
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

11-5-2009

Task Oriented Simulation And Control Of A Wheelchair Mounted Task Oriented Simulation And Control Of A Wheelchair Mounted

Robotic Arm Robotic Arm

Fabian Farelo
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Farelo, Fabian, "Task Oriented Simulation And Control Of A Wheelchair Mounted Robotic Arm" (2009). USF
Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1960

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F1960&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F1960&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Task Oriented Simulation And Control Of A Wheelchair Mounted Robotic Arm

by

Fabian Farelo

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Biomedical Engineering
Department of Chemical and Biomedical Engineering

College of Engineering
University of South Florida

Major Professor: Rajiv Dubey, Ph.D.
Redwan Alqasemi, Ph.D.

Kyle Reed, Ph.D.

Date of Approval:
November 5, 2009

Keywords: rehabilitation robotics, dual-trajectory, mobile robot, manipulator,
redundancy, adl

© Copyright 2009 , Fabian Farelo

Acknowledgments

 I would like to thank God for giving me the strength, patience and love for what I

do. This allowed me to carry out this important part of my life. I would like to thank my

parents Guzman and Ony for giving me the opportunity to come to the United States to

pursue my undergraduate studies. Without their love and sacrifice, this would not have

been possible. Thanks to my sister Natalia for making me laugh whenever we talked.

 I am also very thankful to Dr. Rajiv Dubey for giving me the opportunity to

pursue my graduate studies as one of his graduate students. I would like to thank him for

his support and encouragement throughout these past 2 years.

 I would like to thank Dr. Redwan Alqasemi and Dr. Kathryn De Laurentis for

their invaluable support and guidance during my Master’s program. I’m grateful to Dr.

Kyle Reed for accepting to be in my thesis committee at such a short notice; thanks for

your interest in my work and your eagerness to help.

 I am very grateful to my lab partners. I would like to thank them for their help and

companionship inside and outside the university. Thanks to Ana for believing in me.

 Lastly, I would like to thank my uncles in Miami Rita and Jaime for their

unconditional support throughout my stay in this country. Thanks to all of my friends in

Tampa and Barranquilla, my hometown, for supporting me all the time!

i

Table of Contents

List of Tables iii

List of Figures iv

Abstract vi

Chapter 1: Introduction 1
1.1 Motivation 1

1.2 Thesis Objectives 2

1.3 Thesis Outline 3

Chapter 2: Background 5
2.1 Wheelchair Mounted Robotic Arms 5

2.1.1 Commercially Available Prototypes 6

2.1.2 USF WMRA First Prototype 8

2.1.3 Composite Materials in Robotic Arms 9

2.1.4 USF WMRA Prototype Improvements 11

2.2 Redundant Mobile Manipulators 12

2.3 Virtual Reality Environments 14

Chapter 3: Virtual Reality Environment 17
3.1 Virtual Reality Modeling Language 17

3.2 Object Definition 18

3.2.1 Object Visualization 20

ii

Chapter 4: Dual Trajectory Control 26
4.1 Trajectory Generation 27

4.1.1 Activities of Daily Living 27

4.1.2 Trajectory Subtasks 28

4.1.3 Trajectory Stages 28

4.1.4 Trajectory Planning 28

4.2 WMRA Combined Kinematics 31

4.3 Redundancy Resolution and Optimization 34

4.4 Secondary Trajectory Planning 36

4.5 Criteria Functions 39

4.5.1 Joint Limit Avoidance 39

4.5.2 Weighted Optimization 40

Chapter 5: Results and Discussion 43

Chapter 6: Conclusions and Future Work 54

References 56

Appendices 60
Appendix A. Virtual Reality Modeling Language 61

Appendix B. Matlab Functions 89

iii

List of Tables

Table 1 Object Definition 20

iv

List of Figures

Figure 1 Raptor Arm 7

Figure 2 Manus Arm 7

Figure 3 WMRA-I 9

Figure 4 Mechatronic Joint Design of the DLR-LWR III [16] 10

Figure 5 New WMRA Prototype SolidWorks Model 11

Figure 6 4WD Omni Directional Wheelchair [25] 14

Figure 7 Virbot Subsystems Scheme [25] 15

Figure 8 Virtual Reality Environment Snapshot 19

Figure 9 Snapshot of the Couch in VR Environment 21

Figure 10 Environment Snapshot with Boxes in Place 22

Figure 11 Snapshot of the Environment with the Table in Place 23

Figure 12 Snapshot of the Environment with the Sink in Place 24

Figure 13 Snapshot of the Environment with the Shelf and the Book in Place 25

Figure 14 WMRA Coordinate Frames 31

Figure 15 A General Case of the Three Stages for the Secondary Trajectory to be

Followed by the Wheelchair 37

Figure 16 Definition of Optimization Variables 38

Figure 17 Gradient Variable Limits for the First Wheelchair Trajectory Stage 40

Figure 18 Circular Path Matlab Animation 44

Figure 19 Joint Angular Displacement vs. Time for Circular Path 45

v

Figure 20 Virtual Reality Simulation Sequence for “Approach and Open Door”

Task 47

Figure 21 3D End-effector Trajectory for Approaching Task 49

Figure 22 Wheelchair Position Vs. Time for Approaching Task 50

Figure 23 Wheelchair Orientation Vs. Time for Approaching Task 51

Figure 24 VR Sequence of a Second "Open Door Task" 52

Figure 25 VR Sequence Book Pick Up 53

vi

Task Oriented Simulation and Control of a Wheelchair Mounted Robotic Arm

Fabian Farelo

ABSTRACT

The main objective of my research is to improve the control structure for the new

Wheelchair Mounted Robotic Arm (WMRA) to include new algorithms for optimized

task execution; that is, making the WMRA a modular task oriented mobile manipulator.

The main criterion to be optimized is the fashion in which the wheelchair approaches a

final target as well as the starting and final orientation of the wheelchair. This is a novel

approach in non-holonomic wheeled manipulators that will help in autonomously

executing complex activities of daily living (ADL) tasks.

The WMRA is a 9 degree of freedom system, which provides 3 degrees of

kinematic redundancy. A single control structure is used to control the WMRA system,

which gives much more flexibility to the system. The combination of mobility and

manipulation expands the workspace that a mobile base attains to a manipulator. This

approach opens a broad field of applications: from maintenance and storage to

rehabilitation robotics. This structure is based on optimization algorithms that can resolve

redundancy based on several subtasks: maximizing the manipulability measure,

vii

minimizing the joint velocities (hence minimizing the energy), and avoiding joint limits.

This work utilizes redundancy to control 2 separate trajectories, a primary trajectory for

the end-effector and an optimized secondary trajectory for the wheelchair. Even though

this work presents results and implementation in the WMRA system, this approach offers

expandability to many wheeled base mobile manipulators in different types of

applications.

The WMRA usage was simulated in a virtual environment, by developing a test

setting for sensors and task performance. The different trajectories and tasks can be

shown in a virtual world created not only for illustration purposes, but to provide training

to the users once the system is ready for use.

1

Chapter 1: Introduction

1.1 Motivation

 According to the latest available data from the US Census Bureau [1

 A wheelchair mounted robotic arm provides mobility and manipulation

capabilities enhancement to these persons. The workspace of the system allows the reach

of objects that were otherwise impossible to reach. On the other hand, it also provides

independence from external human aide, since the arm is mounted on the wheelchair and

powered by its batteries. There are 2 commercially available WMRAs, the Manus from

Exact dynamics in the Netherlands and the Raptor from Applied Resources in the US.

Two prototypes of WMRAs have been designed and developed at the University of South

Florida, and this work intends to build upon the performance of the system to overcome

the limited commercial success that previous attempts have had, such as low payload and

], about 54.4

million Americans had some level of disability, 34.9 million of them had a severe

disability. About 11 million Americans older than 6 years of age needed personal

assistance with one or more activities of daily living (ADL). This work focuses on people

with limited upper and lower extremity mobility due to spinal cord injury or dysfunction,

or genetic predispositions. Robotic aides used in these applications vary from advanced

limb orthosis to robotic arms [2].

2

difficulty to be maneuvered by the final user. This work intends to transform the WMRA

system into a task oriented mobile manipulator with the objective of aiding persons with

disability to successfully perform activities of daily living. Several methods for

optimization can still be used as constrains for redundancy resolution in the WMRA. The

absence of these constrains causes an undesired completion of the tasks, and requires a

higher input level from the final user. The WMRA control algorithm combines mobility

and manipulation for task oriented performance; however, each task is different and

requires a different subroutine sequence in terms of trajectory generation for both the

end- effector and the wheelchair.

1.2 Thesis Objectives

 The main objective of my research is to improve the control structure and

performance of the WMRA to include complete sequences of tasks that utilize

redundancy to optimize the wheelchair and arm motion for autonomous task execution.

The main criterion to be optimized is the fashion in which the wheelchair approaches a

final target as well as the starting and final orientation of the wheelchair. This is a novel

approach in non-holonomic wheeled manipulators that will increase the ease of the task

execution for the final user since the system will orient itself depending on the desired

task. The WMRA usage will be simulated in a virtual environment by developing a test

setting for sensors and task performance. The different trajectories for each task can be

shown in a virtual world created not only for illustration purposes, but to provide training

3

to the user once the system is ready to be used. The objectives are summarized as

follows:

 Develop new criterion functions for the optimization of the translation and

orientation of the wheelchair and the end effector in a specific task

 Develop a refined test bed for the WMRA system for experimentation in task

performance, and trajectory generation.

 Develop program modules for several ADl tasks, creating subroutines for each

task to autonomously execute.

 Create a virtual reality environment to test the algorithm and to train the user on

the WMRA use while collecting data for further development and improvements.

1.3 Thesis Outline

 This thesis will provide a literature review and present the state of the art on the

important subjects regarding this work in chapter 2. Chapter 3 presents the trajectory

generation problems. The reader is given an overview of the procedures implemented in

this work. Chapter 4 presents the Virtual Reality environment developed for the

simulation of the system. Chapter 5 presents the detailed procedure followed to achieve a

dual-trajectory control in the WMRA for performing activities of daily living. Chapter 6

presents the results in Virtual Reality simulation and Matlab graphics following the main

variables of the system. A discussion of these results is also addressed in this chapter.

The final chapter briefly goes over the conclusions of this thesis and proposes future

4

work that can be completed later. A list of references and appendices are presented at the

end with the code implemented in this thesis.

5

Chapter 2: Background

In this chapter, the state of the art in the research area is presented to the reader.

This includes research in rehabilitation robotics, mobile manipulators, redundant robots,

virtual reality environments and previous work developed in wheelchair mounted robotic

arms.

2.1 Wheelchair Mounted Robotic Arms

 Several designs of workstation-based robotic arm systems were developed over

the years, such as Handy-1 [3], RAIL project [4], ProVAR [5] and the design conducted

by Gunnar Bolmsjo, et al. [6]. WMRA combines the idea of a workstation and a mobile-

base robot to mount a manipulator arm onto a power wheelchair. The most important

design consideration of where to mount a robotic arm in a power wheelchair is the safety

of the operator [7

]. WMRA can be mounted in the front, side or rear of the wheelchair

[8].

6

2.1.1 Commercially Available Prototypes

 The two commercially-available commercial WMRAs utilize side mounting on a

power wheelchair. These two commercial arms are the Manus, manufactured by Exact

Dynamics; and the Raptor, manufactured by Applied Resources.

 The Manus manipulator arm can be programmed in a manner comparable to

industrial robotic manipulators. It has been under development since the mid 1980s and it

entered into production in the early 1990s [9]. It is a 6 DOF arm, with servomotors all

housed in a cylindrical base as shown in figure 1. Another production WMRA is the

Raptor [10], which mounts to the right side of the wheelchair. This manipulator has four

degrees of freedom plus a planar gripper as shown in figure 1. The user directly controls

the arm joints with either a joystick or a 10-button controller. Typically, the joystick that

controls the manipulator arm is located on the armrest opposite to the input device that

controls the steering of the power wheelchair. Because the Raptor does not have

encoders, the manipulator cannot be controlled in Cartesian coordinates. This

compromise was done to minimize the overall system cost.

7

Figure 1 Raptor Arm

Figure 2 Manus Arm

8

2.1.2 USF WMRA First Prototype

Previous work has shown the analysis of commercial WMRAs and the

development of a wheelchair-mounted robotic arm (WMRA-I) system with combined

mobility and manipulation control [11,12,13

The arm carries seven revolute joints and a gripper designed for ADLs. The

gripper [14] is powered by a Faulhaber coreless DC servomotor that is compact and

capable of producing 6N of grasping force at the gripper paddles. In order for the

WMRA to have more commercial success, the weight must be reduced and the payload

needs to be increased. Reducing the overall weight of the robot arm that is attached to

the power wheelchair will reduce the power consumption, allowing longer system usage

before the batteries need to be recharged. A lighter weight WMRA will also be less

restrictive on the allowable user weight because the WMRA is an aftermarket

modification and power wheelchairs are rated for a maximum weight capacity by the

manufacturer.

]. The WMRA-I is comprised of a seven-

degree-of-freedom robot arm, a gripper, and a power wheelchair as shown in figure 3.

That system was designed to use Matlab to control the arm and the chair motion with a

single graphical user interface (GUI) which can be used to control the end effector in

Cartesian space. User interfaces include a touch screen, a spaceball with 3-D input

capabilities and a Brain Computer Interface (BCI) that uses the stimulated P-300 signal.

9

Figure 3 WMRA-I

2.1.3 Composite Materials in Robotic Arms

Industrial robotic arm companies have begun to use composite materials, such as

carbon fiber, as major structural components to reduce weight while keeping the

necessary structural strength [15

The DLR research group has been working on producing the lightweight robot

(LWR) arm for industrial usage [16], specifically for packaging robots, but it also has

attributes that allow it to be used for human interaction. They have developed two LWR

], but they have not been widely used in the field of

rehabilitation robotics, specifically for WMRAs. Utilizing these composites in the

construction of a WMRA can help reduce the weight of the overall design.

10

arms previous to the current arm, both of which have been improved upon in multiple

areas [16]. The LWR-I is a seven-degree-of-freedom robot arm that used carbon fiber for

its structure. It also utilized double-planetary gear heads and torque sensing for control,

both of which proved to be issues for manufacturing or robustness. DLR then developed

the LWR-II which used harmonic drive gear heads instead of the double-planetary gears

as well as incorporating a feedback system for joint torque and motor and link position.

All of the electronic systems were housed inside the arm, eliminating the external control

box, which most industrial robots have.

Figure 4 Mechatronic Joint Design of the DLR-LWR III [16]

11

2.1.4 USF WMRA Prototype Improvements

 Based on this advances in the state of the art, an attempt was made to use a

different material for a lighter arm using pultruded carbon fiber tubes as the structural

member of each of the three main links of the arm [17

]. However, due to the material

failure a new design is already under development.

Figure 5 New WMRA Prototype SolidWorks Model

 This design returns to the aluminum tubes used in the WMRA-I. However, the

thickness of the tubes was reduced and the links and brackets are bolted instead of

welded for better maintenance and aesthetics. The motors used for the second prototype

12

are also smaller in size, while keeping the same torque capabilities, accounting for a big

percentage of weight reduction.

2.2 Redundant Mobile Manipulators

 Redundant mobile manipulators as a research topic have gained interest with its

potential for a wide range of applications. In [18], a 7 DoF mobile manipulator consisting

of a 5 DoF arm mounted on a 2 DoF wheeled platform was controlled by coordinating the

platform motion and the gripper motion. The platform was driven to a destination that put

the target within the gripper’s workspace.

The non-holonomic wheeled platform of manipulators was addressed in [19

Path planning for non-holonomic mobile robots has been addressed by researchers

for more than 2 decades. In [20], this was implemented for obstacle avoidance and

implemented using the non-holonomic constrains of the platform. However, combining

this constrains with a redundant manipulator was not considered at that time. In [

],

where redundancy for a planar mobile manipulator was resolved using extended reduced

gradient and projected gradient optimization-based methods. This approach was tested in

simulation by having the end effector pointing at a pre-specified orientation while the

wheelchair followed a circular trajectory, however they did not attempt to control two

separate trajectories for the end effector and the non-holonomic base.

21], an

on-line planner for obstacle avoidance with moving targets was presented. Their model is

13

suitable for real time generation of trajectories and it was tested in crowded simulated

environments.

Recent work in redundancy resolution of mobile robots has accomplished the task

of sustaining separate trajectories for the end effector and the platform. In [22] they

implemented redundancy resolution of a 2D mobile manipulator using independent

controllers developed within each other’s decoupled space, which facilitated the

redundancy resolution at a dynamic level. The separate trajectories will be controlled by

extending the weighted least norm solution method [23

Some applications with mobile platforms have implemented four wheel drives to

account for a better accuracy of the platform motion. In [

] to constrain or prioritize the

motion of the platform to follow certain trajectories. This method was intended for

resolving redundancy while minimizing unnecessary motion of the joints. This approach

has also been used along with specific criterion functions to avoid joint limits [24].

25] a patented omnidirectional

mobile platform with 4 wheel drive was used for wheelchair applications.

14

Figure 6 4WD Omni Directional Wheelchair [25]

In the paper the kinematics of the 4WD platform are analyzed and they developed

a control method for omnidirectional motion. This includes the addition of a third motor

for the rotation of the chair. This an application that can improve the nonholonomic

constrains that are attached to WMRAs.

2.3 Virtual Reality Environments

Testing and simulation is an important step in every design process. In WMRAs

the main design factor is the safety of the operator [7]. For this, 3D animations and

simulations turn into a useful tool to test the behavior and robustness of the algorithms

before coding it into the physical system. Previous work has shown the good use of

15

virtual environments for simple mobile robots [26,27

In [25, 26] the authors describe a robotics architecture developed for their

particular system called VIRbot. It is a robot designed for action planning using AI

concepts. A virtual environment is implemented by the description of the working

environment of the robot.

] to prove the control concept in

simulation.

Figure 7 Virbot Subsystems Scheme [25]

 The virtual environment is shown in 3D using a system called ROC2. This system

uses C/C++ as its main platform, which also reads from the sensors and the main robot

16

program. This system uses the virtual environment as a tool to compare the actual

environment with the one generated by the sensors. This is a very promising application

but it does not provide the ability of running the simulation offline to test the control

program as it is intended in this work.

17

Chapter 3: Virtual Reality Environment

Testing and simulation is an important step in every design process. In WMRAs

the main design factor is the safety of the operator [7]. For this, 3D animations and

simulations turn into a useful tool to test the behavior and robustness of the algorithms

before coding it into the physical system. Previous work has shown the good use of

virtual environments for simple mobile robots [25, 26] to prove the control concept in

simulation. This work uses the virtual environment as a tool to modify and debug the

control system and check for the user’s safety before implementing it on the physical

arm.

3.1 Virtual Reality Modeling Language

 The Virtual Reality Modeling Language (VRML) is the language used to display

three-dimensional objects in a browser. It is considered a 3-D web standard. Since 1994

VRML1 has been implemented in several browsers, but it allowed only the creation of

static virtual worlds. This limitation reduced its widespread use. The VRML2 or VRMl97

standard was created to overcome this issue and add animation and interactivity to a

18

virtual world. VRML97 represents an open and flexible platform for creating interactive

three-dimensional scenes (virtual worlds) [28].

Using Matalb® Virtual Reality Toolbox, a communication between the control

program and the virtual worlds can be established. This adds to the main program the

versatility of a 3-D animation to monitor the simulated WMRA performance.

3.2 Object Definition

 The virtual environment designed for the WMRA is made of several dynamic and

static objects. The objects included in this simulation were created in three different

ways. For simple objects such as boxes or walls, the VRML code was typed to create the

geometry, texture, location, scale and material properties. For moderately complicated

geometries such as a table or a couch, the VR builder tool was used. This application

allows the creation of simple primitives as a CAD program and then converts the part

into VRML code. For highly complicated components such as the wheelchair and the

robotic arm, SolidWorks® was used. Once the part is completed it can be easily exported

into VRML files, keeping the same reference frame used in the CAD drawing. Some of

the objects are included in the control loop, while others only move when there is a

collision or the WMRA performs a specific task. Figure 8 shows a snapshot of the VR

environment created for ADL applications.

19

Figure 8 Virtual Reality Environment Snapshot

 Table 1 shows a summarized description of the main elements developed for the

virtual reality environment. The type of element shows if the element moves within the

environment. The creation field specifies which type of procedure was used for its

generation. And the control field presents the role of the object in the control of the

simulation.

20

Table 1 Object Definition

3.2.1 Object Visualization

 In this section, snapshots of the main components of the VR environment are

presented. These components, and the procedure used for their creation are listed in table

1.

 The first object to be presented is the couch. This object was made using

VRBuilder. This software is part of Matlab Virtual Reality Toolbox and has simple

geometry primitives as well as a commando prompt for VRML code input. The couch

used for the simulation consists of a combination of cylinders cubes and spheres in most

of the edges. VRBuilder also allows the implementation of textures. Figure 9 shows a

snapshot of the couch presented in the virtual reality simulation.

Object Type Creation Control
WMRA Dynamic SoldWorks Control Loop
Walls Static Typed N/A
Floor Static Typed N/A
Laser Dynamic VRBuilder Control Loop
Couch Static VRBuilder N/A
Table Static VRBuilder N/A

Shelves Static VRBuilder N/A
Switches Dynamic VRBuilder Collision

Doors Dynamic VRBuilder Collision
Boxes Dynamic Typed Collision
Sink 5ȅƴŀƳƛŎ SoldWorks N/A

21

Figure 9 Snapshot of the Couch in VR Environment

 The simplest objects in the simulation are the boxes. These were typed manually

since it consists only of a box geometry primitive. Figure 10 shows a snapshot of the

environment with the boxes in place. These objects will be used in future work for

obstacle avoidance control.

22

Figure 10 Environment Snapshot with Boxes in Place

 A table was made to simulate “pick and place” tasks and also for obstacle

avoidance. The table was also created with VRBuilder and it consisted of cylinder

primitives mostly. Figure 11 shows an auxiliary view of the table in the environment.

23

Figure 11 Snapshot of the Environment with the Table in Place

 A sink was simulated to include several ADLs for future work. For instance it has

doors to simulate an “opening door” task, but it also has a tab and a higher small shelf for

object placement. Figure 12 shows a snapshot of the sink that is used in the simulation.

24

Figure 12 Snapshot of the Environment with the Sink in Place

 A shelf and a book were also developed for the environment. The shelf and the

book were both made using Solid Works. The parts can be saved as “wrl” files directly

from the CAD program. The main objective for these objects is to simulate a pick and

place task.

25

Figure 13 Snapshot of the Environment with the Shelf and the Book in Place

The objects developed for the simulation can be interfaced through Matlab and

the Virtual Reality Toolbox. The configuration of the environment can be easily modified

by entering the transformation matrix of the objects.

26

Chapter 4: Dual Trajectory Control

This is the core chapter of this thesis. The combination of the wheelchair mobility

and the arm manipulation in an optimized redundancy resolution algorithm [24] allowed

for the possibility of programming pre-set ADL tasks to be autonomously executed.

Some ADL tasks require wheelchair orientation control to place the WMRA in a

configuration that makes the task possible. In this context, having a secondary trajectory

for the wheelchair to follow while the arm is following its main trajectory allows for an

easier task execution.

This work utilizes redundancy to control 2 separate trajectories, a primary

trajectory for the end-effector and an optimized secondary trajectory for the wheelchair.

Even though this work presents results and implementation in the WMRA virtual reality

simulation environment, this approach offers expandability to many wheeled base mobile

manipulators in different types of applications. In this work, we develop and optimize a

control system that combines the manipulation of the robotic arm and the mobility of the

wheelchair in a single control algorithm. Redundancy resolution is to be optimally solved

to avoid singularities and joint limits. While the end-effector follows a primary trajectory,

we introduce a secondary trajectory to be followed by the wheelchair as part of the

redundancy resolution and optimization algorithm.

27

4.1 Trajectory Generation

4.1.1 Activities of Daily Living

 The main objective of the WMRA system is to maximize the manipulation

capabilities of persons with disabilities who are confined to a wheelchair. This objective

is reached by enhancing the performance of certain tasks that are regularly carried out

every day. Activities such as turning a light switch, grabbing a cup or a book, picking up

objects from the floor, opening a drawer, a cabinet or a door, are referred to as activities

of daily living (ADL).

 As expressed in the introduction of this chapter, the main control objective of the

system is to carry out a desired end- effector trajectory. That is how activities of daily

living gain importance in the control of the system; each ADL is comprised of one or

several different trajectories that will need to be programmed and executed by the

WMRA to complete a full task. A set of ADLs can be pre-specified towards turning the

WMRA into a task oriented mobile manipulator in which the cognitive load of the user

will be significantly reduced; that is by reducing the need to specify the different

trajectories needed to carry out a certain task. For instance, a subset of linear and circular

trajectories that are needed to open a door can be specified to be performed autonomously

by the system; therefore, all that is left to be specified are the door variables (knob

location, width, side to open). A simulation of the WMRA carrying out this ADL is

presented in the chapter 5.

28

4.1.2 Trajectory Subtasks

 As described in the previous subsection, every ADL can be divided into a set of

trajectories that need to be executed by the system to complete a certain task. This

subsection intends to provide a sense of how the trajectories are subdivided to be

completed as a whole task by the WMRA

4.1.3 Trajectory Stages

 End-effector trajectory and wheelchair trajectory are used as a primary and

secondary trajectory respectively throughout this work. A “trajectory stage” is a term we

use to pinpoint a certain portion of the trajectory to be followed in a certain period of

time. Also there might be a stage in which no motion is required by the wheeled base

while the end-effector is carrying out a specific trajectory. A trajectory stage is then

defined as a portion of the task that follows a specific combination of motions by the

WMRA to partially fulfill a desired task that is composed by several trajectories.

4.1.4 Trajectory Planning

 For any given task to be programmed in a manipulator, a path needs to be

followed. The orientation part of the trajectory can be represented in a single rotational

angle that makes it possible to divide the path into angle steps along the trajectory. The

single angle of rotation can be found from the homogeneous transform as [29

−++

−+−+−
= −

)ao(n

)o(n)n(a)a(o

zyx

xyzxyz

1
tanθ

222
1

]:

 (1)

29

where a typical homogeneous transformation matrix consists of three rotational vectors and one

translational vector: 0 0 0 1

x x x x

y y y y

z z z z

n o a P
n o a P

T
n o a P

 =

 Once we have the single angle of rotation and the axis of rotation, we can

generate the trajectory using a linear equation. The approach used to generate the

trajectory utilizes a constant transformation change along the trajectory, which means that

the trajectory will be divided into “n” transformation matrices, with “δT” transformations

between every two consecutive points in the trajectory.

This trajectory generation solves the problem of going from one point to another,

however, going from rest to a full joint speed in no time and vice versa generates a

discontinuous acceleration at the beginning and at the end of the trajectory, and therefore

a linear trajectory is not the most adequate when the start and finish velocity is zero

To take care of the problems of linear trajectory, a polynomial trajectory is

introduced so that when the arm starts from rest, the trajectory points are very close to

each other, and then the arm will reach a maximum speed and ramp back down to zero

velocity when it reaches the destination.

The governing equation for such a polynomial can be written for any variable that

needs to be ramped as follows:

3
03

2
020

23 t)XX(
t

t)XX(
t

X)t(X f
f

f
f

⋅−⋅+⋅−⋅+=
 (2)

30

When using the polynomial function to generate a non-linear trajectory, efficiency

of the trajectory-following task was not acceptable. The reason is that the desired velocity

is reached at the mid-point of the trajectory, and ramping that velocity up and down takes

a very long time. To overcome this problem, a polynomial blending procedure was

adopted [30]. The blending factor accelerates the velocities at the beginning of the

trajectory, and then set the acceleration to zero throughout the major part of the trajectory

when the desired velocity is reached, and then decelerate the velocity back down to zero

at the end of the trajectory-following task.

We first begin by defining the blending factor “b”, a constant from 0 to 10. Then

we define the acceleration during blending as:

24
f

if
b t

XX
bX

−
⋅⋅=

 (3)

Where “tf

X
)XX(XtXt

t iff
b

⋅

−⋅⋅−⋅
−=

2
4

2

22

” is the time at which the trajectory-following task is completed. Then we

define the time when blending ends as:

 (4)

For each ADL to be performed by the WMRA a set of trajectories have to be

generated. Details on the optimization algorithm for the combined mobility and

manipulation of the system can be found in previous publications [12, 24].

31

This procedure can be implemented with any type of trajectory. Any trajectory

will be divided in steps according to the specified method. If a circular path is needed

then the equation of a circle is programmed and so on.

4.2 WMRA Combined Kinematics

 Two of the DoFs are provided by the non-holonomic motion of the wheelchair.

This subsystem is controlled using 2 input variables: the linear position of the wheelchair

along its x-axis, and the angular orientation of the wheelchair about its z-axis (see figure

14). The planar motion of the wheelchair includes three variables: the x and y positions,

and the z-orientation of the wheelchair [31

].

Figure 14 WMRA Coordinate Frames

32

 Assuming that the manipulator is mounted on the wheelchair with L2 and L3

offset distances from the center of the differential drive across the x and y coordinates

respectively (see Figure 14), the mapping of the wheels’ velocities to the manipulator’s

end effector velocities along its coordinates is defined by:

cWcc VJJr ⋅⋅= , (5)

where the end effector velocity and manipulator velocity are

[]Tc zyxr φβα

 = ,

=

r

l
cV

θ
θ

 and
[]

36

22

1322

22

1]0[
]0[]0[

)(

x

x

xx

ygxg

ygxg
x

c

SPCP
CPSP

I

J

⋅−⋅
⋅+⋅−

=
φφ
φφ

 ,

2311

32
1

32
1

32
1

32
1

5

22

)(2)(2

)(2)(2

2

x

cccccc

cccccc

W

ll

slcl
l

sslcl
l

s

clsl
l

cclsl
l

c

lJ

−

−+−−

+−++

= φφφφφφ

φφφφφφ

where Pxg and Pyg are the x-y coordinates of the end-effector based on the arm base

frame, φ is the angle of the arm base frame, which is the same as the angle of the

wheelchair based on the ground frame and L5 is the wheels’ radius. The above Jacobian

can be used to control the wheelchair and the arm after combining their respective

jacobians together.

The wheelchair will move forward when both wheels have the same speed and

direction while rotational motion will be created when both wheels rotate at the same

velocity but in opposite directions. Since the wheelchair’s position and orientation are our

control variables rather than the left and right wheels’ velocities, Vc can be redefined as:

33

=

φ
X

Vc
, (6)

 where:
r

r lXand
l
l θθφ

5
1

5 ,2
==

In the previous expression, φ can be expressed in terms of both rθ or lθ since for

pure rotation these speeds are equal but in opposite directions.

Seven degrees of freedom are provided by the robotic arm mounted on the

wheelchair. From the DH parameters of the robotic arm specified in earlier publications

[13], the 6x7 Jacobian that relates the joint rates to the Cartesian speeds of the end

effector based on the base frame is generated according to Craig’s notation [28]:

AAA VJr ⋅= (7)

where: []TA zyxr γβα

 = is the task vector,

and []TAV 7654321 θθθθθθθ = is the joint rate vector, and JA is the robotic arm’s

Jacobian.

Combining the wheelchair and arm kinematics yields the total system kinematics. In the

case of combined control, let the task vector be:

),(Ac qqfr = , (8)

where qc and qA are the control variables of the wheelchair and arm respectively.

Differentiating (8) with respect to time gives:

34

A
A

c
c

V
q
fV

q
fr

∂
∂

+
∂
∂

= AAcWc VJVJJ += []

=

c

A
WcA V

V
JJJ

, (9)

or

VJr ⋅= (10)

where: []Tzyxr φβα

 = , []WcA JJJJ = , and

[] []TT
cA XVVV φθθθθθθθ

7654321== .

4.3 Redundancy Resolution and Optimization

 Redundancy is resolved in the algorithm using S-R inverse of the Jacobian [32] to

give a better approximation around singularities, and use the optimization for different

subtasks. Manipulability measure [33

)*det(TJJw =

] is used as a factor to measure how far is the

current configuration from singularity. This measure is defined as

 (11)

The S-R Inverse of the Jacobian in this case is defined as:

1
6

*)**(* −+= IkJJJJ TT

 (12)

where I6 is a 6x6 identity matrix, and k is a scale factor. It has been known that this

method reduces the joint velocities near singularities, but compromises the accuracy of

the solution by increasing the joint velocities error. Choosing the scale factor k is critical

to minimize the error. Since the point in using this factor is to give approximate solution

35

near and at singularities, an adaptive scale factor is updated at every time step to put the

proper factor as needed:

0

0
2

0
0

0

)1(*

wwfor

wwfor
w
wkk

≥

<−
=

 (13)

where w0 is the manipulability measure at the start of the boundary chosen when

singularity is approached, and k0

Weighted Least Norm solution proposed by [23] can be integrated to the control

algorithm to optimize for secondary tasks. In order to put a motion preference of one joint

rather than the other (such as the wheelchair wheels and the arm joints), a weighted norm

of the joint velocity vector can be defined as:

 is the scale factor at singularity.

WVVV T
W

= (14)

where W is a 9X9 symmetric and positive definite weighting matrix, and for simplicity, it

can be a diagonal matrix that represent the motion preference of each joint of the system.

For the purpose of analysis, the following transformations are introduced:

2/1−= WJJW , and VWVW
2/1−= (15)

Combining these equations, it can be shown that the weighted least norm solution

integrated to the S-R inverse is:

() rIkJWJJWV TT
W

1
6

11 * −−− += (16)

36

The above method has been used in simulation of the 9-DoF WMRA system with

the nine control variables (V) that represent the seven joint velocities of the arm and the

linear and angular wheelchair’s velocities. An optimization of criteria functions can be

accomplished when used in the weighting matrix W.

4.4 Secondary Trajectory Planning

 For the completion of an activity of daily living, the main task will be given as a

set of trajectories for the end-effector to follow. Although the main task is followed,

wheelchair position and orientation can be important for the task to be successfully

completed. A secondary subtask representing the best position and orientation of the

wheelchair is represented as a secondary set of trajectories for the wheelchair to follow.

An optimal position/orientation combination of the non-holonomic motion of the

wheelchair can be achieved if the secondary trajectory is divided into 3 stages. The first

one is to orient the wheelchair facing its desired linear trajectory. The second stage is to

proceed with a linear motion along the secondary trajectory to approach the final planar

coordinates. Once the wheelchair reaches its final position, the third stage will be to

orient the wheelchair to its final desired orientation. Figure 15 shows the three stages

implemented for the secondary trajectory.

37

Figure 15 A General Case of the Three Stages for the Secondary Trajectory to be Followed by the
Wheelchair

The three stages to be applied for the secondary trajectory will only involve the

position “X” and orientation “Φ” variables of the wheelchair. The nned for the three

stages comes from the non-holonomic constrains attached to the wheelchair. There are

three variables to be controlled, which are the x and y position as well as the orientation

of the wheelchair around the z axis, however there are only two control variables, which

are the left and right wheel velocities. For an expanded derivation of these constrains in

the WMRA the reader is advised to go through previous work [24]

As shown in Figure 16, knowing the initial and final transformations of the

wheelchair base, the trajectory angle α can be defined as:

[])(,)(2tan ifif xxyya −−=α (17)

38

That defines the amount of motion needed for the three stages to be followed in

the following order:

 Rotation by the amount of iφαβ −=1

 Translation by the amount of 22)()(ifif yyxxtr −+−=

 Rotation by the amount of αφβ −= f2

 The above three wheelchair motion values can be utilized in the weight matrix as

criteria to enforce the wheelchair motion.

Figure 16 Definition of Optimization Variables

G

y

x

(, ,)i i ix y z

iϕ

α

2β

fϕ

(, ,)f f fx y z

1β

tr

39

4.5 Criteria Functions

 The criteria functions used in the weight matrix for optimization can be defined

based on different requirements.

4.5.1 Joint Limit Avoidance

 For the robotic arm, the physical joint limits can be avoided by minimizing an

objective function that represents this criterion. One of these mathematical

representations was proposed by [23] as follows:

27
,max ,min

1 ,max , , ,min

()1()
4 () ()

i i

i i i current i current i

q q
H q

q q q q=

−
= ⋅

− ⋅ −∑
 (18)

where “qi

2
,max ,min , ,max ,min

2 2
,max , , ,min

() (2)()
4 () ()
i i i current i i

i i i current i current i

q q q q qH q
q q q q q

− ⋅ ⋅ − −∂
=

∂ ⋅ − ⋅ −

” is the angle of joint “i”. This criterion function becomes “1” when the current

joint angle is in the middle of its range, and it becomes “infinity” when the joint reaches

either of its limits. The gradient projection of the criterion function can be defined as:

 (19)

When any particular joint is in the middle of the joint range, (19) becomes zero

for that joint, and when it is at its limit, (19) becomes “infinity”, which means that the

joint will carry an infinite weight that makes it impossible to move any further.

40

4.5.2 Weighted Optimization

 For the wheelchair, the criteria functions can be defined for each stage of its

trajectory based on the desired motion of the wheelchair. Similar to the arm,

mathematical representations can be obtained by treating the range of the desired

wheelchair motion as a motion limit. The upper limit in this case is set to be the current

initial orientation (or position for the second trajectory stage) of the wheelchair. The

lower limit is set to be double the rotation angle β1 or β2

Figure

17

 (or double the translation

distance tr for the second trajectory stage). In this case, the middle of that range will be

the desired orientation/position of the wheelchair, and either limit will be avoided.

 shows an example of the limits for the first wheelchair trajectory stage.

Figure 17 Gradient Variable Limits for the First Wheelchair Trajectory Stage

G

α

β i

β i

βi-min

β i-max

x

41

To generalize the representation of the objective function, let variable “P” be a

representative for β1, β2 or tr. The objective function in this case is:

)()(
)(

4
1)(

minmax

2
minmax

PPPP
PPPL

currentcurrent −⋅−
−

⋅=
 (20)

and the gradient of the criterion function can be defined as:

2
min

2
max

minmax
2

minmax

)()(4
)2()()(

PPPP
PPPPP

P
PL

currentcurrent

current

−⋅−⋅
−−⋅⋅−

=
∂

∂

 (21)

For the first stage, when the wheelchair‘s angle is in the middle of its allowable

range, (21) becomes zero, and when it is at its limit, (21) becomes “infinity”, which

means that the variable will carry an infinite weight that makes it impossible to move any

further. This value of the gradient will be placed at the translational part of the weight

matrix. The rotational part on the other hand will start with a very low value for (21).

This way, rotational motion in the first stage will be active (with small weight), and the

translational motion will be inactive (with high weight). The diagonal weight matrix W

can then be constructed as:

1
1

2
2

() 0 0

()0 0 0

0
() 0

()0 0 0

X

H qw
q

H qw
q

W

L Xw
X

Lwφ
β

β

 ∂
+ ⋅⋅⋅ ⋅ ⋅ ⋅ ∂

 ∂ + ⋅⋅⋅
∂

 =
 ∂

+
∂

 ∂ +
∂

 (22)

42

where for stages 1 and 3:

2
max min max min

min max2 2
max min

2
max min max min

2 2
max min

() (2)() ,
4 () ()

() (2)() ,
4 () ()

current

current current

current

current current

L

X X X X XL X X tol
X X X X X

β β β β ββ β β β
β β β β β

− ⋅ ⋅ − −∂
= < <

∂ ⋅ − ⋅ −

− ⋅ ⋅ − −∂
= <

∂ ⋅ − ⋅ −

At the start of these stages ()L X
X

∂
∂

= ∞ and ()L β
β

∂
∂

=0

And for stage 2:

2
max min max min

2 2
max min

2
max min max min

min max2 2
max min

() (2)() ,
4 () ()

() (2)() ,
4 () ()

current

current current

current

current current

L tol

X X X X XL X X X X
X X X X X

β β β β ββ β
β β β β β

− ⋅ ⋅ − −∂
= <

∂ ⋅ − ⋅ −

− ⋅ ⋅ − −∂
= < <

∂ ⋅ − ⋅ −

At the start of stage 2 ()L X
X

∂
∂

= 0 and ()L β
β

∂
∂

=∞

wi

This procedure can achieve the desired trajectory combinations to successfully

execute tasks that require separate end-effector and wheelchair trajectories. Examples of

ADL tasks were tested in simulation and the results will be presented in the following

chapter.

 is a user-set preference value for each joint and the position/orientation of the

wheelchair. These values can achieve the user preference if joint limits are not

approached and wheelchair motion is at its desired position.

43

Chapter 5: Results and Discussion

 This chapter presents the results in simulation that have being obtained for this

thesis work. The computational work was done in a Core 2 Quad PC with Windows XP

OS. Matlab and its virtual Reality Toolbox were used to program and run the simulation.

Trajectory planning is essential for the task-programming. Once the WMRA

reaches the desired position, autonomous control will be used to follow different

trajectories a task may need. The Matlab Graphics simulation allowed keeping track of

the variables of concern for the control of the manipulator. The linear trajectory motion

has already been tested for optimal control. More detailed results can be found in

previous publications [24]. WMRA variables were monitored for different end-effector

motion patterns to ensure the smooth completion of ADL tasks that include various

trajectory combinations. Most of the trajectories involved in ADLs can be decomposed in

several linear and circular trajectories. The next couple of figures present the result of

circular trajectories. Figure 18 shows a snapshot of the Matlab graphics simulation with

the WMRA model performing a circular trajectory and Figure 19 shows the joint angular

displacement versus time for the completion of a circular trajectory of 1m of radius which

is the radius of a typical door.

44

Figure 18 Circular Path Matlab Animation

45

Figure 19 Joint Angular Displacement vs. Time for Circular Path

To illustrate the simulation, a virtual reality WMRA environment was developed

for several activities of daily living. In this section, a “Go To and Open the Door” task

was selected to prove the concept. For illustration purposes, the initial and final

transformations of the end-effector trajectory are known. The initial and final

transformations of the wheelchair approach trajectory are also given.

The task process is divided into two sub-tasks. The first task is to approach the

door knob while both the end-effector and the wheelchair are following their respective

trajectories. In this sub-task, the end-effector follows its straight-line trajectory from start

46

to end, and the wheelchair follows the three stages of its trajectory to approach the door

approximately at the desired position and orientation. The second sub-task is to open the

door inwards while the wheelchair is backing up away from the door. In this sub-task, the

end-effector follows its circular trajectory to open the door, and the wheelchair follows a

single-stage straight-line trajectory to back up away from the door. The wheelchair

orientation during this sub-task is kept constant.

47

Figure 20 Virtual Reality Simulation Sequence for “Approach and Open Door” Task

Initial Position Wheelchair Rotation

Forward Motion Forward Motion

Wheelchair Rotation Opening Door

Opening Door Final Position

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

48

Figure 20 shows the complete task execution; reaching the door and following a

circular path to open it. In that sequence, the transition between figures 20-I and 20-II

shows how the end-effector was following its 3D trajectory while the wheelchair was

rotating without translation to reach its trajectory orientation. After reaching an

approximate angle equivalent to that of the trajectory line, the wheelchair started moving

forward without rotation, while the end-effector was still following its trajectory as

shown in figures 20-III and 20-IV. The transition between figures 20-IV and 20-V shows

how the end-effector kept following its 3D trajectory while the wheelchair was rotating

back without translation to the desired orientation.

Figure 20-VI shows the end-effector following the circular trajectory to open the

door, and the wheelchair was moving backwards to clear the space for the door to open.

Figures 20-VII and 20-VIII show the completed task of opening the door and arriving at

the final pose. Notice here that a third sub-task can be added to have the WMRA go

through the door. In that case, the end-effector will need to stay stationary while the

wheelchair moves forward to go through the door.

The first sub-task included a 3D trajectory for the end-effector as shown in Figure

2121, and a planar trajectory for the wheelchair. The second sub-task included two planar

trajectories since the end-effector is opening the door in a planar motion.

49

Figure 21 3D End-effector Trajectory for Approaching Task

Note that the secondary trajectory will not be followed in a precise motion. As the

weights of the wheelchair position and orientation are updated at every iteration in the

weight matrix, the relative motion is kept to minimum for the undesired variable motion,

while the relative motion of the desired variable is kept to maximum. Figure 22 and 23

show the resulting wheelchair motion in its three position/orientation stages for the first

sub-task of approaching the door. In Figure 22, it can be seen that the position stayed

close to its desired trajectory throughout the wheelchair motion. Orientation, however,

seems to have slightly higher error in following its desired orientation as seen in Figure

23.

50

Figure 22 Wheelchair Position Vs. Time for Approaching Task

In some extreme cases, failure can occur when this algorithm is used due to the

fact that it is impossible to achieve both trajectories at the same time. An example of that

is when the end-effector is commanded to go in a direction that is deviating away from

the desired wheelchair direction. It is shown, however, that even if the sub-task that is

being performed by the wheelchair fails at certain instances, the trajectory-following of

the end-effector stays unaffected.

There is a slight offset from the desired path and the actual path covered by the

wheelchair. This is an optimizazion process and the results are always going to be

approximates. The reason for this error is because the end-effector is trying to follow its

commanded trajectory and the arm is stretching to its limit while the wheelchair is still

51

rotating. At this point, the wheelchair trajectory is compromised and the wheelchair starts

to move forward so that the end-effector keeps up with its trajectory-following task. It

was also noted that the wheelchair accelerates forward in its "stage 2" motion faster than

the gripper so that it accounts for the time it will take to perform "stage 3" rotation while

the end-effector is still moving along its final steps of its trajectory.

Figure 23 Wheelchair Orientation Vs. Time for Approaching Task

 The same issue is presented for the wheelchair orientation while approaching the

target. Even if the ideal path is set to rotate quickly and start moving forward, even when

the wheelchair starts moving the desired rotation angle is not reached. Therefore, the

wheelchair will keep rotating as long as the end-effector trajectory remains unaltered.

This issue could also be present in the stage three. If the time for the wheelchair rotation

is not accurately coordinated, the final orientation may be achieved once the end-effector

has already reached its final destination

This example assumes that the door opens towards the wheelchair and towards the

left side of the user. If the door opens to the right side of the user while the robotic arm is

52

mounted on the left side of the user, a more complicated trajectory is required to achieve

acceptable results. Programming several sequences of trajectories for both the wheelchair

and the end-effector can be utilized to form a complete set of tasks that can be

autonomously preformed to make the WMRA system a task-oriented system.

A second orientation of the door is presented in an aerial view to illustrate the

efficiency of the algorithm (see Figure 24)

Figure 24 VR Sequence of a Second "Open Door Task"

 Figures 24-I and 24-II show a sequence of the WMRA approaching the door

knob, and 24-III and 24-IV show the opening of the door.

 This task is the most complex tasks since it includes the dual-trajectory track to

approach an object as well as different types of trajectories, for instance it includes a

circular trajectory to be followed to open the door. Having successfully performed this

I

IVIII

II

53

task allows the implementation of several trajectories in series to perform any other

simpler ADL task. Figure 25 shows the sequence to approach and pick up a book.

Figure 25 VR Sequence Book Pick Up

 In Figures 25-I and 25-II, the WMRA is approaching the shelf where the book is.

Once the book is reached in 25-III, the transformation of the book will be the same of that

of the gripper. In a human-like motion the book is pulled back and the user can either

take it or command the WMRA to place it somewhere else.

I

IVIII

II

54

Chapter 6: Conclusions and Future Work

Optimized dual-trajectory following control system was presented for a 9-DoF

redundant wheelchair-mounted robotic arm system to be used for people with disabilities

to help them in their ADL tasks. S-R inverse was used with a weighting matrix to solve

for the resolved rate solution to follow a primary trajectory. A secondary trajectory for

the wheelchair to follow was mathematically represented and implemented for a “Go To

and Open the Door” task. Joint limits for the manipulator joint variables and the

position/orientation variables for the wheelchair were used in the weight matrix to

prioritize or penalize the motion of the nine control variables. A simulation of the task in

virtual reality simulation and the results were presented.

Future work includes the addition of a pool of ADL tasks in the program and the

incorporation of a laser range finder to obtain position information of the target and the

environment. Implementation of the control system will be done in the new prototype

WMRA under development. Clinical human testing of actual ADL tasks will follow, and

data will be collected and presented in future publications.

An Ongoing effort in the implementation of a Brain Computer Interface (BCI) as

a user interface is also part of the future work to be accomplished for this work. This will

allow the control of the system by persons with more severe disabilities such as locked-in

55

syndrome. The implementation of different programming languages for the control of the

system is also being tested.

56

References

[1] US Census Bureau, “Americans with disabilities,” Census Brief, December 2008,
http://www.census.gov/prod/2008pubs/p70-117.pdf

[2] Reswick J.B., “The moon over dubrovnik - a tale of worldwide impact on persons
with disabilities,” Advances in External Control of Human Extremities, 1990.

[3] Topping, M.J., “The development of handy-1, a robotic system to assist the severely
disabled,” Proc ICORR ’99, pp. 244-249, 1999.

[4] Topping, M., Heck, H., Bolmsjo, G., and Weightman, D., 1998, “The development of
RAIL (Robotic Aid to Independent Living),” Proceedings of the third TIDE Congress.

[5] N. Katevas (Ed), “Mobile robotics in health care services,” IOS Press , pp. 227-251,
Amsterdam, 2000.

[6] G. Bolmsjö, M. Olsson, P. Hedenborn, U. Lorentzon, F. Charnier, H. Nasri, “Modular
robotics design - system integration of a robot for disabled people,” Proceedings of the
EURISCON’98, Athens, 1998.

[7] Holly A. Yanco., “Integrating robotic research: a survey of robotic wheelchair
development,” AAAI Spring Symposium on Integrating Robotic Research, Stanford,
California, March 1998.

[8] Warner, P.R and Prior, S.D. , “Investigations into the design of a wheelchair-mounted
rehabilitation robotic manipulator,” Proceedings of the 3rd Cambridge Workshop on
Rehabilitation Robotics, Cambridge University, England, April 1994.

[9] H.Eftring, K.Boschian, “Technical results from manus user trials,” Proc. ICORR ’99,
136-141, 1999

57

[10] M. Hillman, A. Gammie, “The Bath institute of medical engineering assistive
robot”, Proc. ICORR ’94, 211-212, 1994.

[11] R. Alqasemi, E. McCaffrey, K. Edwards and R. Dubey, “Analysis, Evaluation and
Development of Wheelchair-Mounted Robotic Arms.” Proceedings of the 2005 IEEE 9th
International Conference on Rehabilitation Robotics, Chicago, IL, June 2005.

[12] R. Alqasemi and R. Dubey. “Maximizing Manipulation Capabilities for People with
Disabilities Using a 9-DoF Wheelchair-Mounted Robotic Arm System”. Proceedings of
the 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[13] K. Edwards, R. Alqasemi and R. Dubey, “Wheelchair-Mounted Robotic Arms:
Design and Development,” The First IEEE/RAS-EMBS International Conference on
Biomedical Robotics and Biomechatronics 2006.

[14] R. Alqasemi, S. Mahler, R. Dubey, “Design and construction of a robotic gripper for
activities of daily living for people with disabilities,” Proceedings of the 2007 ICORR,
Noordwijk, the Netherlands, June 13–15, 2007.

[15] A. Albu-Schäffer et-al. “From Torque Feedback-Controlled Lightweight Robots to
Intrinsically Compliant Systems”. IEEE Robotics & Automation Magazine, September
2008. P.20-30.

[16] Herzinger, G., Sporer, N., Albu-Schaffer, A., Hahnle, M., Krenn, R., Pascucci, A., &
Schedl, M. (2002). “DLR’s Torque Controlled Lightweight Robot III – Are We Reaching
the Technological Limits Now?” Proceedings of the IEEE International Conference on
Robotics & Automation. Pgs 1710-1716.

[17] P. Shrock, F. Farelo, R. Alqasemi and R. Dubey. “Design, Simulation and Testing of
a New Modular Wheelchair Mounted Robotic Arm to Perform Activities of Daily
Living” Proceedings of the 2009 IEEE 11th International Conference on Rehabilitation
Robotics.

[18] C. Ding, P. Duan, M. Zhang and H. Liu. “The Kinematics of a Redundant Mobile
Manipulator”, Proceedings of the IEEE International Conference on Automation and
Logistics. 2009.

58

[19] A. Luca, G. Oriolo, and P. Giordano, “Kinematic Modeling and Redundancy
Resolution for Nonholonomic Mobile Manipulators”, Proceedings of the 2006 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1867-1873.

[20] R. Zapata, JB. Thevenon, M. Perrier, E. Pommier and E. Badi. “Path Planning abd
trajectory Planning for Non-holonomic Mobile Robots”, IEE/RJS International
Workshop on Intelligent Robot and Systems. 1989

[21] O. Gal, Z. Shiller and E. Rimon. “Efficient and Safe On-line Motion planning ib
Dynamic Environments”, Proceedings of the 2009 IEEE International Conference on
Robotics and Automation (ICRA).

[22] G.D. white, R.M. Bhatt, C Pei Tang and V.N. Krovi. “Experimental Evaluation of
Dynamic redundancy resolution in a Nonholonomic wheeled Mobile Manipulator”.
IEE/ASME Transactions on Mechatronics, Vol. 14, No 3. 2009

[23] T. Chan, and R. Dubey, “A Weighted Least-Norm Solution Based Scheme for
Avoiding Joint Limits for Redundant Joint Manipulators”, IEEE Robotics and
Automation Transactions (R&A Transactions). V. 11, N. 2, pp. 286-292, 1995.

[24] R. Alqasemi. “Maximizing Manipulation Capabilities for People with Disabilities
Using a 9-DoF Wheelchair-Mounted Robotic Arm System”. Doctoral Dissertation.
University of South Florida. Tampa, 2007.

[25] M Wada. “ An omnidirectional 4WD Mobile Platform for Wheelchair
Applications.” Proceedings of the 2005 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics.

[2

6] J. Savage et al. “ViRbot: A System for the Operation of Mobile Robots.” Lecture
Notes in Computer Science. Springer Berlin/ Heidelberg. Vol 5001. 512-519, 2008.

[2

7] J. Savage, M. Billinghurst, A. Holden, “The Virbot: A virtual reality mobile robot
driven with multimodal commands.” Expert Systems with Applications 15. 413-419,
1998.

59

[2

8] The Mathworks. “Virtual Reality Toolbox User’s Guide.” The Mathworks Inc.
Version 4.0.1, 2006

[2

9] R. Paul, 1981, “Robot Manipulators: Mathematics, Programming and Control”, The
MIT Press, ISBN 026216082-X.

[3

0] Craig, J., 2003, “Introduction to robotics mechanics and control”, third edition,
Addison- Wesley Publishing, ISBN 0201543613.

[31] E. Papadopoulos, J. Poulakakis, “Planning and model-based control for mobile
manipulators,” Proceedings of the 2001 IROS, 2000

[32 Nakamura, Y., “Advanced robotics: redundancy and optimization,” Addison- Wesley
Publishing, 1991, ISBN 0201151987.

[33] Yoshikawa, T., “Foundations of robotics: analysis and control,” MIT Press, 1990,
ISBN 0262240289.

60

Appendices

61

Appendix A. Virtual Reality Modeling Language

9_WMRA

#VRML V2.0 utf8

NavigationInfo { type "EXAMINE" speed 30 avatarSize [1, 0, 0]
headlight TRUE }
DEF WMRAROBOT Group {
 children[
 Group {
 children [

DEF EXT_SETTINGS Group {
 children [
 WorldInfo { title "Wheelchair Mounted Robotic Arm, By: Redwan
Alqasemi, USF 2007"},
 NavigationInfo {
 type "EXAMINE"
 avatarSize 180
 visibilityLimit 200
 speed 1000
 },

 Background {
 groundColor [0.8 0.7 0.1 , 0.8 0.7 0.1]
 groundAngle [1.57]
 skyColor [0 0 1 , 0 0.5 1 , 0 0.5 1 , 0.5 0.5 0.5 , 1 0.5
0]

 skyAngle [1 1.15 1.35 1.57]
 #topUrl "cloud.jpg"
 },

 DEF DynamicView Transform {
 rotation 0 1 0 0
 translation 0 0 0
 children [
 Viewpoint {
 description "a_start"
 position 2500 500 1800

62

Appendix A (Continued)

 orientation 0 1 0 0.8
 jump FALSE
 },
 Viewpoint {
 description "a_far"
 position 900 6000 -200
 orientation -0.601 -0.547 -0.582 2.172
 jump FALSE
 },
 Viewpoint {
 description "a_bk-lt-up"
 position -1300 1600 -1600
 orientation -0.1 -1 -0.25 2.4
 jump FALSE
 },
 Viewpoint {
 description "a_bk-lt-dn"
 position -1400 400 -1800
 orientation 0.025 -1 0.037 2.4
 jump FALSE
 },
 Viewpoint {
 description "a_ft-lt-up"
 position 1600 1800 -1400
 orientation -0.1 0.9 0.25 2.4
 jump FALSE
 },
 Viewpoint {
 description "a_ft-lt-dn"
 position 1700 400 -1600
 orientation 0.031 1 -0.052 2.4
 jump FALSE
 },
 Viewpoint {
 description "a_ft-rt-up"
 position 1600 1900 1500
 orientation -0.4 0.5 0.14 0.85
 jump FALSE
 },
 Viewpoint {
 description "a_ft-rt-dn"
 position 1700 300 1900
 orientation 0.191 1 -0.075 0.615
 jump FALSE
 },
 Viewpoint {
 description "a_bk-rt-up"
 position -1700 1700 1700
 orientation -0.25 -0.5 -0.12 1
 jump FALSE
 },
 Viewpoint {
 description "a_bk-rt-dn"

63

Appendix A (Continued)

 position -1800 500 1900
 orientation 0.116 -1 0.021 0.818
 jump FALSE
 },
 Viewpoint {
 description "a_birdeye"
 position -1100 4900 -1900
 orientation -0.56 -0.72 -0.4 2.2
 jump FALSE
 },
 Viewpoint {
 description "a_top"
 position 200 3100 0
 orientation -0.577 -0.577 -0.577 2.1
 jump FALSE
 },
]}
 Viewpoint {
 description "top"
 position 200 3100 0
 orientation -0.577 -0.577 -0.577 2.1
 jump FALSE
 },
 Viewpoint {
 description "birdeye"
 position -1100 4900 -1900
 orientation -0.56 -0.72 -0.4 2.2
 jump FALSE
 },
 Viewpoint {
 description "bk-rt-dn"
 position -1800 500 1900
 orientation 0.116 -1 0.021 0.818
 jump FALSE
 },
 Viewpoint {
 description "bk-rt-up"
 position -1700 1700 1700
 orientation -0.25 -0.5 -0.12 1
 jump FALSE
 },
 Viewpoint {
 description "ft-rt-dn"
 position 1700 300 1900
 orientation 0.191 1 -0.075 0.615
 jump FALSE
 },
 Viewpoint {
 description "ft-rt-up"
 position 1600 1900 1500
 orientation -0.4 0.5 0.14 0.85
 jump FALSE
 },

64

Appendix A (Continued)

 Viewpoint {
 description "ft-lt-dn"
 position 1700 400 -1600
 orientation 0.031 1 -0.052 2.4
 jump FALSE
 },
 Viewpoint {
 description "ft-lt-up"
 position 1600 1800 -1400
 orientation -0.1 0.9 0.25 2.4
 jump FALSE
 },
 Viewpoint {
 description "bk-lt-dn"
 position -1400 400 -1800
 orientation 0.025 -1 0.037 2.4
 jump FALSE
 },
 Viewpoint {
 description "bk-lt-up"
 position -1300 1600 -1600
 orientation -0.1 -1 -0.25 2.4
 jump FALSE
 },
 Viewpoint {
 description "far"
 position 900 6000 -200
 orientation -0.601 -0.547 -0.582 2.172
 jump FALSE
 },
 Viewpoint {
 description "start"
 position 2500 500 1800
 orientation 0 1 0 0.8
 jump FALSE
 },

 DEF GROUND Transform {
 rotation 1 0 0 0
 translation 0 0 0
 children [
 Shape {
 geometry Box { size 10000 1 10000 }
 appearance Appearance {
 texture ImageTexture { url "woodfloor2.jpg" repeatS TRUE
repeatT TRUE }
 textureTransform TextureTransform {
 rotation 0
 center 0 0
 translation 0 0
 scale 3 3
 }}}]},

65

Appendix A (Continued)

]}
]}

 # Transforming the wheelchair world coordinate system to the
VR's world coordinate system:
 DEF World Transform {
 rotation 1 0 0 -1.5707963
 translation 0 0 0
 children [

 DEF Chair Transform {
 rotation 0 0 1 0
 translation -440 -230 168
 children [
DEF WCR SphereSensor {}
DEF WCT PlaneSensor { minPosition -400 0 maxPosition 400 0 }
 Group {
 children [Inline { url "0_Chair.wrl" }

 DEF LWheel Transform {
 rotation 0 1 0 0
 translation 0 0 0
 children [
DEF LW CylinderSensor { diskAngle 0 minAngle 1.5707963
maxAngle 1.5707963 }
 Group {
 children [Inline { url "0_LWheel.wrl" }]}]}

 DEF RWheel Transform {
 rotation 0 1 0 0
 translation 0 0 0
 children [
DEF RW CylinderSensor { diskAngle 0 minAngle 1.5707963
maxAngle 1.5707963 }
 Group {
 children [Inline { url "0_RWheel.wrl" }]}]}

 DEF ARM1 Transform {
 rotation 1 0 0 1.5707963
 translation 440 220 139
 children [
DEF JOINT1 CylinderSensor { diskAngle 0 minAngle 1.5707963
maxAngle 1.5707963 }
 Group {
 children [Inline { url "1.wrl" }

 DEF ARM2 Transform {
 rotation 0 0 -1 1.5707963
 translation 0 42.69 -75.1
 children [
DEF JOINT2 CylinderSensor { diskAngle 0 minAngle -1.5708
maxAngle 1.5708 }

66

Appendix A (Continued)

 Group {
 children [Inline { url "2.wrl" }

 DEF ARM3 Transform {
 rotation 0 1 0 1.5707963
 translation -1.73 75.08 -42.7
 children [
DEF JOINT3 CylinderSensor { diskAngle 0 minAngle -3.1416
maxAngle 3.1416 }
 Group {
 children [Inline { url "3.wrl" }

 DEF ARM4 Transform {
 rotation 0 0 -1 0
 translation -2.92 42.64 -75.08
 children [
DEF JOINT4 CylinderSensor { diskAngle 0 minAngle -3.1416
maxAngle 3.1416 }
 Group {
 children [Inline { url "4.wrl" }

 DEF ARM5 Transform {
 rotation 0 1 0 1.5707963
 translation -11.45 74.85 -423.58
 children [
DEF JOINT5 CylinderSensor { diskAngle 0 minAngle -3.1416
maxAngle 3.1416 }
 Group {
 children [Inline { url "5.wrl" }

 DEF ARM6 Transform {
 rotation 0 0 -1 1.5707963
 translation -2.17 45.99 -75.1
 children [
DEF JOINT6 CylinderSensor { diskAngle 0 minAngle -3.1416
maxAngle 3.1416 }
 Group {
 children [Inline { url "6.wrl" }

 DEF ARM7 Transform {
 rotation 0 1 0 1.5707963
 translation -2.92 -61.52 -161.49
 children [
DEF JOINT7 CylinderSensor { diskAngle 0 minAngle -1.5708
maxAngle 1.5708 }
 Group {
 children [Inline { url "7.wrl" }

 DEF ARM8 Transform {
 rotation 0 0 -1 0
 translation -1.78 61.39 -192.29
 children [

67

Appendix A (Continued)

DEF JOINT8 CylinderSensor { diskAngle 0 minAngle -3.1416
maxAngle 3.1614 }
 Group {
 children [Inline { url "8.wrl" }

]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}

ROUTE WCT.translation_changed TO Chair.set_translation
ROUTE WCR.rotation_changed TO Chair.set_rotation
ROUTE LW.rotation_changed TO LWheel.set_rotation
ROUTE RW.rotation_changed TO RWheel.set_rotation
ROUTE JOINT1.rotation_changed TO ARM1.set_rotation
 # ROUTE JOINT2.rotation_changed TO ARM2.set_rotation
 # ROUTE JOINT3.rotation_changed TO ARM3.set_rotation
 # ROUTE JOINT4.rotation_changed TO ARM4.set_rotation
 # ROUTE JOINT5.rotation_changed TO ARM5.set_rotation
 # ROUTE JOINT6.rotation_changed TO ARM6.set_rotation
 # ROUTE JOINT7.rotation_changed TO ARM7.set_rotation
 # ROUTE JOINT8.rotation_changed TO ARM8.set_rotation

]}

Box

#VRML V2.0 utf8
Group {
children [
 Transform {
 translation 0 0 0
 children [
 DEF BOX Shape {
 appearance Appearance {
 material DEF _mat1 Material {
 ambientIntensity 0.2
 diffuseColor 0.2 0.2 0
 emissiveColor 0 0 0
 shininess 0.2
 specularColor 0 0 0
 transparency 0
 }
}

 geometry Box { size 300 200 300}
}
]
}
]
}

68

Appendix A (Continued)

Couch

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Group {
 children [
 NavigationInfo {
 }

 Transform {
 scale 60 60 60
 children [
 Group {
 children Transform {
 translation 8 2 4
 children [
 Shape {
 appearance Appearance {
 material DEF _mat1 Material {
 ambientIntensity 0.2
 diffuseColor 0.1 0.4 0.5
 }

 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 0 -4
 rotation 1 0 0 1.57
 children Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"

69

 Appendix A (Continued)

 }

 }

 geometry Cylinder {
 height 8
 radius 1
 }

 }
 }
]
 }
 }

 Group {
 children Transform {
 translation -8 2 4
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 0 -4
 rotation 1 0 0 1.57
 children Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Cylinder {
 height 8
 radius 1
 }

70

Appendix A (Continued)

 }
 }
]
 }
 }

 Group {
 children Transform {
 translation 7.5 -1.5 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Box {
 size 1 7 8
 }

 }

 Transform {
 translation -15 0 0
 children Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Box {
 size 1 7 8
 }

 }
 }
]
 }
 }

 Group {
 children Transform {
 translation 0 -3.5 0
 children Shape {
 appearance Appearance {

71

Appendix A (Continued)

 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Box {
 size 14 3 8
 }

 }
 }
 }

 Group {
 children Transform {
 translation 0 1.5 -3.5
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Box {
 size 15 7 1
 }

 }

 Transform {
 translation 7.5 3.5 -0.5
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Sphere {
 radius 1
 }

 }

72

 Appendix A (Continued)

 Transform {
 translation -15 0 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url
"texture/leather_white.jpg"
 }

 }

 geometry Sphere {
 radius 1
 }

 }

 Transform {
 translation 7.5 0 0
 rotation 0 0 1 1.57
 children Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url
"texture/leather_white.jpg"
 }

 }

 geometry Cylinder {
 height 15
 radius 1
 }

 }
 }
]
 }
]
 }
]
 }
 }

 Group {
 children Transform {
 translation 0 -1 0
 children [

73

Appendix A (Continued)
 Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Box {
 size 14 2 6
 }

 }

 Transform {
 translation 0 0 3
 rotation 0 0 1 1.57
 children Shape {
 appearance Appearance {
 material USE _mat1
 texture ImageTexture {
 url "texture/leather_white.jpg"
 }

 }

 geometry Cylinder {
 height 15
 radius 1
 }

 }
 }
]
 }
 }
]
 }
]
}

74

Appendix A (Continued)

Door

#VRML V1.0 ascii
Separator {
MaterialBinding {
value OVERALL
}
Material {
ambientColor [
 0.796078 0.823529 0.937255
]
diffuseColor [
 0.796078 0.823529 0.937255
]
emissiveColor [
 0.063686 0.065882 0.074980
]
specularColor [
 0.756275 0.782353 0.890392
]
shininess [
 0.550000
]
transparency [
 0.000000
]
}
Coordinate3 {
point [
 0.000000 0.000000 0.000000, 0.000000 0.000000 2.200000, 0.000000
0.010000 0.000000, 0.000000 0.010000 2.200000, 0.900000 0.000000 -
0.000000,
 0.900000 0.000000 2.200000, 0.900000 0.010000 -0.000000, 0.900000
0.010000 2.200000
]
}
IndexedFaceSet {
coordIndex [
 2, 6, 0, -1, 0, 6, 4, -1, 3, 2, 1, -1,
 1, 2, 0, -1, 7, 3, 5, -1, 5, 3, 1, -1,
 6, 7, 4, -1, 4, 7, 5, -1, 3, 7, 2, -1,
 2, 7, 6, -1, 5, 1, 4, -1, 4, 1, 0, -1
]
}
}

75

Appendix A (Continued)

Laser

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Transform {
scale 60 60 60
 translation 0 0 0
 rotation 1 0 0 3.141592
 children Shape {
 appearance Appearance {
 material DEF _mat1 Material {
 ambientIntensity 0.2
 diffuseColor 0 0 0
 emissiveColor 1 0 0
 shininess 0.2
 specularColor 0 0 0
 transparency 0
 }
}
 geometry Cone {
 bottomRadius 0.05
 height 3.8
 }

 }
}

Laser Mount

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Transform {
 translation -9.53674e-007 -3.21865e-006 0
 children Shape {
 appearance Appearance {
 material Material {
 }

76

 Appendix A (Continued)

 texture DEF Metal ImageTexture {
 url "texture/Metal.jpg"
 }

 }

 geometry Box {
 size 20 20 20
 }

 }
}

Shelf

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Transform {
 translation -110.317 -144.058 -153.659
 rotation -0.173679 0.966449 -0.189238 0.0127889
 scale 799.999 799.999 799.999
 children Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 1
 diffuseColor 0.668235 0.564706 0.404706
 emissiveColor 0.167059 0.141176 0.101176
 shininess 0.31
 specularColor 0.668235 0.564706 0.404706
 }

 texture DEF Wood_Tan ImageTexture {
 url "texture/Wood_6.gif"
 }

 }

 geometry IndexedFaceSet {
 color Color {
 color 0.835294 0.705882 0.505882
 }

 coord Coordinate {
 point [-0.044476 -0.045526 -0.02,
 -0.044476 -0.045526 0.4,

77

Appendix A (Continued)

 -0.044476 1.75447 -0.02,
 -0.044476 1.75447 0.4,
 -0.016654 -0.023677 0,
 -0.016654 -0.023677 0.4,
 -0.016654 0.393539 0,
 -0.016654 0.393539 0.4,
 -0.016654 0.413539 0,
 -0.016654 0.413539 0.4,
 -0.016654 0.908174 0,
 -0.016654 0.908174 0.4,
 -0.016654 0.928174 0,
 -0.016654 0.928174 0.4,
 -0.016654 1.35288 0,
 -0.016654 1.35288 0.4,
 -0.016654 1.37288 0,
 -0.016654 1.37288 0.4,
 -0.016654 1.73632 0,
 -0.016654 1.73632 0.4,
 0.927702 -0.023677 0,
 0.927702 -0.023677 0.4,
 0.927702 0.393539 0,
 0.927702 0.393539 0.4,
 0.927702 0.413539 0,
 0.927702 0.413539 0.4,
 0.927702 0.908174 0,
 0.927702 0.908174 0.4,
 0.927702 0.928174 0,
 0.927702 0.928174 0.4,
 0.927702 1.35288 0,
 0.927702 1.35288 0.4,
 0.927702 1.37288 0,
 0.927702 1.37288 0.4,
 0.927702 1.73632 0,
 0.927702 1.73632 0.4,
 0.955524 -0.045526 -0.02,
 0.955524 -0.045526 0.4,
 0.955524 1.75447 -0.02,
 0.955524 1.75447 0.4]
 }

 normal Normal {
 vector [-1 0 0,
 0 -1 0,
 0 0 -1,
 0 0 1,
 0 1 0,
 1 0 0]
 }

 colorPerVertex FALSE
 normalPerVertex TRUE
 coordIndex [7, 3, 5, -1, 5, 3, 1, -1,

78

Appendix A (Continued)

 5, 1, 21, -1, 21, 1, 37, -1,
 21, 37, 23, -1, 13, 15, 3, -1,
 29, 13, 11, -1, 11, 13, 3, -1,
 11, 3, 9, -1, 9, 3, 7, -1,
 9, 7, 25, -1, 3, 35, 39, -1,
 39, 35, 33, -1, 7, 23, 25, -1,
 25, 23, 37, -1, 25, 37, 27, -1,
 27, 37, 39, -1, 11, 27, 29, -1,
 29, 27, 39, -1, 29, 39, 31, -1,
 31, 39, 33, -1, 31, 33, 15, -1,
 15, 33, 17, -1, 15, 17, 3, -1,
 3, 17, 19, -1, 3, 19, 35, -1,
 0, 1, 2, -1, 2, 1, 3, -1,
 36, 37, 0, -1, 0, 37, 1, -1,
 38, 39, 36, -1, 36, 39, 37, -1,
 2, 3, 38, -1, 38, 3, 39, -1,
 19, 17, 18, -1, 18, 17, 16, -1,
 17, 33, 16, -1, 16, 33, 32, -1,
 33, 35, 32, -1, 32, 35, 34, -1,
 35, 19, 34, -1, 34, 19, 18, -1,
 21, 23, 20, -1, 20, 23, 22, -1,
 23, 7, 22, -1, 22, 7, 6, -1,
 7, 5, 6, -1, 6, 5, 4, -1,
 5, 21, 4, -1, 4, 21, 20, -1,
 25, 27, 24, -1, 24, 27, 26, -1,
 27, 11, 26, -1, 26, 11, 10, -1,
 11, 9, 10, -1, 10, 9, 8, -1,
 9, 25, 8, -1, 8, 25, 24, -1,
 15, 13, 14, -1, 14, 13, 12, -1,
 13, 29, 12, -1, 12, 29, 28, -1,
 29, 31, 28, -1, 28, 31, 30, -1,
 31, 15, 30, -1, 30, 15, 14, -1,
 28, 30, 12, -1, 12, 30, 14, -1,
 10, 8, 26, -1, 26, 8, 24, -1,
 6, 4, 22, -1, 22, 4, 20, -1,
 32, 34, 16, -1, 16, 34, 18, -1,
 0, 2, 36, -1, 36, 2, 38, -1]
 normalIndex [3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,

79

Appendix A (Continued)

 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 2, 2, 2, -1, 2, 2, 2, -1]
 }

 }
}

Sink Door

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Transform {
 scale 800 800 800
 children Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 1
 diffuseColor 0.721569 0.646275 0.404706
 emissiveColor 0.180392 0.161569 0.101176
 shininess 0.31
 specularColor 0.721569 0.646275 0.404706

80

 Appendix A (Continued)

 }

 texture DEF Wood_Tan ImageTexture {
 url "texture/Wood_6.gif"
 }

 }

 geometry IndexedFaceSet {
 color Color {
 color 0.901961 0.807843 0.505882
 }

 coord Coordinate {
 point [0 0 0,
 0 0 0.02,
 0 1 0,
 0 1 0.02,
 0.553993 0.46 0.02,
 0.553993 0.46 0.05,
 0.553993 0.47 0.02,
 0.553993 0.47 0.04,
 0.553993 0.51 0.02,
 0.553993 0.51 0.04,
 0.553993 0.52 0.02,
 0.553993 0.52 0.05,
 0.563994 0.46 0.02,
 0.563994 0.46 0.05,
 0.563994 0.47 0.02,
 0.563994 0.47 0.04,
 0.563994 0.51 0.02,
 0.563994 0.51 0.04,
 0.563994 0.52 0.02,
 0.563994 0.52 0.05,
 0.6 0 0,
 0.6 0 0.02,
 0.6 1 0,
 0.6 1 0.02]
 }

 normal Normal {
 vector [-1 0 0,
 0 -1 0,
 0 0 -1,
 0 0 1,
 0 1 0,
 1 0 0]
 }

 colorPerVertex FALSE
 normalPerVertex TRUE

81

 Appendix A (Continued)

 coordIndex [18, 23, 10, -1, 10, 23, 3, -1,
 10, 3, 8, -1, 6, 14, 16, -1,
 16, 8, 6, -1, 6, 8, 3, -1,
 6, 3, 4, -1, 4, 3, 1, -1,
 4, 1, 12, -1, 12, 1, 21, -1,
 12, 21, 14, -1, 14, 21, 23, -1,
 14, 23, 16, -1, 16, 23, 18, -1,
 1, 3, 0, -1, 0, 3, 2, -1,
 21, 1, 20, -1, 20, 1, 0, -1,
 23, 21, 22, -1, 22, 21, 20, -1,
 3, 23, 2, -1, 2, 23, 22, -1,
 22, 20, 2, -1, 2, 20, 0, -1,
 6, 4, 7, -1, 7, 4, 5, -1,
 7, 5, 9, -1, 9, 5, 11, -1,
 9, 11, 8, -1, 8, 11, 10, -1,
 13, 5, 12, -1, 12, 5, 4, -1,
 16, 18, 17, -1, 17, 18, 19, -1,
 17, 19, 15, -1, 15, 19, 13, -1,
 15, 13, 14, -1, 14, 13, 12, -1,
 7, 15, 6, -1, 6, 15, 14, -1,
 11, 19, 10, -1, 10, 19, 18, -1,
 17, 9, 16, -1, 16, 9, 8, -1,
 7, 9, 15, -1, 15, 9, 17, -1,
 13, 19, 5, -1, 5, 19, 11, -1]
 normalIndex [3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 3, 3, 3, -1, 3, 3, 3, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 2, 2, 2, -1, 2, 2, 2, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 0, 0, 0, -1, 0, 0, 0, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 5, 5, 5, -1, 5, 5, 5, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 4, 4, 4, -1, 4, 4, 4, -1,
 1, 1, 1, -1, 1, 1, 1, -1,
 2, 2, 2, -1, 2, 2, 2, -1,
 3, 3, 3, -1, 3, 3, 3, -1]
 }

 }
}

82

Appendix A (Continued)

Table

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Group {

 children [

 NavigationInfo {
 }
 Transform {
 scale 60 60 60

 children [
 Shape {

 appearance Appearance {
 material DEF _mat1 Material {
 ambientIntensity 0.2
 diffuseColor 0.25 0.15 0.1
 emissiveColor 0 0 0
 shininess 0.2
 specularColor 0 0 0
 transparency 0
 }

 texture DEF Wood_Brown ImageTexture {
 url "texture/Wood_5.jpg"
 }

 }

 geometry Cylinder {

 height 0.5
 radius 8
 }

 }
]}
 Transform {

83

Appendix A (Continued)

 translation 0 -1 0
 scale 60 60 60
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture DEF Wood_Brown ImageTexture {
 url "texture/Wood_5.jpg"
 }

 }

 geometry Cylinder {
 height 1
 radius 1
 }

 }

 Transform {
 translation 0 -0.5 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture DEF Wood_Brown ImageTexture {
 url "texture/Wood_5.jpg"
 }

 }

 geometry Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 -1.5 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture DEF Wood_Brown ImageTexture {
 url "texture/Wood_5.jpg"
 }

 }

84

Appendix A (Continued)

 geometry
Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 -1.5 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture DEF Wood_Brown
ImageTexture {
 url "texture/Wood_5.jpg"
 }

 }

 geometry
Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 -1.5 0
 children [
 Shape {
 appearance Appearance {
 material USE _mat1
 texture DEF Wood_Brown
ImageTexture {
 url
"texture/Wood_5.jpg"
 }

 }

 geometry
Sphere {
 radius 1
 }

 }

 Transform {
 translation 0 -1.5 0

85

 Appendix A (Continued)

 children [
 Shape {
 appearance Appearance
{
 material USE
_mat1
 texture DEF
Wood_Brown ImageTexture {
 url
"texture/Wood_5.jpg"
 }

 }

 geometry Cylinder {
 height 3
 radius 1
 }

 }

 Transform {
 translation 0 -1 0
 children [
 Shape {
 appearance
Appearance {
 material USE
_mat1
 texture DEF
Wood_Brown ImageTexture {
 url
"texture/Wood_5.jpg"
 }

 }

 geometry Cone {
 bottomRadius
2
 height 3
 }

 }

 Transform {
 translation 0 -1 0
 children [
 Shape {
 appearance
Appearance {

86

Appendix A (Continued)

material USE _mat1
 texture
DEF Wood_Brown ImageTexture {
 url
"texture/Wood_5.jpg"
 }

 }

 geometry
Cone {

bottomRadius 4
 height
1.5
 }

 }

 Transform {
 translation
0 -0.75 0
 children
Shape {

appearance Appearance {

material USE _mat1

texture DEF Wood_Brown ImageTexture {

url "texture/Wood_5.jpg"
 }

 }

geometry Cylinder {

height 0.25

radius 5.5
 }

 }
 }
]
 }
]

87

Appendix A (Continued)

 }
]
 }
]
 }
]
 }
]
 }
]
 }
]
 }
]
}

Wall

#VRML V2.0 utf8

#Created with V-Realm Builder v2.0
#Integrated Data Systems Inc.
#www.ids-net.com

Collision {
 children []
}
Group {
 children [
 NavigationInfo {
 }

 Transform {
 translation 1.5 0 0
 children Transform {
 scale 201 201 201
 children Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 1
 diffuseColor 0.9 0.767329 0.619635
 shininess 1
 }

 texture NULL
 }

 geometry Box {

88

 Appendix A (Continued)

 size 14.8 7.1 0.25
 }

 }
 }
 }
]
}

89

Appendix B. Matlab Functions

WMRA_final_orientation

% This function simulates the wmra final orientation acording to the
needs
% of the task. the final angle to be rotated is an input

% Function Declaration:
function WMRA_final_orientation(ini, vr, ml, arm, Tiwc, qi,ang)

% Closing the Arm library and Matlab Graphics Animation and Virtual
Reality Animation and Plots windows:
if ini==3
 if arm==1
 try
 WMRA_ARM_Motion(ini, 0, 0, 0);
 end
 end
 if vr==1
 try
 WMRA_VR_Animation2(ini, 0, 0);
 end
 end
 if ml==1
 try
 WMRA_ML_Animation2(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 end
 end
 return;
end

% Defining the used conditions:
qd=qi(1:7);% Final joint angles
%qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]; % Final joint angles (Ready
Position).
ts=10; % (5 or 10 or 20) Simulation time to move the arm from any
position to the ready position.
n=100; % Number of time steps.
dt=ts/n; % The time step to move the arm from any position to the
ready position.
dqw=(ang)/(0.5*n+5);
%dq=(qd-qi(1:7))/(0.5*n+5);
% Initializing the physical Arm:
if arm==1
 WMRA_ARM_Motion(ini, 2, [qi;0], dt);
 ddt=0;
end

% Initializing Virtual Reality Animation:

Appendix B (continued)

90

if vr==1
 WMRA_VR_Animation2(ini, Tiwc, qi);

end

% Initializing Robot Animation in Matlab Graphics:
if ml==1
 % Inputting the D-H Parameters in a Matrix form:
 DH=WMRA_DH(qi);

 % Calculating the transformation matrices of each link:

T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA
_transl(0,0,DH(1,3));

T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA
_transl(0,0,DH(2,3));

T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA
_transl(0,0,DH(3,3));

T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA
_transl(0,0,DH(4,3));

T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA
_transl(0,0,DH(5,3));

T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA
_transl(0,0,DH(6,3));

T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA
_transl(0,0,DH(7,3));
 % Calculating the Transformation Matrix of the initial and desired
arm positions:
 Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67;
 Td=Tiwc*WMRA_q2T(qd);
 WMRA_ML_Animation2(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56,
T67);
end

% Check for the shortest route:
diff=qd-qi(1:7);
for i=1:7
 if diff(i) > pi
 diff(i)=diff(i)-2*pi;
 elseif diff(i) < (-pi)
 diff(i)=diff(i)+2*pi;
 end
end

% Joint angle change at every time step.
dq=[diff/n;0;0];

Appendix B (continued)

91

% Initialization:
qo=qi;
tt=0;

while tt <= (ts-dt)
 % Starting a timer:
 tic;

 % Calculating the new Joint Angles:
 qn=qo+dq;

 % Updating the physical Arm:
 if arm==1
 ddt=ddt+dt;
 if ddt>=0.5 || tt>=(ts-dt)
 WMRA_ARM_Motion(2, 1, [qn;0], ddt);
 ddt=0;
 end
 end

 % Updating Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation2(2, Tiwc, qn);
 end

 % Updating Matlab Animation:
 if ml==1
 % Calculating the new Transformation Matrix:

T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_t
ransl(0,0,DH(1,3));

T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_t
ransl(0,0,DH(2,3));

T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_t
ransl(0,0,DH(3,3));

T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_t
ransl(0,0,DH(4,3));

T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_t
ransl(0,0,DH(5,3));

T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_t
ransl(0,0,DH(6,3));

T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_t
ransl(0,0,DH(7,3));

Appendix B (continued)

92

 WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a,
T6a, T7a);
 end

 % Updating the old values with the new values for the next
iteration:
 Tiwc=Tiwc*WMRA_rotz(dqw);
 qn(9)=qn(9)+dqw;
 qo=qn;
 tt=tt+dt;

 % Pausing for the speed sync:
 pause(dt-toc);

end

WMRA_Main_Both

% This is a simplified version of the Main program to acomplish a
subtask
% with motion control. most of the options are prespecified and will
not be
% changed by the user

% Declaring the global variables to be used for the touch screen
control:
global VAR_DX
global VAR_SCREENOPN
global dHo

% Defining used parameters:
d2r=pi/180; % Conversions from Degrees to Radians.
r2d=180/pi; % Conversions from Radians to Degrees.

% Reading the Wheelchair's constant dimentions, all dimentions are
converted in millimeters:
L=WMRA_WCD;
radi=1000;
e=1;
% User input prompts:

%choice000 = input('\n Choose what to control: \n For combined
Wheelchair and Arm control, press "1", \n For Arm only control, press
"2", \n For Wheelchair only control, press "3". \n','s');
choice000 = 1;
 WCA=1;
%choice00000 = input('\n Choose whose frame to base the control on: \n
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For
Gripper Frame, press "3". \n','s');
choice00000=1;

Appendix B (continued)

93

 coord=1;
%choice0000 = input('\n Choose the cartesian coordinates to be
controlled: \n For Position and Orientation, press "1", \n For Position
only, press "2". \n','s');
choice0000 =1;
 cart=1;
%choice5 = input('\n Please enter the desired optimization method: (1=
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s');
choice5 =1;
 optim=1;
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1=
Yes, 2= No) \n','s');
choice50 =1;
 JLA=1;
%choice500 = input('\n Do you want to include Joint Limit/Velocity and
Obstacle Safety Stop? (1= Yes, 2= No) \n','s');
choice500 = 1;
 JLO=1;
%choice0 = input('\n Choose the control mode: \n For circle control,
press "6", \n For position control, press "1", \n For velocity control,
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask
control, press "4", \n For Touch Screen control, press "5",\n For
Switch, press "7". \n','s');
choice0 ='1';
if choice0=='1'
 cont=1;
 %Td = input('\n Please enter the transformation matrix of the
desired position and orientation from the control-based frame \n (e.g.
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n');
 %Td=[0 0 1 1955;-1 0 0 -3000;0 -1 0 800; 0 0 0
1]*WMRA_rotx(90)*WMRA_roty(70);
 Td=[0 0 1 1955;-1 0 0 -1169;0 -1 0 999; 0 0 0 1] *WMRA_rotx(-
pi/6)*WMRA_roty(pi/4);
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;
 %choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 choice00=1;
 trajf=1;
 elseif choice0=='7'
 cont=1;
 Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1];
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 if choice00=='2'
 trajf=2;

Appendix B (continued)

94

 elseif choice00=='3'
 trajf=3;
 else
 trajf=1;
 end
elseif choice0=='2'
 cont=2;
 ts = input('\n Please enter the desired simulation time in seconds
(e.g. 2) \n');
 if cart==2
 Vd = input('\n Please enter the desired 3x1 cartesian velocity
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n');
 else
 Vd = input('\n Please enter the desired 6x1 cartesian velocity
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n');
 end
elseif choice0=='3'
 cont=3;
 % Space Ball will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
elseif choice0=='4'
 cont=4;
 % BCI 2000 Psychology Mask will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 port1 = input('\n Please enter the desired port number (e.g. 19711)
\n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function, or \n press "4" for a Circular Polynomial function with
Blending. \n','s');
elseif choice0=='6'
 choice0=6;
 cont=6;
 %radi = input('\n Please enter the radius of the cirle in mm (e.g.
1000) \n');
 radi=1000;
 %e = input('\n If the door opens to the left press "1".\n If it
opens to the right press "2" \n');
 e=2;
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;
 trajf=4;
else
 cont=5;
 % Touch Screen will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
end

Appendix B (continued)

95

choice1 = input('\n Choose animation type or no animation: \n For
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation,
press "2", \n For BOTH Animations, press "3", \n For NO Animation,
press "4". \n','s');
if choice1=='2'
 vr = 0; ml = 1;
elseif choice1=='3'
 vr = 1; ml = 1;
elseif choice1=='4'
 vr = 0; ml = 0;
else
 vr = 1; ml = 0;
end

%choice10 = input('\n Would you like to run the actual WMRA? \n For
yes, press "1", \n For no, press "2". \n','s');
choice10='2';
if choice10=='1'
 arm=1;
else
 arm=0;
end
%choice2 = input('\n Press "1" if you want to start at the "ready"
position, \n or press "2" if you want to enter the initial joint
angles. \n','s');
choice2='1';
if choice2=='2'
 qi = input('\n Please enter the arms initial angles vector in
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n');
 WCi = input('\n Please enter the initial x,y position and z
orientation of the WMRA base from the ground base in millimeters and
radians (e.g. [200;500;0.3]) \n');
 ini=0;
else
 qi=[90;90;0;90;90;90;0]*d2r;
 WCi=[0;0;0];
 ini=0;
 if vr==1 || ml==1 || arm==1
 %choice3 = input('\n Press "1" if you want to include "park" to
"ready" motion, \n or press "2" if not. \n','s');
 choice3= '1';
 if choice3=='2'
 ini=0;
 else
 ini=1;
 end
 end
end
%choice4 = input('\n Press "1" if you do NOT want to plot the
simulation results, \n or press "2" if do. \n','s');
choice4 ='2';
if choice4=='2'

Appendix B (continued)

96

 plt=2;
else
 plt=1;
end

% Calculating the Transformation Matrix of the initial position of the
WMRA's base:
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3));

% Calculating the initial Wheelchair Variables:
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)];

% Calculating the initial transformation matrices:
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi,
[0;0], Tiwc);

if cont==1
 % Calculating the linear distance from the initial position to the
desired position and the linear velocity:
 if coord==2
 D=sqrt((Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2);
 elseif coord==3
 D=sqrt((Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2);
 else
 D=sqrt((Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2);
 end
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1);
 end
elseif cont==2
 % Calculating the number of iterations and the time increment
(delta t) if the linear step increment of the gripper is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=ts; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.

Appendix B (continued)

97

 dt=total_time/n; % Adjusted time increment in seconds.
 dx=Vd*dt;
 Td=Ti;
elseif cont==3
 WMRA_exit(); % This is to stop the simulation in SpaceBall control
when the user presses the exit key.
 dt=0.05;
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 Td=Ti;
 n=1;
elseif cont==4
 WMRA_exit(); % This is to stop the simulation in Psychology Mask
control when the user presses the exit key.
 dt=0.05;
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 Td=Ti;
 n=1;
elseif cont==6
 % Calculating the desired transformation matrix based on the
radius:
 Tdoor=Ti;
 Tdoor(1,4)=Ti(1,4)+radi/2;
 Tdoor(2,4)=Ti(2,4)+radi/2;
 Td=Tdoor;
 Td(1,4)=Td(1,4)-radi;
 Td(2,4)=Td(2,4)-((-1)^e)*radi;
 % Calculating the circular distance from the initial position to
the desired position and the linear velocity:
 D=0.5*pi*radi;
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e);
 end
else

Appendix B (continued)

98

 WMRA_screen('0'); % This is to start the screen controls.
Argument: '0'=BACK button disabled, '1'=BACK button enabled.
 dt=0.05;
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 Td=Ti;
 n=1;
end

% Initializing the joint angles, the Transformation Matrix, and time:
dq=zeros(9,1);
dg=0;
qo=[qi;qiwc];
To=Ti;
Toa=Tia;
Towc=Tiwc;
tt=0;
i=1;
dHo=[0;0;0;0;0;0;0];

% Initializing the WMRA:
if ini==0 % When no "park" to "ready" motion required.
 % Initializing Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation(1, Towc, qo);
 end
 % Initializing Robot Animation in Matlab Graphics:
 if ml==1
 WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45,
T56, T67);
 end
 % Initializing the Physical Arm:
 if arm==1
 WMRA_ARM_Motion(1, 2, [qo;dg], 0);
 ddt=0;
 end
elseif ini==1 && (vr==1 || ml==1 || arm==1) % When "park" to "ready"
motion is required.
 WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9));
 if arm==1
 ddt=0;
 end
end

% Re-Drawing the Animation:
if vr==1 || ml==1
 drawnow;
end

% Starting a timer:
tic
ANG=zeros(1,n+1);

Appendix B (continued)

99

while i<=(n+1)

%Calculating the angle between the trajectory and the wheelchair's x
axis
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67);
ANG(i)=the;
% Starting the Iteration Loop:

 % Calculating the 6X7 Jacobian of the arm in frame 0:
 [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67);

 % Calculating the 6X2 Jacobian based on the WMRA's base in the
ground frame:
 phi=atan2(Towc(2,1),Towc(1,1));
 Jowc=WMRA_Jga(1, phi, Toa(1:2,4));

 % Changing the Jacobian reference frame based on the choice of
which coordinates frame are referenced in the Cartesian control:
 % coord=1 for Ground Coordinates Control.
 % coord=2 for Wheelchair Coordinates Control.
 % coord=3 for Gripper Coordinates Control.
 if coord==2
 Joa=Joa;
 Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc;
 elseif coord==3
 Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa;
 Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc;
 elseif coord==1
 Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa;
 Jowc=Jowc;
 end

 % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system
based on the ground frame:
 if cart==2
 Joa=Joa(1:3,1:7);
 detJoa=sqrt(det(Joa*Joa'));
 Jowc=Jowc(1:3,1:2);
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 else
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 end

 % Finding the Cartesian errors of the end effector:
 if cont==1 || cont==6
 % Calculating the Position and Orientation errors of the end
effector, and the rates of motion of the end effector:
 if coord==2
 invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0
1];

Appendix B (continued)

100

 Ttnew=invTowc*Tiwc*Tt(:,:,i);
 dx=WMRA_delta(Toa, Ttnew);
 elseif coord==3
 invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1];
 Ttnew=invTo*Ti*Tt(:,:,i);
 dx=WMRA_delta(eye(4), Ttnew);
 else
 dx=WMRA_delta(To, Tt(:,:,i));
 end
 elseif cont==2

 elseif cont==3
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 elseif cont==4
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 else
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 end

 % Changing the order of Cartesian motion in the case when gripper
reference frame is selected for control with the screen or psy or
SpaceBall interfaces:
 if coord==3 && cont>=3
 dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)];
 end

 if cart==2
 dx=dx(1:3);
 end

 % Calculating the resolved rate with optimization:
 % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3=
SR-I & ENE, 4= P-I & ENE:
 if WCA==2
 dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt,
qo,the,n,choice0);
 dq=[dq;0;0];
 elseif WCA==3
 dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt,
1,the,n,choice0);
 dq=[0;0;0;0;0;0;0;dq];
 else
 dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt,
qo,the,n,choice0);
 end

 % Calculating the new Joint Angles:

Appendix B (continued)

101

 qn=qo+dq;

 % Calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn,
dq(8:9), Towc);

 % A safety condition function to stop the joints that may cause
colision of the arm with itself, the wheelchair, or the human user:
 if JLO==1 && WCA~=3
 dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56,
T67);
 % Re-calculating the new Joint Angles:
 qn=qo+dq;
 % Re-calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2,
qn, dq(8:9), Towc);
 end

 % Saving the plot data in case plots are required:
 if plt==2
 WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa,
detJo);
 end

 % Updating Physical Arm:
 if arm==1
 ddt=ddt+dt;
 if ddt>=0.5 || i>=(n+1)
 WMRA_ARM_Motion(2, 1, [qn;dg], ddt);
 ddt=0;
 end
 end

 % Updating Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation(2, Tnwc, qn);
 end

 % Updating Matlab Graphics Animation:
 if ml==1
 WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45,
T56, T67);
 end

 % Re-Drawing the Animation:
 if vr==1 || ml==1
 drawnow;
 end

 % Updating the old values with the new values for the next
iteration:
 qo=qn;

Appendix B (continued)

102

 To=Tn;
 Toa=Tna;
 Towc=Tnwc;
 tt=tt+dt;
 i=i+1;

 % Stopping the simulation when the exit button is pressed:
 if cont==3 || cont==4 || cont==5
 if (VAR_SCREENOPN == 1)
 n=n+1;
 else
 break
 end
 end

 % Delay to comply with the required speed:
 if toc < tt
 pause(tt-toc);
 end
end

% Reading the elapsed time and printing it with the simulation time:
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f
seconds.\n' , total_time); end
toc

% Plotting:

if vr==1 || ml==1 || arm==1
 %Orienting the Wheelchair to a desired final orientation
 choice9 = input('\n Do you want to rotate the wheelchair? \n Press
"1" for Yes, or press "2" for No. \n','s');
 if choice9=='1'
 ang = input('\n enter the desired angle in radians \n');
 WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)
 else
 ang=0;
 end
 if plt==2
 WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo);
 end

 % Going back to the ready position:
 %choice6 = input('\n Do you want to go back to the "ready"
position? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice6 ='2';
 if choice6=='1'
 WMRA_any2ready(2, vr, ml, arm, Tnwc, qn);
 % Going back to the parking position:
 choice7 = input('\n Do you want to go back to the "parking"
position? \n Press "1" for Yes, or press "2" for No. \n','s');

Appendix B (continued)

103

 if choice7=='1'
 WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9));
 end
 end

 % Closing the Arm library and Matlab Graphics Animation and Virtual
Reality Animation and Plots windows:
 %choice8 = input('\n Do you want to close all simulation windows
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice8 ='2';
 if choice8=='1'
 if arm==1
 WMRA_ARM_Motion(3, 0, 0, 0);
 end
 if vr==1
 WMRA_VR_Animation(3, 0, 0);
 end
 if ml==1
 WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 end
 if plt==2
 close
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12));
 end
 end

end
qn=[qn(1:8);qn(9)+ang]
Tnwc

WMRA_Main_Open(qn,Tnwc)

WMRA_Main_Open

% This is a simplified version of the Main program to acomplish a
subtask
% with motion control. most of the options are prespecified and will
not be
% changed by the user

% Declaring the global variables to be used for the touch screen
control:
function WMRA_Main_Open(qn,Tnwc)
global VAR_DX
global VAR_SCREENOPN
global dHo

% Defining used parameters:

Appendix B (continued)

104

d2r=pi/180; % Conversions from Degrees to Radians.
r2d=180/pi; % Conversions from Radians to Degrees.

% Reading the Wheelchair's constant dimentions, all dimentions are
converted in millimeters:
L=WMRA_WCD;
radi=1000;
e=1;
% User input prompts:

%choice000 = input('\n Choose what to control: \n For combined
Wheelchair and Arm control, press "1", \n For Arm only control, press
"2", \n For Wheelchair only control, press "3". \n','s');
choice000 = 1;
 WCA=1;
%choice00000 = input('\n Choose whose frame to base the control on: \n
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For
Gripper Frame, press "3". \n','s');
choice00000=1;
 coord=1;
%choice0000 = input('\n Choose the cartesian coordinates to be
controlled: \n For Position and Orientation, press "1", \n For Position
only, press "2". \n','s');
choice0000 =1;
 cart=1;
%choice5 = input('\n Please enter the desired optimization method: (1=
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s');
choice5 =1;
 optim=1;
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1=
Yes, 2= No) \n','s');
choice50 =1;
 JLA=1;
%choice500 = input('\n Do you want to include Joint Limit/Velocity and
Obstacle Safety Stop? (1= Yes, 2= No) \n','s');
choice500 = 1;
 JLO=1;
%choice0 = input('\n Choose the control mode: \n For circle control,
press "6", \n For position control, press "1", \n For velocity control,
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask
control, press "4", \n For Touch Screen control, press "5",\n For
Switch, press "7". \n','s');
choice0 ='6';
if choice0=='1'
 cont=1;
 %Td = input('\n Please enter the transformation matrix of the
desired position and orientation from the control-based frame \n (e.g.
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n');
 Td=[0 0 1 1955;-1 0 0 -1169;0 -1 0 999; 0 0 0 1] *WMRA_rotx(-
pi/6)*WMRA_roty(pi/4);
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;

Appendix B (continued)

105

 %choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 choice00=1;
 trajf=1;
 elseif choice0=='7'
 cont=1;
 Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1];
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 if choice00=='2'
 trajf=2;
 elseif choice00=='3'
 trajf=3;
 else
 trajf=1;
 end
elseif choice0=='2'
 cont=2;
 ts = input('\n Please enter the desired simulation time in seconds
(e.g. 2) \n');
 if cart==2
 Vd = input('\n Please enter the desired 3x1 cartesian velocity
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n');
 else
 Vd = input('\n Please enter the desired 6x1 cartesian velocity
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n');
 end
elseif choice0=='3'
 cont=3;
 % Space Ball will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
elseif choice0=='4'
 cont=4;
 % BCI 2000 Psychology Mask will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 port1 = input('\n Please enter the desired port number (e.g. 19711)
\n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function, or \n press "4" for a Circular Polynomial function with
Blending. \n','s');
elseif choice0=='6'
 choice0=6;

Appendix B (continued)

106

 cont=6;
 %radi = input('\n Please enter the radius of the cirle in mm (e.g.
1000) \n');
 radi=1000;
 %e = input('\n If the door opens to the left press "1".\n If it
opens to the right press "2" \n');
 e=2;
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;
 trajf=4;
else
 cont=5;
 % Touch Screen will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
end

choice1 = input('\n Choose animation type or no animation: \n For
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation,
press "2", \n For BOTH Animations, press "3", \n For NO Animation,
press "4". \n','s');
if choice1=='2'
 vr = 0; ml = 1;
elseif choice1=='3'
 vr = 1; ml = 1;
elseif choice1=='4'
 vr = 0; ml = 0;
else
 vr = 1; ml = 0;
end

%choice10 = input('\n Would you like to run the actual WMRA? \n For
yes, press "1", \n For no, press "2". \n','s');
choice10='2';
if choice10=='1'
 arm=1;
else
 arm=0;
end
%choice2 = input('\n Press "1" if you want to start at the "ready"
position, \n or press "2" if you want to enter the initial joint
angles. \n','s');
choice2='2';
if choice2=='2'
 %qi = input('\n Please enter the arms initial angles vector in
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n');
 %WCi = input('\n Please enter the initial x,y position and z
orientation of the WMRA base from the ground base in millimeters and
radians (e.g. [200;500;0.3]) \n');
 qi=qn(1:7);
 ini=0;
else

Appendix B (continued)

107

 qi=[90;90;0;90;90;90;0]*d2r;
 WCi=[0;0;0];
 ini=0;
 if vr==1 || ml==1 || arm==1
 %choice3 = input('\n Press "1" if you want to include "park" to
"ready" motion, \n or press "2" if not. \n','s');
 choice3= '1';
 if choice3=='2'
 ini=0;
 else
 ini=1;
 end
 end
end
%choice4 = input('\n Press "1" if you do NOT want to plot the
simulation results, \n or press "2" if do. \n','s');
choice4 ='2';
if choice4=='2'
 plt=2;
else
 plt=1;
end

% Calculating the Transformation Matrix of the initial position of the
WMRA's base:
Tiwc=Tnwc;

% Calculating the initial Wheelchair Variables:
qiwc=[qn(8);qn(9)];

% Calculating the initial transformation matrices:
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi,
[0;0], Tiwc);

if cont==1
 % Calculating the linear distance from the initial position to the
desired position and the linear velocity:
 if coord==2
 D=sqrt((Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2);
 elseif coord==3
 D=sqrt((Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2);
 else
 D=sqrt((Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2);
 end
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.

Appendix B (continued)

108

 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1);
 end
elseif cont==2
 % Calculating the number of iterations and the time increment
(delta t) if the linear step increment of the gripper is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=ts; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 dx=Vd*dt;
 Td=Ti;
elseif cont==3
 WMRA_exit(); % This is to stop the simulation in SpaceBall control
when the user presses the exit key.
 dt=0.05;
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 Td=Ti;
 n=1;
elseif cont==4
 WMRA_exit(); % This is to stop the simulation in Psychology Mask
control when the user presses the exit key.
 dt=0.05;
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 Td=Ti;
 n=1;
elseif cont==6
 % Calculating the desired transformation matrix based on the
radius:
 Tdoor=Ti;
 Tdoor(1,4)=Ti(1,4)+radi/2;
 Tdoor(2,4)=Ti(2,4)+radi/2;
 Td=Tdoor;
 Td(1,4)=Td(1,4)-radi;
 Td(2,4)=Td(2,4)-((-1)^e)*radi;
 % Calculating the circular distance from the initial position to
the desired position and the linear velocity:
 D=0.5*pi*radi;
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:

Appendix B (continued)

109

 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e);
 end
else
 WMRA_screen('0'); % This is to start the screen controls.
Argument: '0'=BACK button disabled, '1'=BACK button enabled.
 dt=0.05;
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 Td=Ti;
 n=1;
end

% Initializing the joint angles, the Transformation Matrix, and time:
dq=zeros(9,1);
dg=0;
qo=[qi;qiwc];
To=Ti;
Toa=Tia;
Towc=Tiwc;
tt=0;
i=1;
dHo=[0;0;0;0;0;0;0];

% Starting a timer:
tic

while i<=(n+1)

%Calculating the angle between the trajectory and the wheelchair's x
axis
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67);
% Starting the Iteration Loop:

 % Calculating the 6X7 Jacobian of the arm in frame 0:
 [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67);

Appendix B (continued)

110

 % Calculating the 6X2 Jacobian based on the WMRA's base in the
ground frame:
 phi=atan2(Towc(2,1),Towc(1,1));
 Jowc=WMRA_Jga(1, phi, Toa(1:2,4));

 % Changing the Jacobian reference frame based on the choice of
which coordinates frame are referenced in the Cartesian control:
 % coord=1 for Ground Coordinates Control.
 % coord=2 for Wheelchair Coordinates Control.
 % coord=3 for Gripper Coordinates Control.
 if coord==2
 Joa=Joa;
 Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc;
 elseif coord==3
 Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa;
 Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc;
 elseif coord==1
 Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa;
 Jowc=Jowc;
 end

 % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system
based on the ground frame:
 if cart==2
 Joa=Joa(1:3,1:7);
 detJoa=sqrt(det(Joa*Joa'));
 Jowc=Jowc(1:3,1:2);
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 else
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 end

 % Finding the Cartesian errors of the end effector:
 if cont==1 || cont==6
 % Calculating the Position and Orientation errors of the end
effector, and the rates of motion of the end effector:
 if coord==2
 invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0
1];
 Ttnew=invTowc*Tiwc*Tt(:,:,i);
 dx=WMRA_delta(Toa, Ttnew);
 elseif coord==3
 invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1];
 Ttnew=invTo*Ti*Tt(:,:,i);
 dx=WMRA_delta(eye(4), Ttnew);
 else
 dx=WMRA_delta(To, Tt(:,:,i));
 end
 elseif cont==2

Appendix B (continued)

111

 elseif cont==3
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 elseif cont==4
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 else
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 end

 % Changing the order of Cartesian motion in the case when gripper
reference frame is selected for control with the screen or psy or
SpaceBall interfaces:
 if coord==3 && cont>=3
 dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)];
 end

 if cart==2
 dx=dx(1:3);
 end

 % Calculating the resolved rate with optimization:
 % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3=
SR-I & ENE, 4= P-I & ENE:
 if WCA==2
 dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt,
qo,the,n,choice0);
 dq=[dq;0;0];
 elseif WCA==3
 dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt,
1,the,n,choice0);
 dq=[0;0;0;0;0;0;0;dq];
 else
 dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt,
qo,the,n,choice0);
 end

 % Calculating the new Joint Angles:
 qn=qo+dq;

 % Calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn,
dq(8:9), Towc);

 % A safety condition function to stop the joints that may cause
colision of the arm with itself, the wheelchair, or the human user:
 if JLO==1 && WCA~=3
 dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56,
T67);

Appendix B (continued)

112

 % Re-calculating the new Joint Angles:
 qn=qo+dq;
 % Re-calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2,
qn, dq(8:9), Towc);
 end

 % Saving the plot data in case plots are required:
 if plt==2
 WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa,
detJo);
 end

 % Updating Physical Arm:
 if arm==1
 ddt=ddt+dt;
 if ddt>=0.5 || i>=(n+1)
 WMRA_ARM_Motion(2, 1, [qn;dg], ddt);
 ddt=0;
 end
 end

 % Updating Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation(2, Tnwc, qn);
 end

 % Updating Matlab Graphics Animation:
 if ml==1
 WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45,
T56, T67);
 end

 % Re-Drawing the Animation:
 if vr==1 || ml==1
 drawnow;
 end

 % Updating the old values with the new values for the next
iteration:
 qo=qn;
 To=Tn;
 Toa=Tna;
 Towc=Tnwc;
 tt=tt+dt;
 i=i+1;

 % Stopping the simulation when the exit button is pressed:
 if cont==3 || cont==4 || cont==5
 if (VAR_SCREENOPN == 1)
 n=n+1;
 else

Appendix B (continued)

113

 break
 end
 end

 % Delay to comply with the required speed:
 if toc < tt
 pause(tt-toc);
 end
end

% Reading the elapsed time and printing it with the simulation time:
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f
seconds.\n' , total_time); end
toc

% Plotting:
if plt==2
 WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo);
end

if vr==1 || ml==1 || arm==1
 %Orienting the Wheelchair to a desired final orientation
 choice9 = input('\n Do you want to rotate the wheelchair? \n Press
"1" for Yes, or press "2" for No. \n','s');
 if choice9=='1'
 ang = input('\n enter the desired angle in radians \n');
 WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)
 end
 % Going back to the ready position:
 %choice6 = input('\n Do you want to go back to the "ready"
position? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice6 ='2';
 if choice6=='1'
 WMRA_any2ready(2, vr, ml, arm, Tnwc, qn);
 % Going back to the parking position:
 choice7 = input('\n Do you want to go back to the "parking"
position? \n Press "1" for Yes, or press "2" for No. \n','s');
 if choice7=='1'
 WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9));
 end
 end

 % Closing the Arm library and Matlab Graphics Animation and Virtual
Reality Animation and Plots windows:
 %choice8 = input('\n Do you want to close all simulation windows
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice8 ='2';
 if choice8=='1'
 if arm==1
 WMRA_ARM_Motion(3, 0, 0, 0);
 end
 if vr==1

Appendix B (continued)

114

 WMRA_VR_Animation(3, 0, 0);
 end
 if ml==1
 WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 end
 if plt==2
 close
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12));
 end
 end

end
end

WMRA_Main_Reach

% This is a simplified version of the Main program to acomplish a
subtask
% with motion control. most of the options are prespecified and will
not be
% changed by the user

% Declaring the global variables to be used for the touch screen
control:
function WMRA_Main_Reach
global VAR_DX
global VAR_SCREENOPN
global dHo

% Defining used parameters:
d2r=pi/180; % Conversions from Degrees to Radians.
r2d=180/pi; % Conversions from Radians to Degrees.

% Reading the Wheelchair's constant dimentions, all dimentions are
converted in millimeters:
L=WMRA_WCD;
radi=1000;
e=1;
% User input prompts:

%choice000 = input('\n Choose what to control: \n For combined
Wheelchair and Arm control, press "1", \n For Arm only control, press
"2", \n For Wheelchair only control, press "3". \n','s');
choice000 = 1;
 WCA=1;

Appendix B (continued)

115

%choice00000 = input('\n Choose whose frame to base the control on: \n
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For
Gripper Frame, press "3". \n','s');
choice00000=1;
 coord=1;
%choice0000 = input('\n Choose the cartesian coordinates to be
controlled: \n For Position and Orientation, press "1", \n For Position
only, press "2". \n','s');
choice0000 =1;
 cart=1;
%choice5 = input('\n Please enter the desired optimization method: (1=
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s');
choice5 =1;
 optim=1;
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1=
Yes, 2= No) \n','s');
choice50 =1;
 JLA=1;
%choice500 = input('\n Do you want to include Joint Limit/Velocity and
Obstacle Safety Stop? (1= Yes, 2= No) \n','s');
choice500 = 1;
 JLO=1;
%choice0 = input('\n Choose the control mode: \n For circle control,
press "6", \n For position control, press "1", \n For velocity control,
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask
control, press "4", \n For Touch Screen control, press "5",\n For
Switch, press "7". \n','s');
choice0 ='1';
if choice0=='1'
 cont=1;
 %Td = input('\n Please enter the transformation matrix of the
desired position and orientation from the control-based frame \n (e.g.
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n');
 Td = [0 0 1 1455;-1 0 0 -1169;0 -1 0 999; 0 0 0 1];
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;
 %choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 choice00=1;
 trajf=1;
 elseif choice0=='7'
 cont=1;
 Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1];
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function.\n','s');
 if choice00=='2'

Appendix B (continued)

116

 trajf=2;
 elseif choice00=='3'
 trajf=3;
 else
 trajf=1;
 end
elseif choice0=='2'
 cont=2;
 ts = input('\n Please enter the desired simulation time in seconds
(e.g. 2) \n');
 if cart==2
 Vd = input('\n Please enter the desired 3x1 cartesian velocity
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n');
 else
 Vd = input('\n Please enter the desired 6x1 cartesian velocity
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n');
 end
elseif choice0=='3'
 cont=3;
 % Space Ball will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
elseif choice0=='4'
 cont=4;
 % BCI 2000 Psychology Mask will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 port1 = input('\n Please enter the desired port number (e.g. 19711)
\n');
 choice00 = input('\n Chose the Trajectory generation function: \n
Press "1" for a Polynomial function with Blending, or \n press "2" for
a Polynomial function without Blending, or \n press "3" for a Linear
function, or \n press "4" for a Circular Polynomial function with
Blending. \n','s');
elseif choice0=='6'
 choice0=6;
 cont=6;
 %radi = input('\n Please enter the radius of the cirle in mm (e.g.
1000) \n');
 radi=1000;
 %e = input('\n If the door opens to the left press "1".\n If it
opens to the right press "2" \n');
 e=2;
 %v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');
 v=50;
 trajf=4;
else
 cont=5;
 % Touch Screen will be used for control.
 v = input('\n Please enter the desired linear velocity of the
gripper in mm/s (e.g. 50) \n');

Appendix B (continued)

117

end

choice1 = input('\n Choose animation type or no animation: \n For
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation,
press "2", \n For BOTH Animations, press "3", \n For NO Animation,
press "4". \n','s');
if choice1=='2'
 vr = 0; ml = 1;
elseif choice1=='3'
 vr = 1; ml = 1;
elseif choice1=='4'
 vr = 0; ml = 0;
else
 vr = 1; ml = 0;
end

%choice10 = input('\n Would you like to run the actual WMRA? \n For
yes, press "1", \n For no, press "2". \n','s');
choice10='2';
if choice10=='1'
 arm=1;
else
 arm=0;
end
%choice2 = input('\n Press "1" if you want to start at the "ready"
position, \n or press "2" if you want to enter the initial joint
angles. \n','s');
choice2='1';
if choice2=='2'
 qi = input('\n Please enter the arms initial angles vector in
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n');
 WCi = input('\n Please enter the initial x,y position and z
orientation of the WMRA base from the ground base in millimeters and
radians (e.g. [200;500;0.3]) \n');
 ini=0;
else
 qi=[90;90;0;90;90;90;0]*d2r;
 WCi=[0;0;0];
 ini=0;
 if vr==1 || ml==1 || arm==1
 %choice3 = input('\n Press "1" if you want to include "park" to
"ready" motion, \n or press "2" if not. \n','s');
 choice3= '1';
 if choice3=='2'
 ini=0;
 else
 ini=1;
 end
 end
end
%choice4 = input('\n Press "1" if you do NOT want to plot the
simulation results, \n or press "2" if do. \n','s');
choice4 ='2';

Appendix B (continued)

118

if choice4=='2'
 plt=2;
else
 plt=1;
end

% Calculating the Transformation Matrix of the initial position of the
WMRA's base:
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3));

% Calculating the initial Wheelchair Variables:
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)];

% Calculating the initial transformation matrices:
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi,
[0;0], Tiwc);

if cont==1
 % Calculating the linear distance from the initial position to the
desired position and the linear velocity:
 if coord==2
 D=sqrt((Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2);
 elseif coord==3
 D=sqrt((Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2);
 else
 D=sqrt((Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2);
 end
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1);
 end
elseif cont==2
 % Calculating the number of iterations and the time increment
(delta t) if the linear step increment of the gripper is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=ts; % Total time of animation.

Appendix B (continued)

119

 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 dx=Vd*dt;
 Td=Ti;
elseif cont==3
 WMRA_exit(); % This is to stop the simulation in SpaceBall control
when the user presses the exit key.
 dt=0.05;
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 Td=Ti;
 n=1;
elseif cont==4
 WMRA_exit(); % This is to stop the simulation in Psychology Mask
control when the user presses the exit key.
 dt=0.05;
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 Td=Ti;
 n=1;
elseif cont==6
 % Calculating the desired transformation matrix based on the
radius:
 Tdoor=Ti;
 Tdoor(1,4)=Ti(1,4)+radi/2;
 Tdoor(2,4)=Ti(2,4)+radi/2;
 Td=Tdoor;
 Td(1,4)=Td(1,4)-radi;
 Td(2,4)=Td(2,4)-((-1)^e)*radi;
 % Calculating the circular distance from the initial position to
the desired position and the linear velocity:
 D=0.5*pi*radi;
 % Calculating the number of iteration and the time increment (delta
t) if the linear step increment of the tip is 1 mm:
 dt=0.05; % Time increment in seconds.
 total_time=D/v; % Total time of animation.
 n=round(total_time/dt); % Number of iterations rounded up.
 dt=total_time/n; % Adjusted time increment in seconds.
 % Calculating the Trajectory of the end effector, and once the
trajectory is calculated, we should redefine "Td" based on the ground
frame:
 if coord==2
 Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e);
 Td=Tiwc*Td;
 elseif coord==3
 Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e);
 Td=Ti*Td;
 else
 Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e);
 end
else

Appendix B (continued)

120

 WMRA_screen('0'); % This is to start the screen controls.
Argument: '0'=BACK button disabled, '1'=BACK button enabled.
 dt=0.05;
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 Td=Ti;
 n=1;
end

% Initializing the joint angles, the Transformation Matrix, and time:
dq=zeros(9,1);
dg=0;
qo=[qi;qiwc];
To=Ti;
Toa=Tia;
Towc=Tiwc;
tt=0;
i=1;
dHo=[0;0;0;0;0;0;0];

% Initializing the WMRA:
if ini==0 % When no "park" to "ready" motion required.
 % Initializing Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation(1, Towc, qo);
 end
 % Initializing Robot Animation in Matlab Graphics:
 if ml==1
 WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45,
T56, T67);
 end
 % Initializing the Physical Arm:
 if arm==1
 WMRA_ARM_Motion(1, 2, [qo;dg], 0);
 ddt=0;
 end
elseif ini==1 && (vr==1 || ml==1 || arm==1) % When "park" to "ready"
motion is required.
 WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9));
 if arm==1
 ddt=0;
 end
end

% Re-Drawing the Animation:
if vr==1 || ml==1
 drawnow;
end

% Starting a timer:
tic
ANG=zeros(1,n+1);

Appendix B (continued)

121

bmax=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67);
while i<=(n+1)

%Calculating the angle between the trajectory and the wheelchair's x
axis
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67);
ANG(i)=the;
% Starting the Iteration Loop:

 % Calculating the 6X7 Jacobian of the arm in frame 0:
 [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67);

 % Calculating the 6X2 Jacobian based on the WMRA's base in the
ground frame:
 phi=atan2(Towc(2,1),Towc(1,1));
 Jowc=WMRA_Jga(1, phi, Toa(1:2,4));

 % Changing the Jacobian reference frame based on the choice of
which coordinates frame are referenced in the Cartesian control:
 % coord=1 for Ground Coordinates Control.
 % coord=2 for Wheelchair Coordinates Control.
 % coord=3 for Gripper Coordinates Control.
 if coord==2
 Joa=Joa;
 Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc;
 elseif coord==3
 Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa;
 Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc;
 elseif coord==1
 Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa;
 Jowc=Jowc;
 end

 % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system
based on the ground frame:
 if cart==2
 Joa=Joa(1:3,1:7);
 detJoa=sqrt(det(Joa*Joa'));
 Jowc=Jowc(1:3,1:2);
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 else
 Jo=[Joa Jowc];
 detJo=sqrt(det(Jo*Jo'));
 end

 % Finding the Cartesian errors of the end effector:
 if cont==1 || cont==6
 % Calculating the Position and Orientation errors of the end
effector, and the rates of motion of the end effector:
 if coord==2

Appendix B (continued)

122

 invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0
1];
 Ttnew=invTowc*Tiwc*Tt(:,:,i);
 dx=WMRA_delta(Toa, Ttnew);
 elseif coord==3
 invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1];
 Ttnew=invTo*Ti*Tt(:,:,i);
 dx=WMRA_delta(eye(4), Ttnew);
 else
 dx=WMRA_delta(To, Tt(:,:,i));
 end
 elseif cont==2

 elseif cont==3
 dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ;
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300];
 dg=spdata1(7);
 elseif cont==4
 dx=v*dt*WMRA_psy(port1);
 dg=dx(7);
 dx=dx(1:6);
 else
 dx=v*dt*VAR_DX(1:6);
 dg=VAR_DX(7);
 end

 % Changing the order of Cartesian motion in the case when gripper
reference frame is selected for control with the screen or psy or
SpaceBall interfaces:
 if coord==3 && cont>=3
 dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)];
 end

 if cart==2
 dx=dx(1:3);
 end

 % Calculating the resolved rate with optimization:
 % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3=
SR-I & ENE, 4= P-I & ENE:
 if WCA==2
 dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt,
qo,the,n,choice0,bmax);
 dq=[dq;0;0];
 elseif WCA==3
 dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt,
1,the,n,choice0,bmax);
 dq=[0;0;0;0;0;0;0;dq];
 else
 dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt,
qo,the,n,choice0,bmax);
 end

Appendix B (continued)

123

 % Calculating the new Joint Angles:
 qn=qo+dq;

 % Calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn,
dq(8:9), Towc);

 % A safety condition function to stop the joints that may cause
colision of the arm with itself, the wheelchair, or the human user:
 if JLO==1 && WCA~=3
 dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56,
T67);
 % Re-calculating the new Joint Angles:
 qn=qo+dq;
 % Re-calculating the new Transformation Matrices:
 [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2,
qn, dq(8:9), Towc);
 end

 % Saving the plot data in case plots are required:
 if plt==2
 WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa,
detJo);
 end

 % Updating Physical Arm:
 if arm==1
 ddt=ddt+dt;
 if ddt>=0.5 || i>=(n+1)
 WMRA_ARM_Motion(2, 1, [qn;dg], ddt);
 ddt=0;
 end
 end

 % Updating Virtual Reality Animation:
 if vr==1
 WMRA_VR_Animation(2, Tnwc, qn);
 end

 % Updating Matlab Graphics Animation:
 if ml==1
 WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45,
T56, T67);
 end

 % Re-Drawing the Animation:
 if vr==1 || ml==1
 drawnow;
 end

Appendix B (continued)

124

 % Updating the old values with the new values for the next
iteration:
 qo=qn;
 To=Tn;
 Toa=Tna;
 Towc=Tnwc;
 tt=tt+dt;
 i=i+1;

 % Stopping the simulation when the exit button is pressed:
 if cont==3 || cont==4 || cont==5
 if (VAR_SCREENOPN == 1)
 n=n+1;
 else
 break
 end
 end

 % Delay to comply with the required speed:
 if toc < tt
 pause(tt-toc);
 end
end

% Reading the elapsed time and printing it with the simulation time:
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f
seconds.\n' , total_time); end
toc

% Plotting:

if vr==1 || ml==1 || arm==1
 %Orienting the Wheelchair to a desired final orientation
 choice9 = input('\n Do you want to rotate the wheelchair? \n Press
"1" for Yes, or press "2" for No. \n','s');
 if choice9=='1'
 ang = input('\n enter the desired angle in radians \n');
 WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)
 end
 if plt==2
 WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo);
 end

 % Going back to the ready position:
 %choice6 = input('\n Do you want to go back to the "ready"
position? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice6 ='2';
 if choice6=='1'
 WMRA_any2ready(2, vr, ml, arm, Tnwc, qn);
 % Going back to the parking position:

Appendix B (continued)

125

 choice7 = input('\n Do you want to go back to the "parking"
position? \n Press "1" for Yes, or press "2" for No. \n','s');
 if choice7=='1'
 WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9));
 end
 end

 % Closing the Arm library and Matlab Graphics Animation and Virtual
Reality Animation and Plots windows:
 %choice8 = input('\n Do you want to close all simulation windows
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s');
 choice8 ='2';
 if choice8=='1'
 if arm==1
 WMRA_ARM_Motion(3, 0, 0, 0);
 end
 if vr==1
 WMRA_VR_Animation(3, 0, 0);
 end
 if ml==1
 WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 end
 if plt==2
 close
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12));
 end
 end

end
TIME=[1:n+1];
Or=ANG+0.75;
figure(17)
plot(TIME,ANG,'LineWidth',5)
axis([0 700 0 5])
grid on; title('Angle \Theta Vs Iteration number');xlabel('Iteration
number');ylabel('\Theta');
figure(15)
plot(TIME,Or,'LineWidth',5)
axis([0 700 0 5])
grid on; title('Wheechair orientation Vs Iteration
number');xlabel('Iteration number');ylabel('\Orientation');
end

Appendix B (continued)

126

WMRA_OP

%##

% This M file creates optimized parameters for the weighted matrix
values
% of the wheels to account for positition during the
% execution of a given trajectory.

% Function Declaration
function W1=WMRA_OP(the,i,n,bmax)
if atan2(sin(the),cos(the))<0.3

 W1=1;
elseif atan2(sin(the),cos(the))~=0
 W1=10;
end

WMRA_Opt

% This function is for the resolved rate and optimization solution of
the USF WMRA with 9 DOF.
% Function Declaration:
function [dq]=WMRA_Opt(i, JLA, JLO, Jo, detJo, dq, dx, dt,
q,the,n,choice0,bmax)

% Declaring a global variable:
global dHo
% Reading the Wheelchair's constant dimentions, all dimentions are
converted in millimeters:
L=WMRA_WCD;
% The case when wheelchair-only control is required with no arm motion:
if i==0
 WCA=3;
 % claculating the Inverse of the Jacobian, which is always non-
singular:
 pinvJo=inv(Jo(1:2,1:2));
 % calculating the joint angle change:
 % Here, dq of the wheels are translated from radians to distances
travelled after using the Jacobian.
 dq=pinvJo*dx;
 dq(1)=dq(1)*L(5);
else
 % Reading the physical joint limits of the arm:
 [qmin,qmax]=WMRA_Jlimit;

Appendix B (continued)

127

 % Creating the gradient of the optimization function to avoid joint
limits:
 dH=[0;0;0;0;0;0;0];
 if JLA==1
 for j=1:7
 dH(j)=-0.25*(qmax(j)-qmin(j))^2*(2*q(j)-qmax(j)-
qmin(j))/((qmax(j)-q(j))^2*(q(j)-qmin(j))^2);
 % Re-defining the weight in case the joint is moving away
from it's limit or the joint limit was exceeded:
 if abs(dH(j)) < abs(dHo(j)) && q(j) < qmax(j) && q(j) >
qmin(j)
 dH(j)=0;
 elseif abs(dH(j)) < abs(dHo(j)) && (q(j) >= qmax(j) || q(j)
<= qmin(j))
 dH(j)=inf;
 elseif abs(dH(j)) > abs(dHo(j)) && (q(j) >= qmax(j) || q(j)
<= qmin(j))
 dH(j)=0;
 end
 end
 end
 dHo=dH;
% The case when arm-only control is required with no wheelchair motion:
 if max(size(dq))==7
 WCA=2;
 wo=20000000;
 ko=350000;
 % The weight matrix to be used for the Weighted Least Norm
Solution with Joint Limit Avoidance:
 W=diag(1*[1;1;1;1;1;1;1]+1*abs(dH));
 % The inverse of the diagonal weight matrix:
 dia=diag(W);
 Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5);
1/dia(6); 1/dia(7)]);
% The case when wheelchair-and-arm control is required:
 else
 WCA=1;
 wo=34000000;
 ko=13;
 % The weight matrix to be used for the Weighted Least Norm
Solution:
 if choice0==6;
 W=diag([1*[1;1;1;1;1;1;1]+1*abs(dH);0.5;1000]);
 else

W=diag([1*[1;1;1;1;1;1;1]+1*abs(dH);WMRA_OP(the,i,n,bmax);WMRA_OR(the,i
,n,bmax)]);
 end
 % The inverse of the diagonal weight matrix:
 dia=diag(W);
 Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5);
1/dia(6); 1/dia(7); 1/dia(8); 1/dia(9)]);
 end

Appendix B (continued)

128

 % Redefining the determinant based on the weight:
 if i==1 || i==2
 detJo=sqrt(det(Jo*Winv*Jo'));
 end
 dof=max(size(dx));
end

% SR-Inverse and Weighted Least Norm Optimization:
if i==1
 % Calculating the variable scale factor, sf:
 if detJo<wo
 sf=ko*(1-detJo/wo)^2; % from eq. 9.79 page 268 of
Nakamura's book.
 else
 sf=0;
 end
 % claculating the SR-Inverse of the Jacobian:
 pinvJo=Winv*Jo'*inv(Jo*Winv*Jo'+sf*eye(dof));
 % calculating the joint angle change optimized based on the
Weighted Least Norm Solution:
 % Here, dq of the wheels are translated from radians to distances
travelled after using the Jacobian.
 if WCA==2
 dq=pinvJo*dx;
 else
 dq=pinvJo*dx;
 dq(8)=dq(8)*L(5);
 end

% Pseudo Inverse and Weighted Least Norm Optimization:
elseif i==2
 % claculating the Pseudo Inverse of the Jacobian:
 pinvJo=Winv*Jo'*inv(Jo*Winv*Jo');
 % calculating the joint angle change optimized based on the
Weighted Least Norm Solution:
 % Here, dq of the wheels are translated from radians to distances
travelled after using the Jacobian.
 if WCA==2
 dq=pinvJo*dx;
 else
 dq=pinvJo*dx;
 dq(8)=dq(8)*L(5);
 end

% SR-Inverse and Projection Gradient Optimization based on Euclidean
norm of errors:
elseif i==3
 % Calculating the variable scale factor, sf:
 if detJo<wo
 sf=ko*(1-detJo/wo)^2; % from eq. 9.79 page 268 of
Nakamura's book.
 else
 sf=0;

Appendix B (continued)

129

 end
 % claculating the SR-Inverse of the Jacobian:
 pinvJo=Jo'*inv(Jo*Jo'+sf*eye(dof));
 % calculating the joint angle change optimized based on minimizing
the Euclidean norm of errors:
 % Here, dq of the wheels are translated from distances travelled to
radians, and back after using the Jacobian.
 if WCA==2
 %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq;
 dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH;
 else
 %dq(8)=dq(8)/L(5);
 %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq;
 dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0];
 dq(8)=dq(8)*L(5);
 end

% Pseudo Inverse and Projection Gradient Optimization based on
Euclidean norm of errors:
elseif i==4
 % claculating the Pseudo Inverse of the Jacobian:
 pinvJo=Jo'*inv(Jo*Jo');
 % calculating the joint angle change optimized based on minimizing
the Euclidean norm of errors:
 % Here, dq of the wheels are translated from distances travelled to
radians, and back after using the Jacobian.
 if WCA==2
 %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq;
 dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH;
 else
 %dq(8)=dq(8)/L(5);
 %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq;
 dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0];
 dq(8)=dq(8)*L(5);
 end
end

if JLO==1
 % A safety condition to stop the joint that reaches the joint
limits in the arm:
 if WCA~=3
 for k=1:7
 if q(k) >= qmax(k) || q(k) <= qmin(k)
 dq(k)=0;
 end
 end
 end
 % A safety condition to slow the joint that exceeds the velocity
limits in the WMRA:
 if WCA==3
 dqmax=dt*[100;0.15]; % Joiny velocity limits when the time
increment is dt second.
 else

Appendix B (continued)

130

 dqmax=dt*[0.5;0.5;0.5;0.5;0.5;0.5;0.5;100;0.15]; % Joiny
velocity limits when the time increment is dt second.
 end
 for k=1:max(size(dq))
 if abs(dq(k)) >= dqmax(k)
 dq(k)=sign(dq(k))*dqmax(k);
 end
 end
end

WMRA_opt_angle

%##

%This M-File keeps track of the angel created between the projection of
the
%trajectory in the XY plane and the center axis of the whhechair.

function the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56,
T67)

 % Arm:
 T1=Towc*T01;
 T2=T1*T12;
 T3=T2*T23;
 T4=T3*T34;
 T5=T4*T45;
 T6=T5*T56;
 T7=T6*T67;

Lt=sqrt((T7(1,4)-Td(1,4))^2+(T7(2,4)-Td(2,4))^2+(T7(3,4)-Td(3,4))^2);

%Updating the transformation matrices
 T8=Towc; % Arm Base Position.
 T9=T8*WMRA_transl(-L(2),-L(3),-L(4)); % Wheelbase Center.
 T10=T9*WMRA_transl(0,-L(1)/2,0); % Right Wheel Center.
 T11=T9*WMRA_transl(0,L(1)/2,0); % Left Wheel Center.

V3D=[Td(1,4)-Ti(1,4);Td(2,4)-Ti(2,4);Td(3,4)-Ti(3,4)];
%Let n be the normal vector to the plane Z = 0
n=[0;0;1];
%Computing the cross product between these two vectors will give us a
%pivotal vector in the X Y plane:
Vpiv=cross(V3D,n);

Appendix B (continued)

131

%Then computing the cross product between this vector and the plane
normal
%again will result in the third vector of an orthogonal triad which is
the
%projection of the trajectory in the X Y plane:
Vp=cross(n,Vpiv);
%find the vector defined by the wheels’ axis of rotation, we subtract
the X
%Y Z coordinates from their transformation Matrices
Vw1=[T11(1,4)-T10(1,4);T11(2,4)-T10(2,4);T11(3,4)-T10(3,4)];
Vw=cross(Vw1,n);
%Finding the angle between the two vectors
the=acos(dot(Vp,Vw)/(norm(Vp)*norm(Vw)));

WMRA_OR

%##

% This M file creates optimized parameters for the weighted matrix
values
% of the wheels to account for rotation during the
% execution of a given trajectory.

% Function Declaration
function W1=WMRA_OR(the,i,n,bmax)
%if atan2(sin(the),cos(the))~=0
%W1=1;
%elseif atan2(sin(the),cos(the))<0.3
%W1=10;
bmin=-bmax;
W1=1/(((bmax-bmin)^2*(2*the-bmax-bmin))/(4*(bmax-the)^2*(the-bmin)^2));

end

WMRA_VR_Animation2

% This function does the animation of USF WMRA with 9 DOF using Virtual
Reality Toolbox.
% Function Declaration:
function WMRA_VR_Animation2(i, Twc, q)

% Declaring the global variables:

Appendix B (continued)

132

global L WMRA

% The initialization of the animation plot:
if i==1
 % Reading the Wheelchair's constant dimentions, all dimentions are
converted in millimeters:
 L=WMRA_WCD;
 % Opening the WMRA file:
 WMRA = vrworld('\9_wmra.wrl');
 open(WMRA);
 % Changing the View Point of the simulation:
 WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)];
 % Calculating the wheelaxle transform instead of the arm base
transform:
 Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1];
 % The orientation about Z of the wheelchair:
 phi=q(9);
 % Calculating wheelchair's wheels' angles:
 ql=q(8)/L(5)-L(1)*q(9)/(2*L(5));
 qr=q(8)/L(5)+L(1)*q(9)/(2*L(5));
 % Updating the VRML file for the new angles and distances:
 WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)];
 WMRA.Chair.rotation=[0 0 1 phi];
 WMRA.LWheel.rotation=[0 1 0 ql];
 WMRA.RWheel.rotation=[0 1 0 qr];
 WMRA.ARM2.rotation=[0 0 -1 q(1)];
 WMRA.ARM3.rotation=[0 1 0 q(2)];
 WMRA.ARM4.rotation=[0 0 -1 q(3)];
 WMRA.ARM5.rotation=[0 1 0 q(4)];
 WMRA.ARM6.rotation=[0 0 -1 q(5)];
 WMRA.ARM7.rotation=[0 1 0 q(6)];
 WMRA.ARM8.rotation=[0 0 -1 q(7)];
 % Viewing the simulation:
 view(WMRA);

% Closing the animation plot:
elseif i==3
 close(WMRA);
 delete(WMRA);

% Updating the animation plot:
else
 WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)];
 Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1];
 phi=q(9);
 ql=q(8)/L(5)-L(1)*q(9)/(2*L(5));
 qr=q(8)/L(5)+L(1)*q(9)/(2*L(5));
 WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)];
 WMRA.Chair.rotation=[0 0 1 phi];
 WMRA.LWheel.rotation=[0 1 0 ql];
 WMRA.RWheel.rotation=[0 1 0 qr];
 WMRA.ARM2.rotation=[0 0 -1 q(1)];
 WMRA.ARM3.rotation=[0 1 0 q(2)];

Appendix B (continued)

133

 WMRA.ARM4.rotation=[0 0 -1 q(3)];
 WMRA.ARM5.rotation=[0 1 0 q(4)];
 WMRA.ARM6.rotation=[0 0 -1 q(5)];
 WMRA.ARM7.rotation=[0 1 0 q(6)];
 WMRA.ARM8.rotation=[0 0 -1 q(7)];

end

	Task Oriented Simulation And Control Of A Wheelchair Mounted Robotic Arm
	Scholar Commons Citation

	Engineering_Master's_Title_Page
	Task Oriented Simulation And Control Of A Wheelchair Mounted Robotic Arm
	Fabian Farelo
	A thesis submitted in partial fulfillment
	Keywords: rehabilitation robotics, dual-trajectory, mobile robot, manipulator, redundancy, adl

	Thesis_Body
	List of Tables
	List of Figures
	ABSTRACT
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Thesis Objectives
	1.3 Thesis Outline

	Chapter 2: Background
	2.1 Wheelchair Mounted Robotic Arms
	2.1.1 Commercially Available Prototypes
	2.1.2 USF WMRA First Prototype
	2.1.3 Composite Materials in Robotic Arms
	2.1.4 USF WMRA Prototype Improvements

	2.2 Redundant Mobile Manipulators
	2.3 Virtual Reality Environments

	Chapter 3: Virtual Reality Environment
	3.1 Virtual Reality Modeling Language
	3.2 Object Definition
	3.2.1 Object Visualization

	Chapter 4: Dual Trajectory Control
	4.1 Trajectory Generation
	4.1.1 Activities of Daily Living
	4.1.2 Trajectory Subtasks
	4.1.3 Trajectory Stages
	4.1.4 Trajectory Planning

	4.2 WMRA Combined Kinematics
	4.3 Redundancy Resolution and Optimization
	4.4 Secondary Trajectory Planning
	4.5 Criteria Functions
	4.5.1 Joint Limit Avoidance
	4.5.2 Weighted Optimization

	Chapter 5: Results and Discussion
	Chapter 6: Conclusions and Future Work
	References
	Appendices
	Appendix A. Virtual Reality Modeling Language
	Appendix B. Matlab Functions

