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Utilizing ecological niche modelling to predict habitat suitability of eastern
equine encephalitis in Florida
Claire Burch a, Rebecca Loraamm a, Thomas Unnaschb and Joni Downsc

aDepartment of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA; bCollege of Public Health, University
of South Florida, Tampa, FL, USA; cSchool of Geosciences, University of South Florida, Tampa, FL, USA

ABSTRACT
Eastern Equine Encephalitis virus (EEEV) is a virus found predominantly east of the Mississippi River
in the United States that can be fatal to both equines and humans. The disease has previously been
most prolific in states like Florida, but there has been an increase in the prevalence in other states
further up north on the east coast of the United States in recent years. The purpose of this research
is to use the ecological niche modelling program Maxent to model EEEV habitat suitability
probability. This research utilized data of fatality incidence in equine hosts, versus sentinel chicken
infection data, the spatial data traditionally utilized for mapping EEEV. This research produced
a map of habitat suitability, which expanded on previous risk models by utilizing additional
environmental factors. It confirmed areas of higher probability identified by previous models but
identified more narrow areas of higher probability as well. This model adds to the literature
applying ecological modelling techniques to spatial epidemiology. It highlights spaces that repre-
sent the culmination of environmental factors for the transmission of EEEV. Considering these
environmental factors identified can assist in identifying places where there is a higher risk of EEEV
as new cases begin to appear.
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1. Introduction

Eastern Equine Encephalitis virus (EEEV) is a disease that
occurs east of the Mississippi River within the United
States, which typically impacts horses but can infect
humans as well. Both mosquitoes and birds are carriers
for the virus; however, birds are considered ‘dead-end’
hosts as they cannot transmit the disease further (CDC
2016). The inclusion of ‘equine’ in this virus’ name is
misleading, as the cycle of transmission to humans and
equines occurs via spillover from birds, which are the
major enzootic hosts of the virus. In birds, the major
vector transmitting EEEV is Culiseta melanura; when it is
transmitted to the so-called bridge vector mosquito
species including Aedes spp., Coquillettidia spp., and
Culex spp, it can be further transmitted to equines
and humans (Vander Kelen et al. 2012a). The vectors
for EEEV in both the enzootic and epidemic cycles have
been found to be associated with forested wetlands
and swamplands as well as tree plantations, and it has
been hypothesized that these habitats not only have
positive environmental conditions for Cs. melanura but
also for the avian reservoirs and the bridge vectors
(such as Aedes spp.) (Vander Kelen et al. 2012a; Jacob
et al. 2010; Scott and Weaver 1989). When a human
contracts EEE, it is often fatal as there is no specific

treatment for the disease – according to the Florida
Department of Health (FDOH, 2019), about one-half of
EEEV cases die of the disease. In horses, the infection is
thought to be almost uniformly fatal in unvaccinated
animals (FDOH, 2019). When the viral infection is
detected in the equine host, it suggests that there is
a high intensity of infection in the local bird population,
suggesting that there is a higher risk of it also being
transmitted to humans. As climates continue to warm
and weather patterns change, these changes could
lead to further proliferation of the mosquito vectors
and increased risk of EEEV infection (Vander Kelen
et al. 2012a). In addition, as urbanization continues to
spread to undeveloped land, it is important to under-
stand which natural environments, conditions, or
assemblages promote transmission in order to better
prepare medical professionals for potential cases.
Currently, in 2019, almost 30 cases of human infection
have been reported east of the Mississippi, in Michigan,
Massachusetts, Rhode Island, Tennessee, and North
Carolina. This is contrasted with only 6 cases of
human infection reported in 2018, in Florida, Georgia,
Pennsylvania, and Michigan (CDC ArboNet 2018, 2019).
It is therefore critical to understand the contexts which
promote viral spread.
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The state of Florida is one of the most extensively
studied areas for EEEV as well as the state with the
largest proportion of cases every year. Compared to
other states, it has the most reported human cases –
one to two per year – and horse cases, having roughly 70
reported per year (Bingham et al. 2014). Typically, in
other states along the east coast and into the northeast,
the EEEV viral cycle becomes dormant during the winter
months. For example, in Maryland, EEEV has a distinct
transmission season that begins with transmission
detection in July and stretching until November or
December. In Florida, however, transmission can
occur year-round, with the peak season occurring from
May to August (Scott and Weaver 1989; Bigler et al.
1976). Within Florida, the virus circulates most inten-
sively in the Florida panhandle and central Florida versus
the southern half of the state (Vander Kelen et al. 2012b).
Research has proposed that Florida, because of its year-
long transmission period, could potentially be a reservoir
for the disease within the US – birds contract EEEV
before migrating and then proceed on to other areas
within the country (Tan et al. 2018). Understanding the
spatial distribution and risk potential of EEEV could assist
in mitigating not only transmission risk within the state
of Florida but also the risk of continual spread to the rest
of the country. Conditions found within Florida where
the virus can be transmitted to equines and humans
must be identified, towards mitigating transmission
within the state. Identification of areas favourable to
the transmission where cases have not yet been
reported is also a primary concern for mitigation and
planning.

Previous work has modelled EEEV distribution and
perpetuation, typically utilizing information on mos-
quito vector location (Cupp et al. 2003; Bigler et al.
1976; Bingham et al. 2014; Jacob et al. 2010) as well as
mapping locations or counts of potential bird vectors
(Jacob et al. 2010; Bingham et al. 2014). Most of the
modelling performed has been completed utilizing spa-
tial distribution modelling such as spatial linear predic-
tion models predicting abundance (Jacob et al. 2010),
density-based spatial clustering to identify clusters of
habitats associated with the disease (Vander Kelen
et al. 2012b), and spatial risk modelling to identify
areas of high risk for transmission (Vander Kelen et al.
2014). This research proposes an application for ecolo-
gical niche modelling capable of creating a habitat suit-
ability model for viral transmission. The areas identified
as favourable to sustaining the EEEV viral cycle in this
research can assist mitigation efforts employing meth-
ods from spatial epidemiology and risk modelling.

Studies employing ecological niche modelling in spa-
tial epidemiology routinely use the Maxent software

package, exposing a presence-only-based species distri-
bution model (Phillips, Anderson, and Schapire 2006), to
predict potential distribution for a multitude of diseases,
including flu outbreak risk in California, US. (Belkhiria
et al., 2018), Chagas disease in Brazil (Costa et al. 2014),
and malaria in Zimbabwe (Gwitira et al. 2015). Maxent is
a software package which operationalizes a modelling
approach often used for estimating habitat suitability,
species distribution and the probability of occurrence
given presence-only data and environmental (climatic)
variables in coordinate space (Elith et al. 2011; Phillips,
Anderson, and Schapire 2006; Merow, Smith, and
Silander 2013). Essentially, the Maxent suite takes
a series of confirmed animal/disease case locations as
input, along with a series of environmental predictors
(bioclimatic co-variates thought to influence the rate of
occurrence of animals/disease cases in the environment)
recorded as continuous values assigned to a gridded
space representing the study area. Maxent analyzes
these data to estimate the probability of occurrence for
the species in question, conditioned on the environmen-
tal predictors and a number of model parameters set by
the user. This estimate relating species occurrence to
bioclimatic conditions is then leveraged to suggest the
probability of animal occurrence across the study area.

Conceptually, Maxent can be thought of as using an
iterative approach to find a function minimizing the
distance between two multivariate probability distribu-
tions. These are the distribution of bioclimatic variables
at the species occurrence locations and the ‘background’
distribution of bioclimatic variables at locations where
species were not observed (Elith et al. 2011). Maxent
compares the set of environmental covariates at the
presence locations against a random sample of the
‘background’ locations as part of this process.

The covariates within the Maxent modelling process
(and other species distribution modelling methods) are
the environmental factors affecting the suitability of
habitat. Maxent begins by randomly generating
a background sample data set from the landscape of
interest utilizing the covariates inputted by the user
(the Maxent default is 10,000 locations from the grid) –
these locations do not take into account the present
location data and could contain some of these data
points. Comparing the ratio of the density of the covari-
ates in presence locations against the density of these
covariates across the landscape (informed by the back-
ground sample generation), Maxent’s raw output pro-
vides the insight for determining which environmental
factors are important. The model is also programmed to
allow for generalization of results (Elith et al. 2011). If the
sample utilized in Maxent represents a sample largely
unimpacted by sampling bias, the output of the model
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can be interpreted as an index of habitat suitability
(Merow, Smith, and Silander 2013). Merow, Smith, and
Silander (2013) recognize this interpretation can only be
made if some sampling assumptions are ignored (when
considering sampling bias, Maxent output is more
aligned with the relative occurrence rate of a species),
but they emphasize that interpreting output as habitat
suitability can lead to further analysis based on results.

Because Maxent may not adequately compensate for
sampling bias given presence-only data in the way pre-
sence-absence data would eliminate biases (because the
bias may be present in both the presence and absence
data points), it is reliant on collection of an extensive and
comprehensive set of presence location data points. Also,
the landscape (geographic area) being utilized should
accurately portray the range of the species and exclude
regions that have not been surveyed. Environmental fac-
tors that are understood to impact the species based on
previous ecological research should be utilized; limiting the
number of covariates to those that are known to have an
impact allows for smoother and better-fit results. It is also
important to consider the chance of observing a species in
areas of interest – the Maxent default is set at a ‘50%
chance of observing the species’, but this setting may not
be appropriate if working with data from a species rarely
observed unless long-term, extensive surveying methods
are implemented prior to modelling (Elith et al. 2011).

The purpose of this research is to apply Maxent to
create a model of disease distribution for EEEV in the
state of Florida. As mentioned, previous spatial epide-
miology work involving EEEV has utilized GIS to map
clusters of EEEV risk-based largely on vector or reservoir
host data but did not create a predictive model of dis-
tribution based on incidence data. Vander Kelen et al.
(2014) created a risk model utilizing risk variables asso-
ciated with specific habitat land cover and land cover
traits (i.e. habitat, proximity to wetlands, wetland com-
position, tree plantation proximity, and plantation com-
position). This research proposes utilizing bioclimatic
factors in addition to land cover to create a more expan-
sive risk model. Modelling utilizing bioclimatic variables
and land cover may identify additional areas of risk not
indicated by land cover characteristics alone.

Work performed by Vander Kelen et al. (2012b) uti-
lized a novel approach in mapping spatial distribution of
EEEV by focusing on incidence in a dead-end host – the
horse – versus the vector or reservoir host. They pro-
posed utilizing this data set because little is known
about the habitat dynamics of the epizootic transmis-
sion areas, homing in on the areas where mammal infec-
tions occur. While there is evidence indicating suitable
habitats for the arthropod vectors of the disease, infec-
tion incidence data allow us to model the portion of the

cycle of EEEV that results in potentially fatal infections of
equines and humans. The incidence data of equine fatal-
ities due to EEEV enable the creation of more effective
risk modelling tools, as there is a multitude of bridge
vectors that could infect equines and humans. Mapping
the distribution of one or a few of these vectors is not an
inclusive model, whereas the fatality incidence data pro-
vide information characterizing the potential location of
the portion of the cycle with the highest risk to human
populations. This research will expand on utilizing the
equine fatality incidence data set with the objective of
creating a potential distribution model of EEEV based on
the incidence rate of the disease in horses in the state of
Florida using bioclimatic variables, land cover data, and
elevation models.

2. Study area and data

2.1. Study area

The state of Florida comprises the study area for this
research (Figure 1). Transmission of EEEV occurs year-
round in Florida, where transmission peaks between May
and August (FDOH 2019). EEEV transmission and infection
have presented in 64 of the 67 counties in Florida as well,
a prevalence rate not observed in any other state where the
infection is known to occur (Vander Kelen et al. 2012a).
Counties within Florida also have active monitoring meth-
ods in place to track the virus as well as attempt to reduce
disease prevalence. These activities represent millions of
dollars in surveillance expenditure each year, a significant
expenditure for the state (Jaing 2010). Since incidence data
and environmental variables utilized in this research could
be processed at a scope appropriate to understanding EEEV
transmission potential over a large area, this research was
performed at the state-level to provide a comprehensive
model of EEEV transmission risk.

2.2. Incidence data

Disease incidence data used for this research represent
confirmed (reported) equine EEE cases in Florida occurring
from 2005–2010; these points can be seen in Figure 1. EEEV
is a reportable disease, which means that doctors and
laboratories must report cases to the CDC. Prior research
efforts involving EEEV have often been based on presence
of EEEV in mosquito vectors (Cupp et al. 2003) or on
seroconversion in bird species (sentinel chickens are often
used to track arboviruses in Florida and other southeastern
states) (Vander Kelen et al. 2014). While tracking vector and
reservoir hosts provide valuable models of the disease,
incidence rates in dead-end hosts can assist in creating
accurate risk assessment models for treatment and/or
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vaccinations (in horses). The data set utilized in this
research represents EEE fatal cases in horses andwas devel-
oped previously by Vander Kelen et al. (2012b) towards
mapping the spatial distribution of the disease in Florida.
Vander Kelen et al. (2012b) prepared this data set by
obtaining GPS location reports of equine EEE cases along
with additional data from the Florida Department of
Health. The final incidence data set used in modelling for
this research contains 438 equine cases of EEE along with
their respective GPS locations.

2.3. Environmental data

Elevation and land cover data were obtained through the
United StatesGeological Survey (USGS). Bioclimatic variables
capturing temperature and precipitation conditions were
obtained from the National Climatic (NCDC) Data Center
for weather stations in the state of Florida. The dataset
obtained for this research is based on the 1980–2010 nor-
mals provided by NCDC, across a total of 19 bioclimatic
covariates collected at point weather stations statewide.
These bioclimatic variables were calculated to match para-
meters utilized in previous Maxent studies – it was sug-
gested by the Maxent modelling package (Phillips,
Anderson, and Schapire 2006) that bioclimatic variables
identified by WorldClim (worldclim.org) be utilized as cli-
mate variables formodelling purposes. These variables were

utilized in other Maxent studies, either all 19 or a selected
group determined by methods such as a principal compo-
nent analysis (Belkhiria et al., 2018; Costa et al. 2014;
González, Paz, and Ferro 2014; Gwitira et al. 2015; Rose
and Wall 2011; Signorini et al. 2014).

The 19 bioclimatic variable values were assigned to
point weather station locations, and a spatial interpolation
method was then applied to generate input surfaces used
for modelling with the Maxent maximum entropy model-
ling software package (Phillips, Anderson, and Schapire
2006). An inverse distance weighting (IDW) approach was
utilized to create raster datasets representing a continuous
interpolated surface for each of the 19 variables. The IDW
operation assumes that distance is the only factor influen-
cing themagnitude of a variable’s interpolated value across
space. With increasing distance from a known location,
values interpolated at unknown locations will exhibit
a predictable linear decay in magnitude. Utilizing IDW as
the spatial interpolator of choice for this research provides
a straightforward estimation of bioclimatic variables at
locations where they were not otherwise available.

3. Methods

3.1. Model parameterization

Default settings were utilized when running the Maxent
model, with 25% of the data set aside as a test data set,

Figure 1.Map of Florida, United States of America, the area of interest for the study. The study area map includes the incidence points
of EEE equine fatality from the Vander Kelen et al. (2012b) as well the top 10 most populated cities in the state of Florida (obtained
from Florida Geographic Data Library, with data from the National Atlas of the United States (2007)).
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chosen at random utilizing the ‘random seed’ option
(González, Paz, and Ferro 2014; Rose and Wall 2011;
Signorini et al. 2014). Setting aside data as a test data
set allows the model to run additional statistical analyses
for robustness evaluation of the final product (Phillips
2017). The area under the curve (AUC) cut-off value
utilized was 70%. AUC is an independent measure of
predictive power – it is interpreted as how well the
model distinguishes presence versus background points
(Merow, Smith, and Silander 2013) Models with an AUC
of 70% or greater are viewed as viable for predictive
purposes (Baldwin 2009), with an AUC above 50%mean-
ing the model predicts better than random choice (Rose
and Wall 2011). The cloglog output format was selected,
which gives a range of probability estimates between 0
and 1 – it is the easiest result format to interpret and the
most useful format for the purposes of this research.

All 19 bioclimatic variables were utilized in the initial
run of the model. Jackknife output data then allowed for
the elimination of variables which did not contribute to
the model. This jackknife approach represents a type of
iterative evaluation of bioclimatic variables by permuta-
tion from the set of bioclimatic variables. For each itera-
tion, each variable’s contribution to the variance
explained by the model is calculated, and the best expla-
natory variables for the model are made clear as these
produce the highest AUC values. Jackknife tests in
Maxent produce a bar graph where the bar at the bot-
tom represents the AUC of the model with all variables –
comparing this bar to the bars that represent model runs
without particular variables, the following bioclimatic
variables were eliminated from the model: 5, 6, 8, and
13 (Table 1). Multiple iterations of this process were
completed to test for changes in AUC until the AUC
value obtained was higher than the initial first run invol-
ving all 19 variables. The jackknife approach was used in
this research as an alternative to applying dimensionality

reduction techniques such as principal component ana-
lysis (PCA) as pre-processing for the input bioclimatic
variables. Applying PCA to eliminate variables by trans-
forming their information to their principal components
resulted in a final model with a lower AUC value than
utilizing the jackknife approach. Therefore, the effective
set of variables determined by jackknife was used
instead of the final model. Table 1 lists the bioclimatic
variables utilized in the final iteration of the model.

3.2. Model validation under current EEE incidence
distribution

The habitat suitability (probability of occurrence) surface for
EEE disease incidence prepared in MaxEnt was validated
using a randomization technique, applied identically for
each of four bioclimatic regions (Panhandle, North, Central
and South, respectively) in the state of Florida (Figure 2). For
validation, the MaxEnt surface developed using observed
disease locations (occurring from 2005 to 2010) and biocli-
matic covariates (collected for 1980 to 2010) was overlaid
and compared with new observed EEE disease locations
occurring during 2011–2018, evaluating the predictive
power of the prepared surface for future viral seasons span-
ning 8 years. For each bioclimatic region in the state, 99
spatially random realizations of the n observed disease
events for 2011–2018 were prepared and statistics were
collected summarizing the probability values found at
occurrence surface raster cells co-located with these simu-
lated disease events. Each random simulation was spatially
constrained to the boundary of its host bioclimatic region.
Histograms visualizing the averageprobability of occurrence
at observed disease locations versus simulation were pre-
pared to demonstrate a pseudo-p value for significance
assessment. Further comparisons among observed versus
simulated statistics summarizing EEE disease distribution in
bioclimatic regions are then discussed.

4. Results

4.1. EEEV habitat suitability model

The area under the curve (AUC) for the training data was
.770 and 0.758 for the test data. Both AUC values exceed
a threshold value of 0.5, which corresponds to the AUC
expected from a model generated at random. When the
initial model was run, training data AUC was 0.779, but test
data AUC was 0.744, so eliminating variables increased the
overall predictive power of the model. Generally, high habi-
tat suitability area for EEE appears to be concentrated on the
panhandle as well as northern and central Florida, with only
a small hotspot in southeastern Florida (Figure 3).

Table 1. Bioclimatic variables considered in the final model for
this study.
1 Annual mean temperature
2 Mean diurnal range
3 Isothermality
4 Temperature seasonality
7 Temperature annual range
9 Mean temperature of driest quarter
10 Mean temperature of warmest quarter
11 Mean temperature of coldest quarter
12 Annual precipitation
14 Precipitation of driest month
15 Precipitation seasonality
16 Precipitation of wettest quarter
17 Precipitation of driest quarter
18 Precipitation of warmest quarter
19 Precipitation of coldest quarter
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The Maxent result also provides information on which
variables were most influential via per cent contribution
values. These represent the variables the Maxent algo-
rithms suggest contributed most to the model formula-
tion (Phillips 2017). The highest per cent contributions to
the model were elevation at 37.3%, temperature season-
ality at 14.8%, mean diurnal temperature range at 7.2%,
and precipitation of the coldest quarter at 6.9%. While
these values show a contribution to the predictive model
created, contributions should be interpreted with caution
because of possible correlation among these variables in
their effect on EEEV transmission.

Elevation (fl_dem) appeared to be the most important
variable according to the jackknife test as well (Figure 4).
When treated as the only explanatory variable in the
model, a test AUC result of approximately 0.68 was still
obtained using just this elevation covariate. Mean diurnal
range (bio2) was also an important variable according to
the jackknife test, with a test AUC of approximately 0.66,
as well as temperature seasonality (bio4). Also, given the
jackknife test, the mean temperature of the coldest quar-
ter (bio11) had a test AUC of approximately 0.66.
Precipitation of the coldest quarter (bio19) was more in
line with other variables in the jackknife test.

Figure 2. Source and validation EEE case locations in context with Florida’s bioclimatic regions.
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4.2. Results of model validation under 2011-2018
EEEV incidence distribution

Following application of the validation routine introduced
in section 3.2, results suggest the MaxEnt probability of
occurrence surface generated in consideration of
2005–2010 EEEV disease incidence has significant predic-
tive power towards indicating risk for future year disease

incidence (2011–2018) in the Panhandle (n = 41), North
(n = 156) and Central Florida (n = 44) bioclimatic regions.
Here, theMaxEnt surface is considered predictive provided
the means of occurrence probabilities at randomly simu-
lated disease patterns are lower than the mean occur-
rence probability at disease locations from the observed
pattern. This dynamic establishes the MaxEnt surface is
better at suggesting disease incidence than a random

Figure 3. EEE habitat suitability map, predicted by land cover, digital elevation, and bioclimatic variables.

Figure 4. Jackknife test results of final Maxent modelling output. See Table 1 for bioclimatic variables corresponding to numbered
variables.
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surface, at a significance level roughly interpretable as
p = 0.01 given 99 simulations. Histograms depicting the
mean probability of occurrence for the simulated refer-
ence distribution versus the observed pattern for the
Panhandle (Figure 5), North Florida (Figure 6), Central
Florida (Figure 7) and South Florida (Figure 8), respec-
tively. For the South Florida region (where only n = 2
disease cases were observed from 2011–2018), validation
results do not suggest significantly higher observed
occurrence probabilities from the MaxEnt surface are co-
locating with (2011–2018) disease incidence locations.
However, an alternative, additional simulation randomiz-
ing all available years of EEE disease incidence locations
(2005–2018) for South Florida (n = 18) shown in Figure 9
suggests the MaxEnt surface is predictive when consider-
ing all available disease cases.

5. Discussion

5.1. Disease-case location as a proxy for
presence-only data

Maxent provides a technique used heavily in ecology-
enabling models of habitat suitability; this approach has
great potential for utility in other fields. Utilizing Maxent,
a habitat suitability predictor was produced for EEEV

based on fatality data in horses collected from
2005–2010 in Florida, USA. This research utilized disease-
case location data as a proxy for presence-only data –
instead of tracking vector location, the model was cre-
ated based on disease presence location. Rate of detec-
tion represented a substitution for survey methods used
to gather data on species presence. Using the rate of
detection in dead-end host versus tracing vector loca-
tion could potentially eliminate the sampling bias issue
heavily present in current presence-only data survey
methods. Collecting dead-end host locations from veter-
inary professionals across the region of interest allow for
more extensive surveying to create a presence-only data
set versus relying on comprehensive (presence-absence)
surveying methods. EEEV transmission and fatality are
reported, and extensive records are kept of disease loca-
tions in this manner. This extensive record is kept by CDC
and other entities allowing for a more comprehensive
presence-only data set that has minimal skew due to
sampling bias, because all known cases are reported. If
utilizing disease-case data alleviates sampling bias (or at
least produces data with less bias), then the qualms in
interpreting the model raised by Merow, Smith, and
Silander (2013) can be solved as the sampling bias pre-
vents individuals from easily interpreting Maxent output
as habitat suitability. Given less biased presence data,

Figure 5. Panhandle region validation result.
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Figure 6. North Florida region validation result.

Figure 7. Central Florida region validation result.
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Figure 8. South Florida region validation result.

Figure 9. South Florida region alternative validation result.
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the model output may more accurately translate to rela-
tive occurrence rates. Decreasing sampling bias can cre-
ate a model more robust to the assumptions associated
with habitat suitability modelling overall. In addressing
the concern in setting accurate parameters for the prob-
ability of observing a species, this becomes less of an
issue since surveying for disease cases (in horses, these
animals are large, usually domesticated and easy to
locate) is easier than surveying for the presence of vec-
tors (mosquitoes, which are small) in our case. EEEV
presents obvious symptoms, which can be easily identi-
fied and reported in infected horses. While EEEV is
a reportable disease, this data set is still limited; how-
ever, as it relies on individuals to report cases of the virus
in their horses if they are not seen by a veterinarian. In
addition, this case count data only reports equine fatal-
ities. If horses are vaccinated, the disease is often not
fatal (FDOH 2019) and that case point would, therefore,
be excluded from this data set as it may not ever be
evident that the equine was infected.

While disease-case location data have the potential to
allow for accurate Maxent modelling in spatial epide-
miology, a few questions arise concerning the collection
and accuracy of the input data set. Specific to the case
location data set used for this research, important ques-
tions surround the meaning of disease case spatial loca-
tions and their spatial accuracies. These locations
reported could be the location in which the equine first
presented with the symptoms of the disease but could
also be the location of fatality or post-mortem examina-
tion. While disease-case location data could help to over-
come the sampling bias issue prevalent in presence-only
data, it is important to standardize spatial data collection
to determine at which point in the disease life-cycle is
the most appropriate to include in modelling suitability
for future disease proliferation.

5.2. Model results

Based on the model produced, it appears that given the
bioclimatic and environmental variables used (see Table
1), areas promoting disease transmission occur most
often in the northern regions of Florida. This finding
aligns with results from other studies of EEEV transmis-
sion, which found highest transmission clusters in the
northern regions of Florida (Bigler et al. 1976; Heberlein-
Larson et al. 2019; Vander Kelen et al. 2014, 2012a,
2012b).

According to Vander Kelen et al. (2012a), however,
Walton County has one of the highest rates of transmis-
sion – on the Maxent model, Walton County is on the
outskirts of the hotspots in the panhandle, with Holmes,
Washington, and Jackson counties containing most of

the high habitat suitability values. Vander Kelen et al.
(2012a) utilized sentinel chickens and rate of infection as
a proxy for transmission, and the difference in results
could thus reflect differences in detection of EEEV activ-
ity using horse cases versus chicken sentinel data. Bigler
et al. (1976) identify two clusters of counties with mos-
quito pools often positive for EEEV – Leon-Jefferson-
Madison and Polk-Orange (both clusters located in
northern and central Florida) – and while these two
clusters show higher probabilities of suitability, they do
not contain hotspots comparable to central Florida.

While previous studies focused on utilizing land cover
land use data as the basis for modelling (Vander Kelen
et al. 2012b, 2014) land cover was only one factor con-
sidered within this model and was found to contribute
relatively little information (4.4%) to the model com-
pared to other variables. This model identified elevation
as the major contributor to habitat suitability for EEEV,
something not previously considered in EEEV modelling
studies. Elevation could relate to hydrologic features, as
these features are often found to play a significant role in
EEEV transmission (Jacob et al. 2010). Vander Kelen
et al.’s (2014) risk model using land cover-related risk
variables showed a higher risk index stretching further
into the panhandle than the final Maxent model pre-
sented in this research. While there seems to be some
overlap in the areas of the high-risk index and high
habitat suitability in the northern part of the state,
there are differences between the two indices with
respect to the panhandle. Vander Kelen et al. (2014)
show the risk of transmission stretching into southern
Florida, whereas the model produced in this study does
not have high habitat suitability probability further
south. It is important to note that Vander Kelen et al.
(2014) used land cover data from the Florida
Department of Environmental Protection, whereas this
study utilized land cover data from the National Land
Cover Database – the FL DEP data set provided more
specific land cover identification classes. While the clas-
sification schemes differed, the general ecosystems pre-
sented should have remained fairly similar. Based on this
comparison, this Maxent model presented in this
research provides a more specific indication of risk
than models created in 2014, which also utilized the
equine fatality data. This could indicate that factors
other than land cover play an important role in the
transmission of the disease. Vander Kelen et al. (2014)
also discuss the decrease in accuracy of model perfor-
mance due to the lower incidence rates in the south –
our model seems to have performed better in that
regard as there is not as high suitability probability in
the southern reaches of the state. However, while the
modelling of lower risk areas in South Florida appears
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consistent with an expectation for lower risk, validation
for the available disease incidents in South Florida sug-
gests the surface is not effective at predicting future
disease incidence risk. The model presented in this
research may have been able to predict presence more
accurately due to the availability of more variables to
compute probability with, versus prior work. The Maxent
model produced in this study provides a more inclusive
model that considered variables in addition to land
cover.

Measures of precipitation and temperature were also
found to contribute to the habitat suitability model,
another factor often cited in studies on EEEV ecology
dynamics (Vander Kelen et al. 2012a, 2012b; Jacob et al.
2010; Scott and Weaver 1989). Consideration of precipi-
tation during the coldest quarter (as identified by
per cent contribution) and mean temperature of the
coldest quarter (as identified by the jackknife test)
appear to contradict the idea of transmission peak
being in the summer as coldest quarter values for cli-
matic data were the last 4 months of the year, i.e. winter.
The findings of this study do align, however, with
Bingham et al. (2014), who evaluated winter transmis-
sion patterns of EEEV in Florida and found that, overall,
vector populations were abundant during the winter
months and readily feeding. While the data utilized in
this paper’s research was related to dead-end host fatal-
ity, there appears to be an alignment between the habi-
tat suitability predicted by the model and the findings of
high activity in the winter months by Bingham et al.
(2014). This could indicate that EEEV activity in the
peak season is partially determined by what the prior
winter conditions were. If winter conditions are more
favourable, the virus may get a ‘head start’ coming into
peak season. The implications of this could be that more
management is needed prior to peak season, and that
management efforts should be focused on controlling
the vector in the winter months to prevent proliferation
in the following summer.

It was also of interest to examine the values of envir-
onmental variables in hotspots identified by the Maxent
model to compare to prior results of habitat modelling
for EEEV. Looking at temperature seasonality, areas of
higher habitat suitability tended to have higher values
for seasonality and were overall clustered in the panhan-
dle and the north. It appears that a higher variation in
temperature throughout the year favoured EEEV trans-
mission. High mean diurnal range seemed to negatively
impact habitat suitability – per Figure 3, fragments of
very low suitability within high suitability areas in the
panhandle are areas having high diurnal ranges.
Considering precipitation during the coldest quarter,
higher precipitation values were associated with higher

suitability values. Examining the mean temperature of
the coldest quarter, the northern parts of Florida tended
to have lower mean temperatures. When comparing this
variable discussion to previous studies, there is no pre-
vious work evaluating seasonality and temperature diur-
nal range – while temperature is often mentioned as
a factor, it is not evaluated in-depth. Precipitation, on
the other hand, is often cited as a factor in the propaga-
tion of EEEV as it can lead to inundation in areas and
therefore create breeding grounds for mosquito vector
species (Jacob et al. 2010; Vander Kelen et al. 2012b;
Cupp et al. 2003).

The model hotspots, with respect to their land cover
covariates, generally lie in areas of cultivated crops, hay,
and pastureland, evergreen forest, and small areas of
shrub/scrub. In the areas that do not have as high of
a probability within northern Florida stretching into cen-
tral Florida, the land cover is comparatively the same but
with less cultivated cropland cover. Interestingly, the
areas of 0 probability nestled in the hotspots in the
panhandle are centred around bodies of water in that
region. The land cover comparison here is largely con-
sistent with Vander Kelen et al.’s (2012b) spatial epide-
miology study utilizing the same EEEV horse cases data
set, where clusters of incidence were associated with
crop and pastureland. The land cover data set utilized
for this research did not distinguish cropland areas by
major crop, such as tree plantations, which Vander Kelen
et al.’s (2012a, 2012b) studies found to be a significant
area for EEEV activity. It is possible that part of the tree
cover associated with this land cover dataset could be
tree plantations and not natural growth. The cropland
and pastureland results presented here do generally
match with the studies mentioned above. In addition,
there do not appear to be large concentrations of wet-
land land cover categories, which had often been asso-
ciated with EEEV proliferation in the past. In line with
recent studies, this model furthers the notion that wet-
land land cover is not the optimal place for EEEV prolif-
eration. It is important to highlight again, however, that
land cover contributed only 4.4% to the predictive
power of the model, which may indicate that changes
in environmental variables in other parts of the state to
match environmental conditions in hotspots could
increase risk without the land cover has changed. This
is important to note, as previous models indicated
a higher risk associated with tree plantation land cover
(Heberlein-Larson et al. 2019; Vander Kelen et al. 2012a,
2012b), but this model indicates land cover is not
a strong determinant.

Overall, the model created in this study further refines
the risk index models created previously to predict EEEV
transmission, as Maxent is better equipped to handle the
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lack of data points in southern Florida. In addition, while
risk modelling can be utilized to evaluate areas where
there is a perceived risk of future transmission (Downs
et al. 2019), Maxent has the capability to do this at
a larger scale. The model aligns with previous studies
that emphasize the Florida panhandle as a hotspot for
EEEV transmission, and this hotspot location has now
been verified by both sentinel chicken infection data and
equine fatality data. Heberlein-Larson et al. (2019)
emphasize in their study the theory that Florida repre-
sents a region that seeds the virus for transmission in
other states in the Northeast – birds migrating through
Florida to the Northeast may carry the virus with them,
for example, as suggested by Bingham et al. (2014). The
panhandle, according to the model, represents a series
of natural spaces where conditions are optimal not only
for spread to avian hosts to continue the epizootic cycle
but to equines, which are dead-end hosts where the
infection can be fatal. As indicated earlier, once the
disease breaks the avian cycle and infects an equine
host, there is a higher risk of infection in humans as
well. The hotspot in the panhandle as well as the areas
of higher suitability probability in northern Florida both
represent areas of higher risk for human infection.

5.3. Limitations to the model

While Maxent allows for spatial epidemiology modelling
that includes environmental variables, it is not an all-
inclusive model. Other factors could be impacting the
spread of EEEV, such as biological factors of vectors, reservoir
hosts, and dead-end hosts, small-scale ecological system
differences not captured by a broad range model and
human factors such as pest control measures and strong
vaccination regimes in certain areas that decrease equine
fatality. There is a question of whether the fenced-in nature
of the equine environment impacts proliferation of the
disease – dense populations of equines in an area where
they are limited in range, could encourage spread of the
disease as the vector would have access to multiple hosts.
While equines are dead-end hosts and cannot transmit, the
large concentration of equines may lead to more cases
present. The environmental factors, therefore, may not
determine habitat suitability as intensely as the density of
hosts would, as this model relies on case counts and their
association with environmental factors; the spatial distribu-
tion of hosts is not explicitly considered as an influence on
the result.

In addition, while Maxent can produce viable models
with minimal data points and can, therefore, be useful
when only a small amount of data is available to input
for EEEV risk assessment in other regions, more extensive
data could provide a stronger model. This efficacy is

demonstrated in this research under a validation routine
evaluating the predictive power of the model surface
given new disease incident locations occurring after the
years considered for model construction. Current effi-
cacy notwithstanding, additional actionable information
for future modelling efforts is needed. Another limitation
lies in co-linearity between bioclimatic variables – this
was addressed in this model using an iterative jackknif-
ing process. However, even with proper identification of
possible co-linearity between input variables, confound-
ing effects associated with the use of similar explanatory
variables can still occur. A more sophisticated evaluation
of the input variables for co-linearity, spatial or temporal
correlation before modelling would benefit this effort in
future research. Alternative interpolation methods to
Inverse Distance Weighting for the preparation of input
variables from point weather station data may also be
explored.

Additionally, evaluation of the model for specific
regions of Florida could be compared with statewide
results, as EEEV transmission is, of course, a process
which does not respect political borders. While Florida
has a strong base in research on EEEV, it is understudied
in other regions where it is still a risk to human and
equine populations (Cupp et al. 2003) and Maxent mod-
elling could extend to these areas. Maxent modelling
could prove to be a valuable tool for risk assessment
and mitigation. Future work utilizing Maxent as
a modelling tool could include creating models with
vector or reservoir host locational data, as has been
done in previous GIS-based modelling studies.

Lastly, the model presented is limited in terms of
spatial resolution, as the spatial resolution of the result-
ing modelled surface can be no finer than the coarsest of
the input covariates. The original data sets for the land
cover data as well as the elevation models had relatively
high-resolution values (30 m x 30 m and 1/3 arc seconds,
respectively). In order to provide for corresponding cli-
mate data, however, an interpolation approach was
necessary to estimate surfaces representing climate cov-
ariates from point bioclimatic observations. Per the coar-
sest spatial resolution among the covariates, the final
resolution of the interpolated climate variables was
approximately 3000 m x 3000 m. Because of this, the
resolution of the NLCD data, as well as the DEM data,
was generalized to match the resolution of the interpo-
lated climate variables utilized. Maxent requires an iden-
tical extent and resolution among input covariates in
order for the model to run properly. If additional climate
data points were available when interpolating biocli-
matic input surfaces, this could have yielded worthwhile
interpolated surfaces, and final model results, at higher
spatial resolutions.
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6. Conclusion

Utilizing Maxent for spatial epidemiology provides
a method for medical, veterinary and public health pro-
fessionals to predict future areas of infection. Studies
such as Gwitira et al.’s (2015) work modelling malaria
with Maxent have helped to guide medical and public
health professionals in designing and implementing pre-
ventative methods. Pursuant to the development of
preventative measures, a comprehensive model could
be used to guide medical professionals as well as veter-
inary professionals towards addressing risk areas for
EEEV infection. This model has shown the panhandle of
Florida as well as other parts of northern Florida to be
spaces where there is a higher probability of habitat
suitability for the disease. Not only do these hotspots
represent risks to local populations but also have the
potential to assist in seeding the virus in other regions.
Natural spaces have suitable conditions for virus prolif-
eration, including characteristic elevation, precipitation,
and temperature. Previous studies had focused on the
risk associated with land cover, but the model created in
this research suggests that land cover is a small factor in
the overall risk assessment for an area. Risk of EEEV
transmission in Florida and other states needs to be
evaluated more holistically based on the variables iden-
tified here as well as additional climatic variables. As the
climate changes, more regions may become suitable
habitats for EEEV. In addition, as urbanization continues,
there is the risk increased contact of humans with habi-
tats where conditions are suitable for the virus cycle and
where humans are more likely to become exposed.

There is a vaccine for equines, but the virus is usually fatal
in unvaccinated equines. While Florida is no longer as com-
petitive in equine breeding as it has been historically (Wilson
et al. 1986), EEEV represents a viable threat to horse stocks
and therefore local economies. EEEV is also often fatal in
humans, and there is no vaccine or current treatment avail-
able for it once an individual has contracted the disease
(Vander Kelen et al. 2014). Case fatality for EEEV in humans is
around 50% and cases that are not fatal still cause perma-
nent and serious neurological damage (FDOH 2019).
Awareness of high-risk areas will allow veterinary profes-
sionals to ensure that all at-risk animals in that region have
been properly vaccinated and will also provide a potential
warning system for doctors. In general, successful modelling
of EEEV using Maxent will add to the growing body of
literature using Maxent in spatial epidemiology and help
highlight its practical applications. Further research could
utilize this modelling technique to evaluate habitat suitabil-
ity probability in states who are beginning to experience an
uptick in EEEV activity.
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