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Particulate Carbon, Nitrogen and Phosphorus Stoichiometry of 
South West Florida Waters 

 
Susan Mary Murasko 

 
ABSTRACT 

 
 
 

 The southwestern Florida shelf marine environment has often been 

characterized as oligotrophic, yet these waters can support large, high biomass, 

persistent phytoplankton blooms, including blooms of the toxin producing 

dinoflagellate Karenia brevis.  Little is known regarding which major nutrient 

potentially limits primary production in these waters as both inorganic nitrogen 

and phosphorus concentrations are often near the limits of analytical detection 

and it is difficult to estimate what percentage of the dissolved organic pool is 

available for phytoplankton uptake.  To assess the nutrient status of 

phytoplankton populations on the southwest Florida shelf, this project examines 

the particulate nutrient stoichiometry of ambient phytoplankton assemblages from 

1998-2000 as part of the ECOHAB: Florida Program.   

 Particulate C, N, P concentrations and particulate ratios display a large 

range of values across the West Florida Shelf (WFS).  The average particulate 

stoichiometry is well above the classic Redfield ratio with a geometric mean of 

410C:56N:1P.  Frequency percentages of particulate ratio values to total sample 

number binned according to potential nutrient limitation indicate that 39% (C:N) 

of the data have values suggesting N limitation and that from 88% (N:P) to 95% 



  xiii

(C:P) of the data have values which suggest P-limitation.  It is difficult to discern 

whether phytoplankton biomass is truly P-limited as related to the nutrient regime 

on the WFS or whether detrital contributions, which can potentially be large on 

this shallow shelf, are skewing the N:P and C:P ratios towards higher values.  

Errors which could potentially be related to the different methodologies of 

determining C, N and P concentrations must also be considered when 

interpreting the particulate nutrient ratios. 

 The data were also analyzed as subsets to determine near-shore to 

offshore, latitudinal, seasonal, inter-annual and K. brevis bloom versus non-

bloom trends.  The near-shore to offshore transect indicates decreasing 

concentrations of particulate C, N, P concentrations and increasing C:N, N:P, 

C:P ratios with increasing distance offshore.  Particulate nutrient concentrations 

and particulate ratio values are very similar between the Tampa Bay, Sarasota 

and Fort Meyers transects indicating that these latitudes are not spatially distinct 

with regards to these variables.  There does not appear to be any relationship 

between the particulate C, N, P concentrations or C:N, N:P, C:P ratios and 

rainfall as indicated by Spearman Ranking Correlation coefficients.  However, 

there does appear to be monthly trends across the shelf where peak particulate 

nutrient concentrations and particulate ratio values occur during the spring, 

summer and fall.  The average particulate nutrient concentrations and ratios 

differ for each year as well as each K. brevis bloom which occurred during the 

study period.   



  xiv

 In summary, the particulate C, N, P concentrations and particulate 

nutrient ratios vary both spatially and temporally on the WFS and are potentially 

related to the flexibility of phytoplankton uptake kinetics in response to the 

varying nutrient regimes of the WFS. 
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CHAPTER ONE 

INTRODUCTION AND OBJECTIVES 

 

The Biological Pump 

The biological carbon is the sum of a suite of biological and physical 

processes that transport carbon from surface waters to the oceans interior.  This 

mechanism plays an important role in the cycling of nutrients in the global open 

oceans and is largely mediated by phytoplankton production in the photic zone, 

export production rate of sinking particulate matter, remineralization rates at 

depth and upward eddy diffusion rates of dissolved inorganic nutrients back into 

the photic zone (Eppley and Peterson 1979; Karl et al. 2001).  The dependence 

of each process on the other provides an effective feedback mechanism which 

ultimately drives the carbon (C) cycle and balances CO2 flux between the 

atmosphere and the oceans over large time scales.  In well lit surface waters the 

rates and intensities of these processes within the biological pump are influenced 

by the cycling and concentrations of nitrogen (N) and phosphorus (P) which are 

linked to the carbon cycle (Michaels et al. 2001) through biological production 

(Wu et al. 2000). However, at depth, the more refractory C can become 

decoupled from the N and P cycles as they are remineralized at faster rates and 

“net carbon sequestration” can take place (Christian et al. 1997; Karl et al. 2001).   

In this manner, the biological pump serves to “fractionate” the distributions 

of the conservative elements (Mg, Na, Co) and those which are non-conservative 

or biologically active (e.g. C, N, P) and a distinct “biochemical circulation” of 
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nutrients is the result (Redfield et al. 1963). This is primarily because N and P are 

recycled between the dissolved and particulate pools on time scales much 

shorter than the mixing and residence time of waters in the basin (Harris 1986).  

These processes are critical in oligotrophic oceans, often supplying the only 

source of “new” nutrients into these systems for phytoplankton uptake and 

assimilation (Dugdale and Goering 1967). In this case, the cycle of biological 

production, remineralization of that production at depth and the return of nutrients 

to surface waters primarily control the stoichiometry of C:N:P found within both 

the dissolved and particulate pools in the open ocean (Karl et al. 2001).  In 

coastal and shallow marine environments, controls on C:N:P stoichiometry 

becomes much more complex as nutrient pathways (i.e. sources and sinks) and 

ecosystem community structure become much more varied and dynamic. 

 

The Redfield Ratio 

The classic work of Alfred Redfield (1934, 1958, 1963) and Richard 

Fleming (1940), has provided scientists with a unifying concept of nutrient 

stoichiometry, which reflects the continuous recycling of N and P between the 

particulate organic matter (POM) and the dissolved inorganic pool in the ocean 

(Gieder and La Roche 2002).  Redfield documented the constancy of plankton 

C:N:P and the N:P of deep ocean waters throughout the worlds oceans and more 

over, that the ratios of the two pools were similar to each other (Redfield 1958; 

Redfield et al. 1963).  Based on previous works of C: N: P stoichiometry, Redfield 

and co-researchers empirically derived by averaging available data an elemental 
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ratio of 106:16:1, by atoms and is now termed the “classic Redfield Ratio” 

(Redfield 1933; Redfield 1958).  The consistency of this ratio further suggests 

that the uptake and release of nutrients in the ocean tend to occur in specific 

proportions (Karl et al. 2001; Micheals et al. 2001).  This observation led Redfield 

to the conclusion that the phytoplankton ultimately control the chemical 

constituents in the ocean by adjusting the N:P stoichiometry of the ocean by 

fixing atmospheric N to meet the metabolic needs of the plankton (Redfield 1933; 

Redfield et al. 1963; Hecky and Kilham 1988; Tyrell 1999; Falkowski 2000; 

Micheals et al. 2001).  In an effort to describe nutrient distribution in seawater, 

Redfield et al. (1963) invoked two causative principals; 1) the constrained 

(“inherently regular”) stoichiometry of the phytoplankton which results from 

physiological requirements for growth and 2) the dynamic stoichiometry that 

results from an equilibrium between the physical and biological processes which 

determine the concentration of elements present at any point in the sea.  

Falkowski (2000) describes the Redfield Ratio as “the result of nested processes 

that have a molecular biological foundation, but are coupled to biogeochemical 

process on large spatial and long temporal scales”. 

The Redfield Ratio has provided researchers with a general foundation on 

which has been based modeling efforts, laboratory experiments and field studies 

designed to understand nutrient dynamics and biogeochemical processes in 

aquatic environments (Menzel and Ryther 1964; Goldman et al. 1979; Hecky and 

Kilham 1988; Karl et al. 2001; Michaels et al. 2001; Falkowski 2000; Sterner et 

al. 2008).  Based on the idea that phytoplankton assimilate C: N: P in specific 
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proportions and that nutrients are recycled in the those same proportions, if the 

concentration of one element was known, it would be possible to calculate the 

concentrations of the other nutrients.  General assumptions could also be made 

about nutrient cycling and recycling, primary production and export production 

(Michaels et al. 2001; Geider and La Roche 2002).  

As research continued with the Redfield ratio as a guide, it became 

evident that under varying nutrient regimes, phytoplankton seem to only exhibit 

C:N:P in Redfield proportions when cells are growing at or near the maximum 

rate under conditions of nutrient sufficiency (Caperon and Meyer 1972; Droop 

1974; Droop 1975; Goldman et al. 1979; Harris 1986; Hecky et al. 1993; 

Vaillancourt et al. 2003).  Under these conditions, growth is balanced where “all 

cellular components increase exponentially at the same rate” and “cellular 

composition remains fixed” (Shuter 1979).  Therefore, the stoichiometry of 

phytoplankton should be reflective of nutrient availability or limitation in both 

cultured and natural assemblages and can be employed to assess population 

dynamics as related to the concept of steady state (growth rate = uptake rate) 

versus exponential growth.  

The application of algal stoichiometry concepts is potentially important to 

the understanding of nutrient cycling as it pertains to the biological pump, 

biogeochemical cycling, atmospheric and oceanic CO2 exchange and algal 

growth management (Karl et al. 2001; Sterner et al. 2008).  
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Nutrient Limitation of Phytoplankton 

The concept of a limiting nutrient was formulated in 1863 by an agricultural 

chemist, Justus von Leibig.  His Law of the Minimum states the “growth of a plant 

is dependent on the amount of foodstuff which is presented to it in minimum 

quantity”.  Expressed more simply, Leibig’s Law suggests that “growth rate is 

determined by the availability of the most limiting substance” (Tyrell 1999).  The 

seminal work of Leibig has remained as an important central concept of ecology 

and oceanography.  In this manner, Leibig has been considered to be the 

“founding father of Ecological Stoichiometry” (Sterner and Elser 2002).  This 

limiting nutrient concept provides the basis for modern modeling strategies which 

relate nutrient limitation and phytoplankton growth. The Droop model (1974) is 

based on the premise that phytoplankton nutrient assimilation rates and related 

growth rates are determined by the internal nutrient stores of the organism and 

that nutrient limited growth is reflected in the particulate composition of the 

organism (Hecky and Kilham 1988; Geider and La Roche 2002). In contrast the 

Monad Model relates phytoplankton growth to external concentrations of 

dissolved nutrients (Hecky and Kilham 1988). 

Over the decades, the concept of the “limiting nutrient” to phytoplankton 

growth has fueled many debates and inspired many research projects.  The 

current dogma is that lakes and streams are predominately P-limited while 

oceans and estuaries are N limited (Goldman et al. 1979; Herbland et al. 1998). 

However there is much more evidence to support the former than the latter due 

to the complexities associated with the size, long residence times and variable 
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boundary layer in the ocean (Hecky and Kilham 1988). Unlike in freshwater 

systems, where ecosystem wide experiments have been conducted (Sommer 

1990; Hecky et al. 1993), marine system assessments are largely confined to 

culture and bottle experiments in determination of the limiting nutrient (Hecky and 

Kilham 1988).  Hecky and Kilham (1988) and Smith (1984) suggest that these 

types of experiments have their limitations and results may not reflect processes 

that would occur in natural environments.  

Is the ocean N-limited or P-limited?  There are two schools of thought on 

this: the geochemist point of view is that P limits primary production, while the 

biologist point of view where N limits primary production in the ocean (Tyrell 

1999).  The geochemists argue that when nitrogen becomes limiting, nitrogen 

fixers can utilize the abundant supply of N2 in the atmosphere to meet their 

requirements for growth. Remineralization of this new biomass releases 

dissolved N, replenishing the supply of N available for phytoplankton uptake 

(Redfield 1958; Tyrell 1999). In contrast, new inputs of P in the ocean are largely 

limited to coastal inputs or up-welled deep ocean water and are a function of 

physical processes rather than a function of the biology and thus their rate of 

supply cannot be replenished as readily. However, natural nutrient abundance 

data have shown that typically it is N that is in scarce supply relative to P (Tyrell 

1999). It is also N additions that most often stimulate phytoplankton growth in 

nutrient bioassays conducted with oligotrophic waters (Goldman 1976; Hecky 

and Kilham 1988; Tyrell 1999). In theory it seems that P should limit primary 

production in the ocean but “in practice” it seems that N is the “master limiting 
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nutrient” (Tyrell 1999).  This may be related to timescale considerations where on 

geological time P limits production in the oceans, while on shorter scales, N limits 

production as related to the biology of the system. 

Nutrient limited or non-nutrient limited growth of phytoplankton can be 

inferred by an examination of the C:N:P stoichiometry of the phytoplankton 

composition based on the concept that cellular  C, N and P concentrations 

change in response to changing nutrient regimes (Nalewajko and Lean 1980).  

Fluxes of nutrients in the marine environment can be quite dynamic and are 

related to both biotic and abiotic processes.  Biological controls are perhaps the 

most influential in this respect and include the strength of the biological pump as 

related to production and particle sinking velocities and the turnover times of N 

and P (Harris 1986) as related to the efficiency of the microbial loop and the 

intensity of grazing activity.  Physical influences on nutrient availability tend to be 

more episodic as many processes which effect nutrient distributions are 

dependent on climate conditions such as upwelling events (wind), horizontal 

advection (wind), stratification (temperature and wind) and riverine inputs 

(precipitation).  Other physical processes include nutrient movement along 

concentration differentials and redox conditions.  In response to this ever-

changing environment, phytoplankton have adapted the ability to adjust the 

quantity of metabolic and storage components within the cell in order to sustain 

growth.  As a result, the C: N ratio increases and the N: P ratio decreases during 

N limitation while the C: P and N: P ratios increase when P is limiting.  The 

Redfield Ratio provides a numerical benchmark to make this determination 
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where N: P ratios greater than 16:1 implies P limitation and N: P ratios less than 

16:1 are indicative of N limitation.  Furthermore, particle C:P can be employed to 

“set constraints on carbon sequestration” (Micheals et al. 2001) and the 

particulate C:N ratio provides “a relative measure of growth rate” (Donaghay et 

al.1978) as a response to the nutrient status of the cell (Eppley et al. 1973).  

Phytoplankton compositional C: N: P ratios thus provide a simple and powerful 

tool to determine phytoplankton nutritional state as it relates to nutrient 

availability and growth (Eppley et al. 1973; Hecky 1993). 

 

The Nutrients 

The major nutrients that are required by all phytoplankton for growth are 

carbon, nitrogen and phosphorus. In the worlds oceans these elements 

continually cycle between the dissolved inorganic, dissolved organic and 

particulate organic (both living and non-living particles) pools on timescales of 

minutes to days to thousands of years and are driven by the biogeochemical 

processes both large and small that keep these elements continually cycling.  It 

is the size of the nutrient pool (storage capacity) and the rates of movement 

between these pools (turnover rate) rather than the absolute amounts of nutrients 

that are more important to understanding the roles of these biogeochemical 

processes as they relate to carbon sequestration over geological time or to global 

nutrient budgets or to “ecosystem function” and local nutrient availability (Harris 

1986).  On local spatial scales it is the availability of N and P that ultimately 

regulate phytoplankton growth rate, biomass and bloom duration (Vargo et al. 
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2008).  Dugdale and Goering (1967) divided nitrogen into two forms, “new N” or 

“regenerated N”.  “New” N enters the system from an external source and thus 

can contribute to new biomass (growth).  “Regenerated” N originates within a 

system (eg. zooplankton grazing and excretion and bacterial degradation) and 

can only maintain the present biomass, not produce new biomass (Dugdale and 

Goering 1967).   

All in all, “for natural populations to exist their cellular growth rate must 

exceed or equal losses to dilution, sedimentation, physiological death and 

grazing” and “cellular growth rates are a function of nutrient supply” (Harris, 

1986). 

 

Carbon 

In the marine environment, speciation within the dissolved inorganic 

carbon pool is related to pH, alkalinity and temperature which results in an 

equilibrium distribution between the CO2(aq), bicarbonate (HCO3
-) and carbonate 

ions (Harris 1986). The form of carbon within this pool that is available for 

biological uptake is dissolved CO2 which is in equilibrium with atmospheric 

concentrations and can enter the oceans directly or by way of photosynthetic 

activity (Harris 1986).  As a result of this endless source, dissolved inorganic 

carbon is found in much greater concentrations than the other essential nutrients 

and is rarely considered to be the limiting nutrient in marine waters.  Although C 

is a bioactive element, its relative abundance results in longer turnover times in 

surface waters on time scales similar to physical processes and therefore C can 
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be considered to behave more conservatively than those of N and P (Harris 

1986).  

The refractory nature of a portion of the dissolved organic C pool often 

results in its decoupling from the more labile N and P nutrient pools.  

Remineralization rates of N and P occur on significantly shorter time scales than 

for C, and often take place in shallower water column depths (Christian et 

al.1997; Hopkinson et al. 1997).  This is related to the high N and P requirements 

of the microbial community and its preferential remineralization of  N and P 

relative to C, and results in increasing C:N and C:P ratios of dissolved organic 

matter (DOM) with depth (Christian et al. 1997).  The flexibility (deviation from the 

Redfield Ratio) of the stoichiometry within the DOM pool is largely responsible for 

the oceans ability to store C.  

 

Nitrogen 

The nitrogen (N) cycle is very complex; many oxidation states of N exist 

as gains and losses of electrons to N compounds readily occur.  The inorganic 

dissolved pool of N (DIN) in the aqueous environment includes the reactive forms 

NO3
-, NO2

-, NH4
+

, which are the preferred species for phytoplankton uptake, and 

dissolved N2 gas which is only available to a special group of organisms known 

as nitrogen fixers.   

Terrestrial sources of dissolved N, including effluent from municipal waste 

water treatment plants, industry and agriculture which enter the system via 

ground waters and rivers are important to coastal processes.  In the open ocean, 
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in-situ regeneration and higher trophic level digestion and excretion, N2 fixation, 

upwelling and eddy diffusion across the thermocline provide the majority of N 

available for phytoplankton (Harris 1986).  In oxygenated surface waters, 

nitrogen conversion is primarily the result of biological assimilation, grazing 

activity and heterotrophic bacterial regeneration within the euphotic zone (Harris 

1986).  These processes result in the release of NH4
+ (ammonification) and the 

potentially bio-available components of the dissolved organic pool of N (DON) 

which are urea and amino acids (McCarthy 1980; Bronk and Ward 1999; 

Cochlan and Bronk 2001; Glibert et al. 2004).  In environments where 

concentrations of NO3
- and NH4

+ are low, it has been shown that urea could be a 

significant source of N to primary producers (Antia et al. 1991; Joint et al. 2001).  

Turnover times of DIN can be expected to be longer than for DIP as DON is more 

refractory than DOP (Walsh et al. 2006) and N “must undergo changes in 

oxidation state before metabolism” (Harris 1986).  

Nitrification, denitrification and N2 fixation are also biologically mediated 

processes that play a very important role in N cycling and therefore N availability. 

Nitrification is an oxygen requiring process where a suite of bacterial 

decomposers oxidize NH4
+ to NO2

- to NO3
-
 thus returning nitrogen into the 

preferred species for phytoplankton uptake.  This pathway of NO3
- regeneration 

occurs quickly in both the water column and in oxygenated sediments and is in 

part responsible for the low concentrations of NH4
+ and NO2

- in marine waters 

(Harris 1986).  Denitrification occurs in the absence of oxygen where facultative 

anaerobic bacteria reduce nitrates to gaseous nitrogen (Chempedia.com) and 
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“represents a substantial loss of biologically available N from the ocean 

(Ganeshram et al. 2002)”. The balance between nitrification and denitrification is 

related to the flux of organic matter into bottom waters where increased flux 

means increased decomposition efforts resulting in oxygen depletion and 

increased denitrification and vice versa.  N2 fixation is the process in which “N2 

gas is combined, via the enzyme nitrogenase, with free hydrogen molecules to 

produce NH4
+ as the stable end product” (Chempedia.com) and is carried out by 

bacteria or the blue-green algae referred to as cyanobacteria.  This provides an 

important mechanism converting N from an unlimited source (atmosphere) into 

new biomass which upon decomposition provides a potential N source for non-N2 

fixing phytoplankton.  It has specifically been linked to K. brevis bloom initiation 

and duration in oligotrophic Gulf waters (Lenes et al. 2001; Walsh and Steidinger 

2001; Vargo et al. 2008). 

 

Phosphorus 

The phosphorus (P) cycle is less complex compared to the nitrogen cycle 

because phosphorus primarily exists as the (ortho-)phosphate ion PO4
3- in both 

the aqueous environment and as cellular constituents (Harris 1986).  In marine 

waters, the largest reservoir of P is typically within the particulate pool followed 

by DOP and the lowest concentrations are usually found within the DIP pool 

(Valiela 1995).  The paucity within the DIP pool is not only the result of 

phytoplankton uptake, but may be a result of the ease in which P complexes with 

other particles.  P readily forms insoluble compounds with some metals under 
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aerobic conditions which than sink out of the water column and become stored in 

the sediments (Valiela 1995). 

Sources of P to coastal areas are primarily terrogenous in origin and 

carried into marine environment through riverine inputs, “direct discharge from 

industry and domestic sewage, surface runoff, erosion, leaching and 

groundwater transports and release from anaerobic sediments” (Anonymous 

1994-1995).  In contrast, in the open ocean, P is predominantly supplied by in-

situ regeneration via zooplankton excretion, grazing and the cycling of the 

microbial loop and also periodic upwelling events (Nalewajko and Lean 1980).  

Turnover times of P can be quite rapid on the order of minutes to days depending 

on nutrient concentrations and P pool distributions (Nalewajko and Lean 1980). 

Phytoplankton primarily utilize orthophosphate for their metabolism and to 

manufacture cellular components, i.e. mainly phospholipids and nucleic acids 

(ribosomal RNA).  PO4
3- can be directly absorbed into the cell (Rivkin and Swift 

1980), and no oxidation or reduction reactions are required for these processes 

(Harris 1986).  This is an energy dependent reaction which requires energy 

supplied from respiration or photosynthesis (Nalewajko and Lean 1980). 

However, studies show that P uptake can become saturated at low light levels 

when P is replete and that P uptake rates can be similar in both the light and dark 

phases (Nalewajko and Lean 1980).   

Some phytoplankton have the ability to take advantage of the large DOP 

pool by producing alkaline phosphatase, an extracellular enzyme that hydrolyzes 

organic monophosphate esters, releasing P that is available for assimilation  by 



  14

the cell (Perry 1974; Rivkin and Swift 1980; Graneli et al. 1999).  An additional 

mechanism for P incorporation by phytoplankton has been suggested by 

Sanudo-Wilhelmy et al. (2004), where P that has been abiotically adsorbed or 

“scavenged” by phytoplankton cell surfaces can than be internalized by way of a 

“two-step kinetic process”.  As yet it is unknown whether this process contributes 

significantly to the internal stores of P or just confounds phytoplankton 

stoichiometry studies which consider only total cellular P (Sanudo-Wilhelmy et al. 

2004). 

The rate of P uptake is determined by the internal cellular P concentration 

of the phytoplankton (Fuhs et al. 1972) and the concentration and the N:P ratio of 

available nutrients.  P uptake typically follows Michaelis-Menten kinetics 

(Nalewajko and Lean 1980).  Algal cells which are P deficient have rapid 

assimilation rates when first given sufficient P and uptake rates than decrease as 

cell P content increases (Healy and Hendzel 1980).  When P is available in 

excess, phytoplankton have the ability to store P as polyphosphates in the 

cytoplasm and vacuoles of the cell, allowing for continued algal growth in the 

event that P becomes limiting (Nalewajko and Lean 1980). 

 

Scope of this Study 

The primary purpose of this study is to assess the nutrient status of the 

natural phytoplankton populations on the Southwestern Florida shelf by 

comparing the particulate stoichiometry of carbon:nitrogen:phosphorus ratios of 

these assemblages to the Redfield Ratio of 106C:16N:1P.  A secondary analysis 
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of this data set will include the comparison of cross shelf transects (near-shore to 

offshore), latitudinal transects (north to south), the wet versus dry season, 

interannual (1998-2001) and bloom versus non-bloom conditions of Karenia 

brevis and Trichodesmium. 
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CHAPTER TWO 

WEST FLORIDA SHELF STUDY AREA 

 

Physical description 

The semi-enclosed western continental shelf of Florida is broad (extending 

200km to the west) and relatively shallow due to a gently sloping topography 

(Yang and Weisberg 1998) with isobaths that generally parallel the coastline 

(Weisberg et al. 2000).  The wide width of the WFS allows for the 

characterization of different regions as defined by distinctly different momentum 

balances (Weisberg et al. 2009).  The near shore region is part of the inner shelf 

and is directly impacted by estuaries where salinity related baroclinicity 

influences circulation (Weisberg et al. 2005, 2009).  The inner shelf (landward of 

the 50m isobath) is mostly affected by local wind forcing (Weisberg et al. 2000) 

and can be characterized by interacting surface and bottom Ekman layers 

(Weisberg et al. 2009).  The mid-shelf (seaward of 50m isobath) is where “along 

shelf momentum balance is in pure surface Ekman layer balance” and bottom 

stress is negligible (Weisberg et al. 2009).  This region can experience flows 

which are opposite to those of the inner shelf as influenced by the partial closure 

of the WFS by the Florida Keys (Weisberg et al. 2005).  The outer shelf 

represents the transition between the shelf and deep ocean processes.  The 

WFS is wide enough so that the inner shelf and outer shelf do not overlap 

(Weisberg et al. 2009).  The circulation patterns within the eastern Gulf of Mexico 

are the primary drivers of material flux across and within these regions of the 
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WFS shelf and are primarily a result of isobath and coastline geometries, winds 

and buoyancy fluxes (He and Weisberg 2002; Weisberg et al. 2005, 2009), 

bounding Gulf waters and the Loop Current.   

The region experiences basically two seasons typical of a subtropical 

climate.  Based on rainfall data (www.coaps.fsu.edu), the winter or dry season 

typically extends from October to May, with the summer or wet season from June 

to September.  In response to shifts of the subtropical high pressure belt and 

associated changes in wind stress, seasonal patterns of shelf water circulation 

occur as well (Weisberg et al. 1996; Yang and Weisberg 1998).  A brief and 

general summary of Yang and Weisberg (1998) is presented at this time.  During 

the winter season, prevailing winds are from the north/northwest which results in 

a drop of coastal sea level as surface waters move westward.  At this time, there 

are two opposing jets along the coast, one flowing south from the north and the 

other flowing north from the south, which meet during March and October near 

the west-central Florida shelf.  The mid shelf region is dominated by a strong 

northwestward jet along the 50m isobath.  These winter conditions induce coastal 

upwelling, mid-shelf downwelling and a well-mixed water column.  In contrast, 

prevailing winds in the summer are from the south/southeast and coastal sea 

surface elevation rises.  Gulf circulation is somewhat simpler at this time, with 

only a single northwestward flowing coastal jet along the entire west coast.  The 

shelf region is now dominated by downwelling conditions and the strong jet along 

the 50m isobath disappears.  During both seasons, the shelf break is 
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predominately influenced by northwestward moving topographic waves which 

results in alternating upwelling and downwelling conditions in this region. 

Due to low background inorganic nutrient concentrations (Heil 2000), this 

system is generally considered to be oligotrophic (Vargo et al. 2004; Bisset et al. 

2005; Heil et al. 2007).  Despite this characterization, the area has supported 

large and persistent blooms of diatoms (Neely et al. 2004), cyanobacteria (e.g. 

Trichodesmium spp), (Lenes et al. 2001) and the dinoflagellate Karenia brevis 

(Vargo et al. 2004).  The source of nutrients which fuel this primary production is 

currently unknown and much research is underway to gain insights into this 

enigma (Vargo et al. 2008). 

 

Nitrogen and Phosphorus Sources 

Primary production in the SW Florida coastal zone is influenced by new 

nutrients entering the Gulf of Mexico via numerous rivers and tributaries which 

drain into the Tampa Bay and Charlotte Harbor estuaries and the gated flow of 

the Caloosahatchee River which periodically receives the overflow of Lake 

Okeechobee.  The nutrient loads associated with these watersheds originate 

from residential development, industry, agriculture, cattle ranching and the 

Miocene Hawthorne phosphatic deposits (Heil et al. 2007).  The “sandy soils, 

conductive aquifers and permeable coastal sediments” of these watersheds are 

conditions conducive to submarine ground water discharge into coastal waters 

which can carry nutrient loads with concentrations similar to riverine inputs 

(Kroeger et al. 2006).  These sources tend to carry greater loads of inorganic 
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phosphorus than inorganic nitrogen and the estuaries within the study area are 

generally considered to be N-limited or P-enriched, with low DIN:DIP ratios 

(Wang et al. 1999; Heil et al. 2001; Vargo et al. 2001, 2008).  Other nutrient 

inputs to coastal waters include overland runoff, discharge from storm water 

systems, wastewater treatment plants, industrial and domestic point sources 

(Wang et al. 1999; Poor et al. 2001).   

  As anthropogenic activity continually increases on Florida’s west coast, 

atmospheric deposition should potentially be an important source of new N but 

not P, to the coastal marine environment.  A study conducted by Poor et al. 

(2001) found that average total wet and dry deposition of nitrogen (NH4
+, HNO3, 

NO3
-) to the Tampa Bay estuary during 1996-1999 contributed approximately 

22.0% of the nitrogen to this region.  Data collected at the Mote Marine Lab and 

the Gandy Bridge during 2000-2002 had deposition rates of N and P that were 1-

2 orders of magnitude lower than estuarine inputs and were not significant 

sources of nutrients to coastal zones primarily due to dilution effects (Vargo et al. 

2008). 

The shallow southwestern Florida shelf supports a diverse autotrophic and 

heterotrophic benthic community and as such, benthic flux of remineralized N 

and P out of the sediments into the water column could be an important source of 

nutrients to this system (Vargo et al. 2008).  Modeled values of benthic flux report 

that ammonia flux rates are more significant relative to P fluxes out of the 

sediment (Vargo et al. 2008).  Wang et al. (1999), reports that the release of NH3 

and PO4
3- from the sediments in Tampa Bay exceeded all external loads. 
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 Nutrient flux out of the Tampa Bay and Charlotte Harbor estuaries and 

the Caloosahatchee River can be an important source of TN and TP to coastal 

marine waters, especially when river inputs are high during the late summer and 

fall. During this time, tributaries of both Tampa Bay and Charlotte Harbor have 

high concentrations of silica (see Froelich et al. 1985, Vargo et al. 1991).  

Therefore, Si concentrations can be used as a non-conservative indicator for 

estuarine discharge into the coastal zone.  Inorganic PO4
3- and DOP are elevated 

at the 10m isobath and show a distinct seasonal pattern that coincides with river 

flow (Vargo et al. 2008).  When estimates of N and P within the daily volume of 

water flowing out of the Tampa Bay and Charlotte Harbor estuaries and 

subsequent dilution calculations are considered, estuarine outflows are generally 

“confined to the areas immediately offshore of the estuary” (Vargo et al. 2008).    

The inner west Florida shelf experiences periodic upwelling events where 

interacting surface and bottom Eckman layers move deeper nutrient rich waters 

shoreward across isobaths as part of an Ekman-Geostrophic adjustment to wind 

forcing along the coast (Weisberg et al. 2000).  At the shelf break, nutrient rich 

slope waters are occasionally upwelled (reaching the 30m isobath) in response 

to intrusions of the Loop current onto the outer shelf of the Gulf of Mexico and 

local wind events (Heil et al. 2001; Vargo et al. 2008).  Although this water rarely 

reaches the surface, the entrained nutrients could potentially fuel near bottom 

diatom populations which develop during summer stratification (Heil et al. 2001).  

This mechanism indirectly provide nutrients to surface water as the 

remineralization products of this biomass eventually reach the photic zone 
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through vertical mixing in the fall (Vargo et al. 2008).  Across shelf transport of 

upwelling waters provides an important albeit sporadic source of new nutrients to 

the photic zone and creates an effective link between shelf break and near shore 

nutrient sources (He and Weisberg 2002).   

Moving seaward, away from coastal influences, the balance between the 

phytoplankton uptake from the soluble pool and regeneration of the nutrient from 

the particulate pool becomes an increasingly important factor regulating 

production in these oligotrophic waters.  N2 fixation by cyanobacteria, metabolic 

activity of grazers (zooplankton and flagellates) and in situ regeneration 

(microbial loop) are the likely biological processes recycling nutrients in GOM 

offshore waters.  Blooms of Trichodesmium spp. blooms periodically occur within 

75 km of the west coast of Florida and have been linked to the wind driven 

Saharan dust events which deposit large amounts of iron to Gulf waters during 

the summer months (Lenes et al. 2001, 2008).  Iron is a critical component of 

nitrogenase, the enzyme responsible for N2 fixation.  Therefore, iron has the 

potential to limit N2 fixation in offshore environments (Lenes et al. 2001) but 

typically not in coastal environments where iron is delivered into the marine 

environment via rivers (Ingle and Martin 1971).  Trichodesmium ssp. has been 

reported to excrete inorganic N and P as well as DON (Lenes et al. 2001, 2008; 

Mullholland et al. 2004; Glibert and Bronk 1994).  In turn, these “new” sources of 

N and P would potentially become available to other cells including the harmful 

algae K. brevis (Mullholland et al. 2004; Glibert and Bronk 1994; Havens 2004). 
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Summary of Nitrogen and Phosphorus Distributions 

The Tampa Bay and Charlotte Harbor estuaries are characterized by low 

DIN concentrations (less than 0.5 µM) and high DON concentrations with values 

measured in 2001 of ~44-56 µM (Vargo et al. 2008). A study conducted by Heil 

et al. during the dry season of 2003 has shown that the inorganic N pool is 

typically dominated by NH4
+ and is found in the highest concentrations at the 

mouth of Tampa Bay and inside Charlotte Harbor, an area which also exhibits 

the greatest concentration of DON (Heil et al. 2007). Coastal standing stocks of 

DIP and DOP are of similar magnitude and show seasonal peaks in the late 

summer and fall as related to increase river flow during this time (Vargo et al. 

2008).  The Caloosahatchee River had higher average concentrations of TN and 

TP relative to Tampa Bay and Charlotte Harbor during 1998-2001.  

Typically offshore (greater than the 10m isobath) concentrations of DIN 

and DIP are low, ranging from ~0.02-0.2 µM and ~0.025-0.24 µM respectively. 

Such values are in contrast to concentrations of organic N ~8-14 µM and organic 

P ~0.2-0.5 µM which are present at much higher concentrations (Vargo et al. 

2008).  I refer the reader to Vargo et al. (2008), Walsh et al. (2006) and Heil et al. 

(2007) for a more detailed description of the nutrient distribution on the West 

Florida Shelf.  
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CHAPTER THREE 

METHODOLOGY 

 

Sampling 

The Florida Ecology and Oceanography of Harmful Algal Blooms 

(ECOHAB) program was a multi-institutional collaboration, multi-agency (National 

Science Foundation, National Oceanic and Atmospheric Administration, 

Environmental Protection Agency) project examining the dynamics of the Florida 

Karenia brevis Red Tide which consisted of several major components. As part 

of the hydrological ECOHAB component, monthly field surveys were conducted 

aboard the R/V Suncoaster, from June 1998 through December 2001 in the 

Southwestern Gulf of Mexico off the coast of Florida.  The study site was 

determined in relation to where K. brevis was usually first observed, which is 

~27º N latitude between Tampa Bay and Charlotte Harbor (Walsh et al. 2006) 

(Figure 1) 

Three East to West transects were sampled monthly from 1998 to 2001, 

1) outside the mouth of Tampa Bay (St. Petersburg), 2) Sarasota and 3) Fort 

Meyers.  Stations were sampled synoptically approximately every 9.2 kilometers  

out to the 50m isobath along all transects over a 4 day period.  The stations 

along the Sarasota transect were extended out to the 200m isobath. 

Seawater samples were obtained from 12L Niskin bottles attached to an 

aluminum-framed rosette/CTD package which also provided continuous vertical 

profiles of chlorophyll fluorescence, temperature, salinity and density.  Surface 
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hydrologic data were collected from a deck mounted underway flow through 

system which ran continuously throughout each cruise.  This system provided 

 

 

system where surface temperature, salinity, chlorophyll fluorescence, density, 

particle scattering and light transmission data matched with latitude and 

longitude.  Therefore the surface data provided the ability to construct surface 

maps of all parameters. 
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Figure 1.  Map of ECOHAB: Florida study area and station locations. 
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Chemical and Biological Measurements 

For Chlorophyll a (Chl a) analysis, 250 ml of whole seawater was filtered 

onto 25mm Whatman GF/F filters in duplicate. The filtration chimney was rinsed 

with 0.2 µm filtered seawater, then the GF/F filter was folded in half and 

immersed in 10 ml of methanol contained in a 10 ml plastic centrifuge tube, 

vortexed for approximately 2 seconds, capped and frozen at -15 ºC.  Immediately 

prior to analysis, samples were then allowed to equilibrate to room temperature 

and centrifuged for 10 minutes at 80 rpms.  The fluorescence of the resultant 

supernatant was determined using a Turner 10AU fluorometer and Chl a and 

phaeopigments content were determined as given by Holm-Hansen et al.1965). 

For analysis of particulate phosphate, 500 ml of seawater was pre-filtered 

using 153 µm mesh to eliminate large zooplankton and than filtered onto 

replicate pre-combusted (450º C for 2.5 hours) 25mm GF/F filters and frozen in 

fired (450º C , 2.5 hours) scintillation vials at -15 ºC.  The samples were 

subsequently processed following the Solorzano and Sharp (1980) method and 

particulate phosphate concentrates were measured on a Beckman 

spectrophotometer. 

To determine particulate carbon and nitrogen, seawater was pre-filtered 

using a 153 µm mesh to eliminate large zooplankton and filtered in duplicate onto 

a pre-combusted (450º C, 2.5 hours) 15mm GF/F filter using a sample volume 

which gave the filter adequate color for the analysis.  The filter was than treated 

with 2-3ml of 10% HCl in filtered seawater to remove inorganic carbon, rinsed 
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with filtered sea water then placed in fired foil (450º C, 2.5 hours),frozen at -20 

ºC, followed by lyophilization and storage at -20º C over desiccant.  Particulate 

carbon and nitrogen were measured by high temperature combustion/oxidation 

of a whole filter using a Carla Erba Elemental Analyzer. 

Karenia brevis was counted live within 3 hours of sampling.  One ml 

samples were placed in a glass well plate and the number of K. brevis cells was 

determined using an Olympus dissecting microscope. 

Trichodesmium spp concentration was determined by filtering between 1-4 

L of seawater onto a 47mm Whatman GF/F filter.  The filter was than placed in a 

47mm plastic Petri dish.  The number of individual trichomes and colonies (puffs 

and tufts) were counted on ship using an Olympus dissecting microscope. 

Monthly precipitation data were obtained from http://www.coaps.fsu.edu 

for Tampa Bay, Fort Meyers and Sarasota areas.  Data from these sites were 

then averaged to provide an overall area precipitation average. 

 

Particulate Nutrient Ratio Calculations 

The mass of particulate carbon and nitrogen values were calculated from 

the combustion of replicate filters so average C:N ratios and accompanying 

standard deviation for that ratio could be determined.  Particulate phosphate 

however, was determined by a different method, and therefore the mass of 

particulate carbon, nitrogen and phosphate were first averaged for each station, 

with N: P and C: P ratios calculated without the statistical application of standard 
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deviation.  All particulate ratios presented are molar ratios as determined by the 

equation: [(Mass (mg)/Volume filtered (L) * 1000)/Formula Weight]. 

 

Statistical Methodology 

Data were statistically analyzed using SigmaPlot (version 11).  Data were 

compiled in Microsoft Excel and imported into SigmaPlot.  Kolmogorov-Smirnov 

goodness of fit analysis and skewness and kurtosis Z scores were used to 

assess the distribution of the data.  A Spearman Rank Order Correlation was 

performed on all particulate nutrient concentration and calculated nutrient ratio 

data as well as Chl a data.  Spearman Rank Order Correlation is a non-

parametric test that computes the correlation coefficient to quantify the 

relationship between two variables without specifying dependent and 

independent variables.  This test was performed on data where the residuals are 

not normally distributed and/or have non-constant variances.  This test is based 

on ranks rather than arithmetic means.   

To analyze nutrient data for potential detrital contribution and parameter 

relationships, data were also analyzed using simple linear regressions in 

SigmaPlot.  Results of linear regressions were used to produce scatter plots of 

the residuals and normal probability distribution of the residuals and observed 

versus predicted values.  

Central Tendency Analyses were also performed on log transformed and 

non-transformed particulate nutrient concentration and calculated particulate ratio 
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data using Excel.  Central Tendency Analyses provided the mean, geometric 

mean (Gmean), minimum (min), maximum (max) and median.   
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Complications to the Interpretation of Particulate Nutrient 
Stoichiometry  

 
Particulate nutrient concentration quantifies how much C, N and P is in the 

particulate pool at a given time or place and should primarily be related to the 

physical processes of nutrient delivery.  Theoretically surface particulate ratios 

should be related to phytoplankton biomass and reflect phytoplankton uptake and 

growth dynamics as related to nutrient availability. Particulate C, N and P are 

useful to include when discussing particulate nutrient ratios as these values can 

help explain why a ratio changes concentration in relation to the elements that 

comprise that ratio.  However, interpreting in situ particulate nutrient data and 

particulate nutrient stoichiometry is challenging because it is often unknown 

exactly what comprises the particulate nutrient fractions being measured.  For 

this study, particulate nutrients are operationally defined as the total particulate 

material that is in the size range from 0.7 µm to 153 µm. 

It is known that the detrital component of the particulate pool varies in both 

quantity and chemical composition (Menzel and Ryther 1964; Sharp et al. 1980; 

Valiela 1985; Hecky et al. 1993; Hessen et al. 2003) and that the contribution of 

detrital nutrients can confound nutrient stoichiometry interpretation.  In 

oligotrophic waters where phytoplankton biomass is low, the detrital contribution 

can be large (Harris 1986), but potentially has a similar particulate stoichiometry 
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to phytoplankton as turn over rates of both fractions are rapid (Hecky et al.1993).  

In contrast, in coastal environments where phytoplankton biomass is higher, 

detrital contributions can become less important as living cells contribute a 

greater portion to the particulate pool (Steele and Baird 1961; Harris 1986).  

However, the chemical composition has more potential to vary due to inputs from 

sources other than phytoplankton including decaying submerged vegetation (e.g. 

seagrass), macro-algae, resuspension of bottom material and terrestrial sources 

which have higher proportions of particulate C and N relative to P than those of 

phytoplankton cells (Hecky et al. 1993).  Without other complimentary analysis, 

whether the particulate nutrient ratios are truly reflective of living phytoplankton 

cellular material is unknown. 

Another aspect of this study which complicates data interpretation 

concerns the potential for the underestimation/overestimation of particulate P 

relative to the underestimation/overestimation of particulate C and N due to the 

different methodologies used for each (See Chapter 3).  If the method for 

measuring particulate C and N concentration either overestimates or 

underestimates C and N values concurrently, the C:N ratio would remain the 

same.  However, the complication arises when interpreting N:P and C:P ratios.  

The underestimation/overestimation of either particulate C and N or P would not 

be expected to be of the same magnitude or possibly the same direction and 

could significantly skew the particulate N:P and C:P ratios leading to erroneous 

conclusions. 
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It should be mentioned that sampling was continuous from June 1998 

through December 2000 and resumed in April of 2001 through December 2001.  

This could potentially bias the data when calculating the mean, ranges and 

median of the particulate constituents and ratios as this was not taken into 

consideration at this time. 

 

General Particulate Nutrient and Nutrient Ratio Distributions on the 
SW Florida Shelf 

 
Surface particulate nutrient data collected over the sampling period from 

1998-2001 displayed a large range for each element (Table 1).  Particulate C 

ranged form 1.05 to 503.20 µM (geometric mean=20.82±0.69), particulate N 

ranged from 0.05 to 330.88 µM (geometric mean=2.85±1.08) and particulate P 

ranged from 0.001 to 0.071 µM (geometric mean=0.05±0.91).  Particulate N 

concentrations displayed the greatest variability, encompassing 4 orders of 

magnitude.  The spread of particulate nutrient concentrations values across the 

wide range are not normally distribution and are heavily skewed toward higher 

values (Figure 2).  

A variety of tests performed for normality of the untransformed and natural 

log transformed data including Kolmogorov-Smirnov goodness of fit, skewness 

and kurtosis Z-scores, confirmed that surface particulate C, N and P values were 

not normally distributed.  Results of statistical analysis showed that particulate C 

(normal log transformed) was the most normally distributed variable of all the 

parameters presented, only failing to conform to kurtosis or the “peakedness” test 



  32

Table 1.  Central tendency and ranges for the surface particulate nutrient 
concentrations (±S.D.) sampled from June 1998 through December 2001.  All 
units are in (µM). 
________________________________________________________________ 
 
 C  N                                P  
________________________________________________________________ 
N 828  828  828  
Mean 26.60(±26.55) 6.14(±15.24)  0.08(±0.09)  
Geometric Mean 20.82(±0.69) 2.85(±1.08)  0.05(±0.91)  
Minimum value   1.05  0.05  0.001  
Maximum value               503.20                         330.88  0.71  
Median              20.08                   2.56                         0.04 
________________________________________________________________ 
 

 

of the distribution.  This suggests that particulate C concentrations across the 

shelf are less inclined to have extreme values relative to particulate N or P.  This 

seems to make sense in that the potential for the more biologically active 

elements, N and P, to vary is much greater than the potential for C to vary.  It is 

also interesting to note that particulate N has a frequency distribution which is 

different from particulate C and P, which share a similar distribution.  This may be 

related to biological processes or the sensitivity of the elemental analyzer in 

detecting N at low concentrations. 

Interestingly, the right tails of these distributions are comprised entirely of 

samples collected adjacent to the mouths of Tampa Bay and Charlotte Harbor or 

along the 10 m isobath for which some stations had Karenia brevis 

concentrations greater than 1,000 cells/L (Figure 2).  This implies that 

contributions from coastal inputs and K. brevis biomass has a large influence 

particulate nutrient stoichiometry at this isobath and seem to be responsible for  
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Figure 2.  Histogram of surface particulate nutrient A) carbon, B) nitrogen, 
and C) phosphorus concentrations sampled from June 1998 through 
December 2001. The red bars identify concentration bins that are 
comprised entirely of samples collected from the 10m isobath. The 
hashed lines indicate a change in scale. All units in µM.          
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Figure 3.  Relationship between surface particulate C, N and P and Chl a (Figs. A, B,C) or K. brevis concentrations 
(Figs. D, E, F) in samples comprising the bins from histogram Fig. 2, indicating samples from the 10m isobath. 
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the high values which occur with low frequency relative to non-coastal stations or 

non-bloom conditions on the WFS.  A shared spatial distribution justifies the 

validity of these numbers, and excludes their potential exclusion based solely on 

the fact that they lie outside the range of most of the data.  Particulate C and P 

values show no linear relationship to Chlorophyll a (Chl a) (Figure 3) with 

R2=0.0004 for C and R2 = 0.0305 for P.  The lack of a relationship may be the 

result of detrital contributions influencing the particulate stoichiometry of coastal 

stations, despite the high biomass associated with near shore stations and bloom 

conditions.  However, there does seem to be a positive linear relationship 

between C (R2=0.9990), N (R2=0.5608) and P (R2=0.4350) with Karenia brevis 

cell concentration (Figure 3) which provides justification to include those data 

points in the analysis.  It appears that particulate C, N and P concentrations 

increase with increasing K. brevis concentration as biomass increases. 

The surface particulate C, N and P molar ratios collected over the 

sampling period from 1998-2001 also displayed a large range of values across 

the WFS (Table 2).  Particulate C:N ranged from 0.09-98.82 (geometric 

mean=7.69±0.97), N:P ranged from 0.59-789.08 (geometric mean=54.60±0.96) 

and C:P ranged from15.13-4431.17 (geometric mean=407.48±0.82).   

The surface particulate molar ratios of C:N, N:P and C:P are not normally 

distributed as given by the failure to pass Kolmogorov-Smirnov goodness of fit,  

 
 
 
 



  36

Table 2.  Central tendency and ranges of surface particulate nutrient ratios 
sampled from June 1998 through December 2001. 
________________________________________________________________ 
 
 C:N                   N:P C:P C:N:P  
________________________________________________________________ 
 
N 831  812  817 
Mean 11.53(±21.88) 90.07(±175.20) 569.36(±726.53) 332:77:1 
Geometric Mean   7.69(±0.97) 54.60(±0.96) 407.48(±0.82) 410:56:1 
Minimum value   0.09    0.59    15.13 
Maximum value 98.82                789.08              4431.17  
Median   8.48   46.91  394.63  502:64:1 
________________________________________________________________ 
 

 

skewness and kurtosis Z-scores tests for normality (Figure 4). The large range in 

the data requires these histograms to be presented on two scales to 

accommodate those samples of higher values but less frequency (see caption 

Figure 4).  It is interesting to note that the data for the particulate N:P and C:P 

ratios (Fig 4, B and C) display a more normal distribution when considering the 

bulk of the data (N:P bins 10 to 100 and C:P bins 50 to 1000) relative to the bulk 

of the nutrient constituents (C, N and P) and the C:N ratio. 

The large range in the particulate nutrient constituents is evidence of the 

wide variety of processes on the WFS which can potentially influence nutrient 

inputs and availability for phytoplankton uptake.  These include: proximity to 

coastal inputs, N2 fixation, upwelling events, vertical structure of the water 

column (e.g. thermal stratification), wind events, salinity fronts, hydrography of 

different regions and seasonality.  These processes, along with the ability of 

phytoplankton to adapt to the nutrient regime of their environment, may be 

responsible for the wide range within the particulate ratios over space and time.  
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Figure 4.  Histogram of surface particulate nutrient ratios A) C:N, B) N:P and  
C) C:P sampled from June 1998 through December 2001.  Hash marks indicate  
a change in bin for A) from 2 to 4, B) from 10 to 100 and C) from 50 to 1000 
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This could also explain in part, the non-normal distribution of this data set, where 

the values comprising the right tail of both histograms (Figure 2, 3) could 

potentially be related to more infrequent events such as phytoplankton blooms, 

large detrital contributions to coastal stations as a result of increased river flow or 

pulsed nutrient inputs in response to climatic forcing (e.g. wind events). 

Variability of particulate nutrient ratios is not confined to the WFS.  Studies 

of natural phytoplankton assemblages conducted by Karl et al. (2000, 2001) at 

station ALOHA and BATS and a review of the GEOSECS data by Micheals 

(2001) have indicated that nutrient stoichiometries based on in situ samples are 

not constant and can vary substantially.  Phytoplankton culture experiments also 

have shown that phytoplankton exhibit flexible particulate stoichiometry in 

response to different nutrient and light regimes (Rhee 1974, 1978; Epply et al. 

1974; Goldman et al. 1979; Perry 1976; Goldman 1986). 

The West Florida Shelf from June 1998 through December 2001 had a 

geometric mean particulate C:N:P stoichiometry of 332:77:1 (Table 2), which is 

very different from the classic Redfield ratio of 106:16:1 (Redfield 1934, 1958) or 

the more recent work of Montegut-Copin and Montegut-Copin (1983) who report 

a global average of 103:16.1:1.  The geometric mean of 7.69 for the surface 

particulate C:N ratio is close to the Redfield ratio of 6.66 and the global average 

of 7.70 reported by Bertilsson et al (2003) (Table 2).  However particulate N:P 

and C:P have geometric means of 54.60 and 407.48 respectively, and do not 

compare with other values found in the literature for natural phytoplankton 

assemblages (Table 3) nor to the Redfield ratios of N:P and C:P of 16 and 106 
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respectively.  The closest values in the literature to the current WFS results are 

those reported for P-limited phytoplankton culture experiments (Table 4).  

Reported N:P and C:P ratios of marine phytoplankton grown in P limited cultures 

are well above the Redfield ratio.  Prochlorococcus, Synechococcus and 

Thalassiosira pseudonana are part of the phytoplankton assemblage found in 

WFS waters and reported N:P values ranged from 61.1 to 109.0 and C:P values 

ranged from 464.0 to 779.0 when grown under P-limited conditions (Perry 

1976;Bertillsson et al. 2003; Wawrik and Paul 2004).  These findings suggest 

that on average, the WFS seemed to be predominately P-limited during the 

sampling period. 

Surface particulate nutrient ratios have been binned according to 

categories derived from their potential nutrient status (no limitation with values 

close to Redfield, nutrient limited and severely nutrient limited) (Figure 5) as 

suggested by Hecky et al. (1993), Downing (1997), Tyrell (1999) and Grieder and 

La Roche (2001).  43.4% of the data are near Redfield proportions for C:N and 

are either not nutrient limited or growing at their maximal rates, while 26.4% of 

the data are N-limited and 11.9% are severely N-limited.  18.3% fall into the 

category of C-limitation; however this is most likely due to light limitation.  The 

N:P ratios have only 9.7% of the data near Redfield, with 40.4% suggesting P-

limitation and 48.2% suggesting severe P-limitation.  The ratio of C:P have 

83.76% of the data categorized as severely P-limited and only 2.32% are near 

the Redfield Ratio.  The fact that 86% of the N:P and 94.87% of the C:P nutrient  
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Table 3.  Literature summary of in situ particulate nutrient ratios.  Values presented are the average, with the range given 
in parentheses if available. 
_________________________________________________________________________________________________ 
                Particulate Nutrient Ratio 
Location Depth C:N N:P C:P Reference 
_________________________________________________________________________________________________ 
Global Average     
 Pelagic N.A.  37*  Downing, 1997 
 Pelagic N.A. 7.7 (3.8-12.5) 16.4 (5.0-34.0) 114.0 (35.0-221.0) Bertilsson et al., 2003 
 Benthic Microalgae 20 35 700  Atkinson and Smith 1983 
  
Atlantic Ocean 
Oceanic 
 Sargasso Sea 1-20 m  31.0 225.0 Ammerman et al., 2003 
 Atlantic Ocean 1-30 m 8.6 17.0 112.0 Sterner et al., 2008 
 Bermuda 0-4 m  15.0 235.0 Sterner et al., 2008 
 Western North** E.Z. 12.5  59.0 Menzel and Ryther, 1964 
 Western North*** E.Z. 5.3  91.0 Menzel and Ryther, 1964 
 Subtropical West# 5.7 14.0 80.0  Sanudo-Wilhelmy et al., 2004 
Coastal 
 Bay of Biscay M.L. 6.5 33.5 217.0 Herbland et al., 1993 
 Norway 0-10 m 7.6 19.0 137.0 Sterner et. al., 2008 
 Oslofjord 2-8 m 9.2 17.0 154.0 Sterner et al., 2008 
 Riga Bay  9.9 18.0 171.0  Sterner et al., 2008 
  
Pacific Ocean 
Oceanic 
 North Pacific Gyre   8.2 (6.9-48.0)   Sharp et al., 1980 
 Central North 
      Pacific Gyre 0-70 m 8.8 18.0 152.0 Perry, 1976 
 Bering Sea   8.2 (3.9-17.5)   Tanoue and Handa, 1979 
 East China Sea E.Z. 6.7   Hung et al., 2003 
 Sea of Japan Surface 9.3 19.0 153.0 Sterner et al., 2008 
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Table 3.  (Continued). 
_________________________________________________________________________________________________ 
                Particulate Nutrient Ratio 
Location Depth C:N N:P C:P Reference 
_________________________________________________________________________________________________ 
Coastal 
 Santa Catalina 
      Basin 1-75 m 5.5 6.0 33.3 Holm-Hansen et al., 1966 
 
Mediterranean Sea 
 42º00’N, 4º45’E# 1-75 m 9.7 23.1 225.0 Copin-Montegut and Copin- 
                 Montegut, 1983 
 42º00’N, 4º45’E ±     10 m 6.2 21.5 133.9 Copin-Montegut and Copin- 
                 Montegut, 1983 
Antarctic Ocean 
 Ross Sea 0-10 m (5.2-16.0)   Smith et al., 2000 
 Polar Front$ 5 m 5.7 22.6 130.2 Copin-Montegut and Copin- 
                 Montegut, 1983 
Artic Ocean 
 Kara Sea 0-8 m 7.8 15.0 108.0 Sterner et al., 2008 
 
Indian Ocean 
 Southern 5 m 6.5 26.0 101.0 Sterner et al., 2008 
 West Tropical 0-10 m 7.2 18.0 130.0 Copin-Montegut and Copin- 
            Montegut, 1983 
Gulf of Mexico 
 West Florida 
      Shelf& 0 m 10.2 16.8  Heil et al., 2000 
 West Florida  
      Shelf 0 m 11.53, 7.69Ұ 90.07, 54.6Ұ 569.36, 407.48Ұ This study 
 
______________________________________________________________________________________________ 
N.A.: not applicable; E.Z.: Euphotic zone; M.L.: Mixed Layer; *from literature review; **January; ***April; # value for field 
collected Trichodesmium; ## August; ± May; maximum value; &Diatom bloom; ҰGeometric mean  
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Table 4.  Literature summary of particulate nutrient ratios from phytoplankton cultures.  Values presented are the average, 
with the range given in parentheses if available. 
_________________________________________________________________________________________________ 
  Nutrient           Particulate Nutrient Ratio 
Species       Conditions C:N N:P C:P Reference 
_________________________________________________________________________________________________ 
Marine Phytoplankton* Replete 7.7 (4.0-17.0) 10.1 (5.0-19.0) 7.5 (27.0-135.0) Geider and La Roche, 2002 
Dunaliella tertiolecta** P-limited 12.5 48.0 600.0 Goldman et al., 1979 
Dunaliella tertiolecta*** P-limited 10.1 32.0 325.0 Goldman et al., 1979 
Dunaliella tertiolecta** N-limited 17.0 5.0 85.0 Goldman et al., 1979 
Dunaliella tertiolecta# N-limited 7.0 5.0 35.0 Goldman et al., 1979 
Monochrysis lutheri** P-limited 11.3 115.0 1,300.0 Goldman et al., 1979 
Monochrysis lutheri** P-limited 7.1 15.0 106.0 Goldman et al., 1979 
Prochlorococcus E.G. (8.5-9.9) (15.9-24.4) (156.0-215.0) Bertillsoon et al., 2003 
     6 strains 
Prochlorococcus MED4 P-replete 5.7 21.2 121.0 Bertillsson et al., 2003           
Prochlorococcus MED4 P-limited 7.4 62.3 464.0 Bertillsson et al., 2003           
Synechococcus WH8012 P-replete 5.4 24.0 130.0 Bertillsson et al., 2003 
Synechococcus WH8012 P-limited 7.5 96.9 723.0 Bertillsson et al., 2003 
Synechococcus WH8103 P-replete 5.0 33.2 165.0 Bertillsson et al., 2003 
Synechococcus WH8103 P-limited 7.1 109.0 779.0 Bertillsson et al., 2003 
Synechococcus WH8103 E.G. 10.0 15.0 150.0 Bertillsson et al., 2003 
Synechococcus WH7804 E.G. 8.9 13.3 113.0 Bertillsson et al., 2003 
Chyrsochromulina N:P 1:1 11.8 9.8 115.0 Johansson and Graneli,  
 polylepis             1998 
Chyrsochromulina N:P 4:1 10.2 11.6 117.0 Johansson and Graneli,  
 polylepis             1998 
Chyrsochromulina N:P 16:1 7.7 16.0 122.0 Johansson and Graneli,  
 polylepis             1998 
Chyrsochromulina N:P 80:1 8.7 21.0 182.0 Johansson and Graneli,  
 polylepis             1998 
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Table 4.  (Continued). 
_________________________________________________________________________________________________ 
  Nutrient           Particulate Nutrient Ratio 
Species       Conditions C:N N:P C:P Reference 
_________________________________________________________________________________________________ 
 
Chyrsochromulina N:P 160:1 8.6 29.5 253.0 Johansson and Graneli, 
 polylepis             1998 
Trichodesmium sp. N-deplete 7.2(5.0-10.0)     Mullholland and Capone, 
              2001 
Trichodesmium sp. P-replete   95.0  Sanudo-Wilhelmy et al., 2004 
Trichodesmium sp. P-limited   207.0 Sanudo-Wilhelmy et al., 2004 
Thalassiosira P-limited 5.8 37.2 220.0 Perry, 1976 
     pseudonana## 
Thalassiosira P-limited 10.7 61.1 665.0 Perry, 1976 
     pseudonana± 

Thalassiosira N-limited 5.7 9.7 63.4  Perry, 1976 
     pseudonana## 
Thalassiosira N-limited 10.0 8.3 84.3  Perry, 1976 
     pseudonana± 

Thalassiosira N-limited 14.8 84.3 90.5  Perry, 1976 
     pseudonana$ 

Thalassiosira N-limited 12.6 5.0 63.0  Goldman et al., 1979 
     psuedonana** 

Thalassiosira N-limited 7.1 15.0 106.0 Goldman et al., 1979 

     pseudonana# 

______________________________________________________________________________________________________________________________________________________________________ 
E.G: Exponential growth;*species not indicated; **10% growth rate; ***50% growth rate; # 90% growth rate; ##µ=0.041h-1;  
± µ=0.017h,1; $ µ=0.0085h-1 
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Figure 5.  Histogram of surface particulate nutrient ratios A) C:N, B) N:P and C) 
C:P sampled from June 1998 through December 2001.  The data are binned 
according to potential nutrient limitation as indicated by Redfield proportions of 
106C:16N:1P.  The % contribution of each bin to total samples is indicated as a 
% above the bar. 
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ratios are well above the expected Redfield ratio further suggests that the WFS 

was largely P-limited over the course of the sampling period.   

Although the world’s oceans are thought to be primarily N-limited, there 

appears to be some systems which at times exhibit P-limited conditions.  Data 

from the North Pacific subtropical gyre suggests that this system has shifted from 

an N-limited environment to a P-limited environment over the past two decades, 

as evidenced by enhanced N2 fixation and relatively high N:P ratios of the 

particulate pool (Karl et al. 2000).  Similar findings are reported for the 

northwestern Atlantic (Sargasso Sea), western and north-eastern tropical 

Atlantic, western sub-tropical Atlantic and eastern Atlantic (Angola Basin) 

(Herbland et al. 1998; Ammerman et al. 2003).  Carlson and Graneli (1999) 

suggest that P can limit productivity in the northern Adriatic Sea, as P stimulated 

phytoplankton growth in bioassay experiments.  The Mediterranean Sea is 

another marine environment which appears to be a P-controlled system (Berland 

et al. 1980).  Inorganic nutrient concentrations, together with incubation 

experiments, suggest that the southeastern Mediterranean is strongly P-limited 

(Krom et al. 1991) and high pulse uptake capacity and subsaturated uptake in 

phytoplankton suggest P deficiency during the summer in the northwest 

Mediterranean (Thingstad et al. 1998). 

P-limitation can result when there are greater inputs of “new” N (sensu 

stricto Dugdale and Goering 1967) relative to P sources (e.g. from N2 fixation) or 

by low inorganic P availability relative to inorganic N.  A study by Zehr (2002) has 

shown that N2 fixation by picoplankton could be a major, previously overlooked, 
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source of new N in oligotrophic oceanic environments, in addition to N supplied 

by Trichodesmium.  Both types of cyanobacteria are found on the WFS.  The 

presence of Trichodesmium on filters was not noted during sampling.  However, 

the N2 fixing picocyanobacteria may still have contributed significantly to 

samples.  M. Mullholland (pers. comm.) has measured N2 fixation in <2.0 µm 

fraction on the WFS, suggesting that N2 fixing picoplankton are present in this 

system.  P-limitation on the WFS could also possibly be related to the physical 

properties of P compounds. Phosphorus has a tendency to adhere to other 

particles (Harris 1986; Sanudo-Wilhelmy et al. 2004) and thus could potentially 

sink out of the photic zone, become sequestered in the sediments and therefore 

made unavailable for remineralization in surface waters (Harris 1986).  To 

partially explain why the eastern Mediterranean exhibits P-limited conditions, 

Krom et al. (1991) has suggested that Saharan Dust which has a high affinity for 

dissolved PO4
3-, could effectively remove this nutrient as it sinks though the water 

column.  The WFS also receives atmospheric deposition of Saharan Dust and 

may in part explain some of the findings in this study.  However, this is unlikely 

given the shallow depth of the WFS and the strong influence of wind driven 

circulation in the region (Mitchum and Sturges 1982).  Van Mooy et al. (2006, 

2009) have demonstrated the ability of picocyanobacteria to substitute non-P 

membrane lipids for phospholipids in environments where P sources are scarce.  

This would skew phytoplankton C:N:P stoichiometry away from the Redfield ratio 

and increase cellular C and N relative to P, but allow phytoplankton to still meet 

their metabolic needs in the face of low dissolved P concentrations.  These 
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organisms are some of the dominant species on the WFS and this mechanism 

could potentially explain the low concentrations of particulate P seen across the 

shelf.  Further confounding plankton stoichiometry interpretation is the idea 

presented by Sanudo-Wilhelmy (2004) of a pool of P which adheres to the 

external structure of phytoplankton cells, but is not internalized into cellular 

components.  Although interesting, this does not help explain why particulate P 

concentrations are so low on the WFS.   

The idea that the WFS is primarily P-limited seems unlikely, as DIN:DIP 

ratios are generally low and suggest N-limitation (Heil et al. 2007).  Furthermore, 

zooplankton excretion can be an important source of regenerated N and 

especially P to the WFS.  It has been estimated that zooplankton excretion could 

potentially supply all the P required to support K. brevis populations of 106 cells/L 

(Vargo et al. 2008).  However DON:DOP ratios are generally high (Heil et al. 

2007) and support the conclusions drawn from the particulate nutrients.  Alkaline 

phosphatase activity (APA) has been detected across the shelf and suggests that 

phytoplankton are utilizing DOP, which can be a response to a P-limited 

conditions.  It has also been suggested that Trichodesmium populations can 

draw down inorganic and organic stocks of P, leading to P-limitation within the 

bloom (Sanudo-Wilhelmy et al. 2001; Lenes et al. 2008). 

The fact that 48% of the N:P and 84% of the C:P ratios suggesting severe 

P-limitation, presents a bit more of a conundrum.  Explanations may very well lie 

within the methodology.  It is possible that the molybdenum blue method (see 

Methods section) underestimates particulate P concentrations where the 
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potential for P to adhere to the glass scint vial or filter during processing does 

exist.  It is also probable that some cellular material was lost during the filtration 

process due to cell breakage, which would have a larger effect on particulate P 

than C or N values as this element is found in lower concentrations within the 

cells.  Another possibility is that corrections for the filter contributions (filter 

blanks) may be high due to contamination or other hidden factors.  It has also 

been suggested that P uptake by zooplankton with high P demands could result 

in P limitation of the surrounding waters (Hessen et al. 2003).  As these grazers 

were filtered out during the sampling process, they could potentially represent a 

missing portion of the particulate P pool. 

The detrital contribution to the particulate pool is variable both in its 

chemical structure and quantity.  It has been suggested by Menzel and Ryther 

(1964) that one approach to correcting particulate nutrient data for detrital 

contributions is to regress particulate nutrients against another and Chl a and the 

particulate nutrient ratios against Chl a.  This type of analysis was not 

appropriate when applied to the entire data set.  The parameters (non-

transformed data and natural log transformed data) do not share a linear 

relationship, slope of the regression did not predict the mean, residuals are not 

normally distributed (normal probability plot), scatter plots of residuals showed 

structure and predicted versus observed values were not linear.   

The inability to correct for the detrital contribution to the particulate pool 

could potentially result in the largest error within the data set.  The C:N:P ratios of 

benthic marine plants (seagrass and macroalgae) are more depleted in P relative 
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to C and N than phytoplankton and have a median atomic ratio of 700:35:1 

(Atkins and Smith 1983).  These plants are a major component of the benthos 

within the shallow WFS and could contribute significant detrital material to the 

water column influencing the particulate ratios of this study.  Upon the 

decomposition of organic matter, P is utilized more rapidly than N and C (Menzel 

and Ryther 1964) and if detrital contributions were large during the sampling 

period, this could also skew the particulate nutrient ratios towards less P relative 

to C and N, potentially resulting in the extreme values of the N:P and C:P ratios 

seen on the WFS during the study period.  Karl et al. (2001) noted that during the 

summer and fall at station ALOHA there was an increase of non-living particulate 

matter, which was accompanied by an increase of particulate N but not 

particulate P.  This resulted in elevated particulate N:P ratios during that period.  

This observation further supports the idea that a lack of particulate P in detrital 

matter can skew particulate ratio interpretation to P-limitation, at least during 

times of high phytoplankton production.  

Spearman Rank Order Correlation show that all the particulate nutrient 

parameters (C, N, P and Chl a) have positive correlation coefficients and 

therefore tend to increase together.  The particulate nutrients all have similar 

correlation coefficients of approximately 0.500 (Table 5), indicating that these 

parameters are related to some degree.  C and N are weakly associated with Chl 

a and have similar correlation coefficients of 0.330 and 0.316 respectively.  The 

variables with the strongest relationship to Chl a is particulate P (rs =0.752), 

further supporting the idea that particulate P concentrations may have a stronger 
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association with live cells as the turnover time of P is much faster than turnover 

times for C or N..  This, and the high particulate N:P and C:P ratios suggests 

that, as in fresh water systems, P controls biomass. 

 

Table 5.  Summary of Spearman Rank Order Correlation coefficients (rs) for 
surface particulate C (µM), N (µM), P (µM) concentrations, particulate nutrient 
ratios and Chl a (µg/L) sampled from June 1998 through December 2001. 
_______________________________________________________________ 

 
                       Paired Variables             N          rs 
_______________________________________________________________ 

 
C, N 837   0.472 
N, P 818     0.487 
C, P 818   0.520 
C, Chl a 795   0.330 
N, Chl a 795   0.316 
P, Chl a 789   0.752 
C, C:N 833   0.160 
C, C:P 812   0.110 
N, C:N 833    -0.711 
N, N:P 813   0.519 
P, N:P 813    -0.389 
P, C:P 818    -0.721 
C:N, N:P 807    -0.565 
C:N, C:P 812     0.355 
N:P, C:P 811     0.448 

____________________________________________________ 
 

 

Spearman Ranking Correlation Coefficients for the particulate nutrients as 

related to the particulate ratios give some interesting results (Table 5).  The 

results indicate that the C:N ratios are more associated with N (rs = -0.711) than 

C (rs =0.160).  The negative sign of this coefficient is due to the fact that N is the 

denominator of the ratio, so as N increases the C:N ratio decreases and vice 
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versa.  The results also indicate that the C:P ratios are more related to P (rs =      

-7.21) than C (rs = 0.110).  This supports the premise that particulate C 

concentrations are more constant across the shelf relative to the more variable 

particulate N and P concentrations.  This is reasonable as C is not considered to 

be a limiting nutrient on the WFS.  Particulate N (rs = 0.519) also seems to be 

more related to the N:P ratio than P (rs = -0.389) and could reflect the greater 

potential for inorganic N sources to vary across the WFS as a result of N2 fixing 

activity. 

The lack of strong relationships of the variable pairs presented in Table 5, 

is expected, as this data set includes the results of all stations sampled across 

the WFS for each month in each year.  Environmental processes at each isobath 

in each month over each year would be expected to vary and this variance would 

be reflected in the stoichiometry of the particulate nutrients.  In short, the scale of 

the sampling approach used in this study might be too broad to discern individual 

factors influencing particulate nutrient ratios. 
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Spatial Considerations 

 

Near-Shore to Offshore Trends 

     It is reasonable to assume that different circulation patterns and 

associated nutrient concentrations within each region of the WFS would influence 

phytoplankton uptake rates of C, N and P, and therefore different particulate 

concentrations and ratios across these zones.  Underlying this assumption and 

further confounding data interpretation, is the probability that both phytoplankton 

populations and detritus are transported onto different regions of the shelf via 

wind and currents (e.g. via the bottom Ekman layer, see Weisberg et al. 2009), 

and their nutrient stoichiometries may be more reflective of their origin or transit 

path rather than present location.  Thus particulate nutrient composition of 

phytoplankton may be indicative of cell history and transport as well as present 

nutrient availability and limitation. 

The relationships of the average surface particulate nutrients and ratios at 

each sampled distance offshore are well described by polynomial functions 

(Figure 6).  The surface particulate C, N and P show surprisingly similar curves 

but of different magnitudes.  This suggests that a similar regulating mechanism 

may be fundamentally acting on all three nutrients but to varying degrees.  There 

is an initial decline in concentration from the 10m isobath (0 km offshore) out to 

the 30m isobath (~50 km offshore), where concentrations become level before 

decreasing again at the shelf break (~200km offshore).  It is interesting to note  
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Figure 6.  Average of surface particulate nutrient concentrations (Figures A, B,C) and partFigure 17.  Scatter plots 
of surface particulate A) carbon, B) nitrogen and C) phosphorus concentrations at the 10m isobath of the Tampa 
Bay, Sarasota and Fort Meyers stations during the wet season (pink) and dry season (blue) sampled from June 
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that Lester et al. (2008) has shown that the 30m isobath is a transition zone 

where the zooplankton community contains mixed populations of coastal and 

offshore species.  This isobath appears to also be a transition zone from high 

particulate nutrient concentrations to low concentrations.  Therefore, it seems 

possible that the particulate nutrient concentrations are driving zooplankton 

assemblages via regulation of food supply.  The mean surface particulate ratios 

of C:N, N:P and C:P also share similar curves but instead steadily increase to a 

maximum value ~125km offshore and than decrease slightly at the 200m isobath.   

Particulate C, N and P across the WFS display a wide range of 

concentrations (µM) from the coast to the shelf break, with the greatest variability 

found at the coastal stations (Figure 7).  This is expected as these stations are 

directly impacted by estuarine and riverine inputs, where nutrient and detrital 

fluxes are more dynamic.  In contrast, the C:N and C:P molar ratios (Figure. 7) 

exhibit greater scatter at distances greater than 50km from the coast.  This 

suggests a decoupling of processes regulating particulate C from those 

regulating particulate N and P with distance offshore which can occur under 

nutrient limiting conditions.  It has been shown that phytoplankton will store C 

when other nutrients are found in short supply (Fuhs et al. 1972).  This could also 

be related to changes in the contribution of detrital material to the particulate 

concentration.  Detrital material is composed of recalcitrant C, which could 

contribute a greater portion to the particulate as phytoplankton biomass 

decreases off-shore.  In contrast, the range of particulate N:P ratios exhibit less  
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Figure 7.  Influence of distance from shore on surface particulate C, N, P concentrations (Figures A, B,C) and 
particulate nutrient ratios C:N, N:P, C:P (Figures D, E, F) sampled from June 1998 through December 2001.
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scatter across the shelf, perhaps related to the diminishing inorganic supply of 

both nutrients with increasing distance from coastal inputs.   

To compliment other similar studies of the ECOHAB data set (Havens 

2004; Lester 2005; Ault 2006) and to resolve particulate nutrient distributions, the 

data was partitioned into subsets by isobath (Table 6). The 10m isobath are 

those stations sampled closest to the coast and are directly impacted by 

estuarine and riverine fluxes.  The 30m isobath, located in the middle of the inner 

shelf region, seems to represent a transition zone from coastally influenced water 

to more oligotrophic waters, where particulate nutrient concentrations remain 

constant.  The 50m isobath is a transitional location from the inner shelf to the 

mid shelf and the 200m isobath located at the shelf break is associated with the 

transition between the shelf and the deep water processes (Weisberg et al. 2005, 

2009). 

From the coastal stations out to the 200m isobath, there is a decrease in 

the average particulate C (µM) of 67% and a decrease in particulate N (µM) and 

P (µM) of 76% and 90% respectively (Table 6).  This trend reflects the influence 

of estuarine sources of inorganic nutrients and detrital material on the particulate 

nutrient pool, while the particulate nutrient pool further offshore reflect the 

oligotrophic conditions associated with this region.  This decreasing trend is 

reflected in a similar decrease in Chl a concentration from the coastal region out 

to the 200m isobath (Figure 8). 

Average surface particulate (C:N:P) nutrient stoichiometries are well 

above the Redfield Ratio at the 10m, 30m, 50m and 200m isobaths (Table 7).   
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Table 6.  Central tendency and ranges for the surface particulate nutrient 
concentrations and particulate nutrient ratios sampled from June 1998 through 
December 2001 at the 10m, 30m, 50m and 200m isobaths. 
________________________________________________________________ 
                                                    Geometric 
Location N    Mean    Mean       Minimum    Maximum Median  
________________________________________________________________ 
 
C (µM) 
10m isobath 106  46.38 36.27 3.31          485.72 33.65 
30m isobath 103  21.19 17.76 1.71   80.77 16.10 
50m isobath 102  20.16 16.39 1.94   71.42 15.35 
200m isobath   30  14.95 13.13 3.48   53.62 12.64 
 
N (µM) 
10m isobath 106  10.91   5.89 1.20   97.69   4.97 
30m isobath 104    3.52   2.33 0.05   22.19   2.19  
50m isobath 102    2.80   1.90 0.16   23.06   2.05 
200m isobath   30    2.66   1.52 0.17   20.09   1.59 
 
P (µM) 
10m isobath 107    0.20   0.17 0.04    0.52   0.18 
30m isobath 104    0.04   0.04 0.02    0.23   0.04 
50m isobath 102    0.03   0.03 0.01    0.21   0.03 
200m isobath   30    0.02   0.02 0.004    0.06   0.02 
 
C:N 
10m isobath 106    8.63   6.55 0.11   48.40   7.82 
30m isobath 102  10.25   7.75 0.30   38.03   8.48 
50m isobath 101  14.10   9.13 0.66   98.82   9.16 
100m isobath   35  16.90   9.67 0.89 125.54   9.01 
200m isobath   30  13.81   9.32 1.03   53.17   9.37 
 
N:P 
10m isobath 106   52.86  34.36 5.33 401.18 27.69 
30m isobath 103   97.49  59.21 0.60 554.77 51.27 
50m isobath 101 103.46  71.58 3.41 421.03 72.21 
123m isobath   29 148.22  71.63 4.70 789.08 57.61 
200m isobath   30 126.63  76.61         11.41 616.35 71.18 
 
C:P 
10m isobath 106 260.07 211.47 20.82 1477.56 210.55 
30m isobath 103 592.27 463.82 37.19 3094.02 443.03 
50m isobath 101 810.51 606.97 41.60 3278.04 587.22 
125m isobath   29 880.59 617.80 52.56 3773.94 536.96 
200m isobath   30 773.72 662.91        273.58 3574.67 636.82 
_______________________________________________________________ 
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Figure 8.  Relationship between surface Chl a concentration and 
distance from shore.  The curve includes data sampled from June 
1998 through December 2001. 
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Table 7.  Particulate nutrient stoichiometry of surface waters at the 10m, 30m,  
50m and 200m isobaths based on the mean and geometric mean of surface 
particulate nutrient concentrations. 
________________________________________________________________ 
 
Location N       C:N:P                  Geometric C:N:P 
________________________________________________________________ 
 
10m isobath 106 232:55:1  212:34:1  
30m isobath 103 493:92:1 462:61:1 
50m isobath 102 738:102:1 600:68:1 
Shelf break   30 773:134:1 662:76:1 
________________________________________________________________ 

 

 

The most balanced nutrient conditions are found at the 10m isobath where 

average C:N:P=232:55:1.  The ratios steadily increased with distance offshore to 

an average C:N:P ratio of 773:134:1 at the 200m isobath.  Particulate C 

increases dramatically from the near shore to the off shore stations relative to 

particulate P and supports the hypothesis that either the phytoplankton could be 

storing C in excess to P or there is increasing detrital contributions with a greater 

portion of refractory C relative to P with increasing distance from the coast.  The 

abundance of picocyanobacteria (Synecococcus and Prochlorococcus) increases 

with distance offshore and these populations can have very high C:P ratios when 

P-limited (Table 4).  Therefore, it is possible that the stoichiometry of a potentially 

P-limited picocyanobacteria assemblage could also be a factor contributing to the 

increasing C:P ratio with distance from the coast.  Although particulate N 

increases from the 10m isobath to the 200m isobath relative to P, the increase is 

not as great when compared to particulate C (Table 7).  This further supports the 
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hypothesis that N2 fixation can be a very important process occurring on the WFS 

and also that nutrients have the potential to be recycled at different rates.   

All the particulate nutrient ratios increase with distance from shore but the 

C:N ratio displays a fairly constrained range across the isobaths (8.63-16.90) in 

comparison to N:P (52.86-148.22) and C:P (260.07-880.59) (Table 6).  The mean 

particulate C:N ratio increased by 49% from the near-shore stations along 

the10m isobath to the100m isobath (Table 6).  This may be related to the slightly 

greater decrease of particulate nitrogen relative to carbon with distance offshore 

as inorganic N sources most likely decrease relative to inorganic C out on the 

shelf.  The average ratio of particulate N:P increases by 64% from the 10m 

isobath out to the 100m isobath (Table 6) and could be related to sources of 

“new” N contributed to shelf waters by N2 fixers and the relative lack of coincident 

new” P with increasing distance from the coast.  The largest increase from the 

coastal stations to the 100m isobath is exhibited by the mean particulate C:P 

ratios which increase by 70% (Table 6).  The average particulate nutrient ratios 

all show a decrease in values after the 100m isobath out to the 200m isobath, 

where C:N shows an 18% decrease, N:P decreases by 14% and P declines by 

12%.  This decrease could be in response to surface fronts at shelf break 

supplying regenerated nutrients to the primary producers, potentially reducing 

conditions of nutrient limitation.   

Scatter plots suggest that particulate N:P and C:P ratios at the 10m 

isobath are distinct from those found at the 30m, 50m and 200m isobaths (Figure 

9) and particulate C:N ratios are not distinct at any of the sampled isobaths.  It is  
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Figure 9.  Scatter plots of surface particulate C, N and P 
concentrations at the 10m isobath (blue), 30m isobath (red), 
50m isobath (green) and 200m isobath (turquoise) sampled 
from June 1998 through December 2001.  
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interesting to note that most of the variance within the C:N ratio is related to 

changes in particulate N rather than particulate C.  Although the mean C 

concentrations decrease seaward of the coast (Table 6, Figure 7), it appears that 

particulate C concentrations are not as related to isobath spatial distributions as 

particulate N and P concentrations. 

 Spearman Rank Order Correlation coefficients suggest that particulate C, 

N and P are most related at the 10m isobath with rs values of C and N= 0.643, N 

and P= 0.567 and C paired with P= 0.574 followed by the 200m isobath where C 

and N have an rs= 0.392, N and P= 0.338 and C paired with P= 0.521 (Table 8).  

Nutrient inputs from the estuaries at the 10m isobath and upwelled regenerated 

nutrients from deep waters at the 200m isobath could potentially be responsible 

for the correlation between particulate C, N and P.  Phytoplankton populations 

might be less nutrient limited at the 10 and 200m isobaths, where nutrient uptake 

could be based more on cellular requirements rather than adapting nutrient 

uptake kinetics to nutrient availability, which tends to de-couple particulate C, N 

and P relationships.  In contrast, the rs values for particulate C, N and P at the 

30m and 50m isobaths suggest that there is no relationship between these 

constituents.  As these regions are primarily driven by regenerated nutrients, it is 

possible that particulate C, N, P relationships become decoupled in response to 

greater nutrient limitation  

Spearman Ranking Order Correlation coefficients suggest that at all 

isobaths, the C:N and especially N:P ratios are most related to particulate N 

concentrations when compared to the rs of C:N with C and N:P with P (Table 8).  
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This suggests that the potential for particulate N to vary in concentration across 

the shelf is greater than either particulate C or P.  It is interesting to note that the 

rs of the paired variables C, C:N and P, N:P suggest that these variables are not 

related at the 10m isobath or the 200m isobath but are somewhat related at the 

30m and 50m isobaths.  The results are similar when considering C, C:P, but 

there is a weak correlation at the 10m and 200m isobath and a relatively strong 

relationship at the 30m and 50m isobath.  It appears that the influence of 

particulate C on the C:N and especially the C:P ratio, are strongest in regions 

that are less productive, where detrital contributions could comprise a larger 

portion of the particulate pool.  The strong correlation of C with C:P relative to the 

C:N at the 30m and 50m isobaths could be related to the lack of inorganic P 

inputs resulting in less cellular P and therefore particulate C would be expected 

to dominate this ratio.  In contrast, the C:N ratio at the 30m and 50m isobath 

should be related to both additional particulate N inputs due to N2 fixation and 

particulate C.  The correlation between the paired variables of N with C:N, N with 

N:P and P with C:P does not change with distance from shore, and implies that 

the influence of N on the C:N and N:P ratios and the influence of particulate P on 

the C:P ratios remains similar across the shelf. 

At each isobath, the frequency of surface particulate nutrient ratios were 

binned into categories of near Redfield, nutrient limited and severe limitation 

(Figures 10-12 see figure captions for explanations of individual categories for 

each ratio).  The frequency distribution of the C: N ratio at the 0, 30, 50 and 

200m isobaths remain constant in each category across the shelf, with 
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approximately 50% of the data near to the Redfield Ratio (Figure 10, Table 9).  In 

contrast, the N: P ratio decreased from 26% of the data near to Redfield at the 

10m isobath to 3% near Redfield at the 200m isobath, (Figure 11, Table 9) 

 

Table 8.  Summary of Spearman Rank Order Correlation coefficients (rs)    
for surface particulate C (µM), N (µM), P (µM) concentrations and particulate 
nutrient ratios at the 10m (N=106), 30m (N=103), 50m (N=101) and 200m (N=32) 
isobaths sampled from June 1998 through December 2001. 
________________________________________________________________ 
                                                                          Isobath 
          Paired Variables  10m  30m  50m 200m 
________________________________________________________________ 
 
                 C, N  0.643  0.369 0.237 0.392 
                 N, P   0.567    0.012   0.105   0.338 
                 C, P   0.574    0.103   0.121   0.521 
                 C, C:N              -0.076    0.340   0.401   0.095 
                 C, C:P   0.331    0.721   0.732   0.339 
                 N, C:N              -0.746   -0.681  -0.706  -0.709 
                 N, N:P   0.748    0.836   0.837   0.853 
                 P, N:P              -0.065   -0.449  -0.390  -0.142 
                 P, C:P              -0.494   -0.554  -0.515  -0.498 
                 C:N, N:P              -0.702   -0.626  -0.624  -0.709 
                 C:N, C:P  0.170    0.237   0.407   0.238 
                 N:P, C:P  0.485    0.506   0.348   0.287 
________________________________________________________________ 

 

 

and the C:P decreased from 8% near Redfield at the 10m isobath to 0% at the 

30, 50 and 200m isobaths (Figure 12, Table 9).  At the 10m isobath 23% of the 

N:P data was indicative of severe P-limitation; this percentage increased to 65% 

at the 200m isobath.  The same trend is found in the C:P ratio, where 50% of the 

data at the 10m isobath could be considered severely P-limited, which increased 

to 92% at the 30m isobath and 100% out at the 200m isobath. These results  
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Figure 10.  Histograms of surface particulate C:N binned 
according to nutrient limitation as indicated by Redfield proportions 
(106C:16N) for the A) 10m isobath, B) 30m isobath, C) 50m 
isobath, D) 100m isobath and E) 200m isobath.  C-limitation is 
indicated by 0-4, near Redfield proportions by 4-10, N-limitation by 
10-20 and severe N-limitation by 20+. The data include samples 
collected from June 1998 through December 2001.  Note that the 
frequency distribution scale for the 200m isobath has been 
changed to a maximum of 15 due to a decrease in the number of 
samples at this site. 
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Figure 11.)  Histograms of surface particulate N:P binned according to 
nutrient limitation as indicated by Redfield proportions (16N:1P) for the A) 
10m isobath, B) 30m isobath, C) 50m isobath, D) 100m isobath and E) 200m 
isobath.  N-limitation is indicated by 0-10, near Redfield proportions by 10-20, 
P-limitation by 20-50 and severe P-limitation by 50+. The data include 
samples collected from June 1998 through 2001.  Note that the frequency 
distribution scale for the 200m isobath has been changed to a maximum of 30 
due to a decrease in the number of samples at that site.
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Figure 12.)  Histograms of surface particulate C:P binned according to 
nutrient limitation as indicated by Redfield proportions (106C:1P) for the A) 
10m isobath, B) 30m isobath, C) 50m isobath, D) 100m isobath and E) 200m 
isobath.  C-limitation is indicated by 0-90, near Redfield proportions by 90-
122, P-limitation by 122-212 and severe P-limitation by 212+. The data 
include samples collected from June 1998 through December 2001. Note 
that the frequency distribution scale for the 100 km and 200m isobaths have 
been changed to a maximum of 30 due to a decrease in the number of 
samples at these sites.
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support the hypothesis that P limitation increases with distance offshore, but do 

not support the idea of a decrease in P limiting conditions at the 200m isobath 

(Table 7) that is suggested by mean N:P and C:P values.  These data also 

strongly suggests that N-limitation does not increase with distance off shore, 

 

Table 9.  Frequency percentage (%) of surface particulate nutrient ratio values to 
total sample number within different isobaths with considerations to the Redfield 
Ratio and nutrient limitation. 
________________________________________________________________ 
 
               Isobath 
  10m 30m 50m 100m 200m 
________________________________________________________________ 
 
C:N* 
C-limited   19% 16% 15%    6%   16% 
Near Redfield   55% 42% 44%   57%  42% 
N-limited   21% 36% 25%   23%  23% 
Severe N-limitation    6%   8% 17%   14%  19% 
 
N:P** 
N-limited     2%   2%   2%    7%    0% 
Near Redfield   26%   8%   7%    0%    3%  
P-limited   49% 39% 24%    34%   32% 
Severe P-limitation  23% 51% 67%   59%   65%    
C:P*** 
C-limited     4%   2%   3%    3%    0% 
Near Redfield     8%   0%   0%    0%    0% 
P-limited   38%   6%   2%    0%    0% 
Severe P-limitation  50% 92% 95%   97% 100%  
________________________________________________________________ 
*for C:N values, C-limited was 0-4, Near Redfield was 4-10, N-limited was 10-20, 
Severe N-limitation was greater than 20; **for N:P values, C-limited was 0-10, 
Near Redfield was 10-20, P-limited was 20-50, Severe P-limitation was greater 
than 50; ***for C:P values, C-limited was 0-90, Near Redfield was 90-122, P-
limited was 122-212, Severe P-limitation was greater than 212 
 

 



  69

consistent with the idea that pelagic nitrogen fixation is a very important process 

in the oligotrophic waters of the WFS. 

The trend for increasing particulate N:P ratios across the shelf, could 

result from a decreasing supply of inorganic P or an increasing supply of new N 

relative to P due to nitrogen fixation.  Either explanation or a combination of both 

are plausible, as new sources of P away from coastal sources are restricted to 

inputs from deeper waters and nitrogen fixation is known to occur in offshore 

oligotrophic waters.  The process of nitrogen fixation can contribute to a draw 

down in PO4 concentration, as this process itself requires P.   
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Latitudinal Trends 
 

Heil et al (2007) demonstrated a relationship between particulate N:P 

ratios and latitude in the coastal area between Tampa Bay to Florida Bay, which 

they hypothesized was related to the different nutrient inputs from various 

riverine sources along this gradient.  The current study included three onshore-

offshore sampling transects which originated from Tampa Bay, Sarasota Bay and 

Fort Meyers.  Each transect was sampled out to the 50m isobath, which allows 

for analysis of latitudinal trends.  In this section the particulate nutrient data were 

partitioned into north (Tampa Bay) to south (Fort Meyers) transect subsets to 

examine potential trends. 

Central tendency measures of the particulate nutrient data, organized by 

latitude (Table 10), suggest that surface particulate nutrient concentrations and 

ratios were very similar along the Tampa Bay, Sarasota and Fort Meyers 

transects.  The geometric mean of N:P and C:P ratios decreased from the 

northern Tampa Bay to the southern Fort Meyers by 19% and 9% respectively, 

suggesting a weak trend of decreasing P-limitation along this gradient.  The 

geometric mean of the C:N ratio increased by 10%, suggesting a weak trend of 

increasing N limitation towards the south.  Stoichiometry calculations using the 

geometric mean support this as Tampa Bay has a C:N:P of 527:71:1, Sarasota 

383:49:1 and Fort Meyers 383:44:1 (Table 11).  All particulate C:N:P 

stoichiometries are above the classic Redfield Ratio which suggests P-limiting 

conditions along all three transects however.  
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Table 10.  Central tendency measures and ranges of surface particulate nutrient 
concentrations and particulate nutrient ratios for the Tampa Bay, Sarasota and 
Fort Meyers transects.  The data include all stations sampled out to the 50m 
isobath for each transect from June 1998 through December 2001. 
________________________________________________________________ 
                                                      Geometric 
 N Mean   Mean      Minimum Maximum Median 
________________________________________________________________ 
 
C (µM) 
Tampa Bay 214  27.97   21.33 1.16 135.63 21.61 
Sarasota 169  25.05   20.92 3.35 167.88 20.13 
Fort Meyers 179  29.46   22.53 4.39 485.72 21.68 
 
N (µM) 
Tampa Bay 214    6.52    3.08 0.05 97.69 2.93 
Sarasota 169    4.17    2.73 0.44 35.99 2.58  
Fort Meyers 179    4.57    2.85 0.35 71.12 2.49 
 
P (µM) 
Tampa Bay 216    0.08    0.05 0.002 0.51 0.04 
Sarasota 169    0.08    0.06 0.01 0.71 0.05 
Fort Meyers 174    0.09    0.06 0.002 0.52 0.06 
 
C:N 
Tampa Bay 212  11.85    7.38 0.11 86.00 8.29 
Sarasota 169  11.36    8.09 0.66 76.46 8.18 
Fort Meyers 176  10.11    8.16 0.68 66.25 8.97 
 
N:P 
Tampa Bay 212   94.53   57.87 0.60 609.92 52.05 
Sarasota 168   79.90   50.24 6.77 585.32 41.85 
Fort Meyers 171   73.05   46.62 4.63 554.77 40.95 
 
C:P 
Tampa Bay 213 568.88 405.15 15.13 4431.17 415.21 
Sarasota 168 504.24 380.72 26.23 3278.04 372.31 
Fort Meyers 171 524.21 368.22 47.93 4105.85 338.73 
________________________________________________________________ 
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when the particulate ratios are considered and binned according to nutrient 

deficiency or sufficiency, the distribution percentages do not support a 

 

Table 11.  Surface particulate nutrient stoichiometry based on the geometric 
mean and median of the Tampa Bay, Sarasota and Fort Meyers transects.  The 
data include all stations sampled out to the 50m isobath and at the 10m isobath 
for each transect. 
________________________________________________________________ 
                                                  Geometric mean         Median 
Transect        C:N:P    C:N:P 
________________________________________________________________ 
Entire Transect 
   Tampa Bay  414:60:1 527:71:1 
   Sarasota  379:49:1 383:49:1 
   Fort Meyers  367:47:1 383:44:1 
10m Isobath 
   Tampa Bay  180:40:1 168:35:1 
   Sarasota  223:29:1 230:26:1 
   Fort Meyers  222:33:1 178:26:1 
________________________________________________________________ 
 

 

trend of decreasing P limitation nor increasing N-limitation from Tampa Bay to 

Fort Meyers (Figure 13, Table 12).  Fort Meyers has the highest percentage of 

data distributed within the near Redfield bin for all particulate ratios with 53% of 

C:N, 13% of N:P and 3%of C:P in this category (Table 12).  The Fort Meyers 

station is influenced by nutrient inputs from Charlotte Harbor and the 

Calossahatchee River which have greater fluxes of TN and TP compared to both 

Tampa Bay and Sarasota Bay (Vargo et al. 2008)and could potentially explain 

this observation.  The lack of strong trends is not surprising, as the factors 
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Figure 13.  Histogram of surface particulate A) C:N, B) N:P and C) 
C:N  ratios sampled from June 1998 through December 2001 binned 
according to potential nutrient limitation as indicated by Redfield 
proportions of 106C:16N:1P. Tampa Bay (blue), Sarasota (red) and 
Fort Meyers (green) transects.  
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influencing the particulate C:N:P ratios across the distances of the entire transect 

are most likely to be similar regardless of the small changes in latitude.  

However, each transect point of origin is influenced by a different riverine system 

and drainage basin, so the particulate nutrient data at the 10m could potentially 

reflect these different influences.  In times of high river flow the 30m isobath 

 

Table 12.  Frequency percentage (%) of surface particulate nutrient ratio values 
to total sample number within different transects with considerations to the 
Redfield Ratio and nutrient limitation.  Each transect includes all station data from 
the 10m isobath to the 50m isobath. 
________________________________________________________________ 

                     Transect 
  Tampa Bay         Sarasota            Fort Meyers 
________________________________________________________________ 
 
C:N* 
   C-limited  24% 17%    10% 
   Near Redfield  40% 43%    53% 
   N-limited   24% 30%    31% 
   Severe N-limitation  12% 10%      6% 
 
N:P* 
   N-limited      4%   1%      0.6%  
   Near Redfield     8% 10%    13%  
   P-limited    35% 49%     47%  
   Severe P-limitation   52% 39%     39%   
 
C:P* 
   C-limited       4%   2%      2% 
   Near Redfield      3%   2%      3%  
   P-limited     11% 11%    15%  
   Severe P-limitation    83% 85%    80%  
________________________________________________________________ 
*for C:N values, C-limited was 0-4, Near Redfield was 4-10, N-limited was 10-20, 
Severe N-limitation was greater than 20; **for N:P values, C-limited was 0-10, 
Near Redfield was 10-20, P-limited was 20-50, Severe P-limitation was greater 
than 50; ***for C:P values, C-limited was 0-90, Near Redfield was 90-122, P-
limited was 122-212, Severe P-limitation was greater than 212 
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could be potentially influenced by coastal processes but will not be considered at 

this time (Vargo et al. 2008).   

At the 10m isobath, Sarasota has the lowest concentration of average 

particulate nutrients and Chl a concentrations (Ault 2006) compared to Tampa 

Bay (Table 13) and Fort Meyers.  Sarasota Bay does not have the large river 

systems influencing its adjacent coastal stations, as does the Tampa Bay 

transect (Manatee River) and the Fort Meyers transect (Charlotte Harbor and 

Caloosahatchee River), but instead is fed by small creeks.  Therefore, it seems 

likely that dissolved nutrient or detrital inputs to the coastal stations of Tampa 

Bay and Fort Meyers would be larger resulting in greater particulate C, N and P 

concentrations relative to Sarasota Bay.  Tampa Bay has the highest 

concentration of average particulate C (Gmean=40.71µM) and P 

(Gmean=0.23µM).  The tributaries which enter Tampa Bay and Charlotte Harbor 

drain the Hawthorn phosphatic deposits yet; inorganic P concentrations at the 

mouth of Tampa Bay are greater than at the mouth of the Caloosahatchee River 

(Vargo et al. 2008).  This could potentially be a contributing factor to the high 

particulate P concentration at the 10m isobath of the Tampa Bay transect.  Fort 

Meyers has the greatest average concentration of particulate N 

(Gmean=41.09µM) (Table 13) at the 10m isobath and is 74% greater than the 

Tampa Bay station and 89% greater than the Sarasota station at the 10m 

isobath.  The Caloosahatchee River has a higher total nitrogen flux compared to 

Tampa Bay and supports this observation (Vargo et al. 2008). 
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Table 13.  Central tendency measures and ranges of surface particulate nutrient 
concentrations and nutrient ratios of Tampa Bay, Sarasota and Fort Meyers 
transects.  The data include all stations sampled at the 10m isobath for each 
transect from June 1998 through December 2001. 
________________________________________________________________ 
                   Geometric 
 N    Mean    Mean       Minimum Maximum Median  
________________________________________________________________ 
 
C (µM) 
Tampa Bay 37  49.01 40.73  3.31 135.63 40.14 
Sarasota 35  36.04 29.89  7.68 167.88 31.35 
Fort Meyers 33  41.09 36.16 10.72 125.67 32.28 
 
N (µM) 
Tampa Bay 37  16.84 9.22 1.27 97.69   8.45 
Sarasota 35    5.22 3.96 1.20 20.26   3.62  
Fort Meyers 33   41.09         36.16 10.72 125.67 32.28 
 
P (µM) 
Tampa Bay 37    0.25 0.23   0.07 0.51 0.24 
Sarasota 35    0.15 0.13   0.06 0.38 0.14 
Fort Meyers 35    0.19 0.16   0.04 0.52 0.18 
 
C:N 
Tampa Bay 37     6.81 4.97   0.11 22.11 6.40 
Sarasota 35   10.42 7.80   0.96 48.40 8.14 
Fort Meyers 34     8.75 7.39   0.68 17.69 9.02 
 
N:P 
Tampa Bay 37   66.62 40.19   5.33 286.27 32.42 
Sarasota 35   37.03 29.59 10.47 189.81 26.89 
Fort Meyers 34   54.17 33.16 10.09 401.18 23.84 
 
C:P 
Tampa Bay 37 206.20         180.66 20.82 525.29 179.69 
Sarasota 35 283.60         223.60 26.23        1477.56 215.79 
Fort Meyers 34 294.25         236.98 96.84        1408.51 231.17 
______________________________________________________________ 
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The Gmean C:N ratio for Sarasota (7.8) and Fort Meyers (7.39) are very 

similar while Tampa Bay (4.97) is below the Redfield Ratio (Table 13).  This 

implies that at the 10m isobath of the Tampa Bay transect, phytoplankton cells 

are not limited by N (Figure 14).  This is unexpected as it is well known that 

phytoplankton biomass is limited by N inside the Tampa Bay estuary (Walsh et 

al. 2006; Vargo et al. 2008).  However, a DIN/PO4 ratio of 5.7 at the mouth of the 

estuary (Walsh et al. 2006) suggests that N-limiting conditions could potentially 

be restricted to the inside of Tampa Bay.  Further confounding this study, are the 

Gmean particulate N:P ratios at the 10m isobath which are: 40.19 for Tampa 

Bay, 29.59 for Sarasota and 33.16 for Fort Meyers.  This implies that all three 

coastal stations are potentially limited by P (Table 11, Table 13, Figure 14).  The 

Gmean of the particulate C:P ratios also imply P-limitation at these stations 

(Table 11, Table 13).  However, the DIN:PO4 at these stations are all below the 

Redfield ratio (Walsh 2006) and do not support the hypothesis drawn from the 

particulate nutrient data.  There must either be a significant pool of particulate P 

that was not accounted for while sampling (i.e. zooplankton), a significant sink of 

inorganic P other than phytoplankton uptake (abiotic or biotic processes) or the 

method for particulate P determination underestimated P concentrations.   

Spearman Ranking Correlation coefficients indicate that there is better 

correlation between the Particulate C, N and P concentrations at the 10m isobath 

of Tampa Bay and Fort Meyers stations then at the Sarasota station (Table 14).  

This supports the hypothesis that the hydrology of the region (i.e. the larger 

riverine systems influence on the Tampa Bay and Fort Meyers regions and the  
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Figure 14.  Histogram surface particulate A) C:N, B) N:P and C) C:N 
ratios sampled at the 10m isobath from June 1998 through December 
2001 binned according to potential nutrient limitation as indicated by 
Redfield proportions of 106C:16N:1P. Tampa Bay (blue), Sarasota 
(red) and Fort Meyers (green) transects.  
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Table 14.  Summary of Spearman Rank Order Correlation coefficients (rs)    
for surface particulate C (µM), N (µM), P (µM) concentrations and particulate 
nutrient molar ratios at Tampa Bay (N=37), Sarasota (N=35), Fort Meyers (N=33) 
at the 10m isobath sampled from June 1998 through December 2001. 
________________________________________________________________ 
                                                                       Transect 
    Paired Variables Tampa Bay          Sarasota           Fort Meyers  
________________________________________________________________ 
 
            C, N 0.613 0.386       0.735  
            N, P  0.584                 0.450    0.528   
            C, P  0.654    0.349    0.656   
            C, C:N  0.356    0.236    0.007   
            C, C:P  0.402    0.401    0.235   
            N, C:N           -0.851               -0.737       -0.574   
            N, N:P  0.885    0.787    0.556   
            P, N:P           -0.001                -0.140       -0.330   
            P, C:P           -0.360                -0.525       -0.464   
           C:N, N:P           -0.773                -0.659       -0.598   
           C:N, C:P  0.023                 0.392    0.007   
           N:P, C:P  0.463    0.309    0.738   
________________________________________________________________ 

 

 

smaller freshwater systems influencing the Sarasota regions) could potentially 

influence the particulate nutrient concentrations and the relationships between 

the particulate constituents.  However, the correlation coefficients indicate that 

correlation decreases between particulate C and N and the ratios C:N, N:P, C:P 

from Tampa Bay south to Fort Meyers at the 10m isobath.  The decoupling of N 

to the C:N and N:P ratio could potentially be related to the decrease of inorganic 

N concentrations from Tampa Bay to Fort Meyers (Walsh 2006).  In response to 

lower inorganic N concentrations, adjusted phytoplankton uptake ratios could be 

responsible for this trend.  The particulate C:N ratio does support increasing N-

limited growth from Tampa Bay to Fort Meyers (Figure 14). 
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Temporal Considerations 
 

Seasonal Trends 

Particulate nutrient concentrations and nutrient ratios should be influenced 

by the seasonal patterns of climatology, ocean circulation, sea surface 

temperature and stratification as the varying influences of these parameters 

ultimately control the nutrient regime available to phytoplankton.  The rainy 

season in southern Florida typically lasts from June to September and the dry 

season from October to May (Figure 15).  The rainy season coincides with the 

along shore current flowing from the south to north and increased sea surface 

temperature which in deeper waters can result in the thermal stratification of the 

0

2

4

6

8

10

12

14

Ja
n

Feb Mar Apr
May Ju

ne Ju
ly

Aug Sep Oct Nov Dec

R
ai

nf
al

l (
In

ch
es

)

1998
1999
2000
2001

Month

0

2

4

6

8

10

12

14

Ja
n

Feb Mar Apr
May Ju

ne Ju
ly

Aug Sep Oct Nov Dec

R
ai

nf
al

l (
In

ch
es

)

1998
1999
2000
2001

0

2

4

6

8

10

12

14

Ja
n

Feb Mar Apr
May Ju

ne Ju
ly

Aug Sep Oct Nov Dec

R
ai

nf
al

l (
In

ch
es

)

1998
1999
2000
2001

Month

Figure 15.  The monthly average rainfall at Tampa Bay, Sarasota 
and Fort Meyers for each month from 1998-2001.  Data are from 
Florida State University. 
http://www.coaps.fsu.edu/climate_center/prcpdat. 
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water column.  During the dry season, the along shore currents flow from the 

north to the south and sea surface temperature decreases.  

Scatter plots of all (the entire data set) the particulate C, N and P from the 

wet season and the dry season do not show any notable differences between the 

two data sets (Figure 16).  The Gmean of the particulate C, N and P 

concentrations support this observation, as there is little difference in the 

concentrations between the two seasons (Table 15).  However, the range of 

particulate C and N concentrations are greater during the dry season than during 

the wet season.  This result seems counterintuitive; logic suggests that there 

would be greater flux of particulate detrital material during times of high river flow 

giving rise to a larger range of concentrations within the particulate pool.   

Despite the similar range of the particulate constituents during the wet and 

dry period, the Gmean of the molar ratios suggest that there might be a 

difference in how these constituents are incorporated into phytoplankton cells 

potentially based on nutrient availability.  The Gmean of the C:N ratio during the 

wet season is 6.77 and implies balanced growth while the C:N ratio during the 

dry season is 8.44 which suggests that N could potentially become limiting during 

that time.  In contrast, the Gmeans of both N:P and C:P suggest conditions of 

greater P-limitation during the wet season.  This is again counterintuitive as 

dissolved P inputs would be expected to be greater during times when river flow 

is highest.  When considering specifically the influence of rainfall on the 

particulate nutrients and ratios, it is reasonable to assume that the stations that  
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Figure 16.  Scatter plots of surface particulate A) carbon, B) 
nitrogen and C) phosphorus concentrations during the wet season 
(pink) and dry season (blue) sampled from June 1998 through 
December 2001.  
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Table 15.  Central tendency measures and ranges of surface particulate nutrient 
concentrations and nutrient ratios of the wet season (June to September) and the 
dry season (October to May).  The data include all stations sampled from June 
1998 through December 2001. 
________________________________________________________________ 
                   Geometric 
 N    Mean    Mean      Minimum      Maximum        Median  
________________________________________________________________ 
C (µM) 
   Wet 337  26.88  20.94  1.16 167.88  21.48 
   Dry 501  26.67  20.73  1.94 485.72  20.32 
 
N (µM) 
   Wet 337   6.31    3.31  0.35 144.79   2.95  
   Dry 501   6.00    2.59  0.05 266.24   2.48  
 
P (µM) 
   Wet 338   0.07    0.05  0.002     0.71   0.04 
   Dry 490   0.08    0.05  0.002     0.60   0.04 
 
C:N 
   Wet 335  10.89    6.77  0.11   98.82    8.10 
   Dry 497  12.12    8.44  0.10   92.65    9.05 
  
N:P 
   Wet 331 108.37  67.51  4.63 789.08  56.54 
   Dry 481   77.48  47.18  0.60 609.92  41.16 
 
C:P 
   Wet 334 623.54 437.45 15.13        4431.17 434.51 
   Dry 483 531.89 385.47 15.22        4240.92 373.85 
________________________________________________________________ 

 

 

are directly influenced by estuaries should reflect the changes in dissolved 

nutrient concentrations and availability and detrital materials associated with 

changes in river flow.  When only the average particulate nutrient data from the 

Tampa Bay, Sarasota and Fort Meyers stations at the 10m isobath are 

considered, the particulate C,N and P concentrations are still similar during both 
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the wet and the dry period and the widest range of particulate concentrations 

remain during the dry period (Figure 17, Table 16).  The dry period still has C:N 

values above the Redfield ratio but the N:P and C:P ratios are very similar during 

the wet and dry season where values in both cases are suggestive of P-

limitation.  Spearman Ranking Correlation Coefficients indicate that there is no 

correlation between any possible paired particulate variables and rainfall.   

Analyzing the data binned as the wet or dry season may have been too 

broad a classification and subtle trends were not recognized.  To analyze the 

data on a finer scale of temporal resolution, the particulate nutrient 

concentrations and nutrient ratios were plotted against month 

Plots of all particulate C, N, P and of the particulate nutrient ratios, indicate 

that there is a wide range of values for each month, most noticeably from June to 

October (Figure 18, 19).  However, average particulate nutrient concentrations 

for each month suggest that there may be seasonal trends within the wet and dry 

seasons that are not only associated with rainfall, but with other process as well 

(Figure 20).  The particulate nutrient concentrations seem to indicate that similar 

processes are influencing C and P and these processes could potentially be 

different during the wet and dry periods (Figure 20).  The particulate N curve 

displays a similar curve to particulate C and P during the dry season, suggesting 

these concentrations might be linked to processes potentially driving particulate 

C and P concentrations.  However, during the wet season, particulate N 

concentrations increase linearly from June to October appearing independent 

from the curve of the C and P concentrations.  Thus, a different set of processes 
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Figure 17.  Scatter plots of surface particulate A) carbon, B) nitrogen 
and C) phosphorus concentrations at the 10m isobath of the Tampa 
Bay, Sarasota and Fort Meyers stations during the wet season (pink) 
and dry season (blue) sampled from June 1998 through December 
2001.  
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Figure 18.  Relationship between month and surface particulate A) 
carbon, B) nitrogen and C) phosphorus concentrations sampled 
from June 1998 through December 2001.  
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Figure 19.  Relationship between month and surface particulate 
ratios A) C:N, B) N:P and C) C:P sampled from June 1998 through 
December 2001. .  
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Table 16.  Central tendency measures and ranges of surface particulate nutrient 
concentrations and nutrient ratios of the wet season (June to September) and the 
dry season (October to May).  The data include the averaged data of the Tampa 
Bay, Sarasota and Fort Meyers stations at the 10m isobath sampled from June 
1998 through December 2001. 
________________________________________________________________ 
                    Geometric 
 N     Mean   Mean      Minimum      Maximum      Median  
________________________________________________________________ 
C (µM) 
   Wet 42   41.58  35.15    3.31  167.88   34.07 
   Dry 63   49.66  37.06 7.68  485.72   33.26 
 
N (µM) 
   Wet 43   10.81    6.60    1.46    68.61     4.89  
   Dry 63   10.98    5.46    1.20    97.69     5.17  
 
P (µM) 
   Wet 43    0.19    0.17    0.06     0.41     0.18 
   Dry 64    0.21    0.17    0.04     0.52     0.18 
 
C:N 
   Wet 43    8.08    5.72    0.11   48.40     7.15 
   Dry 63    9.00    7.19    0.68   30.88     8.73 
 
N:P 
   Wet 43   58.43  38.92       12.94  286.27   31.76 
   Dry 63   49.06  31.56    5.33  401.18   25.98 
 
C:P 
   Wet 43 244.94 207.19       20.82          926.42 212.59 
   Dry 63 270.40 214.44       26.23        1477.56 208.51 
________________________________________________________________ 

 

 

may be acting on particulate N during the wet period.  Average C:N and N:P 

ratios do not exhibit the strong seasonal patterns of the particulate C, N, P 

concentrations and C:P ratios (Figure 21).  The monthly average C:N ratios 
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suggest decreasing N-limitation from February to October and the monthly 

average N:P ratios suggest increasing P-limitation during this time period.  This 

could potentially be related to increasing N2 fixation during these months which 

would alleviate N-limitation and compound P-limiting conditions.  It is interesting 

that the C:P curve is practically identical to the curves of particulate C and P 

concentrations.  In contrast, the C:N and N:P curves are somewhat different in 

comparison with particulate C and N concentrations.  This suggests that 

phytoplankton C:P uptake ratios might be more straightforward and more related 

to the physical processes controlling nutrient availability while C and N and N and 

P uptake ratios seems more complex and potentially more related to 

phytoplankton adaptation strategies concerning nutrient uptake.  The processes 

which influence the average monthly ratios should potentially be different across 

the shelf (e.g. coastal processes versus offshore processes).  Therefore, to  
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Figure 20.  Monthly average surface particulate C (blue), N (pink) 
and P (green) concentrations sampled from June 1998 through 
December 2001.  
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Figure 21.  Relationship between month and average surface 
particulate ratio A) C:N, B) N:P and C) C:P sampled from June 
1998 through December 2001. 
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assess the seasonal influence on the particulate nutrients and ratios across the 

WFS, it is necessary to combine spatial and temporal perspectives. 

The monthly averaged particulate C, N and P curves at the 10m isobath 

(Figure 22A) are surprisingly similar to the average curves (Figure 20).  The 

particulate C, N and P concentrations track very well at the 10m and 30m and to 

some degree, at the 50m and 200m isobaths as well.  This suggests that there 

may be a fundamental process or set of processes driving the particulate nutrient 

pool across the shelf.  Although the basic patterns are retained, the curves of 

particulate C, N and P begin to shift with each seaward isobath and suggest that 

with distance offshore the relationship between particulate C, N and P 

decreases. 

The curves of the particulate C, N and P concentration all exhibit 

increases in concentrations during the spring, early summer and fall at all 

isobaths presented (Figure 22, 23).  There does seem to be a seasonal influence 

on the particulate nutrient constituents that is not simply due to rainfall, but may 

be related to the seasonal change in flow regime on the WFS and probably other 

processes not revealed in this study. 

During the spring, increased day length could potentially increase 

phytoplankton productivity, resulting in the increase of particulate C, N and P 

(Figure 23) during this time of the year.  The peaks in the curves of particulate C, 

N and P (Figure 23) during the summer at the 10m and 30m isobaths could 

potentially be related to the “first flush” of runoff associated with the start of the 

rainy season, when detrital material, degradation products and anthropogenic  
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Figure 22.  Monthly average surface particulate C, N and P 
concentrations at the A) 10m, B) 30m, C) 50m and D) 200m 
isobaths sampled from June 1998 through December 2001. 
Particulate C (blue), particulate N (pink) and particulate P (green). 
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Figure 23.  Monthly average surface particulate A) carbon, B) nitrogen 
and C) phosphorus concentrations along different isobaths sampled 
from June 1998 through December 2001.  10m isobath (blue), 30m 
isobath (red), 50m isobath (green) and the 200m isobath (turquoise). 
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nutrient sources built up during the dry period are discharged into the marine 

environment at higher concentrations during the rest of the rainy season.  At the 

50m and 200m isobaths it should be expected that this trend is more related to 

ocean circulation patterns as increased (or decreased) riverine nutrient inputs 

should not influence this region of the shelf.  In situ regeneration within the photic 

zone of regions that become thermally stratified could also be responsible for 

increased particulate nutrient concentrations.  The peaks in the curves of 

particulate C, N and P (Figure 23) during the fall could potentially be related to 

the fall water column turnover event where cooler temperatures result in the 

break down of thermal stratification in the water column, resulting in the upward 

diffusion of nutrients increasing phytoplankton production and the observed 

increase in particulate nutrient concentrations.  In the fall, along shore currents 

revert back to the north to south flow pattern and could potentially influence 

particulate C, N and P concentrations at this time of the year.  The dips that often 

follow the peaks might be a result of the draw down of nutrients after periods of 

increased growth and would result in a decrease of nutrients in the particulate 

pool.   

During the dry season, the particulate C:N ratio at all isobaths have similar 

curves with peak values occurring in February, followed by another peak in May 

and the lowest values occurring in October (Figure 24A).  This suggests that 

similar processes may be acting on the particulate C:N ratio across the shelf 

during that period.  Ocean circulation patterns are known to reverse during May 

and October and might be a contributing factor to the more N limiting conditions  
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Figure 24.  Monthly average surface ratios A) C:N, B) N:P and C) 
C:P along different isobaths sampled from June 1998 through 
December 2001. 10m isobath (blue), 30m isobath (red), 50m 
isobath (green) and the 200m isobath (turquoise).  
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during the spring and less N-limiting conditions during the fall.  At the 10m and 

30m isobaths this pattern could possibly be related to rainfall where the spring 

peak may be related to the first flush of nutrients at the start of the rainy season 

and the low concentrations in October results as a lack of river flow.  The first 

heavy rainfall would be expected to bring large loads of detrital C into the 

estuaries and coastal zones thereby elevating the C:N ratio.  The high C:N 

values that occur in February could be related to carbon over-consumption (Fuhs 

1972) as inorganic nutrient concentrations are known to decrease during the 

winter months.  For all hypotheses presented, it is difficult to determine if the C:N 

ratios are more influenced by particulate N or particulate P as both of these 

concentrations decrease in February and May (Figure 23A, 23B) and increase in 

October.  During the rainy season the particulate C:N curves at all isobaths 

exhibit a different trend compared to the dry season.  This suggests that 

processes contributing to the C:N ratio across the shelf may be different during 

wet and dry seasons.  More over, the curves at the10m and 30m isobath are 

similar and the curves at the 50m and 200m isobaths are somewhat similar to 

each other (Figure 24A) and implies that from June to September the processes 

contributing to the particulate C:N values found within the inner shelf could be 

different than processes contributing to offshore particulate C:N values.  The 

particulate C:N ratios at the 10m and 30m isobaths steadily declines throughout 

the wet season and could be related to the potential increase in concentrations of 

inorganic N due to increased river flow during the summer months or perhaps N2 

fixers are responding to an increase in iron availability deposited as Saharan 
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dust.  It is also possible that detrital C materials become less important after the 

“first flush” of the rainy season contributing to this trend by reducing particulate C 

concentrations (Figure 23A).  Explanations for the rise in the average particulate 

C:N ratios at the 50m and 200m isobaths during July and September are not as 

readily available and may be related to summer circulation patterns within the 

offshore region. 

The particulate N:P ratio exhibits a general trend of increasing P-limitation 

from February to July across the WFS as particulate N:P values steadily increase 

from the lowest values in February to higher values in July (Figure 24B).  From 

August to November the curve of the 10m isobath exhibits a different trend when 

compared to the surprisingly similar curves at 30m, 50m and 200m isobaths 

exhibited throughout all months (Figure 24B).  Particulate N:P values at the 10m 

isobath increase throughout the wet season indicating conditions of continually 

increasing P-limitation into September.  In contrast, the particulate N:P ratios 

farther offshore decrease in value during August and September, indicating 

decreasing P-limitation during the late summer.  This implies that during the 

summer and fall, processes driving the coastal particulate N:P ratios are different 

from those processes influencing particulate N:P ratios farther offshore.  

However, which processes contributing to the trend of increasing P-limitation at 

the 10m isobath and decreasing P-limitation at the 30m, 50m and 200m isobaths 

during the late summer are difficult to explain.  During the wet season, inorganic 

P concentrations along the coast increase as the flow of rivers draining 

Hawthorne phosphatic deposit increase.  This should result in a decrease of the 
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particulate N:P ratio during the rainy season as coastal phytoplankton should not, 

in theory, be limited by P.  It is possible that a large portion of the inorganic P is 

taken up within the estuaries and therefore not available to coastal populations, 

but does not explain why the N:P ratio increases from May to September.  It is 

unclear why the offshore stations appear to become less P-limited during the late 

summer months than during July.  N2 fixation rates offshore should increase 

during the late summer, increasing particulate N concentrations relative to 

particulate P at the 30m, 50m, and 200m isobath.  However, this trend is 

observed during the month of October.  It is interesting to note that average C:N 

and N:P values generally exhibit opposite trends at all isobaths in all months, 

which implies that particulate N may be driving both ratios on the WFS during the 

wet and dry periods.  These ratios display seasonal trends which are potentially 

related to changing circulation patterns, thermal regimes, biological processes 

(i.e. of N2 fixation by Trichodesmium populations in late summer), and rainfall 

(10m and 30m isobaths).  Despite the relatively constant values of the average 

particulate N concentrations (Figure 20, 23B), it seems likely that seasonal 

processes affect the mechanisms by which particulate N is partitioned into 

cellular material to a greater degree than particulate C. 

The particulate C:P ratio lacks some of the structure seen in both the C:N 

and N:P curves, most notable at the 10m isobath (Figure 24C), which implies that 

this ratios may be less seasonally dependent than ratios which include 

particulate N.  However, throughout the wet season the particulate C:P ratios at 

both the 10 and 30m isobath decline and could potentially be related to increased 
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inorganic P concentrations associated with increased river flow.  Based on the 

hypothesis when discussing trends of the N:P ratio, this trend seems more likely 

to be related to a decrease in particulate C after the “first flush”.   

 
 

Inter-annual Trends 

The primary controls on the particulate nutrients and ratios would be 

expected to be the same throughout the study period, however, inter-annual 

differences in the inorganic nutrient regimes that would be reflected in 

phytoplankton C:N:P stoichiometry.  Wind events of various direction, strength 

and duration which result in upwelling/downwelling conditions would be expected 

to alter inorganic nutrient concentrations throughout the years, as would the 

variability in rainfall (Figure 15). 

Geometric means of particulate P concentrations across the shelf are 

relatively constrained throughout the study period, while average particulate C 

and N concentrations have lower average concentrations during 1998 and 2001 

and greater average concentration during 1999 and 2000 (Table 17).  This could 

potentially be related to different environmental conditions on the WFS during 

1998/2001 and 1999/2000.   

The geometric means of particulate C:N (14.01) and N:P (32.38) during 

1998 suggest that this year was the most N-limited and the least P-limited 

compared to 1999-2001 (Table 17, 18).  This seems to be related to the very low 

concentrations of particulate N (1.93 uM) from June to December of that year 

rather than an increase in particulate P or C (Table 17).  This could be related to  
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Table 17.  Central tendency measures and ranges of surface particulate 
nutrient concentrations and nutrient ratios from sampled from June 1998 through 
December 2001.  The data only include the months of June to December for 
each year in order to directly compare the study years. 
________________________________________________________________ 
   Geometric 
  N    Mean    Mean    Minimum     Maximum  Median  
________________________________________________________________ 
 
C (µM) 
   1998 126  21.98  19.08   1.94    62.19   21.07 
   1999 186  29.02  22.68   1.16  114.39   24.27 
   2000 139  34.16  25.79   7.42  231.79   22.50 
   2001 120  20.75  16.84   3.72    89.87   15.47 
 
N (µM) 
   1998 126    1.93    1.45   0.16      9.87     1.45 
   1999 186    7.63    4.19   0.58  144.79     3.79  
   2000 139  13.75    5.79   0.77  266.24     5.16 
   2001 120   4.29    2.74   0.53    27.28     2.41 
 
P (µM) 
   1998 129    0.06    0.05   0.002      0.35     0.04 
   1999 177    0.11    0.07   0.02      0.60     0.07 
   2000 137    0.07    0.05   0.01      0.50     0.04 
   2001 121    0.09    0.05   0,01      0.71     0.03 
 
C:N 
   1998 123  16.89  14.01   3.17    92.64   13.29 
   1999 186  10.16    5.70   0.10    98.82     7.16 
   2000 139    8.39    4.98   0.21    54.20     5.24 
   2001 120    7.94    6.50   0.89    20.30     7.60  
 
N:P 
   1998 125  50.62   32.38   3.41  520.90   29.38 
   1999 174  86.93   56.28   4.70  789.08   47.95 
   2000 133       177.16         119.22      19.14  616.35 129.20 
   2001 119  85.52   58.92   4.63  685.96   50.06 
 
C:P 
   1998 125 581.85 430.05 41.60 4105.85 421.30 
   1999 175 509.57 309.63 15.13 3367.11 298.45 
   2000 137 763.24 563.36     117.99 4431.17 545.86 
   2001 119 421.81 358.69 38.36 1333.86 391.65 
________________________________________________________________ 
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Table 18.  Surface particulate nutrient stoichiometry based on the mean and 
geometric mean.  The data only include the months of June to December for 
each year in order to directly compare the study years. 
________________________________________________________________ 
     Geometric 
 N       C:N:P                   C:N:P 
________________________________________________________________ 
1998 126 351:31:1  423:32:1  
1999 186            270:71:1  313:58:1 
2000 139            477:191:1  567:127:1 
2001 120            242:50:1  356:58:1 
________________________________________________________________ 
 

 

a deep water upwelling event which occurred during the spring and into the fall of 

1998 (Vargo et al. 2008).  Weisberg et al. 2005 observed that during this period, 

“Complimentary deep ocean and local forcing led to anomalous stratification and 

circulation where the thermocline stayed strong into July even up to the beach 

and cold water outcrops were observed in satellite images”  The upwelled 

nutrient rich water could have the effect of preferentially sustaining non-N2 fixing 

organisms which have lower half saturation constants allowing them to out-

compete N2-fixers for the available nutrients.  N2 fixing organisms typically have 

cellular concentrations enriched in N relative to P compared to non-Nitrogen 

fixers, which might explain why the average particulate N values and N:P ratio 

are lower, but the C:P ratio are higher in 1998 compared to other years within 

this study (Table 17, 18).   

In contrast, 2000 has an average C:N:P stoichiometry indicative of the 

greatest P-limitation relative to the other sample years (Table 18).  The average 

N:P and the C:P molar ratios of 177 and 763 are values which suggest conditions 
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of severe P limitation (Table 17).  These extremely high values seem to be more 

related to larger detrital contributions of refractory C and P during this year.  It 

seems unlikely that N:P ratio values would reach 177 as a result of N2 fixation 

processes alone.  Hurricane Gordon, which affected the WFS during September, 

could certainly have contributed to an increase in detrital contributions to the 

particulate pools via both to heavier river flows due to increased rainfall and re-

suspension of particulates from the sediments as a result of increased wind 

activity.  This hypothesis is supported in the curves of the particulate constituent 

concentrations (Figure 25) and particulate ratio values (Figure 26).  During 2000, 

particulate C concentrations and the C:P ratio both increased dramatically in 

October and during November particulate N concentrations and the particulate 

N:P values also radically increased.  Particulate P concentrations were only 

slightly elevated during those months and the C:N ratio does not increase in 

October or November.   This is most likely due to the fact that detrital 

components are primarily composed of refractory particulate C and N and very 

little particulate P.  The June–December periods of 1999 and 2001 have more 

similar particulate stoichiometries when compared to those of 1998 and 2000, 

especially the average particulate N:P ratios which are almost identical (Table 

17, 18).  Neither of these years had anomalous weather conditions, which might 

be responsible for the similarity of the particulate ratios.   

Average values of particulate nutrient concentrations and nutrient ratios for 

all stations sampled each month of each year show pulsed increases/decreases 
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Figure 25.  Monthly averages of surface particulate A) carbon,        
B) nitrogen and C) phosphorus concentrations sampled from 
June through December of 1998 (blue), 1999 (red), 2000 (green) 
and 2001 (turquoise).. 
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Figure 26.  Monthly averages of surface particulate nutrient A) C:N, 
B) N:P and C) C:P ratios for all stations sampled from June through 
December of 1998 (blue), 1999 (red), 2000 (green) and 2001 
(turquoise). 



  105

during different months and the structure of the curves are very different for each 

year (Figure 25, 26).  This supports the hypothesis that interannual physical and 

biological process are different for each year and result in a variety of particulate 

C, N, P concentrations and particulate ratio values within each year. 

Particulate N and P concentrations as related to distance offshore all 

share very similar trends seaward of the 30m isobath (Figure 27).  This implies 

that offshore processes influencing particulate N and P concentrations are similar 

from year to year on the WFS.  The variability at the 10m isobath is most likely 

due to the variety of coastal processes which would be expected to vary with 

year.  In contrast, the particulate C concentration curves tend to vary from year to 

year seaward of the 30m isobath, indicating that processes influencing 

particulate C concentration may not be as constrained as those acting on 

particulate N and P and could potentially be related to detrital contributions, C 

over-consumption or phytoplankton assemblage (i.e. picocyanobacteria) .   

Although the particulate N and P concentrations are constrained, and 

potentially limited by physical processes seaward of the 30m isobath, the 

particulate ratios are much more variable with distance offshore from year to year 

(Figure 28).  This is most likely related to the complexity of the processes 

involving phytoplankton uptake mechanisms, adaptive strategies and competition 

between species based on nutrient regimes that would be expected to change 

from June through December during each year of the study period.   
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Figure 27.  Average surface particulate A) carbon, B) nitrogen 
and C) phosphorus concentrations at each isobath sampled from 
June through December of 1998 (blue), 1999 (red), 2000 (green) 
and 2001 (turquoise). 
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Figure 28.  Average surface particulate ratios A) C:N, B) N:P and C) 
C:P at each isobath for all stations sampled from June through 
December of 1998 (blue), 1999 (red), 2000 (green) and 2001 
(turquoise). 
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Karenia brevis 

 

Karenia brevis is the toxic dinoflagellate responsible for the large red tide 

blooms that occur with almost inter-annual regularity on the WFS.  Because of 

the high cell biomass associated with these blooms, it would be expected that K. 

brevis blooms have a relationship with particulate nutrient stoichiometry on the 

SW Florida shelf.  When K. brevis concentration ranges are binned in ranges (i.e. 

<1,000 cells/L, 1,000-10,000 cells/L, >10,000-100,000 cells/L and >100,000 

cells/L) there is a difference in the ranges of the particulate nutrient ratios 

associated with each binned cell concentration.  The ranges when there are no 

K. brevis cells present or in low concentrations are much larger for particulate 

C:N, N:P and C:P than when K. brevis is present in concentrations greater than 

10,000 cells/L (Table 19).   

Mean C:N, N:P, C:P and C:N:P ratios decrease as K. brevis cell 

concentration increase from 0 to >100,000 cells/L (Table 19, 20). This indicates 

that the particulate nutrient concentrations of high biomass populations are 

approaching the Redfield ratio and perhaps are not as nutrient limited as K. 

brevis populations of lower biomass and populations which do not include K. 

brevis.  This trend may also potentially be related to a higher portion of live cells 

relative to detrital materials contributing to the particulate pool in blooms, which 

would result in lower C:N:P stoichiometry values.  It should be mentioned that 

during the November 2000, particulate N values at five coastal stations where K. 

brevis cell concentrations were 1,000 cells/L, were anomalously high, larger than  
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Table 19.  Central tendency measures and ranges of surface particulate nutrient 
ratios of K. brevis concentration, cells/L (0 includes sample with no K. brevis 
detected, 1,000-10,000 includes regulatory limits for commercial shellfish bed 
closure, >10,000-10,0000 includes low bloom concentrations and >100,000 
includes high bloom concentrations) sampled from June 1998 through December 
2001.  The stations with less than 1000 K. brevis are only those stations that had 
a record of K. brevis present at some point during the study period. 
________________________________________________________________ 

 K. brevis*                  N   Mean      Minimum     Maximum Median  
________________________________________________________________ 
C:N 
   <1,000  166     9.46   0.11     76.24    8.73 
   1,000-10,000    47           10.24   0.21     46.77    8.47 
   >10,000-100,000   18     9.47   1.13     35.46    8.37 
   >100,000    24     7.86   0.09     24.93    8.07 
N:P 
   <1,000  166   90.23   0.68   949.28   47.37 
   1,000-10,000    44         124.08          10.95   959.61   39.40 
   >10,000-100,000   18   63.43          19.14   465.05   33.64 
   >100,000    24   46.19          11.28   236.30   35.82 
C:P 
   <1,000  166 445.92  14.83 3415.72 330.64 
   1,000-10,000    44 536.74  99.75 3124.96 328.51 
   >10,000-100,000   18 344.61        134.77 1391.34 282.54 
   >100,000    24 248.73          17.72 1142.58 196.30 
________________________________________________________________ 
*cells /L  
 

 

Table 20.  Average surface particulate C:N:P stoichiometry within K. brevis 
blooms from June 1998 through December 2001.  
________________________________________________________________ 
                          K brevis cell concentration  C:N:P 
________________________________________________________________ 
            <1,000  292:95:1 
                                 1,000-10,000      292:194:1 
       >10,000-100,000    265:61:1 
         >100,000      174:38:1 
________________________________________________________________ 
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particulate C values for the same stations.  These values could be related to a 

localized event at these coastal stations, (e.g. Hurricane Gordon) or the 

contamination of that particular set of samples.  The nutrient sources which fuel 

these high biomass blooms are hypothesized to include at least six different 

sources (Havens et al. 2004; Heil et al. 2007: Vargo et al. 2008).  The capability 

of K. brevis to potentially adjust to a variety of nutrient conditions is supported by 

the variety of particulate ratio values within four different blooms examined on the 

WFS during 1998-2001 (Table 21).  In most cases, all 4 blooms had particulate  

 

Table 21.  Summary of average surface particulate nutrient ratios for each K. 
brevis bloom that occurred from June 1998 through December 2001. 
________________________________________________________________ 
Particulate 
     Ratio No Bloom*    1998-1999      1999-2000        2000           2001  
________________________________________________________________ 
 
C:N  15.22 14.57 7.52 4.60      9.03 
N:P   90.22 24.15            61.15           321.98    38.43 
C:P  445.92              292.13          441.80          529.58  293.67 
________________________________________________________________ 
*Includes only those stations which had K. brevis cells present at some point 
during the sampling period. 
 

 

ratio values closer to Redfield values than the average particulate ratios of 

samples where K. brevis was not present.  The blooms which occurred during 

1998-1999 and 2001 seem to be less nutrient limited than the blooms which 

occurred during 1999-2000 and 2000.  The longevity and the lower C:N, N:P and  
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Table 22.  Particulate C, N and P content (SE) of K. brevis within blooms 
sampled from June 1998 through December 2001.  
________________________________________________________________ 

(nmol/cell) 
 Sample #        C           N                 P*             C:N:P  
________________________________________________________________ 
Bloom Samples 
 
  1998-1999 Bloom 
     All data        8.52 (±2.70) 0.59 (±0.18) 319 (±122)    267:18:1 
     <100,000 11 15.36 (±3.85) 1.06 (±0.26) 573 (±193)    267:18:1 
     >100,000   9   0.17 (±0.03) 0.02 (±0.00)         8 (±1)    210:22:1 
 
  1999-2001 Bloom 
     All data    6.99 (±2.86)    0.77 (±0.27) 158 (±61)     447:50:1 
     <100,000 15 10.25 (±3.95) 1.12 (±0.36)  230 (±84)      457:50:1 
     >100,000   7   0.03 (±0.04)    0.01 (±0.01)      2 (±1)      138:78:1 
 
  2000 Bloom 
     All data  15.08 (±3.38)  17.07 (±6.86) 413 (±95)      
364:413:1 
     <100,000 17 15.96 (±3.46  18.07 (±7.19) 437 (±97)       
364:413:1 
     >100,000   1    0.11 (±0.00)      0.01 (±0.00)       1 (±0.)       
905:62:1 
 
  2001 Bloom 
     All data  2.77 (±1.33)  0.43 (±0.22)  170 (±124)
 162:25:1 
     <100,000    14  4.05 (±1.93) 0.63 (±0.32)  251 (±184) 
 161:25:1 
     >100,000   7  0.20 (±0.05)  0.03 (±0.01)      8 (±2) 
 248:32:1 
 
Literature Culture Values 
 
  Shanley ** 
     Low Light  0.06 (±0.40)  0.0055 (±0.30)        Ұ 
     Medium Light 0.04 (±0.30) 0.004   (±0.30)        Ұ 
     High Light 0.05 (±1.00) 0.0065 (±1.20)        Ұ 
 
  Heil# 
     Exponential growth 0.04 (±0.00)       0.0063(±0.34)        3 (±0.02)   120:21:1 
_______________________________________________________________ 
* 104, Ұ data not reported, ** Wilson clone,low light is 24, medium light is 90 and 
high light is 160 µE m-2  sec-1, # Wilson clone at exponential growth.. 
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C:P ratios of the 1998-1999 K. brevis bloom could be related to the anomalous 

upwelling event that occurred during the spring and summer of that year. 

The comparison of particulate C, N and P content of K. brevis cells during 

the different blooms supports the hypothesis that the ranges of particulate C, N 

and P concentrations decrease with increasing cell concentration and that K. 

brevis populations with concentrations >100,000 are growing more near to the 

Redfield ratio (Table 22).  This could possibly be related to an increasing supply 

of regenerated nutrients within the bloom supplied by organisms which have 

succumbed to the effects of the brevetoxin.   

The values of in situ particulate C and N concentrations within K. brevis 

blooms are greater than those reported for K brevis culture at a range of light 

levels (Shanley 1985) and during exponential growth (Heil 1985).  These 

differences could potentially be related to detrital contributions to the particulate 

values in the marine environment.  In contrast, particulate P concentrations are 

greater during the 1998-1999 and 2001 blooms but less during the 1999-2001 

and 2000 blooms compared to cultured values of cells growing exponentially.  

Detrital contributions of particulate P would be expected to be less in the marine 

environment due to the rapid turnover times of P.   
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Summary 

In situ particulate nutrient ratios are difficult to interpret for a variety of 

reasons.  The method of sample collection is such that it was often unknown 

exactly what comprised the particulate fraction that were measured (i.e. live 

phytoplankton cells versus detrital material) as all material in the size range of 

0.7µm to 153µm was analyzed.  The different methods employed to determine 

particulate C, N and particulate P concentration could potentially skew resultant 

ratio values underestimating particulate P concentrations and resulting in the 

very high N:P and C:P values observed throughout the course of this study.  

Furthermore, the interpretation of in situ particulate ratios requires that the 

physical processes of nutrient delivery, microbial nutrient regeneration and the 

different uptake strategies employed by different groups of phytoplankton (i.e. N2 

fixers and non-N2 fixers) must all be considered. 

Particulate C, N, P concentrations and the particulate ratios of C:N, N:P 

and C:P of the entire data set display a wide range of values across the shelf, 

most likely related to the wide variety of physical and biological processes that 

occur both spatially and temporally on the WFS.  The frequency distribution 

histogram of the data and Spearman Ranking Correlation coefficients indicate 

that particulate C concentrations are more conservative relative to particulate N 

and P concentrations, which probably have a greater potential to vary in 

response to changing nutrient regimes across the shelf.  The frequency 

distributions of particulate C and particulate P are similar, but differ from 

distributions of particulate N concentrations.  This suggests that processes acting 
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on particulate C and P concentrations may be different than those acting on 

particulate N concentrations, is most likely due to N inputs from N2 fixation.  

Correlation coefficients suggest that particulate N concentrations drive the C:N 

and N:P ratios.  The WFS from June 1998 through December 2001 had a 

geometric mean particulate C:N:P stoichiometry of 332:77:1 which is very 

different from the classic Redfield Ratio or values reported for natural 

phytoplankton in the literature, but similar to reported literary values for P-limited 

cultures.  This implies that phytoplankton growth on the WFS seems to be 

predominately P-limited, which is driven by particulate N concentrations.  In 

theory, P-limitation on the WFS could be due to: 1) populations of N2 fixing 

Trichodesmium and picocyanobacteria providing new sources of N while 

concurrently drawing down inorganic P concentrations, 2) populations of 

picocyanobacteria substituting non-P membrane lipids for phospholipids resulting 

in non-Redfieldian ratios 3) inorganic P adsorption to deposits of Saharan dust 

during summer months, 4) underestimation of particulate P concentrations due to 

problems with the molybdenum blue method and 5) inability to correct for detrital 

C and N contributions to the particulate nutrient samples. 

The relationship between average particulate C, N, P concentrations and 

distance offshore are well described by a polynomial functions and the similarity 

of the curves for the different nutrients suggest that there are similar regulating 

mechanisms acting on all three variables are related.  There is an initial decline 

in average particulate C, N and P concentrations from the 10m isobath out to the 

30m isobath where concentrations then become level out to the shelf break.  The 
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30m isobath potentially represents a transition zone from a coastally influenced 

environment to a more oligotrophic environment.  The relationship between 

average particulate ratios and distance can also be described by polynomial 

functions where values increase out to the 100m isobath than slightly decrease 

out to the 200m isobath.  The greatest ranges in the particulate C:N and C:P 

ratios occur at distances greater than 50km offshore and implies a decoupling of 

processes regulating particulate C from both N and P with distance offshore as 

related to biological activity.  This could be related to phytoplankton storing C in 

excess relative to N and P as nutrient availability decreases with distance 

offshore, or may be indicative of a change in the contribution of detrital materials 

as a result of decrease biomass in this region.  The comparison of the geometric 

mean particulate nutrient stoichiometry (C:N:P) indicates that P-limitation 

increases with distance from the coast and is supported by frequency distribution 

histograms binned according to nutrient limitation.   

The geometric means of the particulate C, N and P concentrations at the 

Tampa Bay, Sarasota and Fort Meyers along the entire transect (10m isobath to 

the 50m isobath are very similar but suggest a very weak trend of decreasing P-

limitation and increasing N-limitation from the north to the south.  When only 

considering these stations at the 10m isobath, Sarasota has the lowest 

concentrations of particulate C, N and P compared to the Tampa Bay and Fort 

Meyers stations.  The C:P and N:P particulate ratios at the 10m isobath suggest 

that all three coastal stations are predominantly P-limited.  Given the N-limited 
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environment of adjacent estuaries, this observation presents a bit of a 

conundrum. 

Particulate C, N, P concentrations and particulate ratios are similar during 

the wet season (June-September) and the dry season (October-May).  However, 

average particulate nutrient ratios indicate that phytoplankton growth could 

potentially be more N limited during the dry period and more P limited during the 

wet season in response to an increase of N2 fixing populations during the 

summer and early fall.  There do appear to be monthly trends within the wet and 

dry periods as well, where peaks in the particulate concentrations and ratios 

occur during the spring, summer and fall as phytoplankton populations adapt (i.e. 

N2 fixers vs non- N2 fixers) to the seasonal mechanisms of nutrient delivery (i.e. 

day length, circulation patterns, storms, river flow, thermal stratification/non 

stratification). 

The particulate C, N, P concentrations and the particulate ratios differ on 

inter-annual scales.  Though the basic physical processes throughout the years 

would not be expected to change, the strength and duration of these processes 

vary from 1998 through 2001 and could potentially be responsible for the 

fluctuations of the particulate C, N, P concentrations and ratios throughout the 

study period. 

Particulate C:N:P stoichiometry within K. brevis blooms has a narrower 

range and appears to be growing closer to the Redfield ratio than particulate 

ratios where K. brevis is not present.  This relationship strengthens with 

increasing cell concentration.  Particulate C:N, N:P and C:P ratios do vary within 
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different blooms are most likely related to the different nutrient regimes 

associated within each bloom.  The values of the particulate nutrient ratios within 

natural blooms are greater than that of cultured K. brevis cells.  This difference is 

most likely related to detrital contributions within the marine environment and the 

nutrient replete conditions in culture experiments. 

The particulate C, N and P concentrations and ratios vary both spatially 

and temporally and are often above the classic Redfield ratios as related to the 

flexibility in phytoplankton responses to varying nutrient regimes.
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Appendix A: Particulate Carbon, Nitrogen and Phosphorus Concentrations and standard deviation (S.D.) from 1998-2000 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
6/8/1998 1 27.5417 -82.8000 1 31.490 8.776 2.657 2.369 0.095 0.003 
6/8/1998 3 27.4655 -82.9664 1 33.421 3.121 3.131 0.301 0.113 0.024 
6/8/1998 5 27.3895 -83.1338 1 36.086 16.944 3.245 0.688 0.064 0.004 
6/9/1998 7 27.3135 -83.3010 1 23.101 4.415 1.163 0.374 0.099 0.091 
6/9/1998 9 27.2380 -83.4683 1 32.158 6.031 0.425 0.132 0.068 0.004 
6/9/1998 10 27.2000 -83.5517 1 22.065 2.481 2.794 1.690 0.095 0.005 
6/9/1998 11 26.4715 -84.3920 1 53.620 22.155 2.182 1.319 0.015 0.004 
6/9/1998 13 26.5490 -84.2264 1 39.477 8.633 5.284 1.678 0.026 0.015 
6/9/1998 17 26.6918 -83.8891 1 35.514 1.408 1.886 0.505 0.018 0.003 
6/11/1998 19 26.7694 -83.7239 1 23.202 2.603 2.748 0.272 0.077 0.038 
6/11/1998 21 26.8500 -83.5604 1 26.324 13.098 1.286 0.827 0.095 0.048 
6/11/1998 23 26.9310 -83.3969 1 31.311  9.866  0.042 0.000 
6/11/1998 27 27.0932 -83.0693 1 25.986 1.947 1.056 0.180 0.039 0.004 
6/10/1998 29 27.1744 -82.9052 1 25.259 8.225 1.141 0.708 0.053 0.011 
6/10/1998 30 27.2151 -82.8231 1 29.480 2.466 1.891 0.167 0.069 0.036 
6/10/1998 32 27.2960 -82.6592 1 48.420 0.488 2.365 1.505 0.103 0.017 
6/11/1998 40 26.0667 -83.1317 1 35.424 16.372 6.334 4.049 0.031 0.013 
6/11/1998 42 26.1296 -82.9594 1 16.149 2.976 1.105 0.191 0.040 0.003 
6/11/1998 44 26.1919 -82.7875 1 25.673 1.713 2.968 0.034 0.061 0.013 
6/11/1998 46 26.2545 -82.6157 1 14.118 0.822 1.870 1.362 0.066 0.022 
6/11/1998 48 26.3169 -82.4435 1 18.757 3.563 1.905 0.352 0.025 0.003 
6/11/1998 51 26.4108 -82.1850 1 24.906 6.262 2.490 0.384 0.041 0.001 
7/6/1998 1 27.5417 -82.8000 1 41.259 0.095 5.046 0.050 0.123 0.025 
7/6/1998 3 27.4655 -82.9664 1 31.436 7.031 3.256 0.331 0.093 0.012 
7/6/1998 5 27.3895 -83.1338 1 36.000 2.236 2.600 0.302 0.049 0.005 
7/6/1998 7 27.3135 -83.3010 1 62.190  4.069 0.025 0.083 0.002 
7/6/1998 9 27.2380 -83.4683 1 43.226  9.151 5.085 0.038 0.014 
7/6/1998 10 27.2000 -83.5517 1 20.830 6.994 0.671 0.468 0.039 0.005 
7/7/1998 11 26.4715 -84.3920 1 16.585 2.564 1.751 0.118 0.025 0.010 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
7/7/1998 17 26.6918 -83.8891 1 24.665 6.478 1.182 0.397 0.021 0.000 
7/7/1998 19 26.7694 -83.7239 1 26.435 0.877 2.046 0.665 0.049 0.002 
7/7/1998 21 26.8500 -83.5604 1 20.177 8.492 1.748 0.720 0.023 0.002 
7/7/1998 23 26.9310 -83.3969 1 27.496 3.821 4.160 2.822 0.024 0.001 
7/8/1998 27 27.0932 -83.0693 1 23.687 1.194 0.946 0.791 0.034 0.006 
7/8/1998 29 27.1744 -82.9052 1 24.547 3.657 0.483  0.049 0.010 
7/8/1998 30 27.2151 -82.8231 1 32.303 3.735 1.767 0.632 0.261 0.277 
7/8/1998 32 27.2960 -82.6592 1 33.550 13.106 1.456 0.179 0.113 0.012 
7/8/1998 40 26.0667 -83.1317 1 35.816 11.119 0.350  0.034 0.004 
7/8/1998 42 26.1296 -82.9594 1 33.620 6.167 1.680 0.743 0.057 0.019 
7/8/1998 44 26.1919 -82.7875 1 21.676 12.777 5.350 4.055 0.041 0.001 
7/8/1998 46 26.2545 -82.6157 1 18.309 9.239 1.345 1.430 0.045 0.011 
7/8/1998 48 26.3169 -82.4435 1 10.149 1.804   0.059 0.006 
7/8/1998 51 26.4108 -82.1850 1 32.140 9.617 2.389 1.407 0.181 0.015 
8/6/1998 1 27.5417 -82.8000 1 32.961 4.730 4.076 0.661 0.164 0.004 
8/6/1998 3 27.4655 -82.9664 1 13.700 0.506 1.463 0.302 0.027 0.018 
8/6/1998 5 27.3895 -83.1338 1 7.987 0.996 0.554 0.182 0.019 0.001 
8/7/1998 7 27.3135 -83.3010 1 17.678 0.319 1.026 0.189 0.018  
8/7/1998 9 27.2380 -83.4683 1 12.930 0.932 1.143 0.229 0.036 0.005 
8/7/1998 10 27.2000 -83.5517 1 14.813 5.233 1.086 0.160 0.009 0.005 
8/8/1998 11 26.4715 -84.3920 1 11.865 1.434 1.269 0.538 0.013 0.000 
8/8/1998 13 26.5490 -84.2264 1 8.749  3.022 3.357   
8/6/1998 17 26.6918 -83.8891 1 12.459 0.745 1.145 0.006 0.018 0.004 
8/6/1998 19 26.7694 -83.7239 1 7.186 0.852 0.502 0.209 0.024 0.013 
8/8/1998 21 26.8500 -83.5604 1 21.670 16.526 2.373 1.429 0.020  
8/8/1998 23 26.9310 -83.3969 1 17.103 5.878 2.760 2.564 0.007 0.004 
8/8/1998 27 27.0932 -83.0693 1 14.696 3.777 1.185 0.244 0.036 0.001 
8/8/1998 29 27.1744 -82.9052 1 16.044  1.467  0.055 0.003 
8/8/1998 30 27.2151 -82.8231 1 13.005 0.427 1.292 0.057 0.042 0.010 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
8/8/1998 30 27.2151 -82.8231 1 13.005 0.427 1.292 0.057 0.042 0.010 
8/9/1998 32 27.2960 -82.6592 1 21.160 0.387 2.336 0.183 0.103 0.026 
8/9/1998 40 26.0667 -83.1317 1 6.248 0.719 0.944 0.056 0.016 0.018 
8/9/1998 42 26.1296 -82.9594 1 7.522 0.284 0.954 0.215 0.002  
8/9/1998 44 26.1919 -82.7875 1 9.827 2.566 0.933 0.078 0.017 0.012 
8/9/1998 46 26.2545 -82.6157 1 7.692 0.474 0.964 0.017 0.011 0.013 
8/9/1998 48 26.3169 -82.4435 1 7.782 0.363 0.917 0.036 0.016 0.016 
8/9/1998 51 26.4108 -82.1850 1 10.717 0.167 1.503 0.115 0.071 0.008 
9/9/1998 1 27.5417 -82.8000 1 35.130 0.131 3.661 0.038 0.238 0.006 
9/9/1998 3 27.4655 -82.9664 1 31.751  4.214 4.030 0.081 0.003 
9/9/1998 5 27.3895 -83.1338 1 21.952 0.200 1.037 0.183 0.049 0.003 
9/9/1998 7 27.3135 -83.3010 1 23.667 1.006 1.511 0.244 0.020 0.020 
9/9/1998 9 27.2380 -83.4683 1 20.975 1.352 1.639 0.318 0.037 0.006 
9/9/1998 10 27.2000 -83.5517 1 19.799 5.869 3.368 3.783 0.021 0.014 
9/10/1998 11 26.4715 -84.3920 1 32.551 12.100 0.928 0.030 0.025 0.003 
9/10/1998 13 26.5490 -84.2264 1 15.095 3.207 1.350 0.512 0.025 0.002 
9/10/1998 17 26.6918 -83.8891 1 24.835 0.116 1.446 0.437 0.034 0.003 
9/10/1998 19 26.7694 -83.7239 1     0.037 0.014 
9/10/1998 21 26.8500 -83.5604 1 30.026 4.596 1.207 0.106 0.029 0.010 
9/10/1998 23 26.9310 -83.3969 1 29.589 3.191 0.930 0.033 0.033 0.011 
9/10/1998 27 27.0932 -83.0693 1 28.766 3.884 1.617 0.280 0.051 0.037 
9/10/1998 29 27.1744 -82.9052 1 18.030 1.947 1.241 0.043 0.042 0.001 
9/10/1998 30 27.2151 -82.8231 1 25.830 1.482 1.700 0.004 0.108  
9/11/1998 32 27.2960 -82.6592 1 40.431  3.093 0.072 0.195 0.006 
9/11/1998 40 26.0667 -83.1317 1 23.041 0.027 1.007 0.120 0.053 0.001 
9/11/1998 42 26.1295 -82.9594 1 16.165 0.012 1.772 0.991 0.063 0.005 
9/11/1998 44 26.1919 -82.7875 1   2.385 0.899 0.057 0.001 
9/11/1998 46 26.2545 -82.6157 1 18.921 0.674 1.157 0.043 0.048 0.027 
9/11/1998 48 26.3169 -82.4435 1 23.231 1.166 1.307 0.231 0.067 0.000 
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Appendix A (Continued) 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
9/11/1998 51 26.4108 -82.1850 1 46.424 1.030 4.104 0.555 0.252 
11/9/1998 1 27.5417 -82.8000 1 17.869 0.154 1.846 0.265 0.346 
11/9/1998 3 27.4655 -82.9664 1 11.307 0.399 0.988 0.077 0.107 
11/9/1998 5 27.3895 -83.1338 1     0.036 
11/9/1998 7 27.3135 -83.3010 1 7.263 0.490 0.475 0.030 0.038 
11/10/1998 9 27.2380 -83.4683 1 12.781 6.554 0.712 0.464 0.037 
11/10/1998 10 27.2000 -83.5517 1 1.942 0.248 0.159 0.097 0.047 
11/10/1998 11 26.4715 -84.3920 1 3.484 0.175 0.382 0.044 0.013 
11/10/1998 23 26.9310 -83.3969 1     0.199 
11/11/1998 27 27.0932 -83.0693 1 6.999 4.935 0.890 0.414 0.052 
11/11/1998 29 27.1744 -82.9052 1 3.348 1.768 0.437 0.188 0.042 
11/11/1998 30 27.2151 -82.8231 1 9.738 2.020 0.859 0.164 0.081 
11/11/1998 32 27.2960 -82.6592 1 9.623 1.277 1.198 0.021 0.095 
11/11/1998 40 26.0667 -83.1317 1 9.463 1.391 1.312 0.111 0.025 
11/11/1998 42 26.1295 -82.9594 1 13.580 0.348 1.495 0.093 0.040 
11/11/1998 44 26.1919 -82.7875 1 15.208 0.207 1.436 0.232 0.028 
11/11/1998 46 26.2545 -82.6157 1 21.457 0.493 1.811 0.039 0.047 
11/11/1998 48 26.3169 -82.4435 1 12.631 0.225 0.907 0.059 0.046 
11/11/1998 50 26.3795 -82.2707 1 34.251 1.396 2.332 0.074 0.115 
11/11/1998 51 26.4108 -82.1850 1 29.514 1.185 2.224 0.137 0.131 
12/1/1998 1 27.5417 -82.8000 1 23.574 3.189 2.360 0.480 0.202 
12/1/1998 3 27.4655 -82.9664 1 17.550 1.755 1.211 0.310 0.064 
12/1/1998 5 27.3895 -83.1338 1 12.408 1.559 0.357 0.278 0.042 
12/1/1998 7 27.3135 -83.3010 1 13.709 1.812 0.728 0.135 0.037 
12/1/1998 9 27.2380 -83.4683 1 15.331 0.302 0.522 0.252 0.024 
12/1/1998 10 27.2000 -83.5517 1 12.005 1.886 0.436 0.057 0.029 
12/1/1998 11 26.4715 -84.3920 1 15.628 1.442 0.307 0.038 0.015 
12/2/1998 13 26.5490 -84.2264 1 12.813 1.170 0.346 0.385 0.017 
12/2/1998 17 26.6918 -83.8891 1 12.198 2.974 0.285 0.241 0.018 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
12/2/1998 19 26.7694 -83.7239 1 15.189 0.872 0.176 0.156 0.022 0.005 
12/2/1998 21 26.8500 -83.5604 1 11.475 0.529 0.641 0.088 0.018 0.002 
12/2/1998 23 26.9310 -83.3969 1 13.976 2.609 0.811 0.037 0.015 0.003 
12/2/1998 27 27.0932 -83.0693 1 13.048 1.142 1.234 0.008 0.037 0.005 
12/2/1998 29 27.1744 -82.9052 1 15.852 0.467 1.239 0.051 0.044 0.002 
12/2/1998 30 27.2151 -82.8231 1 32.023 2.385 1.609 0.004 0.057 0.006 
12/2/1998 32 27.2960 -82.6592 1 25.733 6.013 1.798 0.326 0.123 0.006 
12/3/1998 40 26.0667 -83.1317 1 21.372 1.256 1.485 0.114 0.026 0.001 
12/3/1998 42 26.1295 -82.9594 1 20.348 2.454 1.575 0.247 0.055 0.020 
12/3/1998 44 26.1919 -82.7875 1 16.374 1.418 1.085 0.094 0.032 0.003 
12/3/1998 46 26.2545 -82.6157 1 19.169 1.594 1.317 0.072 0.062 0.008 
12/3/1998 48 26.3169 -82.4435 1 22.167 0.933 2.006 0.086 0.087 0.003 
12/3/1998 49 26.3481 -82.3574 1 36.847 1.589 6.351 0.091 0.201 0.030 
12/3/1998 50 26.3795 -82.2707 1 25.072 30.260 6.053  0.148 0.009 
12/3/1998 51 26.4108 -82.1850 1 37.018 10.197 5.169 1.069 0.111 0.001 
1/13/1999 1 27.5417 -82.8000 1 21.766  2.223  0.121 0.009 
1/13/1999 3 27.4655 -82.9664 1 21.730 3.356 2.120 0.327 0.045 0.005 
1/13/1999 5 27.3895 -83.1338 1 12.129 1.019 1.059 0.038 0.031 0.003 
1/13/1999 7 27.3135 -83.3010 1 9.577 0.377 0.799 0.022 0.025 0.021 
1/13/1999 9 27.2380 -83.4683 1 16.473 3.649 2.007 2.373 0.014 0.000 
1/13/1999 10 27.2000 -83.5517 1 7.610 0.336 0.264 0.044 0.034 0.035 
1/13/1999 11 26.4715 -84.3920 1 5.081 0.420 0.280  0.004 0.004 
1/13/1999 13 26.5490 -84.2264 1 5.214 0.912 0.994 0.667 0.007 0.007 
1/13/1999 17 26.6918 -83.8891 1 5.504 3.255 0.560 0.154 0.018 0.000 
1/13/1999 19 26.7694 -83.7239 1 8.294 4.733 1.061 0.585 0.008 0.002 
1/13/1999 21 26.8500 -83.5604 1 19.440 22.396 0.480 0.132 0.014 0.002 
1/12/1999 23 26.9310 -83.3969 1 4.071 1.092 0.521 0.358 0.010 0.006 
1/12/1999 27 27.0932 -83.0693 1 15.474 1.746 1.530 0.154 0.040 0.010 
1/12/1999 29 27.1744 -82.9052 1 8.392 0.183 0.666 0.069 0.023 0.003 



  140

Appendix A (Continued) 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
1/12/1999 30 27.2151 -82.8231 1 16.822 11.856 2.000 1.730 0.045 0.004 
1/12/1999 32 27.2960 -82.6592 1 16.753 1.219 1.603 0.163 0.078 0.004 
1/12/1999 40 26.0667 -83.1317 1 4.389 1.633 0.526 0.035 0.023 0.007 
1/12/1999 42 26.1296 -82.9594 1 16.279 6.007 2.178 0.040 0.030 0.002 
1/12/1999 44 26.1919 -82.7875 1 12.043 1.568 2.130 0.711 0.038 0.004 
1/12/1999 46 26.2545 -82.6157 1 13.183 1.400 1.894 0.345 0.052 0.000 
1/11/1999 48 26.3169 -82.4435 1 24.394 10.740 2.630 0.864 0.094 0.008 
1/11/1999 51 26.4108 -82.1850 1 29.585 0.509 2.989 0.249 0.220 0.021 
1/11/1999 70 26.4870 -82.2260 1 43.447 0.930 4.506 0.082 0.260 0.013 
1/11/1999 72 26.6350 -82.2689 1 28.255 2.889 2.035 0.476 0.188 0.056 
1/11/1999 74 26.7870 -82.3890 1 32.312 0.826 3.084 1.199 0.151 0.002 
1/11/1999 76 26.9380 -82.4680 1 23.012 0.096 2.321 0.084 0.138 0.009 
1/11/1999 80 27.2400 -82.6260 1 30.856 1.717 3.290 0.246 0.163 0.061 
1/11/1999 82 27.3930 -82.7130 1 31.063 0.960 3.241 0.026 0.209 0.013 
2/8/1999 1 27.5417 -82.8000 1 27.201 0.324 1.268 0.288 0.134  
2/8/1999 3 27.4655 -82.9664 1 28.646 5.805 0.430  0.041 0.008 
2/8/1999 5 27.3895 -83.1338 1 15.511 0.786 0.170  0.036 0.003 
2/8/1999 7 27.3135 -83.3010 1 13.358  0.052  0.087 0.015 
2/8/1999 9 27.2380 -83.4683 1 18.558 1.008 0.523 0.559 0.024 0.004 
2/8/1999 10 27.2000 -83.5517 1 13.357 0.150 0.374 0.196 0.023 0.017 
2/8/1999 11 26.4715 -84.3920 1 12.572 1.849 0.500 0.244 0.017 0.001 
2/8/1999 13 26.5490 -84.2264 1 15.881 0.462 0.278 0.025 0.020  
2/8/1999 17 26.6918 -83.8891 1 12.201 2.405 0.565 0.198 0.019  
2/8/1999 19 26.7694 -83.7239 1 13.803 0.558 0.377 0.097 0.014 0.002 
2/8/1999 21 26.8500 -83.5604 1 13.561 0.600 0.419 0.346 0.009 0.009 
2/8/1999 23 26.9310 -83.3969 1 15.304 0.633 0.451 0.083 0.024 0.003 
2/8/1999 27 27.0932 -83.0693 1 14.666 0.140 0.749 0.013 0.022 0.004 
2/8/1999 29 27.1744 -82.9052 1 15.446 0.039 0.586 0.289 0.047 0.010 
2/8/1999 30 27.2151 -82.8231 1 20.321 0.340 2.592 1.188 0.043 0.010 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
2/8/1999 32 27.2960 -82.6592 1 15.241 0.284 2.867 0.444 0.085 0.001 
2/8/1999 40 26.0667 -83.1317 1 12.913 1.429 1.596 0.439 0.030 0.012 
2/8/1999 42 26.1296 -82.9594 1 15.035 2.116 1.020 0.265 0.035 0.003 
2/8/1999 44 26.1919 -82.7875 1 10.592 0.766 1.441 0.130 0.037 0.003 
2/8/1999 46 26.2545 -82.6157 1 16.243 0.571 1.652 0.022 0.043 0.008 
2/8/1999 48 26.3169 -82.4435 1 17.566 1.023 1.610 0.248 0.045 0.012 
2/8/1999 51 26.4108 -82.1850 1 20.664 1.391 2.052 0.826 0.087 0.001 
2/8/1999 72 26.6350 -82.2683 1 37.762 0.650 2.708 0.043 0.177 0.005 
2/8/1999 76 26.9380 -82.4680 1 28.760 4.338 0.860 0.697 0.064 0.003 
2/8/1999 80 27.2400 -82.6260 1 17.707 0.714 1.706 0.681 0.154 0.012 
2/8/1999 81 27.3187 -82.6691 1 50.219 7.225 3.772 0.011 0.128 0.016 
2/8/1999 82 27.3930 -82.7130 1 53.523 10.057 2.517 1.178 0.214 0.005 
2/8/1999 83 27.4679 -82.7559 1 34.363 2.126 5.369 0.955 0.165 0.010 
3/1/1999 1 27.5417 -82.8000 1 72.207  7.748  0.511 0.045 
3/1/1999 3 27.4655 -82.9664 1 26.107 0.480 2.596 0.335 0.082  
3/1/1999 5 27.3895 -83.1338 1 16.272 1.310 1.237 0.244 0.056 0.011 
3/1/1999 7 27.3135 -83.3010 1 15.215 2.341 1.931 0.850 0.047 0.018 
3/1/1999 9 27.2380 -83.4683 1 17.713 0.616 5.431 0.629 0.063 0.031 
3/1/1999 10 27.2000 -83.5517 1 15.922 1.571 3.913 3.985 0.035 0.001 
3/1/1999 11 26.4715 -84.3920 1 15.575 3.888 4.370 4.552 0.019 0.005 
3/1/1999 13 26.5490 -84.2264 1 11.572 0.719 1.704 0.317 0.031 0.002 
3/1/1999 17 26.6918 -83.8891 1 13.291 1.331 0.676 0.146 0.027 0.008 
3/1/1999 19 26.7694 -83.7239 1 14.450  1.063  0.037 0.015 
3/1/1999 21 26.8500 -83.5604 1 16.180 2.639 0.698 0.135 0.023 0.002 
3/1/1999 23 26.9310 -83.3969 1 18.650 5.218 0.800 0.546 0.022 0.003 
3/1/1999 27 27.0932 -83.0693 1 15.233 0.259 1.034 0.087 0.060 0.024 
3/1/1999 29 27.1744 -82.9052 1 15.756 1.363 1.274 0.037 0.053 0.004 
3/1/1999 30 27.2151 -82.8231 1 15.674 1.843 1.601 0.050 0.057 0.007 
3/1/1999 32 27.2960 -82.6592 1 31.349 2.789 2.753 0.288 0.161 0.010 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
3/1/1999 40 26.0667 -83.1317 1 12.355 0.530 1.198 0.039 0.047 0.014 
3/1/1999 42 26.1296 -82.9594 1 14.689 2.881 1.247 0.087 0.034 0.003 
3/1/1999 44 26.1919 -82.7875 1 13.250 0.915 1.107 0.160 0.036 0.005 
3/1/1999 46 26.2545 -82.6157 1 9.182 0.840 1.118 0.187 0.050 0.006 
3/1/1999 48 26.3169 -82.4435 1 11.496 1.127 1.233 0.057 0.053 0.003 
3/1/1999 51 26.4108 -82.1850 1 27.926 0.309 2.716 0.030 0.192 0.003 
3/1/1999 70 26.4870 -82.2260 1 41.846 1.511 4.339 0.663 0.262 0.020 
3/1/1999 72 26.6360 -82.3100 1 39.569 0.534 4.241 0.284 0.262 0.020 
3/1/1999 74 26.7870 -82.3890 1 36.036 5.819 5.080 1.953 0.149 0.002 
3/1/1999 76 26.9380 -82.4680 1 22.838 3.226 3.999 1.885 0.143 0.007 
3/1/1999 78 27.0890 -82.5460 1 29.749 0.938 3.452 0.297 0.269 0.016 
3/1/1999 80 27.2400 -82.6260 1 41.956 5.430 4.848 0.104 0.420 0.024 
3/1/1999 82 27.3930 -82.7130 1 53.831 0.430 5.584 0.152 0.479 0.018 
4/5/1999 1 27.5417 -82.8000 1 15.082 2.017 1.719 0.020 0.066 0.008 
4/5/1999 3 27.4655 -82.9664 1 10.060 1.604 1.292 0.121 0.044 0.008 
4/5/1999 5 27.3895 -83.1338 1 10.538 2.482 0.983 0.192 0.031 0.004 
4/5/1999 7 27.3135 -83.3010 1 6.055 0.171 0.708 0.046 0.020 0.001 
4/5/1999 9 27.2380 -83.4683 1 12.492 0.842 1.469 0.102 0.048 0.036 
4/5/1999 10 27.2000 -83.5517 1 11.572 2.703 3.189 0.375 0.023 0.001 
4/6/1999 11 26.4715 -84.3920 1 9.182 0.017 0.465 0.103 0.020 0.008 
4/6/1999 13 26.5490 -84.2264 1 9.234 0.295 0.444 0.116 0.016 0.006 
4/6/1999 17 26.6918 -83.8891 1 15.977 1.594 1.132 0.023 0.021 0.003 
4/6/1999 19 26.7694 -83.7239 1 10.908 1.699 0.606 0.254 0.015 0.004 
4/6/1999 21 26.8500 -83.5604 1 18.310 0.662 0.959 0.035 0.016 0.006 
4/6/1999 23 26.9310 -83.3969 1 12.040 1.795 0.950 0.500 0.014 0.000 
4/6/1999 27 27.0932 -83.0693 1 20.030 2.221 1.412 0.572 0.033 0.004 
4/6/1999 29 27.1744 -82.9052 1 22.700 0.634 1.171 0.137 0.039 0.004 
4/6/1999 30 27.2151 -82.8231 1 19.783 4.837 1.237 0.107 0.041 0.001 
4/6/1999 32 27.2960 -82.6592 1 19.181 0.597 1.616 0.063 0.074 0.002 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
4/7/1999 40 26.0667 -83.1317 1 11.812 0.183 0.883 0.056 0.018 0.003 
4/7/1999 42 26.1296 -82.9594 1 21.723 2.127 2.189 1.027 0.030 0.001 
4/7/1999 44 26.1919 -82.7875 1 30.274  1.940  0.037 0.006 
4/7/1999 46 26.2545 -82.6157 1 22.384  1.335  0.038 0.005 
4/7/1999 48 26.3169 -82.4435 1 11.037  1.192  0.036 0.018 
4/7/1999 51 26.4108 -82.1850 1 26.147 0.439 1.988 0.072 0.091 0.004 
4/7/1999 70 26.4870 -82.2260 1 41.266  2.106  0.098 0.006 
4/7/1999 72 26.6360 -82.3100 1 23.301 2.219 5.337 4.709 0.094 0.000 
4/7/1999 74 26.7870 -82.3890 1 22.622 4.074 1.577 0.842 0.063 0.001 
4/7/1999 76 26.9380 -82.4680 1 25.152 0.792 2.120 0.090 0.048 0.003 
4/7/1999 78 27.0890 -82.5460 1 23.304 2.389 3.011 1.762 0.062 0.011 
4/8/1999 80 27.2400 -82.6260 1 27.666 10.124 4.079 2.383 0.053 0.004 
4/8/1999 82 27.3930 -82.7130 1 27.703 12.104 8.303 8.041 0.080 0.007 
5/2/1999 1 27.5417 -82.8000 1 30.040 3.629 2.980 0.126 0.193 0.004 
5/2/1999 3 27.4655 -82.9664 1 20.351 3.517 12.517 0.344 0.081 0.013 
5/2/1999 5 27.3895 -83.1338 1 10.162 2.638 6.166 2.003 0.042 0.000 
5/2/1999 7 27.3135 -83.3010 1 15.114 0.799 4.052 1.372 0.040 0.002 
5/2/1999 9 27.2380 -83.4683 1 12.410 1.726 2.216 0.624 0.028 0.002 
5/2/1999 10 27.2000 -83.5517 1 10.157 4.977 2.933 0.769 0.024 0.001 
5/3/1999 11 26.4715 -84.3920 1 10.522 0.814 1.899 1.134 0.018 0.002 
5/3/1999 13 26.5490 -84.2264 1 9.425 4.225 2.933 1.662 0.018 0.005 
5/3/1999 17 26.6918 -83.8891 1 5.868  1.248  0.017 0.001 
5/3/1999 19 26.7694 -83.7239 1 5.632 0.362 2.057 1.045 0.018 0.001 
5/3/1999 21 26.8500 -83.5604 1 6.224 1.714 2.679 1.765 0.020 0.001 
5/3/1999 23 26.9310 -83.3969 1 6.748 1.027 2.501 0.450 0.021 0.001 
5/3/1999 27 27.0932 -83.0693 1 9.142 1.291 4.289 0.789 0.038 0.002 
5/3/1999 29 27.1744 -82.9052 1 14.812 0.842 2.585 0.544 0.059 0.002 
5/3/1999 30 27.2151 -82.8231 1 21.095 0.520 11.683 11.400 0.066 0.008 
5/4/1999 32 27.2960 -82.6592 1 12.898 0.792 1.800 0.946 0.172 0.020 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
5/4/1999 40 26.0667 -83.1317 1 10.863 1.021 2.881 1.218 0.023 0.001 
5/4/1999 42 26.1296 -82.9594 1 6.616 0.117 1.656 0.345 0.034 0.001 
5/4/1999 44 26.1919 -82.7875 1 11.827 0.511 2.802 0.301 0.034 0.000 
5/4/1999 46 26.2545 -82.6157 1 14.391 4.189 3.509 1.549 0.039 0.005 
5/4/1999 48 26.3169 -82.4435 1 11.881 2.189 5.287 1.736 0.115 0.076 
5/4/1999 50 26.3795 -82.2707 1 17.609 2.059 5.426 1.381 0.083 0.016 
5/4/1999 51 26.4108 -82.1850 1 32.280 3.569 5.625 1.457 0.191 0.001 
5/4/1999 70 26.4870 -82.2260 1 24.433 0.374 5.458 2.470 0.149 0.005 
5/5/1999 72 26.6360 -82.3100 1 24.698 1.853 6.660 2.320 0.142 0.000 
5/5/1999 74 26.7870 -82.3890 1 27.445 1.881 7.220 3.876 0.089 0.021 
5/5/1999 76 26.9380 -82.4680 1 19.581 1.767 5.356 2.959 0.060 0.007 
5/5/1999 78 27.0890 -82.5460 1 14.057 0.297 2.117 0.102 0.067 0.011 
5/5/1999 80 27.2400 -82.6260 1 23.088 1.779 2.496 0.559 0.096 0.023 
5/5/1999 82 27.3930 -82.7130 1 23.088 0.290 3.581 0.049   
6/5/1999 1 27.5417 -82.8000 1 25.918 0.457 2.976 0.170 0.094 0.008 
6/5/1999 3 27.4655 -82.9664 1 21.875 11.210 4.301 0.669 0.120 0.000 
6/5/1999 5 27.3895 -83.1338 1 15.188 0.356 1.985 0.785 0.043 0.011 
6/5/1999 7 27.3135 -83.3010 1 23.177  3.289  0.023  
6/5/1999 9 27.2380 -83.4683 1 11.775 1.219 1.299 0.245 0.032  
6/6/1999 10 27.2000 -83.5517 1 8.252 1.800 0.908 0.050 0.030 0.003 
6/6/1999 11 26.4715 -84.3920 1 11.108 0.771 1.001 0.023 0.038  
6/6/1999 13 26.5490 -84.2264 1 10.878 2.050 1.329 0.149 0.026 0.000 
6/6/1999 17 26.6918 -83.8891 1 21.177 1.332 2.566 0.210 0.082 0.012 
6/6/1999 19 26.7694 -83.7239 1 29.999 2.929 2.847 1.905 0.073 0.002 
6/6/1999 21 26.8500 -83.5604 1 11.422 2.251 1.069 0.039 0.029 0.005 
6/6/1999 23 26.9310 -83.3969 1 16.056 0.333 3.896 0.621 0.034 0.001 
6/7/1999 27 27.0932 -83.0693 1 31.782 2.823 3.591 0.426 0.085 0.000 
6/7/1999 29 27.1744 -82.9052 1 19.818 6.617 2.543 0.462 0.084 0.008 
6/7/1999 30 27.2151 -82.8231 1 23.070 2.030 2.936 0.295 0.079 0.000 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
6/7/1999 32 27.2960 -82.6592 1 35.586 6.039 4.351 0.213 0.162 0.022 
6/7/1999 40 26.0667 -83.1317 1 30.769 2.244 3.504 1.242 0.077 0.007 
6/7/1999 42 26.1296 -82.9594 1 24.732 1.694 2.887 0.788 0.051 0.003 
6/7/1999 44 26.1919 -82.7875 1 17.513  2.370  0.103 0.011 
6/7/1999 46 26.2545 -82.6157 1 21.488 0.835 3.046 0.704 0.137 0.023 
6/8/1999 48 26.3169 -82.4435 1 9.456 6.025 2.018 0.901 0.136 0.012 
6/8/1999 50 26.3795 -82.2707 1 21.687 4.823 2.669 0.000 0.250 0.016 
6/8/1999 51 26.4108 -82.1850 1 26.147 4.227 3.680 1.251 0.186 0.013 
6/8/1999 70 26.4870 -82.2260 1 42.961 6.509 5.261 0.642 0.168 0.022 
6/8/1999 72 26.6360 -82.3100 1 41.235 3.520 3.794 0.032 0.255 0.015 
6/8/1999 74 26.7870 -82.3890 1 23.742 0.234 3.652 0.700 0.163 0.010 
6/8/1999 76 26.9380 -82.4680 1 35.007 0.044 4.443 0.571 0.134 0.010 
6/8/1999 78 27.0890 -82.5460 1 30.869 0.117 4.392 0.162 0.172 0.013 
6/8/1999 80 27.2400 -82.6260 1 36.441 2.746 5.896 0.561 0.130 0.015 
6/8/1999 82 27.3930 -82.7130 1 35.395 0.622 5.415 0.435 0.180 0.009 
7/5/1999 1 27.5417 -82.8000 1 32.390 7.580 5.958 3.514 0.192 0.006 
7/5/1999 3 27.4655 -82.9664 1 90.277 18.774 8.227 3.023 0.091 0.001 
7/5/1999 5 27.3895 -83.1338 1 52.826 19.567 3.715 2.471 0.074  
7/5/1999 7 27.3135 -83.3010 1 47.341  1.373  0.044 0.002 
7/5/1999 9 27.2380 -83.4683 1 53.178  1.215  0.038 0.003 
7/5/1999 10 27.2000 -83.5517 1 71.225 1.194 1.184 0.592 0.026 0.004 
7/6/1999 11 26.4715 -84.3920 1 18.238 1.006 2.066 0.396 0.055  
7/6/1999 13 26.5490 -84.2264 1 12.457 0.275 1.503 0.044 0.017 0.003 
7/6/1999 17 26.6918 -83.8891 1 55.181  0.582  0.026 0.003 
7/6/1999 19 26.7694 -83.7239 1 36.263 15.579 1.323 0.368 0.017 0.002 
7/6/1999 21 26.8500 -83.5604 1 61.407  1.054  0.019 0.002 
7/6/1999 23 26.9310 -83.3969 1 51.355 6.360 0.749 0.384 0.016 0.002 
7/6/1999 27 27.0932 -83.0693 1 24.238 3.988 3.307 1.235 0.021 0.000 
7/6/1999 29 27.1744 -82.9052 1 17.324 0.832 2.242 0.035 0.066 0.013 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
7/7/1999 30 27.2151 -82.8231 1 34.928 5.371 3.918 0.924 0.086 0.016 
7/7/1999 32 27.2960 -82.6592 1 19.358 5.091 4.210 1.147 0.063 0.008 
7/7/1999 36 26.6767 -82.8750 1 12.865 0.672 1.145 0.007 0.021 0.001 
7/7/1999 40 26.0667 -83.1317 1 71.421  1.078  0.023 0.001 
7/7/1999 42 26.1296 -82.9594 1 66.695 8.322 3.591 1.150 0.020 0.005 
7/7/1999 44 26.1919 -82.7875 1 62.784 26.805 3.893 3.132 0.023 0.001 
7/7/1999 46 26.2545 -82.6157 1 42.614 16.208 2.017 0.405 0.027 0.000 
7/7/1999 51 26.4108 -82.1850 1 96.826 13.738 6.002 1.645 0.168 0.017 
7/7/1999 70 26.4870 -82.2260 1 114.390 42.998 11.848 6.112 0.170 0.009 
7/7/1999 72 26.6360 -82.3100 1 98.836 11.440 12.810 1.307 0.286 0.026 
7/8/1999 74 26.7870 -82.3890 1 50.788 6.324 8.295 3.705 0.196 0.009 
7/8/1999 76 26.9380 -82.4680 1 56.348 8.565 8.430 5.861 0.152 0.025 
7/8/1999 78 27.0890 -82.5460 1 51.949 26.421 5.481 2.993 0.170 0.048 
7/8/1999 80 27.2400 -82.6260 1 24.103 4.092 3.416 0.721 0.117 0.012 
7/8/1999 82 27.3930 -82.7130 1 23.041 2.358 2.986 0.240 0.094 0.000 
8/6/1999 1 27.5417 -82.8000 1 94.105 90.057 18.564 14.251 0.379 0.009 
8/6/1999 3 27.4655 -82.9664 1 34.460 8.252 3.019 0.145 0.117 0.002 
8/7/1999 5 27.3895 -83.1338 1 32.628 1.189 2.450 0.220 0.051 0.003 
8/7/1999 7 27.3135 -83.3010 1 34.077 2.090 1.204 0.135 0.029 0.002 
8/7/1999 9 27.2380 -83.4683 1 20.771 3.778 2.068 0.617 0.025 0.002 
8/8/1999 10 27.2000 -83.5517 1 25.309 10.686 2.218 0.812 0.019 0.003 
8/8/1999 11 26.4715 -84.3920 1 18.343 0.393 1.887 0.039 0.029 0.006 
8/8/1999 13 26.5490 -84.2264 1 25.253 3.423 1.639 0.096 0.032  
8/8/1999 17 26.6918 -83.8891 1 45.213 16.936 1.577 0.369 0.020 0.000 
8/8/1999 19 26.7694 -83.7239 1 14.686 2.888 1.219 0.016 0.035 0.006 
8/8/1999 21 26.8500 -83.5604 1 15.667 0.288 1.250 0.059 0.019 0.002 
8/8/1999 23 26.9310 -83.3969 1 38.961 5.922 1.113 0.061 0.024 0.003 
8/8/1999 27 27.0932 -83.0693 1 16.359 3.080 1.271 0.219 0.036 0.004 
8/9/1999 29 27.1744 -82.9052 1 21.651 8.049 2.004 0.821 0.086 0.007 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
8/9/1999 30 27.2151 -82.8231 1 40.276 25.194 2.874 0.089 0.110 0.023 
8/9/1999 32 27.2960 -82.6592 1 62.357 12.396 8.485 2.722 0.106 0.017 
8/9/1999 40 26.0667 -83.1317 1 55.670 44.560 0.683 0.238 0.033 0.022 
8/9/1999 42 26.1296 -82.9594 1 15.978 0.776 2.297 0.181 0.034 0.014 
8/9/1999 44 26.1919 -82.7875 1 17.111 5.645 2.131 1.053 0.026 0.005 
8/9/1999 46 26.2545 -82.6157 1 93.691 28.732 2.502 1.470 0.065 0.003 
8/9/1999 48 26.3169 -82.4435 1 28.750 12.503 3.352 1.222 0.084 0.009 
8/9/1999 51 26.4108 -82.1850 1 69.294  12.797  0.260 0.013 
8/9/1999 70 26.4870 -82.2260 1 83.903 56.118 56.202 24.856 0.231 0.013 
8/9/1999 72 26.6360 -82.3100 1 44.315 5.610 144.787 2.507 0.203 0.014 
8/9/1999 74 26.7870 -82.3890 1 40.339 2.815 10.381 4.925 0.115 0.025 
8/10/1999 76 26.9380 -82.4680 1 37.237 3.049 5.187 1.309 0.110 0.009 
8/10/1999 78 27.0890 -82.5460 1 23.422 1.390 9.057 10.172 0.096 0.013 
8/10/1999 80 27.2400 -82.6260 1 41.709 4.541 4.994 0.631 0.090 0.006 
8/10/1999 82 27.3930 -82.7130 1 30.604 3.760 3.853 0.234 0.137 0.009 
9/7/1999 1 27.5417 -82.8000 1 3.313 0.214 34.482 18.926 0.159 0.030 
9/7/1999 3 27.4655 -82.9664 1 1.471 0.589 3.795 1.812 0.097 0.017 
9/7/1999 5 27.3895 -83.1338 1 1.160 0.130 3.359 0.577 0.026 0.000 
9/7/1999 7 27.3135 -83.3010 1 1.706 0.245 5.983 1.340 0.046 0.015 
9/7/1999 9 27.2380 -83.4683 1 1.694 0.224 5.224 1.544 0.020 0.000 
9/7/1999 10 27.2000 -83.5517 1 7.526 8.749 2.218 0.537 0.030 0.003 
9/8/1999 11 26.4715 -84.3920 1 9.036 3.278 4.584 2.204 0.023 0.001 
9/8/1999 13 26.5490 -84.2264 1 11.778 3.015 2.394 0.010 0.022 0.001 
9/8/1999 17 26.6918 -83.8891 1 16.221 4.949 18.344 3.688 0.037 0.020 
9/8/1999 19 26.7694 -83.7239 1 10.382 0.757 17.769 0.087 0.023 0.008 
9/8/1999 21 26.8500 -83.5604 1 16.554 5.730 28.100 16.846 0.019 0.001 
9/8/1999 23 26.9310 -83.3969 1 13.927 4.510 23.059 13.312 0.088 0.089 
9/8/1999 27 27.0932 -83.0693 1 14.832 2.196 22.190 1.827 0.048 0.007 
9/8/1999 29 27.1744 -82.9052 1 30.288 6.780 35.991 7.349 0.061 0.002 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
9/8/1999 30 27.2151 -82.8231 1 26.499 10.748 9.201 0.593 0.093 0.011 
9/8/1999 32 27.2960 -82.6592 1 25.995 6.287 9.780 0.688 0.181 0.040 
9/9/1999 40 26.0667 -83.1317 1 15.793 4.557 2.338 0.839 0.020 0.001 
9/9/1999 44 26.1919 -82.7875 1 13.803 0.878 4.015 1.869 0.060 0.004 
9/9/1999 48 26.3169 -82.4435 1 21.485 0.635 5.087 1.697 0.068 0.037 
9/9/1999 51 26.4108 -82.1850 1 30.481 6.085 9.052 1.657 0.125 0.008 
9/9/1999 70 26.4870 -82.2260 1 31.603 11.653 8.598 1.474 0.048 0.033 
9/10/1999 72 26.6360 -82.3100 1 57.885 11.527 12.024 0.547 0.167 0.008 
9/10/1999 74 26.7870 -82.3890 1 24.306 6.015 21.094 16.485 0.092 0.082 
9/10/1999 76 26.9380 -82.4680 1 30.272 5.762 33.964 4.614 0.147 0.006 
9/10/1999 78 27.0890 -82.5460 1 21.834 1.296 44.808 17.268 0.244  
9/10/1999 80 27.2400 -82.6260 1 18.922 6.607 42.875 27.100 0.115 0.022 
9/10/1999 82 27.3930 -82.7130 1 27.646 0.045 104.183 59.620 0.159 0.006 
10/7/1999 1 27.5417 -82.8000 1 61.945 1.608 11.327 0.386 0.460 0.015 
10/7/1999 3 27.4655 -82.9664 1 13.583 0.084 4.863 0.369 0.126 0.032 
10/7/1999 5 27.3895 -83.1338 1 7.695 1.047 3.265 0.676 0.045 0.003 
10/7/1999 7 27.3135 -83.3010 1 8.221 2.751 1.989 0.671 0.045 0.020 
10/7/1999 9 27.2380 -83.4683 1 6.066 1.675 2.988 2.026 0.045 0.032 
10/7/1999 10 27.2000 -83.5517 1 2.415 1.247 1.586 0.843 0.028  
10/7/1999 19 26.7694 -83.7239 1 31.531  2.820  0.600 0.011 
10/7/1999 21 26.8500 -83.5604 1 47.936 0.090 5.066 0.092 0.601 0.032 
10/7/1999 23 26.9310 -83.3969 1 8.574 2.500 3.175 1.293 0.025 0.004 
10/7/1999 27 27.0932 -83.0693 1 12.156 5.336 2.727 0.496 0.047 0.004 
10/7/1999 29 27.1744 -82.9052 1 15.223 3.543 2.486 0.370 0.100 0.005 
10/7/1999 30 27.2151 -82.8231 1 24.856 6.525 3.529 0.574 0.089 0.009 
10/5/1999 32 27.2960 -82.6592 1 7.678 0.045 7.997 0.292 0.293 0.015 
10/7/1999 35 26.8333 -82.8167 1 22.089 0.007 4.284 0.758 0.200 0.026 
10/6/1999 37 26.5233 -82.9433 1 24.746 1.152 4.091 0.580 0.215 0.002 
10/6/1999 39 26.2083 -83.0733 1 32.626 1.647 5.441 0.616 0.232 0.178 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
10/6/1999 40 26.0667 -83.1317 1 31.144 4.058 4.068 0.185 0.087 0.000 
10/6/1999 42 26.1296 -82.9594 1 41.799 7.863 7.087 2.047 0.216 0.016 
10/6/1999 48 26.3169 -82.4435 1 18.122 0.513 3.970 0.574 0.098 0.017 
10/6/1999 51 26.4108 -82.1850 1     0.097 0.012 
10/5/1999 70 26.4870 -82.2260 1 24.104 0.644 4.391 0.689 0.143 0.004 
10/5/1999 72 26.6360 -82.3100 1 32.120 2.999 6.196 0.193 0.178 0.007 
10/5/1999 74 26.7870 -82.3890 1 6.793 0.224 16.111 2.975 0.283 0.006 
10/5/1999 76 26.9380 -82.4680 1 13.736 0.116 19.384 0.271 0.452 0.013 
10/5/1999 78 27.0890 -82.5460 1 11.311 0.124 15.394 0.340 0.389 0.030 
10/5/1999 80 27.2400 -82.6260 1 16.902 0.531 22.143 3.047 0.519 0.007 
10/5/1999 82 27.3930 -82.7130 1 2.512 0.584 28.446 14.907 0.165  
11/6/1999 1 27.5417 -82.8000 1 48.840 7.683 8.281 1.474 0.255 0.007 
11/6/1999 3 27.4655 -82.9664 1 33.964 4.134 5.923 1.729 0.071 0.002 
11/6/1999 5 27.3895 -83.1338 1 34.431 4.081 4.852 0.806 0.070 0.007 
11/6/1999 7 27.3135 -83.3010 1 20.014 1.202 2.823 0.751 0.049 0.014 
11/7/1999 27 27.0932 -83.0693 1 17.958 1.102 2.437 0.583 0.046 0.001 
11/7/1999 29 27.1744 -82.9052 1 16.891 1.865 2.639 0.345 0.067 0.012 
11/7/1999 30 27.2151 -82.8231 1 26.201 1.044 3.881 1.663 0.121  
11/7/1999 32 27.2960 -82.6592 1 25.735 0.086 6.023 1.993 0.171 0.011 
11/8/1999 40 26.0667 -83.1317 1 12.468 1.940 1.747 0.290 0.058 0.002 
11/7/1999 44 26.1919 -82.7875 1 12.387 0.562 2.024 0.113 0.056  
11/7/1999 46 26.2545 -82.6157 1 12.908 0.517 1.802 0.230   
11/7/1999 48 26.3169 -82.4435 1 22.043 4.501 2.453 0.025 0.098 0.009 
11/7/1999 50 26.3795 -82.2707 1 25.355 4.971 3.310 0.252   
11/7/1999 51 26.4108 -82.1850 1 29.779 0.744 4.527 0.326 0.269 0.007 
12/7/1999 1 27.5417 -82.8000 1 65.812 9.399 11.287 4.420 0.435  
12/7/1999 3 27.4655 -82.9664 1 28.780 7.576 3.262 0.616 0.063 0.003 
12/7/1999 5 27.3895 -83.1338 1 24.579 6.154 1.671 0.703 0.033 0.000 
12/7/1999 7 27.3135 -83.3010 1 28.708 2.836 2.327 0.078 0.045 0.001 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
12/7/1999 9 27.2380 -83.4683 1 19.463 0.114 3.828 2.301 0.039 0.002 
12/7/1999 10 27.2000 -83.5517 1 10.784 1.021 3.754 1.788 0.049 0.014 
12/8/1999 11 26.4715 -84.3920 1 10.846 0.557 1.428 0.545 0.017 0.001 
12/8/1999 13 26.5490 -84.2264 1 6.860 0.465 4.546 0.395 0.021 0.004 
12/8/1999 17 26.6918 -83.8891 1 37.302 11.185 1.092 0.346 0.051 0.018 
12/8/1999 19 26.7694 -83.7239 1 20.390 3.848 1.947 1.296 0.029 0.005 
12/8/1999 21 26.8500 -83.5604 1 21.311 3.824 1.629 0.503 0.045 0.002 
12/8/1999 23 26.9310 -83.3969 1 20.189 0.151 4.387 2.800 0.047 0.002 
12/8/1999 27 27.0932 -83.0693 1 39.671 5.721 10.703 4.251 0.028 0.002 
12/9/1999 29 27.1744 -82.9052 1 13.989 0.788 3.014 0.391 0.055 0.001 
12/9/1999 30 27.2151 -82.8231 1 14.412 0.381 3.940 0.631 0.056 0.000 
12/9/1999 32 27.2960 -82.6592 1 27.626 1.359 10.173 4.103 0.126 0.020 
12/9/1999 40 26.0667 -83.1317 1 12.646 2.706 3.082 0.008 0.042 0.004 
12/9/1999 44 26.1919 -82.7875 1 24.164 0.505 3.020 0.062 0.071 0.002 
12/9/1999 48 26.3169 -82.4435 1 16.820 1.153 4.144 0.418 0.086 0.002 
12/9/1999 50 26.3795 -82.2707 1 20.916 1.572 6.598 1.158   
12/9/1999 51 26.4108 -82.1850 1 22.642 0.503 5.451 0.704 0.126 0.011 
12/8/1999 70 26.4870 -82.2260 1 29.732 0.361 4.232 1.143   
12/8/1999 72 26.6360 -82.3100 1 36.329 5.989 4.970 0.011   
12/8/1999 74 26.7870 -82.3890 1 36.856 3.927 6.872 0.654   
12/8/1999 76 26.9380 -82.4680 1 27.947 0.954 4.243 0.501   
12/8/1999 78 27.0890 -82.5460 1 34.750 9.251 5.082 1.522   
12/8/1999 80 27.2400 -82.6260 1 27.127 6.034 5.896 1.993   
12/8/1999 82 27.3930 -82.7130 1 38.548 16.329 4.853 0.596   
12/9/1999 88 26.4625 -83.2782 1 17.981 5.536 3.421 2.710 0.034 0.001 
12/9/1999 90 26.6208 -83.3368 1 10.982 2.518 4.204 1.770   
12/10/1999 92 26.7791 -83.3953 1     0.029 0.004 
12/10/1999 96 27.0956 -83.5130 1 11.229 1.406 2.960 2.145 0.031 0.003 
1/11/2000 1 27.5417 -82.8000 1 128.698 12.890 43.150 15.723 0.245 0.012 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
1/11/2000 3 27.4655 -82.9664 1 55.319 31.348 9.089 9.177 0.040 0.001 
1/11/2000 5 27.3895 -83.1338 1 83.628 38.412 6.342 2.347 0.025 0.001 
1/11/2000 7 27.3135 -83.3010 1 54.467 21.409 1.527 0.324 0.024  
1/11/2000 9 27.2380 -83.4683 1     0.027 0.004 
1/11/2000 10 27.2000 -83.5517 1 19.082 0.544 2.782 0.768 0.036 0.003 
1/12/2000 11 26.4715 -84.3920 1 14.841 4.287 2.194 0.886 0.023 0.002 
1/12/2000 13 26.5490 -84.2264 1 18.578 1.843 2.853 1.509 0.019 0.005 
1/12/2000 17 26.6918 -83.8891 1 76.843  4.197  0.015 0.006 
1/12/2000 19 26.7694 -83.7239 1 88.702 2.562 3.804 2.280 0.024 0.001 
1/12/2000 21 26.8500 -83.5604 1 74.438 6.041 4.171 1.473 0.031 0.002 
1/12/2000 23 26.9310 -83.3969 1 44.218 23.505 2.645 0.609 0.014 0.004 
1/12/2000 27 27.0932 -83.0693 1 15.083 3.334 3.524 0.649 0.033 0.005 
1/12/2000 29 27.1744 -82.9052 1 24.441 4.302 2.218 0.540 0.033 0.006 
1/12/2000 30 27.2151 -82.8231 1 72.796 11.152 5.560 2.676 0.053 0.004 
1/13/2000 32 27.2960 -82.6592 1 92.794  3.005  0.063 0.050 
1/13/2000 40 26.0667 -83.1317 1 60.897 54.207 2.100 1.183 0.038 0.004 
1/13/2000 44 26.1919 -82.7875 1 50.146 37.632 2.809 2.006 0.042 0.002 
1/13/2000 48 26.3169 -82.4435 1 31.981 14.833 4.797 2.853 0.063 0.002 
1/13/2000 51 26.4108 -82.1850 1 47.216 4.930 5.310 1.264 0.044  
1/13/2000 88 26.4625 -83.2782 1 7.625 4.006 1.148 0.438 0.028 0.003 
1/13/2000 92 26.7791 -83.3953 1 4.780  2.332  0.061 0.052 
1/13/2000 96 27.0956 -83.5130 1 53.083 7.421 54.981 8.686 0.023 0.002 
3/1/2000 1 27.5417 -82.8000 1 67.110 2.369 13.718 11.953 0.155 0.006 
3/1/2000 3 27.4655 -82.9664 1 15.548 4.926 1.085 0.665 0.048 0.001 
3/1/2000 5 27.3895 -83.1338 1 30.655 7.962 7.959 8.757 0.039 0.001 
3/1/2000 7 27.3135 -83.3010 1 13.182 1.777 1.418 0.456 0.035 0.000 
3/1/2000 9 27.2380 -83.4683 1 19.190 8.147 2.484 1.465 0.035 0.002 
3/1/2000 10 27.2000 -83.5517 1 27.178 2.275 3.499 0.645 0.029 0.001 
3/2/2000 11 26.4715 -84.3920 1 17.317 6.955 1.413 0.960 0.020 0.006 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
3/2/2000 13 26.5490 -84.2264 1 10.449 1.361 0.789 0.074 0.020 0.003 
3/2/2000 17 26.6918 -83.8891 1 10.146 2.674 0.888 0.148 0.026 0.003 
3/2/2000 19 26.7694 -83.7239 1 23.030 2.448 1.666 0.502 0.029 0.004 
3/2/2000 21 26.8500 -83.5604 1 32.313 34.746 0.924 0.546 0.023 0.001 
3/2/2000 23 26.9310 -83.3969 1 11.063 1.900 0.919 0.320 0.028 0.003 
3/2/2000 27 27.0932 -83.0693 1 21.003 0.904 1.822 0.359 0.039 0.006 
3/3/2000 29 27.1744 -82.9052 1 16.791 3.751 1.271 0.065 0.034 0.000 
3/3/2000 30 27.2151 -82.8231 1 17.087 8.240 2.645 1.069 0.044 0.009 
3/3/2000 32 27.2960 -82.6592 1 16.942 9.983 2.906 0.568 0.063 0.002 
3/3/2000 40 26.0667 -83.1317 1 8.266 2.909 0.833 0.091 0.038 0.010 
3/3/2000 44 26.1919 -82.7875 1 15.147 0.951 2.209 0.490 0.045  
3/3/2000 48 26.3169 -82.4435 1 77.234 11.239 2.184 0.072 0.056 0.001 
3/3/2000 51 26.4108 -82.1850 1 24.320 0.729 2.326 0.928 0.110 0.013 
3/3/2000 88 26.4625 -83.2782 1 29.455 10.759 0.739 0.103 0.023 0.002 
3/4/2000 92 26.7791 -83.3953 1 24.800 9.913 1.743 0.002 0.048 0.001 
3/4/2000 96 27.0956 -83.5130 1 11.915 0.379 1.163 0.282 0.029 0.001 
4/4/2000 1 27.5417 -82.8000 1 55.867 10.806 39.527 14.066 0.220 0.007 
4/7/2000 1 27.5417 -82.8000 1 77.376 1.999 27.995 10.778 0.472 0.002 
4/4/2000 3 27.4655 -82.9664 1 27.368 11.565 8.636 1.337 0.079 0.003 
4/4/2000 5 27.3895 -83.1338 1 32.212 6.719 10.449 1.805 0.038 0.004 
4/7/2000 5 27.3895 -83.1338 1 8.790 0.428 3.640 0.207 0.029 0.001 
4/7/2000 7 27.3135 -83.3010 1 41.515 4.730 14.849 5.738 0.028 0.003 
4/7/2000 9 27.2380 -83.4683 1 50.331 5.558 10.081 3.246 0.022 0.002 
4/7/2000 10 27.2000 -83.5517 1 22.160 6.981 2.315 0.050 0.018 0.004 
4/6/2000 40 26.0667 -83.1317 1 45.125 6.687 4.910 1.210 0.027 0.004 
4/5/2000 44 26.1919 -82.7875 1 76.055 4.309 10.789 11.943 0.042 0.001 
4/5/2000 48 26.3169 -82.4435 1 26.022 4.314 5.552 0.426 0.114 0.018 
4/5/2000 51 26.4108 -82.1850 1 125.668 11.626 11.546 9.807 0.524 0.043 
4/6/2000 88 26.4625 -83.2782 1 18.765 0.555 3.217 2.283 0.034 0.012 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
4/6/2000 92 26.7791 -83.3953 1 4.268 1.526 1.537 0.717 0.015 0.001 
4/7/2000 96 27.0956 -83.5130 1 12.101 5.902 2.634 0.481 0.028 0.012 
5/1/2000 1 27.5417 -82.8000 1 25.273 1.312 2.353 0.071 0.190 0.007 
5/1/2000 3 27.4655 -82.9664 1 18.615 7.555 2.530 1.217 0.077 0.002 
5/1/2000 5 27.3895 -83.1338 1 53.043  1.084  0.039 0.003 
5/1/2000 7 27.3135 -83.3010 1 14.940 4.415 0.933 0.548 0.019 0.002 
5/1/2000 9 27.2380 -83.4683 1 62.296 21.622 0.708 0.490 0.025 0.001 
5/1/2000 10 27.2000 -83.5517 1 17.937 2.412 0.475 0.338 0.027 0.007 
5/2/2000 11 26.4715 -84.3920 1 9.248 1.307 0.174 0.023 0.015 0.001 
5/2/2000 13 26.5490 -84.2264 1 7.214 0.044 0.294  0.016 0.000 
5/2/2000 17 26.6918 -83.8891 1 18.323  0.704  0.017 0.002 
5/2/2000 19 26.7694 -83.7239 1 24.364 24.381 0.401 0.359 0.016 0.002 
5/2/2000 21 26.8500 -83.5604 1 25.630 21.881 1.067  0.017 0.004 
5/2/2000 23 26.9310 -83.3969 1 38.624 35.273 0.678 0.277   
5/2/2000 27 27.0932 -83.0693 1 14.910  1.180  0.036 0.010 
5/2/2000 29 27.1744 -82.9052 1 12.744  1.295  0.055 0.003 
5/2/2000 30 27.2151 -82.8231 1 34.520  2.356  0.072 0.001 
5/3/2000 32 27.2960 -82.6592 1 21.699 5.912 1.354 0.093 0.113 0.010 
5/3/2000 40 26.0667 -83.1317 1 20.580  1.660  0.025 0.010 
5/3/2000 44 26.1919 -82.7875 1 17.846 2.587 1.138 0.029 0.058 0.005 
5/3/2000 48 26.3169 -82.4435 1 16.622 4.817 0.785 0.329 0.074 0.010 
5/3/2000 50 26.3795 -82.2707 1 24.099 31.275 0.966    
5/3/2000 51 26.4108 -82.1850 1 33.740 4.486 2.071 0.002 0.205 0.022 
5/3/2000 88 26.4625 -83.2782 1 24.129  2.862  0.017 0.002 
5/3/2000 92 26.7791 -83.3953 1 13.642 0.684 0.274 0.191 0.018 0.003 
5/4/2000 96 27.0956 -83.5130 1 26.718 3.269 0.072 0.032 0.019 0.001 
6/6/2000 1 27.5417 -82.8000 1 51.556 21.475 68.610 78.148 0.240 0.005 
6/6/2000 3 27.4655 -82.9664 1 20.288 5.196 5.893 3.957 0.074 0.002 
6/6/2000 5 27.3895 -83.1338 1 21.492 5.344 2.831 1.458 0.041 0.003 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
6/6/2000 7 27.3135 -83.3010 1 80.767 2.400 8.283 7.141 0.026 0.003 
6/6/2000 9 27.2380 -83.4683 1 88.850 5.121 2.228 1.433 0.020 0.003 
6/7/2000 10 27.2000 -83.5517 1 11.988 1.445 1.567 0.028 0.025 0.003 
6/7/2000 11 26.4715 -84.3920 1 15.852 1.731 3.923 1.328 0.014 0.001 
6/7/2000 13 26.5490 -84.2264 1 10.784 2.883 1.662 0.713 0.013 0.005 
6/7/2000 17 26.6918 -83.8891 1 63.670 7.432 14.262 17.989 0.025 0.004 
6/7/2000 19 26.7694 -83.7239 1 59.511 38.298 2.285 0.441 0.017 0.016 
6/7/2000 21 26.8500 -83.5604 1 48.110 7.785 1.374 0.064 0.019 0.002 
6/7/2000 23 26.9310 -83.3969 1 20.477 3.016 2.688 0.235 0.016 0.000 
6/7/2000 27 27.0932 -83.0693 1 16.999 2.288 3.445 0.865 0.035 0.001 
6/7/2000 29 27.1744 -82.9052 1 155.877 11.309 6.244 6.590 0.053 0.010 
6/7/2000 30 27.2151 -82.8231 1 92.069 28.033 2.495 0.292 0.078 0.014 
6/8/2000 32 27.2960 -82.6592 1 167.882 14.710 3.468 0.299 0.181 0.019 
6/8/2000 40 26.0667 -83.1317 1 36.003 27.138 3.908 4.078 0.017 0.014 
6/8/2000 44 26.1919 -82.7875 1 46.899 0.553 6.406 4.600 0.031 0.003 
6/8/2000 48 26.3169 -82.4435 1 45.678 5.370 5.950 3.621 0.056 0.002 
6/8/2000 51 26.4108 -82.1850 1 23.847 7.203 4.534 0.656 0.058 0.002 
6/8/2000 88 26.4625 -83.2782 1 27.674 8.042 2.462 0.680 0.017 0.002 
6/8/2000 92 26.7791 -83.3953 1 16.570 1.016 1.987 0.462 0.016 0.001 
6/9/2000 96 27.0956 -83.5130 1 16.418 0.580 1.599 0.649 0.029 0.016 
6/27/2000 1 27.5417 -82.8000 1 34.820 5.717 14.134 1.758 0.102 0.003 
6/27/2000 3 27.4655 -82.9664 1 22.310 0.869 11.586 5.406 0.049 0.003 
6/27/2000 5 27.3895 -83.1338 1 27.072 4.502 21.180 13.284 0.041 0.001 
6/27/2000 7 27.3135 -83.3010 1 16.501 1.306 18.911 1.488 0.022 0.002 
6/27/2000 9 27.2380 -83.4683 1 13.037 1.609 11.951 1.521 0.022 0.003 
6/27/2000 10 27.2000 -83.5517 1 11.346 0.656 7.935 0.496 0.019 0.002 
6/28/2000 11 26.4715 -84.3920 1 10.278 0.104 8.626 0.912 0.014 0.001 
6/27/2000 13 26.5490 -84.2264 1 10.813 0.060 5.458 0.711 0.014 0.001 
6/28/2000 17 26.6918 -83.8891 1 14.973 0.442 4.131 0.508 0.027 0.005 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
6/28/2000 19 26.7694 -83.7239 1 9.686 1.205 3.709 0.799 0.024 0.004 
6/28/2000 21 26.8500 -83.5604 1 9.928 0.967 3.217 0.328 0.017 0.000 
6/28/2000 23 26.9310 -83.3969 1 12.945 0.244 7.653 0.068 0.018 0.001 
6/28/2000 27 27.0932 -83.0693 1 10.384 1.123 8.320 0.172 0.028 0.007 
6/29/2000 29 27.1744 -82.9052 1 29.799 2.012 15.323 1.935 0.084 0.002 
6/29/2000 30 27.2151 -82.8231 1 28.133 1.436 10.230 8.770 0.073 0.002 
6/29/2000 32 27.2960 -82.6592 1 33.117 0.476 20.259 5.167 0.107 0.025 
6/29/2000 40 26.0667 -83.1317 1 7.686 0.005 5.988 0.571 0.021  
6/29/2000 44 26.1919 -82.7875 1 15.702 3.375 9.164 0.082 0.024 0.005 
6/29/2000 48 26.3169 -82.4435 1 25.239 1.767 13.663 2.048 0.069 0.000 
6/29/2000 51 26.4108 -82.1850 1 78.851 4.622 67.268 24.495 0.258 0.015 
6/29/2000 88 26.4625 -83.2782 1 10.883 1.011 20.747 2.972 0.019 0.001 
6/29/2000 92 26.7791 -83.3953 1 8.996 0.291 5.807 0.105 0.019 0.002 
6/30/2000 96 27.0956 -83.5130 1 11.449 4.053 6.118 0.602 0.021 0.002 
8/2/2000 1 27.5417 -82.8000 1 22.174 1.322 28.738 7.060 0.188 0.005 
8/2/2000 3 27.4655 -82.9664 1 36.103 2.054 15.321 2.153 0.104 0.003 
8/2/2000 5 27.3895 -83.1338 1 18.282 2.603 2.295 0.298 0.063 0.001 
8/2/2000 7 27.3135 -83.3010 1 16.099 1.548 2.793 0.537 0.028 0.007 
8/2/2000 9 27.2380 -83.4683 1 23.595 3.409 0.902 0.429 0.022 0.002 
8/2/2000 10 27.2000 -83.5517 1 19.632 2.207 1.182 0.425 0.022 0.002 
8/3/2000 11 26.4715 -84.3920 1 10.740 0.141 3.552 0.353 0.016 0.001 
8/3/2000 13 26.5490 -84.2264 1 11.722 0.446 5.161 3.826 0.021 0.000 
8/3/2000 17 26.6918 -83.8891 1 16.495 2.128 1.458 0.018 0.024 0.001 
8/3/2000 19 26.7694 -83.7239 1 15.323 4.298 2.071 0.689 0.033 0.005 
8/3/2000 21 26.8500 -83.5604 1 14.657 5.628 0.877 0.002 0.019 0.001 
8/3/2000 23 26.9310 -83.3969 1 12.965 0.067 1.307 0.235 0.018 0.001 
8/3/2000 27 27.0932 -83.0693 1 12.297 0.023 2.401 0.517 0.028 0.001 
8/3/2000 29 27.1744 -82.9052 1 18.907 0.085 2.737 1.395 0.067 0.001 
8/3/2000 30 27.2151 -82.8231 1 22.288 0.973 2.514 0.142 0.082 0.002 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
8/3/2000 32 27.2960 -82.6592 1 28.886 2.897 2.922 0.572 0.136 0.001 
8/4/2000 40 26.0667 -83.1317 1 42.098 11.784 2.155 0.136 0.051 0.005 
8/4/2000 44 26.1919 -82.7875 1 45.272 3.175 3.381 0.195 0.091 0.005 
8/4/2000 48 26.3169 -82.4435 1 40.748 0.618 4.081 0.225 0.144 0.010 
8/4/2000 50 26.3795 -82.2707 1 55.012 5.672 4.587 0.814   
8/4/2000 51 26.4108 -82.1850 1 31.025 0.207 2.982 0.134 0.111 0.007 
8/4/2000 88 26.4625 -83.2782 1 18.903 3.031 1.391 0.190 0.039 0.004 
8/4/2000 92 26.7791 -83.3953 1 12.982 0.184 1.170 0.666 0.031 0.002 
8/5/2000 96 27.0956 -83.5130 1 18.440 4.474 1.355 0.152 0.037 0.001 
9/7/2000 1 27.5417 -82.8000 1 36.429 4.132 6.336 0.127 0.259 0.009 
9/7/2000 3 27.4655 -82.9664 1 28.002 3.463 2.647 0.025 0.064 0.008 
9/7/2000 5 27.3895 -83.1338 1 18.403 0.981 2.696 0.689 0.057 0.001 
9/7/2000 7 27.3135 -83.3010 1 26.405 1.511 3.528 0.217 0.054 0.000 
9/8/2000 9 27.2380 -83.4683 1 9.267 0.332 0.861 0.016 0.022 0.002 
9/8/2000 10 27.2000 -83.5517 1 10.358 0.898 1.060 0.213 0.019 0.000 
9/8/2000 23 26.9310 -83.3969 1 24.342 8.514 1.951 0.650 0.027 0.001 
9/8/2000 27 27.0932 -83.0693 1 12.609 1.344 1.213 0.233 0.044 0.005 
9/8/2000 29 27.1744 -82.9052 1 11.558 0.877 1.490 0.049 0.070 0.002 
9/8/2000 30 27.2151 -82.8231 1 19.264 5.386 2.403 0.214 0.064 0.000 
9/8/2000 32 27.2960 -82.6592 1 33.101 3.821 3.616 0.431 0.080 0.035 
9/12/2000 40 26.0667 -83.1317 1 10.358 1.034 1.645 0.503 0.024 0.008 
9/12/2000 44 26.1919 -82.7875 1 10.805 1.253 2.286 1.645 0.038 0.005 
9/12/2000 48 26.3169 -82.4435 1 23.458 2.688 2.655 0.824 0.072 0.006 
9/12/2000 51 26.4108 -82.1850 1 48.102 0.147 4.888 0.513 0.202 0.067 
9/8/2000 96 27.0956 -83.5130 1 11.405 2.492 0.775 0.016 0.020 0.001 
10/4/2000 1 27.5417 -82.8000 1 135.634 18.967 97.693 13.479 0.496 0.003 
10/4/2000 3 27.4655 -82.9664 1 66.300 2.715 63.830 24.777 0.140 0.010 
10/4/2000 5 27.3895 -83.1338 1 87.326 30.318 37.235 22.915 0.076 0.008 
10/4/2000 7 27.3135 -83.3010 1 41.983 22.722 6.093 2.641 0.043 0.002 



  157

Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
10/4/2000 9 27.2380 -83.4683 1 22.085 7.069 2.379 0.104 0.020 0.002 
10/4/2000 10 27.2000 -83.5517 1 26.098 0.816 3.538 0.189 0.016 0.000 
10/5/2000 11 26.4715 -84.3920 1 14.528 2.002 5.649 3.233 0.020 0.001 
10/5/2000 13 26.5490 -84.2264 1 15.305 3.645 3.718 1.861 0.020 0.006 
10/5/2000 17 26.6918 -83.8891 1 15.482 4.383 3.764 0.311 0.019 0.003 
10/5/2000 19 26.7694 -83.7239 1 41.704 17.630 13.730 3.850 0.024 0.009 
10/5/2000 21 26.8500 -83.5604 1 66.424 38.371 28.601 9.131 0.016 0.001 
10/5/2000 23 26.9310 -83.3969 1 46.117 34.890 4.306 1.045 0.027 0.002 
10/5/2000 27 27.0932 -83.0693 1 41.865 7.663 12.215 6.702 0.036 0.002 
10/5/2000 29 27.1744 -82.9052 1 20.773 1.315 5.639 3.425 0.050 0.003 
10/5/2000 30 27.2151 -82.8231 1 21.402 0.149 3.081 0.856 0.072 0.001 
10/5/2000 32 27.2960 -82.6592 1 23.444 3.119 5.594 3.310 0.124 0.003 
10/6/2000 40 26.0667 -83.1317 1 58.942 4.644 8.896 6.737 0.021 0.001 
10/6/2000 44 26.1919 -82.7875 1 16.016 3.084 4.509 0.740 0.054 0.002 
10/6/2000 48 26.3169 -82.4435 1 20.889 4.144 2.130 0.220 0.068 0.010 
10/6/2000 50 26.3795 -82.2707 1 29.394 3.331 5.980 3.070   
10/6/2000 51 26.4108 -82.1850 1 42.693 7.672 6.729 0.983 0.175 0.018 
10/5/2000 74 26.7870 -82.3890 1 165.348 5.953 11.364 3.209 0.183 0.007 
10/6/2000 88 26.4625 -83.2782 1 43.616 6.221 1.815 1.357 0.021 0.001 
10/6/2000 94 26.9372 -83.4543 1 82.806 2.991 1.732 0.844 0.041 0.023 
10/5/2000 999 26.4947 -82.2451 1 231.789 41.562 11.687 1.242 0.385 0.034 
11/7/2000 1 27.5417 -82.8000 1 62.387 5.788 19.089 12.431 0.407 0.009 
11/7/2000 3 27.4655 -82.9664 1 31.838 4.498 9.832 2.320 0.088 0.006 
11/8/2000 5 27.3895 -83.1338 1 27.426 4.633 4.667 0.884 0.034 0.003 
11/8/2000 7 27.3135 -83.3010 1 26.616 4.334 5.967 1.732 0.038 0.010 
11/8/2000 9 27.2380 -83.4683 1 21.458 7.556 10.902 2.962 0.033 0.002 
11/8/2000 10 27.2000 -83.5517 1 19.440 6.348 6.214 3.154 0.035 0.015 
11/8/2000 11 26.4715 -84.3920 1 19.758 7.595 20.092 10.842 0.033 0.021 
11/8/2000 17 26.6918 -83.8891 1 23.218 0.623 18.320 19.375 0.039 0.018 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
11/9/2000 19 26.7694 -83.7239 1 22.498 4.730 15.949 14.778 0.037 0.006 
11/9/2000 21 26.8500 -83.5604 1 23.367 7.959 5.435 2.583 0.022 0.001 
11/9/2000 23 26.9310 -83.3969 1 20.475 1.168 5.099 3.173 0.040 0.019 
11/9/2000 27 27.0932 -83.0693 1 31.512 9.779 7.703 3.683 0.037 0.008 
11/9/2000 29 27.1744 -82.9052 1 21.529 2.388 11.386 5.474 0.050 0.010 
11/9/2000 30 27.2151 -82.8231 1 23.242 11.353 7.711 2.100 0.068  
11/9/2000 32 27.2960 -82.6592 1 54.539 5.587 13.009 7.584 0.319 0.009 
11/10/2000 40 26.0667 -83.1317 1 17.398 3.324 7.152 6.516 0.023 0.001 
11/10/2000 44 26.1919 -82.7875 1 22.495 6.383 12.120 6.617 0.029 0.003 
11/10/2000 48 26.3169 -82.4435 1 18.233 1.445 9.119 0.026 0.062 0.016 
11/10/2000 51 26.4108 -82.1850 1 48.205  71.117  0.177 0.075 
11/9/2000 70 26.4870 -82.2260 1 47.163 4.791 97.885 54.123 0.234 0.152 
11/9/2000 72 26.6360 -82.3100 1 38.152 0.804 116.191 66.859 0.221 0.011 
11/9/2000 74 26.7870 -82.3890 1 52.989 17.930 28.965  0.119 0.010 
11/9/2000 76 26.9380 -82.4680 1 50.570 3.354 65.801  0.200 0.006 
11/9/2000 78 27.0890 -82.5460 1 53.794 2.182 266.242 91.418 0.225 0.015 
11/9/2000 80 27.2400 -82.6260 1 63.450 3.623 114.316 13.542 0.326 0.033 
11/10/2000 86 26.3042 -83.2197 1 7.416 8.784 6.914 4.758 0.026 0.000 
11/10/2000 90 26.6208 -83.3368 1 16.664 2.565 3.016 1.558 0.025 0.003 
11/10/2000 92 26.7791 -83.3953 1 12.775 0.606 2.539 0.043 0.023 0.005 
4/3/2001 1 27.5417 -82.8000 1 59.906 9.073 43.979 1.573 0.336 0.017 
4/3/2001 3 27.4655 -82.9664 1 34.740 3.995 29.440 14.971 0.048 0.004 
4/3/2001 5 27.3895 -83.1338 1 21.862 2.946 29.560 32.292 0.076 0.023 
4/3/2001 7 27.3135 -83.3010 1 12.824 0.681 2.598 1.094 0.088  
4/3/2001 9 27.2380 -83.4683 1 19.193 1.720 2.304 0.053 0.002  
4/3/2001 10 27.2000 -83.5517 1 15.073 0.384 4.222 2.133 0.040 0.006 
4/4/2001 11 26.4715 -84.3920 1 14.307 3.911 2.255 0.383 0.026 0.006 
4/4/2001 13 26.5490 -84.2264 1 12.988 2.775 1.703 0.186 0.048 0.035 
4/4/2001 17 26.6918 -83.8891 1 32.731 3.952 4.976 3.047 0.106 0.042 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
4/4/2001 19 26.7694 -83.7239 1 27.291 3.271 4.353 2.083 0.077 0.027 
4/4/2001 21 26.8500 -83.5604 1 17.352 0.226 2.654 0.793 0.098 0.014 
4/4/2001 23 26.9310 -83.3969 1 11.569 1.029 1.237 0.084 0.044 0.006 
4/4/2001 27 27.0932 -83.0693 1 16.597 0.716 2.171 0.447 0.049 0.004 
4/5/2001 29 27.1744 -82.9052 1 17.787 0.661 2.380 0.337 0.058 0.002 
4/5/2001 30 27.2151 -82.8231 1 21.060 1.720 3.214 1.056 0.054 0.012 
4/5/2001 32 27.2960 -82.6592 1 36.531 0.066 6.799 0.569 0.144 0.003 
4/5/2001 40 26.0667 -83.1317 1 13.741 2.446 2.635 0.589 0.031 0.004 
4/5/2001 44 26.1919 -82.7875 1 13.915 0.935 1.004 0.097 0.063 0.015 
4/5/2001 48 26.3169 -82.4435 1 20.653  1.786  0.106 0.009 
4/5/2001 51 26.4108 -82.1850 1 485.722 24.715 54.208 2.027 0.345  
5/3/2001 1 27.5417 -82.8000 1 56.236 7.512 8.453 1.662 0.185 0.015 
5/3/2001 3 27.4655 -82.9664 1 46.098 7.355 6.472 1.089 0.086 0.020 
5/3/2001 5 27.3895 -83.1338 1 22.119 1.651 3.276 1.316 0.041 0.007 
5/3/2001 7 27.3135 -83.3010 1 11.073 0.717 1.566 0.810 0.032 0.008 
5/3/2001 9 27.2380 -83.4683 1 16.975 5.124 4.313 0.147 0.021 0.004 
5/3/2001 10 27.2000 -83.5517 1 30.554 3.528 4.229 0.615 0.023 0.000 
5/4/2001 11 26.4715 -84.3920 1 24.570 1.019 2.520 0.146 0.060 0.009 
5/4/2001 17 26.6918 -83.8891 1 20.279 2.215 2.066 0.714 0.019 0.003 
5/4/2001 19 26.7694 -83.7239 1 21.456 2.273 4.910 1.856 0.021 0.001 
5/4/2001 23 26.9310 -83.3969 1 8.903 2.590 1.135 0.073 0.014 0.002 
5/4/2001 27 27.0932 -83.0693 1 16.233 3.058 12.230 0.156 0.026 0.003 
5/5/2001 29 27.1744 -82.9052 1 23.349 13.958 4.518 1.151 0.051 0.002 
5/5/2001 30 27.2151 -82.8231 1 15.663 1.388 2.520 0.564 0.055 0.004 
5/5/2001 32 27.2960 -82.6592 1 39.535 4.095 5.189 0.545 0.150 0.001 
5/5/2001 40 26.0667 -83.1317 1 16.349 12.845 2.152 1.199 0.028 0.007 
5/5/2001 44 26.1919 -82.7875 1 27.702 11.574 4.672 1.850 0.066 0.001 
5/5/2001 46 26.2545 -82.6157 1 29.380 0.829 2.977 0.185   
5/5/2001 48 26.3169 -82.4435 1 32.603 1.079 3.597 0.325 0.111 0.002 
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Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
5/5/2001 51 26.4108 -82.1850 1 40.040 1.190 4.336 1.544 0.252 0.029 
6/5/2001 1 27.5417 -82.8000 1 40.138 1.764 7.437 1.160 0.338 0.015 
6/5/2001 3 27.4655 -82.9664 1 22.986 1.446 12.516 6.676 0.067 0.001 
6/5/2001 5 27.3895 -83.1338 1 17.558 1.277 4.710 0.437 0.058 0.003 
6/5/2001 7 27.3135 -83.3010 1 12.428 1.217 2.917 0.787 0.025 0.004 
6/5/2001 9 27.2380 -83.4683 1 15.124 0.082 1.775 0.109 0.020 0.002 
6/5/2001 10 27.2000 -83.5517 1 20.346 3.478 3.980 2.395 0.023 0.004 
6/6/2001 11 26.4715 -84.3920 1 11.062 1.220 1.210 0.209 0.022 0.008 
6/6/2001 13 26.5490 -84.2264 1 7.294  1.522  0.030 0.003 
6/6/2001 17 26.6918 -83.8891 1 13.036 1.994 1.400 0.337 0.023  
6/6/2001 19 26.7694 -83.7239 1 8.131 3.064 11.951 7.113 0.017 0.001 
6/6/2001 21 26.8500 -83.5604 1 6.182 1.084 4.399 1.396 0.022 0.000 
6/6/2001 23 26.9310 -83.3969 1 10.024 0.985 2.010 0.189 0.016 0.004 
6/6/2001 27 27.0932 -83.0693 1 12.571 2.431 1.825 0.753 0.031 0.001 
6/7/2001 29 27.1744 -82.9052 1 17.176 1.253 2.589 0.946 0.035 0.002 
6/7/2001 30 27.2151 -82.8231 1 19.282 0.028 7.683 3.616 0.057 0.006 
6/7/2001 32 27.2960 -82.6592 1 34.074 1.936 4.187 0.017 0.260 0.017 
6/7/2001 40 26.0667 -83.1317 1 11.727 1.166 1.295 0.286 0.026  
6/7/2001 42 26.1296 -82.9594 1 10.894 1.620 8.960 4.498 0.020 0.002 
6/7/2001 44 26.1919 -82.7875 1 15.448 10.060 13.470 8.156 0.024 0.002 
6/7/2001 48 26.3169 -82.4435 1 18.633 4.838 4.086 1.318 0.072 0.013 
6/7/2001 51 26.4108 -82.1850 1 46.744 4.453 7.933 1.360 0.415 0.006 
6/7/2001 84 26.1462 -83.1613 1 8.476 2.179 1.648 0.689 0.023 0.002 
6/7/2001 88 26.4625 -83.2782 1 7.732 0.720 1.097 0.018 0.017 0.001 
6/8/2001 92 26.7791 -83.3953 1 7.965 1.562 5.575 4.823 0.025 0.000 
6/8/2001 96 27.0956 -83.5130 1 6.287 1.047 0.911 0.011 0.019 0.000 
6/30/2001 1 27.5417 -82.8000 1 61.895 1.025 12.746 6.835 0.263 0.003 
6/30/2001 3 27.4655 -82.9664 1 24.070 11.135 3.280 0.654 0.050 0.009 
6/30/2001 5 27.3895 -83.1338 1 34.383 6.626 7.724 2.329 0.034 0.002 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
6/30/2001 7 27.3135 -83.3010 1 13.805 2.904 1.437 0.271 0.024 0.002 
6/30/2001 9 27.2380 -83.4683 1 26.483 0.085 2.954 0.907 0.020 0.004 
6/30/2001 10 27.2000 -83.5517 1 10.568 0.681 1.023 0.080 0.024 0.010 
7/1/2001 11 26.4715 -84.3920 1 8.696 0.359 1.052 0.297 0.025 0.006 
7/1/2001 13 26.5490 -84.2264 1 13.117 3.758 1.501 0.078 0.022 0.003 
7/1/2001 17 26.6918 -83.8891 1 13.157 0.399 1.248 0.128 0.027 0.000 
7/1/2001 19 26.7694 -83.7239 1 19.644 6.656 4.968 2.446 0.028 0.015 
7/1/2001 21 26.8500 -83.5604 1 11.420 4.891 3.666 3.012 0.025 0.012 
7/1/2001 23 26.9310 -83.3969 1 11.502 2.278 4.435 1.276 0.015 0.002 
7/2/2001 27 27.0932 -83.0693 1 10.671 1.909 3.157 1.027 0.023 0.005 
7/2/2001 29 27.1744 -82.9052 1 24.026 2.311 14.813 1.360 0.041 0.004 
7/2/2001 30 27.2151 -82.8231 1 27.208 1.691 25.961 19.591 0.709 0.000 
7/2/2001 32 27.2960 -82.6592 1 46.862 0.352 18.935 6.408 0.384 0.001 
7/2/2001 40 26.0667 -83.1317 1 13.658 4.130 16.132 7.930 0.211 0.007 
7/2/2001 42 26.1296 -82.9594 1     0.249 0.028 
7/2/2001 44 26.1919 -82.7875 1 10.827 1.697 1.046 0.023 0.226 0.003 
7/2/2001 48 26.3169 -82.4435 1 28.351 0.905 7.412 0.724 0.258 0.006 
7/2/2001 50 26.3795 -82.2707 1 58.970 6.179 8.708 1.137   
7/2/2001 51 26.4108 -82.1850 1 39.182 3.877 14.822 1.052 0.405 0.008 
8/1/2001 1 27.5417 -82.8000 1 39.569 2.201 11.096 0.708 0.287 0.009 
8/1/2001 3 27.4655 -82.9664 1 46.854 5.606 4.997 1.614 0.080 0.003 
8/1/2001 5 27.3895 -83.1338 1 22.690 0.312 5.662 0.582 0.026 0.004 
8/1/2001 7 27.3135 -83.3010 1 17.085 5.558 0.992 0.701 0.032 0.017 
8/1/2001 9 27.2380 -83.4683 1 19.956 0.237 1.897 0.516 0.039 0.004 
8/1/2001 10 27.2000 -83.5517 1 20.253 0.058 2.534 0.018 0.027 0.001 
8/28/2001 1 27.5417 -82.8000 1 28.270 0.800 4.418 0.119 0.263 0.009 
8/28/2001 3 27.4655 -82.9664 1 23.812 0.148 8.722 4.615 0.078 0.001 
8/28/2001 5 27.3895 -83.1338 1 15.254 3.377 8.063 3.064 0.055 0.003 
8/28/2001 7 27.3135 -83.3010 1 4.829 0.951 1.631 0.022 0.016 0.001 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
8/28/2001 9 27.2380 -83.4683 1 5.543 3.494 0.968 0.523 0.016 0.001 
8/28/2001 10 27.2000 -83.5517 1 15.395 1.612 2.304  0.019 0.001 
8/29/2001 13 26.5490 -84.2264 1 5.327 0.974 1.991 0.030 0.015 0.001 
8/29/2001 17 26.6918 -83.8891 1 7.118 4.018 1.697 0.976 0.013 0.001 
8/29/2001 19 26.7694 -83.7239 1 3.715 0.496 0.882 0.031 0.016 0.002 
8/29/2001 21 26.8500 -83.5604 1 5.704 0.087 3.805 1.374 0.019 0.007 
8/29/2001 23 26.9310 -83.3969 1 15.262 5.152 2.736 1.632 0.018 0.001 
8/29/2001 27 27.0932 -83.0693 1 17.540 3.494 4.245 2.062 0.027 0.001 
8/29/2001 29 27.1744 -82.9052 1 10.347 1.786 4.297 0.118 0.044 0.001 
8/29/2001 30 27.2151 -82.8231 1 18.747 4.791 2.569 0.328 0.044 0.002 
8/29/2001 32 27.2960 -82.6592 1 28.264 9.218 3.654 0.416 0.159 0.002 
8/31/2001 34 26.9900 -82.7467 1 6.738 0.588 3.938 1.411 0.047 0.002 
8/30/2001 36 26.6767 -82.8750 1     0.074 0.069 
8/30/2001 38 26.3650 -83.0083 1 8.684 2.675 2.725 1.025 0.022 0.001 
8/30/2001 40 26.0667 -83.1317 1 8.958 5.741 1.856 0.857 0.017 0.001 
8/30/2001 44 26.1919 -82.7875 1 8.680 9.887 1.457 1.060 0.040 0.008 
8/30/2001 48 26.3169 -82.4435 1 26.148 1.121 3.822 1.028 0.156 0.003 
8/30/2001 51 26.4108 -82.1850 1 17.539 2.727 3.737 0.293 0.066 0.055 
11/17/2001 1 27.5417 -82.8000 1 89.866 5.773 17.841 6.108 0.407 0.019 
11/17/2001 3 27.4655 -82.9664 1 51.954 0.168 6.418 1.902 0.178 0.003 
11/17/2001 5 27.3895 -83.1338 1 17.693 2.467 1.921 0.548 0.046 0.005 
11/17/2001 7 27.3135 -83.3010 1 12.444  0.711  0.041 0.012 
11/18/2001 9 27.2380 -83.4683 1 15.505 1.579 1.399 0.015 0.037 0.002 
11/18/2001 10 27.2000 -83.5517 1 11.977 0.247 1.153 0.142 0.028 0.003 
11/18/2001 11 26.4715 -84.3920 1 12.698 1.843 1.139 0.166 0.013 0.001 
11/18/2001 15 26.6264 -84.0615 1 11.712 0.550 0.761 0.008 0.032 0.006 
11/18/2001 17 26.6918 -83.8891 1 15.523 0.905 0.773 0.074 0.044 0.002 
11/18/2001 21 26.8500 -83.5604 1 12.763 2.367 1.947 1.619 0.024 0.002 
11/18/2001 23 26.9310 -83.3969 1 10.675 0.014 0.903 0.202 0.027 0.002 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
11/19/2001 27 27.0932 -83.0693 1 14.793 3.374 1.639 0.639 0.044 0.016 
11/19/2001 29 27.1744 -82.9052 1 22.556 1.749 2.000 0.080 0.066 0.003 
11/20/2001 30 27.2151 -82.8231 1 51.592 1.690 5.008 0.361 0.348 0.024 
11/20/2001 32 27.2960 -82.6592 1 48.083 3.283 6.576 1.469 0.185 0.002 
11/20/2001 32 27.2960 -82.6592 1 33.258 0.238 2.853 0.627 0.137 0.021 
11/20/2001 40 26.0667 -83.1317 1 18.748 3.377 2.144 1.874 0.035 0.006 
11/19/2001 44 26.1919 -82.7875 1 29.656 1.843 2.478 0.104 0.093 0.008 
11/19/2001 48 26.3169 -82.4435 1 33.001 6.332 3.739 0.616 0.115 0.004 
11/20/2001 51 26.4108 -82.1850 1 46.497 2.616 5.333 0.173 0.279 0.005 
11/19/2001 84 26.1462 -83.1613 1 15.489 5.394 1.596 0.004 0.033 0.001 
11/20/2001 88 26.4625 -83.2782 1 21.756 8.833 1.344 0.152 0.030 0.001 
11/20/2001 92 26.7791 -83.3953 1 13.374 1.871 1.113 0.053 0.030  
11/20/2001 96 27.0956 -83.5130 1 9.696 7.080 0.845 0.308 0.035 0.001 
12/11/2001 1 27.5417 -82.8000 1 59.130 0.298 27.281 5.625 0.203 0.010 
12/11/2001 3 27.4655 -82.9664 1 40.454 2.190 7.820 2.922 0.132 0.002 
12/11/2001 5 27.3895 -83.1338 1 11.517 1.376 0.829 0.055 0.030 0.001 
12/11/2001 7 27.3135 -83.3010 1 16.971 4.570 1.259 0.465 0.035 0.001 
12/12/2001 9 27.2380 -83.4683 1 12.195 1.705 0.741 0.203 0.028 0.002 
12/12/2001 10 27.2000 -83.5517 1 13.057 1.390 1.040 0.215 0.020 0.000 
12/12/2001 11 26.4715 -84.3920 1 10.475 1.023 0.611 0.006 0.018 0.002 
12/12/2001 13 26.5490 -84.2264 1 8.122 0.984 0.801 0.590 0.019 0.000 
12/12/2001 17 26.6918 -83.8891 1 12.363  0.660  0.016 0.003 
12/12/2001 19 26.7694 -83.7239 1 8.930  0.526  0.018 0.006 
12/12/2001 21 26.8500 -83.5604 1 15.082 2.758 0.957 0.110 0.017 0.000 
12/12/2001 23 26.9310 -83.3969 1 16.941 5.150 1.574 1.167 0.020 0.001 
12/12/2001 27 27.0932 -83.0693 1 19.761 0.084 1.612 0.012 0.037 0.004 
12/13/2001 29 27.1744 -82.9052 1 20.132 3.501 1.700 0.442 0.044 0.002 
12/13/2001 30 27.2151 -82.8231 1 27.372 5.563 2.127 0.459 0.068 0.003 
12/13/2001 32 27.2960 -82.6592 1 43.658 0.078 4.426 0.270 0.177 0.004 
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Appendix A (Continued). 
 

Date Station Latitude Longitude Depth C (µM) C (S.D.) N (µM) N (S.D.) P (µM) P (S.D.) 
12/14/2001 34 26.9900 -82.7467 1 20.565 1.748 2.267 0.059 0.074 0.002 
12/14/2001 36 26.6767 -82.8750 1 20.728 0.735 2.342 0.537 0.059 0.001 
12/13/2001 38 26.3650 -83.0083 1 12.494 0.594 1.017 0.139 0.029 0.001 
12/13/2001 40 26.0667 -83.1317 1 12.978 2.373 1.253 0.081 0.029 0.002 
12/13/2001 44 26.1919 -82.7875 1 11.441 0.571 2.300 1.507 0.030 0.002 
12/13/2001 48 26.3169 -82.4435 1 26.716 3.841 2.624 0.034 0.115 0.002 
12/13/2001 51 26.4108 -82.1850 1 69.757 2.683 6.829 0.168 0.373 0.004 
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