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Optimizing arbovirus surveillance using risk mapping and coverage modelling
Joni Downsa, Mehrdad Vaziria, George Deskinsb, William Kellnerb, Kristi Mileyc and Thomas R. Unnaschc

aSchool of Geosciences, University of South Florida, Tampa, FL, USA; bCitrus County Mosquito Control, Lecanto, FL, USA; cGlobal Health
Infectious Disease Research, University of South Florida, Tampa, FL, USA

ABSTRACT
Diseases carried by mosquitoes and other arthropods endanger human health globally. Though
costly, surveillance efforts are vital for disease control and prevention This paper describes an
approach for strategically configuring targeted disease surveillance sites across a study area. The
methodology combines risk index mapping and spatial optimization modelling. The risk index is
used to identify demand for surveillance, and the maximum covering location problem is used to
select a specified number of candidate surveillance sites that covers the maximum amount of risk.
The approach is demonstrated using a case study where optimal locations for sentinel surveillance
sites are selected for the purposes of detecting eastern equine encephalitis virus in a county in the
state of Florida. Optimal sentinel sites were selected under a number of scenarios that modelled
different target populations (horses or humans), coverage distances (0.5, 1.0, and 1.5 km), and
numbers of sites to select (1–12). Sentinel site selections for the horse and human models
displayed different spatial patterns, with horse sites located largely in the west-central region
and human ones in the north-central. Minor amounts of spatial overlap between the horse and
human sites were observed, especially as coverage distances and numbers of sites were increased.
Additionally, a near linear increase in risk coverage was observed as sites were incrementally added
to the scenarios. This finding suggests that the number of sentinel sites within the ranges explored
should be based on the maximum that can be funded, since they provide similar levels of benefit.
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Introduction

Arboviruses – viruses transmitted by mosquitoes, flies,
and arthropods – endanger human health globally
(Gubler 2002). Arboviral diseases, such as malaria, den-
gue, river blindness, and yellow fever, are responsible for
illness and death in millions of people. Even the less
common of these viruses, such as West Nile virus, Zika
virus, and Eastern Equine Encephalitis virus, can pose
serious health threats locally. Accordingly, risk control
of arboviral diseases is an important global health prior-
ity (Dowdle 1998).

Measures aimed to control the transmission of arbo-
viruses to humans and other species, including livestock
and wildlife, typically involve a number of strategies
(Eldridge 1987). Vector management efforts are imple-
mented to reduce viral transmission. These vector con-
trol efforts commonly include pesticide application,
biological control, and engineering solutions aimed at
reducing vector abundance in order to reduce virus
transmission risk (Kean et al. 2015). Prevention efforts
are also implemented in order to reduce disease inci-
dence or impacts. For example, vaccination is widely
used to prevent illnesses caused by arboviruses in ani-
mals (Hotez 2009).

For these vector control and disease prevention
efforts to be effective, adequate surveillance is critical
to providing early warnings of potential outbreaks
(Olliaro et al. 2018). Surveillance is used to estimate
vector abundance, detect viral activity in vectors, and
document cases of infections in humans or other hosts.
Popular methods of surveillance include the use of traps
in combination with viral culture or molecular assays to
detect the presence of the viruses of interest, the use of
serological assays to detect exposure in sentinel animals,
and standard epidemiological reporting techniques to
collect data on the incidence of disease caused by viral
infections. Although they can be effective, these
approaches are often labour intensive in both the field
and laboratory, as well as financially expensive to imple-
ment. Accordingly, selecting which locations to survey is
critical when resources limit the number of sites that can
be sampled.

Sampling design is an important consideration for
disease surveillance. Gu et al. (2008) describes two
basic spatio-temporal strategies for surveillance: exten-
sive and targeted. Extensive sampling involves wide-
spread surveillance of vectors or diseases over space
and time. Stratified random sampling designs are often
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recommended with this approach, which is best suited
for estimating vector abundance and surveying for easily
detectable diseases (Sedda et al. 2019). Such approaches
are commonly used to monitor mosquito abundance
and common viruses across broad spatial areas over
time (Burkett-Cadena et al. 2016). Targeted surveillance,
which involves intensive surveys when and where there
is a high likelihood of detection, is recommended when
infection rates are low and possibly spatially isolated
(Chevalier, Lecollinet, and Durand 2011). Use of sentinel
animals are commonly used for targeted surveillance of
rare, arboviral diseases. Generally, the number of senti-
nel sites that can be operated is limited to a small num-
ber, mostly due to labour and maintenance costs (Ritchie
et al. 2007; Hall et al. 2012). This makes sentinel place-
ment an important strategic decision for disease surveil-
lance. However, in practice they are often selected based
on historical case reports, suspected transmission areas
based on expert opinion, convenience of the location, or
some combination of these factors which can limit their
effectiveness (Ramírez et al. 2018). However, the effec-
tiveness and efficiency of sentinel programmes might be
improved with a more strategic site selection method.

This paper presents a methodology for strategically
selecting targeted arbovirus surveillance sites under
constraints of limited resources. The approach is demon-
strated using a case study where optimal locations for
sentinel surveillance sites are selected for the purposes
of detecting eastern equine encephalitis (EEE) in
a county in the state of Florida. EEE is caused by infection
of the mosquito-borne eastern equine encephalitis virus
(EEEV). EEEV is an arbovirus native to the eastern coast of
the United States, with the largest number of cases
reported in Florida. EEEV is maintained in a complex
transmission cycle involving birds, reptiles, and mam-
mals, including humans (Figure 1). EEEV is thought to
overwinter in small mammals, wetland birds, and rep-
tiles, where it is maintained in an enzootic cycle through
transmission to songbirds by the mosquito Culiseta mel-
anura. The epizootic cycle is largely carried out by bridge
vectors, mosquitoes of the genera Aedes and
Coquillettidia, which also feed on songbirds but also
transmit the virus to dead end hosts such as humans,

horses, and poultry (CDC 2017). Florida has historically
exhibited relatively high levels of EEEV activity in horses,
humans, and sentinel chickens (USDA 2017). It is also the
only state in the USA where EEEV transmission
occurs year round. Furthermore, recent studies suggest
that Florida serves as a reservoir from which EEEV is
periodically introduced to the rest of the eastern USA
(Armstrong et al. 2008), so it is an important region to
monitor EEEV activity.

This approach for selecting optimal sentinel surveil-
lance sites initially relies upon risk index models to map
EEEV risk based on the composition and configuration of
habitats associated with viral transmission. The premise
is that the goal of targeted surveillance is to place the
sentinel sites in the locations most likely to support
transmission in order to maximize disease detection.
So, the goal is to survey as much high risk area as
possible, as measured by a validated risk index model,
given a limited number of sentinel sites that can be
operated. First, risk is mapped for both horses and
humans, two relevant dead-end hosts within the study
area. Second, spatial modelling is used to identify opti-
mal sentinel sites within the risk maps. Specifically, the
maximum covering location problem is applied to select
a set number of sentinel sites in order to cover the
maximum amount of risk within a specified coverage
radius. The model is solved for a number of scenarios
for each host species based on different numbers of
selected sites and coverage distances. A discussion of
the relative merits of each scenario is also provided.

Materials and methods

Study area

The focus of this study is Citrus County, one of 67 admin-
istrative counties in the state of Florida, USA. Citrus
County has a population of about 140,000 people
(2010 US Census) and 1,150 horses and ponies (2012
USDA Census of Agriculture). Although the county is
not known as a hotspot for EEEV activity, a number of
equine, emu, and chicken cases have been reported
during recent years (CDC 2017). Additionally, as the

Figure 1. EEEV transmission cycle.

14 J. DOWNS ET AL.



county borders multiple high incidence counties, it is an
area of concern for future EEEV outbreaks.

Risk index mapping

Index models are a popular approach in GIScience for
quantitatively assessing suitability of locations in a map
for some purpose, such as wildlife habitat, economic
development, or agricultural production (Brooks 1997;
Downs, Gates, and Murray 2008). Typically, suitability is
measured on a continuous scale from 0 to 1, ranging
from completely unsuitable to optimally suitable,
although sometimes alternate scales are used. These
indices are derived from a number of individual variables
that measure important suitability factors; these suitabil-
ity variables are then combined using a mathematical
equation to obtain a final suitability index value. Index
values are computed for individual locations in a map,
such as regularly spaced raster cells, using a geographic
information system (GIS). In the context of disease, suit-
ability is often interpreted as risk when using this
approach. For example, risk index models have been
developed for Lyme disease (Ogden et al. 2008;
Nicholson and Mather 2014), Dirofilaria immitis (Vezzani
and Carbajo 2006), and malaria (Hagenlocher and Castro
2015). This paper uses a risk index modelling approach
to map EEEV risk in Citrus County. First, a previously
developed and validated risk index model is used to
map transmission risk to horses. Second, that model is
modified to map transmission risk to people in residen-
tial areas.

Horse risk
Vander Kelen et al. (2014) published a risk index model
for predicting EEEV transmission to horses in Florida. The
model was developed based on previous studies that
analysed habitats associated with documented equine
cases of EEEV in the state, as well as other relative
literature documenting habitat associations of EEEV.
The model was later validated with an independent
dataset of documented horse cases over a 5-year period,
confirming its ability to predict high risk areas using land
use/land cover data (Downs et al. 2018). The index
model assesses EEEV risk to horses based on five indivi-
dual risk variables (RVs) which are combined into a final
risk index (RI) that measures transmission risk on a scale
of 0.0 (no risk) to 1.0 (maximal risk). Risk is calculated for
each individual raster cell in a map based on the habitat
type of the cell along with the composition and config-
uration of habitats in neighbouring cells. High risk areas
are identified as habitats likely to support horses that are
near large amounts of habitats associated with the EEEV
transmission cycle, as described below.

The index is computed as described in Table 1. The
model incorporates five risk variables into a final risk
index that measures risk of EEEV transmission to horses.
RV1 (local habitat) evaluates EEEV transmission risk to
horses based on the land use/land cover type of the
focal raster cell (i.e. the individual cell under evaluation).
RV1 values are assigned based on the relative likelihood
of observing a horse case in that cover type (Vander
Kelen et al. 2012b). RV2 (wetland proximity) measures
EEEV transmission risk to horses based on the distance
between the focal raster cell and the nearest cell classi-
fied as a wetland, as observed cases are frequently found
within 1.5 km of wetlands which support Culiseta mela-
nura (Vander Kelen et al. 2012b). RV3 (wetland composi-
tion) measures EEEV transmission risk to horses
according to the abundance of wetlands surrounding
the focal cell, as wetlands of various types support vec-
tors of EEEV (Moncayo, Edman, and Finn 2000). RV4 (tree
plantation–coniferous forest proximity) measures EEEV
transmission risk to horses based on the distance
between the focal raster cell and the nearest cell classi-
fied as either tree plantation or coniferous forests, which
are habitats associated with relevant bridge vectors
(Vander Kelen et al. 2012a). RV5 (tree plantation–conifer-
ous forest composition) measures EEEV transmission risk
to horses according to the abundance of coniferous
forests surrounding the focal cell. Final RI (risk index)
values are computed by mathematically combining RV1-
RV5 according to the equation provided in Table 1. The
RI values identify locations with the combinations of
habitat features that are most likely to support transmis-
sion, i.e. those with cover types likely to support horses
that are near an abundance of both wetlands and tree
plantations/coniferous forests, which support both the
enzootic and epizootic portions of the transmission
cycle. Figure2 illustrates how the index is computed
from a classified land use/land cover map; the broader
spatial pattern of values follows that of cover types
supporting horses – especially agricultural lands and
low-density residential areas – with the final RI values
within those areas reflecting the spatial distribution and
abundance of wetlands and coniferous forests. For more
details about the development of the RI model, please
consult Vander Kelen et al. (2014). RI values were
mapped for Citrus County using 30-m resolution land
use/land cover data obtained from the Southwest
Florida Water Management District, as previously
described (Downs et al. 2018).

Residential risk
The general framework of the RI model developed to
predict EEEV transmission risk to horses in Florida has
been shown to be flexible for mapping EEEV risk in other
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contexts. For example, Downs et al. (2015) adapted the
RI model to map EEEV transmission risk to white-tailed
deer in Michigan, USA, by: (1) modifying RV1 to reflect
local habitat preferences of the species (Hiller, Campa,
and Winterstein 2009) and (2) replacing tree plantations-
coniferous forests in RV4 and RV5 with lowland forests,
a habitat type associated with EEEV and relevant vector
activity in that region (Rey et al. 2012; Snow 1955). Here,
the horse model is adapted to map EEEV risk to humans
in residential areas in a similar way. This is accomplished
by reformulating RV1 to reflect residential land use/land
cover types, where locations classified as residential are
assigned values of 1.0 and everything else 0.0. RV2-RV5
remain the same as in the horse model, as humans and
horses play identical roles in the EEEV transmission cycle
as dead-end hosts. The final RI is then calculated using
the same equation to generate final RI values. However,
rather than assessing risk for 30-m grid cells in the map,
residential risk was mapped for individual land parcels in
the study area. Parcel data were obtained from the Citrus
County Property Appraiser (www.citruspa.org). RI values
were calculated by assigning each parcel an RV1 value of
0.0 or 1.0 based on whether it was classified as residen-
tial or not and then multiplying that value by the aver-
age of the previously calculated RV2-RV5 values that
overlaid each parcel.

Optimal sentinel site selection

Spatial optimization is a sub-speciality within the disci-
pline of geography that focuses on solving problems
with an explicit spatial component, such as how to
best allocate, route, or arrange some kind of resource
across a geographic area. Tong and Murray (2012) pro-
vide a comprehensive review of spatial optimization
models and their applications. Spatial optimization
involves formulating a geographic problem of interest
into a set of mathematical equations that represent
objectives and constraints, and then using some algo-
rithm or other approach to solve for the unknown vari-
ables in the equations (Church 1974). Objectives
represent the measures that are to be optimized.
Single objective problems either maximize or minimize
some quantity, while multi-objective problems seek
some trade-off between competing measures (Farhan
and Murray 2008). In either case, constraints impose
restrictions on the solution to the objective(s).
Objectives and constraints are most commonly written
as sets of linear equations, although non-linear models
are sometimes utilized. Example applications of spatial
optimization models include optimally siting hospitals
(ReVelle, Toregas, and Falkson 1976), designing nature
reserves (Williams, ReVelle, and Levin 2004), locating
warehouses (Horner and Downs 2007; Poulos et al.

Table 1. Calculation of an Eastern equine encephalitis virus risk index model for horses using five risk variables (RV) .
Variable Input Equation

RV1 Local Habitat Cover type of focal cell Low density residential = 1.00
Crop-pastureland = 1.00
Tree plantations = 0.48
Upland hardwood forest = 0.41
Medium density residential = 0.27
Commercial = 0.20
High density residential = 0.14
Upland coniferous forest = 0.13
Wetland mixed forest = 0.11
Wetland coniferous forest = 0.08
Shrubland and brushland = 0.08
Vegetated nonforested wetland = 0.07
Wetland hardwood forest = 0.07
Urban = 0.03
Mining = 0.02
All others = 0.01

RV2 Wetland Proximity Metres to nearest wetland, dw
¼

1 if dw � 400
1� dw�400

1500�400

� �
0 if dw � 1500

if 400 < dw < 1500

8<
:

9=
;

RV3 Wetland Composition Proportion of wetlands within 1500 metres, pw ¼ 1 if pw � 0:18
pw
0:18 if pw < 0:18

� �

RV4 Tree Plantation-Coniferous Forest
Proximity

Metres to nearest tree plantation or coniferous forest, dc
¼

1 if dc � 250
1� dc�250

1500�250

� �
0 if dc � 1500

if 250 < dc < 1500

8<
:

9=
;

RV5 Tree Plantation-Coniferous Forest
Composition

Proportion of tree plantations and coniferous forest within 1500
metres, pc

¼ 1 if pc � 0:20
pc
0:20 if pc < 0:20

� �

RI Risk Index ¼ RV1� RV2þ RV3þ RV4þ RV5
4

� �
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2001), and designing public transit systems (Wu and
Murray 2005), among many others.

Of all spatial optimization models, the maximal cover-
ing location model, or MCLP, is perhaps the most widely
applied (Murray 2016). The MCLP was originally formu-
lated by Church and ReVelle (1974) and is a single objec-
tive, linear spatial optimization model that seeks to
maximize the coverage of demand within a desired ser-
vice standard by locating a user-specified number of
facilities. This paper uses the MCLP to optimally site
sentinel locations for arboviral disease surveillance. In
this context, demand is measured in terms of risk of
EEEV transmission. Potential disease surveillance loca-
tions are considered as the facilities. The service stan-
dard, often termed a coverage distance, represents the
radius around the facilities that covers demand. In the
case of disease surveillance, coverage distance refers to
the distance at which surveillance is considered to be
effective. For EEEV, this can be interpreted the distance

at which we can detect the virus if it is actively circulat-
ing in the ecosystem. Mathematically, this problem can
be formulated as:

The objective function (1)maximizes the total amount of
risk r across all locations i that are covered by selected

sentinel sites j. Essentially, the objective is a single linear
equation thatmultiplies the risk r at each individual location
i in the map by decision variable Zi which determines
whether that risk is covered as part of the solution.
Constraints (2) ensure that for every location i, the risk r is
only covered if a sentinel site j capable of covering that risk
is selected by the model. In practice, values for aij are
determined based on the proximity of the risk locations to
the candidate sentinel sites; if location i is within the cover-
age radius of candidate sentinel site j, then aij is specified as
1 for the relevant equation, and 0 is specified if it is outside
that radius. A unique equation is generated for each indivi-
dual location i as a part of this set of constraints. Constraint
(3) specifies the p number of sentinel sites the user wishes
to locate. It is a single equation that sums the values of
decision variables Xj which determine if a candidate site is
selected or not. Finally, binary integer bounds are specified
for decision variables Xj(4) and Zi (5). Solving the MCLP
yields binary values for all Xj and all Zi under the objective
of maximizing equation (1). In other words, the solution to
the MCLP determines both which sentinel sites should be
selected in order to maximally cover risk, as well as which
locations are covered by each selected sentinel site.
A complete set of MCLP equations for a sample problem
for reference can be found in Downs et al. (2014). This
formulation of the MCLP was applied to optimally site
EEEV sentinel locations in Citrus County under several dif-
ferent scenarios. These scenarios included all combinations
of three different factors: type of risk (horse or human),
coverage distance (0.5, 1.0, and 1.5 km), and number of
desired sentinel sites (1–12). Coverage distances up to
1.5 km were chosen since that threshold corresponds to
themaximum distance that themost relevant EEEV vectors
typically fly (Estep et al. 2010; Morris, Larson, and Lounibos
1991). Twelve was chosen for the maximum number of

Figure 2. Computation of a risk index model for EEEV transmis-
sion to horses in Florida based on five risk variables (RVs): (a) RV1
local habitat, (b) RV2 wetland proximity, (c) RV3 wetland com-
position, (d) RV4 tree plantation-coniferous forest proximity, (e)
RV5 tree plantation-coniferous forest composition, and (f) RI risk
index.

INPUTS: ri ¼ risk at location i

p ¼ number of sentinel sites to locate

aij ¼ 1if candidate sentinel site j can cover risk at location i;
0 otherwise

MAXIMIZE:
P
i
riZi (1)

SUBJECT TO:
P
j
aijXj � Zi � 0 "i (2)

P
j
Xj ¼ p (3)

Xj ¼ 1 if sentinel site j is selected; 0 otherwise "j (4)

Zi ¼ 1 if risk at location i is covered;
0 otherwise

"i (5).
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sentinel sites, as that is approximately double what the
county can currently support.

Risk was specified using the risk index values for horses
and residential areas in the previous section. Because
each map contained too many grid cells with risk values
to apply the MCLP, since it can be computationally inten-
sive to formulate and solve, risk values were aggregated
to a slightly coarser scale in order to facilitate analysis. Risk
index values were aggregated to a regular grid of hexa-
gons, as tessellations of equal-area hexagons more accu-
rately represent straight-line distances between cell
centres than square-based grids (Birch, Oom, and
Beecham 2007), which is an important consideration
when mapping coverage radii for spatial optimization
models. The hexagonal cells measured 150 m between
their centroids and edge midpoints (Figure 3). The final
grid, containing 21,891 cells, was overlaid each risk map.
For the horse model, raster cells whose centres fell within
a hexagon cell were summed to calculate an aggregated
risk value, which essentially weights the risk by area. For
the residential model, parcels whose centroids fell within
hexagons were summed to calculate aggregated risk
values. Use of parcel centroids captures a population
density effect, as larger numbers of small parcels within
a hexagon would have a higher aggregated risk than
those with fewer low density parcels, ceteras parabis.

MCLP equations for the different scenarios were gen-
erated using the PySpatialOpt library for Python (https://
github.com/apulverizer/pyspatialopt) integrated within
a GIS (ArcGIS v 10.5 by ESRI, Inc). The PySpatialOpt tool
operated from inside the GIS software outputs a text file

of MCLP equations in linear programming (lp) format
based on the input GIS layers, which include layers
representing demand (risk at hexagon centroids), candi-
date sites (hexagon centroids), and coverage distances
(buffer around hexagon centroids), as well as
a specification of the number of candidate sites to select.
The resulting sets of equations were then solved using
a commercial optimization engine, IBM C-PLEX (IBM,
Corp.). The solver output the values of the objective
function and decision variables, which were then
imported back into the GIS for visualization purposes.

Results

Risk index mapping

Risk index values measuring EEEV transmission to horses in
Citrus County ranged from 0.0 to 1.0 (Figure 4a). RI values
displayed an uneven spatial distribution. Optimal values
were largely concentrated in the north- and west-central
areas and the southeast of the county. Low values were

Figure 3. 150-m hexagons used to aggregate risk from indivi-
dual raster cells. Darker coloured cells indicate higher risk.

Figure 4. Final risk index (RI) maps for Citrus County: (a) horse
model and (b) residential model.
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widespread in coastal areas and the east-central parts of the
county. Themean RI value in themapwas 0.25 (s.d. = 0.26),
with 15% of the raster cells receiving values between 0.50
and 0.75 and 6% receiving values greater than 0.75. This
suggests that overall risk of EEEV transmission in the county
is low, but there are considerable areas of high risk that are
in need of monitoring.

Risk index values measuring EEEV transmission to
humans in residential areas in Citrus County ranged
from 0.0 to 1.0 (Figure 4b). RI values displayed
a somewhat similar spatial distribution to the horse risk
map, as low-density residential areas receive the highest
values in both models. However, since the residential
model assigns high risk to all residential areas for RV1
and assigns all other land use/cover types as no risk, the
final map shows a much more restricted spatial distribu-
tion of RI values. Additionally, maximum values are also
found in medium- and high-density residential areas in
the latter. The average RI values assigned to residential
parcels was 0.60 (s.d. = 0.18). This suggests that many
residential areas in the county are located in close proxi-
mity to an abundance of wetlands and coniferous forests
and should be monitored for potential EEEV transmission.

Optimal sentinel site selection

Risk index values for individual raster cells and parcels
aggregated to 150-m hexagons are illustrated for both
the horse and residential RI models in Figure 5. These
maps represent generalized versions of the maps
depicted in Figure 6. The aggregated values ranged

from about zero to 95 for the horse model and zero to
100 for the residential model. For the horse model, the
highest values were generated when hexagons encom-
passed an area of nearly continuous optimal RI values. For
the residential model, highest values occurred where high
densities of high risk parcels were located. For both cases,
the MCLP selected these high-value hexagons as optimal
sentinel sites, particularly when they were surrounded by
hexagons of similar values. Optimal sentinel sites are
mapped in Figure 5 for four scenarios: (a) horse model,
p = 6 sites, coverage radius = 1500 m; (b) horse model,
p = 12 sites, coverage radius = 1500 m; (c) residential
model, p = 6 sites, coverage radius = 1500 m; and (d)
residential model, p = 12 sites, coverage radius = 1500 m.
The six selected sites for the horse model are concen-
trated in a north-south corridor of high values that runs
across the west-central portion of the county. When this
number is raised to 12, four sites are added along this
corridor and two in the north-central part of the county.
The six selected residential sites are concentrated in the
north-central part of the county; these sites are located in
areas of concentrated residential parcels that are at high
risk. When six additional sites are added, two occur in the
same area, while the other four are located in the south-
west and southeast portions of the county.

A summary of MCLP results across all scenarios is
shown in Figure 6, which illustrates the objective values
(total aggregated risk covered by the selected sentinel
sites) for each coverage radius for both the horse model
(a) and residential model (b). The near linear increase in
the objective function as the number of sites increases –

Figure 5. Optimal sites for EEEV surveillance in Citrus County for four scenarios: (a) horse model, p = 6 sites, coverage radius = 1500 m;
(b) horse model, p = 12 sites, coverage radius = 1500 m; (c) residential model, p = 6 sites, coverage radius = 1500 m; and (d) residential
model, p = 12 sites, coverage radius = 1500 m.

ANNALS OF GIS 19



especially at the lowest coverage distance – indicates
each additional site adds a similar gain in coverage. This
suggests that the number of sentinel sites within this
range should be chosen based on the maximum the
county can support, since each additional one provides
a similar level of benefit. However, as additional sites
beyond 12 are added, eventually increases in coverage
will coverage diminish. For example, for the residential
scenario with a 1.5-km coverage distance, adding the
24th site (not illustrated) only adds an additional risk
coverage equal to 37.7% of the first site. In spatial opti-
mization, rates of diminishing returns are often used to
determine an effective number of sites to select in prac-
tice. If much greater numbers of sentinel sites were
feasible in the county, the MCLP could be solved to
find the most efficient numbers of sites to sample.

Discussion and conclusions

The combined approach of risk mapping and spatial
optimization offers a strategy for selecting optimal arbo-
virus surveillance sites under constraints of limited
resources. The MCLP, in particular, offers flexibility in
determining how to locate targeted sampling sites
across space. In this example for EEEV, scenarios varied
based on the population the model was intended to
protect, the coverage distance, and the number of sites

to select. Separate solutions were found both horses and
humans in residential areas, since the goals are some-
what different. The aims of the horse scenarios are to
protect the largest areas at high risk rather than explicitly
the largest number of horses. The rationale is two-fold:
horse density data is unavailable, and incorporating
density could bias the solutions towards locating the
surveillance sites next individual farms with large num-
bers of horses at the expensive of covering larger num-
bers of farms. However, the human model does aim to
cover the largest number of at risk people as measured
by numbers of residential parcels. Despite the slightly
different objectives, different strategies could be
employed to survey both target populations simulta-
neously. One approach is to select a set number of
sites from each scenario, potentially focusing on sites
where risk is high in both models. An alternative
approach could combine the demand from each popu-
lation into a single problem. For example, this could be
accomplished using multiple objectives and balancing
the demand according to weights to ensure coverage of
both populations (Kim, Murray, and Xiao 2008).

The main assumptions underlying this approach are
that the index models accurately measure risk to the
target populations and that the concept of a coverage
distance is a valid method for estimating the effective-
ness of sentinel surveillance methods. First, in the

Figure 6. Objective values for the MCLP for three coverage distances (0.5, 1.0, and 1.5 km) for 1–12 selected sites.
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context of target species, the risk model has been vali-
dated with independent data for horses but not for
humans. Validation with human cases is challenging,
because of the relative rarity of cases, privacy concerns,
and difficulties with determining the location of trans-
mission. Despite this, horses and humans are both bitten
by the relevant mosquito species and are similarly sus-
ceptible to EEEV, so the risk model is expected to per-
form similar for both populations. Future work might
test that assumption, however.

Second, there is uncertainty about the most appropri-
ate coverage distance to specify when applying the MCLP
to select sentinel locations. The closer to infected hosts
and vectors that the sites are placed, the more likely the
virus is expected to be detected. In this study, we chose
coverage distances that represent average mosquito
movements, but the amount of area a sentinel site can
protect may be smaller or larger in practice. The coverage
distance is important not only because it measures the
effectiveness of sentinel sites, but also because it deter-
mines the spacing between them in the final solution. At
lower distances, the chosen sites four our case study
tended to cluster in high risk areas at the expense of
locating sites as close as possible to risk, especially for the
residential model. If sentinel sites do operate with a low
coverage distance in reality but clustering is undesirable
in order to more broadly survey viral activity in the
county, then an additional set of constraints could be
formulated in order to consider the spacing between
selected sites. Future work should determine the effec-
tive distances and optimal spacing for EEEV surveillance
methods in order to best protect the state.

Once the target population and appropriate cover-
age distances are determined, the number of sites to
select can be determined based on economic or
other limiting resources. Since the particular combi-
nation of sites can vary with the value of p, a long-
term target might be used to designate sites if it is
not practical to move sites once they are established.
For example, if Citrus County has a target of 12 but
can only currently service six, then the solution of 12
might be used to select the set of current and future
sites. Six sites from the solution could be selected for
initial sentinel sites, either the ones with the highest
risk or a selection that offers broader spatial coverage
across the county. Additionally, some selected sites
might be inaccessible or infeasible to survey, in which
case the model could be solved without those candi-
date sites. Future work might use field and laboratory
studies to evaluate the effectiveness of these differ-
ent strategies. The next step in our research is to
determine if the surveillance sites selected by the
optimization model do indeed allow us to detect

EEEV more efficiently than existing sites currently
employed.

Although the MCLP is relatively simple to solve with
commercial GIS and optimization software, other spatial
optimizationmodels might also provide useful approaches
to select arbovirus surveillance sites. For example, the set
covering location problem works similarly but, rather than
maximizing coverage, it selects the minimum number of
sites that provides complete coverage. Although such
a strategy is not feasible in Citrus County, it could be useful
in situations where the region of interest is small, resources
are unlimited, or the virus is urgent to control. Additionally,
in a similar way that a single model could be used to cover
different populations, a combined approach could be used
to develop a comprehensive strategy for surveying multi-
ple types of arboviruses in an area. By considering risk for
multiple diseases at once, an optimization model could be
used to configure the most efficient arrangement of sites
for surveying all of them. Multi-objective models could be
used for this purpose if accurate indexmodels are available
formapping risk for each virus. Future workmight focus on
developing risk index models for other types of arbo-
viruses of interest, such as West Nile Virus, and developing
a more comprehensive sampling strategy for Citrus
County. In summary, risk modelling and spatial optimiza-
tion can be used as tools to strategically design arbovirus
surveillance networks.
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