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Towards the Development of a Coastal Prediction System for the Tampa Bay
Estuary

Heather Havens

ABSTRACT

The objective of this research is to evaluate a coastal prediction system under various real
world scenarios to test the efficacy of the system as a management tool in Tampa Bay.
The prediction system, comprised of a three-dimensional numerical circulation model
and a Lagrangian based particle tracking model, simulates oceanographic scenarios in the
bay for past (hindcast), present (nowcast) and future (forecast) time frames.
Instantaneous velocity output from the numerical circulation model drives the movement

of particles, each representing a fraction of the total material, within the model grid cells.

This work introduces a probability calculation that allows for rapid analysis of bay-wide
particle transport. At every internal time step a ratio between the number of particles in
each individual model grid cell to the total number of particles in the entire model
domain is calculated. These ratios, herein called transport quotients, are used to construct
probability maps showing locations in Tampa Bay most likely to be impacted by the

contaminant.

Vil



The coastal prediction system is first evaluated using dimensionless particles during an
anhydrous ammonia spill. In subsequent studies biological and chemical characteristics
are incorporated into the transport quotient calculations when constructing probability
maps. A salinity tolerance is placed on particles representing Karenia brevis during
hindcast simulations of a harmful algal bloom in the bay. Photobleaching rates are
incorporated into probability maps constructed from hindcast simulations of seasonal

colored dissolved organic matter (CDOM) transport.

The coastal prediction system is made more robust with the inclusion of biological
parameters overlaid on top of the circulation dynamics. The system successfully
describes the basic physical mechanisms underlying the transport of contaminants in the
bay under various real world scenarios. The calculation of transport quotients during the
simulations in order to develop probability maps is a novel concept when simulating
particle transport but one which can be used in real-time to support the management

decisions of environmental agencies in the bay area.

viil



Dissertation Introduction

Tampa Bay is the largest open water estuary in Florida (Hu et al., 2004) and is home to
the 10™ largest port system in the United States (Lewis et al., 1999). Many
anthropogenic stresses to the water quality in Tampa Bay are the result of growing urban
and agricultural watersheds (Bricker et al., 2007) surrounding the bay. Anthropogenic
stresses include dredging to accommodate commercial shipping vessels (Bricker et al.,
2007; Vincent, 2001), non-point source pollution resulting in excess nitrogen loading
(Cross, 2007; Greening and Janicki, 2006; Morrison et al., 2006) and hazardous material
spills (Lewis et al., 1999; Owens and Michel, 1995). As a result, Tampa Bay has been
the focus of major water quality restoration efforts in recent years (Greening and Janicki,
2006). Natural stresses to the water quality in the bay are present in the form of annual
harmful algal blooms of Karenia brevis initiated offshore in the Gulf of Mexico and
brought into Tampa Bay by complex circulation features (Steidinger et al., 1998; Walsh

et al., 2001).

Several monitoring programs regularly sample in Tampa Bay for water quality
parameters such as excess nutrients (Florida Department of Environmental Protection
(FDEP)) and harmful algae (Florida Fish and Wildlife Conservation Commission’s Fish

and Wildlife Research Institute (FWRI)). These sampling programs constitute separate



studies carried out by different agencies and are primarily event response in nature. A
need exists to better understand the transport and fate of these water quality parameters in

Tampa Bay through the development of a real-time water quality monitoring program.

For a coastal monitoring program to exist in real-time a prediction system that is capable
of ingesting real-time meteorological (wind speed and direction) and circulation (water
level, salinity and fresh water flux) data needs to be developed. The data acquisition,
processing and quality control should be automated. Numerical modeling of this data
should be periodically ground-truthed with sampling data to determine the accuracy of
the model at predicting the distribution of bay-wide water quality parameters. Results

should be easily accessible to the water management community via the internet.

This dissertation details research towards the development of a coastal prediction system
and its capability as a predictive management tool for Tampa Bay. Predictions made by
the system encompass the simulation of oceanographic parameters in the past (hindcast),
present (nowcast) and future (forecast) time frames (Vincent, 2001). The prediction
system is comprised of a numerical circulation model coupled with a Lagrangian particle
tracking model. A Lagrangian tracking scheme prevents artificial diffusion and allows
for realistic particle movement versus an Eulerian approach which is overly diffusive

(Burwell, 2001).

The circulation model simulates the physical dynamics within the estuary using real-time

oceanographic forcing conditions. The particle tracking model simulates the transport of
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material within the bay using dimensionless particles or with the incorporation of non-
conservative behaviors. Probability maps are generated from the particle tracking
simulations to show probability distributions of material in Tampa Bay based on location.
Four studies are carried out to examine the efficacy of the coastal prediction system as a

management tool.

First, the coastal prediction system is utilized in real-time during a hazardous material
spill with the purpose of alerting authorities to potential high impact areas in Tampa Bay.
Forecast particle distributions are used by FWRI scientists to guide sampling for
increased algal concentrations that could result from the flux of nutrients into the bay.
The effectiveness of the prediction system as an event response tool is examined and the

data are ground-truthed with samples collected by the FDEP and the FWRI.

Second, the spatial distribution of a harmful algal bloom is simulated and compared with
samples collected by the FWRI in 2005 during the peak of a previous Karenia brevis
bloom in Tampa Bay to determine the capacity of the model to capture general features
of the observations. Particles are given a post-processing salinity tolerance based on the
measured salinity range of K. brevis in the field. The capability of the model to
reproduce the dispersion of an event in hindcast mode is critical in the determining the

accuracy of the prediction system.

Third, the distribution of colored dissolved organic matter (CDOM) from the four largest

freshwater riverine sources in Tampa Bay is examined during both wet and dry season

3



conditions. Daily decay rates are imposed on the particles to simulate seasonal CDOM
photobleaching rates measured in the field. The ability to incorporate non-conservative
behaviors into the prediction system distribution maps is a powerful tool to more

precisely describe freshwater content in Tampa Bay.

Finally, the prediction system is evaluated during a FDEP study to forecast the advection
of nitrogen from an urbanized region of Tampa Bay. This study examines the extent to
which circulation in this region affects water quality and subsequently seagrass growth.
The combination of a forecast simulation with field work is an example of adaptive

sampling and is used as a method for verifying the prediction system results.

Together these studies constitute initial parameterizations of a coastal prediction system
developed for Tampa Bay. The prediction system assisted managers in real-time during a
hazardous material spill and successfully predicts the location of a resulting algal bloom.
Hindcast simulations, generated from the prediction system, of a harmful algal bloom
correlate well with samples collected at the time of the event. The distributions of
freshwater and nutrient fluxes are mapped and examined in relation to seagrass coverage.
Each of these studies are conducted with the purpose of better understanding the transport
and fate of water quality parameters in the Tampa Bay estuary while also supporting
management decisions for environmental issues affecting the bay. To this end, an online
component of the coastal prediction system, that incorporates results from the studies that

follow, is in development to better manage response and mitigation efforts in Tampa Bay.



Chapter 1: Particle Tracking Simulation of an Anhydrous Ammonia Spill

Introduction

The hydrodynamics of the Tampa Bay estuary are influenced primarily by astronomical
tides, winds and river runoff (Vincent, 2001). Classical estuarine circulation (Pritchard,
1967) for a partially to well-mixed estuary such as Tampa Bay, has a two-layered flow
with fresh water flowing towards the mouth of the estuary at the surface and saline water
flowing landward at depth. Bay-wide estuarine circulation varies depending on
environmental conditions and is the driving force behind the advection of material within

the bay (Weisberg and Zheng, 2006).

Reliable and accurate observations and predictions of bay-wide circulation assist with
commercial shipping, hazardous material response and environmental management. The
potential for accidental or intentional contamination within Tampa Bay is significant due
to the types of hazardous materials (e.g. petroleum products, sulfuric acid and anhydrous
ammonia) regularly transported through the Port of Tampa by commercial vessels. In the
event of a hazardous material spill within Tampa Bay operational prediction models can

be used to accurately predict, or forecast, the transport of the pollutant (Vincent, 2001).



Circulation models have been developed to simulate the dispersion of pollutants (Dimou
and Adams, 1993; Gomez-Gesteira et al., 1999; Scott, 1997) where transport and fate are
best described by the movement of individual particles rather than their concentration.
Particle transport models generally consist of two components: a hydrodynamic
component to define the kinetics of the flow and a particle tracking component to define
the transport of the pollutant (Benkhaldoun et al., 2007). A coastal prediction system has
been developed for Tampa Bay that interfaces a realistic numerical circulation model
with meteorological forecasts to predict the hydrodynamics within the bay. Overlaid on
top of the circulation model is a Lagrangian particle tracking model which simulates the
transport of contaminants by assigning a particle to a water mass and following the
particle as it is advected by the instantaneous model velocity field (Burwell, 2001;
Meyers and Luther, 2008). Similar prediction systems have been developed to simulate
the transport of contaminants in locations where two-dimensional barotropic circulation
is sufficient (Gomez-Gesteira et al., 1999; Periaiiez, 2004); fully three-dimensional
simulations are necessary to resolve the gravitational circulation controlling the advection

of materials in Tampa Bay (Weisberg and Zheng, 2006).

The Tampa Bay coastal prediction system is evaluated during a hazardous material spill.
The particle tracking model predicts the dispersion of material based on forecast
circulation dynamics and records the distribution of particles at each internal time step.
From these particle distributions probability maps are constructed showing areas in the
bay with the highest potential for contamination. Peridfiez (2004) simulated the

dispersion of contaminants in the Strait of Gibraltar using a similar model configuration
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(hydrodynamics plus particle tracking). No evaluation of their model was performed

during a spill event.

The objective of this paper is to describe the Tampa Bay coastal predication system and
to determine whether the forecasting component of the system can assist responders
during an anhydrous ammonia spill in Tampa Bay. The numerical model and
observational parameters are discussed in the following section. Comparisons between
the particle transport simulation and in situ ammonium measurements are discussed. The
utility of the particle transport simulation in alerting responders to areas of Tampa Bay
with the highest probability of being affected by the spill is evaluated based on sampling
conducted using model output. Conclusions are drawn as to the physical transport
mechanisms affecting the spill and the effectiveness of the model forecast at predicting

this transport.

Methods

The coastal prediction system

A numerical circulation model, based on the Princeton Ocean Model (Blumberg and
Mellor, 1987), is forced with real-time oceanographic observations of the physical
forcing functions for Tampa Bay to produce three-dimensional fields of circulation,
temperature, salinity and water level in past (hindcast) and future (forecast) time frames.

The hindcast model uses quality controlled data for boundary conditions and the forecast

7



model is initialized from the most recent hindcast output fields and holds constant the
final model boundary conditions (except for wind speed and direction which are held at

predicted values obtained from the National Weather Service).

The circulation model used in this study is that developed by Meyers et al. (2007) which
divides the bay into a 70 by 100 grid of cells in the horizontal and 11 sigma levels in the
vertical. The model is forced at the bay mouth with water level obtained from the Tampa
Bay Physical Oceanographic Real-Time System (TB-PORTS) and salinity obtained from
the Environmental Protection Commission (EPC). Winds, evaporation and precipitation
are forced uniformly over the entire model surface. The model simulation is also forced
at discrete points using daily observations of fresh water flux (rivers and canals) obtained
from the US Geological Survey (USGS) National Water Information System and
monthly averaged wastewater discharge obtained from treatment plants. A detailed
description of the model hydrodynamics and evaluation can be found in Meyers et al.
(2007). The instantaneous model velocity fields generated by the circulation model are

used to drive the particle tracking model.

An algorithm developed by Burwell (2001) is used to advect dimensionless particles
according to the simulated three-dimensional circulation model velocity field. Particles,
each representing a fraction of the total hazardous material, are generated by the tracking
model evenly throughout the water column within the grid cell closest to the site of the
spill. A random walk technique (Dimou and Adams, 1993; Korotenko et al., 2004;
Periafiez, 2004; Proctor et al., 1994) is used to simulate the dispersion of material by

8



linearly interpolating the position of each particle between time steps based on the
velocities of neighboring grid cells and summed with a random vector function computed
independently at every time step for each particle (Meyers and Luther, 2008).

Lagrangian particle tracking code records the time and location of particles within the
model grid cells at each time step; for this study the locations of particles are written to

files every 30 min during a 7 day-long simulation.

At each time step the ratio between the number of particles in any individual model grid
cell to the total number of particles in the model domain is calculated. This value is
called the transport quotient, and is a measure of the likely distribution of hazardous
material within Tampa Bay (see Appendix A). Cells with the highest transport quotients
contain particles for the greatest amount of time during the simulation. Conversely, cells
with low transport quotients during the simulation rarely contain particles. From these
transport quotients a probability map can be constructed predicting the areas in Tampa

Bay most likely to be affected by the transport of hazardous material.

Anhydrous ammonia spill

Bulk quantities of liquid anhydrous ammonia, a compound used in fertilizer production,
are transported under high pressure into the Port of Tampa by ship and from there by
pipeline to fertilizer production facilities in surrounding counties. The transport of
material in this manner poses a potential health and pollution hazard should there be an

accidental or intentional release of ammonia into surface waters. Anhydrous ammonia
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rapidly dissolves upon contact with water into ammonium hydroxide; the amount
dissolved into solution is dependent on pH, temperature and salinity of the water.
Ammonium hydroxide remains at the water surface much like an oil slick (Raj et al.,

1974)

The night of 12 November 2007 a rupture in an anhydrous ammonia pipeline occurred
releasing an estimated 5-30 tons of ammonium hydroxide into the Alafia River over a
period of two days. The Alafia River feeds directly into Hillsborough Bay (HB) in the
northeast portion of Tampa Bay and subsequently into Middle Tampa Bay (MTB)
(Figure 1). Two days after the spill strong northwesterly winds (order 20 knots) were
recorded over a 24 h period within HB (Figure 2) influencing the transport of the

hazardous material within Tampa Bay.

The model simulation was initialized on calendar day 18 November 2007 following a
request for assistance by event responders. The modeling effort is split into hindcast and
forecast phases. The Lagrangian tracking model first uses hindcast model output over
model days 13-17 November 2007 to estimate spill position on the day the of model
initialization (Figure 3). The source function (i.e. particle release point) for the model is
the easternmost grid cell in the Alafia River (Figure 4). The tracking model then
continues in forecast mode beginning on 18 November and continues for a 48-h period

(Figure 3.) to predict the transport of ammonia in Tampa Bay.
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The concentration of ammonium particles in the model is conserved throughout the
hindcast/forecast simulation. The non-conservative properties of ammonium in seawater
are ignored and ammonium is considered to be in solution with water however, it should
be noted that ammonium concentrations are affected by chemical and biological activity
and physical processes (Conomos et al., 1979). For example, ammonium hydroxide is
readily consumed by phytoplankton and also interacts with sediment through adsorption
and desorption (Chao et al., 2007). Some toxigenic species of Pseudo-nitzschia spp. have
been shown to increase in number to form a bloom (>100,000 cells L) in coastal waters
rich in ammonium (Bates et al., 1998). Diatoms of the genus Pseudo-nitzschia spp. have
been observed in Tampa Bay since the 1960s and are persistent in the bay at background
concentrations (<1000 cells mL™") (Badylak et al., 2007). Therefore the anthropogenic

introduction of ammonium into the bay is expected to impact phytoplankton growth.

In order to determine the impact the spill had on the ecosystem of the bay, water samples
were collected on two occasions in order to determine (1) the starting concentration
levels of ammonium in the Alafia River and (2) if there was a resulting change to

phytoplankton biomass in Tampa Bay.

In the days immediately following the spill, water samples were collected at the surface
along the Alafia River by scientists at the Florida Department of Environmental
Protection (FDEP) to measure ammonium concentrations in the river. Samples were
collected from stations starting the day after the anhydrous ammonia spill and continuing
for 2 days (Figure 4). Station 1 was located about 1 km west of the spill site. The

11



remaining 9 stations continued westward down the Alafia River toward Tampa Bay.
Station 9 was located in HB at the mouth of the river and station 10 was between two

dredge spoil islands in HB.

Scientists at the Florida Fish and Wildlife Research Institute (FWRI) investigated
phytoplankton concentration and community composition as a result of the increased
ammonium levels in the bay. One water sample was collected from 12 different stations
along the eastern coast of Tampa Bay (Figure 5) on 19 November 2007 at a depth of 0.5
meters and each of the 12 samples were analyzed for algal composition. The FWRI
defines a low algal count as >1x10" cells L', a medium count as >1x10° cells L and a
high count as >1x10° cells L™ (for diatom species). The 12 sample sites were chosen by
the FWRI due to the high probability of increased levels of ammonium in those areas

based on the transport quotients generated by the coastal prediction system.

Results

Model results for 13-20 November 2007 show a plume of ammonium (represented by
Lagrangian particles) moving down the Alafia River and into Tampa Bay (Figure 3). On
the first day tidal currents carry the particles westward to the mouth of the Alafia River
and then back towards the east. This oscillating tidal advection repeats for another day
before the particles enter HB. The ammonium remains localized near the Alafia River
for another day until it is carried southward. The ammonium is heavily concentrated
offshore of Apollo Beach 2 days later. At the end of the simulation the particles are

12



distributed from Apollo Beach to the mouth of the Little Manatee River. The ammonium
particles remained within 2 km of the eastern coast of Tampa Bay for the duration of the

simulation.

Three representative cross sections of the bay are chosen to examine current flow: across
central HB (aligned with the mouth of the Alafia River and bisecting the two dredge
islands), across southern HB and across central MTB (aligned with the mouth of the
Little Manatee River) (Figure 6). At each of these locations the average vertical structure
of the currents over the 7-day simulation is calculated following the methods of Meyers
et al. (2007). An outward (negative) flow is present at all depths along the eastern
boundaries of each of the three cross sections with speed generally increasing toward the
surface, ranging from about 2 cm s near the bottom to 10 cm s™ near the surface. In
central HB the current is flowing inward (positive) within and above the shipping
channel, except for a small area at the surface, with a maximum speed greater than 8 cm
s™. Flow is also positive to the west of the channel at all depths. In southern HB the flow
is uniformly negative within the upper two meters of the water column. Maximum
outflow is about 15 cm s™' on the surface of the eastern coast and decreases with depth.
Two areas of subsurface inflow are present: one is slightly offset to the east of the
channel the other is located along the western edge of the channel. Their maximum
speeds are only about 2 cm s™. In central MTB the vertical structure of the estuarine
circulation breaks down and a horizontal gradient is found with outward flow within and
to the east of the shipping channel. Again, the maximum speed is about 10 cm s™. Weak

inflow (<2 cm s) within the channel is confined to a few small areas along the eastern

13



slope and in the middle of the water column above the channel. A larger, but still weak,
area of inflowing current is located to the west of the channel and extends from the

bottom to about one meter below the surface.

The mean horizontal velocity in the Alafia River during the simulation is calculated as a
function of depth and horizontal position (Figure 7). At the mouth of the river, flow is
outward at all depths. The maximum outflow is at the surface and about 10 cms™. A
layer of inward flowing water with a maximum speed around 4 cm s™ is found to the east
of the mouth and follows the bathymetry of the river upstream creating a two-layered
circulation pattern within the river. The net transport is upstream along the river bottom

and downstream in the surface layers of the river.

A probability map is generated from model day 19 November 2007 of the forecast
simulation (Figure 5). The model grid cells with the highest transport quotient values
(concentration of particles) on that particular model day are the easternmost cells in the
Alafia River and the cells offshore of Apollo Beach. The transport quotients decrease

significantly to the south of the Little Manatee River and within MTB.

The FDEP water samples collected the day after the anhydrous ammonia spill, between
station 2 and station 9 on the Alafia River, contained elevated concentrations of
ammonium (>2 mg LY (Figure 4). Samples were collected from station 2 on the first
day only. On the second day samples from the upstream stations and the westernmost

station (half of the samples collected) contained <I mg L of ammonium. Station 9,
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located directly at the mouth of the river, was the only station where ammonium
concentrations were higher on the second day of sampling than on the first day. The
water samples collected 3 days after the spill contained concentrations of ammonium that
averaged <0.5 mg L™'. Samples from station 10, located within HB between two dredge
spoil islands, never contained greater than trace amounts of ammonium (~0.02 mg L™)
during the 3-day period. Similar concentrations of ammonium (0.01 mg L) were
recorded during another Pseudo-nitzschia spp. bloom (Bates et al., 1998).

Concentrations of ammonium measured at each of the other stations were at least an

order of magnitude higher than those recorded from station 10.

All algal samples were collected by the FWRI along the eastern coast of the bay on 19
November 2007, based on the forecast model estimates of ammonium distribution for
that day (Figure 5). The Pseudo-nitzschia spp. cell counts collected by the FWRI for the
first 3 stations were in the medium range. Samples from station 4, located to the north of
Apollo Beach, contained cell counts of Pseudo-nitzschia spp. that constituted a large
bloom. Cell counts from stations 1-3 to the north of Apollo Beach, station 5 to the south
of Apollo Beach and station 6 at the mouth of the Little Manatee River were in the
medium range for a Pseudo-nitzschia spp. bloom. Samples from the remaining stations

constituted counts at low to background levels.
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Discussion

The particle trajectory hindcast/forecast simulation demonstrates the physical dynamics
in Tampa Bay following the anhydrous ammonia spill. Particles in the Alafia River are
initially subject to tidal action and are retained within the river due to mixing within the
upstream flowing bottom layers of the river (Figure 7). Particles that reach the river
mouth, where flow is outward at all depths, are rapidly transported southward along the
eastern coast of Tampa Bay due in part to the presence of a strong current, seen in each of
the 3 velocity profiles (Figure 6) as well as strong northwesterly winds that act to pile

water along the eastern boundary of the bay (Figure 2).

In order to determine what impact the 2-day wind peak on 15 November 2007 has on the
transport of ammonium, a separate simulation is run holding winds constant at 5 m s
from the northeast. These conditions are those roughly found in the bay on 13
November. Results from this simulation (not shown) suggest that the wind peak plays a
significant role in the transport of material within Tampa Bay. The particles emerge from
the Alafia River on the second day of the simulation and disperse more widely
throughout central HB and MTB. Few particles are found adjacent to the eastern coast.
This demonstrates the need to use a realistic wind field when conducting the model

prediction, even for a time period as short as 24 h.

Analyses of the collected water samples show that the simulation accurately models the
transport of ammonium from the Alafia River. During the FDEP sampling period (13-15
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November) model particles are not transported near the two spoil islands in HB. This is

consistent with the trace levels of ammonium found at station 10 (Figure 4).

The model particle distribution was used by the FWRI to determine the algal sampling
region. Scientists from FWRI measured a medium to large sized Pseudo-nitzschia spp.
bloom on 19 November 2007 in the area where the model simulation indicates a high
concentration of ammonium. The highest concentrations of Pseudo-nitzschia spp. were
collected at station 4 just north of Apollo Beach where the transport quotient values are
also high (Figure 5). Particle concentration in the model decreases to the south and west
of Apollo Beach, consistent with decreasing Pseudo-nitzschia spp. concentrations
collected from the surrounding stations to the south. No sampling was done away from
the eastern coast of MTB, so the narrowness of the model particle distribution cannot be
verified. The Pseudo-nitzschia spp. concentrations continue to decrease, as with the
simulated ammonium concentrations, in southern MTB. The bloom is hypothesized to
have formed due to increased ammonium that was transported out of the Alafia River and
into the bay. The nature of an event response study is such that control measurements are
rarely taken in advance. Consequently, there were no samples collected prior to the
anhydrous ammonia spill to rule out the previous presence of a Pseudo-nitzschia spp.

bloom.

Together the circulation model and the Lagrangian particle tracking model form the
coastal prediction system for Tampa Bay which is capable of simulating the physical

transport of pollutants in the bay. The simulations do not take into account the effects of
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weathering or biological processes on the pollutants. As a result the particle
concentration estimates are likely overestimated by an unknown factor. Future versions

of the prediction system should incorporate realistic biological and chemical processes.

The coastal prediction system is used to support management decisions for several
environmental issues affecting the bay (see Appendix B), specifically to simulate the
trajectory of hazardous material spills for the FDEP and the FWRI. The models are
capable of rapidly producing forecast simulations that, in the event of a spill, can alert
authorities to areas in Tampa Bay with a high probability of being affected by the
hazardous material. The prediction system at present is only accessible to scientists in
the Ocean Monitoring and Prediction Lab (OMPL) at the University of South Florida.
The forecast simulations are compiled into an animation that is provided to end users at
their request. In the future, decision makers will be allowed access to an online
component of the coastal prediction system. Event responders and other end users will
be able to describe a spill scenario by entering criteria into an online form. The
prediction system will ingest the criteria then, using real-time data compiled from TB-
PORTS, display a 48 h simulation predicting how winds and currents will move the
material around Tampa Bay. The ability to quickly set up custom scenarios will help

manage response and mitigation efforts in real-time during an actual spill.
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Figure 1 Bathymetric map of the Tampa Bay estuary. Tampa Bay can be divided into
four quadrants: Old Tampa Bay (OTB), Hillsborough Bay (HB), Middle Tampa Bay
(MTB) and Lower Tampa Bay (LTB). A shipping channel runs from LTB through the
central axis of the bay into MTB before splitting into two channels, one going to OTB the
other to HB. The Alafia River drains the Hillsborough County watershed and empties
into the eastern side of HB. An anhydrous ammonia spill occurred within the Alafia
River and was transported into HB.
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Figure 2 A National Oceanic and Atmospheric Administration (NOAA) plot showing
winds in Hillsborough Bay from 12-20 November 2007. The plot shows wind speed
(m/s) and direction (true) of winds during the week-long simulation. Wind speed (red)
and wind gusts (blue) are overlaid on top of each other. The direction of winds is
represented by hatch marks.
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Figure 3 Frames from a numerical model simulation initialized on 18 November 2007
following an anhydrous ammonia spill in the Alafia River. The frames show the
transport of model particles, representing ammonium, from the Alafia River in eastern
Hillsborough Bay into Middle Tampa Bay. The simulation is run in hindcast mode from
13-17 November and in forecast mode from 18-20 November. The time stamp is in
UTC. Wind speed (m/s) and direction (indicated by arrows) are shown for each frame.
The scale represents the depth of the particles in the water column with values to the left
of the scale being at the surface progressing to values to the right of the scale being at the
bottom.
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Figure 5 Water samples collected by the Florida Fish and Wildlife Research Institute
(FWRI) after an anhydrous ammonia spill. The samples were collected from 12 stations,
shown on the figure, along the eastern coastline of Tampa Bay on 19 November 2007.
The bar graph shows the concentrations of Pseudo-nitzschia spp. counts (cells x 10° L™)
at each station. Labels on the graph indicate the FWRI classifications for medium
(>2x10’ cells L™") and high (>1x10° cells L") cell counts (for diatom species). Transport
quotients (Q), shown underlying the FWRI sample locations, are calculated for each
model grid cell on 19 November 2007 and range on a scale from zero (low probability of
finding a particle in a grid cell) to one (high probability of finding a particle in a grid
cell). The highest concentrations of Pseudo-nitzschia spp. were collected from station 4
where the Q values are also high. Particle concentrations decrease south of station 5,
consistent with decreasing Pseudo-nitzschia spp. concentrations.
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Figure 6 Vertical profiles of model output net velocities for three locations within Tampa
Bay: across central Hillsborough Bay (aligned with the mouth of the Alafia River and
bisecting two dredge islands in Hillsborough Bay), across southern Hillsborough Bay and
central Middle Tampa Bay (aligned with the mouth of the Little Manatee River). The
shaded region shows the bathymetry at the given locations, with the deep incision in each
being the dredged shipping channel. Currents flowing inward (into the bay) are
represented by positive velocities while outward currents (out of the bay) are represented
by negative velocities. Velocities are incm s .
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Figure 7 Vertical profile of model output net velocities for the Alafia River. The shaded
region shows the bathymetry in the river. Currents flowing upstream are represented by
positive velocities while outward downstream currents are represented by negative
velocities. Velocities are in cm s™.
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Chapter 2: Lagrangian Particle Tracking of a Toxic Dinoflagellate Bloom

Introduction

Toxic blooms, resulting from large numbers of the unarmored dinoflagellate Karenia
brevis, are an almost annual occurrence along the West Florida Shelf (WFS) (Steidinger
et al., 1998; Walsh et al., 2001) with observations of colored water and fish kills dating
back to 1844 (Tester and Steidinger, 1997). Blooms of brevetoxin producing K. brevis
are responsible for neurotoxic shellfish poisoning, fish kills and respiratory irritation
(Magaiia et al., 2003). The economy of Florida is impacted from these recurring blooms
in the form of shellfish bed closures, medical costs, loss of tourism and disposal of dead
fish (Kirkpatrick et al., 2004). A forecast system to predict the transport of these blooms

could help alleviate some of these economic impacts.

In order to understand and predict the transport of harmful algae in Tampa Bay, some
knowledge of the dynamics of bloom initiation and development is necessary.
Background concentrations of Karenia populations are ubiquitous in Gulf of Mexico
waters (Geesey and Tester, 1993) and certain physical factors are necessary to initiate the
development, maintenance and transport of K. brevis blooms (Steidinger and Haddad,

1981) once concentrations exceed background levels. Optimum growth conditions for K.
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brevis in the field occur in water with temperatures between 20-28° C and salinities of 31-
37 (Steidinger and Ingle, 1972); this species does not typically bloom in salinities <24
(Maier Brown et al., 2006). During daylight hours K. brevis cells concentrate in the
upper water column, due to a positive phototactic response (Heil, 1986), where transport
and dispersion are subject to local winds and currents (Tester and Steidinger, 1997). K.
brevis blooms originate 18-64 km offshore of the Florida coast (Steidinger, 1975) and are
concentrated and transported inshore by complex interactions between coastal currents,
wind-driven circulation and shelf features (Steidinger et al., 1998). Sampling from a
1971 bloom in Tampa Bay indicated that K. brevis cells enter the bay from the Gulf of

Mexico via a dredged shipping channel (Steidinger and Ingle, 1972).

Tampa Bay is a drowned river bed estuary, about 50 km in length and covering more than
10° km? (Zervas, 1993). A dredged shipping channel runs along the axis of the bay
extending from Lower Tampa Bay (LTB) into Middle Tampa Bay (MTB) before
splitting, one fork going west into Old Tampa Bay (OTB) and one fork going east into
Hillsborough Bay (HB) (Figure 8). The buoyancy driven circulation within Tampa Bay
is typical of an estuarine system, with mean flow of saline Gulf of Mexico water into the
bay along the bottom and mean flow of fresh water out of the bay at the surface (Meyers
et al., 2007; Weisberg and Zheng, 2006). Water exchange with the Gulf of Mexico
occurs at the mouth of the bay, with mean inflow through Egmont Channel and mean
outflow through both Egmont and Southwest Channels (Meyers et al., 2007). K. brevis
cells are thought to accumulate at fronts along the WFS during upwelling favorable

conditions (Stumpf et al., 2008) and enter Tampa Bay on the inflowing current through
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Egmont Channel (Steidinger and Ingle, 1972). Monitoring programs have recently
become operational in the Gulf of Mexico and Tampa Bay to predict the onset and

transport dynamics of K. brevis blooms.

A Harmful Algal Bloom (HAB) monitoring program in the Gulf of Mexico and Tampa
Bay is overseen by scientists at the Florida Fish and Wildlife Research Institute (FWRI).
As part of the program, water samples are collected by volunteers and sent to scientists at
FWRI for microscopic analysis to determine K. brevis cell counts (Heil and Steidinger,
2009). Cell counts are grouped into categories based on potential ecological effect:
counts <10 cells L™ are considered background level, shellfish beds are closed when
counts exceed 5 x 10° cells L™, fish kills can occur at concentrations of 5 x 10* cells L™
or greater and water discoloration becomes apparent with concentrations >10° cells L™
(Walsh et al., 2002). Sampling becomes more vigorous (i.e. increased frequency and

number of samples collected) following reports of a bloom or bloom impacts.

The process of determining cell concentrations from samples is laborious and costly; a
more interactive monitoring system, that combines field data with dynamic modeling,
would provide a more useful management tool. One such system, the NOAA Gulf of
Mexico HAB Operational Forecast System, reports, in the form of weekly bulletins, the
predicted spatial extent, movement and intensification of HABs in the Gulf of Mexico
(Fisher et al., 2006). The heuristic forecast model utilizes a combination of satellite
imagery and wind predictions to simulate the extent and impact of K. brevis blooms in
the Gulf of Mexico (Stumpf et al., 2009). Model forecasts from this system are verified
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with FWRI cell counts, however the only boundary condition used in their model to

determine the transport of these cells is predicted wind speed and direction.

Prediction systems that are capable of fully three-dimensional numerical simulations (i.e.
(Decker et al., 2007)) using observations of multiple boundary conditions (e.g. daily
winds, freshwater inflow, water level and salinity) are needed to guide HAB monitoring
which, in Tampa Bay, at present relies predominantly on the collection of water samples
in response K. brevis impacts (e.g. fish kills, discolored seawater or reports of respiratory
irritation) with little advanced warning (Heil and Steidinger, 2009; Schofield et al., 1999).
A prediction system capable of accurately forecasting bloom transport, based on
underlying circulation dynamics, would assist health officials and environmental

managers with the mitigation of health concerns and economic loses.

Numerical circulation models simulate the physical dynamics that transport toxic HABs
into and within coastal waters. Franks and Signell (1997) use a circulation model
developed from Blumberg and Mellor (1987) coupled with a biological model to simulate
the initiation of toxic Alexandrium tamarense blooms in the Gulf of Maine. Lagrangian
particle tracking models are also accurate tools for determining the initiation (Chen et al.,
2007a) and transport (Cerejo and Dias, 2007; Yanagi et al., 1995) of harmful algae.
Lanerolle et al. (2006) use a two-dimensional numerical model and Lagrangian particle
tracking to simulate the transport of K. brevis in response to along-shore wind stresses in

the Gulf of Mexico. Three-dimensional simulations are necessary to resolve the
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gravitational circulation controlling the advection of materials in Tampa Bay (Weisberg

and Zheng, 2006).

Here, a coastal prediction system, comprised of a three-dimensional numerical circulation
model coupled to a Lagrangian particle tracking model, is evaluated to determine the
capacity of the model to capture the general features of a 2005 K. brevis bloom in Tampa
Bay. The circulation model is driven with hindcast forcing parameters (surface wind
stress and freshwater flux) to reproduce the underlying circulation dynamics present in
the bay during the 2005 K. brevis bloom. Vertical profiles of the instantaneous velocity
fields generated by the circulation model show transport mechanisms for various sections
of the bay. These velocity fields drive a Lagrangian particle tracking model (Meyers and
Luther, 2008) which simulates the transport of K. brevis cells within Tampa Bay by
following particles, each representing a fraction of the biological material, as they are
advected throughout the model domain. Probability maps, constructed from the particle
transport simulations, show locations in Tampa Bay that are most likely to be impacted
by the bloom. The resulting probability maps are compared with cell concentrations in K.

brevis samples collected during the peak of the 2005 bloom.

A salinity tolerance is placed on the particles when constructing the probability maps to
simulate somewhat realistic biological behavior as particles encounter different water
masses. This study does not incorporate an all-inclusive biological model and, as such,
several biological parameters, including vertical movement by K. brevis with light, are

not considered.
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The objective of this paper is to evaluate the hindcasting capability of a coastal prediction
system to simulate the basic spatial patterns of an observed K. brevis bloom in the Tampa
Bay estuary. The parameterizations of the numerical circulation model and the particle
tracking model are discussed in the following section. Comparisons between the particle
transport simulations and observations of in situ K. brevis concentrations are discussed.
An evaluation of bay-wide probability maps which illustrate the likelihood of K. brevis
occurrence in Tampa Bay is performed to determine the utility of the simulations as event
response tools. Finally, conclusions are drawn as to the physical mechanisms involved in

the transport of the 2005 K. brevis bloom within Tampa Bay.

Methods

Numerical circulation model

The circulation model is a primitive equation numerical model adapted from the
Princeton Ocean Model (Blumberg and Mellor, 1987) for Tampa Bay (Galperin et al.,
1991; Vincent, 2001). The circulation model domain is divided into a grid of 70 by 100
cells in the horizontal and 11 sigma levels in the vertical. The model is initiated with
hindcast boundary conditions that have been quality controlled. The model is forced at
the bay mouth with water level obtained from the Tampa Bay Physical Oceanographic
Real-Time System (TB-PORTS) and the University of South Florida Coastal Ocean
Monitoring and Prediction System (COMPS) and salinity obtained from the
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Environmental Protection Commission (EPC). The model simulation is also forced at
discrete points using daily observations of fresh water flux (rivers and canals) obtained
from the US Geological Survey (USGS) National Water Information System and
monthly averaged wastewater discharge obtained from treatment plants. The model
simulates the hydrodynamics and velocity fields in Tampa Bay; a detailed description of

the model hydrodynamics and evaluation can be found in Meyers et al. (2007).

The vertical structure of the instantaneous horizontal velocity fields is averaged over a
three month period (June-August 2005) to examine mean current flow across sections of
the bay. Four representative cross sections are chosen: across the mouth of Tampa Bay,
across Middle Tampa Bay (aligned with the Little Manatee River), across the mouth of
Hillsborough Bay and across the mouth of Old Tampa Bay. For the north-south (v)
component of the horizontal velocity, positive values represent northward current flow
(into the bay); negative values represent current flow directed southward (out of the bay).
For the east-west (u) component of the horizontal velocity, positive values represent an
eastward component to the current flow; negative values represent a westward
component to the current flow. The velocity fields generated by the circulation model are

used to drive the particle tracking model of Burwell (2001).

Particle tracking

A Lagrangian based particle tracking method, versus an Eulerian method, has the

advantage of realistic sub-grid scale motion and best approximates movement of particles
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in the bay. Dispersion in the particle tracking model is accomplished with a random walk
technique (Burwell, 2001) using a 4" order Runge-Kutta scheme with model velocity
linearly interpolated to position particles at each model time step. The particle tracking
code records the time and location of particles within the model grid cells at each time
step; for this study the locations of particles are written to files every 60 minutes during
each month-long simulation. For details of this scheme see Havens et al. (2009) and

Meyers and Luther (2008).

Hindcast circulation model output is used to simulate particle transport during the peak
months of the 2005 K. brevis bloom in Tampa Bay: June-August. The tracking model is
initialized at the beginning of each month during a flood tide. Particles are distributed
evenly throughout the water column into the model grid cells across Egmont Channel
based on prior inference that K. brevis blooms enter Tampa Bay through this channel.
Particles mix unless they are flushed out of the mouth at which point they are not allowed

to re-enter the model domain.

As particles are transported between various model grid cells, they are assigned a salinity
based on the salinity of the grid cell they occupy at each time step. A post-processing
salinity restriction is placed on the particles when they are found in grid cells with
salinities that are below the K. brevis tolerance of 24 (Maier Brown et al., 2006;

Steidinger and Ingle, 1972).
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At every internal time step in the simulations, a ratio between the number of particles in
each individual grid cell and the total number of particles in the model domain is
calculated. This ratio, called the transport quotient, is calculated according to the
methods of Havens et al. (2009) but with the additional incorporation of the salinity
restriction (see Appendix A). Grid cells with the highest transport quotients contain
particles for the longest amount of time during that model simulation. Surface
probability maps are constructed from the monthly averaged transport quotients.
Particles with a salinity restriction are not included in the transport quotient calculations.
Probability maps therefore show areas in Tampa Bay that fall within the salinity
tolerances of K. brevis and have the greatest probability of being affected by the bloom

based on circulation dynamics.

Sampling

Water samples were collected during the 2005 K. brevis bloom by FWRI scientists as
part of a routine state HAB monitoring program and in response to reported bloom
sightings and fish kills. Samples were collected at the surface, mid-depth and bottom of
the water column from stations outside and within Tampa Bay from May to August of
2005. Concentrations of K. brevis cells from the collected water samples will be referred
to as background (<10* cells L), low (10°-10 cells L™), medium (10*-10° cells L™") or
high (>10° cells L™"). Low concentrations of K. brevis cells result in commercial shellfish
bed closures, medium concentrations are responsible for fish kills and large

concentrations cause visible water discoloration.
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Results

The three month averaged horizontal current flow at the mouth of Tampa Bay (Figure 9)
through the Egmont Channel is negative (outward) at all depths with a maximum of 70-
75 cm s” near the surface and around 35 cm s™' near the bottom; flow through the
Southwest Channel is positive (inward) along the western boundary, increasing from 10
cm s™' near the bottom to 40 cm s near the surface, and negative throughout the rest of

the channel with a maximum speed of 30-35 cm s™.

Across MTB the average current is northward within and above the shipping channel
increasing from around 2 cm s™ at the bottom of the channel to 14 cm s™ at the surface
and extends west of the channel (Figure 9). Flow east of the channel is to the south with
a maximum speed of more than 14 cm s™ at the surface. There is a westward component
to the flow in MTB to the west of the channel increasing from 2 cm s along the bottom
to 8 cms™ at the surface (Figure 10). There is a weak eastward component to flow
within and above the channel; currents generally are flowing to the north within the
channel. A strong eastward component to the flow is present to the east of the channel
with speed generally increasing toward the surface, ranging from 6 cm s near the bottom

to>12 cm s™' at the surface.

Current flow across the mouth of HB on average is predominately southward and

increases in speed towards the middle of the water column. East of the channel flow is
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strongly to the south along the eastern shore. Peak inflow (10 cm s™) is well to the west
of the channel near the Interbay Peninsula. Two areas of weak inflow (<2 cm s) are
present in the bottom and upper 2 m of the shipping channel and to the east of the channel
near the bottom. Particles enter HB within these two areas of weak inflow and along the

Interbay Peninsula.

Averaged current flow diverges across the mouth of OTB; currents flowing northward
into OTB from MTB are confined to the western boundary of OTB while currents
flowing out of OTB to the south are confined to the eastern boundary of OTB (Figure 9).
There is a strong westward component to the northward flow (maximum 14 cm s™") from
MTB deflecting currents along the western boundary of OTB and while currents flowing
out of OTB are deflected eastward by somewhat weaker flow (maximum 10 cms™ )

(Figure 10).

An animation of the surface particle positions for June 2005 shows particles contained in
LTB during the first week of the simulation (results not shown). On model day 15 of the
simulation the majority of the particles are concentrated within the shipping channel to
northeast of the Sunshine Skyway Bridge. Some particles are transported into the middle
of HB and just south of the Gandy Bridge in OTB by model day 20. The last model day
of the June simulation (Figure 11a) shows: 1) the majority of particles located within
MTB, 2) some particles being transported throughout HB and 3) a small number of

particles traveling north of the Gandy Bridge, none going north of the Howard Franklin
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Bridge. Baywide salinity at the particle locations is generally high (>29) at the end of the

month.

During the first few days of the July 2005 simulation particles at the surface are rapidly
transported along the shipping channel to the north of the Sunshine Skyway Bridge.
Halfway through the simulation the particles are dispersed throughout MTB. By model
day 20 a large number of particles are carried into OTB, most located south of the Gandy
Bridge and some mixed between the Gandy Bridge and the Howard Franklin Bridge;
very few particles are transported into HB. This pattern persists through the end of the
simulation (Figure 11b), with no particles transported north of the Courtney Campbell
Causeway in OTB and very few particles ever making it into HB. Baywide salinity
encountered by the particles at the end of July is becoming fresher, as compared to June,

with a large portion of MTB just above the K. brevis salinity tolerance of 24.

Rapid transport of surface particles along the shipping channel from Egmont Key also
occurs during the initial days of the August 2005 simulation. On model day 10 particles
are concentrated in MTB along the shipping channel have begun to disperse to either side
of the Interbay Peninsula. The majority of particles remain tightly contained within the
shipping channel in MTB on model day 15; a small number of particles are transported
into the middle of OTB and into the middle of HB. The majority of particles remain
concentrated near the Interbay Peninsula by model day 25; some particles are transported
north of the Howard Franklin Bridge in OTB. By the end of the simulation (Figure 11c¢)
few particles were transported into either upper OTB or upper HB. Those particles in
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OTB were concentrated along the coasts between the Gandy Bridge and the Howard
Franklin Bridge. Model baywide salinity at the end of August remains near tolerance

levels in MTB and OTB with increasing salinities toward LTB.

Transport quotients, averaged over the month of June (Figure 12a), are highest along the
southwestern coastline near Conception Key. A lower proportion of particles are found
north of the Sunshine Skyway Bridge within the shipping channel. Transport quotient
values decrease significantly in the rest of the bay for the month of June. Averaged
transport quotients for July (Figure 12b) remain high along the southwestern coastline.
High proportions of particles can also be seen under the Sunshine Skyway Bridge and
contained along the shipping channel in MTB. The highest August transport quotients
(Figure 12c) are tightly contained within the shipping channel. The particle
concentrations decrease slightly to the north near the Interbay Peninsula and near the
entrances to OTB and HB. Model grid cells in OTB and HB contained particles for
proportionately much less time than grid cells in the shipping channel during the three

simulations.

High concentrations (>10° cells L) of K. brevis cells were first detected in January 2005
during routine sampling approximately 15 miles offshore of Tampa Bay in the Gulf of
Mexico. High concentrations of cells were observed in early May at several locations
around Palma Sola and low concentrations (10°-10% cells L™") were observed at Anna
Maria (Figure 13a). High concentrations persisted into the middle of May at Palma Sola
while medium concentrations (10*-10° cells L") were detected the third week in May at
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Anna Maria. One measurement within Tampa Bay, at Indian Key, contained background

concentrations (<10° cells L™") of K. brevis.

High cell concentrations persisted offshore of Palma Sola through June (Figure 13b) as
did medium concentrations at Anna Maria Island. At the end of June high concentrations
were detected at Conception Key and in the MTB shipping channel; low concentrations
were measured near St. Petersburg and background concentrations were measured near

the mouth of the Little Manatee River.

Only background concentrations of K. brevis were detected offshore of Palma Sola
throughout the month of July (Figure 13c); medium concentrations at Anna Maria and
high concentrations in the MTB shipping channel persisted throughout the month.
Samples collected at the beginning of July showed that while previously high
concentrations at Conception Key decreased to medium concentrations, high
concentrations were measured just to the north at Indian Key. Low concentrations were
detected near St. Petersburg. The high concentrations at Indian Key decreased to
medium concentrations in mid-July and persisted through the end of the month. One
sample collected from the Little Manatee River in the middle of the month showed
background concentrations of K. brevis. Background concentrations were also found in
OTB near the Gandy Bridge at the end of the month; this was the only sample collected

from OTB.
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Background concentrations persisted at Palma Sola throughout August (Figure 13d). The
medium concentrations at Conception Key were also present throughout August, while
only background levels were detected at Indian Key. High concentrations were measured
in samples collected at the beginning of August at Anna Maria, while concentrations in
the shipping channel of MTB decreased to the medium range. At the end of August the
concentrations of K. brevis in the shipping channel of MTB and near St. Petersburg had

decreased to background levels.

It should be noted that only one sample was collected from OTB during the 2005 bloom
since there were no reports of fish kills in the area during the bloom and additionally low
salinities typically preclude the survival of K. brevis in this region for any substantial
length of time. Sampling in OTB was conducted the following year during another K.
brevis bloom in Tampa Bay. Those data were collected during August and September

2006 (see Appendix C).

Discussion

An extensive K. brevis bloom was present in Tampa Bay during the summer of 2005.

The bloom entered through the mouth of Tampa Bay and, based on the model results

above, was transported into the bay along the dredged shipping channel; these results are

similar to those of Steidinger and Ingle (1972) from the 1971 bloom.
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The short-term averaged flow (June-August 2005) is outward across both the Egmont
Channel and the Southwest Channel with the exception of a narrow band of inward flow
along the western boundary of the Southwest Channel. This differs from the longer-term
averaged flow which is uniformly inward across the Egmont Channel and uniformly
outward across the Southwest Channel (Meyers et al., 2007). These results suggest, at
least during this short simulation, that high K. brevis cell concentrations first observed in
early May 2005 at Palma Sola traveled northward and entered Tampa Bay through the
Southwest Channel sometime around early June. This cannot be determined conclusively
at this time however, because with the open boundary at the mouth, the circulation model
does not accurately address exchange between Tampa Bay and the Gulf of Mexico
(Weisberg and Zheng, 2006). More evaluations are needed to determine how K. brevis

cells enter Tampa Bay.

Strong axial surface currents transport simulated particles from the mouth of the bay
along the shipping channel, out of LTB, under the Sunshine Skyway Bridge and into
MTB. Broad flow to the northwest extends west of the shipping channel at all depths in
MTB resulting in the westward dispersion of particles shown in the probability maps.
This is agreement with the findings of Meyers et al. (2007), that surface flow converges
(not shown) to the shipping channel both to the south and north of the Sunshine Skyway
Bridge and that a westward component of the flow exists to the south of the Interbay
Peninsula. The westward component of the flow in western MTB explains the
distribution of particle concentrations in the probability maps. The probability maps for

July (Figure 12b) and August (Figure 12¢) show increased concentrations of particles
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west of the shipping channel in MTB. Particles are carried northward into MTB within
and along the shipping channel and deflected to the west where they join with
southwestward flow (not shown) along the western shore (Meyers et al., 2007). An
equally strong counter-flowing current is present along the eastern coast of Tampa Bay;
this current was also observed by Havens et al. (2009). The southeasterly current
explains the low concentrations of K. brevis cells found to the east of the shipping
channel in both the probability maps and in the observations of in situ K. brevis
concentrations. Particles entrained in the negative current are rapidly transported towards

the bay mouth and out of the model domain.

The highest transport quotients, and therefore the areas with the highest probability of
being affected by the bloom, are found along the shipping channel in MTB. Similarly,
the highest K. brevis concentrations sampled within the bay were along the shipping
channel in MTB. These in situ results are in agreement with results from the simulations.
Both show K. brevis cells being concentrated along the shipping channel, mostly within

MTB.

Anecdotal reports suggest that there were no signs of K. brevis impacts (i.e. fish kills,
reports of respiratory distress, etc.) in either OTB or HB during the 2005 bloom. Only
one water sample was collected by FWRI scientists from either OTB or HB during the
three month period when the K. brevis bloom was at its peak in Tampa Bay suggesting
that fish kills were not reported from either of these areas during this period. OTB is not
routinely monitored for K. brevis due to the low salinities typically found in that region
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(see Appendix C). In fact, across the mouth of HB the area of inflowing currents where
particles could enter is very small and restricted to flow along the Interbay Peninsula.
Particles are restricted from entering OTB by divergent currents at the mouth that act to
deflect particles entering from MTB towards the western boundary where they are
entrained in southwestward flow (Meyers et al., 2007). The small number of particles
that were transported into OTB and HB were able to “survive” in the model and did not
encounter salinity restrictions. These results suggest that circulation features and not a
salinity barrier prevented a bloom from forming in the northern parts of the bay. Further

investigation is needed to determine why the bloom was not transported into either area.

It should be noted that a quantitative comparison between the model simulations and the
in situ observations could not be performed due to the scarcity of observations. Sampling
is currently limited due to lack of funding and adequately trained personnel (Heil and

Steidinger, 2009).

The products generated by the numerical circulation and particle tracking models
accurately reproduce the spatial distribution of the in situ samples collected during the
2005 K. brevis bloom. This study is the first of many data calibrations to the models with
the goal of evaluating the coastal prediction system under real world scenarios. With
more robust field evaluations and incorporation of real-time oceanographic data from the
Tampa Bay Physical Oceanographic Real-time System (TB-PORTS), the coastal
prediction system can serve as a useful forecasting tool to accurately and rapidly predict

future bloom events. This interactive HAB forecasting system, comprised of monitoring
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and modeling, will provide greater insight into the transport of recurring K. breivs blooms

in Tampa Bay and can help mitigate the economic impacts resulting from these HABs.
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Figure 8 Bathymetric map of the Tampa Bay estuary with the darkest cuts representing
the dredged shipping channels. Tampa Bay can be divided into four quadrants: Old
Tampa Bay, Hillsborough Bay, Middle Tampa Bay and Lower Tampa Bay. Bridges and

causeways are labeled.
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Figure 9 Vertical profiles of the north-south (v) component of the horizontal current flow
averaged across four locations within Tampa Bay: across the mouth of Tampa Bay,
across Middle Tampa Bay (aligned with the Little Manatee River), across the mouth of
Hillsborough Bay and across the mouth of Old Tampa Bay. The shaded region shows the
bathymetry at the given locations. Currents flowing northward (into the bay) are
represented by positive velocities while southward currents (out of the bay) are
represented by negative velocities. Velocities are in cm s™.
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Figure 10 Vertical profiles of the east-west (u) horizontal current flow averaged across
two locations within Tampa Bay: across Middle Tampa Bay (aligned with the Little
Manatee River) and across the mouth of Old Tampa Bay. The shaded region shows the
bathymetry at the given locations. Positive velocities represent an eastward component to
the current flow; negative velocities represent a westward component to the current flow.
Velocities are in cm s™.

47



*JOJUNOJUD

soronaed oy jey [90Jed 1o1eM A3 JO Ajturfes oy} syuasaidar ojeos oy [, D LN Ul ST dwels Sy oY [, "UOIB[NWIS

[OBd JO ABp [9pOW SB[ AY) UO ‘S[[3D SIAaI( BlUae) Sunuasaidar ‘saonaed [opow jo 1odsuer) 9yl MOYS SOWRIY 1Y)
YL "S00T 1sndny (9) pue Anf (q) ‘ouny () Jo Suruuidaq ay} Je PIZI[eNIul SUONBNWIS [9pow [BILIdWNN TT 94nbi4

=8
o
o

e ({082

48



"G00z Isn3ny (9) pue A[nf (q) ‘Qung (&) 103 sanjea judnonb jpodsuen d3eroAe Moys sdwesy 21y} Y, “([[99 pus

[opow & Ul SIA31q "y Surpuly jo Ajiqeqoxd y3iy) duo o3 (][99 pLIS [9pOW B UI SIA3AQ Y Surpuly Jo Ajiqeqoid mof) 01z
woJj 9[eds & uo d3uer syusnonb podsues] “urewop [opow oy} ur sajonted Jo Joquunu (8101 Y} pPUB [[99 PLIS [BNPIAIpUL
[oBd Ul ‘S[[99 SIAB4Q BluaIe)| Sunuasaidar ‘sojonaed Jo Joquuinu ) UddIMIdq onjel & A1k syudnonb jodsuel] zT auanbi4

Juanonp Jodsuel |

m.Nm. m.Nm. h.Nm.

T

8'e8-

ey

[ e = .
ey —ab S R

éﬁm.\\:ﬂ R

| vz wm

§'Le

e
a

1Ll

49



Cells L™ 7 Cells L'

<10? * <10°
71010t © 103104
" 104100 - 10%10°
>100 ) >08
c d.
A N o 1
Cells L . Cells L
© <108 * <103
103-10* - “103a0t
- 10t0° o10%0°
' >108 . 1 >108
- -
.

Figure 13 Figures showing concentrations of Karenia brevis collected from water
samples at various locations throughout Tampa Bay for the months of (a) May (b) June
(c) July (d) August 2005. The samples were collected by scientists at the Florida Fish and
Wildlife Research Institute in response to reported bloom sightings and fish kills. The
size of the circles indicate the concentration of K. brevis cells in that location and range
from background (<10’ cells L™), low (10°-10* cells L"), medium (10*-10° cells L™") and
high (>10° cells L") concentrations.
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Chapter 3: Dispersion of Colored Dissolved Organic Matter

Introduction

Tampa Bay, the largest open water estuary in Florida, drains a mixed-use watershed
about 4500 km? in size (Zervas, 1993) which plays a large role in determining the type of
organic material deposited into the bay (Chen et al., 2007b). This organic matter enters

into different regions of Tampa Bay through local rivers and other freshwater inputs.

Tampa Bay is comprised of four main regions: Old Tampa Bay (OTB), Hillsborough Bay
(HB), Middle Tampa Bay (MTB) and Lower Tampa Bay (LTB) (Figure 14). A dredged
shipping channel, extending from LTB into MTB, bisects the bay before splitting into
OTB and HB. Freshwater enters the bay primarily through HB and MTB setting up a
buoyancy driven circulation system with mean flow of fresh water out of the bay at the
surface and mean flow of saline Gulf of Mexico water into the bay along the bottom

(Meyers et al., 2007; Weisberg and Zheng, 2006).

High amounts of organic matter in estuaries impact the levels of solar radiation
penetrating the water column (Blough and Del Vecchio, 2002; Corbett, 2007; Moran et

al., 2000). Tampa Bay is characterized by high organic content, therefore solar fluxes are

51



rapidly attenuated with depth (Hu et al., 2004; Kouassi et al., 1990). Colored or
chromophoric dissolved organic matter (CDOM) is the primary factor controlling light
attenuation in Tampa Bay (Chen et al., 2007b). CDOM in surface waters diminishes the
amount of solar radiation able to penetrate the water column resulting in a reduction in
the quantity and quality of the light that reaches the benthic habitat (Corbett, 2007) while

also shielding organisms from UV exposure (Stabenau et al., 2004).

Exposure of CDOM to sunlight results in the photochemical degradation, or bleaching, of
the absorption and fluorescence of CDOM (Blough and Del Vecchio, 2002; Kouassi et
al., 1990; Morris and Hargreaves, 1997). Rates of photobleaching at the surface are
controlled by the amount of light absorbed by the CDOM molecules. Several authors
have described marine CDOM photobleaching rates under varying conditions and at
different locations (Kieber et al., 1990; Kouassi and Zika, 1992; Miller and Zepp, 1995;

Nelson et al., 1998; Shank et al., 2009; Shank et al., 2005).

Coastal areas exhibit varying levels of CDOM concentration depending on seasonal river
flow (Blough and Del Vecchio, 2002). Rivers are the dominant source of CDOM in
Tampa Bay (Stovall-Leonard, 2003), but other pathways include freshwater inputs such
as runoff and groundwater (Coble, 2007; Corbett, 2007). Four major rivers discharge the
bulk (about 85%) of the freshwater supply into Tampa Bay: the Hillsborough River,
Alafia River, Little Manatee River and Manatee River (Boehme and Coble, 2000; Chen

et al., 2007b; Swarzenski et al., 2007). Distribution of CDOM in Tampa Bay is
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dominated by conservative mixing between inputs from the Hillsborough River and

Alafia River (Chen et al., 2007b).

Climatological freshwater discharge rates show seasonally high flow from approximately
June-October during which CDOM abundance is four times greater than during dry
conditions (Chen et al., 2007b). Photobleaching acts as a sink for CDOM, especially
during periods of increased freshwater input (Del Vecchio and Blough, 2002). During
the wet season in Tampa Bay, the buoyancy input from freshwater reduces mixing and
causes the water column to become highly stratified (Burwell, 2001). Decreased mixing
results in a shallow mixed depth, prolonged exposure of CDOM to sunlight at the surface
and greater photobleaching (Blough and Del Vecchio, 2002; Chen et al., 2007b; Nelson
et al., 1998), provided that the light penetration depth is greater than the pycnocline
depth. However, shorter residence times during the wet season act to flush out particles

(Burwell, 2001) and result in greater amounts of “fresh”, or un-bleached, CDOM.

During periods of low freshwater flow, increased vertical mixing limits exposure of
CDOM to solar radiation at the surface (Blough and Del Vecchio, 2002; Chen et al.,
2007b). Turbulent mixing acts to transport CDOM below the solar irradation depth,
which can be shallow in estuaries depending on the organic content of the water (Kouassi
et al., 1990). However, mixing also increases the light penetration depth potentially
leading to photobleaching below the surface. Longer residence times during low flow
conditions which would act to retain CDOM locally for longer periods than during the

wet season.
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An inverse relationship between CDOM and surface salinity in estuaries has been shown
to vary seasonally and between rivers (Stovall-Leonard, 2003) indicating conservative
mixing (Chen et al., 2007b; Coble, 2007; Del Vecchio and Blough, 2004; Hu et al.,

2004). CDOM distribution in Tampa Bay in particular is determined by the

concentration of riverine inputs and the subsequent mixing between river and estuarine
waters (Chen et al., 2007b). For these reasons CDOM can be used as a proxy for mixing
or to trace the freshwater inputs from different riverine sources (Coble, 2007). The use of
CDOM in conjunction with its bleaching rate (on the seasonal time scale) may be an
effective tracer for evaluating the residence time for surface water masses (Nelson and

Siegel, 2002).

Numerical models offer powerful capabilities for prediction and simulation (Huthnance et
al., 1993) and have been used to study and track organic matter in the Gulf of Mexico and
Tampa Bay. The water quality model WASP (Water Analysis Simulation Program) is
used to quantify nutrient loads and water quality in Tampa Bay (Wang et al., 1999). The
Navy Coastal Ocean Model (NCOM) is used as a particle tracking model to follow river
discharge and bio-optics in the Gulf of Mexico (Arnone et al., 2005). A similar particle
tracking model, if applied to Tampa Bay and combined with photobleaching rates, would

provide a better understanding of CDOM distribution and seasonality.

CDOM distribution maps are a tool to assist managers in determining the extent to which

UV penetration, water quality and freshwater flux will affect estuaries and coastal areas
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(Granskog et al., 2007). Hu et al (2004) examined the potential for using satellite
technologies for assessing water quality parameters (including CDOM) and to create
distribution maps in Tampa Bay for monitoring purposes. Knowledge of CDOM
distribution from its source(s) enhances the monitoring of water quality (Chen et al.,
2007b) and provides a better understanding of why some areas of Tampa Bay are more

affected than other areas.

This study is part of the ongoing development of the Tampa Bay coastal prediction
system. The prediction system, comprised of a three-dimensional circulation model
coupled to a Lagrangian particle tracking model, is applied here to simulate CDOM
dispersion in the Tampa Bay estuary during both dry and wet conditions in the bay. The
parameterizations of the coastal prediction system are discussed in the following section.
The incorporation of a CDOM photobleaching rate is discussed. Evaluations of
distribution maps showing the likelihood of bay-wide CDOM dispersion are performed.
Finally, conclusions are drawn as to the seasonal patterns of CDOM transport in Tampa

Bay.

Methods

A numerical circulation model, based on the Princeton Ocean Model (Blumberg and
Mellor, 1987), was developed for Tampa Bay (Galperin et al., 1991; Vincent, 2001) and

produces three-dimensional fields of circulation, salinity and water level in the bay using
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quality controlled boundary forcing conditions. Detailed model hydrodynamics and

evaluation of the model are reported in Meyers et al. (2007).

The circulation model includes a particle tracking algorithm (Burwell, 2001) that advects
dimensionless particles within the model domain, a 70 by 100 grid of cells in the
horizontal and 11 sigma levels in the vertical (Meyers et al., 2007), according to the
simulated three-dimensional circulation field. The particle tracking model incorporates
random-walk diffusion (Dimou and Adams, 1993; Meyers and Luther, 2008) and follows
the dispersion of material in tidal and meteorologically induced flows using a 4™ order
Runge-Kutta scheme with model velocity linearly interpolated to position particles at
each model time step. The addition of random displacement terms to the Lagrangian
particle tracking model and the parameterization of eddy diffusivity allow for effective

modeling of sub-grid scale particle motion (Burwell, 2001).

Boundary conditions from 2007 are chosen to perform a hindcast particle transport
simulation, each particle representing a fraction of total CDOM discharge from four
rivers in Tampa Bay, following the methods of Havens et al (2009). The 2007 model
data set has undergone extensive quality control and 2007 is the last complete year that

historical river flow data is available from the United States Geological Survey (USGS).

Averaged daily river flow rates for 2007 are obtained from USGS for the Hillsborough
River, Alafia River, Little Manatee River and Manatee River and are plotted against

USGS historical averaged flow (Figure 15) to determine whether river flow was typical
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or anomalous during 2007 as compared to the historical trend. From these plots the
period of average lowest flow in 2007 (here called “dry season”) and the period of
average highest flow (here called “wet season”) in 2007 are determined. For purposes of

this study differences in flow rates between the four rivers are neglected.

Each of the model grid cells across the mouths of each of the four rivers (Figure 14) are
initialized with particles uniformly throughout sigma (throughout the water column) and
centered on each cell center. The model outputs the total number of particles in every
grid cell each day by summing the particles in a given grid cell at every internal time step

(Burwell, 2001).

The particle tracking model is initialized both during the dry season and during the wet
season. During dry season simulations 1000 particles are released at the mouths of each
of the four rivers (for a total of 4000 particles). As reported by Chen et al. (2007b)
approximately four times more CDOM is released during the wet season than during the
dry season therefore 4000 particles are released during the wet season simulations from
the mouths of each of the rivers (for a total of 16,000 particles). During the wet and dry
season simulations the particles are allowed to mix for 60 days within the model domain.
Particles flushed out of the model domain near the bay mouth are removed from the

simulation and not allowed to re-enter the model domain.

The particle tracking model records the time and location of each particle within the

model grid cells at each time step during the simulation. These spatial-temporal details
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are written to files every 60 minutes during the 60-day-long simulations. Post-processing
analyses of the particle counts and locations are performed on the output files after each

simulation.

For each model day (every 24 h) post-processing decay rates are applied to particle
counts contained within the surface levels of the model water column (two uppermost
grid cells) to simulate CDOM photobleaching that occurs at the ocean surface (Clark and
Zika, 2000; Vodacek et al., 1997; Whitehead and De Mora, 2000). Specific
photobleaching rates are not available for Tampa Bay. However, a number of other
studies have examined surface photobleaching rates of CDOM absorbance during dry
(Miller and Zepp, 1995; Nelson et al., 1998) and wet (Kieber et al., 1990; Kouassi and
Zika, 1992; Nelson et al., 1998; Shank et al., 2005) conditions in estuarine and
oligotrophic settings (Table 1). Photobleaching rates for this study are determined from
studies in areas with organic fluxes comparable to Tampa Bay. A dry season
photobleaching rate was obtained from work by Miller and Zepp (1995) in a similarly
organic-rich estuary along the Georgia coast during winter conditions. Their
photobleaching rate of 0.0072 d™' is applied to dry season simulations in this study. For
wet season simulations, a photobleaching rate of 0.12 d” from a study by Shank et al.
(2005) in the Cape Fear estuary in North Carolina, also a highly organic system, is

applied.

Following the methods of Havens et al. (2009), post-processing transport quotients are
calculated from the output files (see Appendix A) after photobleaching rates have been
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applied. Transport quotients are ratios between the number of particles in each individual
model grid cell and the total number of particles in the model domain at any given time
of the simulations. Transport quotients are calculated in three-dimensions (X, y and z) for
each model grid cell at each time step in the simulations. The transport quotients are then
averaged over z and displayed in two-dimensions on maps to show locations in Tampa
Bay with the highest CDOM abundance (throughout the water column) during the

simulations.

The results of post-processing analyses (applied decay rate and calculated transport
quotients) on the model simulation output files are maps of CDOM distributions with
incorporated seasonal photobleaching decay rates. These probability maps show areas in
Tampa Bay that are most likely to be affected by CDOM during dry versus wet

conditions based on surface bleaching rates and circulation dynamics.

Results

USGS historical measurements from the four rivers examined in this study show, on
average, 55 years of river flow rates (Figure 14). The lowest average flow rates for the
Hillsborough River and Alafia River have historically been from April-June and
November. In 2007 the lowest averaged flow rates for these two rivers were from April-
June. For the Little Manatee River and Manatee River, the lowest average flow rates
have historically been from April-May and from November-December. The lowest

average flow rates in 2007 for these two rivers were from May-June and from November-
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December. Based on the USGS data from all four rivers, a 60 day period in 2007, from

April-May, is chosen to represent the dry season in this study.

The highest average flow rates measured by USGS at each river occur historically from
August-September. The highest averaged flow rates for 2007 occur in August for the
Hillsborough River and October for the other three rivers. The second highest flow rates
in 2007 occur in August for each of the rivers except the Hillsborough River where the
second highest rates are in September. Based on the overall historical and 2007 river
flow data, the wet season for this study was determined to be a 60 day period from

September-October.

Probability maps showing depth averaged transport quotients for the 2007 dry season
generally show the highest transport quotients, and therefore the areas with the highest
probability of containing CDOM, closest to the rivers from which the particles are
released (Figures 16-19). Transport quotients averaged over the first 30 days of the dry
season (Figure 16a) for particles (CDOM) entering Tampa Bay from the Hillsborough
River are highest in HB at the mouth of the river, at a few locations along the western
coast and above the northern dredge spoil island. Some particles are transported into
MTB. After 60 days (Figure 16b) the areas with the highest CDOM probabilities are
western HB and northern MTB. CDOM entering the bay from the Alafia River during
the dry season is highest in southern HB and along northern MTB for the first 30 days of
the simulation (Figure 17a). After 60 days CDOM is more heavily concentrated south of
the river in HB (Figure 17b) and more widely distributed along northern MTB. CDOM
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released from the Little Manatee River in the dry season is concentrated in northern MTB
and extends southward into central MTB along the shipping channel after 30 days (Figure
18a). The CDOM distribution is more widespread in northern MTB after 60 days (Figure
18b) and has higher probabilities. Particles released from the Manatee River in the dry
season remain tightly contained within the river and just north the mouth in LTB during
the first 30 days of the simulation (Figure 19a) with a few particles being transported
northward under the Sunshine Skyway Bridge. After 60 days (Figure 19b) the
distribution of CDOM remains the same with slightly more particles entering MTB along

the shipping channel.

Probability maps averaged over the 2007 wet season generally show more widespread
CDOM dispersion throughout the study area than the simulations from the 2007 dry
season. Transport quotients 30 days after particles are released from the Hillsborough
River (Figure 16c) are highest along the western coast of HB. High CDOM
concentrations extend across MTB and southwestward along the shipping channel. After
60 days (Figure 16d) the probability distribution is much more widespread with most of
HB, MTB and portions of LTB containing very high to high concentrations of particles
during the simulation. The probability of finding CDOM 30 days after it has been
released from the Alafia River into Tampa Bay during the wet season is highest along the
shipping channel and across northern MTB (Figure 17¢). The proportion of particles in
southeastern HB and throughout MTB increases after 60 days (Figure 17d). After 30
days particles released from the Little Manatee River (Figure 18c) are found in the
highest proportion to the south of the river along the eastern coastline of MTB. High
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concentrations are also found in LTB. The same is true after 60 days of the simulation
(Figure 18d); particles are most likely to be found along the shipping channel to south of
the river. The distribution of particles released from the Manatee River is tightly
contained along the river and along the southern coast of LTB after both 30 days (Figure
19¢) and 60 days (Figure 19d). Some particles are transported into MTB along the

shipping channel.

Composite probability maps are constructed to show the total contributions from the four
rivers during the dry (Figures 20a-b) and wet seasons (Figures 20 c-d) and the overall
bay-wide distribution of CDOM averaged over 30 days and 60 days of model

simulations.

The total riverine CDOM contribution during the dry season shows the highest transport
quotients near the mouths of the four rivers after 30 days (Figure 20a). Moderate
concentrations of CDOM are found throughout HB and extending into northern MTB.
Low concentrations can be seen throughout most of the study area excluding northern
OTB. After 60 days (Figure 20b) the CDOM distribution remains unchanged throughout
the study area but with more transport into OTB. HB and northern MTB contain higher

transport quotients.

The 30 day wet season composite (Figure 20c) shows the highest probabilities near the
river mouths and moderate to high probabilities in western HB and in MTB along the
shipping channel. CDOM distribution after 60 days (Figure 20d) does not change
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drastically although portions of the shipping channel in MTB show slightly increased

concentrations of CDOM as does northern MTB.

Surface salinity maps show average bay-wide salinity during the simulations (Figure 21).
During the dry season, beginning in April (Figure 21a) and continuing through May 2007
(Figure 21b), most of the study area is in the high salinity range (=35) with the exception
of northern OTB and portions of LTB. CDOM released from the rivers during these
months encounter high salinity water due to low freshwater input during this period in
2007. Salinities drop to the 30-35 range throughout LTB, MTB and HB for first 30 days
of the wet season simulations (Figure 21c). Salinities in OTB range from 25-30. At the
end of the wet season (Figure 21d) the proportion of the study area with salinities in the
25-30 range has increased. Northern OTB and HB become much more fresh with some
areas having salinities <25. A portion of western MTB also becomes significantly fresher
in October 2007.

Discussion

CDOM distribution in Tampa Bay is primarily controlled by mixing (Chen et al., 2007b)
and becomes diluted the further it is transported away from its riverine source (Coble,
2007). The ability to discern CDOM away from the coastline is related to seasonal
freshwater input (buoyancy) and the rate at which the CDOM photodegrades over time

with exposure to radiation.
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The surface probability maps, with applied photobleaching rates, show the effect mixing
has on CDOM distribution during both low flow and high flow conditions. In the dry
season salinities reflect the low amounts of freshwater entering the bay. Velocity profiles
(not shown) show that particles are well-mixed and therefore have less exposure to the
applied surface photobleaching rate. In the wet season stratification occurs due to an
influx of freshwater (resulting in lower bay-wide salinities) and particles are exposed to
surface radiation (simulated by the photobleaching rate) for longer periods at the surface.
Higher CDOM concentrations are observed in the wet season than in the dry season and
the distribution is more widespread throughout the study area. This is follows what has
been reported in Tampa Bay (Chen et al., 2007b; Conmy et al., 2004), that CDOM

concentration is inversely proportional to salinity and thus river input.

HB is an area known for its poor water clarity (Hu et al., 2004) and reduced rate of
seagrass expansion (Johansson and Greening, 2000). The highest transport quotients are
found in HB specifically near the Hillsborough River, an area with historical seagrass
loss (Greening and Janicki, 2006) and where little mixing occurs. High transport
quotients are also found in eastern HB near the Alafia River. This region encompasses an
area known as the Kitchen where seagrass meadows have not expanded in recent years
possibly due to poor water quality (Johansson, 2000). This area of eastern HB was
shown by Burwell (2001) to have a significantly longer residence time, in both high and
low streamflow conditions, than along the shipping channel to the west, implying that

CDOM accumulates in this region.
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The transport of particles southward out of HB along the eastern coast of MTB follows
that observed by Havens et al. (2009) in a study which documented the presence of a
strong southwestward flowing current to the east of the shipping channel. Water quality
and color are optimal for seagrass growth in this region of MTB (Johansson, 2000)
supporting the theory that strong currents prevent CDOM concentration in that portion of

the bay, especially during the wet season.

This study is a first step in identifying CDOM seasonal distribution patterns from major
freshwater sources, with the inclusion of a photobleaching rate, in order to determine
which areas will most likely be affected by CDOM in Tampa Bay. The four largest
freshwater sources in Tampa Bay (Hillsborough, Alafia, Little Manatee and Manatee
Rivers) are chosen to represent the sources of CDOM although a significant amount of
freshwater, in the form of runoff and groundwater (Tomasko et al., 2005), enters OTB as
well. Debate exists over the amount of freshwater that enters Tampa Bay through OTB
therefore that area was not considered in this study as a CDOM source. The scarcity of
particles observed in OTB is likely a result of having no freshwater input into OTB; a
separate study of CDOM transport in OTB is warranted (see Appendix B) given the lack

of seagrass recovery in that portion of the bay (Greening and Janicki, 2006).

Photobleaching (or decay) is a function of the amount of radiation absorbed by CDOM
molecules, primarily at the surface, and generally decreases with depth (Nelson et al.,
1998). Given the highly organic nature of Tampa Bay and the degree to which high
CDOM absorption in estuaries restricts photobleaching to a thin surface layer (Blough
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and Del Vecchio, 2002), photobleaching was not considered below the uppermost grid
cells in the model. The biological production (or growth) of CDOM in situ is not

considered in this study.

No comprehensive CDOM datasets were available to ground truth the distribution maps.
Sampling programs in Tampa Bay would need to begin to include CDOM measurements
in their routine sampling in order to have in Situ comparisons with the simulations

(Chuanmin Hu, personal communication).

Among other things, knowledge of CDOM sources and distribution enhances our ability
to monitor water quality (Chen et al., 2007b) and continue seagrass restoration efforts
(Tomasko et al., 2005). Composite CDOM probability distribution maps are useful tools
to guide sampling and ground truth satellite imagery. Tools, such as the prediction
system used in this study, can track the effectiveness of efforts to restore water quality in
Tampa Bay and move toward adaptive monitoring and ecosystem-based management in

the bay.
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Figure 14 Bathymetric map of the Tampa Bay estuary. Tampa Bay can be divided into
four quadrants: Old Tampa Bay (OTB), Hillsborough Bay (HB), Middle Tampa Bay
(MTB) and Lower Tampa Bay (LTB). A dredged shipping channel, running from LTB
to MTB, bisects the bay before splitting into OTB and HB. The Hillsborough River and
Alafia River empty into HB, the Little Manatee River empties into MTB and the Manatee
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River empties into LTB.
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Figure 16 Transport quotients, with applied post-processing photobleaching rate, from
the Hillsborough River simulations. The top two panels (a and b) show averaged
transport quotients from the dry season simulations and the bottom two panels (¢ and d)
from the wet season simulations. Transport quotients are calculated for each model grid
cell and range in scale from zero (low probability of finding a particle in a grid cell) to
one (high probability of finding a particle in a grid cell).
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Figure 17 Transport quotients, with applied post-processing photobleaching rate, from
the Alafia River simulations. The top two panels (a and b) show averaged transport
quotients from the dry season simulations and the bottom two panels (c and d) from the

wet season simulations.
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Figure 18 Transport quotients, with applied post-processing photobleaching rate, from
the Little Manatee River simulations. The top two panels (a and b) show averaged
transport quotients from the dry season simulations and the bottom two panels (¢ and d)
from the wet season simulations.
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the Manatee River simulations. The top two panels (a and b) show averaged transport
quotients from the dry season simulations and the bottom two panels (c and d) from the

wet season simulations.
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Table 1 Surface photobleaching rates (d™') from the CDOM literature for wet and dry
conditions at various estuarine and oligotrophic locations.

Location

Bleaching rate
(wet season)

Bleaching rate
(dry season)

Authors

Sargasso Sea
Everglades, FL
Biscayne Bay, FL
Cape Fear, NC
Sapelo Island, GA

0.011
0.6
0.15
0.12

0.0023

0.0072
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Conclusion

This dissertation expands on the work of Vincent (2001) to further develop and evaluate a
coastal prediction system for Tampa Bay. The 3-D numerical circulation model
underlying the prediction system has been extensively validated by Burwell (Burwell,
2001) and Meyers (2007). A particle tracking subroutine within the numerical model was
developed and validated by Burwell (2001). His work determined that a Lagrangian
based particle tracking method best approximates the true movement of particles in the
bay. This study takes the theoretical application of the coastal prediction system a step
further by incorporating basic biological characteristics onto particle simulations and

evaluating the efficacy of those simulations in real world scenarios.

The prediction system is shown to accurately forecast the physical transport of a
contaminant in Tampa Bay. Biological parameters are then incorporated one at a time in
order to separately evaluate their accuracy for simulating the transport of biological
material within the bay. The incorporation of both a tolerance parameter and a decay rate
are successful in describing the basic transport mechanisms for algae and CDOM

respectively from their sources into the bay.

This work introduces a probability calculation that allows for rapid analysis of bay-wide

particle transport. Transport quotients are calculated at each time step of the simulation
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and are used to compile probability maps of bay-wide particle transport. Providing
environmental managers with these maps enables them to quickly assess areas of highest
impact in the bay without requiring the detailed programming skills and oceanographic
knowledge necessary to build the images. The probability maps can also be tailored to

assist scientists in focusing their sampling efforts in the field.

The previous studies are numerical approximations to reality and should be treated as
alternatives to costly in situ sampling. The forcing scenarios presented represent real
world conditions and provide realistic interpretations of biological transport in Tampa
Bay. The end result is a coastal prediction tool that can be used in real-time to support

the management decisions of several environmental agencies in the bay area.

Future Work

1) Updated versions of the numerical model should include a larger model domain
S0 as to incorporate some particle transport outside of the open boundary at the mouth of
the bay. At present the open boundary condition is set at zero. This constraint traps
particles at the open boundary and does not allow particles to exit the bay and then re-

enter.

2) Further evaluations of the coastal prediction system, either by hindcasting

previous events or a performing nowcast/forecast in real-time, will improve the accuracy
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of model predictions. These evaluations should incorporate other biological parameters

such as sedimentation and growth.

4) Further examination of the strong eastern current along the coastline of Tampa
Bay is warranted given the presence of this current in the velocity profiles of all three

studies.

3) An online component of the prediction system should be developed to allow
environmental managers the ability to describe a specific spill or bloom scenario by
entering a few initialization parameters. This would provide immediate access to model

simulations to assist managers with clean-up or mitigation.
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Appendix A: Transport Quotient Calculation

For any model grid cell within Tampa Bay, the transport quotient (Q) is defined as

QXY= p(x.y.2,) (1)

n(x,y,zt)

N 2)

p(X,y,z,t)=

where, X,y,z are spatial indices within the model grid; t is the time; n is the number of

particles in a given cell at any time and N is the total number of particles released.
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Appendix B: Application of the Coastal Prediction System

Feather Sound Project

Nutrient loading is a significant problem for coastal regions throughout Tampa Bay. The
water quality in one region in particular has been determined to be worse than in the rest

of the bay (Greening and Janicki, 2006).

Feather Sound is a body of water located in the northwestern portion of Old Tampa Bay
(OTB), between the Courtney Campbell Causeway and the Howard Franklin Bridge
(Figure 22). The watershed surrounding Feather Sound is primarily urban and residential
with large areas of impervious cover. High levels of nutrients enter western Feather
Sound via discharge from rivers, runoff from fertilizers applied to lawns and golf courses
and sewage treatment plant outfall (Cross, 2007). Nutrients entering the region,
especially nitrogen which is a limiting nutrient in coastal marine systems (Herbert, 1999),
contribute to increased algal growth. Decomposition of the algal blooms causes
eutrophication, potentially leading to hypoxic or anoxic regions. The result is that
seagrass beds have not recovered as well in Feather Sound as in the rest of Tampa Bay
despite efforts over the last several decades to reduce point and non-point sources of

nitrogen into the bay (Bricker et al., 2007).

The acquisition of real-time data and the ability to perform nowcast/forecast simulations

are becoming the standard for coastal observations and predictions. Referred to as
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Appendix B (Continued)
adaptive sampling by Robinson and Glenn (1999), this predictive method combines
observations with model forecasts and has many applications in the marine user
community. This study details an application of adaptive sampling and demonstrates the
utility of a numerical model as part of a coastal observing network in Tampa Bay,
Florida. The purpose of this study is to determine the extent of nitrogen transport in
Feather Sound. From primary discharge locations the transport and fate of nitrogen is
modeled to examine which regions of Feather Sound are most impacted by increases in
nutrient input. A discussion of the results follows. This information will be beneficial to

understanding the cause of seagrass fragmentation and loss in that region.

Methods

The Florida Department of Environmental Protection (FDEP) has been monitoring the
water quality in Feather Sound for several years. They recently conducted field work
using algal “sentinels” to detect nitrogen from different sources within Feather Sound
(Cross, 2007). Five fresh water discharge locations in Feather Sound were selected in the
FDEP study as the sites to anchor the algal sentinels (Figure 22). One site was selected to
measure the outfall near the Clearwater wastewater treatment plant. Two sites were
selected to measure the discharge from separate rivers, Alen’s Creek and Cross Bayou.
The final two sites measured runoff from two golf courses located along the Feather
Sound coast. The algal sentinels were deployed at each of the five sites on May 14, 2007
and were recovered on May 22, 2007.
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Appendix B (Continued)
The goal of the FDEP algal sentinel study was to determine in what proportion nutrient
sources (i.e. organic versus inorganic) were contributing to nitrogen enrichment in
Feather Sound. By performing an isotopic analysis of the algal tissue a ratio between two
isotopic forms of nitrogen, called the Delta 15-N (3'°N) ratio, was determined. Delta 15-
N ratios have been shown to increase with population density in a watershed (Cabana and
Rasmussen, 1996) and are related to sewage inputs (Hansson et al., 1997). Delta 15-N
ratios were calculated by biologists at the FDEP based on isotopic analysis of the algal
sentinels. A 3'"°N ratio close to zero indicates an inorganic nitrogen source (e.g.,
fertilizer); a '°N ratio greater than 10 indicates an organic nitrogen source (e.g., animal

or human waste) (Cross, 2007).

A coastal prediction system, comprised of a numerical circulation model and a particle
tracking model, is used to simulate the transport of nitrogen from the five fresh water
discharge points used in the FDEP study. Skill assessment of the circulation model as a
forecasting tool was performed by Vincent (2001). A forecast simulation is run
approximately one week prior to the deployment of algal sentinels at the five study sites.
The results from the forecast are to be used to assist biologists from the FDEP with their
nitrogen sampling project in Feather Sound and as an evaluation of the coastal prediction

system as a forecasting tool.

An input file is constructed containing all of the boundary conditions necessary to run the
model in a forecasting mode based on the method of Meyers et al. (2007). The predicted
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Appendix B (Continued)
open boundary water level is computed from local tidal harmonics (Table 1). The
calculated amplitudes and phases are verified to be accurate with the water level from the
Physical Oceanographic Real-Time System (PORTS) Egmont Key station. The forecast
simulations are initially forced with long term averages for temperature (25°C), salinity
(surface: 33.8, middle: 34.1, bottom: 34.3), precipitation (0.42 cmd™), and winds (1.4 ms’
" from 67° true N). Fresh water fluxes are initialized at the beginning of the simulation

with the most recent nowcast data transmission.

Eight hundred particles, each representing a fraction of the total nitrogen input, are
simultaneously released from each of the five discharge locations at the beginning of the
forecast. The particles are used to simulate nitrogen transport from those locations. The
particles are released throughout the water column and are advected throughout the
model domain by instantaneous model velocity fields. The spatio-temporal stamps of the
particles are written to a data file every hour during the eight day simulation. It should be

noted that the particles did not have a sedimentation rate associated with their transport.

Transport quotients are calculated for the model simulation to determine a probability

distribution of nitrogen in Feather Sound (Appendix A). Cells with the highest transport

quotient contain particles for the greatest amount of time during the simulation.
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Appendix B (Continued)

Results

Snapshots taken during the forecast simulation show that nitrogen released from the
treatment plant and Alen’s Creek quickly mix together throughout the water column
(Figure 23). Similarly nitrogen from the two golf course runoff sites mixes together
within a day after entering Feather Sound. Over time nitrogen is transported north and
then west from all of the sites in Feather Sound. Some nitrogen is transported into
northern OTB through a small gap under the western portion of Courtney Campbell

Causeway.

The transport quotients from both simulations show that eight days after simulated
nitrogen particles are released into Feather Sound the parcels of water containing nitrogen
are most likely to remain close to the shore and are confined to western OTB (Figure 24).
The areas to the north of the treatment plant outfall and Alen’s Creek are forecasted to
have the highest probability of containing nitrogen. A high probability also exists that
nitrogen would be found in the area just north of the two golf courses during the study

period.

The 8'°N average ratio near the Clearwater treatment plant outfall site is greater than ten
and elevated values were found at the mouth of the two creeks (Table 2). The lowest

average 8'°N ratios are found near the golf course sites.
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Appendix B (Continued)

Discussion

The model forecast simulation of nitrogen transport supports the circulation patterns in
OTB during conditions that were dryer than normal for that month historically (National
Weather Service). The overall surface circulation in Feather Sound is reduced during
periods of low rainfall and the weakened transport is westward into the coast (Meyers et
al., 2007). Longer residence times (Burwell, 2001) are a possible explanation for the

degraded water quality in Feather Sound as compared with the rest of OTB.

The results from the 8'°N ratios in northern OTB near the wastewater treatment facility
suggest organic nitrogen sources, perhaps from animal or human waste found in runoff or
wastewater systems. The ratios near the golf courses indicate that nitrogen in this area
originated from inorganic nitrogen sources, such as from fertilizers used on the golf

courses, in addition to organic sources.

This joint study with the FDEP confirms results from previous studies (Bricker et al.,
2007; Burwell, 2001; Cross, 2007; Greening, 2004) suggesting that local retention of
nutrient inputs from various sources (rivers, land runoff, and wastewater) could be
impeding the successful resurgence of seagrass in Feather Sound. The nitrogen sources
ranged from predominately organic to a mixture of organic and inorganic. This is to be

expected in a mixed use watershed like the one surrounding Feather Sound. Further
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Appendix B (Continued)
circulation and flushing scenarios in Feather Sound are needed along with more rigorous
sampling to fully understand the relationship between the transport of nutrients and the
slow recovery of seagrass in western OTB. Further evaluations of the coastal prediction
system as a forecasting are needed for the purpose of establishing sampling strategies

prior to work in the field.
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Figure 22 Location of discharge points in Feather Sound for nitrogen source tracking
using stable isotopes.
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Figure 23 Snapshots of numerical model forecast simulation for nitrogen source tracking
study (May 14-22, 2007). The scale represents the depth of the particles in the water
column with red being at the surface and blue being at depth.
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Figure 24 Probability distribution for nitrogen source tracking study based on forecast
simulation run from May 14-22, 2007.
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Table 2 Water level harmonics used in the numerical circulation model.

NOS Tidal Harmonics for St. Petersburg, FL
Tidal Amplitude Phase Speed
Constituent  (m) (deg) (deg/hr)
M2 0.175 197.0 28.9841042
S2 0.057 211.7 30.0000000
N2 0.030 191.3 28.4397295
K1 0.167 49.9 15.0410686
o1 0.155 37.7 13.9430356
Pl 0.049 57.6 14.9589314
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Table 3 Average delta 15-N values from discharge points in Feather Sound.

Sample Location Avg d15N
Clearwater treatment plant 11.61
Alen's Creek 8.18
Cross Bayou 8.05
Golf Course #1 7.50
Golf Course #2 7.43

101



Appendix C: Old Tampa Bay Karenia brevis samples

During the 2005 Karenia brevis bloom no samples were collected within Old Tampa Bay
(OTB) since no reported fish kills occurred in that area during the bloom. Samples were
collected in OTB during a 2006 K. brevis bloom for comparison purposes with the 2005
K. brevis data. These samples, collected in August and September of 2006 from the
mouth of OTB to the Howard Franklin Bridge, showed background concentrations of K.

brevis during the 2006 bloom.
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Figure 25 Karenia brevis samples collected in Old Tampa Bay during a 2006 K. brevis
bloom. The samples are classified as background concentrations.
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