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Mixture Distributions with Application to Microarray Data Analysis

O’Neil Lee Lynch

ABSTRACT

The main goal in analyzing microarray data is to determine the genes that are dif-

ferentially expressed across two types of tissue samples or samples obtained under two

experimental conditions. In this dissertation we proposed two methods to determine

differentially expressed genes. For the penalized normal mixture model (PMMM) to de-

termine genes that are differentially expressed, we penalized both the variance and the

mixing proportion parameters simultaneously. The variance parameter was penalized

so that the log-likelihood will be bounded, while the mixing proportion parameter was

penalized so that its estimates are not on the boundary of its parametric space. The

null distribution of the likelihood ratio test statistic (LRTS) was simulated so that we

could perform a hypothesis test for the number of components of the penalized normal

mixture model. In addition to simulating the null distribution of the LRTS for the pe-

nalized normal mixture model, we showed that the maximum likelihood estimates were

asymptotically normal, which is a first step that is necessary to prove the asymptotic

null distribution of the LRTS. This result is a significant contribution to field of normal

mixture model.

The modified p-value approach for detecting differentially expressed genes was also

discussed in this dissertation. The modified p-value approach was implemented so that

a hypothesis test for the number of components can be conducted by using the modified

likelihood ratio test. In the modified p-value approach we penalized the mixing pro-

portion so that the estimates of the mixing proportion are not on the boundary of its

viii



parametric space. The null distribution of the (LRTS) was simulated so that the num-

ber of components of the uniform beta mixture model can be determined. Finally, for

both modified methods, the penalized normal mixture model and the modified p-value

approach were applied to simulated and real data.
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1 Introduction

In recent years microarray technology has made it possible to simultaneously analyze

thousands of genes. Although an enormous volume of data is being produced by microar-

ray technologies (Schena et al., 1995; DeRisi et al., 1997; Hughes et al., 2001; Lockhart et

al., 1996), one remaining challenge is how to analyze and interpret the large amounts of

data. A major challenge is to detect genes with differentially expressed profiles under two

different experimental conditions, which may refer to samples drawn from two types of

tissues, tumors or cell lines, or at two time points during important biological processes.

Many of the methods used for such analysis, including the method of identifying genes

with fold changes are known to be unreliable because in such methods the statistical

variability of the data is not properly addressed [8]. While various parametric meth-

ods and tests such as the two-sample t-test [12] and regression model have been applied

for microarray data analysis, strong parametric assumptions made in these methods as

well as strong dependency on large sample sets restrict the reliability of such techniques

in microarray problems where only a small number of replications are available. The

non parametric statistical methods, including the Empirical Bayes (EB) method [14],

the significance analysis for microarray data (SAM [39]) and mixture model method

(MMM) [27, 42, 25] have been applied to microarray data analysis. It is claimed and ar-

gued that the new extensions of the (MMM) are among the available methods producing

biologically-meaningful results [27, 43].

In this dissertation we extended the mixture model method (MMM) by penalizing the

mixing proportions and the component variances simultaneously. The mixing proportion

was penalized so that a modified likelihood ratio test similar to that of Chen et al. (2001,

2004) for testing the number of components of the fitted normal mixture model can be

implemented. The variance was penalized so that the log-likelihood is bounded resulting
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in the existence of the MLE’s. In a similar fashion the p-value approach (Allison et al.

(2002)) for the detection of differentially expressed genes of microarray data was also

modified. For the p-value approach only the mixing proportion was modified so that the

MLE of the mixing proportion was not on the boundary of its parametric space. This

modification was done so that a modified likelihood ratio test similarly to what was done

by Chen et al. may be implemented so that we may test the hypothesis for the number

of components.

This dissertation is organized as follows. Chapter 2 describes in some detail the

genetic background of DNA and two of the leading microarray experiments, cDNA and

Oligonucleotide. In Chapter 2 we also discussed some of the statistical challenges we

have in analyzing microarray data and gives a description of some of the methods used

to analyze microarray data. The methods that were discussed are (1) Cluster analysis (2)

T-test (3) Regression analysis (4) Significant analysis of microarray (SAM) (5) Mixture

model method (MMM) and (6) A p-value approach for detecting differentially expressed

microarray data.

In Chapter 3 we present the theory of finite mixture methods and discussed how the

parameters can be estimated by (1) expectation maximization algorithm (EM) and (2)

the robust parameter estimation - which is of interest if the data contains outliers. One of

the challenges of finite mixture distributions is to determine the number of components

therefore we discussed some techniques used to determine the number of components

which are namely AIC, BIC, simulation and the modified likelihood ratio test. The box-

cox transformation for distinquishing skewed distributions from commingled distributions

was also presented in chapter 3.

The penalized modified approach will be discussed in chapter 4. The estimators

of the parameters of the penalized normal mixture model when both the variance and

mixing proportion were simultaneously penalized was illustrated. The evaluation of the

estimators for the two penalty functions for the variance, the inverse gamma and inverse

chi-square distributions were addressed. The asymptotic property namely asymptotic

normality of the normal mixture model was also proved in Chapter 4. Chapter 5 discussed

the applications of the penalized/modified approach of the normal mixture model to

detecting differentially expressed genes and illustrated its applications to simulated and

2



real data. The results of the penalized/modified normal mixture model approach were

compared to that of SAM and was shown to out perform SAM.

Chapter 6 discussed the modified p-value approach for detecting differentially ex-

pressed genes. Similar to the work done in Chapter 6 we applied our method to simu-

lated and real data. The motivation for modifying the p-value approach of Allison et al.

was that the MLE of the mixing proportion was on the boundary point of its parametric

space, therefore we applied the technique of Chen et al., that is, we applied a penalty

function for the mixing proportion so that the MLE of the mixing proportion will not

be on the boundary points of its parametric space. The conclusions of this study were

summarized in Chapter 7.
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2 Microarray Data and Some Statistical Analysis

2.1 DNA Microarray Experiments

2.1.1 Genetic Background

The double-stranded molecules deoxyribonucleic acid (DNA) (Watson and Crick, 1953)

contains all the genetic information of living organisms. Each strand or helix of DNA is a

chain of nucleotides that consists of a sugar, a phosphate and a nitrogenous base molecule.

The information in DNA is stored as a code made up of four chemical bases: Adenine

(A), Guanine (G), Cytosine (C) and Thymine (T). These four bases are responsible for

the DNA molecule having four distinct types of nucleotides. The bases are coupled in

the following manner: A with T and C with G, by a hydrogen bond which is called

complementary base pairing. The nucleotides are arranged in two long strands that form

a spiral called a double helix. The double helix structure of DNA is similar to a ladder,

with the base pairs forming the ladder’s rungs and the sugar and phosphate molecules

forming the vertical sidepieces of the ladder.

In cells, genes consist of a long strand of DNA that contains a promoter, which controls

the activity of a gene. Additionally, all living cells contain chromosomes, that are, large

pieces of genes containing hundreds or thousands of genes, each of which specifies the

composition and structure of a protein (or several related proteins). The workhorse

molecules of the cell are protein polymers of amino acids which are responsible for cellular

structure, producing energy and important biomolecules like DNA and proteins, and for

reproducing the cell chromosomes. The cohort of chromosomes are almost the same in

every cell in an organism, and contains the same repertoire of proteins. However, cells

have remarkably distinct properties, such as the difference between human eye cells, hair

cells, and liver cells; these distinctions are the result of differences in the abundance,
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distribution, and state of the cell proteins.

When a gene is active, the coding and non-coding sequence is copied in a process

called transcription, producing messenger RNA (mRNA) which is a copy of the gene’s

information. The mRNA, a small and relatively unstable nucleic acid polymers, can then

direct the synthesis of proteins through the genetic code. However, mRNAs can also be

used directly, for example as part of the ribosome. The resulting molecules from the

gene expression, mRNA or protein are known as gene products. There is therefore a

logical connection between the state of a cell and the details of its protein and mRNA

composition.

Whereas it remains difficult to measure the abundance of a cell’s proteins, DNA mi-

croarray makes it possible to quickly and efficiently measure the relative representation of

each mRNA species in the total cellular mRNA population, or in more familiar terms, to

measure gene expression levels. There are several types of microarray systems including

the cDNA microarray (Schena et al., 1995; DeRisi et al., 1997: Hughes et al., 2001) and

oligonucleotide array (Lockhart et al., 1996).

2.1.2 cDNA Microarray Experiment

In this experiment, the cDNA sequence corresponding to a set of genes pertinent to the

biological question under investigation are obtained and printed onto a glass slide or

substrate using a robotic arrayer. Second, the sample RNA is isolated, a critical step in

the experiment in order to ensure that a sufficient amount of each cDNA clone is printed

on the array where each clone is amplified by a technique called polymerase chain reaction

(PCR). In practice the printed amount of cDNA is not the same, therefore the cDNA on

the array, which is a double-stranded probe, needs to be denatured and this is achieved

by heating the array so that a target cDNA can bind to it.

In the third step the cDNA is synthesized, a procedure that also involves labeling

the isolated mRNA from the biological samples. Usually in the most current cDNA

microarray experiments, cDNAs from the experimental and reference samples are labeled

with red-fluorescent dye, Cy5 and green-fluorescent dye, Cy3 respectively, mixed and

hybridized on the slide. There are several different labeling methods including Primer

5



Tagging, Direct Incorporation Labeling and Amino-Modified Nucleotide. Nguyen et

al. (2002), Wong et al. (2001) and Stears et al. (2000) discuss the advantages and

disadvantages of these methods.

Fourth, the labeled probe cDNA is hybridized to target the cDNA on the microarray.

That is, if a particular gene is expressed in the target cell, where the cDNAs correspond-

ing to this gene are found in the target cDNA pool, these cDNAs will bind with the

complementary cDNA probes printed on a specific spot on the microarray. Hybridiza-

tion refers to the binding ability of two complementary DNA strands by the base-pairing

rule thus reforming the DNA double helix.

Finally, the hybridization results are imaged and analyzed using a fluorescent micro-

scope, the log(red/green) intensities of mRNA hybridization at each site is measured.

The result is tens of thousands of gene expressions, typically ranging from -4 to 4, which

is a measure of the expression level of each gene in the experimental sample relative to

the reference sample. Positive values indicate higher expression in the target versus the

reference, and vice versa for negative values.

2.1.3 Oligonucleotide Microarray Experiment

Another widely used microarray technology is high density oligonucleotide arrays known

as Affymetrix (Lockhart et al., 1996). This method is based on the fact that each gene

is represented by 14 to 20 features (Lipshutz et al., 1999). for example, Affymetrix array

used 20 features. Each feature is a short sequence of nucleotides, an oligonucleotide, and

it is a perfect match (PM) to a segment of the gene. Paired with the 20 PM oligonu-

cleotides to the gene sequence are 20 other oligonucleotides having the same sequence

corresponding to the 20 PMs except for a single mismatch (MM) at the central base of

the nucleotide. When the gene is expressed in the cell sample, high intensity is expected

for the PM feature and low intensity for the MM feature. Given the 20 PM and MM

feature pairs for the gene, many methods have been proposed to quantify the expression

level of the gene. For example, Affymetrix originally proposed the average difference

x = avg{dk = (PMk − MMk), k = 1, 2, . . . , 20 = K} to quantify expression level of a

gene in a particular array. The average is usually based only on the differences, dk, with

6



3 standard deviations from the mean of d(2), . . . , d(K−1), where d(k) is the kth smallest

difference, but there are various other ways to filter the outliers, Efron et al. (2001)

suggested x = avg{dk = log(PMk) − c log(MMk), k = 1, 2, . . . , 20} for several different

scale factors c. Naef et al. (2001) proposed to use only the PM features. In an attempt

to obtain more sensitive measure of gene expression, Li and Wong (2001) proposed a

model-based estimate of the expression level using the least square method. The method

for sample labeling and image processing in the Affymetrix arrays are found in Lockart

et al. (1996). Refer to ”The Chipping Forecast” (Lander et al., 1999) for more details

on cDNA microarrays and oligonucleotide chips.

2.2 Some Statistical Challenges With Analyzing Microarray Data

Microarray technologies allow scientists to monitor the mRNA transcript levels of thou-

sands of genes in a single experiment. However, the tremendous amount of data that is

obtained from microarray studies presents challenges for data analysis. One challenge

in the development of statistical methods for microarray data analysis is that sample

sizes under two different experimental conditions are typically small. We can depict this

situation by defining the data as follows: for each gene i, i = 1, 2, . . . , N , we have expres-

sion levels (Yi1, . . . , Yim) from m microarrays under condition 1, and (Yi,m+1, . . . , Yi,m+n)

from n arrays under condition 2. Usually the total number of genes N is large (> 1000)

whereas the number of replications, m and n are small (typically < 20).

Since statisticians are primarily interested in genes that are differentially expressed

across two different experimental conditions, which may refer to samples drawn from two

types of tissues, tumors or cell lines, or at two time points during important biological

processes, we need to make an adjustment for the type I error rate when doing simul-

taneous hypothesis tests. This adjustment is done by means of the Bonferroni method,

to deal with multiple comparisons. If we use α as the significance level then the test or

gene specific significance level for a two sided test is therefore α∗ = α/2n.

Investigators may need to have the answer for the following question ”Is the difference

in expression level for a particular gene statistically significant?” However, there are a

number of equally important questions that need to be answered (Allison et al. (2001)):

7



1. Is there statistically significant evidence that any of the genes under study exhibit

a difference in expression across the conditions?

2. What is the best estimate of the number of genes for which there is a true difference

in gene expression?

3. What is the confidence interval around that particular estimate?

4. If we set some threshold for which we expect particular genes to be interesting and

worthy of follow-up study, what proportion of those genes are likely to be genes for

which there is a real difference in expression and what proportion are likely to be

false leads?

5. What proportion of those genes not declared ”interesting” are likely to be genes for

which there is a real difference in expression (i.e., misses or false negatives)?

In analyzing microarray data the assumptions made are (1) For each gene, the measure-

ments of gene expression have a finite population mean and variance; (2) For each gene

under study, there is a measure of expression level available for each sample and this

measure has sufficient reliability and validity (i.e. the measurements of the expression

levels are a true reflection of the true state of nature); (3) The most important assump-

tion that is made is that gene expression levels across the two groups are independent

- which implies that we may able to evaluate the likelihood function which will become

important later in this dissertation.

2.3 Methods of Analyzing Microarray Data

2.3.1 Cluster Analysis

One method used in the analysis of microarray data is Cluster analysis. Cluster analysis

groups genes or samples into ”clusters” based on similar expression profiles and provides

clues to the function or regulation of genes or similarity of samples via shared cluster

membership [34, 35, 18]. Several clustering methods have been usefully applied to an-

alyzing genome-wide expression data and can be classified largely into three categories.

The three-based approach uses distance measures between genes such as correlation co-
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efficients to group genes into a hierarchical tree [15]. The second category clusters genes

so that within-cluster variation is minimized and between-cluster variation is maximized

[34, 35]. The third category group genes into blocks, in which the correlation is maxi-

mized and between which the correlation is minimized [3]. The power of cluster analysis

in the analysis of microarray data lies in discovering gene transcripts or samples that

show similar expression profiles. However, identification of ”like” groups is not necessar-

ily the objective in a microarray study, because the interest is to discover genes that are

differentially expressed between predefined sample groups, such as normal versus cancer-

ous tissues.

Data

Let Yik be the expression level of gene i in array k (i = 1, . . . , N ; k = 1, . . . , m, m +

1, . . . , m + n). Suppose that the first m and the last n arrays are both obtained under

two different conditions, that is Yi(1) = (Yi1, . . . , Yim) and Yi(2) = (Yi,m+1, . . . , Yi,m+n).

Since we are interested to determine which genes are differentially express between Yi(1)

and Yi(2), we let

Yik = ai + bixk, (2.3.1)

where

xk =





1 for 1 ≤ k ≤ m

0 for m + 1 ≤ k ≤ m + n.

Therefore the mean expression levels of gene i under the two conditions are ai + bi and ai

respectively. Hence to determine the genes that are differentially expressed is equivalent

to testing the hypothesis

H0 : bi = 0, there is no gene with altered expression

H1 : bi 6= 0, otherwise (2.3.2)

Using the data construction of equation (2.3.1) for Yik we will now present the t-test

and regression models used in microarray data analysis.
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2.3.2 The T-Test

There are several versions of the two-sample t-test, depending on whether the sample size

(i.e m and n) is large and whether it is reasonable to assume that the gene expression

levels have an equal variance under the two conditions. Both m and n are usually small,

and there is evidence to support unequal variance (Thomas et. al. 2001), we will only

discus the t-test with two independent small Normal samples with unequal variances.

Let the sample means and variances of Yik for gene i under the two conditions be

Ȳi(1) =

∑m
k=1 Yik

m
, Ȳi(2) =

∑m+n
k=m+1 Yik

n
(2.3.3)

and

s2
i(1) =

∑m
k=1(Yik − Ȳi(1))

2

m− 1
,

s2
i(2) =

∑m+n
k=m+1(Yik − Ȳi(2))

2

n− 1
. (2.3.4)

The t-statistic is

Zi =
Ȳi(1) − Ȳi(2)√

s2
i(1)

m
+

s2
i(2)

n

, (2.3.5)

Under the normality assumption for Yik, Zi approximately has a t-distribution with

degrees of freedom

dj =

(
s2
i(1)

m
+

s2
i(2)

n

)2

(
s2
i(1)
m

)2

m−1
+

(
s2
i(2)
n

)2

n−1

This t-test was proposed by Welch (1947). Its method of calculating the degrees of

freedom is similar to the idea of the Satterthwaite approximation.

2.3.3 Regression Model

The regression model estimates the values of (ai, bi) using the weighted least square

method, and then estimates the variance of b̂i using the robust or sandwich variance
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estimator.

V ar(b̂i) =
(s2

i(1)

m

)(m− 1

m

)
+

(s2
i(2)

n

)(n− 1

n

)
,

and the estimate of b̂i = Ȳi(1) − Ȳi(2). Therefore the test statistics is

Z ′
i =

b̂i

V ar(b̂i)
=

Ȳi(1) − Ȳi(2)√
s2
i(1)

m
m−1

m
+

s2
i(2)

n
n−1

n

. (2.3.6)

This test statistic compares well with that of the t-test. In the case of the t-test the test

statistic is

Zi =
Ȳi(1) − Ȳi(2)√

s2
i(1)

m
+

s2
i(2)

n

, (2.3.7)

where Ȳi(1), Ȳi(2), s
2
i(1) and s2

i(2) are defined as in (2.3.3) and (2.3.4). Note that the two

tests are the same as m,n →∞, however in microarray data analysis both m,n are small,

which makes the t-test better because of the unbiasedness of its variance estimator.

Note that the strong parametric assumptions that needs to be made to use both

the t-test and the regression approach is often times violated for microarray data analy-

sis. Therefore, the Significance Analysis of Microarrays (SAM) is an important method

developed for microarray data analysis that seeks to over theses strong parametric as-

sumptions.

2.3.4 Significance Analysis of Microarrays (SAM)

The significance analysis of microarrays (SAM) is one statistical technique for finding

significant genes in a set of micoarray experiments. It was proposed by Tusher, Tibshirani

and Chu [39]. This approach was based on analysis of random fluctuations in the data.

However, even for a given level of expression, the fluctuations were gene specific. To

account for gene-specific fluctuations, a statistic based on the ratio of change in gene

expression to standard deviation in the data for that gene was defined. The ”relative

difference” d(i) in the gene expression is:

d(i) =
Ȳi(1) − Ȳi(2)

s(i) + s0

(2.3.8)
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where Ȳi(1) and Ȳi(2) are defined as the average expression levels of the ith gene from

conditions 1 and 2, respectively. The ”gene-specific scatter” s(i) is the standard deviation

of repeated expression measurements:

s(i) =

√√√√1/m + 1/n

m + n− 2

( m∑

k=1

(Yik − Ȳi(1))2 +
m+n∑

k=m+1

(Yik − Ȳi(1))2
)

(2.3.9)

where m and n are the numbers of measurements in conditions 1 and 2 respectively.

In order to compare values of d(i) across all genes, the distribution of d(i) should be

independent of the level of gene expression. At low expression levels, variance in d(i) can

be high because of small values of s(i). To ensure that the variance of d(i) is independent

of the gene expression, a small positive constant s0 (exchangeability factor) was added

to the denominator of equation (2.3.8). The coefficient of variation of d(i) was computed

as a function of s(i) in moving windows across the data. The value for s0 was chosen to

minimize the coefficient of variation.

To minimize the effects of potential confounders between the conditions, the data

was analyzed by taking B sets of permutations. For each permutation b the statistic d∗bi

and the corresponding order statistics d∗b(1) ≤ d∗b(2) . . . ≤ d∗b(N) was computed. The expected

relative difference, d̄i =
∑

b d∗b
i

B
, was defined as the average over the set of B permutations.

To identify potentially significant changes in expression levels, they used a scatter

plot of the observed relative difference d(i) versus the expected relative difference d̄i. For

a fixed threshold ∆, starting at the origin, and moving up to the right find the first i = i1

such that di − d̄i > ∆. All genes pass i1 are called ”significant positive”. Similarly, start

at the origin, move down to the left and find the first i = i2 such that d̄i − di > ∆. All

genes pass i2 are called ”significant negative”. For each ∆ the upper cutoff point cutup(∆)

was defined as the smallest di among the significant positive genes, and similarly defining

the lower cutoff point cutlow(∆).

To determine the number of falsely significant genes generated by SAM, the total

number of falsely significant genes corresponding to each permutation was computed by

counting the number of genes that exceeded the cutoffs cutup(∆) and cutlow(∆). The

estimated number of falsely significant genes was the median (or 90th percentile) of the

number of genes called significant from the B sets of permutations. Such genes are called
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false positive (FP ). This information will then be used to estimate the false Discovery

Rate (FDR)

FDR = π0FP/TP (2.3.10)

where π0 is the true proportion of equivalent expressed (EE) genes in the data set and

TP is the number of total (true) positives discovered from the test statistic, that is, TP

is the total number of genes claimed to be differentially expressed (DE).

2.3.5 Mixture Model Method (MMM)

The mixture model method (MMM) was introduced to handle the problem when a small

number of replications under two experimental conditions exist, which is exactly the case

for the data in a microarray experiment. The main purpose of the MMM is to estimate

the distribution of a t-type test statistic and its null statistic using finite normal mixture

models, which results in the method being non-parametric. Additionally, the strong

parametric assumption made when analyzing microarray when the traditional statistical

test is applied is often violated, hence this make the MMM statistically safer because the

assumption of normality is not made.

Consider the situation where, for each gene i, i = 1, 2, . . . , N , we have expres-

sion levels Yi(1) = (Yi1, . . . , Yim) from m microarrays under condition 1, and Yi(2) =

(Yi,m+1, . . . , Yi,m+n) from n arrays under condition 2. Here we need to assume that both

m and n are even integers, this will become obvious later.

The goal is to identify genes such that (Yi1, . . . , Yim) and (Yi,m+1, . . . , Yi,m+n) have

different means. This appears to be a two sample comparison however, in microarray

data, that has small m and n with a large N , renders the traditional statistical tests such

as the t-test or rank-based nonparametric tests, ineffective. One alternative is to draw

statistical inference based on the distributions of quantities related to (Yi1, . . . , Yim) or

(Yi,m+1, . . . , Yi,m+n), for 1 ≤ i ≤ N , to take advantage of the large population size N .

The model assumes a nonparametric approach for gene expression data:

Yi(1) = µi(1) + εi(1) Yi(2) = µi(2) + ei(2)
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where µi(1) and µi(2) are the mean expression levels for gene i under the two conditions

respectively, and εi(1) and ei(2) are independent random errors with means and variances,

such that

E(εi(1)) = E(ei(2)) = 0, V ar(εi(1)) = σ2
i(1), V ar(ei(2)) = σ2

i(2),

for any j = 1, . . . , m, m+1, . . . , m+n and i = 1, . . . , N . Note, we do not assume equality

of variance of the gene expression levels, because the variance σ2
i(c) of gene expression level

depends on the mean expression µi(c). Also, we do not assume µi(1) = µi(2).

The basis of the model is to compare two distributions of two similar statistics (after

being suitably standardized) to infer whether some genes are differentially expressed. Let

m and n be even such that pi (qi) is a column vector containing random permutation

of m/2 1’s and m/2 -1’s (n/2 1’s and n/2 -1’s). Let Yi(1) = (Yi1, . . . , Yim) and Yi(2) =

(Yi,m+1, . . . , Yi,m+n) then assume that

zi =
Yi(1)pi/m + Yi(2)qi/n√

s2
i(1)/m + s2

i(2)/n
∼ f0, (2.3.11)

which does not depend on µi(1) and µi(2) since its mean is 0. Furthermore, suppose that

Zi =

∑m
k=1 Yik/m−∑m+n

k=m+1 Yik/n√
s2

i(1)/m + s2
i(2)/n

=
Ȳi(1) − Ȳi(2)√

s2
i(1)/m + s2

i(2)/n
∼ f1. (2.3.12)

The hypothesis is of the form

H0 : f0 = f1, there is no gene with altered expression

H1 : f0 6= f1, otherwise (2.3.13)

and is valid only if the random errors are independent and their distribution is symmetric

about 0. Since m,n > 1 then we can estimate s2
i(1) and s2

i(2) using the sample variances

s2
i(1) =

∑m
k=1(Yik−Ȳi(1))

2

m−1
and s2

i(2) =
∑m+n

k=m+1(Yik−Ȳi(2))
2

n−1
respectively. Note the data zi’s and
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Zi’s are used to estimate f0 and f1 by normal mixture model respectively, which will be

discussed in more details in chapter 3.

To test the null hypothesis H0 that Z is from f0 (which is equivalent to testing the

hypothesis (2.3.13)), we can construct a likelihood ratio test (LRT) based on the following

statistic:

LR(Z) =
f0(Z)

f1(Z)
. (2.3.14)

A large value of LR(Z) gives no evidence against H0, whereas a too small value of LR(Z)

leads to rejecting H0. With the normal mixture model, it is possible to numerically

determine the rejection region. For any given false positive rate α, we can use the

bisection method [29] to solve

α =

∫

LR(z)<s

f0(z)dz

to obtain the suitable cut off point s. Then the rejection region is RR(α) = {Z :

LR(Z) < s}. We call the method of using the LRT in MMM as MMM-LRT. Similar to

SAM (Tusher et al. 2001), we can estimate the numbers of false positive (FP ) and total

(TP ) directly. In MMM-LRT, for any given s, we have:

FP (s) =
1

B

B∑

b=1

n(i : LR(z
(b)
i ) < s), TP (s) = n(i : LR(Zi) < s)

where n(i) represents the number of genes. In estimating FP , one can also use median,

rather than mean, FP over the permuted data. Based on the estimated FP and TP , one

can also calculate the false discovery rate as FDR = FP/TP (Benjamini and Hochberg

1995; Storey 2001; Tusher et al. 2001).

2.3.6 A Mixture Model Approach Using P -Value

In is well known that the distribution of the p-values is uniformly distributed on the

interval [0, 1], regardless of the statistical test used and the sample size. Therefore if

investigators uses a valid statistical test to produce p-values for testing the null hypothesis
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H0 there is no difference between the two experiments for the ith gene, i = 1, . . . , N , then

the distribution of the p-value can be used to determine the genes that were differentially

expressed. The assumption of independence of the gene expression levels across genes

was made under the null hypothesis. Additionally, under the alternative hypothesis,

the distribution of p-values will tend to cluster closer to zero than to one, as opposed

to be uniformly distributed under the null hypothesis. Then, the question ”Is there

statistically significant evidence that any of the genes under study exhibit a difference

in expression across the two experimental conditions?” can be answered by conducting

a test to determine if the observed p-values are significantly different from the uniform

distribution. This is done by mixture model approach [2].

The mixture model is a g-component of beta distributions β(rj, sj) for j = 1, . . . , g

with the parameters rj and sj, where the beta distribution is defined as follows

β(y|r, s) =
Γ(r + s)yr−1(1− y)s−1

Γ(r)Γ(s)
.

The reason for the choice of the beta distribution is because of its great flexibility in

modeling any shaped distribution on the interval [0, 1]. Note that the uniform distribution

is a special case of the beta distribution with r = s = 1. The likelihood for the collection

of N , p-values from a model with g components is given as

Lg =
N∏

i=1

[
p1β(yi|1, 1)

g∏
j=2

pjβ(yi|rj, sj)

]
,

Therefore the log likelihood for the N p-values can be expressed as

lg =
N∑

i=1

ln

[
p1β(yi|1, 1) +

g∑
j=2

pjβ(yi|rj, sj)

]
,

where yi is the p-value for the ith test, p1 is the probability that a randomly chosen test

from the collection of tests is for a gene where there is no population difference in gene

expression (i.e., a test of a true null hypothesis), and pj is the probability that a randomly

chosen test from the collection of tests is for a gene where there is a population difference

in gene expression (i.e., a test of a false null hypothesis). The above model now requires
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the calculation of the MLE of the parameters pj, rj and sj through iterative procedure

subject to the constraints
∑g

j=1 pj = 1 and 0 ≤ pj ≤ 1 for all j = 1, . . . , g.

The estimate of the number of genes for which there is a difference in gene expression

is evaluated as N(1 − p̂1), where p̂1 is the MLE of p1. Let T be some threshold below

which the results for particular genes are declared ”interesting” and worthy of follow-up

study, the proportion of those genes that are likely to be genes for which there is a real

difference is

P (H̄0,i|yi ≤ T ) = 1− P (H0,i|yi ≤ T ) = 1− P (H0,i|yi ≤ T )

P (yi ≤ T )
,

where

P (yi ≤ T ) = p1T +

g∑
j=2

pj

∫ T

0

Γ(rj + sj)y
rj−1(1− y)sj−1

Γ(rj)Γ(sj)
dy

and P (H̄0,i∩yi ≤ T ) = p1T . The estimated proportion of genes declared interesting that

are likely to be false leads is simply

P (H0,i|yi ≤ T ) =
P (H0,i ∩ yi ≤ T )

P (yi ≤ T )
.

Similarly the proportion of those genes not declared ”interesting” that are likely to be

genes for which there is a real difference is

P (H̄0,i|yi ≥ T ) = 1− P (H0,i|yi ≥ T ) = 1− P (H0,i|yi ≥ T )

P (yi ≥ T )
,

where

P (yi ≥ T ) = p1(1− T ) +

g∑
j=2

pj

∫ 1

T

Γ(rj + sj)y
rj−1(1− y)sj−1

Γ(rj)Γ(sj)
dy

and P (H̄0,i ∩ yi ≥ T ) = p1(1− T ).
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2.4 Conclusion

This chapter discussed a few of the methods used to analyze microarray data. An in-

troduction to cluster analysis was presented, but, cluster analysis was not an effective

method to determine differentially express genes. Hence the need to make use of the

more classical statistical methods such as the t-test and regression analysis. However,

with strong parametric assumptions that will be necessary for microarray analysis, these

methods has some limitations. Microarray data are many times consist of a few replica-

tions for case and control groups, although the number of genes are usually greater than

1000. The assumption that the genes are independent is one assumption that is typical

in the analysis of microarray data. Note that in chapters 3 and 5 the development of

the modified approaches use the independence assumption, therefore we are prepared to

deal with the consequences of assuming the genes are independent.

The Significance Analysis of Microarrays (SAM) and the Mixture Model Method

(MMM) presented in this chapter uses a t-type statistics to determine the number of

differentially expressed genes. However, the MMM has one advantage in that it is a

non-parametric approach. The MMM determines the distributions under the null and

alternative and then uses these distributions to determine the number of differentially

expressed genes by means of a likelihood ratio test.

The p-value approach of Allision relies on parametric assumptions that are made to

determine the p-values. If the p-values are not valid then its distributions under the

null hypothesis may not be uniform on the interval [0,1]. In discussing the modified

p-value approach presented in chapter 6, we are aware that the t-test used to determine

the p-values must be valid for the modified p-value approach to be valid. However, for

this dissertation we assume all the assumptions are satisfied with respect to the modified

p-value approach.

In addition, to the method used to analyze microarray data, we presented the bio-

logical background that the reader needs so that he may fully understand the challenges

statisticians have in the analysis of microarray data.
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3 Finite Mixture Distribution

In this chapter we will give a brief background on mixture distributions. Mixture models

are vital in statistical practice and research because many problems in statistics have

mixture structures. Furthermore they are useful in describing complex population with

observed or unobserved heterogeneity. Some examples are that human heights may be

modeled as a two-component mixture, one component for men and one for women. Sub-

structures in galaxy may be modeled as contaminations of big initial galaxy; the evidence

of substructures is important in modern galaxy formation theory (Sun, Morrison, Hard-

ing and Woodroofe 2002). There are also applications in actuarial science, biological

science, econometrics, medicine, agriculture, zoology, population studies and microarray

data analysis.

K. Pearson (1894) was the first to study mixture of two normal distributions, where he

modeled the mixing of different crab species. Mixture model has become popular because:

(1) they provide a simple mechanism to incorporate extra variation and correlation in the

model (2) they add model flexibility and (3) they are a natural approach for modeling

data that arise in multiple stages or when populations are composed of sub populations.

In addition the theory, applications, history and importance of mixture models have

been discussed in journal articles, monographs and textbooks. Everitt and Hand (1981),

Titterington, Smith and Makov (1985), Böhning (1999), and McLachlan and Peel (2000)

provided models, statistical methods and references for finite mixtures problems.
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3.1 Definition and Preliminary

Definition 3.1.1 A stochastic variable {Yi : 1 ≤ i ≤ n} with density function f(yi|θj)

follows a finite mixture distribution if

Yi ∼ π1fi1(yi|θ1) + π2fi2(yi|θ2) + . . . + πgfig(yi|θg)

=

g∑
j=1

πjfij(yi|θj), (3.1.1)

where fi1(yi|θ1), . . . , fig(yi|θg) are g density functions and π1, . . . , πg are called mixing

proportions, satisfying the following properties 0 ≤ πj ≤ 1 and
∑g

j=1 πj = 1. The

densities fij(y) for j = 1, . . . , g may be continuous or discrete, or a combination of both.

From Definition 3.1.1 we observe that finite mixture distribution is the marginal

distribution of a random variable which follows different distributions in different sub-

populations of a general population. Therefore, if a population S is defined as

S = {S1, S2, . . . , Sg}, such that Sj ∩ Sk = ∅, j 6= k.

Then the distribution in each sub-population is given to be

• In S1 : Y |S1 ∼ f1(Y |θ1)

• In S2 : Y |S2 ∼ f2(Y |θ2)

• . . .

• In Sg : Y |Sg ∼ fg(Y |θg)

Furthermore, let X represent the statistic in each sub-population i.e.,





X = x1, if inS1;

X = x2, if inS2;

. . . , . . . ;

X = x3, if inS3.

Then X follows a discrete distribution with support {x1, x2, . . . , xg} and correspond-

ing probabilities (weights) {π1, π2, . . . , πg}, that is P (X = xj) = πj for j = 1, . . . , g.
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Therefore for the finite mixture

Yi ∼
g∑

j=1

πjfij(yi|θj),

we have

Yi|(X = xj) ∼ fij(yi|θj), j = 1, 2, . . . , g

where X is denoted as follow,

X ∼

 x1 x2 . . . xg

π1 π2 . . . πg


 .

Note the random variable X is called latent because, in most applications, it is not

observed. We now present some examples of finite mixture distributions.

3.1.1 Examples of Mixture Distributions

Example 3.1.2 Normal with common variance, that is,

Y ∼
g∑

j=1

πjN(µj, σ
2)

where the parameters for this mixture are θj = (µj, σ
2) and πj for j = 1, . . . , g. Note that

Y |(X = µj) ∼ N(µj, σ
2)

where

X ∼

 µ1 µ2 . . . µg

π1 π2 . . . πg


 .

Example 3.1.3 Normal with common mean, that is,

Y ∼
g∑

j=1

πjN(µ, σ2
j )
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where the parameters for this mixture are θj = (µ, σ2
j ) and πj for j = 1, . . . , g. Note that

Y |(X = σ2
j ) ∼ N(µ, σ2

j )

where

X ∼

 σ2

1 σ2
2 . . . σ2

g

π1 π2 . . . πg


 .

Example 3.1.4 Normal with general mean and variance, that is,

Y ∼
g∑

j=1

πjN(µj, σ
2
j )

where the parameters for this mixture are θj = (µj, σ
2
j ) and πj for j = 1, . . . , g. Note that

Y |(X1 = µj, X2 = σ2
j ) ∼ N(µj, σ

2
j )

where

X = (X1, X2) ∼

 (µ, σ2

1) (µ, σ2
2) . . . (µ, σ2

g)

π1 π2 . . . πg


 .

3.1.2 Mean and Variance of Mixtures

Let Y ∼ ∑g
j=1 πijfij(yi|θj) be a random variable that has a mixture distribution. Using

the latent variable definition above, the mean and variance have the following known

basic probability results for any random variables.

Proposition 3.1.5 E(Y ) = E(E(Y |X))

Proposition 3.1.6 V ar(Y ) = V ar(E(Y |X)) + E(V ar(Y |X))

This implies that the mean and variance of Examples (3.1.2), (3.1.3) and (3.1.4) are given

as: For Example (3.1.2) we have

E(Y ) = E(E(Y |X)) = E(X) =

g∑
j=1

πjµj
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and

V ar(Y ) = V ar(E(Y |X)) + E(V ar(Y |X))

= V ar(X) + E(V ar(X))

=

g∑
j=1

πjµ
2
j −

( g∑
j=1

πjµj

)2

+ E(σ2)

=

g∑
j=1

πjµ
2
j −

( g∑
j=1

πjµj

)2

+ σ2.

Example (3.1.3) results in

E(Y ) = E(E(Y |X)) = E(µ) = µ

and

V ar(Y ) = V ar(E(Y |X)) + E(V ar(Y |X))

= V ar(µ) + E(σ2
j )

=

g∑
j=1

πjσ
2
j .

For Example (3.1.4) we have

E(Y ) = E(E(Y |X)) = E(X1) =

g∑
j=1

πjµj

and

V ar(Y ) = V ar(E(Y |X)) + E(V ar(Y |X))

= V ar(X1) + E(X2)

=

g∑
j=1

πjµ
2
j −

( g∑
j=1

πjµj

)2

+ E(σ2
j )

=

g∑
j=1

πjµ
2
j −

( g∑
j=1

πjµj

)2

+

g∑
j=1

πjσ
2
j .
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3.1.3 Comparison of Two Groups: Iris Data

Here we will use data to illustrate the importance of mixture distribution. The iris data

is found in the statistical software package R consisting of 100 sample points of two

species of flowers, Versicolor and Virginica was used for this illustrative purpose. For

each species the measurements of the sepal length of 50 flowers were reported. It is clear

that we have a dataset that is composed of two different populations. Since mixture

distribution is applicable in the case where the data has sub-populations, we use this

example to illustrate the idea of fitting mixture distribution. Note that in dealing with

real life problems one will not have any information as to whether the data is composed

of different populations. The histograms for both samples are presented in Figure 3.1.

The summary statistics is given in Table 3.1. For this data we have no evidence

that the data is not normally distributed, because the Kolmogorov-Smirnov tests for

normality resulted in a p-value > 0.5 for both groups. The Q-Q plots are displayed in

Figures 3.2 and 3.3. Additionally, the assumption of equal variance is satisfied because

the p-value for the F -test is 0.148.

Table 3.1: Summary statistics of data.

Species Sepal Means Sepal Std. Dev.
Versicolor 5.94 0.516
Virginica 6.59 0.636

The known normal mixture distribution using the summary statistics displayed in

Table 3.1 is

0.5N(5.94, 0.5162) + 0.5N(6.59, 0.6362)

and represented graphically in Figure 3.4. However, when a two-component mixture of

normals with equal variance was fitted to the data, the following fitted distribution was

obtained (Figure 3.5)

0.83N(6.08, 0.5262) + 0.17N(7.13, 0.5262)

Figure 3.6 shows the comparison of the fitted mixture model with equal variance and
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Figure 3.1: Histogram of Sepal length of the two species of flowers
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Figure 3.2: Q-Q plots of Sepal lengths for versicolor flowers
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Figure 3.3: Q-Q plots of Sepal lengths for verginica flowers
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Figure 3.4: Histogram and known mixture distribution
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Dotted lines to the left and right represents the known distributions of versicolor and virginica
respectively. The known mixture structure is 0.5N(5.94, 0.5162) + 0.5N(6.59, 0.6362).
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the known mixture model. This example illustrates that the fitted mixture distribution

does not necessarily reflect prior known group structures in the data.

In reality the estimated mixture distribution obtained for the illustrative example

may be symmetric. The distribution may be bimodal or multimodal in the case where

we have more than two components.

Figure 3.5: Histogram and estimated mixture distribution
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Dotted lines to the left and right represents the fitted distributions of versicolor and virginica
respectively. The fitted model is given by 0.83N(6.08, 0.5262) + 0.17N(7.13, 0.5262).
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Figure 3.6: Histogram with known and estimated mixture distribution
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Dotted line represents the fitted mixture model while the bold line is the known mixture
structure.

Figure 3.7 depicts that mixtures have very flexible class of models, that is:

1. They are symmetric as well as skewed

2. Unimodal as well as multimodal.
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Figure 3.7: Graphical representations of two component normal with equal variance
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From Figure 3.7 we see that the following proposition below determines the modality

of a 2-component mixture if the parameters are known, but in general we do not know

µ1, µ2 and σ.

Proposition 3.1.7 The modality of the 2-component mixture of normals with equal vari-

ance is determined as follows.

If
|µ1 − µ2|

σ




≤ 2 then the mixture is unimodal ∀ π

> 2 then the modality of the mixture depends on π.
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3.2 Parameter Estimation

3.2.1 Expectation Maximization Algorithm

This section describes how the parameters of a g-component finite mixture distribution

can be estimated using maximum likelihood estimation (MLE) [10]. Let {Yi}1≤i≤n be

distributed as

Yi ∼ π1fi1(yi|θj) + π2fi2(yi|θj) + . . . + πgfig(yi|θg)

=

g∑
j=1

πjfij(yi|θj),

where fij(yi|θj) are density functions of Yi in a g-component mixture. The parameters of

interest are that of the density functions fij(yi|θj) which we denote as a vector θ and the

proportion probability π′ = (π1, . . . , πg). In short, the mixture distribution parameters

can be denoted as a vector ψ′ = (π′, θ′). Let y′ = (y1, . . . , yg) be a vector of observed

values, then the observed likelihood function is given to be:

L(ψ|y) =
n∏

i=1

{
g∑

j=1

πjfij(yi|θ)
}

, (3.2.2)

additionally, the observed log-likelihood is given by:

l(ψ|y) =
n∑

i=1

ln

{
g∑

j=1

πjfij(yi|θ)
}

. (3.2.3)

We now need to maximize the log-likelihood l(ψ|y) with respect to ψ. This is done

by using the Expectation-Maximization (EM) (Dempster et al., 1977) algorithm as an

alternative to the Newton-Raphson which involves the calculation of first and second

derivatives of l(ψ|y). The EM algorithm was developed for missing observation, in our

case we considered the component membership as missing. This can be seen if we define

indicators Zij, i = 1, . . . , n, j = 1, . . . , g such that

Zij =





1 if observation i belongs to component j

0 otherwise
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Therefore we have that P (Zij = 1) = πj, and hence the joint density of Yi and all Zij is

given by

fi(yi, Zi1 = zi1, . . . , Zig = zig)

= fi(yi|Zi1 = zi1, . . . , Zig = zig)P (Zi1 = zi1, . . . , Zig = zig)

=

{
g∏

j=1

[fij(yi|θ)]zij

}{
g∏

j=1

π
zij

j

}

=

{
g∏

j=1

[πjfij(yi|θ)]zij

}

Therefore the likelihood of the complete data is

L(ψ|y, z) =
n∏

i=1

g∏
j=1

[πjfij(yi|θ)]zij (3.2.4)

and the log-likelihood of the complete data is

l(ψ|y, z) =
n∑

i=1

g∑
j=1

zij[ln πj + ln fij(yi|θ)]. (3.2.5)

It is therefore obvious that maximizing l(ψ|y, z) (”the complete log likelihood”) is easier

than maximizing l(ψ|y) (”the observe log likelihood”). Note that (3.2.2) and (3.2.3)

are referred to as the observe data likelihood and observe log-likelihood respectively,

while (3.2.4) and (3.2.5) are referred to as the complete data likelihood and complete

log-likelihood respectively. Instead of maximizing l(ψ|y, z) we maximize E(l(ψ|y, z)|y),

which is interpreted intuitively as replacing the missing observations zij by their expected

values.

The EM algorithm acts iteratively, in the sense that, starting from a ”first guess

estimate” (starting value) ψ(0) for ψ, a series of estimates ψ(t) is constructed, which

converges to the MLE ψ̂ of ψ

ψ(0) → ψ(1) → . . . → ψ(t) → ψ(t+1) → . . . → ψ(∞) = ψ̂

Given ψ(t), the updated estimate ψ(t+1) is obtained through one E-step and one M -step.
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Definition 3.2.1 The E-step is the calculation of Q(ψ|ψ(t)) = E(l(ψ|y, z)|y, ψ(t)).

Definition 3.2.2 The M-step is defined as the maximization of Q(ψ|ψ(t)) with respect

to ψ to obtain the updated value ψ(t+1).

The EM procedure keeps iterating between the E-step and the M -step until convergence

is attained, that is, until

|l(ψ(t+1)|y)− l(ψ(t)|y)| < ε.

for some small, pre-specified, ε > 0.

We now present the calculation of the E-step, therefore from definition 3.2.1, we have

Q(ψ|ψ(t)) = E(l(ψ|y, Z)|y, ψ(t))

= E
( n∑

i=1

g∑
j=1

Zij[ln πj + ln fij(yi|θ)]
∣∣∣y, ψ(t)

)

=
n∑

i=1

g∑
j=1

E[Zij|y, ψ(t)][ln πj + ln fij(yi|θ)]

Note the E-step requires only the calculation of

E[Zij|y, ψ(t)] = P (Zij = 1|yi, ψ
(t))

=
fi(yi|Zij = 1)P (Zij = 1)

fi(yi|θ)
∣∣∣
ψ(t)

=
πjfij(yi|θ)∑
j πjfij(yi|θ)

∣∣∣
ψ(t)

= πij(ψ
(t)).

Therefore the E-step results in

πij(ψ
(t)) =

πjfij(yi|θ)∑g
j=1 πjfij(yi|θ)

∣∣∣∣
ψ(t)

(3.2.6)

where πij(ψ
(t)) is called the posterior probabilities and πj is called the prior probabilities.

Note the E-step reduces to calculating all the posterior probabilities πij(ψ
(t)) for i =

1, . . . , n, j = 1, . . . , g.

The M -step maximizes Q(ψ|ψ(t)) with respect to ψ to obtain the updated estimates
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ψ(t+1). Since

Q(ψ|ψ(t)) =
n∑

i=1

g∑
j=1

πij(ψ
(t))[ln πj + ln fij(yi|θ)]

we first maximize with respect to πj. This requires maximization of

n∑
i=1

g∑
j=1

πij(ψ
(t)) ln πj =

n∑
i=1

g−1∑
j=1

πij(ψ
(t)) ln πj +

n∑
i=1

πig(ψ
(t)) ln

[
1−

g−1∑
j=1

πj

]

with respect to π1, . . . , πg−1. Setting

∂

∂πj

{ n∑
i=1

g−1∑
j=1

πij(ψ
(t)) ln πj +

n∑
i=1

πig(ψ
(t)) ln

[
1−

g−1∑
j=1

πj

]}
= 0

we have that

n∑
i=1

πij(ψ
(t))

π
(t+1)
j

=
n∑

i=1

πig(ψ
(t))

π
(t+1)
g

⇒ π
(t+1)
j

π
(t+1)
g

=

∑n
i=1 πij(ψ

(t))∑n
i=1 πig(ψ(t))

Note that

1 =

g∑
j=1

π
(t+1)
j

=

g∑
j=1

π
(t+1)
g

∑n
i=1 πij(ψ

(t))∑n
i=1 πig(ψ(t))

=
π

(t+1)
g

∑n
i=1

∑g
j=1 πij(ψ

(t))∑n
i=1 πig(ψ(t))

since
∑g

j=1 πij(ψ
(t)) = 1, therefore

1 =
π

(t+1)
g n∑n

i=1 πig(ψ(t))

hence π
(t+1)
g is given by

π(t+1)
g =

∑n
i=1 πig(ψ

(t))

n
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It follows that all π
(t+1)
j are given by

π
(t+1)
j =

∑n
i=1 πij(ψ

(t))

n
(3.2.7)

Note that the updated mixture component probabilities are the average posterior prob-

abilities. The M -step also requires the maximization of

n∑
i=1

g∑
j=1

πij(ψ
(t)) ln fij(yi|θ) (3.2.8)

with respect to θ. This maximization step is often times non-trivial. In such cases, the

EM algorithm is double iterative. Below are some examples when the M -step is trivial

(c.f. [40]).

Example 3.2.3 Poisson, let Yi ∼
∑g

j=1 πjPoisson(λj) with θ = (λ1, . . . , λg)

From (3.2.8), and for simplicity we let πij(ψ
(t)) = πij, then we have

n∑
i=1

g∑
j=1

πij ln fij(yi|θ)

=
n∑

i=1

g∑
j=1

πij ln

(
e−λjλyi

j

yi!

)

∝
n∑

i=1

g∑
j=1

πij (−λj + yi ln λj)

therefore

∂

∂λj

{ n∑
i=1

g∑
j=1

πij (−λj + yi ln λj)
}

= 0, ∀ j

⇔ λj =

∑n
i=1 πijyi∑n
i=1 πij

Example 3.2.4 Normals with common variance, let Yi ∼
∑g

j=1 πjN(µj, σ
2) with θ =

(µ1, . . . , µg, σ
2)
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Similar as in Example (3.2.3), we have that

n∑
i=1

g∑
j=1

πij ln fij(yi|θ)

=
n∑

i=1

g∑
j=1

πij ln

[
1√

2πσ2
exp

{
− 1

2σ2
(yi − µj)

2

}]

∝
n∑

i=1

g∑
j=1

πij

[− ln(σ2)/2− (yi − µj)
2/(2σ2)

]

Therefore, we minimize

n∑
i=1

g∑
j=1

πij

[
ln(σ2)/2 + (yi − µj)

2/(2σ2)
]

therefore

∂

∂µj

{ n∑
i=1

g∑
j=1

πij

[
ln(σ2)/2 + (yi − µj)

2/(2σ2)
] }

= 0, ∀ j

⇔ µj =

∑n
i=1 πijyi∑n
i=1 πij

. (3.2.9)

Also

∂

∂σ2
j

{ n∑
i=1

g∑
j=1

πij

[
ln(σ2)/2 + (yi − µj)

2/(2σ2)
] }

= 0, ∀ j

⇔
n∑

i=1

g∑
j=1

πij

[
1/σ2 − (yi − µj)

2/σ4
]

= 0

⇔
n∑

i=1

g∑
j=1

πij =
n∑

i=1

g∑
j=1

πij(yi − µj)
2/σ2

⇔ σ2 =

∑n
i=1

∑g
j=1 πij(yi − µj)

2

∑n
i=1

∑g
j=1 πij

⇔ σ2 =

∑n
i=1

∑g
j=1 πij(yi − µj)

2

n
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⇔ σ2 =

∑n
i=1

∑g
j=1 πij

(
yi −

∑n
i=1 πijyi∑n
i=1 πij

)2

n
. (3.2.10)

Example 3.2.5 Normals with general mean and variance, let Yi ∼
∑g

j=1 πjN(µj, σ
2
j )

with θ = (µ1, . . . , µg, σ
2
1, . . . , σ

2
g)

Similar to Example (3.2.4), we can show that the mean is given by

µj =

∑n
i=1 πijyi∑n
i=1 πij

Note that the variance estimator is only achieved if we assume that all the variances are

equal, i.e σ2
j = σ2. Since the log-likelihood of this model is

l(ψ|y) =
n∑

i=1

ln





g∑
j=1

πj
1√
2πσ2

j

exp

[
− 1

2σ2
j

(yi − µj)
2

]



=
n∑

i=2

ln





g∑
j=2

πj
1√
2πσ2

j

exp

[
− 1

2σ2
j

(yi − µj)
2

]

+ π1
1√

2π1σ2
1

exp

[
− 1

2σ2
1

(yi − µ1)
2

]}

+ ln





g∑
j=2

πj
1√
2πσ2

j

exp

[
− 1

2σ2
j

(y1 − µj)
2

]

+ π1
1√

2π1σ2
1

exp

[
− 1

2σ2
1

(y1 − µ1)
2

]}

Let µ1 equal y1, then we have

l(ψ|y) =
n∑

i=2

ln





g∑
j=2

πj
1√
2πσ2

j

exp

[
− 1

2σ2
j

(yi − µj)
2

]

+ π
1√
2πσ2

1

exp

[
− 1

2σ2
1

(yi − µ1)
2

]}

+ ln





g∑
j=2

πj
1√
2πσ2

j

exp

[
− 1

2σ2
j

(y1 − µj)
2

]
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+ π1
1√
2πσ2

1

}

It is straight forward to see that the l(ψ|y) is unbounded if σ2
1 = 0. This is the reason why

it is vital that we have all the variances equal i.e. σ2
j = σ2 see Example 3.2.4. We will

show in the section 3.2.3 how we can apply mixture of normals with unequal variances

by implementing a penalty term .

3.2.2 Robust Parameter Estimation

In the previous section the EM algorithm was presented to find the parameters of the

mixture models. The parameters however are sensitive to the presence of statistical

outliers [33]. In microarray data analysis we are not immune to statistical outliers,

therefore the parameter estimation problem where the presence of outliers exist should

be addressed. The solution to this problem is accomplished by the Robust parameter

estimation for mixture model, which will be presented below.

There are several factors affecting the convergence of the EM algorithm to the maxi-

mum likelihood estimates. These factors are:

1. the initial estimates can affect the convergence greatly and

2. the presence of statistical outliers defined to be those observations that are sub-

stantially different from the distributions of the mixture components.

The EM algorithm assigns each observation to one of the components with the sample’s

posterior probability as its weight. Although an outlying sample is inconsistent with the

distributions of all the defined components, it may still have a large posterior probabil-

ity for one or more of the components. Therefore the iteration converges to erroneous

solutions.

A common approach to eliminating the presence of outliers in the EM algorithm is

to apply a chi-square threshold test. This test eliminates observations with distances

greater than some threshold value. These observations are considered to be outliers and

subsequently excluded from updating the parameter estimates. This chi-square threshold

χ2
α for a given probability α is defined as the square distance between the sample y ∈ <
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and the mean of the jth component based on the chi-square test shown below:

P

{
y

∣∣∣∣
∑n

i=1(yi − ȳ)2

σ2
≤ χ2

α

}
= α

The threshold approach can be regarded as performing a hard decision to eliminate

outlying sample points before initiating the EM algorithm. Furthermore, a suitable

threshold value is often difficult to select and is usually arbitrary. In view of this difficulty,

an alternative would be to assign different weight to each data points and use all available

data points for updating the estimates. This method may be regarded as applying a soft

decision. The Robust Parameter Estimation For Mixture Model will be discussed next.

It should be noted that the EM algorithm first estimates the posterior probabilities

of each sample belonging to each of the component distributions, and then computes the

parameter estimates using these posterior probabilities as weights. With this method,

each sample is assumed to come from all components. The robust estimation attempts

to circumvent this problem by including the typicality of the sample with respect to the

component densities in updating the estimates in the EM algorithm.

A measure of typicality is incorporated in the parameter estimation of the mixture

density, if we assume that each component density fj(yi|µj, σ
2) is a member of the family

of symmetric densities with mean µj and σ2, i.e.

(
2πσ2

)−1/2
fs{δj(x|µj, σ

2)},

where δ2
j =

(y−µj)
2

σ2 , and fs(δj) is assumed to be the exponential of some symmetric

function ρ(δj), i.e.

fs(δj) = exp{−ρ(δj)}.

π
(t+1)
j =

∑g
i=1 πij

n
,

µ
(t+1)
j =

∑n
i=1 πijwijyi∑n

i=1 πij

,
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(σ2)(t+1) =

∑n
i=1

∑g
j=1 πijwij (yi − µj)

2

n
.

where wij = ψ(δij)/δij is the weight function and ψ(δij) = ρ′(δij) is the first derivative

of ρ(δij). To limit the influence of large atypical data points, the variance estimator is

modified to be

(σ2)(t+1) =

∑n
i=1

∑g
j=1 πijw

2
ij (yi − µj)

2

n
.

The weight function has been chosen to be ψ(s)/s where s = δij. A popular choice of

ψ(s) is the Huber’s ψ-function that is defined by ψ(s) = −ψ(−s) where for s > 0

ψ(s) =





s 0 ≤ s ≤ k

k s > k

and k is called a tuning constant, and needs to be appropriately chosen. Furthermore

we have

ρ(s) =





1
2
s2 0 ≤ s ≤ k

ks− 1
2
k2 s > k.

In the case of normal mixture distributions, the value of the tuning k is chosen to be 3

standard deviation from the mean as most data point should fall within this band and is

given a unit weight. The outliers are then given weights which are inversely proportional

to their distances from the class mean. Hence, the weights can be expressed as:

wij =





1 0 ≤ dij ≤ 3

3/dij 3 < dij < ∞

where dij =
(yi−µj)

σj
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3.2.3 Penalized Maximum Likelihood Estimator for Normal Mixture Models

We illustrated through Example 3.2.5 in section 3.2 that we can only fit mixture of nor-

mals with equal variance which was proved by Kiefer and Wolfowitz (1954). However,

Ciuperca et al. (2003) overcame this difficulty by penalizing the variance, which allowed

the likelihood function of the normal mixture model to be bounded, hence the existence

of the MLE. If we fit a mixture model with equal variance if in fact the mixture het-

eroscedasticity we observe that homoscedastic model does not result in a good fit as

compared to the heteroscedasticity fit.

Figure 3.8: Histogram, heteroscedastic and homoscedastic fit for simulated data from the mix-
ture 0.5φ(y|4, 1) + 0.5φ(y|8, 1)
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The dotted and bold lines represent the heteroscedastic and homoscedastic models respectively.

We simulated the following mixture distributions from a sample of size n = 500 from

Y ∼ 0.5φ(y|4, 1) + 0.5φ(y|8, 1)
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Figure 3.9: Histogram, heteroscedastic and homoscedastic fit for simulated data from the mix-
ture 0.5φ(y|4, 1) + 0.5φ(y|8, 2)
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The dotted and bold lines represent the heteroscedastic and homoscedastic models respectively.

and

Y ∼ 0.5φ(y|4, 1) + 0.5φ(y|8, 2)

and then fit the simulated data with equal and unequal variances. The model with

unequal variances seems to be a better fit in the case where the simulated data with

unequal variance was fitted with unequal variance as oppose to when fitted using equal

variance Figure 3.8. However the results for the data that was simulated using equal

variance see Figure 3.9

This example shows that we attain better fit to our data if the data is heteroscedastic,

hence fitting heteroscedastic mixture model is vital. Ciuperca et al. considered mixture
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densities of g univariate normal densities, with g known, defined as in (3.1.1), i.e.,

f1(Y |ψ) =

g∑
j=1

πjfij(yi|θj) (3.2.11)

where

fij(yi|θj) =
1√
2πσ2

j

exp

{
− 1

2σ2
j

(yi − µj)
2

}
j = 1, . . . , g

are normal densities with mean µj and standard deviation σj. The parameter set of the

mixture is

Ψ = (π1, . . . , πj, µ1, . . . , µj, σ1, . . . , σj) (3.2.12)

such that 0 ≤ πj ≤ 1,
∑g

j=1 πj = 1,−∞ < µj < ∞, σj > 0 and the true parameters

defined as ψ0 ∈ Ψ.

In their analysis the maximum likelihood (ML) framework was used to estimate the

parameters of the mixture, with likelihood function given by

L̃(ψ|y) = fn(Y1, . . . , Yn|ψ) =
n∏

i=1

f1(Y |ψ). (3.2.13)

Since the likelihood function (3.2.13) is unbounded on Ψ because if one of the variance

parameter in the denominator of (3.2.13) approaches 0 as µj approaches yi (c.f. Example

3.2.5) then the likelihood is unbounded.

They circumvented this problem by considering a penalized likelihood function defined

as

Ľn(ψ|y) = fn(Y1, . . . , Yn|ψ)

g∏
j=1

h(σj) (3.2.14)

where the penalized function h was chosen so that Ľn is bounded over the parameter

space Ψ. The penalized function was assumed to have satisfied the following conditions:

(1) limσj→0
1

σn
j
h(σj) = 0, for all n, which ensures that for any fixed n,
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the maximum argument of Ľn, that is the penalized MLE

arg max
ψ∈Ψ

Ľn exists.

The consistency of the estimator was also a concern. In order to prove the consistency

they required that h also satisfied the following conditions:

(2) h(σ) is many-to-one from (0,∞) onto (0, G], G > 0,

(3) h is strictly increasing in an open interval (0, δ) of the origin which has a

non-null measure,

(4) h is continuously differentiable on (0,∞).

3.3 Estimating the Number of Components g

One interesting but difficult problem is to determine the number of components g. This

can be accomplished through using various model selection criteria, of which the most

well known are the Akaike Information Criterion (AIC) (Akaike 1973) and the Bayesian

Information Criterion (BIC) (Schwartz 1978)

AIC = −2 log L(Ψg) + 2νg,

BIC = −2 log L(Ψg) + νg log(n),

where νg is the number of independent parameters in Ψg. In using the AIC or BIC, one

first fits a series of models with various values of g, then picks up the g corresponding to

the first local minimum of AIC or BIC (Fraley and Raftery 1998). Some other criteria

have been studied but it does not appear that there exists a clear winner (Biernacki and

Govaert 1999). Some empirical studies seem to favor the use of BIC (Fraley and Raftery

1998). With this in mind the AIC and BIC may not agree with each other in some

cases, therefore it often means that several models are reasonable and that no one can

dominate the others. Therefore we seek other methods which are more reliable in the

selection of g, the number of components. A different approach to selecting g is through

hypothesis testing. This could be done through the use of the likelihood ratio test (LRT)

to test for the null hypothesis H0 : g = k against H1 : g = k + 1 for any given positive
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integer k. The LRT statistic is 2(ln L(Ψk+1)− ln L(Ψk)), which, however, does not have

the usual asymptotic chi-squared distribution because of the loss of identifiability of the

null distribution and also that the null hypothesis lies on the boundary of the parameter

space (π = 0). Without loss of generality, let us assume that a random sample Y1, . . . , Yn

is from the mixture

(1− π)fi1(yi|θ1) + πfi2(yi|θ2) (3.3.15)

where θ1 ≤ θ2 and 0 ≤ π ≤ 1. The hypothesis we wish to test is

H0 : θ1 = θ2,

therefore we see that the two statements π = 0 and θ1 = θ2 are equivalent hence the

parameters π, θ1 and θ2 are not identifiable under the null model. In the next few sections

we shall discuss how we may achieve the asymptotic null distribution of the log likelihood

ratio statistic through the use of: (1) simulation and (2) the modified likelihood ratio

test.

3.3.1 Simulation Approach

Here we shall describe how to simulate the degrees of freedom of the null distribution of

the likelihood ratio test (LRT)

2(ln L(Ψk+1)− ln L(Ψk))

from a univariate normal mixture distribution for the hypothesis H0 versus H1, see

Everitt et al. (1981). Without loss of generality we assume distribution under null

hypothesis H0 is normally distributed that is the number of component g = k = 1 and

the distribution under the alternate is a two component mixture of normal distribution,

that is, g = k = 2. Note that the distribution of

ln L(Ψk+1)− ln(Ψk)
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and

2(ln L(Ψk+1)− ln L(Ψk)),

clearly depends on n. McLachlan et al. (1987) simulated the homoscedastic case, that

is, mixture of normal with equal variances for each component, using 500 replicates for

samples of sizes n = 25, 50 and 100, under H0. The mean(variance) of the simulated null

distribution of 2(ln L(Ψk+1)− ln L(Ψk)) was found to be equal to 2.47(5.66), 2.36(5.06),

and 2.16(4.30) for n = 25, 50, and 100 respectively. The empirical distribution function

of 2(ln L(Ψk+1) − ln L(Ψk)), generated from the 500 replicated simulated values of the

test statistic for n = 100, was shown to be similar in distribution of the χ2
2 distribu-

tion function. McLachlan et al. (1987) explain that the choice of the χ2
2 distribution

corresponds to the approximation of Wolfe (1971), where the degrees of freedom of the

chi-squared distribution is taken to be twice the difference in the number of parameters

under H0 and H1, excluding the mixing proportions.

McLachlan further stated that the Wolfe’s approximation to the null distribution of

2(ln L(Ψk+1) − ln L(Ψk)) was not applicable in the heteroscedastic case (i.e where the

component variances were unequal). McLachlan evaluated the empirical distribution

function of 2(ln L(Ψk+1) − ln L(Ψk)) by constructing 500 replicates with a sample size

of n = 100 generated under H0 using the normal component densities having unequal

variances under H1. When Wolfe’s approximation was applied, the resulting chi-squared

distribution was χ2
4 however, the χ2

6 distribution function was found to provide a much

better fit. Furthermore, the simulated null distribution of 2(ln L(Ψk+1)− ln L(Ψk)) had

mean and variance equal to 5.96 and 13.86 respectively which further solidified that the χ2
6

distribution function characterizes the empirical null distribution. Wolf’s approximation

was not applicable in the case where heteroscedastic was considered.

In the case of heteroscedasticity the regression approach of Thode et al. (1988) is

more appropriate to be used to remedy the aforemention situation of unequal variances.

The approach is to fit a regression model as a function of the sample size n, using different

sample sizes which results in the regressed degrees of freedom to be

f = β0 + β1
1√
n

. (3.3.16)
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From equation (3.3.16) we observe that the asymptotic degrees of freedom is β0.

The regression technique of Thode et al. (1988) was presented to determine the

degrees of freedom of the asymptotic distribution of the likelihood ratio test. Thode et

al. found the empirical null distribution of the likelihood ratio test for the sample sizes

15, 20, 25, 40, 50, 75, 80, 100, 150, 250, 500 and 1,000. However, their approach did

not account for skewness which was addressed by MacLean et al. (1976). Furthermore,

for each sample size, percentile points and moments were evaluated using 2,500 normal

samples. Thode et al. also used an iterative procedure to determine the maximum

likelihood estimates of the normal mixture distribution. They also applied the random

starting point method of Thode, Finch and Mendell (1987) by using five random starting

points so that the global maximum is achieved, instead of the local maximum of the

MLE of the parameters in the normal mixture model.

Thode et al. mentioned that since the regularity conditions do not hold in the case of

mixture of normal distribution, therefore the asymptotic distribution is not chi-squared

with degrees of freedom 2. Therefore they found the means and variances for the sample

sizes 15, 20, 25, 40, 50, 75, 80, 100, 150, 250, 500 and 1,000. Note that the mean is

equal to the number of degrees of freedom for the chi-squared random variable, and the

variance is twice the degrees of freedom. They also estimated the asymptotic distribution

of the likelihood ratio test by regressing the mean, variance and simulated percentiles of

the LRT against various functions of the sample size n. Thode et al. further divided the

2,500 samples generated for each of the sample into 5 subsamples of size 500 each, and

applied the goodness-of-fit test described in Draper and Smith (1981) and considered a

regression model as a function of (1/n)t for t = 0.125, 0.25, 0.50, 1, 2 and 3. The regression

model is

E(YPNs) = aP,t + bP,t(1/n)t, (3.3.17)

where YPNs is the P th percentile of the sth subsample of size n. From model (3.3.17)

they fitted regression model for t = 0.125, 0.25, 0.50, 1, 2 and 3 and found that the inter-

cepts estimated for various powers of t were essentially the same therefore indicating the

convergence of the asymptotic distribution. However, Thode et al. concluded that the
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regression model of the mean on (1/n)0.5 suggested a very good goodness-of-fit statistics

and a value of R2 around 0.6. Therefore in this dissertation we will regress the means on

(1/n)0.5 and use ax̄,0.5 as our asymptotic degrees of freedom.

In the next section we will describe the approach of Chen et al. that was used to

determine the exact distribution of the null distribution of the likelihood ratio statistic in

the case were there was equal variance in each component of mixture of normal distribu-

tions. This approach for our purposes was modified so that we accounted for differences

in the variances for each component. It should be stated that the method of Chen can

not be applied directly to the problem of heteroscedasticity, that is, in the case where

the variances are different in each component which is the case used in this dissertation.

Therefore, the asymptotic distribution of the penalized modified likelihood method used

in this dissertation, will be estimated using the regression model of Thode et al. (1988).

The theoretical distribution of the penalized modified likelihood ratio statistic in the case

of unequal variances for each component is an open problem which I hope to solve in

the near future. The next section describes the method of Chen which is the method

in this dissertation we modified to account for heteroscedasticity (unequal component

variances).

3.3.2 Modified Likelihood Ratio Test for Homogeneity in Finite Mixture

Models

Finite mixture models are often used to study data from a population that is suspected to

be composed of a number of homogeneous sub-populations. For example, when a disease

has a simple genetic cause, the population may be divided into two or three homogeneous

groups. In the initial stage of these investigations, it is important to have a sensitive test

for the number g of sub-populations included in the data. The construction of such a

test, however, is often more challenging than might be expected.

Chen and Kalbfleisch (1996), Chen (1998) and Chen et al. (2001, 2002) suggest a

modification of the likelihood by incorporating a penalty term that forces certain esti-

mates away from the boundary of the parameter space. The likelihood ratio statistic

based on the modified estimators is shown, in many instances, to yield relatively simpler
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limiting distributions and hence simpler tests.

We consider a finite mixture distribution with probability density function as defined

in (3.1.1), i.e.,

f(Y |ψ) =

g∑
j=1

πjf(y|θj)

where f(y|θj), is a probability density function with parameter θj ∈ Θ. Let θ1, . . . , θg ∈ Θ

be the support points of f(y|θj) and let π1, . . . , πg be the corresponding weights with

πj ≥ 0 and
∑

πj = 1. If we consider g = 2 then we have πf(y|θ1)+ (1−π)f(y|θ2) where

π ∈ [0, 1] and θ1 ≤ θ2. We wish to test the hypothesis

H0 : θ1 = θ2 versus H0 : θ1 6= θ2

however the parameters under the null is not identifiable. Therefore, Chen penalized the

log-likelihood, hence the modified likelihood approach is given by

l∗n(ψ|y) = l̃n(ψ|y) + C ln 4π(1− π). (3.3.18)

where C is a positive constant and

l̃n(ψ|y) =
n∑

i=1

ln

{
2∑

j=1

πjf(y|θj)

}
. (3.3.19)

is the ordinary log likelihood. The purpose of the ”penalty term”, C ln 4π(1− π) in

(3.3.18) is to restore regularity to the problem by avoiding estimates of π on or near the

boundary. The modified likelihood ratio statistic is thus

R∗
n = 2{l∗n(π̂, θ̂1, θ̂2)− l∗n(1/2, θ̂, θ̂)}. (3.3.20)

and the null distribution is given by

1

2
χ2

0 +
1

2
χ2

1.
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The finite mixture distribution (3.1.1) can also be written as

f(y|G) =

∫
f(y|θ)dG(θ), (3.3.21)

where G(θ) is a discrete cumulative distribution function (called the mixing distribution)

with a finite number of support points. The class of all finite mixing distributions with

g support points is

Mg =
{

G(θ) =

g∑
j=1

πjI(θj ≤ θ) : θ1 ≤, . . . ,≤ θg,

g∑
j=1

πj = 1, πj ≥ 0
}

(3.3.22)

where I(·) is an indicator function and g = 1, 2, . . .. The class of all finite mixing

distributions is M =
⋃

g≥1 Mg.

We consider the test with null hypothesis g = 1 versus the alternative g ≥ 2; or more

precisely we consider a test of the hypothesis G ∈ M1 versus G ∈ Mg≥2. Furthermore,

let Ĝ0 and Ĝ1 denote the estimates under the null and alternate hypothesis respectively,

hence the modified likelihood ratio statistic for testing G ∈ M1 against G ∈ Mg≥2 is given

by

R∗
n = 2{l∗n(Ĝ1)− l∗n(Ĝ0)}

where

l∗n(ψ|y) =
n∑

i=1

ln

{
g∑

j=1

πjf(y|θj)

}
+ C

g∑
j=1

ln(gπj). (3.3.23)

The Theorems below summarize the above arguments.

Theorem 3.3.1 If the regularity conditions hold (c.f. Chen et al. 2001), the asymptotic

null distribution of the modified LRT statistics

R∗
n = 2{l∗n(Ĝ1)− l∗n(Ĝ0)}

for testing G ∈ M1 against G ∈ Mg≥2, is the mixture of χ2
1 and χ2

0 with equal weights, i.e.

1

2
χ2

0 +
1

2
χ2

1
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where χ2
0 is a degenerate distribution with all its mass at 0.

Constructing a test of the hypothesis G ∈ M2 or (g = 2) is similar in principle to

g = 1 but perhaps because of its mathematical complexity has a less extensive literature.

Some approaches can be found in the diagnostic method of Roeder (1994) and Lindsay

and Roeder (1997), and model selection approach (Chen and Kalbfleisch, 1996: Henna,

1985).

Theorem 3.3.2 (Chen et al. 2004) If the regularity conditions hold, and the true dis-

tribution is a 2-component model. Then the asymptotic null distribution of the modified

LRT statistics

R∗
n = 2{l∗n(Ĝ1)− l∗n(Ĝ0)}

for testing G ∈ M2 against G ∈ Mk≥2, is the mixture of

(1

2
− α

2π

)
χ2

0 +
1

2
χ2

1 +
α

2π
χ2

2,

where α = cos−1(ρ), ρ is the correlation coefficient between the two components of the

null hypothesis and χ2
0 is a degenerate distribution with all its mass at 0.

One of the important issues of this dissertation is to obtain the asymptotic null

distribution of the likelihood ratio tests for the penalized modified mixture model and

the modified p-value approach. Note that in the case of the penalized modified mix-

ture model both the mixing proportion and the variance parameters are simultaneous

penalized, therefore changing the assumptions of Theorems 3.3.1 and 3.3.2. Since the

assumptions of Theorems 3.3.1 and 3.3.2 were not satisfied we determined the asymptotic

null distribution of the likelihood ratio test by simulation.

For the modified p-value approach the assumption that the mixing distribution is

from the exponential family has been violated since the beta distribution is not of the

exponential family. To this end, the asymptotic null distribution of the likelihood ratio

statistic will be determine by simulation.

Note that the asymptotic null distribution is absolutely necessary so that we can carry

out a hypothesis test to determine the number of components of the mixture model.
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3.3.3 Regularity Conditions

Suppose that Y1, . . . , Yn is an independent and identically distributed sample from (3.3.21),

and suppose that (3.1.1) is identifiable in the sense that f(y|G1) = f(y|G2), for all y,

implies G1 = G2. We consider the hypothesis H0 : G ∈ Mg, (g = 1 or 2). We assume

throughout that the true mixing distribution is

G0 =

g∑
j=1

πjI(θ0j ≤ θ), (g = 1 or 2), (3.3.24)

where θ0j, (j = 1, 2) are distinct interior points of Θ and 0 < π0 < 1. All expectation and

probabilities are with respect to this null distribution. We also assume that the distance

between two mixing distributions G and Q is measured by the supremum distance, i.e.,

|G−Q| = sup
θ
|G(θ)−Q(θ)|.

Condition 1 Wald’s integrability conditions.

The function f(y|θ) satisfies Wald’s integrability conditions for consistency of the max-

imum likelihood estimation, i.e. for each θ ∈ Θ, (i) E| log f(y|G0)| < ∞, and (ii) there

exists ρ > 0 such that E[log f(y|G, ρ)] < ∞, where

f(x, |G, ρ) = 1 + sup
|G−Q|≤ρ

{f(y|Q)}.

Condition 2 Smoothness.

The function f(y|θ) has common support and is three times continuously differentiable

with respect to θ. The first three derivatives are denoted by f ′(y|θ) f ′′(y|θ) and f ′′′(y|θ),
respectively.

Condition 3 Strong identifiability.

For any θ1 6= θ2 ∈ Θ,

2∑
j=1

{ajf(y|θj) + bjf
′(y|θj) + cjf

′′(y|θj)} = 0, ∀x,

implies that aj = bj = cj = 0, j = 1, 2.
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Condition 4 Uniform strong law condition of large numbers.

There exists integrable g with some δ > 0 such that |Xi(θ)|4+δ ≤ g(Yi), |X ′
i(θ)|3 ≤ g(Yi),

|X ′′
i (θ)|3 ≤ g(Yi) and |X ′′′

i (θ)|3 ≤ g(Yi) ∀θ ∈ Θ, where for i = 1, . . . , n and j = 1, 2 we

define

Xij(θ) =
f(Yi|θ)− f(Yi|θ0j)

f(Yi|G0)
, X ′

i(θ) =
f ′(Yi|θ)
f(Yi|G0)

X ′′
i (θ0) =

f ′′(Yi|θ0)

f(Xi|G0)
, X ′′′

i (θ) =
f ′′′(Yi|θ)
f(Yi|G0)

. (3.3.25)

Condition 5 Tightness.

For j = 1, 2 the processes

∑
Xij(θ)

n1/2
,

∑
X ′

i(θ)

n1/2
,

∑
X ′′

i (θ)

n1/2
and

∑
Y ′′′

i (θ)

n1/2

are tight

The tightness condition ensures the weak converges of the process.

In the next section we will describe the Box-Cox transformation that is used to distin-

guish skewed from commingled distribution in mixture models. Note in this dissertation

we did not account for skewness as was the case of the regression method of Thode et al.

(1988). However, it is important to the reader to be aware that in mixture distribution

we can normalize mixture of any distributions, that is to mixture of normal distributions

if that need arises.

3.4 Box-Cox transformation

One challenge in applying mixture models is the difficulty of distinguishing commingled

distributions from distribution that are skewed. MacLean et al. (1976) proposed a

likelihood ratio test to distinguish skewness from commingled distributions, using the

Box-Cox transformation (Box and Cox (1964)) to eliminate skewness for each of the

hypothesis to be tested. The hypothesis to be test is that the transformed data is

from one normal or a mixture of normal homoscedastic distributions. The Box-Cox

transformation will now be presented.
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Let Y1, . . . , Yn be a random sample which has been standardized to mean 0 and

variance 1, the Box-Cox type transformation is then applied with the power parameter

λ, where

z = g(y) =





r
λ

[(
y
r

+ 1
)λ

− 1
]
, when λ 6= 0

r ln
(

y
r

+ 1
)
, when λ = 0

(3.4.26)

The scale parameter r is necessary only to ensure that every y
r
+1 is positive in the sample,

however it slightly affect the distribution of Y . MacLean et al. (1976) suggested, using

a fixed value of r because, while simultaneous estimation of r and λ might improve the

approximation to normality, it might exacerbate convergence problems.

In the case of a 2-component normal mixture model given by

f(y) = πN(µ1, σ) + (1− π)N(µ2, σ) (3.4.27)

The MLE’s of the parameters π, µ1, µ2, σ, and λ are estimated iteratively by maximizing

the log likelihood function

l(y) =
n∑

i=1

ln
(y

r
+ 1

)λ−1

+ n ln σ

n∑
i=1

ln
[
π exp

{
− (zi − µ1)

2

2σ2

}
+ (1− π) exp

{
− (zi − µ2)

2

2σ2

}]
(3.4.28)

where z = r
λ

[(
y
r

+ 1
)λ

− 1
]
.

Note that after the Box-Cox transformation has been applied the data is now either

normally distributed or is a mixture of normal distributions see MacLean et al. (1976)

for detail.

3.5 Conclusion

The fundamental theory of mixture models was discussed in chapter 3. We illustrated how

to determine the parameters of the mixture model by: (1) the expectation maximization

(EM) algorithm and (2) the robust parameter estimation approaches. Furthermore the
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parameters of the normal mixture model with unequal variances was discussed. The

method of Ciuperca et al. the penalized likelihood for normal mixture was perused.

One of the many challenges for researchers in the field in the field of mixture distri-

bution is to determine the number of components. The model selection criteria BIC and

AIC were discussed, however, for mixture distribution there has not been any theoretical

justification for their use. Therefore simulation and the modified likelihood ratio test are

methods that had no such theoretical drawback. All three approaches were discussed in

this chapter, with the modified likelihood ratio test used in this dissertation to determine

the number of components for the mixture models. Note the asymptotic null distribution

for the modified likelihood test is done by means of simulation.

In some cases in mixture distribution researchers may not be able to distinguish com-

mingled distributions from distribution that are skewed. In this situation, the likelihood

ratio test to distinguish skewness from commingled distributions, using the Box-Cox

transformation to eliminate skewness for each of the hypothesis to be tested is one

available method. Throughout this dissertation we assume that mixture distribution

is distinguishable from skewed distribution, therefore we need not apply the Box-Cox

transformation.
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4 The Penalized Modified Likelihood for Normal Mixture Model

In chapter 3 we introduce both the penalized likelihood approach and modified likelihood

approach. The main reason for the penalization of the variance as discussed in chapter

3 was that the log likelihood will be bounded guaranteeing the existence of the MLE

where normal mixture models with unequal variances needed to be implemented. The

modification for the mixing proportion was done so that the estimates will not be on

the boundary point of its parameter space and more importantly the resulting modified

likelihood ratio test statistic will enjoy the simple χ2-type null limiting distribution.

In this chapter one of our major contribution is the building of a model with both the

above mentioned capabilities, that is, we penalize both the mixing proportion and the

variance parameters simultaneously. Therefore, we are able to fit normal mixture models

with unequal variances and be able to conduct a test of hypothesis for the number of

components that characterizes the model.

Firstly, estimators for the parameters of the penalized modified likelihood approach

will be illustrated. These estimators are necessary so that we can implement the expecta-

tion maximization algorithm when simulating the null distribution for the likelihood ratio

statistic (LRTS) for the penalized normal mixture model. Another major contribution

in this dissertation is that we proved asymptotic normality of the MLE’s (estimators) for

the penalized normal mixture model. Asymptotic normality of the MLE’s (estimators) is

a major contribution of this dissertation and is a first step to determine the asymptotic

null distribution of the likelihood ratio test statistic (which is an open problem).
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4.1 Penalized Modified Likelihood

Let Y1, . . . , Yn be a random sample of size n from the mixture model

f1(Y |ψ) =

g∑
j=1

πjfij(yi) (4.1.1)

where

fij(yi) =
1√
2πσ2

j

exp

{
− 1

2σ2
j

(yi − µj)
2

}
j = 1, . . . , g

are normal densities with mean µj and standard deviation σj. The parameter set of the

mixture is given as

Ψ = (π1, . . . , πj, µ1, . . . , µj, σ1, . . . , σj) (4.1.2)

such that 0 ≤ πj ≤ 1,
∑g

j=1 πj = 1,−∞ < µj < ∞, σj > 0 and the true parameters

defined as ψ0 ∈ Ψ. The penalized modified likelihood for a g-component normal mixture

model is given by

Ln(ψ|y) =
n∏

i=1

g∑
j=1

πifij(yi|θ)
g∏

j=1

h(σj)

g∏
j=1

(gπj)
C (4.1.3)

for the observed data, where C is a positive constant that control the level of modification

of the mixing proportion πj (the last term of equation (4.1.3)). The function h as

mentioned in the previous chapter, was chosen so that Ln is bounded over the parameter

space Ψ. The penalized function h was assumed to have satisfied the following conditions:

(1) limσ→0
1

σn h(σ) = 0, for all n, which ensures that for any fixed n, the

maximum argument of Ln, that is the penalized MLE

arg max
ψ∈Ψ

Ln exists.

The consistency of the estimator was also a concern. In order to prove the consistency

it was required that h also satisfied the following conditions:

(2) h(σ) is many-to-one from (0,∞) onto (0, G], G > 0,

(3) h is strictly increasing in an open interval (0, δ) of the origin which has a
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non-null measure,

(4) h is continuously differentiable on (0,∞).

In this dissertation we consider two distributions that satisfy the aforementioned

conditions on the penalized function h(σ) for the variance. These distributions are (1)

the inverse gamma and (2) the inverse chi-square distributions.

In the next section we will evaluate the estimators for the penalized modified likelihood

for normal mixture models. These estimates are vital because in chapter 5 we used these

estimators in the expectation maximization algorithm to evaluate the log likelihood which

is then used in the simulation of the asymptotic null distribution of the modified likelihood

ratio test, see section 5.2 of chapter 5.

4.2 Parameter Estimation of Penalized Modified Likelihood

The penalized modified likelihood for a g-component normal mixture model is given by

(4.1.3) for the observed data. Furthermore, the likelihood for the complete data is given

by (c.f. section 3.2 chapter 3)

Ln(ψ|y, Z) =
n∏

i=1

g∏
j=1

[πifij(yi|θ)]zij

g∏
j=1

h(σj)

g∏
j=1

(gπj)
C ,

and the complete log-likelihood is

ln(ψ|y, Z) =
n∑

i=1

g∑
j=1

zij [ln πj + ln fij(yi|θ)] +

g∑
j=1

ln h(σj) + C

g∑
j=1

ln(gπj). (4.2.4)

Similar to the approach in section 3.2, we need only to maximize the expectation of the

log-likelihood

Q(ψ|ψ(t)) = E
[
ln(ψ|y, Z)

∣∣∣y, ψ(t)
]
.

Note that the E-step resulted in

π
(t)
ij =

πjfij(yi|θ)∑g
j=1 πjfij(yi|θ) (4.2.5)
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hence, the log likelihood is

n∑
i=1

g∑
j=1

[
π

(t)
ij ln πj + π

(t)
ij ln fij(yi|θ)

]
+

g∑
j=1

ln h(σj) + C

g∑
j=1

ln(gπj)

=

g∑
j=1

[
n∑

i=1

π
(t)
ij ln fij(yi|θ) + ln h(σj)

]
+

g∑
j=1

[
n∑

i=1

π
(t)
ij ln πj + C ln(gπj)

]
(4.2.6)

Now we maximize with respect to πj, therefore we consider the last term of equation

(4.2.6), since

g∑
j=1

[
n∑

i=1

π
(t)
ij ln πj + C ln(gπj)

]
∝

g∑
j=1

[
n∑

i=1

π
(t)
ij ln πj + C ln(πj)

]

therefore we have

g∑
j=1

[
n∑

i=1

π
(t)
ij ln(πj) + C ln(πj)

]

=

g∑
j=1

[(
n∑

i=1

π
(t)
ij + C

)
ln(πj)

]

=

g−1∑
j=1

[(
n∑

i=1

π
(t)
ij + C

)
ln(πj)

]
+

(
n∑

i=1

π
(t)
ig + C

)
ln

(
1−

g−1∑
j=1

πj

)
(4.2.7)

then taking the derivative w.r.t πj of equation (4.2.7) and then equating to 0 we get

∑n
i=1 π

(t)
ij + C

πj

=

∑n
i=1 π

(t)
ig + C

πg

⇒ πj

πg

=

∑n
i=1 π

(t)
ij + C

∑n
i=1 π

(t)
ig + C

⇒
∑g

j=1 πj

πg

=

∑g
j=1

( ∑n
i=1 π

(t)
ij + C

)

∑n
i=1 π

(t)
ig + C

⇒ 1

πg

=
n + gC∑n

i=1 π
(t)
ig + C

⇒ πg =

∑n
i=1 π

(t)
ig + C

n + gC
.
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It follows that all the π
(t+1)
j are given by

π
(t+1)
j =

∑n
i=1 π

(t)
ig + C

n + gC
(4.2.8)

For normal mixture i.e fij is normally distributed we have that

ln fij(x|µj, σ
2
j ) ∝ − ln(σ2

j )

2
− (yi − µj)

2

2σ2
j

.

Furthermore maximizing equation (4.2.7) w.r.t. µ results in

g∑
j=1

n∑
i=1

π
(t)
ij

[
− ln(σ2

j )

2
− (yi − µj)

2

2σ2
j

]

to be
n∑

i=1

π
(t)
ij (yi − µj) = 0

therefore the estimate for µj is given by

µ
(t+1)
j =

∑n
i=1 π

(t)
ij yi∑n

i=1 π
(t)
ij

. (4.2.9)

We now turn our attention to maximizing the variance of the normal mixture model

when the inverse gamma function is used as the penalty function.

4.2.1 Inverse Gamma Penalty Function for σ

In this section we will find the estimate for the variance when the inverse gamma function

is used as the penalty function. The inverse gamma distribution for the penalty term for

the variance σ2
j is

h(σj) =
αβ

Γ(β)σ
2(β+1)
j

exp(− α

σ2
j

),

therefore

ln h(σj) ∝ −(β + 1) ln(σ2
j )−

α

σ2
j

.
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We therefore find the derivative w.r.t. σ2
j of equation (4.2.10) then equating to zero,

g∑
j=1

{
n∑

i=1

π
(t)
ij

[
− ln(σ2

j )

2
− (yi − µj)

2

2σ2
j

]
− (β + 1) ln(σ2

j )−
α

σ2
j

}
. (4.2.10)

Thus we have
n∑

i=1

π
(t)
ij

[
− 1

σ2
j

+
(yi − µj)

2

σ4
j

]
− 2(β + 1)

σ2
j

+
2α

σ4
j

= 0

⇒
∑n

i=1 π
(t)
ij (yi − µj)

2

σ2
j

+
2α

σ2
j

=
n∑

i=1

π
(t)
ij + 2(β + 1)

⇒ (σ2
j )

(t+1) =

∑n
i=1 π

(t)
ij (yi − µj)

2 + 2α
∑n

i=1 π
(t)
ij + 2(β + 1)

. (4.2.11)

To estimate the null parameters we maximize the log likelihood under the null which is

given by
n∑

i=1

ln fij(yi|µ, σ2) +

g∑
j=1

ln h(σ).

For µ, we have that
∂

∂µ

{ n∑
i=1

[
− ln(σ2)

2
− (yi − µ)2

2σ2

] }
= 0

to be
n∑

i=1

(yi − µ) = 0

therefore

µ̂ =

∑n
i=1 yi

n
. (4.2.12)

Under the null hypothesis the estimate of σ2 is evaluated as follow. Using the inverse

gamma penalty term, that is h(σ) = αβ

Γ(β)σ2(β+1) exp(− α
σ2 ), therefore

ln h(σ) ∝ −(β + 1) ln(σ2)− α
σ2 . We want the derivative w.r.t. σ2 of the following

n∑
i=1

[
− ln(σ2)

2
− (yi − µ)2

2σ2

]
− (β + 1) ln(σ2)− α

σ2
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then equating the derivative to zero, resulted in

n∑
i=1

[
− 1

σ2
+

(yi − µ)2

σ4

]
− 2(β + 1)

σ2
+

2α

σ4
= 0

⇒
∑n

i=1(yi − µ)2

σ2
+

2α

σ2
= n + 2(β + 1)

⇒ σ̂2 =

∑n
i=1(yi − µ)2 + 2α

n + 2(β + 1)
(4.2.13)

The other penalty term of interest is the inverse chi-square distribution, which in the

next section has be used in the evaluation of the MLE for variance parameter of the

normal mixture model.

4.2.2 Inverse Chi-Square Penalty Function for σ

The inverse chi-square distribution for the penalty term for σ2
j is

h(σj) =
2ν/2

Γ(ν/2)σ
2(ν/2+1)
j

exp
(
− 1

2σ2
j

)
,

therefore

ln h(σj) ∝ −(ν/2 + 1) ln(σ2
j )−

1

2σ2
j

We want the derivative w.r.t. σ2
j of the following

g∑
j=1

{
n∑

i=1

π
(t)
ij

[
− ln(σ2

j )

2
− (yi − µj)

2

2σ2
j

]
− (ν/2 + 1) ln(σ2

j )−
1

2σ2
j

}
.

After taking the derivative and equating to zero, we have that

n∑
i=1

π
(t)
ij

[
− 1

σ2
j

+
(yi − µj)

2

σ4
j

]
− (ν/2 + 1)

σ2
j

+
1

2σ4
j

= 0

⇒
∑n

i=1 π
(t)
ij (yi − µj)

2

σ2
j

+
1

2σ2
j

=
n∑

i=1

π
(t)
ij + (ν/2 + 1)
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⇒ (σ2
j )

(t+1) =

∑n
i=1 π

(t)
ij (yi − µj)

2 + 1/2
∑n

i=1 π
(t)
ij + (ν/2 + 1)

(4.2.14)

To estimate the null parameters we maximize the log likelihood under the null, given by

n∑
i=1

ln fij(yi|µ, σ2) +

g∑
j=1

ln h(σ).

Maximizing
n∑

i=1

[
− ln(σ2)

2
− (yi − µ)2

2σ2

]

w.r.t. µ, we have that
n∑

i=1

(yi − µ) = 0.

The result for µ is similar to that of equation (4.2.12), i.e.,

µ̂ =

∑n
i=1 yi

n
.

In the case of σ2 using the inverse chi-square penalty term i.e., h(σ) = 2ν/2

Γ(ν/2)σ2(ν/2+1) exp(− 1
2σ2 ),

therefore ln h(σ) ∝ −(ν/2 + 1) ln(σ2)− 1
2σ2 . Therefore taking the derivative w.r.t. σ2 of

equation (4.2.15) and equation to zero,

n∑
i=1

[
− ln(σ2)

2
− (yi − µ)2

2σ2

]
− (ν/2 + 1) ln(σ2)− 1

2σ2
(4.2.15)

we have
n∑

i=1

[
− 1

σ2
+

(yi − µ)2

σ4

]
− (ν/2 + 1)

σ2
+

1

2σ4
= 0

⇒
∑n

i=1(yi − µ)2

σ2
+

1

2σ2
= n + (ν/2 + 1)

⇒ σ̂2 =

∑n
i=1(yi − µ)2 + 1/2

n + (ν/2 + 1)
(4.2.16)
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4.3 Consistency and Asymptotic Normality

Let Y1, . . . , Yn be a random sample of size n from the mixture model with density given

by (4.1.1), where the parameters ψ ∈ Ψ defined in (4.1.2) and Ψ̄ denote the closure of set

Ψ. From chapter 3 Example 9 we illustrated that the likelihood function is unbounded

on Ψ. This was circumvented by adding a penalty term for the variance parameter

with the properties mentioned in section 1 of this chapter. From Redner (1980), we

know that if a likelihood function has a strongly consistent maximizer over a compact

set, then penalizing it with a penalty term that is continuously differentiable and that

has a bounded logarithm, does not alter its asymptotic property. G. Ciuperca et al.

(2003) stated that Redner’s results can be applied on every compact set that excludes

a neighbourhood of σ = 0. However, this resulted in considering the problem in a

neighbourhood of the origin of the parameters σj, where the MLE does not exist and,

therefore, Redner’s property does not apply.

Consequently G. Ciuperca et al. (2003) focused their study of the asymptotic prop-

erties in a neighbourhood of the origin of the parameters σj. In this section we applied

their idea to prove that there exists a constant η > 0, not dependent on n, so that the

probability that the penalized modified likelihood Ln is maximized by a σj ∈ [0, η) is

zero. Similar to the approach in G. Ciuperca et al. (2003), from (4.1.3) we consider Ln

and extended its definition to Ψ̄, i.e,

Ln =





0 if σk = 0,∞ or µk = ±∞
fn(Y1, . . . , Yn|ψ)

∏g
j=1 h(σj)

∏g
j=1(gπj)

C otherwise,

where f1(Y |ψ) is a mixture of normal distributions (definition 4.1.1), fn(Y1, . . . , Yn|ψ) =
∏n

i=1 f1(Y |ψ) the ordinary likelihood and 1 ≤ k ≤ g. Let

ψ0 = (π01, . . . , π0j, µ01, . . . , µ0j, σ01, . . . , σ0j) ∈ Ψ

be the true value of the parameter and let us define the Banach space

H = L1(f1(y, ψ0))
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where L1 is a linear space such that for a function f1 ∈ L1 we define

||f1(y, ψ)|| =
∫
|f1|.

Note that the operator EH denotes the expectation in the space H. The reason for

introducing a Banach space will be clear from the definition below.

Definition 4.3.1 A normed linear space is called complete if every Cauchy sequence

in the space converges, that is, if for each Cauchy sequence {an} in the space there is

an element a in the space such that an → a. A complete normal linear space is called a

Banach space.

Therefore from definition 4.3.1 we have that the expectation EH will be finite.

4.3.1 Preliminary Results

In this section we will present preliminary results along with their proofs, that will be

useful to prove asymptotic normality of the modified penalized method. The results

presented in this section are similar to work presented in G. Ciuperca (2003) which have

been slightly modified for our approach. First we consider a random variable Y with

density f1(y|ψ0), then the following Lemmas hold:

Lemma 4.3.2 (c.f. [9]) If {ψm} ∈ Ψ̄ and ψ∗ ∈ Ψ̄ is such that limm→∞ ψm = ψ∗, then

L1(y|ψm) → L1(y|ψ∗), as m →∞

Lemma (4.3.3) is similar to that stated in [9] with exception that we penalized both

the mixing proportion and the variance parameters. We present our proof which accounts

for the addition mixing proportion which is the major difference to that prosented in [9].

Lemma 4.3.3 (c.f. [9]) There exists η > 0 with the property

η < σ0j ∀j = 1, . . . , g (4.3.17)
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such that

EH [lnL1(Y |ψ)] < EH [lnL1(Y |ψ0)], (4.3.18)

∀ ψ ∈ Ψ̄| min
j=1,...,g

σj ∈ [0, η)

Proof. Let ν = lnL1(Y |ψ) − lnL1(Y |ψ0), where ψ ∈ Ψ̄. We therefore need to prove

that EH [ν] < 0. Given ψ ∈ Ψ, we have that

EH [eν ] = EH

[ L1(Y |ψ)

L1(Y |ψ0)

]

=

∫

<
f1(y, ψ)

g∏
j=1

h(σj)

h(σ0j)

( πj

π0j

)C

dy =

g∏
j=1

h(σj)

h(σ0j)

( πj

π0j

)C

=

g∏
j=1

( πj

π0j

)C
g∏

j=1

h(σj)

h(σ0j)
= κ

g∏
j=1

h(σj)

h(σ0j)

where κ =
∏g

j=1

(
πj

π0j

)C

> 0 is a constant, and we defined a function w : (0, +∞) → (0, 1
2
]

to be

w(σ) =
h(σ)

2G
.

Since κ is positive we therefore have that

EH [eν ] =

g∏
j=1

w(σj)

w(σ0j)
,

noting that ν is taken such that w(ν) =
∏g

j=1 w(σ0j). Because of the many-to-one

character of the function w (see assumption 2 of the penalized function h) then the

existence of ν ∈ (0, +∞) is guaranteed. For us to define η and to prove inequality (4.3.3),

we considered two cases

1. ν ≤ δ. Then, we set η = ν;

2. ν > δ. Then, if w(ν) ≤ w(δ), from the on-to-one character of the function w over

(0, δ) (see assumption 3 of the penalty function h) there exists η ∈ (0, δ] such that

w(η) = w(ν). Else, if w(ν) > w(δ) we take η = δ.
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In both cases

w(η) < w(σ0) ∀j = 1, ..., g (4.3.19)

For σ0k > δ and k ∈ {1, . . . , g}, we can see that η ≤ σ0k. On the hand, i.e. when σ0k ≤ δ,

k ∈ {1, . . . , g}, from (4.3.19) we have η < σ0k. Hence it follows that, inequality (4.3.3)

holds.

If minj=1,...,g σj ∈ (0, η), then by taking the definition of w and the assumption (3) on

h into account, we have

EH [eν ] < max
(
1,

w(minj=1,...,g σj)

w(η)

)
= 1

where ψ ∈ Ψ|minj=1,...,g σj ∈ (0, η). If we now consider the definition by prolongation of

Ψ (for σj = 0, ν = −∞), we get

EH [eν ] < 1 ∀ ψ ∈ Ψ̄| min
j=1,...,g

σj ∈ (0, η)

From Lemma (4.3.2) and by noting that y < ey ∀y ∈ < implies

EH [y] ≤ EH [ey] ∀ y ∈ <,

we obtain

EH [ν] ≤ EH [eν ] < 1 ∀ ψ ∈ Ψ̄| min
j=1,...,g

σj ∈ (0, η).

Observe that EH [ν] ≤ EH [ln ev] < 1, and since the function f(y) = ln y is concave, then

applying Jensen’s inequality we get

EH [ν] ≤ ln EH [ev] < 0.

Therefore

EH [ν] < 0 ∀ ψ ∈ Ψ̄| min
j=1,...,g

σj ∈ (0, η)

therefore the Lemma proved.
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Lemma 4.3.3 is important for the proof of consistency of the estimator ψ̂ and illus-

trates that the true state of nature ψ0 is indeed the global maximum.

For ψ ∈ Ψ let us define the following functions





w1(y, ψ, ρ) = supψ′ ,|ψ′−ψ|<ρ L1(y, ψ
′
), ρ > 0

wn(y1, . . . , yn; ψ, ρ) = supψ′ ,|ψ′−ψ|<ρ Ln(y1, . . . , yn|ψ′
)

We have the following Lemma

Lemma 4.3.4 (c.f. [9]) For all ψ ∈ Ψ̄ we have

lim
ρ→0+

EH [ln w1(Y |ψ, ρ)] = EH [lnL1(Y |ψ)] (4.3.20)

Let us introduce two results which will be useful to characterize the speed of con-

vergence of the penalized estimator. First, note that since πg =
∑g−1

j=1 πj, the vector ψ

contains 3g − 1 parameters

ψ = (π1, . . . , πg−1, µ1, . . . , µg, σ1, . . . , σg)
T

These 3g − 1 elements is denoted with ψl, l = 1, . . . , 3g − 1.

Let us define

u(Y |ψ) = f1(Y |ψ)

g∏
j=1

h(σj)
1/n

g∏
j=1

(gπj)
C/n

and let us denote by h(s) the s-order derivative of the penalizing function h. In the fol-

lowing, ∂/∂ψ will denote the vector of partial derivatives ∂/∂ψl, l = 1, . . . , 3g − 1, with

respect to the elements ψl, l = 1, . . . , 3g − 1 of ψ. Therefore, by simple computations,

we have the following two Lemmas which are very similar to that presented in [9] with

the exception that we have penalized both the mixing proportion and the variance pa-

rameters. The proofs are stated accounting for the addition of the penalty term for the

mixing proportion.
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Lemma 4.3.5 (c.f. [9]) The means, the variances and the covariances of (∂ ln u(Y |ψ0)/∂ψ)

are

EH

[∂ ln u(Y |ψ0)

∂ψl

]
=





0 if l = 1, . . . , 2g − 1
h(1)(σ0j)

nh(σ0j)
, j = 3g − l if l = 2g, . . . , 3g − 1

varH

[∂ ln u(Y |ψ0)

∂ψl

]
= varH

[∂ ln f1(Y |ψ0)

∂ψl

]
= EH

[∂ ln f1(Y |ψ0)

∂ψl

]2

for all l = 1, . . . , 3g − 1.

covH

[∂ ln u(Y |ψ0)

∂ψl

,
∂ ln u(Y |ψ0)

∂ψm

]

= EH

[∂ ln f1(Y |ψ0)

∂ψl

∂ ln f1(Y |ψ0)

∂ψm

]
(4.3.21)

for all l, m ∈ {1, . . . , 3g − 1}, l 6= m.

Proof. Since

u(Y |ψ) = f1(Y |ψ)

g∏
j=1

h(σj)
1/n

g∏
j=1

(gπj)
C/n

therefore

ln u(Y |ψ) = ln f1(Y |ψ) + 1/n

g∑
j=1

h(σj) + C/n

g∑
j=1

(gπj)

= ln f1(Y |ψ) + 1/n

g∑
j=1

h(σj) + gC/n (4.3.22)

and

∂ ln u(Y |ψ)

∂ψl

=





f ′1(Y |ψ)

f1(Y |ψ)
if l = 1, . . . , 2g − 1

f ′1(Y |ψ)

f1(Y |ψ)
+

h(1)(σj)

nh(σj)
, j = 3g − l if l = 2g, . . . , 3g − 1.

thus we have that

EH

[∂ ln u(Y |ψ0)

∂ψl

]
=





0 if l = 1, . . . , 2g − 1
h(1)(σ0j)

nh(σ0j)
, j = 3g − l if l = 2g, . . . , 3g − 1.
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Additionally we have that

∂ ln f1(Y |ψ)

∂ψl

=
f ′1(Y |ψ)

f1(Y |ψ)
for l = 1, . . . , 3g − 1.

therefore we have the result that

varH

[∂ ln u(Y |ψ0)

∂ψl

]
= varH

[∂ ln f1(Y |ψ0)

∂ψl

]
= EH

[∂ ln f1(Y |ψ0)

∂ψl

]2

for all l = 1, . . . , 3g − 1.

From the definition of the covariance the result

covH

[∂ ln u(Y |ψ0)

∂ψl

,
∂ ln u(Y |ψ0)

∂ψm

]

= EH

[∂ ln f1(Y |ψ0)

∂ψl

∂ ln f1(Y |ψ0)

∂ψm

]

for all l,m ∈ {1, . . . , 3g − 1}, l 6= m, immediately follows.

Lemma 4.3.6 (c.f. [9]) Let A = {(l, l)|l ∈ {2g, . . . , 3g − 1}} be and index set. Then,

∀ l,m ∈ {1, . . . , 3g − 1} and j = 3g − l we have

EH

[
− 1

u2(Y |ψ0)

∂ ln u(Y |ψ0)

∂ψl

∂ ln u(Y |ψ0)

∂ψm

+
∂2 ln u(Y |ψ0)

∂ψl∂ψm

]

= −EH

[∂ ln f1(Y |ψ0)

∂ψl

∂ ln f1(Y |ψ0)

∂ψm

]

+
1

n

[h(2)(σ0j)

h(σ0j)
+

(h(1)(σ0j)

h(σ0j)

)2]
I(l,m) ∈ A

Proof. We have that

∂2 ln u(Y |ψ)

∂ψl∂ψm

=
1

u(Y |ψ)

∂2u(Y |ψ)

∂ψl∂ψm

− 1

u2(Y |ψ)

∂u(Y |ψ)

∂ψl

∂u(Y |ψ)

∂ψm
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and

∂2 ln u(Y |ψ)

∂ψl∂ψm

=





f ′′1 (Y |ψ)

f1(Y |ψ)
−

(
f ′1(Y |ψ)

f1(Y |ψ)

)2

if l = 1, . . . , 2g − 1

f ′′1 (Y |ψ)

f1(Y |ψ)
−

(
f ′1(Y |ψ)

f1(Y |ψ)

)2

+
h(2)(σj)

nh(σj)
− 1

n

(
h(1)(σj)

h(σj)

)2

, j = 3g − l

if l = 2g, . . . , 3g − 1.

Also we know that p.d.f integrates to 1,

∫
f1(Y |ψ) = 1, (4.3.23)

and if derivatives of equation (4.3.23) is taken with respect to ψ (and interchange deriva-

tive and integral, which can usually be done) we have,

∫
∂

∂ψ
f1(Y |ψ)dY =

∫
f ′1(Y |ψ)dY = 0

and ∫
∂2

∂ψ2
f1(Y |ψ)dY =

∫
f ′′1 (Y |ψ)dY = 0.

Here we show that

∫ [
f ′′1 (Y |ψ0)

f1(Y |ψ0)
−

(f ′1(Y |ψ0)

f1(Y |ψ0)

)2
]
f1(Y |ψ0)dY =

∫
f ′′1 (Y |ψ0)dY − EH

[
f ′1(Y |ψ0)

f1(Y |ψ0)

]2

= 0− EH

[
∂ ln f1(Y |ψ0)

∂ψ

]2

= −EH

[
∂ ln f1(Y |ψ0)

∂ψl

∂ ln f1(Y |ψ0)

∂ψm

]
,

and

EH

[
∂2 ln u(Y |ψ0)

∂ψl∂ψm

]
=





EH

[
∂f1(Y |ψ0)

∂ψl

∂f1(Y |ψ0)
∂ψm

]
if l = 1, . . . , 2g − 1

EH

[
∂f1(Y |ψ0)

∂ψl

∂f1(Y |ψ0)
∂ψm

]
+

h(2)(σ0j)

nh(σ0j)
− 1

n

(
h(1)(σ0j)

h(σ0j)

)2

, j = 3g − l

if l = 2g, . . . , 3g − 1.

therefore we proved the Lemma.

Strong consistency of the penalized MLE is stated by means of the following two

Theorems. They follow the structure of the Theorems proved by Wald (1949) for the

classical MLE over a compact set.
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Theorem 4.3.7 (c.f. [9]) Let S be a closed subset of Ψ̄ such that

S = {ψ ∈ Ψ̄ | ∃{1, . . . , g} so that σj ∈ [0, η)}

and such that ψ0 6∈ S. Then

P
(

lim
n→∞

sup
ψ∈S

Ln(Y1, . . . , Yn|ψ)

Ln(Y1, . . . , Yn|ψ0)
= 0

)
= 1

Theorem 4.3.8 (c.f. [9]) Let ψ̄n = ψ̄(Y1, . . . , Yn) ∈ Ψ̄ be a function of Y1, . . . , Yn such

that
Ln(Y1, . . . , Yn|ψ̄n)

Ln(Y1, . . . , Yn|ψ0)
≥ ρ > 0, ∀ Y1, . . . , Yn, ∀n

Then

P
(

lim
n→∞

ψ̄n = ψ0

)
= 1

Corollary 4.3.9 (c.f. [9]) The penalized maximum likelihood estimator is strongly con-

sistent, i.e. the point ψ̄n which maximizes Ln is such that ψn → ψ0 a.s.

G. Ciuperca et al. (2003) considered the speed of convergence of the penalized estimator,

in this section we will do the same. In their work, it was assumed that

πk 6= 0 and (µk, σk) 6= (µm, σm) for k 6= m, ∀k = 1, . . . , g (4.3.24)

in order to have a non-singular information matrix

I(ψ0) = EH

[(∂ ln f1(ψ0)

∂ψ

)(∂ ln f1(ψ0)

∂ψ

)T ]

Note, since we penalized the mixing proportion πj by the addition of the penalty term
∏g

j=1(gπj)
C , we ensured that the estimates of πj is not on the boundary points of its

parametric space, i.e. πj can never by equal to zero which make the assumption of πk 6= 0

for 1 ≤ k ≤ g unnecessary. Therefore we only need to assume that

(µk, σk) 6= (µm, σm) for k 6= m, ∀ k = 1, . . . , g (4.3.25)
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4.3.2 Main results

Theorem 4.3.10 If the parameters satisfy the condition (4.3.25) and the penalizing

function is such that

h(s)(σ)

h(σ)
is bounded for s = 1, 2, 3 and ∀ σ ∈ {σ01, . . . , σ0n}

then
√

n(ψ̄n − ψ0) is asymptotically normal distributed with mean zero and covariance

matrix I(ψ0)
−1.

Proof. Since ψ̄n is consistent, we write Taylor’s expansion of ∂ lnLn(ψ̄)/∂ψ, in a neigh-

bourhood of ψ0, up to the second order. Hence, we obtain the vector equation

0 =
∂ lnLn(ψ̄n)

∂ψ

=
∂Ln(ψ0)

∂ψ
+ (ψ̄n − ψ0)

T ∂2 lnLn(ψ0)

∂ψ2
+

1

2
Rn(ψ+

n ) (4.3.26)

The vector Rn(ψ+) has the components

Rn(ψ+
n )k = (ψ+

n − ψ0)
T Bk(ψ

+
n − ψ0), k = 1, . . . , 3g − 1

where Bk is a square matrix with elements

Bk(i,j) =
(∂3 lnLn(ψ+

n )

∂ψi∂ψj∂ψk

)
, i, j ∈ {1, . . . , 3g − 1},

and ψ+
n is an intermediate point between ψ̄n and ψ0. Let us define the vector Tk =

Bk(ψ
+
n − ψ0) and the matrix Tn(ψ+

n ) = (T1, T2, . . . , T3g−1). By multiplying (4.3.2) by

1/n, and by considering that the penalized log-likelihood function can be written as

lnLn(ψ) =
n∑

i=1

ln
[
f1(Y |ψ)

g∏
j=1

h(σj)
1/n

g∏
j=1

(gπj)
C/n

]
=

n∑
i=1

ln
[
u(Yi|ψ)

]
,

we obtain

√
n(ψ̄n − ψ0)

T
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=
[ 1

n

n∑
i=1

∂ ln u(Yi|ψ0)

∂ψ

][
− 1

n

∂2 lnLn(ψ0)

∂ψ2
− 1

2n
Tn(ψ+

n )
]−1

. (4.3.27)

Let us now focus on the first term in the bracket of (4.3.27). By means of Lemma 4.3.5,

application of the central limit Theorem on the set of random variables

(
∂ ln u(Yi|ψ0)/∂ψl

)
1≤i≤n

,

l = 1, . . . , 3g − 1 leads to

1√
n

n∑
i=1

∂ ln u(Yi|ψ0)

∂ψl

− 1

n

h(1)(σ0)

h(σ0)
Il≥2g

→ n

(
0, EH

[
∂ ln f1(Y |ψ0)

∂ψl

]2)
, as n →∞

for l = 1, . . . , 3g − 1, with j = 3g − l. Since h(1)(σ0)/h(σ0) is bounded, from (4.3.23) of

Lemma (4.3.5) we have

1√
n

n∑
i=1

∂ ln u(Yi|ψ0)

∂ψl

→

n

(
0, EH

[(
∂ ln f1(Y |ψ0)

∂ψl

)(
∂ ln f1(Y |ψ0)

∂ψl

)T ])
, as n →∞ (4.3.28)

Concerning the terms in the second factor of (4.3.27), ∂2 lnLn(ψ0)/∂ψ2 is equal to

n∑
i=1

[
− 1

u2(Yi|ψ0)

(
∂u(Yi|ψ0)

∂ψ

)(
∂u(Yi|ψ0)

∂ψ

)T

+
1

u(Yi|ψ0)

(
∂2u(Yi|ψ0)

∂ψ2

)]
.

Then, from Lemma (4.3.6) and the strong law of large numbers, we obtain

1

n

∂2 lnLn(ψ0)

∂ψ2
→ −EH

[(
∂ ln f1(Y |ψ0)

∂ψl

)(
∂ ln f1(Y |ψ0)

∂ψl

)T ]
,

as n → ∞ (4.3.29)

For the second of the two, since h(3)(σ0l)/h(σ0l) is bounded, we have

1

n
Tn(ψ+

n ) = o(1). (4.3.30)
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By taking relations (4.3.28), (4.3.29) and (4.3.30) into account, the asymptotic variance

of
√

n(ψ̄n − ψ0)
T is I(ψ0)

−1.

4.4 Conclusion

We discussed how to estimate the parameters of the penalized modified likelihood for

normal mixture model (with unequal variance) in this chapter. The expectation maxi-

mization (EM) algorithm was used for the parameter estimation. Note that the variance

parameter was penalized by the addition of the penalty functions; the inverse gamma

and the inverse chi-square distributions.

The main result of this chapter was the proof presented for asymptotic normality

(see section 4.3). This proof is a vital first step needed to prove the asymptotic null

distribution for the likelihood ratio test use to determine the number of components for

a normal mixture model with unequal variance parameter. However, the proof of the

asymptotic null distribution for the likelihood ratio test is left for future work. Since

the asymptotic null distribution for the likelihood ratio test is an open problem, we

therefore used simulation in chapter 5 to determine the asymptotic null distribution of

the likelihood ratio test.
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5 Penalized Modified Likelihood Approach to Microarray Data

Analysis

In chapter 3 we introduced the mixture model method and chapter 2 explained how

mixture models may be applied to microarray data to determine differentially expressed

genes. Wei Pan et al. used normal mixture models, a nonparametric method, to detect

differentially expressed genes [26, 27, 43]. Their approach implemented a normal mixture

with unequal variances for each component. However, Keifer and Wolfowitz [21] showed

that when applying mixture of normals with unequal variances for each component the

likelihood approaches infinity as one of the variances approaches 0. The issue of fitting

normal mixture with unequal variance was addressed by Hathaway [19], Ciuperca, Ridolfi

and Idier [9]. In this chapter the penalized modified likelihood approach will be presented.

This model, unlike that of Wei Pan et al. circumvents the possibility of the mixing

proportion being on the boundary of the parametric space (that is, πi = 0) and addressed

the issue of normal mixture unequal variances by applying the technique of Ciuperca,

Ridolfi and Idier [9].

Wei pan et al. (2002, 2003) used BIC as a criterion for model selection, to deter-

mine the number of components for the normal mixture model. However, there are no

theoretical justification for the use of either the BIC or AIC model selection criteria for

mixture models. Therefore we used the modified likelihood ratio test proposed by Chen

et al. [6, 7] to test the hypotheses: a 1-component (null hypothesis) versus at least a

2-component model (alternative hypothesis) and a 2-component (null hypothesis) versus

at least a 3-component model (alternative hypothesis). However, the modified likelihood

ratio test of Chen et al. [6, 7] is not applicable in the heteroscedastic sense (that is,

mixture of normal with unequal variances), hence we simulate the null distribution of

the penalized modified likelihood ratio test (c.f chapter 3 page 45, where the simulation
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approach of Thode et al. (1988) was presented).

5.1 Penalized Modified Mixture Model (PMMM)

The null distribution of the penalized modified normal mixture model will be approxi-

mated by simulation. The observed likelihood was defined in chapter 4 as

Ln(ψ|y) =
n∏

i=1

g∑
j=1

πifij(yi|θ)
g∏

j=1

h(σj)

g∏
j=1

(gπj)
C (5.1.1)

where

fij(yi) =
1√
2πσ2

j

exp

{
− 1

2σ2
j

(yi − µj)
2

}
j = 1, . . . , g

is a normal density with mean µj and standard deviation σj. The parameter set of the

mixture is given as

Ψ = (π1, . . . , πj, µ1, . . . , µj, σ1, . . . , σj) (5.1.2)

satisfying that 0 ≤ πj ≤ 1,
∑g

j=1 πj = 1,−∞ < µj < ∞, σj > 0 and the true parameters

defined as ψ0 ∈ Ψ. Furthermore, as in chapter 3 we let

Mg =
{

G(θ) =

g∑
j=1

πjfj(xi|θj) : θ1 ≤, . . . ,≤ θg,

g∑
j=1

πj = 1, πj ≥ 0
}

. (5.1.3)

denote the class of all mixture probability density functions of which components are less

than or equal to g.

5.2 PMMM Simulated Null Distribution

In this section we simulate the null distribution for the hypotheses

H0 : G(θ) ∈ M1 against H1 : G(θ) ∈ M2. (5.2.4)
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and

H0 : G(θ) ∈ M2 against H1 : G(θ) ∈ M3. (5.2.5)

The simulation of the null distribution is done as follows. In the case of hypothesis

(5.2.4) we simulated 1000 replicates of the standard normals N(0, 1) of sample sizes

100, 250, 500, 750 and 1000. Then we fitted 2-components normal mixture with unequal

variances for each of the sample sizes and calculated the penalized modified log likelihood

ratio test (PMLRT) define as

Rn = 2{lnLn(π̂, µ̂1, µ̂2, σ̂1, σ̂2)− lnLn(1/2, µ̂, µ̂, σ̂, σ̂)}. (5.2.6)

where Ln is defined in (5.1.1). A linear regression equation was fitted using the 5 values

of the PMLRT to determine the degrees of freedom as a function of the sample size n

(see section 3.3 of chapter 3). The degrees of freedom of the simulated chi-squared null

distribution as a function of n for hypothesis (5.2.4) are given by

f = 3.1 + 10.2n−0.5. (5.2.7)

Table 5.1 shows the mean, variance and percentiles of the PMLRT for the sample

sizes 100, 250, 500, 750 and 1000 for hypothesis 5.2.4. The percentiles in brackets are

that of the chi-squared distribution with degrees of freedom given by equation (5.2.7),

while those percentiles not in brackets are the ordered simulated percentiles of PMLRT.

We can see from Table 5.1 that the percentiles for the ordered simulated values compares

well with that of the chi-squared distribution. The values for the 50th, 75th, 90th and 95th

percentiles for sample sizes 100, 250, 500, 750 and 1000 are relatively close, suggesting

that we have a good agreement between our simulated and theoretical distributions.

Note that the degrees of freedom of a chi-square distribution are integers, therefore

a gamma distribution with mean 1.55 + 5.10n−1/2 and second parameter 0.5 was used.

This was done because the chi-squared distribution, χ2
f with degrees of freedom f , is a

special case of the gamma distribution G(f/2, 1/2) with parameters f/2 and 1/2.

In the case of the hypothesis (5.2.5) we simulated 1000 replicates from the normal

78



Table 5.1: Mean, variance and percentiles for the penalized modified likelihood, based on 1000
replicates for each sample for testing the hypothesis a 1-component against 2-components.

Sample size 100 250 500 750 1000
Mean 4.00 3.90 3.71 3.33 3.29

Variance 8.05 8.04 7.71 7.03 7.02
Percentiles

50% 3.20(3.45) 3.22(3.08) 3.05(2.90) 2.70(2.81) 2.66(2.76)
75% 5.59(5.51) 5.33(5.04) 5.13(4.80) 4.28(4.69) 4.40(4.63)
90% 8.01(7.93) 7.90(7.37) 7.23(7.08) 6.82(6.95) 6.87(6.87)
95% 9.74(9.65) 9.40(9.04) 9.25(8.72) 8.79(8.56) 8.58(8.50)

The percentiles of χ2
f = G(f/2, 1/2), f = 3.1 + 10.2n−0.5 are displayed in brackets

mixture models

0.5φ(y|0, 1) + 0.5φ(y|2, 1) and 0.2φ(y|0, 1) + 0.8φ(y|2, 1) (5.2.8)

of sample sizes 100, 250, 500, 750 and 1000. We fitted 2-components and 3-components

normal mixture distributions of data simulated from the normal mixture models of (5.2.8)

and evaluate the PMLRT. The PMLRT for hypothesis (5.2.5), is given by

Rn = 2{lnLn(G3(θ̂))− lnLn(G2(θ̂))} (5.2.9)

where G2(θ̂) and G3(θ̂) are the estimates under the null and alternate hypothesis of (5.2.5)

respectively. The linear regression equation for the degrees of freedom as a function of n

was determined to be

f = 4.89 + 11.84n−1/2 + 0.09I, (5.2.10)

where

I =





1 if means are from 0.5φ(y|0, 1) + 0.5φ(y|2, 1)

0 if means are from 0.2φ(y|0, 1) + 0.8φ(y|2, 1).

Table 5.2 depicts the mean, variance and percentiles of the PMLRT for the sample sizes

100, 250, 500, 750 and 1000 for hypothesis (5.2.5). The percentiles in brackets are that

of the chi-squared distribution with degrees of freedom given by (5.2.10), while those
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percentile not in brackets are the ordered simulated percentiles of PMLRT.

Table 5.2 illustrates that the percentiles for the ordered simulated values compares

well with that of the chi-squared distribution. The values for the 50th, 75th, 90th and 95th

percentiles for sample sizes 100, 250, 500, 750 and 1000 are relatively close, suggesting

that we have a good agreement between our simulated and theoretical distributions.

Note that a gamma distribution with mean 2.44 + 5.92n−1/2 + 0.045I and second

parameter 0.5 is equivalent to χ2
f , where f = 4.89 + 11.84n−1/2 + 0.09I.

Table 5.2: Mean, variance and percentiles for the penalized modified likelihood, based on 1000
replicates for each sample for testing the hypothesis 2-components against 3-components.

Sample size 100 250 500 750 1000

Simulated results for 0.5φ(y|0, 1) + 0.5φ(y|2, 1)

Mean 6.11 5.84 5.60 5.33 5.26
Variance 11.92 11.72 11.04 10.69 10.53

Percentiles
50% 5.42(5.50) 5.03(5.07) 4.84(4.85) 4.71(4.75) 4.55(4.69)
75% 8.46(8.03) 7.65(7.50) 7.34(7.23) 7.02(7.12) 7.07(7.05)
90% 10.60(10.86) 11.10(10.25) 9.95(9.94) 9.74(9.81) 9.56(9.72)
95% 11.78(12.82) 12.19(12.17) 12.47(11.84) 11.82(11.69) 11.29(11.60)

Simulated results for 0.2φ(y|0, 1) + 0.8φ(y|2, 1)

Mean 6.00 5.75 5.47 5.25 5.24
Variance 12.03 12.13 11.85 10.84 10.63

Percentiles
50% 5.67(5.41) 5.09(4.98) 4.90(4.76) 4.67(4.66) 4.59(4.60)
75% 7.67(7.92) 7.31(7.39) 7.15(7.12) 7.13(7.01) 7.00(6.94)
90% 9.83(10.73) 10.60(10.13) 10.09(9.82) 9.45(9.68) 9.65(9.60)
95% 12.44(12.69) 12.03(12.03) 11.90(11.70) 11.10(11.55) 11.20(11.46)

The percentiles of χ2
f = G(f/2, 1/2), f = 4.89 + 11.84n−1/2 + 0.09I are displayed in brackets

In the next section we applied the asymptotic null distributions of the likelihood ratio

test for hypotheses (5.2.4) and (5.2.5) to determine the number of components of normal

mixture models with unequal variances. This approach is our contribution to the theory

of mixture models instead of using the model selection criterion BIC. The model selection

criterion BIC has been used to determine the number of components for normal mixture
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model with unequal variances, but to date there has not been any theoretical justification

for the use of the BIC as a model selection criterion.

5.3 Simulating Microarray Data

To mimic the real gene data, we generated data for N = 1176 genes under the following

setup. We used m = 2, n = 6 and simulated 200 differentially expressed (DE) genes. The

choices for N, m and n were made to parallel data from a study, that applied radioactively

labeled DNA microarrays (Friemert et al. 1998) to the mRNA analysis of N = 1176

genes in middle ear mucosa of rats with and without subacute pneumococcal middle ear

infection. The data consists of eight experiments: two (m = 2) DNA microarray were

run with controls while six (n = 6) were run with pneumococcal middle ear infection.

The data for the equally expressed (EE) genes are simulated from N(µi1, σ
2
i1) for

k = 1, . . . , m and N(µi2, σ
2
i2) for k = m + 1, . . . , m + n, where µi1 = µi2 ∼ N(0, 2) and

σi1 and σi2 are generated from Gamma(2, 4), respectively. Note that such generated σi1

and σi2 take different values for each gene and are also different between genes. The data

for DE genes were generated similarly. However, in this case, µi1 and µi2 were generated

from N(0, 2) separately. The variances µi1 and µi2 are generated the same way as in the

EE gene case.

5.4 Application of PMMM to Simulated Microarray Data

The method that will be used to analyze the simulated microarray data is that of Wei

Pan at al. introduced in section 2.3 of chapter 2. The method involved first calculating

the test statistics (5.4.11) and its null distribution (5.4.12)

Zi =

∑m
k=1 Yik/m−∑m+n

k=m+1 Yik/n√
s2

i(1)/m + s2
i(2)/n

=
Ȳi(1) − Ȳi(2)√

s2
i(1)/m + s2

i(2)/n
∼ f1, (5.4.11)
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zi =
Yi(1)pi/m + Yi(2)qi/n√

s2
i(1)/m + s2

i(2)/n
∼ f0, (5.4.12)

where Yi(1) = (Yi1, . . . , Yim) are gene expression from m microarrays under condition

1, and Yi(2) = (Yi,m+1, . . . , Yi,m+n) are from n arrays under condition 2 of a microarray

experiment. Note that m and n are assumed to be even and pi (qi) is a column vector

containing random permutation of m/2, 1’s and m/2, -1’s (n/2, 1’s and n/2, -1’s).

The hypothesis to be tested is

H0 : f0 = f1, there is no gene with altered expression

H1 : f0 6= f1, otherwise (5.4.13)

We therefore fitted 1, 2 and 3-components normal mixture model and calculated Rn

defined in 5.2.6 and 5.2.9 respectively to determine the distributions of f0 and f . Table 5.3

displays the results of the hypothesis test for the number of components for f0 and f .

Hence, the choice for both f0 and f are the 2-components normal mixture model which

are stated below:

f0(z) = 0.01φ(z| − 0.287, 0.056732) + 0.99φ(z| − 0.004558, 0.408122),

f(z) = 0.20φ(z| − 2.442, 0.437032) + 0.80φ(z|0.0062961, 0.485832).

Table 5.3: Hypothesis test for the number of components for the fitted normal mixture models
of z and Z, for the simulated microarray data.

1 vs. 2 component 2 vs. 3 component
f0 4.56 (P < 0.01) 1.22 (P > 0.05)
f 6.78 (P < 0.01) 1.06 (P > 0.05)

Figure 5.1a shows the histograms of z with the fitted normal mixture models, which

shows strong agreement. Similar observation for Z is shown in 5.1b) with the dotted line

being that of the fitted mixture model of f0. Figure 5.2 illustrates the likelihood ratio

statistic as a function of the Z values.

Our main interest for applying the PMMM approach is to determine which genes

are differentially expressed, therefore the median number of false positive (FP ) were
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calculated from the null scores of B = 29 permutations of a data set simulated from the

fitted null distribution f0. Additionally, we compared the results of PMMM to that of

SAM by using the t-test with 500 permutation. Results for SAM were obtained by using

the R-package sam3.0. For the purpose of comparison, the cut-off points s (see section

2.3) of the PMMM approach are specifically chosen to match the number of true positive

(TP ) produced by sam3.0. It can be seen from Tables 5.4 and 5.5 that our method

out perform SAM. Figure 5.3 displayed a graphical comparison of the numerical results

presented in Tables 5.4 and 5.5.

Figure 5.1: Histograms of z, Z and fitted models for the simulated data
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Table 5.4: Values of TP, FP and FDR from PMMM for the simulated data

s MedianFP MeanFP TP FDR%
0.07 0 0.069 196 0.00
0.10 0 0.138 196 0.00
0.15 0 0.310 196 0.00
0.30 2 1.655 201 1.00
0.35 3 3.828 203 1.48
0.40 5 5.621 205 2.44
0.45 14 13.931 210 6.67
0.60 26 25.724 221 11.76
0.70 43 43.207 231 18.61
0.90 68 66.966 248 27.42
1.00 104 103.517 270 38.52

Table 5.5: Values of TP, FP and FDR from SAM for the simulated data

∆ Median FP Mean FP TP FDR%
0.49 3.71 6.496 195 1.90
0.47 4.64 6.496 197 2.36
0.45 6.50 8.352 198 3.28
0.43 7.42 10.208 200 3.71
0.42 8.35 12.064 203 4.11
0.37 11.14 14.848 206 5.41
0.32 23.20 27.840 211 11.00
0.28 33.41 40.832 221 15.12
0.25 45.47 55.680 230 19.77
0.20 69.60 82.592 246 28.29
0.16 107.65 118.042 268 40.17
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Figure 5.2: The likelihood ratio statistic as a function of Z value for the simulated data
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5.5 Application of PMMM to the Rat data

In this section, we apply the penalized modified likelihood method to the rat data of [26].

The data is from a study, that applied radioactively labeled DNA microarrays (Friemert

et al. 1998) to the mRNA analysis of 1,176 genes in middle ear mucosa of rats with

and without subacute pneumococcal middle ear infection. The data consists of eight

experiments: two DNA microarray were run with controls while six were run with pneu-

mococcal middle ear infection. The data was processed by first taking a natural logarithm

transformation for all the observed gene expression levels so that the resulting data is

less skewed. Then, for each microarray, we standardize the transformed gene expression

levels by subtracting their mean and dividing by their standard deviation.

Table 5.6 presents the results of the test of hypothesis to determine the number of

components of the normal mixture models for f0 and f . We choose the 2-components

normal mixture model for both f0 and f which are stated below:

Table 5.6: Hypothesis test for the number of components for the fitted normal mixture models
of z and Z, for the rat data.

1 vs. 2 component 2 vs. 3 component
f0 3.19 (P < 0.01) 0.92 (P > 0.05)
f 3.54 (P < 0.01) 1.16 (P > 0.05)

f0(z) = 0.983φ(z|0.011, 0.4302) + 0.017φ(z|0.297, 0.2632),

f(z) = 0.958φ(z| − 0.032, 0.7342) + 0.042φ(z|0.246, 0.0632).

Figure 5.4a presented the histogram of z and the fitted f0, which do not indicate

strong discrepancy. The histogram of Z and the fitted mixture model are shown in

Figure 5.4b with f0 shown in the dotted line. The chi-square goodness of fit test was

done resulting in p-values of 0.352 and 0.298 for f0 and f respectively, supporting the

claim that the fitted mixture models are f0 and f for the null and alternative density

functions respectively. The constructed LR statistics are plotted in Figure 5.5. It is not

surprising to see as Z moves away from 0, LR(Z) decreases.
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Tables 5.7 and 5.8 report the results from our method and SAM. Figure 5.6 displays

the FDR with respect to different values of TP . For TP ≤ 300, the advantage of our

method over SAM is obvious. For TP > 300, the FDR value of our method is higher

than that of SAM. It is noteworthy that for this data set the number of genes that one

wants to detect should be no greater than 300, hence the PMMM approach provides

statistical significant results compared to that of SAM.

Figure 5.4: Histograms of z, Z and fitted models for the rat data
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Table 5.7: Values of TP, FP and FDR from PMMM for the rat data

s MedianFP MeanFP TP FDR%
0.07 0 0.03 94 0.00
0.10 0 0.07 103 0.00
0.15 0 0.28 113 0.00
0.30 3 3.17 144 2.08
0.35 8 8.75 168 4.76
0.40 12 12.44 178 6.74
0.45 29 27.86 215 13.49
0.60 44 46.17 248 17.74
0.70 65 65.96 288 22.57
0.90 95 95.59 323 29.41
1.00 134 133.83 368 36.41

Table 5.8: Values of TP, FP and FDR from SAM for the rat data

∆ Median FP Mean FP TP FDR%
0.94 4.2 16.73 80 5.23
0.88 9.1 23.71 101 8.97
0.78 11.2 29.98 149 9.96
0.68 19.5 45.32 149 13.10
0.63 25.1 62.76 168 14.94
0.58 34.2 76.70 198 17.26
0.54 49.5 97.62 238 20.80
0.50 57.2 109.47 259 22.08
0.46 75.7 135.27 301 25.13
0.42 93.1 167.35 336 27.70
0.38 132.5 221.04 420 31.54
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Figure 5.5: The likelihood ratio curve for the rat data
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5.6 Conclusion

In this chapter we presented the penalized modified likelihood approach. The advantage

of this approach is that we can implement normal mixture models with unequal vari-

ances. Wei Pan et al. used normal mixture models with unequal variance parameters

without any model justifications. They also used the BIC model selection criterion to

determine the number of components of a normal mixture model. However, there are

no theoretical justifications for the use of the model selection criterion, BIC for mixture

models. For the penalized modified likelihood approach the likelihood ratio test can be

applied to determine the number of components, because the mixing proportion have

been penalized.

In this dissertation we have not determine the theoretical null distribution of the

likelihood ratio test for the hypotheses: A one component normal mixture (H0) against

two components normal mixture (Ha). Two components normal mixture model (H0)

against three components normal mixture (Ha). Hence we simulated the null distribution

of the likelihood ratio test. In chapter 3 section 3.3, the simulation of the null distribution

was explain and the degrees of freedom for the chi-square statistic was determine by the

regression approach of Thode et al. Since the degrees of freedom for the χ2
f distribution

with degrees of freedom f is equivalent to a gamma distribution with parameters f/2

and 0.5, the gamma distribution was used to determine the P -value of the hypotheses

stated above.

The results of the penalized modified likelihood approach were compared to that

of SAM. For simulated data the penalized modified likelihood approach outperformed

that of SAM by comparing the false discovery rates (FDR) (see tables 5.4 and 5.5). The

false discovery rates for the penalized modified likelihood approach were less than that of

SAM. In the case of real data the penalized modified likelihood approached outperformed

that of SAM for true positive (TP ) less than or equal to 300. With TP ≤ 300, the false

discovery rates of the penalized modified likelihood were less than that of SAM (see

tables 5.7 and 5.8).
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6 Modified P -Value Approach to Microarray Data Analysis

In section 2.3 of chapter 2 we presented the p-value approach of Allison et al. (2002),

used to determine differentially expressed genes in microarray data analysis. Our major

contribution in this chapter is that we modified the p-value approach of Allison et al. by

penalizing the mixing proportion. Note that, Theorems 3.3.1 and 3.3.2 of Chen et al.

are not applicable, that is, the asymptotic null distribution is not

1

2
χ2

1 +
1

2
χ2

0,

for test the hypothesis of 1-component against 2-component, and

(1

2
− α

2π

)
χ2

0 +
1

2
χ2

1 +
α

2π
χ2

2,

in the case we test the hypothesis of 2-component against 3-component. Therefore,

the null distribution of the modified p-value approach will be determined by simulation

using the regression approach of Thode et al. (1988). The modified p-value approach was

applied to both simulated and real micoarray data to determine the number of mixing

components of a uniform-beta mixture model by means of likelihood ratio test.

6.1 The modified P -Value Approach

It is known that the distribution of p-values is uniform under the null hypothesis, there-

fore there exist a one component model, implying that the distribution characterizing

the p-values is indeed uniformly distributed. Then we can safely say that the genes in

the study are not differentially expressed. The hypothesis can be express as (c.f. Allison

et al. (2002)):
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H0 : uniformly distributed,

H1 : mixture of uniform and beta distributions. (6.1.1)

To test hypothesis (6.1.1), Allison et al. (2002) used bootstrapping to determine

the number of components in the mixture model of uniform and beta distributions.

The asymptotic null distribution of the likelihood ratio test for the p-value approach of

Allision et al. can be determined by simulation if we penalize the mixing proportion.

The penalization of the mixing proportion is important because hypothesis (6.1.1) can

be easily misinterpreted as being unform if the estimates of the mixing component lie

on the boundary of its parametric space, that is pj = 0. Therefore we modified the

p-value approach of Allison et al. (2002) by the addition of a penalty term for the

mixing proportions as was done in Chen et al. The addition of this penalty term results

in the parameter estimate of the mixing proportion pj not being on the boundary of

the parametric space (i.e. pj = 0), hence circumventing the non-identifiability of the

parametric space.

Let

β(y|r, s) =
Γ(r + s)yr−1(1− y)s−1

Γ(r)Γ(s)
,

denote the beta distribution with parameters r and s, for r = s = 1 we have the

special case of the beta which is uniform U [0, 1]. The modified likelihood function can

be expressed as

Lg =
n∏

i=1

[
p1β(yi|1, 1)

g−1∏
j=2

pjβ(yi|rj, sj)

]
g∏

j=1

(gpj)
C , (6.1.2)

hence the resulting modified log likelihood function is

lg =
n∑

i=1

ln

[
p1β(yi|1, 1) +

g−1∑
j=2

pjβ(yi|rj, sj)

]
+ C

g∑
j=1

ln(gpj), (6.1.3)

where
∑g

j=1 pj = 1, pj ≥ 0 and y represent the p-value from a valid statistical test. From
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(6.1.3) and let g = 2 for simplicity, we are interested in testing the hypothesis

H0 : r2 = s2 = 1

H1 : r2 6= 1 or s2 6= 1. (6.1.4)

Note that in the approach of Allison et al. (2002) the parameters r2, s2 and p2 are not

identifiable under the null as was mentioned early and the null hypothesis lies on the

boundary of the parametric space (p2 = 0).

With the addition of the penalty term C
∑g

j=1 ln(gpj) we may be able to apply The-

orem 3.3.1 of chapter 3, therefore the resulting null distribution is

1

2
χ2

0 +
1

2
χ2

1.

However, it should be noted that we are estimating the parameters p2, r2 and s2 hence the

Theorem 3.3.1 is not applicable. One way to address the problem is to fix r2 preferable

equal to 1.

With this done we will now need to estimate the parameters p2 and s2, noting that

the parameter s2 characterizes the behaviour of the p-values close to zero.

Examining Figure 6.1 we observe that the beta distributions that aptly describe the

behaviour under the alternative hypothesis, that is, where the distribution of p-values

tend to cluster closer to zero are given by β(y|1, 10) and β(y|0.5, 5). For this reason if

we wish to apply the mixture of uniform-beta distributions for p-value approach we can

implement a uniform-beta mixture of the form

p1β(yi|1, 1) +

g−1∑
j=2

pjβ(yi|1, sj),

with modified log likelihood function

lg =
n∑

i=1

ln

[
p1β(yi|1, 1) +

g−1∑
j=2

pjβ(yi|1, sj)

]
+ C

g∑
j=1

ln(gpj). (6.1.5)
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Figure 6.1: Various Beta Distributions
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Therefore the hypothesis to be tested, assuming g = 2, is given by

H0 : s2 = 1

H1 : s2 6= 1. (6.1.6)

However, the asymptotic null distribution is not

1

2
χ2

0 +
1

2
χ2

1

as was shown in Chen et al. in the case of normal mixture models with equality of

variance. We use simulation to determine the null distribution of hypothesis (6.1.6) by

applying the regression method of Thode et al. (1988). Simulation was used because

the theoretical asymptotic null distribution is an open problem as is the case for the

penalized modified normal mixture model (see chapter 5).
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6.2 Simulated Null Distribution of the Modified P -Value Approach

The simulation of the null distribution is done as follows, we generated 1000 replications

of a uniform distribution on the interval [0, 1], for each of the 5 sample sizes: 100, 250,

500, 750, 1000. We then fitted a two component uniform-beta model and evaluated

the modified likelihood ratio statistic. The modified likelihood ratio statistic for the

hypothesis test of a uniform versus a uniform and a beta is define to be

2(l2 − l1) (6.2.7)

where lg is defined in equation (6.1.5). Table 6.1 displays the results for the mean,

variance and percentiles for the sample sizes stated above. From the results stated in

Table 6.1 we see that the simulated results for the asymptotic null distribution is a

χ2 distribution, because the variance is twice the mean. Additionally, the simulated

percentiles are approximately that of the χ2
f distribution in brackets, where f is the

regressed degrees of freedom which are stated below. The regression equation for the

degrees of freedom as a function of the sample size n was evaluated using the means for

each sample size. The regression equation was found to be

f = 1.32 + 4.01n−1/2 (6.2.8)

Table 6.1: Mean, variance and percentiles for the likelihood ratio test for the modified p-value,
based on 1000 replicates for each sample for testing the hypothesis a uniform against a uniform
and one beta distribution.

Sample size 100 250 500 750 1000
Mean 1.69 1.63 1.54 1.49 1.37

Variance 3.52 3.29 3.17 2.84 2.80
Percentiles

50% 0.97(1.12) 0.96(0.98) 0.89(0.91) 0.94(0.88) 0.78(0.86)
75% 2.57(2.38) 2.31(2.17) 2.19(2.07) 2.11(2.02) 1.96(1.99)
90% 4.21(4.11) 4.22(3.84) 3.85(3.70) 3.66(3.64) 3.32(3.60)
95% 5.45(5.44) 5.32(5.13) 5.00(4.98) 5.01(4.91) 4.58(4.87)

The percentiles of χ2
f = G(f/2, 0.5), f = 1.32 + 4.01n−1/2 are in brackets

In a similar fashion if we wanted to test the hypothesis a uniform with a beta distri-
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bution versus a uniform with 2 beta distributions the modified likelihood ratio statistic

are defined as

2(l3 − l2). (6.2.9)

Table 6.2 depicts similar results as shown in Table 6.1. However the degrees of freedom

for the hypothesis 2-component versus 3-component for the modified p-value approach is

f = 3.69 + 7.27n−1/2 (6.2.10)

Table 6.2: Mean, variance and percentiles for the likelihood ratio test for the modified p-value,
based on 1000 replicates for each sample for testing the hypothesis a uniform against a uniform
and two beta distributions.

Sample size 100 250 500 750 1000
Mean 4.42 4.14 3.99 3.96 3.93

Variance 8.47 8.16 8.13 7.84 7.73
Percentiles

50% 3.94(3.77) 3.43(3.50) 3.36(3.37) 3.49(3.31) 3.17(3.28)
75% 5.96(5.91) 5.24(5.57) 5.37(5.40) 5.19(5.33) 5.46(5.28)
90% 8.01(8.39) 8.67(8.00) 7.96(7.80) 7.70(7.71) 7.83(7.66)
95% 9.51(10.16) 10.46(9.73) 9.12(9.51) 9.48(9.41) 9.37(9.36)

The percentiles of χ2
f = G(f/2, 0.5), f = 3.69 + 7.27n−1/2 are in brackets

6.3 Application of Modified P -Value to Simulated Microarray Data

To illustrate that fixing r = 1 performs well we simulated data of sample size n = 2, 000

such that 10% of the genes are differentially expressed (DE). In the control and case group

we have a sample size of 10 each, and executed a t-test for each gene, then evaluated

the distribution of p-values by fitting a mixture of uniform and beta distributions seen

in Figure 6.2. The fitted mixture model is given by

0.89999416β(y|1, 1) + 0.10000584β(y|1, 25.997) (6.3.11)

implying that the number of differentially expressed genes are 200 which compares

well with the number of simulated differentially expressed genes which are 200. If r 6= 1,
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Figure 6.2: Histogram of p-value and beta mixture distributions for 2000 simulated genes
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the resulting fitted uniform-beta model was

0.89054436β(y|1, 1) + 0.10945564β(y|0.703, 18.999) (6.3.12)

yielding 219 differentially expressed genes which was out performed by the model that

fixed r = 1. The graphs for both models are shown in Figure 6.2 where model (6.3.11)

is the solid line and model (6.3.12) is the dotted line.

Under the model where r = 1, suppose we believed that the p-value from the distri-

bution of p-values that are less than 0.10 are interesting and worthy of follow-up. The

estimated proportion of these genes that are likely to be false leads is (see section 2.3

page 18 for details about formula)

0.89999416× 0.10

0.89054436× 0.10 + 0.10000584I0.10(1, 25.997)
= 49%

where Ia(r, s) is the cumulative beta distribution with parameters r and s, evaluated at

a. This proportion is 0.490, implying that there exist a 49% chance that any randomly
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selected genes with an ordinary p-value less than 0.10 will be a gene for which there is

no real difference. The proportion not declared interesting that are likely to be genes for

which there is a true significant difference in expression is

0.89999416× (1− 0.10)

0.89054436× (1− 0.10) + 0.10000584[1− I0.10(1, 25.997)]
= 0.008.,

6.4 Application of Modified P -Value to simulated Prostate Data

To mimic the real prostate data we simulated 22,215 genes with the control group having

6 replicates and the case 5 replicates. The simulation of the data was done exactly as

in the section entitled ”Simulating microarray data”. However, for this analysis we

simulated 2,221 DE genes. The fitted uniform-beta model was

0.9β(y|1, 1) + 0.1β(y|1, 105)

and as can be seen in Figure 6.3, this model showed no discrepancy with the data.

Figure 6.3: Histogram of p-value and beta mixture distributions for simulated prostate data
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Furthermore, the number of genes detected by this model is 2,221 which is exactly equal

to the number we simulated.

With the MLE for p and s we have that the estimated proportion of genes that are

likely to be false leads if we assume a threshold value of 0.10 is

0.9× 0.10

0.9× 0.10 + 0.1I0.10(1, 105)
= 47%,

and the proportion not declared interesting that are likely to be genes for which there is

a true significant difference in expression is

0.9× (1− 0.10)

0.9× (1− 0.10) + 0.1[1− I0.10(1, 105)]
= 0.000002.

6.5 Application of Modified P -Value to the Prostate Data

In this section we analyzed the prostate data set consisting 22,215 genes. The data has

a sample size of 6 and 5 for the control and case group respectively, which is exactly the

same as the simulated data. A t-test was done, generating p-values, which were then

fitted by the unform-beta model to characterizing the distribution of the p-values. The

distribution of the p-values is shown in Figure 6.4. From Figure 6.4 it can be seen that

a uniform with one beta does not describe the distribution of the p-values as well as a

uniform with two beta distributions model. To justify the choice of the 3-component

model (a uniform with two beta model) a test of hypothesis was done, resulting in the

rejection of the 2-component model (uniform with one beta), Table 6.3 illustrates the

result. We found 6,753 differentially expressed genes for this prostate data.

Table 6.3: Hypothesis test for the number of components for the fitted uniform-beta mixture
models for the prostate data.

1 vs. 2 component 2 vs. 3 component
8.54 (P < 0.01) 1.67 (P > 0.05)

The uniform-beta model is therefore

0.696β(y|1, 1) + 0.162β(y|1, 90) + 0.142β(y|1, 15).
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Figure 6.4: Histogram of p-value and beta mixture distributions for the prostate data
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As was done before if we assumed a threshold value of 0.10 for which particular genes

are declared ”interesting” and worthy of follow-up study, the estimated proportion of

genes declared interesting that are likely to be false leads is

0.696× 0.10

0.696× 0.10 + 0.162I0.10(1, 90) + 0.142I0.10(1, 15)
= 20.2%,

and the proportion not declared interesting that are likely to be genes for which there is

a true significant difference in expression is

0.696× (1− 0.10)

0.696× (1− 0.10) + 0.162[1− I0.10(1, 90)] + 0.142[1− I0.10(1, 15)]
= 0.045.
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6.6 Conclusion

The Chapter examined the method of Allison et al. (2002) and applied the method of

Chen et al. by adding a penalty term for the mixing proportion we used simulation

to determine the degrees of freedom of the asymptotic null distributions for testing 1-

component against 2-component (2-component against 3-component). By implementing

a test of hypothesis we are statically certain of the distribution characterizing the be-

haviour of the p-values. One important observation that needs to be stated is that by

modifying the mixing proportion the MLE of the mixing proportion cannot be on the

boundary point of the parametric space. We carried out the same calculation as was

done by Allision et al. that are (1) estimating the proportion of genes that are declared

interesting that are likely to be false leads and (2) estimating the proportion of genes

not declared interesting that are likely to be genes for which there is a real difference.

We calculated these estimates when we applied our method to simulated data and the

prostate data and we observed meaningful results.
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7 Summary and Concluding Remarks

In this dissertation we modified the non-parametric normal mixture method of Wei Pan

et al. for detecting differentially expressed genes in microarray data. In applying our

modified non-parametric method, the penalized modified likelihood approach, we sim-

ulated the asymptotic null distribution of the likelihood ratio test for heteroscedastic

normal mixture models where the mixing proportion and the variances were simultane-

ously penalized. Note that Wei Pan et al. used the model selection criterion BIC to

determine the number of components in their normal mixture model. However, the BIC

has no theoretical justification for mixture models.

The penalization techniques used in this dissertation was introduced by Chen et al.

and they penalized the mixing proportion so that the asymptotic null distribution can

be determined theoretically. In the non-parametric approach of Wei Pan they used

heteroscedastic normal mixture models without addressing the unboundedness of the

likelihood. Ciuperca et al. addressed the unboundedness of the MLE of the variance

parameters with the addition of a penalty function for the variances. We combined

both techniques so that we addressed the issues of non identifiability of the parameters

under the null hypothesis and the unboundedness of the log likelihood simultaneously.

Therefore our approach, the penalized modified likelihood approach is an important

contribution to area of mixture models.

The proof that the penalized modified likelihood ratio statistic is asymptotically nor-

mal was presented in this dissertation. Asymptotical normality is an important property

needed to prove the asymptotic null distribution of the penalized modified likelihood

ratio statistic which was not proven in this dissertation. Since we did not prove the

asymptotic null distribution of the penalized modified likelihood ratio test, we simulated

the asymptotic null distribution and used the regression method of Thode et al. to
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determine its degrees of freedom.

The penalized modified likelihood approach for mixture of normal distribution with

unequal variance was then used to determine the number of components for the null and

alternative distributions for simulated and real world data. The results of the penalized

modified likelihood approach were then compared to that of SAM. The results for the

penalized modified method was found to out perform that of SAM.

In addition to the modified likelihood approach, we studied the p-value approach for

detecting differentially express genes in microarray data introduced by Allison et al. We

modified the p-value approach of Allison et al. by penalizing the mixing proportion.

Similar argument as that presented above for the penalization of the mixing distribution

in the case of normal mixture model applies. However, we made one simple modification

by fixing the parameter, r = 1 of the beta distribution β(r, s), because we observed

that the distribution β(1, s) describes the behaviour of the alternative hypothesis, where

the distribution of p-values tends to be closer to zero. The challenge of proving the

asymptotic distribution for the modified likelihood ratio statistic was not done in this

dissertation. Therefore, the alternate approach of simulating asymptotic null distribution

was done. The regression method of Thode at al. was used to determine the degrees of

freedom of the asymptotic null distribution of the modified likelihood ratio statistics.

Allison et al. used the bootstrap approach to determine the number of components of

a mixture of beta distribution. However, we simulated the asymptotic null distribution.

Furthermore, Allison et al. did not state the empirical null distribution for the likelihood

ratio test used to determine the number of components of the mixture of uniform and

beta distributions. However, by using simulation we determined that the asymptotic null

distribution has a χ2 distribution, where the degrees of freedom was determine from the

regression approach of Thode et al.

In the future I hope to prove the theoretical asymptotic null distribution of the pe-

nalized modified normal mixture model. Although the proof for the asymptotic null

distribution of mixture of beta distributions will be more challenging, it is worth my

focused attention. Furthermore, an interesting problem that needs serious consideration

is that of using mixture of t-distributions instead of mixture of normals with unequal

variance to describe the distributions of the null and alternative hypotheses used in the
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non-parametric approach of Wei Pan et al. Additionally, we would need to determine

the power of the modified likelihood ratio test used throughout this dissertation.
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