-06 resulted in high mortality of green 

mussels attached to pilings and other structures in lower Tampa Bay (personal 

observation).  Intense recolonization by juvenile green mussels, however, was observed 

in late 2006, several months after the bloom had dissipated.  The prolific and dynamic 

recruitment rates of green mussels and their ability to rapidly recolonize a previously 

inhabited space after a red tide has disappeared suggests populations of this exotic 

species have no difficulty overcoming the temporary effects of exposure to K. brevis.  

Finally, the relative insensitivity of C. virginica feeding rates to K. brevis suggests that 

the structure and function of Eastern oyster habitats in southwest Florida should not 

suffer serious negative impacts from K. brevis blooms.
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Table 14.  Reported impacts of Karenia brevis on molluscs 
 

 
Species Common name 

Field/ 
Laboratory 

Effect/ 
Observation1 Location 

K. brevis 
(cells  L-1) Reference 

Bivalves 
Argopecten 
irradians 

bay scallop Field Mortality (?); Recruitment 
failure 

North Carolina 8.2 x 105 
 
 

Summerson & Peterson (1990) 

Austrovenus 
stutchburyi 

New Zealand 
cockle 

Laboratory Toxic; Brevetoxin 
metabolism 

New Zealand 6-12 x 106 Ishida et al. (2004) 

Brachidontes 
recurvus 

hooked mussel Laboratory Unaffected   9.9 x 106 Sievers (1969) 

Chione 
cancellata 

 Field Toxic Sarasota, FL N.R. Poli et al. (2000) 

Crassostrea 
virginica 

eastern oyster Laboratory 
 
Laboratory 
 
Field 
Field 
Field 
 
Laboratory 
 
Field 
 
Laboratory 

Unaffected (Normal 
feeding) 
 
Unaffected (Normal 
behavior) 
Toxic 
Toxic 
Toxic 
 
Toxic; Brevetoxin 
metabolism 
Toxic; Brevetoxin 
metabolism 
Toxic; Brevetoxin 
metabolism 

Galveston, TX 
 
 
 
Venice, FL 
Beaufort Inlet, NC 
Mississippi Sound, 
Gulf of Mexico 
 
 
Sarasota, FL 
 

N.R. 
 
9.9 x 106 
 
8.2 x 105 
~ 105 
5.6 x 105 
 
1.3 x 106 
 
6.6 x 105 
 
1.5 x 107 
 

Ray & Aldrich (1967) 
 
Sievers (1969) 
 
Cummins et al. (1971) 
Tester & Fowler, 1990) 
Dickey et al. (1999) 
 
Plakas et al. (2002) 
 
Pierce et al. (2004) 
 
Wang et al. (2004) 
 

Crassostrea 
gigas 

Pacific oyster Laboratory Toxic New Zealand 1.0 – 2.5 x 107 Fletcher et al. (1998) 

Mulinia 
lateralis 

Cross-barred 
venus 

Field Mortality Tampa Bay < 1.8 x 107 Simon & Dauer (1972) 
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Table 14.  (Continued). 
 

Donax variabilis Variable coquina Field Toxic Venice, FL 8.2 x 105 Cummins et al. (1971) 

Mercenaria 
campechiensis 

Southern quahog Field 
Field 
Field 
Laboratory 

Toxic 
Toxic 
Toxic 
Toxic 

Venice, FL 
Sarasota Bay, FL 
Englewood, FL 
Tampa Bay, FL 

8.2 x 105 
N.R. 
N.R. 
N.R. 

Cummins et al. (1971) 
Hemmert (1975) 
Hemmert (1975) 
Roberts et al. (1979) 

Mercenaria 
mercenaria 

Northern quahog Field 
Field 

Toxic 
Toxic; Brevetoxin 
metabolism 

Beaufort Inlet, NC 
Sarasota, FL 

~ 105 
6.6 x 105 

Tester & Fowler, 
1990) 
Pierce et al. (2004) 

Mercenaria sp. Quahog Field Toxic Sarasota, FL N.R. Poli et al. (2000) 
Macrocallista 
nimbosa 

Sunray venus Field Toxic Venice, FL 8.2 x 105 Cummins et al. (1971) 

Perna canaliculus Greenshell 
mussel 

Laboratory Toxic; Brevetoxin 
metabolism 

New Zealand 6-12 x 106 Ishida et al. (2004) 

Spisula solidissma 
raveneli 

Atlantic surfclam Field Toxic Siesta Key, FL N.R. Hemmert (1975) 

 Oysters Field Mortality Naples to Boca Grande, 
FL 

N.R. Gunter et al. (1947) 

 Clams Field Mortality Naples to Boca Grande, 
FL 

N.R. Gunter et al. (1947) 

Gastropods 
Busycon 
contrarium 

Whelk Field Toxic Sarasota, FL N.R. Poli et al. (2000) 

Busycon sp. Whelk Field Toxic Sarasota, FL 6.6 x 105 Pierce et al. (2004) 
Fasciolaria lilium 
hunteria 

Banded tulip Laboratory Loss of muscle control Tampa Bay, FL N.R. Roberts et al. (1979) 

Melongena corona Crown conch Laboratory Loss of muscle control Tampa Bay, FL N.R. Roberts et al. (1979) 
Oliva sayana Lettered olive Laboratory Loss of muscle control Tampa Bay, FL N.R. Roberts et al. (1979) 

 
1Toxic = containing toxins using the mouse bioassay or analytical methods.  Brevetoxin metabolism = the ability to metabolize parent 

toxins found in Karenia brevis. 
N.R. = not reported.



118 
 
 

 

 

Literature Cited 

 
Abbott, B. and D. Ballantine. 1957. The toxin from Gymnodinium veneficum Ballantine. 

J. Mar. Biol. Assoc. U.K. 36: 169-189. 
 
Adams, C. and L. Sturmer. 2004. Hard clam culture: A commercial success story in 

Florida. World Aquaculture 35: 56-60. 
 
Baden, D.G. 1988. Public health problems of red tides. Pp. 259-277. In: A.T. Tu, (ed). 

Handbook of Natural Toxins, Vol. 3. Dekker, New York. 
 
Barber, B.J. 2004. Neoplastic diseases of commercially important marine bivalves. 

Aquat. Living Resources 17: 449-466. 
 
Barber, B.J. and N.J. Blake. 1983. Growth and reproduction of the bay scallop, 

Argopecten irradians (Lamark) at its southern distributional limit.  J. Exp. Mar. 
Biol. Ecol. 66, 247-256. 

 
Bardouil, M., M. Bohec, M. Cormerais, S. Bougrier and P. Lassus. 1993. Experimental 

study of the effects of a toxic microalgal diet on feeding of the oyster Crassostrea 
gigas Thunberg. J. Shellfish Res. 12: 417-422. 

 
Bardouil, M., M. Bohec, S. Bougrier, P. Lassus and P. Truquet. 1996. Feeding responses 

of Crassostrea gigas (Thunberg) to inclusion of different proportions of toxic 
dinoflagellates in their diet. Ocean. Acta 19: 177-182. 

 
Bauder, A.G., A.D. Cembella, V.M. Bricelj and M.A. Quilliam. 2001. Uptake and fate of 

diarrhetic shellfish poisoning toxins from the dinoflagellate Prorocentrum lima in 
the bay scallop Argopecten irradians. Mar. Ecol. Prog. Ser. 213: 39-52. 

 
Benson, A.J., D.C. Marelli, M.D. Frischer, J.M. Danforth and J.D. Williams. 2001. 

Establishment of the green mussel, Perna viridis (Linnaeus 1758) (Mollusca: 
Mytilidae) on the west coast of Florida. J. Shellfish Res. 20: 21-29. 

 
Bicknell, W.J. and D.C. Walsh. 1975. The first 'red tide' in recorded Massachusetts 

history: managing an acute and unexpected public health emergency. In: (V.R. 
Locicero ed.) Proceedings of the First International Conference on Toxic 
Dinoflagellate. MSTF, Wakefield, MA. 

 



119 

Blake, N.J., C. Adams, R. Degner and D. Sweat. 2000. Aquaculture and Marketing of the 
Florida Bay Scallop in Crystal River, Fl.  Florida Sea Grant Final Report R/LR-
A-20. 99p. 

 
Bougrier, S., P. Lassus, B. Beliaeff, M. Bardouil, P. Masselin, P. Truquet, F. Matignon 

and C. LeBaut. 2000. Feeding behavior of individuals and groups of king scallops 
(Pecten maximus) contaminated experimentally with PSP and detoxified. Ninth 
International Conference on Harmful Algal Blooms. Tamsania, Australia. P. 89 
(Unpublished). 

 
Bourdelais, A.J., S. Campell, H. Jacocks, J. Naar, J.L.C. Wright, J. Carsi and D.G. Baden. 

2004. Brevenal is a natural inhibitor of brevetoxin action in sodium channel 
receptor binding assays.  Cell. Mol. Neurobio. 24, 553-563. 

 
Boydon, C.R., H. Watling and I. thornton. 1975. Effect of zinc on the settlement of the 

oyster Crassostrea gigas. Mar. Biol. 31: 227-234. 
 
Bricelj, V.M. and S.E. Shumway. 1998. Paralytic shellfish toxins in bivalve molluscs: 

occurrence, transfer kinetics, and biotransformation. Rev. Fish. Sci. 6: 315-383. 
 
Bricelj, V.M., J.H. Lee, A.D. Cembella and D.M. Anderson. 1990. Uptake of 

Alexandrium fundyense by Mytilus edulis and Mercenaria mercenaria under 
controlled conditions. Pp. 269-274 In: (E. Graneli, B. Sundstrom, L. Edler and 
D.M. Anderson, eds.) Toxic Marine Phytoplankton. Elsevier, New York. 

 
Bricelj, V.M., J.H. Lee and A.D. Cembella. 1991. Influence of dinoflagellate cell toxicity 

on uptake and loss of paralytic shellfish toxins in the northern quahog Mercenaria 
mercenaria. Mar. Ecol. Prog. Ser. 74: 33-46. 

 
Bricelj, V.M., A.D. Cembella, D. Laby, S.E. Shumway and T.L. Cucci. 1996. 

Comparative physiological and behavioral responses to PSP toxins in two bivalve 
molluscs, the soft clam, Mya arenaria, and surfcalm, Spisula solidissima. Pp. 
405-408 In: (T. Yasumoto, Y. Oshima and Y. Fukuyo, eds.) Harmful and Toxic 
Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, 
Paris. 

 
Bricelj, V.M., S. MacQuarrie and B.M. Twarog. 2000. Differential sensitivity and uptake 

of PSP toxins within and between softshell clam (Mya arenaria) populations from 
Atlantic Canada. Ninth International Conference on Harmful Algal Blooms. 
Tamsania, Australia. P. 9 (Unpublished). 

 
Bricelj, M.V., S.P. MacQuarrie and R. Smolowitz. 2004. Concentration-dependent 

effects of toxic and non-toxic isolates of the brown tide alga Aureococcus 
anophagefferens on growth of juvenile bivalves. Mar. Ecol. Prog. Ser. 282: 101-
114. 

 



120 

Buley, H.M. 1936. Consumption of diatoms and dinoflagellates by the mussel. Bull. 
Scripps Inst. Oceanogr. 4: 19-27. 

 
Burkholder, J.M., H.B. Glasgow, N. Deamer-Melia, J. Springer, M.W. Parrow, C. Zhang 

and P. Cancellieri. 2001. Species of the toxic Pfiesteria complex and the 
importance of functional type in data interpretation.  Environ. Health Perspect. 
109 (Suppl.): 667-679. 

 
Butler, P.A. 1954. Summary of our knowledge of the oyster in the Gulf of Mexico. U.S. 

Fish Wildl. Serv. Fish. Bull. 55: 479-489. 
 
Calabrese, A and D.A. Nelson. 1974. Inhibition of embryonic development of the hard 

clam, Mercenaria mercenaria, by heavy metals. Bull. Environ. Conram. Toxicol. 
11: 92-97. 

 
Carriker, M.R., 2001. Functional morphology and behavior of shelled veligers and early 

juveniles. In: J.N. Kraeuter, J.N., Castagna, M. (Eds), Biology of the hard clam, 
Elsevier, Amsterdam, pp. 283-303. 

 
Chang, S.C., J.C. Harshbarger and S.V. Otto. 1980. Status of cytoplasmic prokaryote 

infections and neoplasms in bivalve molluscs. Sixth Food and Drug Science 
Symposium on Aquaculture: Public Health, Regulatory and Management 
Aspects, February 12-14, 1980. 

 
Chebib, H.A., A.D. Cembella and P. Anderson. 1993. Differential paralytic shellfish 

toxin accumulation and detoxification kinetics in transplanted populations of 
Mytilus edulis exposed to natural blooms of Alexandrium excavatum. Pp. 383-388 
In: T.J. Smayda and Y. Shimizu, (eds). Toxic Phytoplankton Blooms in the Sea. 
Elsevier, Amsterdam. 

 
Cheng, T.C. 1967. Marine molluscs as host for symbioses. Adv. Marine Biol. 5: 1-424. 
 
Cummins, J. M. and W.F. Hill, Jr. 1969. Method for the bioasay of Gymnodinium breve 

toxin(s) in shellfish. Gulf Coast Mar. Health Sci. Lab., Spec. Rep. 69: 1-6. 
 
Cummins, J.M. A.C. Jones and A.A. Stevens. 1971. Occurrence of toxic bivalve molluscs 

during a Gymnodinium breve “red tide”. Trans. Amer. Fish. Soc. 100: 112-116. 
 
Duagbjerg, N. G. Hansen, J. Larsen and O. Moestrup. 2001. Phylogeny of some of the 

major genera of dinoflagellates based on ultrastructure and partial LSU R-DNA 
sequence data: including the erection of three new genera of unarmored 
dynoflagellates. Phycologia 39: 302-317. 

 
Dickey, R., E. Jester, R. Granade, D, Mowdy, C. Moncreiff, D. Rebarchik, M. Robl, S. 

Musser and M. Poli. 1999. Monitoring brevetoxins during a Gymnodinium breve 
red tide: Comparison of sodium channel specific cytotoxicity assay and mouse 



121 

bioassay for determination of neurotoxic shellfish toxins in shellfish extracts. Nat. 
Toxins 7: 157-165. 

 
Dupay, J.L. and A.K. Sparks. 1968. Gonyaulax washingtonensis, its relationship to 

Mytilus californianus and Crassostrea gigas as a source of paralytic shellfish 
toxin in Sequin Bay, Washington. Proc. Nat. Shellfish. Assoc. 58: 2 
(Unpublished). 

 
Erard-LeDenn, E., M. Morlaix and J.C. Dao. 1990. Effects of Gyrodinium cf. aureolum 

on Pecten maximus (post larvae, juveniles and adults). Pp. 132-136 In: (E. 
Graneli, B. Sundstrom, L. Edler and D.M. Anderson, eds.) Toxic Marine 
Phytoplankton. Elsevier, New York. 

 
Fernandez, M.L. 2000. Regulations for marine microalgal toxins: towards harmonization 

of methods and limits. S. Afr. J. Mar. Sci. 22: 339-346. 
 
Ferraz-Reyes, E., G. Reyes-Vasquez and I.B. Bruzual. 1979. Dinoflagellate blooms in the 

Gulf of Cariaco, Venezuela. Pp. 155-160 In: (D.L. Taylor and H.H. Seliger, eds.) 
Toxic Dinoflagellate Blooms. Elsevier, New York. 

 
Fletcher, G.C., B.E. Hay and M.F. Scott. 1998. Detoxifying Pacific oysters (Crassostrea 

gigas) of the neurotoxic shellfish poison (NSP) produced by Gymnodinium breve. 
J. Shellfish Res. 17: 1637-1641. 

 
Forbes, J.R. 1990. Massive bloom of Gonyaulax spinifera along the west coast of 

Vancouver Island. Red Tide Newslett 3: 160-167. 
 
Fox, D.L. and W.R. Coe. 1943. Biology of the California sea mussel (Mytilus 

californianus). J. Exp. Biol. 93: 205-249. 
 
Fremy, J.M., L. Puech, S. Krys and S. Dragacci. 1999. Recent advances in analytical 

procedures for the detection of diarrhetic phycotoxins: A review. J. Appl. Phycol. 
11: 377-384. 

 
Gainey, L.F., Jr. and S.E. Shumway. 1988. Physiological effects of Protogonyaulax 

tamerensis on cardiac activity in bivalve molluscs. Comp. Biochem. Physiol. 
91C: 159-164. 

 
Gallager, S.M., Stoecker, D.K., Bricelj, V.M., 1989. Effects of the brown tide alga on 

growth, feeding physiology and locomotory behavior of scallop larvae 
(Argopecten irradians). In: Cosper, E.M., Bricelj, M.V., Carpenter, E.J. (Eds), 
Novel phytoplankton blooms, Springer Verlag, Berlin, pp. 511-541. 

 
Garthwaite, I. 2000. Keeping shellfish safe to eat: a brief review of shellfish toxins, and 

methods for their detection. Trends Food Sci. Technol. 11: 235-244. 
 



122 

Geiger, S.P. and W.S. Arnold. 2003. Restoration of bay scallops in highly modified and 
relatively pristine habitats on the west coast of Florida, USA. J. Shellfish Res. 22: 
331-332. 

 
Grindley, J.R. and F.J.R. Taylor. 1964. Red water and marine fauna mortality near Cape 

Town. Trans. Roy. Soc. S. Afr. 37: 111-130. 
 
Grindley, J.R. and E.A. Nel. 1968. Mussel poisoning and shellfish mortality on the west 

coast of South Africa. S. Afr. J. Sci. 64: 420-422. 
 
Gunter, G., F.G.W. Smith and R.H. Williams. 1947. Mass mortality of marine animals on 

the lower west coast of Florida, November 1946-January 1947. Science 105: 256-
257. 

 
Helm, MM, BT Hepper, BE Spencer and PR Walne. 1974. Lugworm mortalities and a 

bloom of Gyrodinium aureolum Hulburt in the eastern Irish Sea, autumn 1971. J. 
Mar. Biol. Ass. U.K. 54: 857-869. 

 
Heinig, C.S. and D.E. Campbell. 1992. The environmental context of a Gyrodinium 

aureolum bloom and shellfish kill in Maquoit Bay, Maine, September 1988. J. 
Shellfish Res. 11: 111-122. 

 
Hemmert, W.H. 1975. The public health implications of Gymnodinium breve red tides: a 

review of literature and recent events. Pp. 489-497 In: (V.R. LoCicero ed.) 
Proceedings of the First International Conference on Toxic Dinoflagellate 
Blooms. Mass. Sci. Tech. Fndn. Wakefield, MA. 

 
Hesselman, D.M., Barber, B.J., Blake, N.J., 1989. The reproductive cycle of adult hard 

clams, Mercenaria spp. in the Indian River Lagoon, Florida. J. Shellfish Res. 8, 
43-49. 

 
Ho, M.S. and P.L. Zubkoff. 1979. The effects of a Cochlodinium heterolobatum on the 

survival and calcium uptake by larvae of the American oyster, Crassostrea 
virginica.  In: Taylor, D.L., Selinger, H.H. (Eds.), Toxic dinoflagellate blooms, 
Elsevier/ North Holland, New York, pp. 409-412. 

 
Horstman, D.A. 1981. Reported red-water outbreaks and their effects on fauna of the 

west and south coasts of South Africa, 1959-1980. Fish. Bull. S. Afr. 15: 71-88. 
 
Howard, D.W. and C.S. Smith. 1983. Histological techniques for marine bivalve 

mollusks. NOAA Tech. Mem. NMFS-F/NEC-25. Woods Hole, MA. 97 p. 
 
Ingrao, D.A., P.M. Mikkelsen and D.W. Hicks. 2001. Another introduced marine mollusk 

in the Gulf of Mexico: The Indo-Pacific green mussel, Perna viridis, in Tampa 
Bay, Florida. J. Shellfish Res. 20: 13-19. 

 



123 

Ingersoll, E. 1882. On the fish mortality in the Gulf of Mexico. Proc. U.S. Nat. Mus 4: 
74-80. 

 
Ishida, H., A. Nozawa, H. Nukaya, L. Rhodes, P. McNabb, P.Holland and K Tsuji. 2004. 

Confirmation of brevetoxin metabolism in cockle, Austrovenus stutchburyi, and 
greenshell mussel, Perna canaliculus, associated with New Zealand neurotoxic 
shellfish poisoning, by controlled exposure to Karenia brevis culture. Toxicon 43: 
701-712. 

 
Jeong, H.J., Song, J.Y., Lee, C.H., Kim, S.T., 2004. Feeding by larvae of the mussel 

Mytilus galloprovincialis on red-tide dinoflagellates.  J. Shellfish Res. 23, 185-
195. 

 
Keppler, C.J., J. Hoguet, K. Smith, A.H. Ringwood and A.J. Lewitus. 2005. Sublethal 

effects of the toxic alga Heterosigma akashiwo on the southeastern oyster 
(Crassostrea virginica). Harmful Algae 4: 275-285. 

 
Kirkpatrick, B., L.E. Fleming, D. Squicciarini, L.C. Backer, R. Clark, W. Abraham, J. 

Benson, Y.S. Cheng, D. Johnson, R. Pierce, J. Zaias, G.D. Bossart and D.G. 
Baden. 2004. Literature review of Florida red tide: implications for human health 
effects. Harmful Algae 3: 99-115. 

 
Koizumi, Y. J. Kohno, N. Matsuyama, T. Uchida and T. Honjo. 1996. Environmental 

features and the mass mortality of fish and shellfish during the Gonyaulax 
polygramma red tide occurred in and around Uwajima Bay, Japan, in 1994. 
Nippon Suisan Gakkaishi 62: 217-224. 

 
Koray, T. 1992. Noxious blooms in the Bay of Izmir, Aegean Sea. Harmful Algae News 

2: 1-2. 
 
Kruse, D.N. 1966. Life cycle studies on Nematopsis duorari n. sp. (Gregarina: 

Poropsoridae), a parasite of the pink shrimp (Penaeus duorarum) and pelecypod 
molluscs. Diss. Abstr. 27B: 2919-B. 

 
La Barbera-Sanchez, A., S. Hall and E. Ferraz-Reyes. 1993. Alexandrium sp., 

Gymnodinium catenatum and PSP in Venezuela. Pp. 281-285 In: (T.J. Smayda 
andY. Shimizu, eds.) Toxic Phytoplankton Blooms in the Sea. Elsevier, 
Amsterdam. 

 
Lam N.N. and S.S.Y. Yip. 1990. A three-month red tide event in Hong Kong. Pp. 385-

390 In: (E. Graneli, B. Sundstrom, L. Edler and D.M. Anderson, eds.) Toxic 
Marine Phytoplankton. Academic Press, New York. 

 
Landsberg, J.H. 1996. Neoplasia and biotoxins in bivalves: Is there a connection? J. 

Shellfish Res. 15: 203-230. 
 



124 

Landsberg, J.H. 2002. The effects of harmful algal blooms on aquatic organisms. Rev. 
Fish. Sci. 10: 113-390. 

 
Lassus, P. and J.P. Berthome. 1988. Status of 1987 algal blooms in IFREMER. ICES 

annex III. C.M. 1988/F:33AL5-13 
 
Lassus, P., D.J. Wildish, M. Bardouil, J.L. Martin, M. Bohec and S. Bougier. 1996. 

Ecophysioligical study of toxic Alexandrium spp effects on the oyster Crassostrea 
gigas. Pp. 409-412. In: T. Yasumoto, Y. Oshima and Y. Fukuyo (eds.). Harmful 
and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of 
UNESCO. 

 
Lassus, P., M. Bardouil, B. Beliaeff, P. Masselin, M. Naviner and P. Truquet. 1999. 

Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum 
Halim on the feeding behavior of the Pacific oyster (Crassostrea gigas 
Thunberg). J. Shellfish Res. 18: 211-216. 

 
Leibovitz, L., E.F. Schott and R.C. Karney. 1984. Diseases of wild, captive and cultured 

scallops. J. World Maricul. Soc. 15: 269-283. 
 
Lesser, M.P. and S.E. Shumway. 1993. Effects of toxic dinoflagellates on clearance rates 

and survival in juvenile bivalve molluscs. J. Shellfish Res. 12: 377-381. 
 
Leverone, J.R., W.S. Arnold, S.P. Geiger and J.M. Greenawalt. 2005. A novel approach 

to bay scallop (Argopecten irradians) restoration in Pine Island Sound, Florida: 
Release of competent larvae. J. Shellfish Res. 24: 326. 

 
Lewitus, A.J., L.B. Schmidt, L.J. Mason, J.W. Kempton, S.B. Wilde, J.L. Wolny, B.J. 

Williams, K.C. Hayes, S.N. Hymel, C.J. Keppler and A.H. Ringwood. 2003. 
Harmful algal blooms in South Carolina residential and golf course ponds. Pop. 
Environ. 24: 387-413. 

 
Li, S-C and W-X Wang. 2000.  Ingestion and absorption efficiency of scallop (Chlamys 

nobilis) and clam (Ruditapes philippinarum) on a toxic dinoflagellate 
Alexandrium tamarense. Ninth International Conference on Harmful Algal 
Blooms. Tamsania, Australia. P. 165. (Unpublished). 

 
Li, S-C and W-X Wang. 2001. Radiotracer studies on the feeding of two marine bivalves 

on the toxic and nontoxic dinoflagellate Alexandrium tamarense. J. Exp. Mar. 
Biol. Ecol. 263: 65-75. 

 
Li, S-C, W-X Wang and D.P.H. Hsieh. 2002. Effects of toxic dinoflagellate Alexandrium 

tamarense on the energy budgets and growth of two marine bivalves. Mar. Envir. 
Res. 53: 145-160. 

 



125 

Lu, Y.T. and N.J. Blake. 1996. Optimum concentrations for Isochrysis galbana for 
growth of larval and juvenile bay scallops, Argopecten irradians concentricus 
(Say). J. Shellfish Res. 15: 635-643. 

 
Luckenbach, M.W., K.G. Sellner, S.E. Shumway and K. Greene. 1993. Effects of two 

bloom-forming dinoflagellates, Prorocentrum minimum and Gyrodinium 
uncatenum, on the growth and survival of the eastern oyster, Crassostrea 
virginica (Gmelin 1791). J. Shellfish Res. 12: 411-415. 

 
Machado, P.A. 1979. Dinoflagellate bloom on the Brazilian south Atlantic coast. Pp. 29-

32 In: (D.L. Taylor and H.H. Seliger, eds.) Toxic Dinoflagellate Blooms. 
Elsevier, New York. 

 
Mahoney, J.B. and F.W. Steimle, Jr. 1979. A mass mortality of marine animals 

associated with a bloom of Ceratium tripos in the New York Bight. Pp. 225-230 
In: (D.L. Taylor and H.H. Seliger, eds.) Toxic Dinoflagellate Blooms. Elsevier, 
New York.  

 
Matsuyama, Y., T. Uchida and T. Honjo. 1997. Toxic effects of the dinoflagellate 

Heterocapsa circularisquama on clearance rate of the blue mussel Mytilus 
galloprovincialis. Mar. Ecol. Prog. Ser. 146: 73-80. 

 
Matsuyama, Y., H. Usuki, T. Uchida and Y. Kotani. 2001.  Effects of harmful algae on 

the early planktonic larvae of the oyster, Crassostrea gigas.  Pp. 411-414 In: (G. 
Hallegraeff, S. Blackburn, C. Bolch and R. Lewis, eds.), Harmful Algal Blooms. 
Intergovernmental Oceanographic Commission of UNESCO. 

 
Morohashi, A., M. Satake, K. Murata, H. Naoki, H.F. Kaspar and T. Yasumoto. 1995. 

Brevetoxin B3, a new brevetoxin analog isolated from the greenshell mussel 
Perna canaliculus involved in neurotoxic shellfish poisoning in New Zealand. 
Tetrahedron Lett. 36: 8995-8998. 

 
Murata, K., M. Satake, H. Naoki, H.F. Kaspar and T. Yasumoto. 1998. Isolation and 

structure of a new brevetoxin analog, brevetoxin B2, from greenshell mussels 
from New Zealand. Tetrahedron Lett. 54: 735-742. 

 
Nielsen, M.V. and T. Strømgren. 1991. Shell growth response of mussels (Mytilus edulis) 

exposed to toxic microalgae. Mar. Biol. 108: 263-267. 
 
Nightengale,W.H. 1936. Red water organisms: their occurrence and influence upon  

marine aquatic animals, with special reference to shellfish in waters of the Pacific 
coast. Argus Press. Seattle, WA. 

 
Padilla, D.K., M.H. Doall, C.J. Gobler, A. Hartson and K. O’Boyle. 2006. Brown tide 

alga, Aureococcus anophagefferens, can affect growth but not survivorship of 
Mercenaria mercenaria larvae. Harmful Algae 5: 736-748. 



126 

 
Pearce, I., J.H. Handlinger and G.M. Hallegraeff. 2005. Histopathology in Pacific oyster 

(Crassostrea gigas) spat caused by the dinoflagellate Prorocentrum rhathymum. 
Harm. Algae 4: 61-74. 
 

Peters, E.C., P.P. Yevich, J.C. Harshbarger and G.E. Zaroogian. 1996. Comparative 
histopathology of gonadal neoplasms in marine bivalve molluscs. Dis. Aquat. 
Org. 20: 59-76. 

 
Peterson, C.H. and H.C. Summerson. 1992. Basin-scale coherence of population 

dynamics of an exploited marine invertebrate, the bay scallop: implications of 
recruitment limitation. Mar. Ecol. Prog. Ser. 90: 257-272. 

 
Pierce, R.H., M.S. Henry, L.S. Proffitt and P.A. Hasbrouck. 1990. Red tide toxin 

(brevetoxin) enrichment in marine aerosol. Pp. 397-402 In: (E. Graneli, B. 
Sundstrom, L. Elder and D. Anderson, eds.), Toxic Marine Phytoplankton. 
Elssevier, Amsterdam. 

 
Pierce, R., M. Henry, P. Blum and S. Payne. 2001.  Gymnodinium breve toxins without 

cells:  Intra-cellular and extra-cellular toxins. Pp. 421-424 In: (G. Hallegraeff, S. 
Blackburn, C. Bolch and R. Lewis, eds.), Harmful Algal Blooms. 
Intergovernmental Oceanographic Commission of UNESCO. 

 
Pierce, R.H., M. Henry, R. Dickey and S. Plakas. 2004. NSP (Karenia brevis) toxins and 

metabolites in oysters, clams, and whelks. Pp. 294-296 In: (K. A. Steiginger, J.H. 
Landsberg, C.R. Tomas, and G.A. Vargo, eds.), Harmful Algae 2002.  Florida 
Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, 
and Intergovernmental Oceanographic Commission of UNESCO. 

 
Pierce, R.H., M.S. Henry, P.C. Blum, S.L. Hamel, B. Kirkpatrick, Y.S. Cheng, Y. Zhou, 

C.M. Irvin, J. Naar, A. Weidner, L.E. Fleming, L.C. Backer and D.G. Baden. 
2005. Brevetoxin composition in water and marine aerosol along a Florida beach: 
Assessing potential human exposure to marine biotoxins. Harmful Algae 4:  965-
972. 

 
Plakas, S.M., K.R. El Said, E.L.E. Jester, H.R. Granade, S.M. Musser and R.W. Dickey. 

2002. Confirmation of brevetoxin metabolism in the Eastern oyster (Crassostrea 
virginica) by controlled exposures to pure toxins and to Karenia brevis cultures. 
Toxicon 40: 721-729. 
 

Poli, M.A., S.M. Musser, R.W. Dickey, P.P. Eilers and S. Hall. 2000. Neurotoxic 
shellfish poisoning and brevetoxin metabolites: a case study from Florida. 
Toxicon 38: 981-993. 
 

Prakash, A., J.C. Medcof and A.D. Tennant. 1971. Paralytic shellfish poisoning in 
Eastern Canada. Fish. Res. Bd. Can. 177: 1-87. 



127 

 
Price, D.W., K.W. Kizer and K.H. Hansgen. 1991. California's paralytic shellfish 

poisoning prevention program, 1927-89. J. Shellfish Res. 10: 119-145. 
 
Quayle, D.B. 1969. Paralytic shellfish poisoning in British Columbia. Fish. Res. Bd. Can. 

168: 1-68. 
 
Ray, S.M. and D.V. Aldrich. 1965. Gymnodinium breve: Induction of shellfish poisoning 

in chicks. Science 148: 1748-1749. 
 
Ray, S.M. and D.V. Aldrich. 1967. Ecological interactions of toxic dinoflagellates and 

molluscs in the Gulf of Mexico. Pp. 75-83 In: (F. Russell and P. Saunders, eds.) 
Animal toxins. Pergamon, Oxford. 

 
Roberts, B.S., G.E. Henderson and R.A. Medlyn. 1979. The effect of Gymnodinium breve 

toxins(s) on selected mollusks and crustaceans. Pp. 419-424 In: (Taylor and 
Seliger eds). Toxic Dinoflagellate Blooms. Elsevier, Amsterdam. 
 

Sastry, A.N. 1965. The development and external morphology of pelagic larval and post-
larval stages of the bay scallop, Aequipecten irradians concentricus Say, reared in 
the laboratory.  Bull. Mar. Sci. 15, 417-435. 

 
Savarese, M. S., G. Tolley and A.K. Volety. 2004. Using oyster reef communities in the 

design of estuarine restoration projects in South Florida. J. Shellfish Res. 23: 310-
311. 

 
Schwimmer, D. and M. Schwimmer. 1968. Medical aspects of phycology. Pp. 279-358 

In: (D. Jackson, ed.) Algae, Man and the Environment. Syracuse University Press, 
Syracuse, N.Y. 

 
Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and 

aquaculture. J. World Aquaculture Soc. 21: 65-104. 
 
Shumway, S.E. 1995. Phycotoxin-related shellfish poisoning: Bivalve molluscs are not 

the only vectors. Rev. Fish. Sci. 3: 1-31. 
 
Shumway, S.E. and T.L. Cucci. 1987. The effects of the toxic dinoflagellate 

Protogonyaulax tamarensis on the feeding and behavior of bivalve molluscs. 
Aquat. Tox. 10: 9-27. 

 
Shumway, S.E. and A.D. Cembella. 1993. The impact of toxic algae on scallop culture 

and fisheries. Rev. Fish. Sci. 1: 121-150. 
 
Shumway, S.E., T.M. Scott and J.M. Shick. 1983. The effects of anoxia and hydrogen 

sulphide on survival, activity and metabolic rate in the coot clam, Mulinia 
lateralis (Say).  J. Exp. Mar. Biol. Ecol. 71: 135-146  



128 

 
Shumway, S.E., T.L. Cucci, L. Gainey and C.M. Yench. 1985. A preliminary study of the 

behavioral and physiological effects of Gonyaulax tamarensis on bivalve 
molluscs. Pp. 389-394 In: (D. Anderson, A. White and D. Baden, eds.), Toxic 
Dinoflagellates. Elsevier, Amsterdam. 

 
Shumway, S.E., J. Barter and S. Sherman-Caswell. 1990. Auditing the impact of toxic 

algal blooms on oysters. Envir. Audit. 2: 41-56. 
 
Sievers, A. 1969. Comparative toxicity of Gonyaulax monilata and Gymnodinium breve 

to annelids, crustaceans, molluscs and a fish. J. Protozool 16: 401-404. 
 
Simon, J.L. and D.M. Dauer. 1972. A quantitative evaluation of red tide induced mass 

mortalities of benthic invertebrates in Tampa Bay, Florida.  Environ. Lett. 3: 229-
234. 

 
Singer, M.M., D.L. Smalheer, R.S. Tjeerdema amd M. Martin. 1990. A simple 

continuous-flow toxicity test system for microscopic life stages of aquatic 
organisms. Water Res. 24: 899-903. 

 
Smolowitz, R. and S.E. Shumway. 1997. Possible cytotoxic effects of the dinoflagellate, 

Gyrodinium aureolum, on juvenile bivalve molluscs. Aquacult. Int. 5: 291-300. 
 
Sprague, V. 1970. Some protozoan parasites and hyperparasites in marine bivalve 

molluscs. Pp.511-526 In: (Sniesko, ed.). A Symposium on Diseases of Fishes and 
Shellfishes. Am. Fish. Soc., Wash., Spec. Publ. No. 5.  

 
Steidinger, K.A., M.A. Burklew and R.M. Ingle. 1973. The effects of Gymnodinium 

breve toxin on estuarine animals.  Pp. 179-202 In: (D.F. Martin and G.M. Padilla, 
eds.) Marine Pharmacognosy. Academis Press, New York. 

 
Steidinger, K., B. Roberts and P. Tester. 1995. Florida red tides. Harmful Algae News 

12/13: 1-3. 
 
Steidinger, K.A., P. Carlson, D. Baden, C. Rodriguez and J. Seagle. 1998. Neurotoxic 

shellfish poisoning due to toxin retention in the clam Chione cancellata. Pp. 457-
458. In: B. Reguera, J. Blanco, M.L. Fernandez and T Wyatt (eds.). Harmful 
Algae. Xunta de Galicia, IOC, Paris. 

 
Summerson, H.C. and C.H. Peterson. 1990. Recruitment failure of the bay scallop, 

Argopecten irradians concentricus, during the first red tide, Ptychodiscus brevis, 
outbreak recorded in North Carolina. Estuaries 13: 322-331. 

 
Tester, P.A. and F.K. Fowler. 1990. Brevetoxin contamination of Mercenaria mercenaria 

and Crassostrea virginica: a management issue. Pp. 499-503 In: (E.Granéli, B. 
Sundström, L. Edler and D.M. Anderson eds.) Toxic Marine Phytoplankton. 



129 

Proceedings of the Fourth International Conference on Toxic Marine 
Phytoplankton. Elsevier. 
 

Tester, P.A., R.P. Stumpf, F.M. Vukovich, P.K. Fowler and J.T. Turner. 1991. An 
expatriate red tide bloom: transport, distribution, and persistence. Limnol. 
Oceanogr. 36: 1053-1061. 

 
Tester, P.A. and K.A. Steidinger. 1997. Gymnodinium breve red tide blooms: Initiation, 

transport, and consequences of surface circulation. Limnol. Oceanogr. 42: 1039-
1051. 

 
Thompson, R.J., D.R. Livingstone and A. DeZwaan. 1980. Physiological and 

biochemical aspects of the valve snap and valve closure responses in the giant 
scallop Placopecten magellanicus. J. Comp. Physiol. 137: 97-104. 

 
Tiffany, W.J. III and M.G. Heyl. 1978. Invertebrate mass mortality induced by a 

Gymnodinium breve red tide in Gulf of Mexico waters at Sarasota, Florida. J. 
Environ. Sci. Health A13: 653-662. 

 
Todd, E.C. 1993. Domoic acid and amnesic shellfish poisoning: A review. J. Food Prot. 

56: 69-83. 
 
Twarog, B.M. and H. Yamaguchi. 1975. Resistance to paralytic shellfish toxins in 

bivalve molluscs. Pp. 381-393 In: (V.R. LoCicero, ed.) Proceedings of the First 
International Conference on Toxic Dinoflagellate Blooms. Mass. Sci. Tech. Fndn. 
Wakefield, MA. 

 
Waller, T.R. 1981. Functional morphology and development of veliger larvae of the 

European oyster, Ostrea edulis Linne. Smithsonian Contr. Zool. 313, 1-70. 
 
Wang, Z., S.M. Plakas, K.R. El Said, E.L.E. Jester, H.R. Granade and R.W. Dickey. 

2004. LC/MS analysis of brevetoxin metabolites in the Eastern oyster 
(Crassostrea virginica). Toxicon 43: 455-465. 

 
Wardle, W.J., S.M. Ray and A.S. Aldrich. 1975. Mortality of marine organisms 

associated with offshore summer blooms of the toxic dinoflagellate Gonyaulax 
monilata Howell at Galveston, Texas. Pp. 257-263 In: (V.R. LoCicero, ed.) 
Proceedings of the First International Conference on Toxic Dinoflagellate 
Blooms. Mass. Sci. Tech. Fndn. Wakefield, MA. 

 
Watling, H.R. 1983. Comparative study of the effects of metals on the settlement of 

Crassostrea gigas. Bull. Environ. Contam. Toxicol. 31: 344-351. 
 
Widdows, J and P. Salkeld. 1993. Practical procedures for the measurement of scope for 

growth. Phuket mar. biol. Cent Spec. Publ. 14: 43-53. 
 



130 

Widdows, J., N.M. Moore, D.M. Lowe and P.N. Salkeld. 1979. Some effects of a 
dinoflagellate bloom (Gyrodinium aureolum) on the mussel, Mytilus edulis. J. 
Mar. Biol. Ass. U.K. 59: 522-524. 

 
Wikfors, G.H. and R.M. Smolowitz. 1993. Detrimental effects of a Procentrum isolate 

upon hard calms and bay scallops in laboratory feeding studies. Pp. 447-452 In: 
(T.J. Smayda and Y. Shimizu eds.) Toxic Phytoplankton in the Sea. Elsevier. 

 
Wikfors, G.H. and R.M. Smolowitz. 1995. Experimental and histological studies of four 

life-history stages of the Eastern oyser, Crassostrea virginica, exposed to a 
cultured strain of the dinoflagellate Prorocentrum minimum. Bio. Bull. 188: 313-
328. 

 
Wilbur, A.E., S. Seyoum, T.M. Bert and W.S. Arnold. 2005. A genetic assessment of bay 

scallop (Argopecten irradians) restoration efforts in Florida's Gulf of Mexico 
Coastal Waters (USA). Conserv. Genet. 6: 111-122. 

 
Yan, T., M. Zhou, M. Fu, Y. Wang, R. Yu and J. Li. 2001. Inhibition of egg hatching 

success and larval survival of the scallop, Chlamys farreri, associated with 
exposure to cells and cell fragments of the dinoflagellate Alexandrium tamarense. 
Toxicon 39: 1239-1244. 

 
Yan, T., M. Zhou, M. Fu, R. Yu, Y. Wang and J. Li. 2003. Effects of the dinoflagellate 

Alexandrium tamarense on early development of the scallop Argopecten irradians 
concentricus. Aquaculture 217: 167-178. 

 
Yomgjia, Z., B. Munday and J. Handlinger. 1995. Mass mortality of flat oysters (Ostrea 

rivularis) associated with a bloom of Prorocentrum sp. in the port of Zhanjiang, 
South China. Bull. Eur. Assoc. Fish Pathol. 15: 61-63. 

 
Zar, J.H. 1996. Biostatistical Analysis. Prentis Hall. Upper Saddle River, NJ. 662 p. 



131 
 
 

 
About the Author 

 
 
 Jay Leverone received a B.A. in Biology in 1976 and a M.S. in Zoology in 1990 

from the University of South Florida.  He became a Staff Biologist at Mote Marine 

Laboratory in Sarasota in 1980 and has maintained his staff position during both his 

Masters and Doctoral Degrees.  He entered the Ph. D. program at the University of South 

Florida in 1996. 

 While in the Ph.D. program, Mr. Leverone has been a student member of the 

National Shellfisheries Association and has presented portions of his doctoral research at 

the annual meetings.  He also presented results from several shellfish restoration projects 

which he supervised while conducting his doctoral research.  Mr. Leverone has made 

presentations at the International Conference on Shellfish Restoration and the 

International Pectinid Workshop. 

 Two manuscripts have been published on his doctoral research. 

 

Leverone, Jay R., Norman J. Blake, Richard H. Pierce and Sandra E. Shumway. 2006. 
Effects of the dinoflagellate Karenia brevis on larval development in three 
species of bivalve mollusc from Florida. Toxicon 48: 75-84. 

 
Leverone, Jay R., Norman J. Blake and Sandra E. Shumway. Comparative effect of the 

toxic dinoflagellate Karenia brevis on clearance rates in juveniles of four bivalve 
molluscs from Florida, USA. Toxicon (In press). 

 

 Mr. Leverone has been married to his wife, Barbara, for 23 years and has two 

wonderful children; a daughter, Donna and a son, Jason. 


	Comparative effects of the toxic dinoflagellate, Karenia brevis, on bivalve molluscs from Florida
	Scholar Commons Citation

	tmp.1298583008.pdf.vgIWc

