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an enormous size, it is indeed very common to observe a large proportion of the matrix elements as
null-value OD dyads. For example, the American Community Survey county-to-county migration
flow dataset of the contiguous U.S. from year 2010 to 2014 comprises 9,656,556 OD dyads in total.
However, only 264,253 OD dyads, or 2.7 percent, have one or more migrants, while the rest of this
huge OD matrix is made of blank elements. The sparsity of the OD matrix has already been widely
recognized and integrated in related method designs, such as Tao and Thill [10].

The other fundamental characteristic of flow data is their heavy-tailed distribution. Taking the
same migration dataset as example, Figure 1 illustrates the distribution of all 264,253 non-zero flows
sorted in descending order of values. The median flow value is 18, and it falls on the long tail of
the distribution. The average flow value is 63, and less than 18 percent of all the flows have an
above-average value. The bottom-left chart depicts the distribution of all above-average flows, which
also has a sharp vertically rising “head” followed by a long “tail”. Zooming onto the top one percent
of cases shown in the bottom-right chart, we can still observe a heavy-tailed distribution. It should
be noted that these observations would be dramatically exacerbated if zero values had not been
removed beforehand.
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The heavily-tailed distribution is a universal characteristic that does not only apply to migration
cases, but also to most other flow data, or network data if seeing flows as the edges of a spatial network.
In this regard, Broido and Clauset [9] tested nearly one thousand social, biological, technological,
transportation, and information networks. Most of the tested networks follow one of the generic
heavy-tailed distributions, such as log-normal, exponential, and power law distribution, such as the
well-known Pareto distribution [11].
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The properties of sparsity and heavy-tail distribution of the OD flow matrix can be alleviated
by increasing the spatial granularity of the spatial interaction system through spatial aggregation.
Although this practice was common earlier on [12], it has fallen out of favor in the era of geospatial
big data due to the indiscriminate loss of spatial information. The main purpose of this paper is to
leverage this fundamental characteristic of big flow data to intelligently reduce data to improve the
computational capability and efficiency of relevant analytical methods.

3. Head/Tail Break as a Method of Data Reduction

Jiang [13,14] introduced the head/tail breaks as a new classification scheme that enhances the
visualization of geographic data that follow a heavy-tailed distribution. The principle underlying
the head/tail breaks is straightforward: to split the data into a “head” part and a “tail” part, and
optionally to repeat this binary classification process to classify the original data into several categories
in a recursive manner [15]. The division rule of head/tail breaks can be based on a preset head-to-tail
ratio such as 1:9, or to use the arithmetic mean value as the breakpoint.

The rationale behind the head/tail breaks is that the low-frequency events in the “head” usually
contain richer information and therefore deserve more attention for visualization or analysis purposes.
In addition, head/tail breaks can reveal the embedded hierarchical relationships as they comply with the
nonlinear property of the data distribution. Jiang [13] proves that the head/tail breaks can outperform
traditional classification methods such as Jenks natural breaks when visualizing cities by population
size and street networks by connectivity. A common application of head/tail breaks is to extract natural
cities from a variety of data sources, including remote sensing images, road junctions, points of interest
(POIs), and geotagged social media posts [16–18].

Head/tail breaks can also be applied to flow data visualization. As a pioneer scholar in flow
mapping, Tobler [19] suggested that information aggregation and removal is an important part of
identifying patterns through visualization. He observed that 75 percent of migration flow connections
on the small side contain less than 25 percent of the total flow volume. Therefore, filtering out the
small-volume flows and only visualizing the major ones can be an effective solution. In this paper,
we shift the focus from flow visualization to flow computation.

Inspired by this earlier research, we propose to extend the application of head/tail breaks to
spatial flow data analysis and modeling as a method of data reduction. Data reduction [20] is to
extract pertinent information from the data by identifying and discarding irrelevant and redundant
information. Ideally, data reduction would lead to a dataset of smaller size and dimension that can be
handled more efficiently. Various types of data reduction methods have been developed, which focus
on feature extraction, dimensionality reduction, instance selection, noise removal, and outlier detection
to reduce, refine and clean spatial big data [20–24]. With the aim of selecting the most important flow
instances pertaining to the purpose of analysis, the head/tail break falls among the instance-based
approaches. It is conditioned by the assumption that only part of the data instances is relevant to the
analysis and that they can be identified by their variable values. Therefore, our hypothesis is that the
head/tail breaks can enhance the computation of relevant methods that pivot on the “head” part of a
heavily-tailed flow dataset, while receiving little support from the long “tail”. In the following section,
we conduct a series of experiments with different flow analytics methods and various flow datasets to
substantiate our hypothesis.

4. The Evaluation Framework and Experiments

The experiments of this study are designed as follows. We first introduce a general evaluation
framework to systematically evaluate the applicability of head/tail breaks to an arbitrary flow analytics
method. Next, we conduct tests with standard algorithms from three representative families of
methods for spatial flow analysis, namely flowAMOEBA [10] for flow clustering, Louvain [5] for
network community detection, and the weighted PageRank [8] for network centrality measurement.
The experiment data include travel flow data, cellphone call flow data, and synthetic flow data. The test
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environment is a laptop of the following specifications: OS: Windows 10; Model: Surface Book 2; CPU:
Intel Core i7-8650U; RAM: 16 GB.

4.1. Evaluation Framework

We design an evaluation framework to test the applicability of head/tail breaks to any flow
analytics algorithm. As shown in Figure 2, the process begins with splitting the flow data into two parts
with head/tail breaks. There are at least two options to set the breakpoint: based on a specific flow value
(e.g., mean) or on a preset head-to-tail ratio. The next step is to run the algorithm with the original data
and with the “head” part only, respectively. Then we record the computing time and algorithm results
of each test and repeat the process with different head-to-tail ratios. Even though the main purpose of
head/tail break data reduction is to boost the computational efficiency of the algorithm, the bottom
line is that model fidelity has to be maintained, i.e., the algorithm ought to produce results that are
fundamentally consistent with results generated on the original data. The actual way to carry out this
step varies according to the type of algorithm. For instance, a clustering algorithm should retain a
similar number of clusters, while a ranking algorithm should keep most ranks consistent. If it fails,
the whole evaluation process ends with the conclusion that head/tail breaks do not apply innocuously
to this particular algorithm, and it becomes meaningless to record the computing performance.

Nevertheless, the assessment of model fidelity may indicate the original results are not perfectly
preserved. In practice, it is possible that the quality of results is compromised after applying the
head/tail breaks, but the loss in quality is still deemed acceptable to retain model fidelity. It is also
possible the results are well kept under certain conditions. Therefore, it is necessary to further
examine the results to establish the degree to which result quality may be compromised or the ideal
computational conditions. We advocate selecting sample results to conduct an in-depth evaluation
with means like geovisualization and possibly expert knowledge.

If the model fidelity is maintained, the last step is to check the computing performance boost
and find the optimal head-to-tail ratio that balances result quality and speedup. We do not set a fixed
threshold on the computing boost because it is subjective to the user whether the speedup is satisfactory.

4.2. Experiment 1. Flow Clustering Method: FlowAMOEBA

We first test with a flow clustering method called flowAMOEBA [10]. It is a data-driven and
bottom-up spatial statistic method for identifying spatial flow clusters of extremely high- or low-value,
e.g., anomalously large number of travelers between two regions. This method is an ideal choice to
test the effectiveness of head/tail breaks. It includes an iterative process to spatially search clusters of
extreme value, which takes a long time to compute even for a relatively small dataset. The algorithm
of flowAMOEBA is briefly summarized as follows.

(a) Identify the neighbor flows of each flow based on the contiguity of both endpoints. For example,
the state-to-state migration flow from California to North Carolina can be seen as a flow that is
neighbor of the migration flow from California to South Carolina, as they share the same origin
while their destinations are contiguous.

(b) Select an arbitrary flow as the seed of a cluster and calculate its G∗i statistic [25,26] with Equation
(1). The classical G∗i statistic is used to measure the concentration of high or low values at
a given location i. The G∗i value of the seed flow is taken as the starting point of an iterative
cluster-expanding process. The spatial weight wi j is set as 1 if flow j neighbors flow i, otherwise 0.
N is the total number of flows. x j is the value of flow j. x is the mean value of all flows. Figure 3a
shows the selected seed flow and its G∗i value, while the grid cells filled with red stripe lines
represent the origins and destinations of flow i’s neighbors.

G∗i = (
∑N

j=1
wi jx j − x

∑N

j1
wi j)/S

√
N

∑N
j=1 wi j2 −

∑N
j1 wi j2

N − 1
, where S =

√∑N
j=1 x j2

N
− x2. (1)
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(c) Traverse the neighbor flows of the seed one by one and include the ones that can increase
the overall G∗i value to the cluster. Figure 3b shows that some of flow i’s neighbors (between
solid-filled red grid cells) are selected to merge with the seed as a larger cluster. The algorithm
will continue the attempt to absorb more flows through discrimination of the neighbors of the
newly joined flows (between the grid cells filled with red stripe lines) with the same criterion.

(d) Stop the search-and-expand process once the G∗i value cannot increase anymore. By then, the flow
cluster reaches a stable stage and no more flow neighbors can join. Figure 3c depicts the stable
status of the flow cluster regarding seed flow i.

(e) Repeat the previous three steps and until every flow has served as seed. Collect all flow clusters
at their stable stage. Figure 3d illustrates the identified flow clusters originated from different
seeds. Conduct a 1000-time Monte-Carlo simulations by randomly permutating the flow values.
Preserve the flow clusters that pass the statistical significance level, e.g., 0.01, as the final outcome.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 18 
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However, the demands of big flow data analysis do not spare the computational capability and
efficiency of flowAMOEBA. The most time-consuming part is the iterative search-and-expand process


