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2001), and designing public transit systems (Wu and
Murray 2005), among many others.

Of all spatial optimization models, the maximal cover-
ing location model, or MCLP, is perhaps the most widely
applied (Murray 2016). The MCLP was originally formu-
lated by Church and ReVelle (1974) and is a single objec-
tive, linear spatial optimization model that seeks to
maximize the coverage of demand within a desired ser-
vice standard by locating a user-specified number of
facilities. This paper uses the MCLP to optimally site
sentinel locations for arboviral disease surveillance. In
this context, demand is measured in terms of risk of
EEEV transmission. Potential disease surveillance loca-
tions are considered as the facilities. The service stan-
dard, often termed a coverage distance, represents the
radius around the facilities that covers demand. In the
case of disease surveillance, coverage distance refers to
the distance at which surveillance is considered to be
effective. For EEEV, this can be interpreted the distance

at which we can detect the virus if it is actively circulat-
ing in the ecosystem. Mathematically, this problem can
be formulated as:

The objective function (1)maximizes the total amount of
risk r across all locations i that are covered by selected

sentinel sites j. Essentially, the objective is a single linear
equation thatmultiplies the risk r at each individual location
i in the map by decision variable Zi which determines
whether that risk is covered as part of the solution.
Constraints (2) ensure that for every location i, the risk r is
only covered if a sentinel site j capable of covering that risk
is selected by the model. In practice, values for aij are
determined based on the proximity of the risk locations to
the candidate sentinel sites; if location i is within the cover-
age radius of candidate sentinel site j, then aij is specified as
1 for the relevant equation, and 0 is specified if it is outside
that radius. A unique equation is generated for each indivi-
dual location i as a part of this set of constraints. Constraint
(3) specifies the p number of sentinel sites the user wishes
to locate. It is a single equation that sums the values of
decision variables Xj which determine if a candidate site is
selected or not. Finally, binary integer bounds are specified
for decision variables Xj(4) and Zi (5). Solving the MCLP
yields binary values for all Xj and all Zi under the objective
of maximizing equation (1). In other words, the solution to
the MCLP determines both which sentinel sites should be
selected in order to maximally cover risk, as well as which
locations are covered by each selected sentinel site.
A complete set of MCLP equations for a sample problem
for reference can be found in Downs et al. (2014). This
formulation of the MCLP was applied to optimally site
EEEV sentinel locations in Citrus County under several dif-
ferent scenarios. These scenarios included all combinations
of three different factors: type of risk (horse or human),
coverage distance (0.5, 1.0, and 1.5 km), and number of
desired sentinel sites (1–12). Coverage distances up to
1.5 km were chosen since that threshold corresponds to
themaximum distance that themost relevant EEEV vectors
typically fly (Estep et al. 2010; Morris, Larson, and Lounibos
1991). Twelve was chosen for the maximum number of

Figure 2. Computation of a risk index model for EEEV transmis-
sion to horses in Florida based on � ve risk variables (RVs): (a) RV1
local habitat, (b) RV2 wetland proximity, (c) RV3 wetland com-
position, (d) RV4 tree plantation-coniferous forest proximity, (e)
RV5 tree plantation-coniferous forest composition, and (f) RI risk
index.

INPUTS: ri ¼ risk at location i
p ¼ number of sentinel sites to locate

aij ¼ 1if candidate sentinel site j can cover risk at location i;
0 otherwise

MAXIMIZE:
P

i
riZi (1)

SUBJECT TO:
P

j
aijXj � Zi � 0 " i (2)

P

j
Xj ¼ p (3)

Xj ¼ 1 if sentinel site j is selected; 0 otherwise " j (4)

Zi ¼ 1 if risk at location i is covered;
0 otherwise

" i (5).
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sentinel sites, as that is approximately double what the
county can currently support.

Risk was specified using the risk index values for horses
and residential areas in the previous section. Because
each map contained too many grid cells with risk values
to apply the MCLP, since it can be computationally inten-
sive to formulate and solve, risk values were aggregated
to a slightly coarser scale in order to facilitate analysis. Risk
index values were aggregated to a regular grid of hexa-
gons, as tessellations of equal-area hexagons more accu-
rately represent straight-line distances between cell
centres than square-based grids (Birch, Oom, and
Beecham 2007), which is an important consideration
when mapping coverage radii for spatial optimization
models. The hexagonal cells measured 150 m between
their centroids and edge midpoints (Figure 3). The final
grid, containing 21,891 cells, was overlaid each risk map.
For the horse model, raster cells whose centres fell within
a hexagon cell were summed to calculate an aggregated
risk value, which essentially weights the risk by area. For
the residential model, parcels whose centroids fell within
hexagons were summed to calculate aggregated risk
values. Use of parcel centroids captures a population
density effect, as larger numbers of small parcels within
a hexagon would have a higher aggregated risk than
those with fewer low density parcels, ceteras parabis.

MCLP equations for the different scenarios were gen-
erated using the PySpatialOpt library for Python (https://
github.com/apulverizer/pyspatialopt) integrated within
a GIS (ArcGIS v 10.5 by ESRI, Inc). The PySpatialOpt tool
operated from inside the GIS software outputs a text file

of MCLP equations in linear programming (lp) format
based on the input GIS layers, which include layers
representing demand (risk at hexagon centroids), candi-
date sites (hexagon centroids), and coverage distances
(buffer around hexagon centroids), as well as
a specification of the number of candidate sites to select.
The resulting sets of equations were then solved using
a commercial optimization engine, IBM C-PLEX (IBM,
Corp.). The solver output the values of the objective
function and decision variables, which were then
imported back into the GIS for visualization purposes.

Results

Risk index mapping

Risk index values measuring EEEV transmission to horses in
Citrus County ranged from 0.0 to 1.0 (Figure 4a). RI values
displayed an uneven spatial distribution. Optimal values
were largely concentrated in the north- and west-central
areas and the southeast of the county. Low values were

Figure 3. 150-m hexagons used to aggregate risk from indivi-
dual raster cells. Darker coloured cells indicate higher risk.

Figure 4. Final risk index (RI) maps for Citrus County: (a) horse
model and (b) residential model.
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widespread in coastal areas and the east-central parts of the
county. Themean RI value in themapwas 0.25 (s.d. = 0.26),
with 15% of the raster cells receiving values between 0.50
and 0.75 and 6% receiving values greater than 0.75. This
suggests that overall risk of EEEV transmission in the county
is low, but there are considerable areas of high risk that are
in need of monitoring.

Risk index values measuring EEEV transmission to
humans in residential areas in Citrus County ranged
from 0.0 to 1.0 (Figure 4b). RI values displayed
a somewhat similar spatial distribution to the horse risk
map, as low-density residential areas receive the highest
values in both models. However, since the residential
model assigns high risk to all residential areas for RV1
and assigns all other land use/cover types as no risk, the
final map shows a much more restricted spatial distribu-
tion of RI values. Additionally, maximum values are also
found in medium- and high-density residential areas in
the latter. The average RI values assigned to residential
parcels was 0.60 (s.d. = 0.18). This suggests that many
residential areas in the county are located in close proxi-
mity to an abundance of wetlands and coniferous forests
and should be monitored for potential EEEV transmission.

Optimal sentinel site selection

Risk index values for individual raster cells and parcels
aggregated to 150-m hexagons are illustrated for both
the horse and residential RI models in Figure 5. These
maps represent generalized versions of the maps
depicted in Figure 6. The aggregated values ranged

from about zero to 95 for the horse model and zero to
100 for the residential model. For the horse model, the
highest values were generated when hexagons encom-
passed an area of nearly continuous optimal RI values. For
the residential model, highest values occurred where high
densities of high risk parcels were located. For both cases,
the MCLP selected these high-value hexagons as optimal
sentinel sites, particularly when they were surrounded by
hexagons of similar values. Optimal sentinel sites are
mapped in Figure 5 for four scenarios: (a) horse model,
p = 6 sites, coverage radius = 1500 m; (b) horse model,
p = 12 sites, coverage radius = 1500 m; (c) residential
model, p = 6 sites, coverage radius = 1500 m; and (d)
residential model, p = 12 sites, coverage radius = 1500 m.
The six selected sites for the horse model are concen-
trated in a north-south corridor of high values that runs
across the west-central portion of the county. When this
number is raised to 12, four sites are added along this
corridor and two in the north-central part of the county.
The six selected residential sites are concentrated in the
north-central part of the county; these sites are located in
areas of concentrated residential parcels that are at high
risk. When six additional sites are added, two occur in the
same area, while the other four are located in the south-
west and southeast portions of the county.

A summary of MCLP results across all scenarios is
shown in Figure 6, which illustrates the objective values
(total aggregated risk covered by the selected sentinel
sites) for each coverage radius for both the horse model
(a) and residential model (b). The near linear increase in
the objective function as the number of sites increases –

Figure 5. Optimal sites for EEEV surveillance in Citrus County for four scenarios: (a) horse model, p = 6 sites, coverage radius = 1500 m;
(b) horse model, p = 12 sites, coverage radius = 1500 m; (c) residential model, p = 6 sites, coverage radius = 1500 m; and (d) residential
model, p = 12 sites, coverage radius = 1500 m.
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especially at the lowest coverage distance – indicates
each additional site adds a similar gain in coverage. This
suggests that the number of sentinel sites within this
range should be chosen based on the maximum the
county can support, since each additional one provides
a similar level of benefit. However, as additional sites
beyond 12 are added, eventually increases in coverage
will coverage diminish. For example, for the residential
scenario with a 1.5-km coverage distance, adding the
24th site (not illustrated) only adds an additional risk
coverage equal to 37.7% of the first site. In spatial opti-
mization, rates of diminishing returns are often used to
determine an effective number of sites to select in prac-
tice. If much greater numbers of sentinel sites were
feasible in the county, the MCLP could be solved to
find the most efficient numbers of sites to sample.

Discussion and conclusions

The combined approach of risk mapping and spatial
optimization offers a strategy for selecting optimal arbo-
virus surveillance sites under constraints of limited
resources. The MCLP, in particular, offers flexibility in
determining how to locate targeted sampling sites
across space. In this example for EEEV, scenarios varied
based on the population the model was intended to
protect, the coverage distance, and the number of sites

to select. Separate solutions were found both horses and
humans in residential areas, since the goals are some-
what different. The aims of the horse scenarios are to
protect the largest areas at high risk rather than explicitly
the largest number of horses. The rationale is two-fold:
horse density data is unavailable, and incorporating
density could bias the solutions towards locating the
surveillance sites next individual farms with large num-
bers of horses at the expensive of covering larger num-
bers of farms. However, the human model does aim to
cover the largest number of at risk people as measured
by numbers of residential parcels. Despite the slightly
different objectives, different strategies could be
employed to survey both target populations simulta-
neously. One approach is to select a set number of
sites from each scenario, potentially focusing on sites
where risk is high in both models. An alternative
approach could combine the demand from each popu-
lation into a single problem. For example, this could be
accomplished using multiple objectives and balancing
the demand according to weights to ensure coverage of
both populations (Kim, Murray, and Xiao 2008).

The main assumptions underlying this approach are
that the index models accurately measure risk to the
target populations and that the concept of a coverage
distance is a valid method for estimating the effective-
ness of sentinel surveillance methods. First, in the

Figure 6. Objective values for the MCLP for three coverage distances (0.5, 1.0, and 1.5 km) for 1–12 selected sites.
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context of target species, the risk model has been vali-
dated with independent data for horses but not for
humans. Validation with human cases is challenging,
because of the relative rarity of cases, privacy concerns,
and difficulties with determining the location of trans-
mission. Despite this, horses and humans are both bitten
by the relevant mosquito species and are similarly sus-
ceptible to EEEV, so the risk model is expected to per-
form similar for both populations. Future work might
test that assumption, however.

Second, there is uncertainty about the most appropri-
ate coverage distance to specify when applying the MCLP
to select sentinel locations. The closer to infected hosts
and vectors that the sites are placed, the more likely the
virus is expected to be detected. In this study, we chose
coverage distances that represent average mosquito
movements, but the amount of area a sentinel site can
protect may be smaller or larger in practice. The coverage
distance is important not only because it measures the
effectiveness of sentinel sites, but also because it deter-
mines the spacing between them in the final solution. At
lower distances, the chosen sites four our case study
tended to cluster in high risk areas at the expense of
locating sites as close as possible to risk, especially for the
residential model. If sentinel sites do operate with a low
coverage distance in reality but clustering is undesirable
in order to more broadly survey viral activity in the
county, then an additional set of constraints could be
formulated in order to consider the spacing between
selected sites. Future work should determine the effec-
tive distances and optimal spacing for EEEV surveillance
methods in order to best protect the state.

Once the target population and appropriate cover-
age distances are determined, the number of sites to
select can be determined based on economic or
other limiting resources. Since the particular combi-
nation of sites can vary with the value of p, a long-
term target might be used to designate sites if it is
not practical to move sites once they are established.
For example, if Citrus County has a target of 12 but
can only currently service six, then the solution of 12
might be used to select the set of current and future
sites. Six sites from the solution could be selected for
initial sentinel sites, either the ones with the highest
risk or a selection that offers broader spatial coverage
across the county. Additionally, some selected sites
might be inaccessible or infeasible to survey, in which
case the model could be solved without those candi-
date sites. Future work might use field and laboratory
studies to evaluate the effectiveness of these differ-
ent strategies. The next step in our research is to
determine if the surveillance sites selected by the
optimization model do indeed allow us to detect

EEEV more efficiently than existing sites currently
employed.

Although the MCLP is relatively simple to solve with
commercial GIS and optimization software, other spatial
optimizationmodels might also provide useful approaches
to select arbovirus surveillance sites. For example, the set
covering location problem works similarly but, rather than
maximizing coverage, it selects the minimum number of
sites that provides complete coverage. Although such
a strategy is not feasible in Citrus County, it could be useful
in situations where the region of interest is small, resources
are unlimited, or the virus is urgent to control. Additionally,
in a similar way that a single model could be used to cover
different populations, a combined approach could be used
to develop a comprehensive strategy for surveying multi-
ple types of arboviruses in an area. By considering risk for
multiple diseases at once, an optimization model could be
used to configure the most efficient arrangement of sites
for surveying all of them. Multi-objective models could be
used for this purpose if accurate indexmodels are available
formapping risk for each virus. Future workmight focus on
developing risk index models for other types of arbo-
viruses of interest, such as West Nile Virus, and developing
a more comprehensive sampling strategy for Citrus
County. In summary, risk modelling and spatial optimiza-
tion can be used as tools to strategically design arbovirus
surveillance networks.
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