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A B S T R A C T

Forest plantations are an important source of terrestrial carbon sequestration. The forest of Robinia pseudoacacia
in the Yellow River Delta (YRD) is the largest artificial ecological protection forest in China. However, more than
half of the forest has appeared different degrees of dieback and even death since the 1990s. Timely and accurate
estimation of the forest aboveground biomass (AGB) is a basis for studying the carbon cycle of forests. Light
Detecting and Ranging (LiDAR) has been proved to be one of the most powerful methods for forest biomass
estimation. However, because of an irregular and overlapping shape of the broadleaved forest canopy in a
growing season, it is difficult to segment individual trees and estimate the tree biomass from airborne LiDAR
data. In this study, a new method was proposed to solve this problem of individual tree detection in the Robinia
pseudoacacia forest based on a combination of the Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-
LiDAR) with the Backpack-LiDAR. The proposed method mainly consists of following steps: (i) at a plot level,
trees in the UAV-LiDAR data were detected by seed points obtained by an individual tree segmentation (ITS)
method from the Backpack-LiDAR data; (ii) height and diameter at breast height (DBH) of an individual tree
would be extracted from UAV and Backpack LiDAR data, respectively; (iii) the individual tree AGB would be
calculated through an allometric equation and the forest AGB at the plot level was accumulated; and (iv) the
plot-level forest AGB was taken as a dependent variable, and various metrics extracted from UAV-LiDAR point
cloud data as independent variables to estimate forest AGB distribution in the study area by using both multiple
linear regression (MLR) and random forest (RF) models. The results demonstrate that: (1) the seed points ex-
tracted from Backpack-LiDAR could significantly improve the overall accuracy of individual tree detection (F =
0.99), and thus increase the forest AGB estimation accuracy; (2) compared with MLR model, the RF model led to
a higher estimation accuracy (p<0.05); and (3) LiDAR intensity information selected by both MLR and RF
models and laser penetration rate (LP) played an important role in estimating healthy forest AGB.

1. Introduction

Artificial afforestation is considered to be one of the most ecologi-
cally effective ways to increase carbon sequestration by absorbing CO2

and mitigating climate warming (Piao et al., 2009). China has carried
out a wide range of ecological projects such as forest protection and
afforestation. The artificial forest area in China accounts for 73 % of the
global artificial forest area, which has become an important means of
increasing China's terrestrial carbon sequestration (Zhou et al., 2012).
The Yellow River Delta (YRD) has the largest area of artificial Robinia
pseudoacacia forest in China. Due to low soil fertility and widespread
soil salinization, there are no natural forests in the YRD. The Robinia

pseudoacacia forest, with characteristics of strong adaptability, drought
and certain salt tolerance, has been widely planted since the 1970s.
However, nearly 60 % of Robinia pseudoacacia forests has suffered from
different degrees of dieback and even death (Wang et al., 2015a).
Timely and accurate estimation of Robinia pseudoacacia forest above
ground biomass (AGB) can provide a scientific basis for assessing forest
plantation carbon sinks in the YRD.

Measuring forest biomass through field survey at a large spatial
scale is time consuming and cost-expensive, and thus is difficult to
popularize (Hermosilla et al., 2014; Van Leeuwen and Nieuwenhuis,
2010). Remote sensing technology, such as Light Detection and Ranging
(LiDAR), has proved its potential of providing detailed characteristics of
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forest canopy structure in three-dimensions (Lefsky et al., 2002; Næsset
and Gobakken, 2008). The forest height with sub-meter vertical preci-
sion and horizontal distribution information can be extracted from
LiDAR data, which has significant advantages in forest AGB estimation
(e.g., Cao et al., 2016; Hudak et al., 2012).

The individual tree segmentation (ITS) is of great significance in
forest AGB estimation from LiDAR data. Once trees are accurately
segmented, the tree structure parameters, such as tree height and crown
diameter, can be directly extracted at a high precision (Solberg et al.,
2006). Then forest AGB can be accurately estimated using an allometric
equation (Basuki et al., 2009; Wang, 2006). The LiDAR data derived ITS
uses either point cloud data directly or canopy height model (CHM)
derived from the point cloud data (Liu et al., 2019; Zhen et al., 2016).
CHM-based segmentation uses the first echo of laser point cloud only
and is impractical for the detection of understory trees. Therefore, the
point-based segmentation has been rapidly developed in recent years.
For examples, Reitberger et al. (2009) used the random sample con-
sensus algorithm to detect individual tree trunks with an accuracy of
near 70 %. According to characteristics of the crown spacing of con-
iferous trees being larger than the understory, Li et al. (2012) took the
top laser point cloud from a tree crown as seed points to separate in-
dividual trees based on the top-to-down regional growth method,
achieving a total accuracy of 90 %. However, when this method was
applied to broadleaved forests, the accuracy was reduced. Since the
broadleaved forest canopy is irregular in shape with crossed and
overlapped branches and leaves, it is difficult to determine seed points
from the crown top with point cloud data. Lu et al. (2014) used the
intensity information from LiDAR point cloud data acquired in a de-
ciduous season and extracted a topological relationship between a trunk
and the point cloud to segment the trunk, and they achieved a total
accuracy of 90 %. However, this method can only be applied in the
deciduous season. This is because, in a growing season, the leaf in-
tensity value is also very large, which interferes with an extraction
process of the trunk.

Regional AGB estimation based on LiDAR data is usually obtained
by establishing a model between characteristic variables extracted from
LiDAR sample data and forest inventory attributes. The height and
density variables extracted from LiDAR point cloud data have been
proved to be strongly correlated with forest biomass (Hall et al., 2005;
Næsset and Gobakken, 2008). However, only using LiDAR metrics of
the forest height and density information is insufficient to describe an
overall canopy layer and heterogeneity vertically, and thus Zhang et al.
(2017) added a canopy height distribution (Weishampel et al., 2007;
Zhao et al., 2009) and branch and leaf profile (Lovell et al., 2003),
which describe characteristic variables of the canopy profile, and they
used a Weibull function to fit parameters to infer the broadleaved forest
AGB resulting in a good result (R2 = 0.66, RMSE = 26.67 Mg/ha).
Although the first echo of laser point cloud provides information on the
upper canopy structure, the last echo distribution describes the max-
imum penetrating laser signal in the vegetation layer, which can dis-
tinguish forest types with different degrees of degradation and improve
the estimation accuracy of biomass (Ioki et al., 2014). Since single-
spectrum LiDAR sensors typically use 1064 nm near-infrared wave-
length, which is well-suited for identifying changes in plant reflectivity,
the healthy trees usually have strong backscattering (Lorenzen and
Jensen, 1988). Yoga et al. (2017) used remote sensing images and in-
tensity information extracted from LiDAR to eliminate dead trees
identified by a random forest model classification and got an improved
estimation accuracy of forest stocks. Therefore, the height metrics,
density metrics, profile characteristic metrics, last echo transmittance,
and intensity information extracted from LiDAR data all have been
proved to be useful characteristic variables for forest AGB estimation.

Unmanned Aerial Vehicle (UAV) systems represent a low-cost, agile,
and autonomous opportunity, and thus make them an alternative
platform to satellites and aircrafts for forest inventory (Dandois et al.,
2015; Sankey et al., 2017). It has been proved that UAV-LiDAR data

could be used to extract tree height at both individual trees and forest
stand levels with a higher accuracy (e.g., Brede et al., 2017; Liu et al.,
2018). However, UAV-LiDAR systems may be problematic in estimating
individual tree diameter at breast height (DBH) due to attenuation of
the laser beam when interacting with dense overstory, and conse-
quently the estimation accuracy will more depend on the stem diameter
(Wieser et al., 2017). Given the fact that a Backpack-LiDAR system
working in a “down-to-top” view can provide an accurate estimation of
DBH and tree location through an individual tree segmentation, it may
be used as a complement in forest inventory applications (Polewski
et al., 2019). Therefore, a combination of understory with overstory
information at a single tree level may solve the problem of under-es-
timation or over-estimation of the broadleaved forest biomass caused
by the low ITS accuracy. Thus, in this study, firstly, a new method was
proposed to extract the tree trunk location from Backpack-LiDAR as
seed points to assist tree segmentation from UAV-LiDAR data. Secondly,
LiDAR variables being important to AGB estimation of Robinia pseu-
doacacia forest at different health levels were identified. Finally, the
performance of multiple linear regression (MLR) and random forest
(RF) models in estimating forest AGB were evaluated. In addition, the
modeling results were analyzed and compared, and relevant issues were
discussed as well.

2. Study area and data sets

2.1. Study area

The YRD is situated in the estuary of the Yellow River in Dongying
City, Shandong Province, China (Fig. 1a). It has a warm temperate,
continental monsoon climate with an annual mean temperature from
11.7–12.6 °C and annual mean precipitation from 530 to 630 mm. The
soil salinity has a negative effect on trees growing properly (Zhang,
2013). Robinia pseudoacacia is the main tree species suitable for affor-
estation and has been widely planted in this study area since the 1970s
and formed the largest artificial forest in China (Wang et al., 2018).
There are four forest areas in the YRD (Fig. 1b) with a total 27.94 km2

(Wang et al., 2015a). In this study, Gudao forest was selected as our
research area (Fig. 1c).

2.2. Data sets

2.2.1. UAV-LiDAR data
In June 2017, the GreenValley (GreenValley, International, USA,

2019) LiDAR System was implemented to collect LiDAR data. An eight-
rotor UAV was used as the platform with a flying height of 120 m above
the ground at a speed of 4.8 m·s−1 and a flight radius of 2 km. A Ve-
lodyne Puck VLP-16 dual-return laser scanner, an IMU (Novate), and a
dual frequency GPS (Novatel) are mounted on the UAV platform. The
LiDAR system was configured to emit laser pulses in the near-infrared
band with a scanning angle of± 30° from nadir; the laser divergence is
0.5 mrad; the spot diameter is about 50 mm, and a laser pulse has a
maximum of four echoes with an average point density of 70 m-2 with a
ranging accuracy of 10 mm. The WGS84 coordinate system and UTM
projection were adopted. In general, an intensity normalization can
improve the estimation accuracy of forest attributes, but this im-
provement is very minor, so we did not carry out intensity normal-
ization (You et al., 2017). Table 1 shows a summary of laser return
density and intensity.

2.2.2. Backpack-LiDAR data
The GreenValley Backpack LiDAR System, consisting of a LiDAR

scanner (Velodyne Puck VLP-16), a Position Orientation System (POS)
and a handheld touch pad, was applied in this study. In Gudao forest,
eight 30 m × 30 m sample plots (Fig. 1) with three health levels (i.e.,
healthy, medium dieback, severe dieback) (Wang et al., 2015b) were
scanned by the Backpack LiDAR System. We designed an “S” shape strip
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path and placed an artificial marker with known coordinates on the
center of a sampling plot (Fig. 2). The laser scanning distance of
Backpack LiDAR is 100 m; the scanning frequency is of 300,000 pts·s−1;
laser wavelength is 903 nm; the average point density is 7135 m-2; the
horizontal field of view angle is 360°, and the vertical field of view
angle is 15°. The WGS84 coordinate system and UTM projection were
also adopted for the data.

2.2.3. Field data
As our previous study (Wang et al., 2015a), in each 30 m × 30 m

plot, five 10 m × 10 m subplots were deployed at the four corners and
one at the center of each plot. In each subplot, one standard tree was
selected. The geographic coordinates of each plot and one standard tree
in subplot were recorded by Tianbao GEOXT6000 GPS localizer in June
2017. The tree height and DBH for 40 standard trees were measured
using a laser altimeter and a tape measure, respectively.

3. Methods

Fig. 3 shows the overview of the workflow for estimating AGB,
mainly divided into two parts: (1) tree segmentation and observed AGB
calculation, and (2) UAV-LiDAR based variables extraction and esti-
mation models comparison. We firstly matched and normalized UAV
and Backpack LiDAR point clouds. Secondly, the comparative shortest-

Fig. 1. Study site and the distribution of sample plots. (a) The location of the Yellow River Delta in Dongying City. (b) The distribution of four Robinia pseudoacacia
forests using Landsat 8 OLI image acquired on June 11, 2013 as a background. (c) The sampling plots located in three different health levels in Gudao forest on an
IKONOS image acquired on June 9, 2013 as a background (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).

Table 1
A summary of laser return density and intensity for the study site.

LiDAR returns Range Mean SD

All return height (m) 0-16.5 4.89 4.63
All return density (m−2) 46.2-123.5 70.45 30.2
Last return density (m−2) 0.02-0.8 0.23 0.29
All return intensity 0-255 60.7 74.2

Fig. 2. The trajectory of Backpack-LiDAR point clouds acquisition within one sampling plot (30 m × 30 m).
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path algorithm (CSP) (Tao et al., 2015) was used to segment the
Backpack-LiDAR point clouds to obtain seed points and single-tree
DBH. Using these seed points, individual trees were detected and tree
height was obtained from UAV-LiDAR point clouds, and then the ob-
served AGB at eight plots were calculated and accumulated. In the
second part, after LiDAR metrics were extracted, the forest AGB pre-
dicted results by MLR and RF models were compared. More details
about this approach are given below.

3.1. Matching between Backpack-LiDAR and UAV-LiDAR

Since the derived Backpack-LiDAR point clouds were susceptibility
to scale variance and planimetric or vertical deviations (Fig. 4(a)), we
firstly generated a digital terrain model (DTM) by using an improved
progressive triangulated irregular network densification filtering algo-
rithm (Zhao et al., 2016), and then we interpolated the remaining
ground points by using the Inverse Distance Weighted algorithm. The
point cloud height was normalized by subtracting the ground surface
height. After normalization, the ground points of Backpack-LiDAR and
UAV-LiDAR data were located in the same plane (Fig. 4(b)). Then we
used a method suggested by Polewski et al. (2019) to perform two data
matching. At least three pairs of homonymous points were manually
selected within the range of the Backpack-LiDAR (Fig. 4(c)) and UAV-
LiDAR (Fig. 4(d)), respectively. Finally, the data after matching were
normalized again to eliminate the impact caused by z-value difference
in point clouds matching. Table 2 shows the registration accuracy of the
two types of point clouds data.

3.2. Tree segmentation of LiDAR data

3.2.1. Tree segmentation of Backpack-LiDAR
We applied the GreenValley LiDAR360 commercial software

(LiDAR360, 2018) to preprocess the UAV and Backpack acquired data.
The algorithm of Density-based spatial clustering of applications with
noise (Wu et al., 2013) was used to segment individual tree trunks. A
slice with vertical length of 10 cm at 1.3 m height was extracted and

used as input for the CSP algorithm (Tao et al., 2015) and the DBH was
then calculated (Fig. 5). After removing the noise data, such as field
crew, fallen woods and the reference pole in the LiDAR point clouds,
the final seed point files containing the X, Y coordinates and DBH va-
lues for each tree were acquired and were used to segment individual
trees from the UAV-LiDAR point clouds.

3.2.2. Tree segmentation of UAV-LiDAR
After denoised, the UAV-LiDAR point clouds were normalized again

using the same method in section 3.1. A point cloud segmentation (PCS)
method (Li et al., 2012) was applied to segment tree crowns. However,
in this study, instead of taking the local maximum point of the canopy
as the tree apex (seed point) for canopy extraction, the X and Y co-
ordinates of a tree trunk extracted by Backpack-LiDAR were regarded as
the seed point. Due to the high data quality of the Backpack-LiDAR, we
set the matched and normalized Backpack-LiDAR data as a reference for
the accuracy assessment of tree segmentation. Three statistical para-
meters (Goutte and Gaussier, 2005), which are the detection rate of
trees, r (“recall”), the detection accuracy of detected trees, p (“preci-
sion”) and the overall accuracy, F (F-score), were used to evaluate the
performance of ITS algorithm. The three parameters were defined as
follows:

=
+

r TP
TP FN

=
+

p TP
TP FP (2)

= ×
×

+
F r P

r P
2

(3)

where, TP is the number of detected trees in a plot; FN is the number of
trees omitted by individual tree segmentation and FP is the number of
trees falsely detected in the plot. Meanwhile, the DBH and height values
for each standard tree at the subplot extracted by Backpack-LiDAR and
UAV-LiDAR, respectively, were evaluated with their corresponding
field measurements.

Fig. 3. The overview of the workflow for estimating forest aboveground biomass using LiDAR data.
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3.3. Biomass calculation of Robinia pseudoacacia

The LiDAR data corresponding to the 8 sample plots of 30 m× 30 m
with different health levels were cut, and each plot was cut into 9
subplots of 10 m × 10 m, with a total of 72 subplots (Fig. 6). At each
subplot, the tree height and DBH extracted by the UAV-LiDAR and
Backpack-LiDAR were counted, and the allometric equation of Robinia
pseudoacacia forest published by the state forestry administration of
China (see formulas (4 − 6)) was used to calculate the biomass of trunk
(WS), branch (WB) and leaf (WL), and then forest AGB for all subplots
was summarized in Table 3.

= ×W D H0.05527 ( )s
2 0.8576 (4)

= ×W D H0.02425 ( )B
2 0.7908 (5)

= ×W D H0.0545 ( )L
2 0.4574 (6)

where D is the DBH (cm) and H is the tree height (m).

Fig. 4. Backpack-LiDAR and UAV-LiDAR matching schematic diagram. (a) Overlay maps of original Backpack-LiDAR (black) and UAV-LiDAR (chromatic) point
clouds, (b) Overlay maps of normalized Backpack-LiDAR and UAV-LiDAR point clouds, (c) and (d) marking numbers for the same tree point cloud in the UAV-LiDAR
and Backpack-LiDAR point clouds, respectively.

Table 2
Registration accuracy at eight plots (H: healthy plot, M: medium dieback plot,
S: severe dieback plot).

Plot ID Minimum Error (m) Maximum Error (m) Root Mean Square (m)

M1 0.1293 0.4527 0.3253
S2 0.0757 0.6596 0.4125
M3 0.1174 0.5330 0.3855
S4 0.4093 0.6963 0.5392
H5 0.2285 0.3445 0.2688
H6 0.2050 0.1099 0.2806
H7 0.2293 0.4527 0.3620
M8 0.3868 0.5295 0.4319

Fig. 5. The demonstrated result of a trunk slice at 1.3 m and the calculated
DBH.

Fig. 6. The schematic diagram for one plot segmentation.
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3.4. UAV-LiDAR metrics

Per referring to previous studies (Lim et al., 2003; Næsset, 2002;
Næsset and Gobakken, 2008; Ioki et al., 2014; Thomas et al., 2006),
metrics extracted from normalized UAV-LiDAR point clouds data in this
study include height-related metrics, density-related metrics, intensity-
related metrics extracted from all echoes, and LP extracted from the last
echo (Table 4). The height-related metrics describe the height percen-
tiles associated with the point clouds height (H1, H5, H25, H50, H75, H95,
H99), such as the height mean (Hmean), the height coefficient of variation
(Hcv), and the height variance (Hvariance), etc. The density-related me-
trics describe the proportion of the canopy return density, which is the
ratio of the number of point clouds above the percentile to the total
number of points. The intensity-related metrics are similar to the
height-related metrics, and the height value of the point is replaced
with the intensity value of the point for calculation. As a basic para-
meter to characterize vegetation canopy structure, leaf area index (LAI)
is defined as half of the surface area of all leaves per a unit surface area
(Chen and Black, 1991). Since the dieback for Robinia pseudoacacia
trees starts from the top crown, the LAI for healthy and dieback forest is
different. The LAI metric is derived based on beer-lambert law
(Richardson et al., 2009):

= −
×

LAI
ang GF

k
cos( ) In( )

(7)

=
∑ =ang

angle
n

i
n

i1
(8)

=GF
n

n
ground

(9)

where ang is the average scan angle; GF is the gap fraction; k is the
extinction coefficient. In this study, we assumed that the distribution of
leaf angle is spherical and k=0.5 (Richardson et al., 2009). anglei is the

scan angle of the ith LiDAR point which is recorded in the UAV las file;
nground is the number of ground points and n is the number of LiDAR
points. A total of 53 metrics (Table 4) extracted from UAV-LiDAR by
using LiDAR360 software were prepared for AGB prediction in the
Gudao forest by MLR and RF models.

3.5. Model development

Different modeling methods have different effects on the quality of
results (Straub et al., 2010). In this study, the parametric and non-
parametric methods were compared. Both MLR and RF regression
models were used to estimate the forest AGB for each subplot and run
with the measured forest AGB and the LiDAR data derived metrics as
the dependent and independent variables, respectively. MLR is a very
simple parametric method that has the ability to deal with de-
pendencies on or correlations with the predictors and it has been fre-
quently used in AGB estimation (e.g., Fassnacht et al., 2014; Morin
et al., 2019). Previous studies have used a logarithmic transformation of
dependent and independent variables to improve the fitting ability of
the model (Næsset et al., 2005). Because there were negative numbers
in our LiDAR metrics, the logarithmic transformation is not carried out
in order to avoid information loss. Before adopting the MLR model,
WEKA software (Hall et al., 2009) was used to select optimal LiDAR
derived metrics. The CfsSubsetEval evaluator in WEKA evaluates the
predictive ability of each attribute (i.e., metric in this study) and its
mutual redundancy and tends to select attributes that are highly cor-
related with the target attribute (i.e. dependent variable in this study)
but less correlated with each other (Hall, 1998). We employed a for-
ward search from the empty attribute set to filter the attribute subset.
After selecting the optimal candidate metrics, MLR was performed to
obtain the optimal AGB model. A leave-one-out cross-validation
(LOOCV) method (Bengio and Grandvalet, 2004) that each of these
samples is estimated using all the other samples was used for assessing

Table 3
A summary of field-estimated forest characteristics in 72 subplots with three different health levels.

Variables Healthy (n = 27) Medium Dieback (n = 27) Severe Dieback (n = 18)

Range Mean SD Range Mean SD Range Mean SD

H (m) 3.45-14.26 9.11 1.69 4.4-16.3 10.5 2.58 4.9-15.4 10.9 2.49
DBH (cm) 5.2-33.4 13.26 4.37 5.2-34.5 16.84 5.42 6.7-29.9 16.6 4.46
AGB (Mg/ha) 15.1-73.42 44.35 13.91 10.46-90.8 43.77 21.09 44.09-104.8 71.77 15.85

Table 4
The summary of LiDAR metrics.

LiDAR metrics Metrics Description

Height-related metrics Percentile height (H1, H5, H10, H20, H25, H30, H40, H50,
H60, H70, H75, H80, H90, H95, H99)

The percentiles of the height distributions (1th, 5th, 10th, 20th, 25th, 30th, 40th, 50th,
60th, 70th, 75th, 80th, 90th, 95th, 99th) of all points above 2 m

MADmedian (HMAD) Median absolute deviation from the median
Median of heights (Hmedian) The median of the heights above 2 m of all points
Mean height (Hmean) The mean height above 2 m of all points
The coefficient of variation of height (Hcv) The coefficient of variation of heights of all points above 2 m
Kurtosis of heights (Hkurtosis) The kurtosis of the heights of all points above 2 m
Interquartile distance of height (HIQ) The Interquartile distance of height of all points above 2 m
Variance of heights (Hvariance) The variance of the heights of all points above 2 m
Absolute average deviation (HAAD) The absolute average deviation of the heights of all points above 2 m
Standard deviation (Hstd) The standard deviation of heights of all points above 2 m
Maximum heights (Hmax) The maximum height of all points above 2 m
Skewness of heights (Hske) The skewness of the heights of all points above 2 m

Density-related metrics Canopy return density (D1, D2, D3, D4, D5, D6, D7, D8, D9) The proportion of points above the quantiles (10th, 20th, 30th, 40th, 50th, 60th, 70th,
80th, 90th) to total number of points

Canopy cover above 2 m (CC) Percentages of first returns above 2 m
Intensity-related metrics Intensity percentile (I1, I5, I10, I20, I25, I30, I40, I50, I60, I70,

I75 I80, I90, I95, I99)
The percentiles of the cumulative intensities distributions (1th, 5th,10th, 20th, 30th, 40th,
50th,60th, 70th, 80th, 90th, 95th, 99th)of all points above 2 m

Laser penetration rate LP Percentages of last returns above ground
Leaf area index LAI LAI is calculated based on equations (7) (8) and (9)
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the performance of the calibrated MLR model.
RF is a decision-tree based, distribution-free (non-parametric) clas-

sification algorithm that can avoid the over-fitting problem and it is
robust to outliers and noise (Breiman, 2001). For RF, two parameters,
ntree and mtry, need to be set. The ntree represents the total number of
trees running in the regression model, and mtry represents the number
of variables that can be split on each node of the tree (Mutanga et al.,
2012; Yu et al., 2011). In this study, in order to obtain better ntree and
mtry for predicting forest AGB at different health levels, we optimized
the two parameters based on the error distribution and interpretation
rate, and the ntree value of 1000 and mtry value of one third of pre-
dictive variables were acquired. The relative importance of each metric
was ranked by calculating an increase in the mean squared error of the
model after removing this variable. The accuracy assessment was car-
ried out also by using the LOOCV method.

The accuracy of the regression models was evaluated by determi-
nation coefficient (R2), root mean square error (RMSE) and relative root
mean square error (rRMSE) expressed as follows:

∑

∑
= −

−

−

=

=

R
x x

x x
1

( ˆ )

( ¯ )
i

n
i i

i

n
i i

2 1
2

1
2

(10)

∑= −
=

RMSE
n

x x1 ( ˆ )
i

n

i i
1

2

(11)

= ×rRMSE RMSE
x̄
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where xi is the measured value for plot i; x̂i is the estimated value for
plot i; xī is the observed mean value for subplot i; x ̄ is the observed
mean value for all plots; n is the number of subplots.

4. Results

4.1. Individual tree segmentation

At the eight Robinia pseudoacacia forests plots, the ITS method based
on the Backpack-LiDAR achieved a high accuracy (Table 5). The r value
ranged from 0.95 to 1 with a mean value of 0.97; the p value was be-
tween 0.79 and 0.91 with a mean value of 0.87; and the F value was
between 0.87 and 0.94 with a mean value of 0.92.

The UAV-LiDAR tree segmentation method using seed points de-
rived from Backpack-LiDAR also achieved a higher accuracy (Table 6).
The r value ranged between 0.97 and 1, and the mean value was 0.98;
the p value was 1; the F value ranged between 0.98 and 1, and the mean
value was 0.99.

4.2. Evaluation of DBH and H extracted from LiDAR

Fig. 7(a) shows the comparison between the measured DBHs of

standard trees in 40 subplots and the mean value of the DBH extracted
from Backpack-LiDAR in these subplots (R2 = 0.94, RMSE = 1.02 cm).
Fig. 7(b) shows the comparison between the measured heights of
standard trees in 40 subplots and the mean value of the tree height
extracted from UAV-LiDAR in these subplots based on seed points (R2

= 0.83, RMSE = 1.48 m). By comparing the measured values with the
tree DBH and height extracted from the LiDAR data, the credibility of
the abstracted DBH and height can be proved.

4.3. MLR method for biomass estimation

Table 7 presents the forest AGB estimation results by MLR models
and the LiDAR derived metrics selected by WEKA. The three MLR
models produced a moderate estimation accuracy with best R2 and
RMSE values at the medium dieback forest plots. In addition to the
selection of height-related metrics and density-related metrics, LP was
selected at both healthy and medium dieback plots, and LAI was se-
lected in severe dieback plots. Fig. 8 shows the cross-validation results
of the predicted AGB by the MLR models and field-estimated AGB in the
three health-level Robinia pseudoacacia forest.

4.4. RF method for biomass estimation

Fig. 9 shows the cross-validation results of field-estimated AGB and
the predicted AGB by RF models. Overall, the fitted models based on
the RF outperformed those on the MLR. The importance ranks of the
LiDAR derived metrics determined by the RF models (Fig. 10) indicate
that CC and LP are the most important LiDAR metrics in the AGB es-
timation model in the healthy forests. In the medium dieback forests,
the most important LiDAR metric also is CC, followed by H60 and H75.
In the severe dieback forests, the most important LiDAR metric is H99,
followed by D2.

5. Discussion

5.1. The comparison of segmentation accuracy

At each plot, we used the CSP algorithm (Tao et al., 2015) to seg-
ment individual trees with Backpack-LiDAR data (overall accuracy of
0.92) and obtained the DBH for an individual tree with a higher ac-
curacy (R2 = 0.94, RMSE = 1.02 cm for one standard tree in each
subplot). Because of the high density of the Backpack-LiDAR point
clouds, the non-tree point clouds such as the fallen trees, reference
poles and persons (Fig. 11) could be manually removed. If we did not
use the tree location derived from the Backpack-LiDAR as seed points,
the overall accuracy for ITS method would drop 0.17 (from 0.99 to
0.82, see a comparison of Table 6 with Table 8) with over- or under-
segmentation for majority trees. This is because we used PCS algorithm
(Li et al., 2012) to extract individual tree treetops and crowns. The PCS
algorithm used top-to-bottom region growing method to determine the

Table 5
Accuracy assessment for the ITS method based on Backpack-LiDAR data at the
eight sample plots (H: healthy plot, M: medium dieback plot, S: severe dieback
plot).

Plot ID Number of
trees

Number of
Segmented trees

TP FP FN r p F

M1 59 72 57 15 2 0.97 0.79 0.87
S2 80 84 77 7 3 0.96 0.91 0.94
M3 59 70 59 11 0 1 0.84 0.91
S4 125 136 119 17 6 0.95 0.85 0.91
H5 114 133 114 19 0 1 0.86 0.92
H6 105 107 100 7 5 0.95 0.93 0.94
H7 52 61 52 9 0 1 0.85 0.92
M8 63 73 62 11 1 0.98 0.85 0.91
Mean 657 736 640 96 17 0.97 0.87 0.92

Table 6
Accuracy assessment for the ITS method based on UAV-LiDAR tree segmenta-
tion in the eight sample plots (H: healthy plot, M: medium dieback plot, S:
severe dieback plot).

Plot ID Number of
trees

Number of Segmented
trees

TP FP FN r p F

M1 59 58 58 0 1 0.98 1 0.99
S2 80 80 80 0 0 1 1 1
M3 59 58 0 0 1 0.98 1 0.99
S4 125 122 122 0 3 0.98 1 0.99
H5 114 113 113 0 1 0.99 1 0.99
H6 105 105 105 0 0 1 1 1
H7 52 51 51 0 1 0.98 1 0.99
M8 63 61 61 0 2 0.97 1 0.98
Mean 657 648 590 0 9 0.98 1 0.99
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spacing between trees and is successful in coniferous forests; however,
in broadleaved forests, it is difficult to detect tree tops from the densely
intertwined forest canopies in healthy and medium dieback forests
(Fig. 12), leading to a low segmentation accuracy (Table 8). Therefore,
in this study, we combined Backpack-LiDAR and UAV-LiDAR data. Each
tree trunk’s coordinates extracted by the ITS method from the Back-
pack-LiDAR was used as seed points for UAV-LiDAR segmentation,
leading to an improvement of the overall accuracy of individual tree
detection. Fig. 13 shows the segmentation results of Backpack-LiDAR
and UAV-LiDAR, respectively. On the other hand, if the individual trees
would not be segmented correctly, we could not obtain the individual
tree height from UAV-LiDAR data, and thus the both individual tree-
and plot-level field-estimated AGB could not be calculated.

5.2. The comparison between MLR and RF models

In this study, the allometric equation of forest AGB (Eqs. (4 − 6))
required two parameters: tree height and DBH, which are usually ob-
tained by measuring the individual tree height and DBH at sample
plots. This method is accurate but time-consuming. It has been proved

that the airborne/UAV LiDAR point clouds can be used to extract tree
height information (Næsset and Bjerknes, 2001; Yu et al., 2011) and
terrestrial/backpack LiDAR data can be used to extract DBH (Lovell
et al., 2011; Maas et al., 2008) with a high accuracy. Our study result
also confirmed this point (Fig. 7). Therefore, we adopted tree DBH and
height derived from the Backpack-LiDAR and UAV-LiDAR, respectively,
to calculate field-estimated AGB.

Although the use of tree height derived from UAV-LiDAR and DBH
derived from Backpack-LiDAR has its benefits, the time required by
hardware calculation and data processing will be long. Hence, we only
applied this method to 72 subplots (10 m × 10 m) to calculate field-
estimated forest AGB based on an allometric equation (Eqs. (4 − 6)).
And then the 53 metrics (Table 4) extracted from UAV-LiDAR data were
regressed with above field-estimated forest AGB from the same sub-
plots. Using this method, we could predict the AGB of Robinia pseu-
doacacia forest over the whole study area.

In this study, two different modeling methods were used to estimate
the forest AGB, the MLR and RF models. The modeling results indicate
that RF performed better than that of MLR (R2 of 0.91-0.95 vs. R2 of
0.70-0.77, rRMSE of 6.5 %–10.6 % vs. rRMSE of 12.1 %-22.9 %). In the

Fig. 7. Comparisons between field measured DBH and H and extracted DBH from Backpack-LiDAR and H from UAV-LiDAR data. (a) For DBH, and (b) for H.

Table 7
The summary of linear predictive models and accuracy assessment results at the three different health plots.

Plot Predictive Models R2 RMSE (Mg/ha) rRMSE (%)

Healthy WAGB=833.05×LP+148.16×D9+0.1617× I80 - 20.81 0.72 7.5 16.6
Medium Dieback WAGB=369.56×LP− 217.48×D4+0.37× I60− 17.49 0.77 10.05 22.9
Severe Dieback WAGB=12.98×LAI+6.07×H20 −5.54×H90+16.20×H99+103.01×D2+130.15×D4− 159.81 0.70 8.67 12.1

Fig. 8. Field-estimated forest AGB (Mg/ha) versus predicted forest AGB (Mg/ha) using MLR models at the (a) healthy subplots, (b) medium dieback subplots, and (c)
severe dieback subplots. The solid lines were the fitting models; the gray areas showed 95 % confidence intervals of the fitting models.
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MLR models, LP (the percentage of the last echo above the ground in all
point clouds) was screened out by WEKA for both healthy and medium
dieback forests, but not for severe dieback forests. This is due to canopy
closure in healthy and medium dieback forests, which prevents the first
laser echo from penetrating the canopy completely, while the last laser
echo penetrating the upper canopy can provide the lower canopy in-
formation. However, due to the top crown dieback in the severe dieback
forest, most of the first laser echoes can penetrate into the forest canopy
layer, while the last echo mostly reflects the ground points. When these
last echo data reflecting the ground points were removed, LP cannot
reflect the canopy vertical variation in severe dieback forest. According
to the importance ranking of variables by random forest model, the top
ten variables in healthy forest and medium dieback forest included
variables relating to canopy horizontal distribution, height related and
intensity related distribution. LP was selected again by RF model in
healthy forests, and the correlation coefficient between LP and AGB is
0.77, indicating that LP played an important role in the forest AGB
prediction in the broadleaved forest with a highly intertwined canopy
(Ioki et al., 2014).

Given the eight 30 m × 30 m plots, we had to divide each 30 m ×
30 m plot into nine 10 m × 10 m subplots. However, since the size of

the subplot was relatively small, the tree crowns in other plots always
cross a boundary, which increases the edge effect. Frazer et al. (2011)
confirmed that with the increasing size of the plot, the accuracy of the
AGB model will increase to a certain threshold and then stabilizes. In-
creasing a number of sample plots is our future work.

5.3. Impact of forest health conditions on biomass estimation

Robinia pseudoacacia forest in the study area suffered from different
degrees of dieback. However, allometric equations (Eqs. (4 − 6)) for
AGB estimation do not include parameters distinguishing the different
forest health conditions. In order to find whether the forest health
status may have any influences on the forest AGB estimation, we did a
statistical analysis on the measured data of tree height and DBH col-
lected from different health-level Robinia pseudoacacia forest in 2013,
2014 and 2017 in the study area. The investigated plot was 30 m × 30
m, in which 5 subplots of 10 m × 10 m were selected, and a standard
tree was selected from each subplot to measure its DBH and height. A
total of 185 healthy trees, 100 medium dieback trees and 50 severe
dieback trees were selected. Relevant statistics were performed on
measured tree heights and DBHs of 335 trees, and the 95 % of the

Fig. 9. Field-estimated forest AGB (Mg/ha) versus predicted forest AGB (Mg/ha) using RF models at the (a) healthy subplots, (b) medium dieback subplots, and (c)
severe dieback subplots. The solid lines were the fitting models; the gray areas were 95 % confidence intervals of the fitting models.

Fig. 10. Radom Forest ranked LiDAR derived metrics based on their regression importance values at different health-level forest plots: (a) healthy, (b) medium
dieback, and (c) severe dieback.
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confidence interval was calculated. The results demonstrated that the
fitting curves of DBH and height for the different health conditions were
very similar, and the 95 % confidence areas overlapped without a
statistically significant difference (Fig. 14). Therefore, we did not dis-
tinguish the different health conditions of Robinia pseudoacacia forests
when using the allometric equation. The tree AGB calculation includes
three parts in the allometric equations: trunk, branches and leaves. For
the dieback forest, there will be an overestimation of leaf biomass,
which provides us a basis of modifying the existing allometric equation
in the future study (Shao et al., 2018).

We also found that the largest mean AGB values appeared at the
severe dieback forest subplots, while healthy and medium dieback
forest shared almost the same biomass accumulations (Table 3). Hence,

the health levels of Robinia pseudoacacia forest have no relationship
with the field-estimated AGB. This is because forest health levels in the
study area, which include healthy, medium dieback, severe dieback or
death, were evaluated on a range of values in the CCCG (the United
States Forest Service Crown Condition Classification Guide) standard
(Wang et al., 2015a). The CCCG indicators (Schomaker et al., 2007),
including live crown ration, crown density, crown diameter, dieback,
and foliar transparency, mostly reflected crown vigour at a single tree
level. Our previous study showed that near infrared reflectance band
and texture features derived from the high spatial resolution satellite
image, such as IKONOS, could efficiently differentiate three health le-
vels of Robinia pseudoacacia forest (Wang et al., 2015b). To determine
the forest AGB, the three dimensional structures of forests, such as tree
height and DBH, may not be necessarily associated with the single tree
crown vigour status. During the field investigation, we also found that
some trees at the healthy and medium dieback forest plots grew short
and small with smaller tree height and DBH values, while at the severe
dieback forest plots, most trees were withered or dead, and only one or
two trees had grown tall and large, leading to a higher AGB value
(Table 3). This is because the growth of Robinia pseudoacacia trees in
Gudao was suppressed by high soil moisture due to lower elevation or
near a river or road (Wang et al., 2016).

From our communications with a local forest manager, we know
that the Robinia pseudoacacia trees in the Gudao forest were planted in
the mid-1980s, and dieback or dead trees were rarely cut down and
replanted. Only the trees along both sides of the main road across the
forest area were well managed and thus in a healthy condition. This
changed our previous point of view that the short and small trees at the
healthy and medium dieback forest plots were supposed to be recently

Fig. 11. The noises in the Backpack-LiDAR point cloud data. (a) A fallen wood, and (b) a reference pole and a person.

Table 8
Accuracy assessment for UAV-LiDAR tree segmentation without seed points
derived from the Backpack-LiDAR data at the eight different health-level plots
(H: healthy, M: medium dieback, S: severe dieback).

Plot ID Number of
trees

Number of
Segmented trees

TP FP FN r p F

M1 59 36 36 0 23 0.61 1 0.76
S2 80 84 74 10 6 0.92 0.88 0.89
M3 59 64 50 14 9 0.85 0.78 0.81
S4 125 126 117 9 8 0.93 0.92 0.92
H5 114 65 65 0 49 0.57 1 0.73
H6 105 67 67 0 38 0.63 1 0.77
H7 52 48 42 6 10 0.81 0.87 0.83
M8 63 36 36 0 27 0.57 1 0.73
Mean 657 526 487 39 170 0.74 0.92 0.82

Fig. 12. Pictures taken by UAV in the Robinia pseudoacacia forest at different health levels: (a) healthy, (b) medium dieback, and (c) severe dieback.
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replanted after dieback trees were removed, and thus the young age of
trees was thought to be a reason for the lower forest AGB (Zheng et al.,
2007).

This may provide us a new idea on how to classify the forest health
levels. The five crown vigour indicators at a single tree level from CCCG

standard may not be suitable for the health level classification of the
Robinia pseudoacacia trees, which have been suffered from long term
and slow disturbance in our study area. While forest attributes at both
single tree and stand levels, such as tree biomass, canopy cover and tree
height, are able to be acquired from both field and LiDAR point clouds,
they may be more effective for determining the health levels of Robinia
pseudoacacia forest.

6. Conclusions

In this study, two kinds of point cloud data, UAV-LiDAR and
Backpack-LiDAR, were used for individual tree detection and AGB es-
timation at different heath levels of the Robinia pseudoacacia forest.
Three conclusions were derived from the experimental results as fol-
lows:

(1) The tree trunk positions extracted from the Backpack-LiDAR data
could be used as the seed points for individual tree segmentation
(ITS) by using UAV-LiDAR data. This method could effectively
improve the tree segmentation accuracy of broadleaved forest in
the growing season (total accuracy F = 0.99). With the develop-
ment of LiDAR technology, laser detectors and carrying platforms
are becoming lighter and more diversified. The combination of UAV
with Backpack LiDAR data can effectively solve the problem of
under- or over-segmentation using ITS method in broadleaved for-
ests.

(2) Canopy coverage, LP, and intensity-related metrics reflecting ve-
getation health status play an important role in AGB estimation of

Fig. 13. The schematics of tree segmentation results. (a) The segmentation results of Backpack-LiDAR data, (b) the segmentation results of UAV-LiDAR based on seed
points, and (c) the segmentation results of UAV-LiDAR without seed points. Different colors represent different trees. The polygon patches overlaid on (b) and (c) are
individual trees or tree crowns derived from visual interpretation.

Fig. 14. Relationships between DBH and height (H). The solid lines were the
fitting models; the gray areas were 95 % confidence intervals of the fitting
models.
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Robinia pseudoacacia forest.
(3) RF model resulted in a higher accuracy in predicting forest AGB

than MLR model.
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