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A B S T R A C T

A rapid degradation of aquatic vegetations in Taihu Lake has roused a wide attention in recent years. Giving
large-scale harvesting activity on aquatic vegetation since 2012, whether water eutrophication or the human
harvest activity induced the degradation remains controversial and unclear. In this study, based on Landsat and
HJ-CCD data acquired from 1984 to 2016 and a 12-year field observation (2005–2016) of water quality, a
method was proposed to quantitatively assess impacts of harvesting activity and water quality change on de-
gradations of both floating-leaved aquatic vegetation (FAV) and submerged aquatic vegetation (SAV) in Taihu
Lake. First, areas of FAV and SAV covers from 1984 to 2016 in Taihu Lake were mapped using the satellite data,
and then the mapped areas were modified to those on a reference date by using phenological curves of FAV and
SAV covers. Next, correlations between water quality data and FAV and SAV covers were analyzed by using
Pearson correlation analysis based on the data before implementing the human harvesting activity (i.e., before
2012), and multiple general linear models were established based on the selected water quality variables with p-
value< 0.01 for estimating covers of FAV and SAV from 2012 to 2016. Finally, based on the predicted areas of
FAV and SAV covers by the models and the modified areas mapped from satellite data, the influences of water
eutrophication and the human harvesting activity on the degradation of FAV and SAV covers were quantitatively
assessed. The results indicated that (1) FAV cover exhibited a significant increase from 1984 to 2011 and then a
rapid decrease, while SAV cover increased significantly before 2003 and then obviously declined; (2) water level
(WL) and total nitrogen (TN) showed significantly negative correlations with FAV and SAV covers, while secchi
disk depth (SDD) and SDD/WL had significantly positive correlations with FAV and SAV covers; (3) the human
harvesting activity made a major contribution to the loss of FAV cover, and the degradation of SAV cover was
mainly due to an increased lake eutrophication and deteriorated underwater light environment. The findings
derived from this study could offer a guidance for Taihu Lake ecological restoration and effective management.

1. Introduction

Submerged aquatic vegetation (SAV) and floating-leaved aquatic
vegetation (FAV) are the two main types of aquatic vegetation in most
shallow lakes. Both types are important for primary production and can
provide multiple ecological functions such as stabilizing sediments,
absorbing nutrients and purifying water, maintaining fishery produc-
tion and inhibiting the growth of phytoplankton (Ozimek et al., 1990;
Horppila and Nurminen, 2003; Vereecken et al., 2006; Yunkai-Li et al.,
2009; SAYER et al., 2010; Rao et al., 2015; WANG et al., 2014). Pre-
vious studies indicate that the types and composition of aquatic

vegetation can influence the stable state of an aquatic system in shallow
lakes, especially in eutrophic lakes (e.g., Phinn et al., 2008; Carr et al.,
2010; Roelfsema et al., 2014). For example, submerged macrophytes is
a potential indicator of ecological quality of lakes (Søndergaard et al.,
2010). When uncontrolled, rapid expansion of FAV may have a po-
tential of causing disturbances to biodiversity, nutrient cycling, and
aquatic life habitat and even an adverse shift in shallow lakes from a
clear-water plant-dominated state to a turbid algae-dominated state.
This is because FAV with large leaf area floating on the water surface
will block the light into the water, which may induce a rapid de-
gradation of SAV and the death of aquatic animal living on SAV due to

https://doi.org/10.1016/j.jag.2019.102038
Received 10 May 2019; Received in revised form 12 December 2019; Accepted 24 December 2019

⁎ Corresponding author.
E-mail addresses: jhluo@niglas.ac.cn (J. Luo), htduan@niglas.ac.cn (H. Duan).

Int J Appl  Earth Obs Geoinformation 87 (2020) 102038

Available online 03 January 2020
0303-2434/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2019.102038
https://doi.org/10.1016/j.jag.2019.102038
mailto:jhluo@niglas.ac.cn
mailto:htduan@niglas.ac.cn
https://doi.org/10.1016/j.jag.2019.102038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2019.102038&domain=pdf


lacking of light (Hofstra et al., 1999; Shekede et al., 2008; Dube et al.,
2017; Palmer et al., 2015). Accordingly, understanding the dynamics
mechanisms of FAV and SAV and clarifying the process driving their
change mechanisms are critical to assess the health state of the water
environment and guide the management of eutrophic shallow lakes.

Taihu Lake is the third largest freshwater lakes in China and is an
important drinking water source, which supplies drinking water for
surrounding cities with more than 10 million people (Qin et al., 2010);
moreover, the lake offers other services, such as, aquaculture, tourism
and recreation, and transportation (Qin et al., 2010). Taihu Lake pos-
sesses a macrophyte-dominated zone and a phytoplankton-dominated
zone based on ecological characteristics and a stable state theory (Shen
et al., 2011). In the phytoplankton-dominated zone, there is less aquatic
vegetation and algal blooms occur frequently (Zhang et al., 2014),
while in the macrophyte-dominated zone, its bottom is often covered
with abundant FAV and SAV, and thus the water quality is much often
better than that in the phytoplankton-dominated zone across all seasons
(Luo et al., 2016a). Before 2012, there was less human intervention on
aquatic vegetation in the macrophyte-dominated zone. However, a high
aquatic vegetation cover produced a serious impact on the shipping and
water landscape in the macrophyte-dominated zone in 2012. Thus,
Ministries of Water Resources (MWR) and of Environmental Protection
(MEP) appealed to harvest aquatic vegetation at a large scale in mac-
rophyte-dominated zone using manual and mechanical harvesting
ships. The approach could cut the aquatic vegetation and even dig up
their roots for optimizing lake landscape, facilitating shipping and
preventing secondary pollution induced by large amounts of death and
decay of plants. As a result by 2015, field surveys and statistical reports
indicated that aquatic vegetation decreased sharply and even dis-
appeared in some bays in the macrophyte-dominated zone in Taihu
Lake. Further, an algae bloom occurred in 2016–2017 in the macro-
phyte-dominated zone, where algae bloom never occurred before,
suggesting that ecological balance and stable state in the zone might
have been broken and water environment was deteriorating. Accord-
ingly, whether the harvesting activity or further lake eutrophication
should be responsible for the degradation of FAV and SAV had aroused
a large concern and controversy from the local residents, governments
and researchers. Previous studies indicated that increasing lake eu-
trophication and degrading underwater environment surely resulted in
the loss of vegetation presence (e.g., Søndergaard et al., 2010; Kolada,
2010; Schelske et al., 2010; Zhang et al., 2017, 2016b). However, based
on our knowledge, there are no studies on quantitatively assessing the
influences of water quality change and harvesting activity on spatial
distributions of FAV and SAV in Taihu Lake.

Satellite remote sensing technique has been proven to be the most
powerful and effective tool for mapping aquatic vegetation types and
species in coastal, shallow waters and monitoring their biomass at a
large scale (e.g., Gullström et al., 2006a; Ma et al., 2008; Shekede et al.,
2008; Villa et al., 2012; Pu et al., 2012; Roelfsema et al., 2014;
Cheruiyot et al., 2014; Luo et al., 2017; Pu and Bell, 2017; Chen et al.,
2018; Gao et al., 2018). Many studies have explored spectral indices
derived from MODIS coarse resolution data to map aquatic vegetation
in Taihu Lake, such as the floating algae index (FAI) and the vegetation
presence frequency (VPF) (e.g., Liu et al., 2013; Zhang et al., 2016a;
Liang et al., 2017). Moreover, using medium and high resolution sa-
tellite image data (e.g., Landsat, HJ, IKONOS, MERIS), a series of spe-
cial indices, such as normalized difference aquatic vegetation index
(NDAVI) and water adjusted vegetation index (WAVI), floating-leaved
vegetation sensitive index (FVSI) and submerged vegetation sensitive
index (SVSI), were also developed to classify FAV and SAV covers, with
which classification accuracies of FAV and SAV covers could be higher
than 80 % (Ma et al., 2008; Luo et al., 2014; Villa et al., 2015, 2014).
Specifically, Landsat data with a long archive history can be used to
trace variations in FAV and SAV covers over time (Gullström et al.,
2006b; Zhao et al., 2013; Luo et al., 2016b). Meanwhile, long-term and
site-specific meteorological and water quality observations are used to

support such studies.
In this study, by using satellite data with a resolution of 30m and

water quality data collected from 2005 to 2016, we proposed an ap-
proach to quantitatively assesse impacts of harvesting activity and
water quality change on degradations of FAV and SAV covers, respec-
tively. Therefore, the specific objectives for this study included: 1)
Mapping dynamics of FAV and SAV covers in the macrophyte-domi-
nated zone in Taihu Lake over 33 years (1984–2016); 2) exploring re-
lationships between FAV and SAV cover areas and water quality para-
meters; and 3) establishing models for assessing influences of
mechanical harvesting and water quality change on FAV and SAV
covers, respectively. Relevant issues on the guidance for Taihu Lake
ecological restoration and sustainable management were also discussed.

2. Study area and data sets

2.1. Study area

Taihu Lake (30°55′40″– 31°32′58″N, 119°52′32″– 120°36′10″E) is a
typical eutrophic shallow lake (a maximum depth of 2.6m and mean
depth of 1.9m) with an area of approximately 2,338 km2. It is located
at the core of the Yangtze Delta, which is the most industrialized and
urbanized area in China.

In this study, due to less aquatic vegetation in the phytoplankton-
dominated zone, we focus only the macrophyte-dominated zone, in-
cluding three large bays, Gonghu, Xukou and Dongtaihu Bays, namely,
regions A, B and C in Fig. 1, respectively. The study area is covered
mainly with three types of aquatic vegetation, including emergent ve-
getation (Phragmites communis and Zizania latifolia), FAV (Eichhornia
crassipes, Lemna minor, Nymphoides peltata, Trapa bicornis) and SAV
(Elodea nuttallii, Potamogeton crispus, Myriophyllum spicatum, Potamo-
geton maackianus, Ceratophyllum demersum and Vallisneria spiralis). Since
there was much less emergent vegetation distributed and only in la-
keside areas, we merged it into FAV as FAV in this study.

2.2. Data sets

2.2.1. Satellite images
In consideration of data consistency and traceability, we mainly

selected Landsat data (TM / OLI) with a spatial resolution of 30m to
monitor the spatial distribution of aquatic vegetation in the study area.
Due to lacking Landsat TM data from 2011 to 2014, HJ-CCD images
were used as the supplementary data. HJ-CCD images were acquired
from the China Centre for Resources Satellite Data and Application
(CRESDA). HJ-1A and HJ–1B satellites were launched by CRESDA on
September 6, 2008. HJ-1A/1B CCD has similar spectral ranges and
spatial resolutions to those of the first four bands of Landsat TM but a
higher revisit cycle of 48 h (two days). Our previous studies (Luo et al.,
2013, 2016 and 2017) using the HJ-CCD images to map FAV and SAV in
Taihu Lake proved that the data had a good consistence with Landsat
data in mapping aquatic vegetation types.

Previous studies demonstrate that most species of aquatic vegeta-
tion in Taihu Lake reach the maximum biomass and cover area between
mid-June and mid-October (Zhao et al., 2013; Luo et al., 2016a; Luo
et al., 2017). Therefore, we collected the satellite images acquired be-
tween June 26 and October 17 (Table 1). As a result, a total 28 scenes of
cloud-free Landsat TM / OLI and 4 scenes HJ-CCD data were collected
from 1984 to 2016.

2.2.2. Water quality measurements
In this study, the measurements of eleven water quality (WQ)

parameters, including dissolved oxygen (DO), PH, total suspended
matter (TSM), ammonia (NH3-N), biochemical oxygen demand (BOD),
chemical oxygen demand (COD), total nitrogen (TN), total phosphorus
(TP), chlorophyll a (Chla), water level (WL) and secchi disk depth
(SDD) were collected from 2005 to 2016. In fact, WL is not a water
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quality parameter, but for a convenient analysis, it was called a WQ
parameter in this study. The eleven WQ parameters’ monthly mea-
surements at seven regulate sampling sites from 2005 to 2016 were
observed by the Taihu Laboratory for Lake Ecosystem Research and
their annual observation values were calculated. The seven sampling
sites include two sites located in region A, two sites in region B and
three sites in region C, and the locations of sampling sites were shown
in Fig. 1. The WQ sampling data in the same region were averaged to
represent regions A, B and C for analyzing correlations with FAV and
SAV covers in corresponding regions.

2.2.3. Meteorological data
Regular meteorological factors including annual average air tem-

perature, wind speed, precipitation and sunshine duration from 1984 to
2016 were collected from the China Meteorological Data Sharing
Service System (http://cdc.cma.gov.cn/). The location of observation
station, namely Dongshan Station, was also showed in Fig. 1.

3. Methods

Fig. 2 presents a flowchart of evaluating influences of human har-
vesting activity and water eutrophication on the degradations of FAV
and SAV covers. To achieve the goal, we divided the data into two
parts: the data before and after the implementation of human har-
vesting activity (i.e., before 2012 and from 2012 to 2016) to conduct

the research, and more components in the figure were addressed as
follows. (i) FAV and SAV in study area were mapped from 1984 to 2016
based on satellite data using decision tree classification method, and
then the cover areas of FAV and SAV were modified using a correction
method to eliminate the intra-annual variations resulted from different
image acquisition dates. (ii) The relationships between water quality
(WQ) parameters and cover areas of FAV and SAV were explored by
person correlation analysis based on the data collected before 2012,
and then the sensitive WQ variables (p-value<0.01) were retained.
(iii) The multiple general linear (MGL) models for predicting FAV and
SAV covers were built based on the sensitive WQ variables before im-
plementing harvesting activity, and then the areas of FAV and SAV from
2012 to 2016 were predicted. (iv) With the modified monitoring areas
of FAV and SAV mapped from satellite data coupling with predicted
area by the models from 2012 to 2016, the influences of WQ and human
harvesting activity were quantitatively assessed.

3.1. Mapping FAV and SAV

By referring to the metadata of the images (e.g., gains and offsets)
and using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) in ENVI (FLAASH User’s Guide, 2004), all mul-
titemporal Landsat and HJ CCD images were calibrated from the at-
sensor radiance data to at-water surface reflectance. In this study, we
used the decision tree classification and thresholds determination

Fig. 1. A location map of Taihu Lake in China and the study area with consisting of three regions A, B and C. (a) Nymphoides peltatum, a dominant species of FAV in
Taihu Lake; (b) Myriophyllum spicatum, a dominant species of SAV in Taihu Lake; (c) a manual harvesting activity scene; and (d) a mechanical harvesting activity
scene.

Table 1
Information for acquired satellite data.

Year Month/day Sensor Year Month/day Sensor Year Month/day Sensor

1984 8/4 TM 1995 8/3 TM 2006 9/18 TM
1985 8/7 TM 1996 8/5 TM 2008 7/5 TM
1986 7/25 TM 1997 8/8 TM 2009 9/10 TM
1987 6/26 TM 1998 7/10 TM 2010 8/12 TM
1988 7/14 TM 1999 10/1 TM 2011 9/24 HJ-CCD
1989 7/17 TM 2000 9/17 TM 2012 9/2 HJ-CCD
1990 7/20 TM 2001 7/2 TM 2013 9/26 HJ-CCD
1991 7/23 TM 2002 9/23 TM 2014 9/7 HJ-CCD
1992 7/25 TM 2003 7/24 TM 2015 9/11 OLI
1993 9/30 TM 2004 7/26 TM 2016 8/28 OLI
1994 6/29 TM 2005 10/17 TM

J. Luo, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102038
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method developed by Luo et al. (2014, 2016) to map FAV and SAV
covers from 1984 to 2016. More details about the classification method
were provided in Luo et al. (2014, 2016). The studies indicated that the
mapping method could result in classification accuracies higher than 80
% for both FAV and SAV.

3.2. Approach for modifying FAV and SAV areas mapped from images

In order to eliminate as much as possible the influence of the intra-
annual variation caused by different image acquisition dates on our
results, we used phenological curves of FAV and SAV created by Luo
et al. (2016) to correct the covers of FAV and SAV mapped from the
images. The phonological curves were created based on 73HJ CCD
images acquired from January 2009 to December 2013 by a double
logistic fitting function. Fig. 3 shows the phenological curves of FAV
and SAV. Read Luo et al. (2016) for more detailed information of how
to create the phonological curves. According to the phenological
curves, FAV and SAV cover reach the peaks from DOY=194 to
DOY=250 and from DOY=245 to DOY=275, respectively. And
when DOY is 252 (September 8), the area of aquatic vegetation
(FAV+ SAV) reaches the maximum value. Therefore, in this study, we
considered DOY=252 as a reference date, and the FAV and SAV cover
areas mapped from the satellite images from 1984 to 2016 were mod-
ified to the relative area values on the reference date by the following
formulas:

=
A FAV
A FAV

F FAV
F FAV

_
_

_
_

x

y

x

y (1)

=
A SAV
A SAV

F SAV
F SAV

_
_

_
_

x

y

x

y (2)

Therefore,

=
×

A FAV
A FAV F FAV

F FAV
_

_ _
_y
x y

x (3)

=
×

A SAV
A SAV F SAV

F SAV
_

_ _
_y
x y

x (4)

where x is the image acquisition date; y is the reference date (i.e.,
DOY=252); A FAV_ x and A SAV_ x are the cover areas of FAV and SAV
mapped from the image acquired on date x, respectively; A FAV_ y and
A SAV_ y are the modified cover areas of FAV and SAV from date x to y,
respectively; F FAV_ x , F SAV_ x , F FAV_ y and F SAV_ y are the cover areas
of FAV and SAV mapped from the phenological curves when DOY = x
and DOY = y, respectively.

3.3. Statistical correlation analyses

Pearson correlation analysis approach was used to investigate cor-
relation relationships between FAV and SAV covers and WQ parameters
and meteorological factors.

Multiple linear regression was used to model a relationship between
two or more explanatory variables and a response variable by fitting a
linear equation to observation data. A multiple general linear (MGL)
model takes the form:

∑= +
=

Y α M C
j

m

j j
1 (5)

where Y is the dependent variable, i.e., the cover area of FAV or SAV
mapped from the satellite images; Mj is the jth independent variable
(j = 1,2…,m), including WQ parameters with p-value<0.01 in Pearson
correlation analysis and the cover area of FAV or SAV of one year before
the modeling year in this study; C is the constant term.

In this study, we used MGL to establish the predicting models of
FAV and SAV covers based on the data before complementing har-
vesting activity (i.e., before 2012).

SPSS software was adopted to carry out both Pearson correlation
and MGL analyses.

Fig. 2. A flowchart presenting a summary of the data collection, the procedure of evaluating the effects of human harvesting activity and eutrophication on FAV and
SAV covers. FAV: floating-leaved aquatic vegetation; SAV: Submerged aquatic vegetation; a high-intensitive harvesting activity has been implemented since 2012.
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3.4. Relative change rate

In order to assess the change rate of FAV and SAV covers in different
regions before and after implementing the harvesting activity, we de-
fined a relative change rate (ki) using the modified cover areas of FAV
and SAV in 2011 as a reference area. The formula is as follows:

=
−

×k A A
A

100%i
x 2011

2011 (6)

where ki is the relative change rate; Ax is the modified cover area of
FAV or SAV in year x; A2011 is the modified reference cover area of FAV
or SAV in 2011.

3.5. Evaluation method

The influences of harvesting activity and water eutrophication on
the degradation of FAV and SAV were evaluated by the following for-
mulas:

= + = − −x h n MA MAi i i i i 1 (7)

= − −n PA PAi i i 1 (8)

= − = − − −− −h x n MA MA PA PA( ) ( )i i i i i i i1 1 (9)

where xi is the loss of cover area of FAV or SAV from years i-1 to i (i =
2012, 2013…, 2016); ni is the lost area of FAV or SAV induced by water
eutrophication from years i-1 to i; hi represents the area loss induced by
human harvesting activity from year i-1 to i; MAi and MAi-1 are the
modified areas of FAV or SAV mapped from the satellite images in year
i-1 and i, respectively; PAi and PAi-1 are the predicted areas of FAV or
SAV estimated by the MGL models developed in this study, respectively.

The annual contribution rates of harvesting activity and water eu-
trophication to the loss of aquatic vegetation from 2012 to 2016 were
calculated by the following formulas:

= −MA MAQ 2016 2011 (10)

=
−

×−n PA PA
Q

% 100%i
i i 1

(11)

=
− − −

×− −h MA MA PA PA
Q

% ( ) ( ) 100%i
i i i i1 1

(12)

where Q is the total lost area of aquatic vegetation after implementing
the harvesting activity; hi % and ni % are the contribution rates of
harvesting activity and water eutrophication to the total lost area in
year i, respectively.

4. Results

4.1. Spatiotemporal dynamics of aquatic vegetation

Fig. 4 exhibits that spatial distributions of FAV and SAV in the study
area, and Fig. 5 shows the cover areas of FAV and SAV mapped from the
satellite image and corresponding modified cover areas in regions A, B
and C from 1984 to 2016. From the figures, we found the monitoring
cover areas are different from those with the modified cover area, but
the general change patterns and trends are similar. Overall, SAV was
dominant type in Taihu Lake, and region C had the largest aquatic
vegetation cover while the smallest distribution of aquatic vegetation
was in region A. Over the period of 33 years, SAV experienced some
changes, and the change patterns were different among three regions,
which might be summarizes as follows. i) In region A, as shown in
Fig. 5a, SAV appeared in 1991, increased to the peak around 2003 and
then decreased with a large fluctuation while FAV slightly increased
before 2014 and then decrease. ii) In region B, as shown in Fig. 5b, the
modified cover area of SAV fluctuated between 1 km2 and 5 km2 from
1984 to 1992; and then SAV reached two peaks in 2003 and 2011,
finally decreased dramatically from 104.50 km2 in 2011 to 23 km2 in
2016 (Fig.5b). The modified cover area of FAV increased from only
2.68 km2 in 1984 to 45.75 km2 in 2011, and then fell dramatically to
only 3.95 km2 in 2016. iii) In region C, as shown in Fig. 5c, the modified
cover area of SAV fluctuated slightly before 1997, and then increased
and reached the peak at 229.10 km2 in 2003, finally decreased to
63.57 km2 in 2016, while FAV cover area increased significantly from
55.87 km2 in 1984 to 107.52 km2 in 2011, and then declined to only
25.05 km2 in 2016.

Fig. 6 displays the change patterns of the total of aquatic vegetation

Fig. 3. Phenological curves of FAV and SAV. Black dashed line represents the reference date (DOY=252) when the aquatic vegetation (FAV+SAV) reaches a
maximum area.
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(FAV+ SAV) covers mapped from the images and after correction and
the separate FAV and SAV covers from 1984 to 2016 in the study area.
The total cover area of aquatic vegetation first increased and then de-
creased with a peak around 2003 (Fig. 6a). FAV experienced a statis-
tically significant increase from 1984 to 2011 (R2 = 0.68) and an

obvious decrease between 2011 and 2016 (R2 = 0.94) (Fig. 6b). SAV
increased significantly before 2003 (R2 = 0. 85), and then decreased
dramatically after 2003 (R2 = 0.83) (Fig. 6c).

Fig. 7 presents the change rates (ki) of FAV and SAV covers from
1984 to 2016 compared with those in 2011 in regions A, B and C,

Fig. 4. Spatial distribution of FAV and SAV covers from 1984 to 2016 in Taihu Lake.
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respectively. Generally, after implementing the harvesting activity, the
decrease rate of FAV was greater than that one of SAV. FAV cover in
regions A, B and C was continually decreasing, and FAV in region B had
the greatest decrease rate. For SAV, the decrease rate of region A was
the most severe, followed by region B, and the change rate in region C
was the lowest.

4.2. Correlations of FAV and SAV with water quality parameters

Table 2 lists correlations between WQ variables and the cover areas
of FAV and SAV, respectively. From the table, WL and TN, respectively,
had a significant negative correlation with FAV and SAV (p-value<
0.001), while SDD and SDD/WL had significant positive correlations
with FAV and SAV with p-value<0.001. FAV and SAV related nega-
tively with NH3-N, BOD and Chla with p-value< 0.05. Non statistically
significant correlations of other variables with SAV and SAV were ob-
served.

4.3. Models for predicting FAV and SAV covers

Predictive models were respectively established for estimating FAV
and SAV covers using MGL model with WQ data collected before 2012
and cover areas of FAV and SAV in last year as formulas.

Y1 = 0. 969 Xf + 3.18 X1 + 20.267 X2 - 7.275 (13)

Y2 = 0.12 Xs – 10.315 X1 +128.57 X2 + 18.211 (14)

where Y1 and Y2 are the predicted cover areas of FAV and SAV, re-
spectively; Xf and Xs are the cover areas of FAV and SAV in last year; X1

and X2 are TN and SDD/WL, respectively.
Fig. 8 shows the relationships between the cover areas estimated

from models (Eqs. (13) and (14)) and the modified monitoring areas
mapped from the satellite images for FAV and SAV, respectively. The
results indicated that the models had high prediction accuracies with R2

= 0.94 and RMSE=6.76 km2 for FAV model and R2=0.95,
RMSE=8.40 km2 for the SAV model.

4.4. Why the degradation of FAV and SAV after 2012

According to Eqs. (7)–(12) and predictive models (Eqs. (13) and
(14)), MA, PA, h, n, x, h%, n% and x% of FAV and SAV in the study area
were calculated and listed in Tables 3 and 4, respectively. The experi-
mental results indicated as follows: FAV decreased by 132.85 km2 from
2012 to 2016, and the lost area of FAV induced by the harvesting ac-
tivity (102.84 km2, h%=77.41 %) was much greater than that induced
by WQ parameter change (30.01 km2, n%=22.59 %); while SAV de-
creased a total of 88.00 km2 from 2012 to 2016 and the contribution
rate of WQ change on the lost area (n%=86.82 %) was higher than
that of human harvesting activity (h% = 13.18 %). The lost areas of
FAV and SAV varied from year to year. The area of FAV decreased the
most in 2015 with a decreased amount of 56.05 km2 and a yearly de-
crease rate x%=42.19 %, and all the lost area was almost induced by
harvesting activity. For SAV, human harvesting activity induced the
decrease in 2012 and 2014, and WQ change was main driving factor
resulting of SAV decrease in other years.

Fig. 5. Dynamics of FAV and SAV covers mapped from satellite image and after correction in regions A (a), B (b) and C (c) from 1984 to 2016.

J. Luo, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102038

7



Fig. 6. Change patterns of aquatic vegetation (FAV+SAV) cover (a), FAV cover (b) and SAV cover (c) from 1984 to 2016 over the study area.

Fig. 7. Change rates (ki) of FAV and SAV covers from 1984 to 2016 compared with those in 2011 in regions A, B and C. Positive value represents that the cover area of
FAV or SAV in an interest year was higher than that in 2011, otherwise, it was negative.
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5. Discussion

5.1. Yearly dynamics of FAV and SAV covers in Taihu Lake

Giving generally lacking history observation data of aquatic vege-
tation in Taihu Lake, remote sensing is an effective technique for ob-
taining yearly dynamics of aquatic vegetation, and has been applied in
mapping aquatic vegetation dynamics. Previous studies indicated that
aquatic vegetation including FAV and SAV in Taihu Lake could be
mapped accurately using the Landsat and HJ-CCD data with a high
accuracy of being greater than 80 %. In this study, based on Landsat
and HJ-CCD images acquired from 1984 to 2016, we mapped cover
areas of FAV and SAV and analyzed their dynamics. The results in-
dicated that FAV cover first increased and then decreased with a peak
value in 2011 (Fig. 5b), while SAV cover reached the peak around 2003
(Fig. 5c). Meanwhile, total cover area of aquatic vegetation (including
SAV+FAV) reached the peak around 2003 (Fig. 5a). In general, the
dynamics of SAV and FAV covers and all aquatic vegetation cover were
consistent with previous findings in Taihu Lake (Liu et al., 2013; Zhao
et al., 2013; Zhang et al., 2016a; Luo et al., 2016a; Wang et al., 2019).
First, Zhao et al. (2013) mapped emergent vegetation, FAV and SAV
covers using seven scenes Landsat images acquired in years 1981, 1984,
1989, 1995, 2000, 2005 and 2010, respectively, and analyzed their
spatial dynamics. Their findings were that FAV was increasing from
1984 to 2010, which was consistent with our result (Fig. 5b). The SAV
cover and the total area cover of aquatic vegetation increased before
2005, and it then decreased from 2005 to 2010. The peaks derived from

their study were different from our results, which might be due to
different mapping intervals with every five years in their study and per
year in our study. Second, Liu et al. (2015) mapped aquatic vegetation
in Taihu Lake from 2003 to 2013 using MODIS data and explored the
spatial dynamics of aquatic vegetation. Their results indicated that
aquatic vegetation was relatively larger in 2008 and 2011 and smaller
in 2006 and 2007, which was consistent with our findings (Fig. 5a).
Finally, Wang et al. (2019) mapped aquatic vegetation in the entire
Taihu Lake from 1980 to 2017, and concluded that the cover area of
aquatic vegetation first increased, and then decreased sharply with a
peak value in 2015. However, the peak value was not consistent with
those derived from our study and the studies mentioned above, which
was because enclosure cultivation area in region C was excluded in
their study.

Previous studies including those mentioned above demonstrated
that the cover area of aquatic vegetation reached maximum and was
steady between June and October, and thus it is reasonable that we
used the satellite data acquired from the time period to map yearly
dynamics of aquatic vegetation including FAV and SAV. However,
given that more accurate multi-year cover data of FAV and SAV were
required to build model and estimate the contribution rate of water
quality change and human harvesting activity on the degradation of
FAV and SAV, in this study, we needed the phenological curves of FAV
and SAV to correct the areas mapped from the satellite images with
different acquisition dates from 1984 to 2016 to the relative areas on
the reference date (i.e. DOY=252, September 8). Fig. 9 shows the area
difference values (Δ Area) and relative errors (RE%) between the areas
mapped from the images from 1984 to 2016 and the corresponding
modified areas. We found that the error for SAV was greater than that
for FAV, and the cover areas in most years mapped from the satellite
data were underestimated for SAV and overestimated for FAV com-
pared with the cover area of the reference date due to different image
acquisition dates. Moreover, the further away from the reference date,
the greater the error, e.g., the largest error was more than 45 % for SAV
on June 26, 1987. Our study also indicated that although there were
errors when using images with different acquisition dates to monitor
yearly dynamics, the general change trends and patterns of FAV and
SAV mapped from the satellite images were consistent with those after
modification (Fig. 6). However, in this study, since we intended to build
the accurate models for predicating the areas of FAV and SAV and
further quantify the impact of WQ change and water eutrophication on
their degradations, it was critical to eliminate the errors as much as
possible and correct the area mapped from the images.

Table 2
Correlations between WQ variables and the cover areas of FAV and SAV.

FAV (n=18) SAV (n=18)

R p-value R p-value

DO −0.136 0.590 −0.233 0.352
PH −0.442 0.063 −0.463 0.053
TSM −0.252 0.313 −0.096 0.706
NH3-N −0.494* 0.037 −0.460* 0.054
BOD −0.445 0.064 −0.539* 0.021
COD −0.197 0.434 −0.458* 0.056
TN −0.732** < 0.001 −0.810** < 0.001
TP −0.604** 0.008 −0.619** 0.006
Chla −0.500* 0.043 −0.599* 0.009
WL −0.880** < 0.001 −0.808** < 0.001
SDD 0.730** < 0.001 0.871** < 0.001
SDD/WL 0.821** < 0.001 0.934** < 0.001

Note: ** statistically significant at α= 0.01; * statistically significant at
α =0.05.

Fig. 8. Scattering plots between cover areas predicted by models and modified monitoring areas mapped from the satellite images for FAV (left) and SAV (right).

J. Luo, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102038

9



5.2. Driving factors of changes in FAV and SAV

The change processes for aquatic vegetation are highly complex.
Previous studies explored the influence factors and habitat require-
ments for aquatic vegetation by field observations, experiments and
mechanism algorithms, and suggested that the germination, growth and
death of aquatic vegetation are influenced by too many habitat factors,
such as WQ, water velocity, water temperature, light regime and phy-
sical-chemical factors, human activities and so on (Koch, 2001; Kemp
et al., 2004). Generally, the driving factors can be summarized as water
quality parameters, meteorological factors and human interventions
(Koch, 2001; Kemp et al., 2004; Körner, 2015; Phillips et al., 2016). In
this study, we focused on their influences on FAV and SAV covers in our
study area.

First, in Taihu Lake, existing studies exploring the relationships
between WQ parameters and aquatic vegetation appearance frequency
suggested that nutrient concentration and WL had a significantly ne-
gative correlation with aquatic vegetation appearance frequency, while
SDD showed a significantly positive correlation (Zhang et al., 2016a;
Wang et al., 2019). Our results about both FAV and SAV cover dy-
namics associated with WQ parameters’ change confirmed the findings.
Further, we also found that SDD/WL had the highest correlation with
both SAV and FAV covers with correlation coefficients R=0.923 and
0.850, respectively, which supported a conclusion reported in the
previous studies that underwater light intensity was the most important
controlling factor for aquatic vegetation (Schelske et al., 2010; Zhang
et al., 2016a). Meanwhile, our finding also indicated that water eu-
trophication was the major driving factor of the loss of SAV cover from
2012 to 2016.

Second, we conducted a correlation analysis between FAV and SAV
covers and four regular meteorological factor including annual average
wind speed, air temperature, precipitation and sunshine duration.
Table 4 shows the correlations between meteorological factors and the
total cover areas of FAV and SAV in study area. The results indicated
that annual average wind speed had a negative correlation with FAV
and SAV covers, while air temperature showed a positive correlation

with them. There was a negative correlation between annual average
precipitation and SAV covers. The conclusions were consistent with the
findings of the previous studies. For example, Carr et al. (1997) in-
dicated that water temperature is a prerequisite for germination and
growth of aquatic vegetation, and a high temperature can induce a high
biomass and coverage. And Wang et al. (2019) suggested that the inter-
month cover trend had a significant positive correlation with monthly
average temperature. In addition, there were a few studies reported on
the relationship between wind speed and aquatic vegetation cover, but
it was well documented that waves had a significant negative impact on
seagrass (e.g., Koch, 2001; Madsen et al., 2001). This is because a high
wind speed can induce a high wave and thus make more sediments
suspended (Carper and Bachmann, 1984; Hwang et al., 1998; Luettich
et al., 1990; Lawson et al., 2007), which is not unfavorable of aquatic
vegetation growth, especially for SAV (Table 5).

However, it should be noted that the meteorological factors with p-
value< 0.01 were not introduced into the predicted models in this
study. This is because the meteorological factor data were collected
from only one meteorological station (i.e., Dongshan Station) instead of
detailed data collected from regions A, B and C, respectively. Besides,
WQ data in the study area were observed regularly only from 2005.
Therefore, it was difficult to combine meteorological data with WQ data
in spatial and time for building prediction models. In fact, wind speed
was decreasing and air temperature was increasing from 2012 to 2016
(Fig. 10), which was beneficial for SAV and FAV growth and expansion
instead of decreasing. Therefore, in fact, without the meteorological
factors included in the models, the current contribution rates of the
harvesting activity and water eutrophication to the degradations of FAV
and SAV might be underestimated.

Finally, intensified human activities, such as land reclamation,
aquaculture, damming, overfishing and harvesting, could also be an
important driving factor of changes in aquatic vegetation (Sandjensen
et al., 2000; Körner, 2015; Phillips et al., 2016). Our study also con-
firmed that the harvesting activity could be one of driving forces of the
decrease of aquatic vegetation.

Table 3
MA, PA, x, n, h, x%, n% and h% of FAV in the study area (i.e. region A+B+C) from 2012 to 2016.

Year MA (km2) PA (km2) x (km2) n (km2) h (km2) x% n% h%

2011 163.15 129.95 / / / / / /
2012 141.39 134.58 −21.76 4.63 −26.39 16.38 −3.48 19.86
2013 129.20 127.89 −12.19 −6.69 −5.50 9.17 5.04 4.14
2014 110.11 140.36 −19.09 12.47 −31.56 14.37 −9.39 23.76
2015 54.06 113.08 −56.05 −27.28 −28.77 42.19 20.53 21.66
2016 30.30 99.94 −23.76 −13.14 −10.62 17.88 9.89 7.99
Total −132.85 −30.01 −102.84 100.00 22.59 77.41

Note: MA: monitoring area of FAV mapped from the satellite image; PA: predicted area of FAV by GLM model. x: lost area of FAV in year i compared with the year i-1
(= MAi − MAi-1); n: the lost area of FAV induced by WQ parameter change in year i compared with the year i-1 (= PAi − PAi-1); h: the lost area of FAV induced by
harvesting activity in the year i compared with year i-1 (= xi − ni); x%: the rate of the decreased area of FAV in the year i compared with the year i-1 to the total
decreased area of FAV from 2012 to 2016; n% and h% are the contribution rates of WQ parameters and harvesting activity to the total lost area of FAV from 2012 to
2016. A positive contribution rate represents that the change of WQ parameters or the harvesting activity result in FAV cover decreasing, otherwise, a negative rate in
FAV cover increasing.

Table 4
MA, PA, x, n, h, x %, n% and h% of SAV in the all study area (i.e., regions A+B+C) from 2012 to 2016. See Table 3 for detailed explanations for terms:MA, PA, x, n,
h, x %, n% and h%.

Year MA (km2) PA (km2) x (km2) n (km2) h (km2) x% n% h%

2011 187.93 158.02
2012 159.49 153.49 −28.43 −4.54 −23.90 32.31 5.15 27.16
2013 154.96 116.25 −4.53 −37.24 32.70 5.15 42.32 −37.17
2014 132.32 119.88 −22.64 3.63 −26.27 25.72 −4.13 29.85
2015 109.43 94.30 −22.89 −25.58 2.68 26.02 29.07 −3.05
2016 99.93 81.62 −9.50 −12.68 3.18 10.79 14.41 −3.61
Total −88.00 −76.40 −11.60 100.00 86.82 13.18
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5.3. Method for assessing impact factors

In Taihu Lake, aquatic vegetation cover had reduced dramatically,
especially since 2012 (Fig.5a), and this issue has roused widely atten-
tions by the public and governments. There was a controversy about the
driving factors. Some reports indicated that the harvesting activity
appealed by environmental departments resulted in the consequence,
while others suggested that water eutrophication should have a main
responsibility for it. However, based on our knowledge, there are no
reports on quantitatively assessing the influences of human activities
and water eutrophication on aquatic vegetation in Taihu Lake.

It is really difficult to calculate the contribution rates of human
activities and water eutrophication separately using ordinary methods,
such as discriminative component analysis (DCA), principal component
analysis (PCA), because of the lack of actual and detailed harvesting

data about aquatic vegetation. In this study, we proposed a feasible
strategy to calculate the influences of human activities and water eu-
trophication on the degradation of FAV and SAV covers from 2012 to
2016. We divided the dynamics process of aquatic vegetation into the
first phase without harvesting activity and the second one im-
plementing the activity. We used TN and SDD/WL data acquired at the
first phase to establish predicted models of FAV and SAV covers. By
comparing with predicted areas from models and monitoring areas
mapped from the satellite images, we could calculate the lost areas of
FAV and SAV induced by water eutrophication and harvesting activity
at the second phase. The method was used to assess and calculate the
influence of a human importance project on regional ecology and cli-
mate change (Dai et al., 2015), and it could be used in our study due to
similar situation and process. Although it was difficult to validate the
results because actual lost areas induces by harvesting activity and
water eutrophication could not be measured, our finding that the
highest loss area induced by the harvesting activity was in 2014, which
was consistent with the report that the amounts of aquatic vegetation
harvested by mechanical harvesting ships reached the highest amount
with 28 tons in 2014.

5.4. Aquatic vegetation management implications

Requirements for the growth of FAV and SAV are almost similar,
such as light available, heat and nutrition, so FAV and SAV are defi-
nitely competitors if they grow in same region or environment. When
FAV expands to some amount, SAV cover will decrease and lake ecology
might go detrimental, because:1) floating-leaved vegetation floats on
the water surface and has dense foliage that can block the transmission
of light into the underwater, which will impact SAV photosynthesis,

Fig. 9. ΔArea (a) and RE% (b) of FAV and SAV from 1984 to
2016. ΔArea is the difference value between the area directly
mapped from the satellite images and corresponding modified
area (i.e., the cover area mapped from satellite image minus
the corresponding modified area); RE%, namely relative error,
is the ratio of Δ Area to the corresponding modified area.

Table 5
Correlations between meteorological factors and FAV and SAV covers from
1984 to 2011.

FAV (n=27) SAV (n=27)

R p-value R p-value

Annual average wind speed −0.685** < 0.001 −0.464* 0.015
Annual average air temperature 0.737** < 0.001 0.715** 0.001
Annual average precipitation −0.132 0.072 −0.548** 0.003
Annual average sunshine

duration
0.147 0.465 −0.285 0.150

Note: ** statistically significant at α= 0.01; * statistically significant at
α =0.05.

Fig. 10. Change trends of annual average wind speed and air temperature from 1984 to 2016.
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and thus lead to the disappearance or even extinction of SAV (Hofstra
et al., 1999); 2) excessive amounts of floating-leaved plants that die and
decay quickly after reaching the maximum biomass can release pollu-
tants and nutrient elements into the lake water (Vereecken et al., 2006),
which may result in secondary pollution and further eutrophication; 3)
after dying rapidly, floating-leaved vegetation will seriously affect the
lake landscape and fishery activities. Therefore, moderate harvesting
activity of aquatic vegetation, especially FAV, could improve the un-
derwater light availability and be beneficial to lake ecology (Hofstra
et al., 1999). In our study, this can explain why the harvesting activity
induced FAV decrease and SAV increase, in some years (Tables 3 and
4). Therefore, moderate harvesting activity for FAV can be beneficial to
retaining health state of aquatic ecosystem, while a blind implementing
harvesting activity without consideration of ecosystem effect, might
induce a rapid degradation of aquatic vegetation. Obviously, human
intervention activities such as harvesting activity, especially in eu-
trophic shallow lakes, should be guided correctly. However, in this
study, we cannot answer what is a moderate due to the limited detailed
data. In the future, under a support of sufficient field data, the me-
chanism models of aquatic ecology should be developed to simulate and
estimate the optimal FAV cover and address the issue above.

One of the most serious problems caused by eutrophication of
shallow lakes is the disappearance of submerged macrophytes and
switching to a turbid, phytoplankton-dominated state (Körner, 2002;
Hilt et al., 2006; Phillips et al., 2016). The Taihu, a typical eu-
trophication lake, its water itself is detrimental to preserving aquatic
vegetation cover and diversity, and a blind harvesting activity may
further aggravate the degradation of aquatic vegetation. In turn,
aquatic vegetation degradation and disappearance can further exacer-
bate water eutrophication in the macrophyte-dominated zone. In fact, it
was already confirmed. As shown in Fig. 11, over recent two years,
satellite images showed that algae blooms were found in the study area
where there were never algae blooms found before 2015 (Fig. 11). The
deteriorating water environment, may finally threaten the safety of the
primary drinking-water source for approximately 40 million people.

According to our study, the driving factors resulting in the de-
gradations of FAV and SAV were different. The human harvesting ac-
tivity should take a major responsibility for the degradation of FAV,
while the degradation of SAV was due to the increased lake eu-
trophication and degraded underwater light environment. Therefore,
retaining and restoring aquatic vegetation will be really a difficult and
long-term task, and more efforts should be made. Based on our analysis
results, the following suggestions can be considered for sustainable
management in Taihu Lake: (i) at present, any harvesting activities
should be immediately prohibited to maintain the existing aquatic ve-
getation cover; (ii) exogenous nutrient control and watershed man-
agement should be further strengthened to improve water quality,
especially increasing the SDD and lowing TN.

6. Conclusions

In this study, with a long time series of satellite data and a 12-year
field observation (2005–2016) of WQ parameters, we mapped yearly
dynamics of FAV and SAV covers, analyzed their correlations with re-
levant factors, established predictive models for FAV and SAV covers,
and finally quantitatively assessed the influences of water eutrophica-
tion and human harvesting activity on the degradations of SAV and SAV
covers, respectively, from 2012 to 2016. Several conclusions derived
from the analysis results may include as follows:

i) FAV cover experienced a statistically significant increase from 1984
to 2011and a significant decrease in 2011–2016, while SAV cover
exhibited statistically significant increase before 2002 and then
obviously decrease.

ii) There were significantly negative correlations of WL and TN with
FAV and SAV covers, while SDD and SDD/WL had significant po-
sitive correlations with FAV and SAV covers.

iii) Human harvesting activities had made a significant contribution to
the loss of FAV cover; while the degradation of SAV was due to the
increasing lake eutrophication and deteriorating underwater light
environment.

In addition, harvesting activity should be correctly guided in eu-
trophic lake, and a blind harvesting activity might accelerate eu-
trophication. However, our current experimental results cannot answer
whether, when and how much aquatic vegetation, especially FAV,
should be harvested yet. Therefore, our on-going work will focus on
addressing those questions with supports of sufficient field data and
mechanism modeling in shallow lakes.
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