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Task Oriented Simulation and Control of a Wheelchair Mounted Robotic Arm  

Fabian Farelo 

ABSTRACT 

 

The main objective of my research is to improve the control structure for the new 

Wheelchair Mounted Robotic Arm (WMRA) to include new algorithms for optimized 

task execution; that is, making the WMRA a modular task oriented mobile manipulator. 

The main criterion to be optimized is the fashion in which the wheelchair approaches a 

final target as well as the starting and final orientation of the wheelchair. This is a novel 

approach in non-holonomic wheeled manipulators that will help in autonomously 

executing complex activities of daily living (ADL) tasks. 

The WMRA is a 9 degree of freedom system, which provides 3 degrees of 

kinematic redundancy. A single control structure is used to control the WMRA system, 

which gives much more flexibility to the system. The combination of mobility and 

manipulation expands the workspace that a mobile base attains to a manipulator. This 

approach opens a broad field of applications: from maintenance and storage to 

rehabilitation robotics. This structure is based on optimization algorithms that can resolve 

redundancy based on several subtasks: maximizing the manipulability measure, 



vii 

minimizing the joint velocities (hence minimizing the energy), and avoiding joint limits. 

This work utilizes redundancy to control 2 separate trajectories, a primary trajectory for 

the end-effector and an optimized secondary trajectory for the wheelchair. Even though 

this work presents results and implementation in the WMRA system, this approach offers 

expandability to many wheeled base mobile manipulators in different types of 

applications. 

The WMRA usage was simulated in a virtual environment, by developing a test 

setting for sensors and task performance. The different trajectories and tasks can be 

shown in a virtual world created not only for illustration purposes, but to provide training 

to the users once the system is ready for use.  
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Chapter 1: Introduction 

 

1.1 Motivation 

 According to the latest available data from the US Census Bureau [1

 A wheelchair mounted robotic arm provides mobility and manipulation 

capabilities enhancement to these persons. The workspace of the system allows the reach 

of objects that were otherwise impossible to reach. On the other hand, it also provides 

independence from external human aide, since the arm is mounted on the wheelchair and 

powered by its batteries. There are 2 commercially available WMRAs, the Manus from 

Exact dynamics in the Netherlands and the Raptor from Applied Resources in the US. 

Two prototypes of WMRAs have been designed and developed at the University of South 

Florida, and this work intends to build upon the performance of the system to overcome 

the limited commercial success that previous attempts have had, such as low payload and 

], about 54.4 

million Americans had some level of disability, 34.9 million of them had a severe 

disability. About 11 million Americans older than 6 years of age needed personal 

assistance with one or more activities of daily living (ADL). This work focuses on people 

with limited upper and lower extremity mobility due to spinal cord injury or dysfunction, 

or genetic predispositions.  Robotic aides used in these applications vary from advanced 

limb orthosis to robotic arms [2]. 
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difficulty to be maneuvered by the final user. This work intends to transform the WMRA 

system into a task oriented mobile manipulator with the objective of aiding persons with 

disability to successfully perform activities of daily living. Several methods for 

optimization can still be used as constrains for redundancy resolution in the WMRA. The 

absence of these constrains causes an undesired completion of the tasks, and requires a 

higher input level from the final user. The WMRA control algorithm combines mobility 

and manipulation for task oriented performance; however, each task is different and 

requires a different subroutine sequence in terms of trajectory generation for both the 

end- effector and the wheelchair.  

 

1.2 Thesis Objectives 

 The main objective of my research is to improve the control structure and 

performance of the WMRA to include complete sequences of tasks that utilize 

redundancy to optimize the wheelchair and arm motion for autonomous task execution. 

The main criterion to be optimized is the fashion in which the wheelchair approaches a 

final target as well as the starting and final orientation of the wheelchair. This is a novel 

approach in non-holonomic wheeled manipulators that will increase the ease of the task 

execution for the final user since the system will orient itself depending on the desired 

task. The WMRA usage will be simulated in a virtual environment by developing a test 

setting for sensors and task performance. The different trajectories for each task can be 

shown in a virtual world created not only for illustration purposes, but to provide training 
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to the user once the system is ready to be used. The objectives are summarized as 

follows: 

 Develop new criterion functions for the optimization of the translation and 

orientation of the wheelchair and the end effector in a specific task 

 Develop a refined test bed for the WMRA system for experimentation in task 

performance, and trajectory generation.  

 Develop program modules for several ADl tasks, creating subroutines for each 

task to autonomously execute. 

 Create a virtual reality environment to test the algorithm and to train the user on 

the WMRA use while collecting data for further development and improvements. 

 

1.3 Thesis Outline 

 This thesis will provide a literature review and present the state of the art on the 

important subjects regarding this work in chapter 2. Chapter 3 presents the trajectory 

generation problems. The reader is given an overview of the procedures implemented in 

this work. Chapter 4 presents the Virtual Reality environment developed for the 

simulation of the system. Chapter 5 presents the detailed procedure followed to achieve a 

dual-trajectory control in the WMRA for performing activities of daily living. Chapter 6 

presents the results in Virtual Reality simulation and Matlab graphics following the main 

variables of the system. A discussion of these results is also addressed in this chapter. 

The final chapter briefly goes over the conclusions of this thesis and proposes future 
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work that can be completed later. A list of references and appendices are presented at the 

end with the code implemented in this thesis. 
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Chapter 2: Background 

 

In this chapter, the state of the art in the research area is presented to the reader. 

This includes research in rehabilitation robotics, mobile manipulators, redundant robots, 

virtual reality environments and previous work developed in wheelchair mounted robotic 

arms. 

2.1 Wheelchair Mounted Robotic Arms 

 Several designs of workstation-based robotic arm systems were developed over 

the years, such as Handy-1 [3], RAIL project [4], ProVAR [5] and the design conducted 

by Gunnar Bolmsjo, et al. [6]. WMRA combines the idea of a workstation and a mobile-

base robot to mount a manipulator arm onto a power wheelchair. The most important 

design consideration of where to mount a robotic arm in a power wheelchair is the safety 

of the operator [7

 

]. WMRA can be mounted in the front, side or rear of the wheelchair 

[8]. 
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2.1.1 Commercially Available Prototypes 

  The two commercially-available commercial WMRAs utilize side mounting on a 

power wheelchair. These two commercial arms are the Manus, manufactured by Exact 

Dynamics; and the Raptor, manufactured by Applied Resources. 

  The Manus manipulator arm can be programmed in a manner comparable to 

industrial robotic manipulators. It has been under development since the mid 1980s and it 

entered into production in the early 1990s [9]. It is a 6 DOF arm, with servomotors all 

housed in a cylindrical base as shown in figure 1. Another production WMRA is the 

Raptor [10], which mounts to the right side of the wheelchair. This manipulator has four 

degrees of freedom plus a planar gripper as shown in figure 1. The user directly controls 

the arm joints with either a joystick or a 10-button controller. Typically, the joystick that 

controls the manipulator arm is located on the armrest opposite to the input device that 

controls the steering of the power wheelchair. Because the Raptor does not have 

encoders, the manipulator cannot be controlled in Cartesian coordinates. This 

compromise was done to minimize the overall system cost. 
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Figure 1 Raptor Arm   

 

Figure 2 Manus Arm 
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2.1.2 USF WMRA First Prototype 

Previous work has shown the analysis of commercial WMRAs and the 

development of a wheelchair-mounted robotic arm (WMRA-I) system with combined 

mobility and manipulation control [11,12,13

The arm carries seven revolute joints and a gripper designed for ADLs. The 

gripper [14] is powered by a Faulhaber coreless DC servomotor that is compact and 

capable of producing 6N of grasping force at the gripper paddles.  In order for the 

WMRA to have more commercial success, the weight must be reduced and the payload 

needs to be increased.  Reducing the overall weight of the robot arm that is attached to 

the power wheelchair will reduce the power consumption, allowing longer system usage 

before the batteries need to be recharged.  A lighter weight WMRA will also be less 

restrictive on the allowable user weight because the WMRA is an aftermarket 

modification and power wheelchairs are rated for a maximum weight capacity by the 

manufacturer. 

]. The WMRA-I is comprised of a seven-

degree-of-freedom robot arm, a gripper, and a power wheelchair as shown in figure 3.  

That system was designed to use Matlab to control the arm and the chair motion with a 

single graphical user interface (GUI) which can be used to control the end effector in 

Cartesian space. User interfaces include a touch screen, a spaceball with 3-D input 

capabilities and a Brain Computer Interface (BCI) that uses the stimulated P-300 signal. 
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Figure 3 WMRA-I 

 

2.1.3 Composite Materials in Robotic Arms 

Industrial robotic arm companies have begun to use composite materials, such as 

carbon fiber, as major structural components to reduce weight while keeping the 

necessary structural strength [15

The DLR research group has been working on producing the lightweight robot 

(LWR) arm for industrial usage [16], specifically for packaging robots, but it also has 

attributes that allow it to be used for human interaction.  They have developed two LWR 

], but they have not been widely used in the field of 

rehabilitation robotics, specifically for WMRAs.  Utilizing these composites in the 

construction of a WMRA can help reduce the weight of the overall design. 
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arms previous to the current arm, both of which have been improved upon in multiple 

areas [16].  The LWR-I is a seven-degree-of-freedom robot arm that used carbon fiber for 

its structure.  It also utilized double-planetary gear heads and torque sensing for control, 

both of which proved to be issues for manufacturing or robustness.  DLR then developed 

the LWR-II which used harmonic drive gear heads instead of the double-planetary gears 

as well as incorporating a feedback system for joint torque and motor and link position.  

All of the electronic systems were housed inside the arm, eliminating the external control 

box, which most industrial robots have.   

 

Figure 4 Mechatronic Joint Design of the DLR-LWR III [16] 
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2.1.4 USF WMRA Prototype Improvements 

 Based on this advances in the state of the art, an attempt was made to use a 

different material for a lighter arm using pultruded carbon fiber tubes as the structural 

member of each of the three main links of the arm [17

 

]. However, due to the material 

failure a new design is already under development. 

Figure 5 New WMRA Prototype SolidWorks Model 

 This design returns to the aluminum tubes used in the WMRA-I. However, the 

thickness of the tubes was reduced and the links and brackets are bolted instead of 

welded for better maintenance and aesthetics. The motors used for the second prototype 
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are also smaller in size, while keeping the same torque capabilities, accounting for a big 

percentage of weight reduction. 

 

2.2 Redundant Mobile Manipulators 

 Redundant mobile manipulators as a research topic have gained interest with its 

potential for a wide range of applications. In [18], a 7 DoF mobile manipulator consisting 

of a 5 DoF arm mounted on a 2 DoF wheeled platform was controlled by coordinating the 

platform motion and the gripper motion. The platform was driven to a destination that put 

the target within the gripper’s workspace. 

The non-holonomic wheeled platform of manipulators was addressed in [19

Path planning for non-holonomic mobile robots has been addressed by researchers 

for more than 2 decades. In [20], this was implemented for obstacle avoidance and 

implemented using the non-holonomic constrains of the platform. However, combining 

this constrains with a redundant manipulator was not considered at that time. In [

], 

where redundancy for a planar mobile manipulator was resolved using extended reduced 

gradient and projected gradient optimization-based methods. This approach was tested in 

simulation by having the end effector pointing at a pre-specified orientation while the 

wheelchair followed a circular trajectory, however they did not attempt to control two 

separate trajectories for the end effector and the non-holonomic base. 

21], an 

on-line planner for obstacle avoidance with moving targets was presented. Their model is 



13 

suitable for real time generation of trajectories and it was tested in crowded simulated 

environments. 

Recent work in redundancy resolution of mobile robots has accomplished the task 

of sustaining separate trajectories for the end effector and the platform. In [22] they 

implemented redundancy resolution of a 2D mobile manipulator using independent 

controllers developed within each other’s decoupled space, which facilitated the 

redundancy resolution at a dynamic level. The separate trajectories will be controlled by 

extending the weighted least norm solution method [23

Some applications with mobile platforms have implemented four wheel drives to 

account for a better accuracy of the platform motion. In [

] to constrain or prioritize the 

motion of the platform to follow certain trajectories. This method was intended for 

resolving redundancy while minimizing unnecessary motion of the joints. This approach 

has also been used along with specific criterion functions to avoid joint limits [24].  

25] a patented omnidirectional 

mobile platform with 4 wheel drive was used for wheelchair applications. 
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Figure 6 4WD Omni Directional Wheelchair [25] 

 

In the paper the kinematics of the 4WD platform are analyzed and they developed 

a control method for omnidirectional motion. This includes the addition of a third motor 

for the rotation of the chair. This an application that can improve the nonholonomic 

constrains that are attached to WMRAs. 

 

2.3 Virtual Reality Environments 

Testing and simulation is an important step in every design process. In WMRAs 

the main design factor is the safety of the operator [7]. For this, 3D animations and 

simulations turn into a useful tool to test the behavior and robustness of the algorithms 

before coding it into the physical system. Previous work has shown the good use of 
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virtual environments for simple mobile robots [26,27

In [25, 26] the authors describe a robotics architecture developed for their 

particular system called VIRbot. It is a robot designed for action planning using AI 

concepts. A virtual environment is implemented by the description of the working 

environment of the robot. 

] to prove the control concept in 

simulation.  

 

Figure 7 Virbot Subsystems Scheme [25] 

 The virtual environment is shown in 3D using a system called ROC2. This system 

uses C/C++ as its main platform, which also reads from the sensors and the main robot 



16 

program. This system uses the virtual environment as a tool to compare the actual 

environment with the one generated by the sensors. This is a very promising application 

but it does not provide the ability of running the simulation offline to test the control 

program as it is intended in this work. 
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Chapter 3: Virtual Reality Environment 

 

Testing and simulation is an important step in every design process. In WMRAs 

the main design factor is the safety of the operator [7]. For this, 3D animations and 

simulations turn into a useful tool to test the behavior and robustness of the algorithms 

before coding it into the physical system. Previous work has shown the good use of 

virtual environments for simple mobile robots [25, 26] to prove the control concept in 

simulation. This work uses the virtual environment as a tool to modify and debug the 

control system and check for the user’s safety before implementing it on the physical 

arm. 

 

3.1 Virtual Reality Modeling Language 

 The Virtual Reality Modeling Language (VRML) is the language used to display 

three-dimensional objects in a browser. It is considered a 3-D web standard. Since 1994 

VRML1 has been implemented in several browsers, but it allowed only the creation of 

static virtual worlds. This limitation reduced its widespread use. The VRML2 or VRMl97 

standard was created to overcome this issue and add animation and interactivity to a 
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virtual world. VRML97 represents an open and flexible platform for creating interactive 

three-dimensional scenes (virtual worlds) [28]. 

Using Matalb® Virtual Reality Toolbox, a communication between the control 

program and the virtual worlds can be established. This adds to the main program the 

versatility of a 3-D animation to monitor the simulated WMRA performance. 

 

3.2 Object Definition 

 The virtual environment designed for the WMRA is made of several dynamic and 

static objects. The objects included in this simulation were created in three different 

ways. For simple objects such as boxes or walls, the VRML code was typed to create the 

geometry, texture, location, scale and material properties. For moderately complicated 

geometries such as a table or a couch, the VR builder tool was used. This application 

allows the creation of simple primitives as a CAD program and then converts the part 

into VRML code. For highly complicated components such as the wheelchair and the 

robotic arm, SolidWorks® was used. Once the part is completed it can be easily exported 

into VRML files, keeping the same reference frame used in the CAD drawing. Some of 

the objects are included in the control loop, while others only move when there is a 

collision or the WMRA performs a specific task. Figure 8 shows a snapshot of the VR 

environment created for ADL applications. 
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Figure 8 Virtual Reality Environment Snapshot 

 

 Table 1 shows a summarized description of the main elements developed for the 

virtual reality environment. The type of element shows if the element moves within the 

environment. The creation field specifies which type of procedure was used for its 

generation. And the control field presents the role of the object in the control of the 

simulation. 
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Table 1 Object Definition 

 

3.2.1 Object Visualization   

 In this section, snapshots of the main components of the VR environment are 

presented. These components, and the procedure used for their creation are listed in table 

1.  

 The first object to be presented is the couch. This object was made using 

VRBuilder. This software is part of Matlab Virtual Reality Toolbox and has simple 

geometry primitives as well as a commando prompt for VRML code input. The couch 

used for the simulation consists of a combination of cylinders cubes and spheres in most 

of the edges. VRBuilder also allows the implementation of textures. Figure 9 shows a 

snapshot of the couch presented in the virtual reality simulation. 

Object Type Creation Control
WMRA Dynamic SoldWorks Control Loop
Walls Static Typed N/A
Floor Static Typed N/A
Laser Dynamic VRBuilder Control Loop
Couch Static VRBuilder N/A
Table Static VRBuilder N/A

Shelves Static VRBuilder N/A
Switches Dynamic VRBuilder Collision

Doors Dynamic VRBuilder Collision
Boxes Dynamic Typed Collision
Sink        5ȅƴŀƳƛŎ SoldWorks N/A
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Figure 9 Snapshot of the Couch in VR Environment 

 The simplest objects in the simulation are the boxes. These were typed manually 

since it consists only of a box geometry primitive. Figure 10 shows a snapshot of the 

environment with the boxes in place. These objects will be used in future work for 

obstacle avoidance control. 
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Figure 10 Environment Snapshot with Boxes in Place 

 A table was made to simulate “pick and place” tasks and also for obstacle 

avoidance. The table was also created with VRBuilder and it consisted of cylinder 

primitives mostly. Figure 11 shows an auxiliary view of the table in the environment. 
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Figure 11 Snapshot of the Environment with the Table in Place 

 A sink was simulated to include several ADLs for future work. For instance it has 

doors to simulate an “opening door” task, but it also has a tab and a higher small shelf for 

object placement. Figure 12 shows a snapshot of the sink that is used in the simulation. 
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Figure 12 Snapshot of the Environment with the Sink in Place 

 A shelf and a book were also developed for the environment. The shelf and the 

book were both made using Solid Works. The parts can be saved as “wrl” files directly 

from the CAD program. The main objective for these objects is to simulate a pick and 

place task. 



25 

 

Figure 13 Snapshot of the Environment with the Shelf and the Book in Place 

The objects developed for the simulation can be interfaced through Matlab and 

the Virtual Reality Toolbox. The configuration of the environment can be easily modified 

by entering the transformation matrix of the objects.  
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Chapter 4: Dual Trajectory Control 

 

This is the core chapter of this thesis. The combination of the wheelchair mobility 

and the arm manipulation in an optimized redundancy resolution algorithm [24] allowed 

for the possibility of programming pre-set ADL tasks to be autonomously executed. 

Some ADL tasks require wheelchair orientation control to place the WMRA in a 

configuration that makes the task possible. In this context, having a secondary trajectory 

for the wheelchair to follow while the arm is following its main trajectory allows for an 

easier task execution. 

This work utilizes redundancy to control 2 separate trajectories, a primary 

trajectory for the end-effector and an optimized secondary trajectory for the wheelchair. 

Even though this work presents results and implementation in the WMRA virtual reality 

simulation environment, this approach offers expandability to many wheeled base mobile 

manipulators in different types of applications. In this work, we develop and optimize a 

control system that combines the manipulation of the robotic arm and the mobility of the 

wheelchair in a single control algorithm. Redundancy resolution is to be optimally solved 

to avoid singularities and joint limits. While the end-effector follows a primary trajectory, 

we introduce a secondary trajectory to be followed by the wheelchair as part of the 

redundancy resolution and optimization algorithm. 
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4.1 Trajectory Generation 

4.1.1 Activities of Daily Living 

 The main objective of the WMRA system is to maximize the manipulation 

capabilities of persons with disabilities who are confined to a wheelchair. This objective 

is reached by enhancing the performance of certain tasks that are regularly carried out 

every day. Activities such as turning a light switch, grabbing a cup or a book, picking up 

objects from the floor, opening a drawer, a cabinet or a door, are referred to as activities 

of daily living (ADL). 

 As expressed in the introduction of this chapter, the main control objective of the 

system is to carry out a desired end- effector trajectory. That is how activities of daily 

living gain importance in the control of the system; each ADL is comprised of one or 

several different trajectories that will need to be programmed and executed by the 

WMRA to complete a full task. A set of ADLs can be pre-specified towards turning the 

WMRA into a task oriented mobile manipulator in which the cognitive load of the user 

will be significantly reduced; that is by reducing the need to specify the different 

trajectories needed to carry out a certain task. For instance, a subset of linear and circular 

trajectories that are needed to open a door can be specified to be performed autonomously 

by the system; therefore, all that is left to be specified are the door variables (knob 

location, width, side to open). A simulation of the WMRA carrying out this ADL is 

presented in the chapter 5. 
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4.1.2 Trajectory Subtasks 

 As described in the previous subsection, every ADL can be divided into a set of 

trajectories that need to be executed by the system to complete a certain task. This 

subsection intends to provide a sense of how the trajectories are subdivided to be 

completed as a whole task by the WMRA 

4.1.3 Trajectory Stages 

 End-effector trajectory and wheelchair trajectory are used as a primary and 

secondary trajectory respectively throughout this work. A “trajectory stage” is a term we 

use to pinpoint a certain portion of the trajectory to be followed in a certain period of 

time. Also there might be a stage in which no motion is required by the wheeled base 

while the end-effector is carrying out a specific trajectory. A trajectory stage is then 

defined as a portion of the task that follows a specific combination of motions by the 

WMRA to partially fulfill a desired task that is composed by several trajectories. 

4.1.4 Trajectory Planning 

 For any given task to be programmed in a manipulator, a path needs to be 

followed. The orientation part of the trajectory can be represented in a single rotational 

angle that makes it possible to divide the path into angle steps along the trajectory. The 

single angle of rotation can be found from the homogeneous transform as [29
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where a typical homogeneous transformation matrix consists of three rotational vectors and one 
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 Once we have the single angle of rotation and the axis of rotation, we can 

generate the trajectory using a linear equation. The approach used to generate the 

trajectory utilizes a constant transformation change along the trajectory, which means that 

the trajectory will be divided into “n” transformation matrices, with “δT” transformations 

between every two consecutive points in the trajectory. 

This trajectory generation solves the problem of going from one point to another, 

however, going from rest to a full joint speed in no time and vice versa generates a 

discontinuous acceleration at the beginning and at the end of the trajectory, and therefore 

a linear trajectory is not the most adequate when the start and finish velocity is zero  

To take care of the problems of linear trajectory, a polynomial trajectory is 

introduced so that when the arm starts from rest, the trajectory points are very close to 

each other, and then the arm will reach a maximum speed and ramp back down to zero 

velocity when it reaches the destination. 

The governing equation for such a polynomial can be written for any variable that 

needs to be ramped as follows: 
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When using the polynomial function to generate a non-linear trajectory, efficiency 

of the trajectory-following task was not acceptable. The reason is that the desired velocity 

is reached at the mid-point of the trajectory, and ramping that velocity up and down takes 

a very long time. To overcome this problem, a polynomial blending procedure was 

adopted [30]. The blending factor accelerates the velocities at the beginning of the 

trajectory, and then set the acceleration to zero throughout the major part of the trajectory 

when the desired velocity is reached, and then decelerate the velocity back down to zero 

at the end of the trajectory-following task. 

We first begin by defining the blending factor “b”, a constant from 0 to 10. Then 

we define the acceleration during blending as: 

24
f

if
b t

XX
bX

−
⋅⋅=

     (3)
 

Where “tf

X
)XX(XtXt

t iff
b





⋅

−⋅⋅−⋅
−=

2
4

2

22

” is the time at which the trajectory-following task is completed. Then we 

define the time when blending ends as: 

          (4)
 

For each ADL to be performed by the WMRA a set of trajectories have to be 

generated. Details on the optimization algorithm for the combined mobility and 

manipulation of the system can be found in previous publications [12, 24].  
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This procedure can be implemented with any type of trajectory. Any trajectory 

will be divided in steps according to the specified method. If a circular path is needed 

then the equation of a circle is programmed and so on. 

 

4.2 WMRA Combined Kinematics 

 Two of the DoFs are provided by the non-holonomic motion of the wheelchair. 

This subsystem is controlled using 2 input variables: the linear position of the wheelchair 

along its x-axis, and the angular orientation of the wheelchair about its z-axis (see figure 

14). The planar motion of the wheelchair includes three variables: the x and y positions, 

and the z-orientation of the wheelchair [31

 

]. 

Figure 14 WMRA Coordinate Frames 
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 Assuming that the manipulator is mounted on the wheelchair with L2 and L3 

offset distances from the center of the differential drive across the x and y coordinates 

respectively (see Figure 14), the mapping of the wheels’ velocities to the manipulator’s 

end effector velocities along its coordinates is defined by: 

cWcc VJJr ⋅⋅= ,      (5) 

where the end effector velocity and manipulator velocity are 

[ ]Tc zyxr φβα 
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where Pxg and Pyg are the x-y coordinates of the end-effector based on the arm base 

frame, φ  is the angle of the arm base frame, which is the same as the angle of the 

wheelchair based on the ground frame and L5 is the wheels’ radius. The above Jacobian 

can be used to control the wheelchair and  the arm after combining their respective 

jacobians together. 

The wheelchair will move forward when both wheels have the same speed and 

direction while rotational motion will be created when both wheels rotate at the same 

velocity but in opposite directions. Since the wheelchair’s position and orientation are our 

control variables rather than the left and right wheels’ velocities, Vc can be redefined as: 
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In the previous expression, φ can be expressed in terms of both rθ  or lθ  since for 

pure rotation these speeds are equal but in opposite directions.  

Seven degrees of freedom are provided by the robotic arm mounted on the 

wheelchair. From the DH parameters of the robotic arm specified in earlier publications 

[13], the 6x7 Jacobian that relates the joint rates to the Cartesian speeds of the end 

effector based on the base frame is generated according to Craig’s notation [28]: 

AAA VJr ⋅=      (7) 

where: [ ]TA zyxr γβα 



 = is the task vector,  

and [ ]TAV 7654321 θθθθθθθ = is the joint rate vector, and JA is the robotic arm’s 

Jacobian. 

Combining the wheelchair and arm kinematics yields the total system kinematics. In the 

case of combined control, let the task vector be: 

),( Ac qqfr = ,   (8) 

where qc and qA are the control variables of the wheelchair and arm respectively.  

Differentiating (8) with respect to time gives: 
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or             

VJr ⋅=           (10) 

where: [ ]Tzyxr φβα 
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[ ] [ ]TT
cA XVVV φθθθθθθθ 




7654321== . 

4.3 Redundancy Resolution and Optimization 

 Redundancy is resolved in the algorithm using S-R inverse of the Jacobian [32] to 

give a better approximation around singularities, and use the optimization for different 

subtasks. Manipulability measure [33

)*det( TJJw =

] is used as a factor to measure how far is the 

current configuration from singularity. This measure is defined as 

          (11) 

The S-R Inverse of the Jacobian in this case is defined as: 

1
6

* )**(* −+= IkJJJJ TT

    (12) 

where I6 is a 6x6 identity matrix, and k is a scale factor. It has been known that this 

method reduces the joint velocities near singularities, but compromises the accuracy of 

the solution by increasing the joint velocities error. Choosing the scale factor k is critical 

to minimize the error. Since the point in using this factor is to give approximate solution 
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near and at singularities, an adaptive scale factor is updated at every time step to put the 

proper factor as needed: 
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    (13) 

where w0 is the manipulability measure at the start of the boundary chosen when 

singularity is approached, and k0

Weighted Least Norm solution proposed by [23] can be integrated to the control 

algorithm to optimize for secondary tasks. In order to put a motion preference of one joint 

rather than the other (such as the wheelchair wheels and the arm joints), a weighted norm 

of the joint velocity vector can be defined as: 

 is the scale factor at singularity. 

WVVV T
W

=      (14) 

where W is a 9X9 symmetric and positive definite weighting matrix, and for simplicity, it 

can be a diagonal matrix that represent the motion preference of each joint of the system. 

For the purpose of analysis, the following transformations are introduced: 

2/1−= WJJW  , and  VWVW
2/1−=       (15) 

Combining these equations, it can be shown that the weighted least norm solution 

integrated to the S-R inverse is: 

( ) rIkJWJJWV TT
W
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The above method has been used in simulation of the 9-DoF WMRA system with 

the nine control variables (V) that represent the seven joint velocities of the arm and the 

linear and angular wheelchair’s velocities. An optimization of criteria functions can be 

accomplished when used in the weighting matrix W. 

 

4.4 Secondary Trajectory Planning 

 For the completion of an activity of daily living, the main task will be given as a 

set of trajectories for the end-effector to follow. Although the main task is followed, 

wheelchair position and orientation can be important for the task to be successfully 

completed. A secondary subtask representing the best position and orientation of the 

wheelchair is represented as a secondary set of trajectories for the wheelchair to follow.  

An optimal position/orientation combination of the non-holonomic motion of the 

wheelchair can be achieved if the secondary trajectory is divided into 3 stages. The first 

one is to orient the wheelchair facing its desired linear trajectory. The second stage is to 

proceed with a linear motion along the secondary trajectory to approach the final planar 

coordinates. Once the wheelchair reaches its final position, the third stage will be to 

orient the wheelchair to its final desired orientation. Figure 15 shows the three stages 

implemented for the secondary trajectory. 
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Figure 15  A General Case of the Three Stages for the Secondary Trajectory to be Followed by the 
Wheelchair 

The three stages to be applied for the secondary trajectory will only involve the 

position “X” and orientation “Φ” variables of the wheelchair. The nned for the three 

stages comes from the non-holonomic constrains attached to the wheelchair. There are 

three variables to be controlled, which are the x and y position as well as the orientation 

of the wheelchair around the z axis, however there are only two control variables, which 

are the left and right wheel velocities. For an expanded derivation of these constrains in 

the WMRA the reader is advised to go through previous work [24] 

As shown in Figure 16, knowing the initial and final transformations of the 

wheelchair base, the trajectory angle α can be defined as: 

[ ])(,)(2tan ifif xxyya −−=α     (17) 
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That defines the amount of motion needed for the three stages to be followed in 

the following order: 

 Rotation by the amount of iφαβ −=1  

 Translation by the amount of 22 )()( ifif yyxxtr −+−=  

 Rotation by the amount of αφβ −= f2  

 The above three wheelchair motion values can be utilized in the weight matrix as 

criteria to enforce the wheelchair motion. 

 

Figure 16 Definition of Optimization Variables 
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4.5 Criteria Functions  

 The criteria functions used in the weight matrix for optimization can be defined 

based on different requirements. 

4.5.1 Joint Limit Avoidance  

 For the robotic arm, the physical joint limits can be avoided by minimizing an 

objective function that represents this criterion. One of these mathematical 

representations was proposed by [23] as follows: 
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” is the angle of joint “i”. This criterion function becomes “1” when the current 

joint angle is in the middle of its range, and it becomes “infinity” when the joint reaches 

either of its limits. The gradient projection of the criterion function can be defined as: 

  (19) 

When any particular joint is in the middle of the joint range, (19) becomes zero 

for that joint, and when it is at its limit, (19) becomes “infinity”, which means that the 

joint will carry an infinite weight that makes it impossible to move any further. 
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4.5.2 Weighted Optimization  

 For the wheelchair, the criteria functions can be defined for each stage of its 

trajectory based on the desired motion of the wheelchair. Similar to the arm, 

mathematical representations can be obtained by treating the range of the desired 

wheelchair motion as a motion limit. The upper limit in this case is set to be the current 

initial orientation (or position for the second trajectory stage) of the wheelchair. The 

lower limit is set to be double the rotation angle β1 or β2

Figure 

17

 (or double the translation 

distance tr for the second trajectory stage). In this case, the middle of that range will be 

the desired orientation/position of the wheelchair, and either limit will be avoided. 

 shows an example of the limits for the first wheelchair trajectory stage. 

 

Figure 17 Gradient Variable Limits for the First Wheelchair Trajectory Stage 
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To generalize the representation of the objective function, let variable “P” be a 

representative for β1, β2 or tr. The objective function in this case is: 
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and the gradient of the criterion function can be defined as: 
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For the first stage, when the wheelchair‘s angle is in the middle of its allowable 

range, (21) becomes zero, and when it is at its limit, (21) becomes “infinity”, which 

means that the variable will carry an infinite weight that makes it impossible to move any 

further. This value of the gradient will be placed at the translational part of the weight 

matrix. The rotational part on the other hand will start with a very low value for (21). 

This way, rotational motion in the first stage will be active (with small weight), and the 

translational motion will be inactive (with high weight). The diagonal weight matrix W 

can then be constructed as: 
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where for stages 1 and 3: 
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This procedure can achieve the desired trajectory combinations to successfully 

execute tasks that require separate end-effector and wheelchair trajectories. Examples of 

ADL tasks were tested in simulation and the results will be presented in the following 

chapter. 

 is a user-set preference value for each joint and the position/orientation of the 

wheelchair. These values can achieve the user preference if joint limits are not 

approached and wheelchair motion is at its desired position.  
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Chapter 5: Results and Discussion 

 This chapter presents the results in simulation that have being obtained for this 

thesis work. The computational work was done in a Core 2 Quad PC with Windows XP 

OS. Matlab and its virtual Reality Toolbox were used to program and run the simulation. 

Trajectory planning is essential for the task-programming.  Once the WMRA 

reaches the desired position, autonomous control will be used to follow different 

trajectories a task may need. The Matlab Graphics simulation allowed keeping track of 

the variables of concern for the control of the manipulator. The linear trajectory motion 

has already been tested for optimal control. More detailed results can be found in 

previous publications [24]. WMRA variables were monitored for different end-effector 

motion patterns to ensure the smooth completion of ADL tasks that include various 

trajectory combinations. Most of the trajectories involved in ADLs can be decomposed in 

several linear and circular trajectories. The next couple of figures present the result of 

circular trajectories. Figure 18 shows a snapshot of the Matlab graphics simulation with 

the WMRA model performing a circular trajectory and Figure 19 shows the joint angular 

displacement versus time for the completion of a circular trajectory of 1m of radius which 

is the radius of a typical door. 
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Figure 18 Circular Path Matlab Animation 
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Figure 19 Joint Angular Displacement vs. Time for Circular Path 

  

To illustrate the simulation, a virtual reality WMRA environment was developed 

for several activities of daily living. In this section, a “Go To and Open the Door” task 

was selected to prove the concept. For illustration purposes, the initial and final 

transformations of the end-effector trajectory are known. The initial and final 

transformations of the wheelchair approach trajectory are also given.  

The task process is divided into two sub-tasks. The first task is to approach the 

door knob while both the end-effector and the wheelchair are following their respective 

trajectories. In this sub-task, the end-effector follows its straight-line trajectory from start 
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to end, and the wheelchair follows the three stages of its trajectory to approach the door 

approximately at the desired position and orientation. The second sub-task is to open the 

door inwards while the wheelchair is backing up away from the door. In this sub-task, the 

end-effector follows its circular trajectory to open the door, and the wheelchair follows a 

single-stage straight-line trajectory to back up away from the door. The wheelchair 

orientation during this sub-task is kept constant. 
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Figure 20 Virtual Reality Simulation Sequence for “Approach and Open Door” Task 

Initial Position Wheelchair Rotation

Forward Motion Forward Motion

Wheelchair Rotation Opening Door

Opening Door Final Position

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path

---Wheelchair path
---Gripper path
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Figure 20 shows the complete task execution; reaching the door and following a 

circular path to open it. In that sequence, the transition between figures 20-I and 20-II 

shows how the end-effector was following its 3D trajectory while the wheelchair was 

rotating without translation to reach its trajectory orientation. After reaching an 

approximate angle equivalent to that of the trajectory line, the wheelchair started moving 

forward without rotation, while the end-effector was still following its trajectory as 

shown in figures 20-III and 20-IV. The transition between figures 20-IV and 20-V shows 

how the end-effector kept following its 3D trajectory while the wheelchair was rotating 

back without translation to the desired orientation. 

Figure 20-VI shows the end-effector following the circular trajectory to open the 

door, and the wheelchair was moving backwards to clear the space for the door to open. 

Figures 20-VII and 20-VIII show the completed task of opening the door and arriving at 

the final pose. Notice here that a third sub-task can be added to have the WMRA go 

through the door. In that case, the end-effector will need to stay stationary while the 

wheelchair moves forward to go through the door. 

The first sub-task included a 3D trajectory for the end-effector as shown in Figure 

2121, and a planar trajectory for the wheelchair. The second sub-task included two planar 

trajectories since the end-effector is opening the door in a planar motion. 
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Figure 21 3D End-effector Trajectory for Approaching Task 

 

Note that the secondary trajectory will not be followed in a precise motion. As the 

weights of the wheelchair position and orientation are updated at every iteration in the 

weight matrix, the relative motion is kept to minimum for the undesired variable motion, 

while the relative motion of the desired variable is kept to maximum. Figure 22 and 23 

show the resulting wheelchair motion in its three position/orientation stages for the first 

sub-task of approaching the door. In Figure 22, it can be seen that the position stayed 

close to its desired trajectory throughout the wheelchair motion. Orientation, however, 

seems to have slightly higher error in following its desired orientation as seen in Figure 

23.  
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Figure 22 Wheelchair Position Vs. Time for Approaching Task 

 

In some extreme cases, failure can occur when this algorithm is used due to the 

fact that it is impossible to achieve both trajectories at the same time. An example of that 

is when the end-effector is commanded to go in a direction that is deviating away from 

the desired wheelchair direction. It is shown, however, that even if the sub-task that is 

being performed by the wheelchair fails at certain instances, the trajectory-following of 

the end-effector stays unaffected. 

There is a slight offset from the desired path and the actual path covered by the 

wheelchair. This is an optimizazion process and the results are always going to be 

approximates. The reason for this error is because the end-effector is trying to follow its 

commanded trajectory and the arm is stretching to its limit while the wheelchair is still 
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rotating. At this point, the wheelchair trajectory is compromised and the wheelchair starts 

to move forward so that the end-effector keeps up with its trajectory-following task. It 

was also noted that the wheelchair accelerates forward in its "stage 2" motion faster than 

the gripper so that it accounts for the time it will take to perform "stage 3" rotation while 

the end-effector is still moving along its final steps of its trajectory. 

 

 

Figure 23 Wheelchair Orientation Vs. Time for Approaching Task 

 

 The same issue is presented for the wheelchair orientation while approaching the 

target. Even if the ideal path is set to rotate quickly and start moving forward, even when 

the wheelchair starts moving the desired rotation angle is not reached. Therefore, the 

wheelchair will keep rotating as long as the end-effector trajectory remains unaltered. 

This issue could also be present in the stage three. If the time for the wheelchair rotation 

is not accurately coordinated, the final orientation may be achieved once the end-effector 

has already reached its final destination  

This example assumes that the door opens towards the wheelchair and towards the 

left side of the user. If the door opens to the right side of the user while the robotic arm is 
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mounted on the left side of the user, a more complicated trajectory is required to achieve 

acceptable results. Programming several sequences of trajectories for both the wheelchair 

and the end-effector can be utilized to form a complete set of tasks that can be 

autonomously preformed to make the WMRA system a task-oriented system. 

A second orientation of the door is presented in an aerial view to illustrate the 

efficiency of the algorithm (see Figure 24) 

 

Figure 24 VR Sequence of a Second "Open Door Task" 

 Figures 24-I and 24-II show a sequence of the WMRA approaching the door 

knob, and 24-III and 24-IV show the opening of the door. 

 This task is the most complex tasks since it includes the dual-trajectory track to 

approach an object as well as different types of trajectories, for instance it includes a 

circular trajectory to be followed to open the door. Having successfully performed this 

I

IVIII

II
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task allows the implementation of several trajectories in series to perform any other 

simpler ADL task. Figure 25 shows the sequence to approach and pick up a book. 

 

Figure 25 VR Sequence Book Pick Up 

 In Figures 25-I and 25-II, the WMRA is approaching the shelf where the book is. 

Once the book is reached in 25-III, the transformation of the book will be the same of that 

of the gripper. In a human-like motion the book is pulled back and the user can either 

take it or command the WMRA to place it somewhere else. 

  

I

IVIII

II
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Chapter 6: Conclusions and Future Work 

 

Optimized dual-trajectory following control system was presented for a 9-DoF 

redundant wheelchair-mounted robotic arm system to be used for people with disabilities 

to help them in their ADL tasks. S-R inverse was used with a weighting matrix to solve 

for the resolved rate solution to follow a primary trajectory. A secondary trajectory for 

the wheelchair to follow was mathematically represented and implemented for a “Go To 

and Open the Door” task. Joint limits for the manipulator joint variables and the 

position/orientation variables for the wheelchair were used in the weight matrix to 

prioritize or penalize the motion of the nine control variables. A simulation of the task in 

virtual reality simulation and the results were presented.  

Future work includes the addition of a pool of ADL tasks in the program and the 

incorporation of a laser range finder to obtain position information of the target and the 

environment. Implementation of the control system will be done in the new prototype 

WMRA under development. Clinical human testing of actual ADL tasks will follow, and 

data will be collected and presented in future publications. 

An Ongoing effort in the implementation of a Brain Computer Interface (BCI) as 

a user interface is also part of the future work to be accomplished for this work. This will 

allow the control of the system by persons with more severe disabilities such as locked-in 
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syndrome. The implementation of different programming languages for the control of the 

system is also being tested. 
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Appendix A. Virtual Reality Modeling Language 

 

9_WMRA 

#VRML V2.0 utf8 
  
 
NavigationInfo { type "EXAMINE" speed 30 avatarSize [ 1, 0, 0 ] 
headlight TRUE } 
DEF WMRAROBOT Group { 
  children[ 
    Group { 
      children [ 
     
DEF EXT_SETTINGS Group { 
      children [ 
        WorldInfo { title "Wheelchair Mounted Robotic Arm, By: Redwan 
Alqasemi, USF 2007"}, 
        NavigationInfo { 
           type "EXAMINE" 
           avatarSize 180 
           visibilityLimit 200 
           speed 1000 
        }, 
  
 
        Background { 
            groundColor [ 0.8 0.7 0.1 , 0.8 0.7 0.1] 
            groundAngle [1.57] 
            skyColor [ 0 0 1 , 0 0.5 1 , 0 0.5 1 , 0.5 0.5 0.5 , 1 0.5 
0] 
 
            skyAngle [ 1 1.15 1.35 1.57] 
            #topUrl "cloud.jpg" 
        }, 
  
 
        DEF DynamicView Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
            Viewpoint { 
              description "a_start" 
              position 2500 500 1800 
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              orientation 0 1 0 0.8 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_far" 
              position 900 6000 -200  
              orientation -0.601 -0.547 -0.582 2.172 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-lt-up" 
              position -1300 1600 -1600 
              orientation -0.1 -1 -0.25 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-lt-dn" 
              position -1400 400 -1800 
              orientation 0.025 -1 0.037 2.4 
              jump FALSE  
              }, 
            Viewpoint { 
              description "a_ft-lt-up" 
              position 1600 1800 -1400 
              orientation -0.1 0.9 0.25 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-lt-dn" 
              position 1700 400 -1600 
              orientation 0.031 1 -0.052 2.4 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-rt-up" 
              position 1600 1900 1500 
              orientation -0.4 0.5 0.14 0.85 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_ft-rt-dn" 
              position 1700 300 1900 
              orientation 0.191 1 -0.075 0.615 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-rt-up" 
              position -1700 1700 1700 
              orientation -0.25 -0.5 -0.12 1 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_bk-rt-dn" 
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              position -1800 500 1900 
              orientation 0.116 -1 0.021 0.818 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_birdeye" 
              position -1100 4900 -1900 
              orientation -0.56 -0.72 -0.4 2.2 
              jump FALSE  
            }, 
            Viewpoint { 
              description "a_top" 
              position 200 3100 0 
              orientation -0.577 -0.577 -0.577 2.1 
              jump FALSE  
            }, 
          ]} 
        Viewpoint { 
          description "top" 
          position 200 3100 0 
          orientation -0.577 -0.577 -0.577 2.1 
          jump FALSE  
        }, 
        Viewpoint { 
          description "birdeye" 
          position -1100 4900 -1900 
          orientation -0.56 -0.72 -0.4 2.2 
          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-rt-dn" 
          position -1800 500 1900 
          orientation 0.116 -1 0.021 0.818 
          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-rt-up" 
          position -1700 1700 1700 
          orientation -0.25 -0.5 -0.12 1 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-rt-dn" 
          position 1700 300 1900 
          orientation 0.191 1 -0.075 0.615 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-rt-up" 
          position 1600 1900 1500 
          orientation -0.4 0.5 0.14 0.85 
          jump FALSE  
        }, 
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        Viewpoint { 
          description "ft-lt-dn" 
          position 1700 400 -1600 
          orientation 0.031 1 -0.052 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "ft-lt-up" 
          position 1600 1800 -1400 
          orientation -0.1 0.9 0.25 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "bk-lt-dn" 
          position -1400 400 -1800 
          orientation 0.025 -1 0.037 2.4 
          jump FALSE  
          }, 
        Viewpoint { 
          description "bk-lt-up" 
          position -1300 1600 -1600 
          orientation -0.1 -1 -0.25 2.4 
          jump FALSE  
        }, 
        Viewpoint { 
          description "far" 
          position 900 6000 -200  
          orientation -0.601 -0.547 -0.582 2.172 
          jump FALSE  
        }, 
        Viewpoint { 
          description "start" 
          position 2500 500 1800 
          orientation 0 1 0 0.8 
          jump FALSE  
        }, 
  
        DEF GROUND Transform { 
           rotation 1 0 0 0 
           translation 0 0 0 
           children [ 
           Shape { 
           geometry Box { size 10000 1 10000 } 
           appearance Appearance { 
           texture ImageTexture { url "woodfloor2.jpg" repeatS TRUE 
repeatT TRUE } 
           textureTransform TextureTransform { 
           rotation 0 
           center 0 0 
           translation  0 0 
           scale    3 3 
        }}}]}, 
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    ]} 
    ]} 
  
        # Transforming the wheelchair world coordinate system to the 
VR's world coordinate system: 
        DEF World Transform { 
        rotation 1 0 0 -1.5707963 
        translation 0 0 0 
        children [ 
  
        DEF Chair Transform { 
        rotation 0 0 1 0 
        translation -440 -230 168 
          children [ 
#          DEF WCR SphereSensor {} 
#          DEF WCT PlaneSensor { minPosition -400 0 maxPosition 400 0 } 
          Group { 
          children [Inline { url "0_Chair.wrl" } 
  
        DEF LWheel Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
#          DEF LW CylinderSensor { diskAngle 0 minAngle 1.5707963 
maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "0_LWheel.wrl" }]}]} 
  
        DEF RWheel Transform { 
        rotation 0 1 0 0 
        translation 0 0 0 
          children [ 
#          DEF RW CylinderSensor { diskAngle 0 minAngle 1.5707963 
maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "0_RWheel.wrl" }]}]} 
  
        DEF ARM1 Transform {          
        rotation 1 0 0 1.5707963 
        translation 440 220 139 
          children [ 
#          DEF JOINT1 CylinderSensor { diskAngle 0 minAngle 1.5707963 
maxAngle 1.5707963 } 
          Group { 
          children [Inline { url "1.wrl" } 
  
        DEF ARM2 Transform {          
        rotation 0 0 -1 1.5707963 
        translation 0 42.69 -75.1 
          children [ 
#          DEF JOINT2 CylinderSensor { diskAngle 0 minAngle -1.5708 
maxAngle 1.5708 } 
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          Group { 
          children [Inline { url "2.wrl" } 
         
        DEF ARM3 Transform {          
        rotation 0 1 0 1.5707963 
        translation -1.73 75.08 -42.7 
          children [ 
#          DEF JOINT3 CylinderSensor { diskAngle 0 minAngle -3.1416 
maxAngle 3.1416 } 
          Group { 
          children [Inline { url "3.wrl" } 
         
        DEF ARM4 Transform { 
        rotation 0 0 -1 0 
        translation -2.92 42.64 -75.08 
          children [ 
#          DEF JOINT4 CylinderSensor { diskAngle 0 minAngle -3.1416 
maxAngle 3.1416 } 
          Group { 
          children [Inline { url "4.wrl" } 
  
        DEF ARM5 Transform {          
        rotation 0 1 0 1.5707963 
        translation -11.45 74.85 -423.58 
          children [ 
#          DEF JOINT5 CylinderSensor { diskAngle 0 minAngle -3.1416 
maxAngle 3.1416 } 
          Group { 
          children [Inline { url "5.wrl" } 
  
        DEF ARM6 Transform {          
        rotation 0 0 -1 1.5707963 
        translation -2.17 45.99 -75.1 
          children [ 
#          DEF JOINT6 CylinderSensor { diskAngle 0 minAngle -3.1416 
maxAngle 3.1416 } 
          Group { 
          children [Inline { url "6.wrl" } 
         
        DEF ARM7 Transform {          
        rotation 0 1 0 1.5707963 
        translation -2.92 -61.52 -161.49 
          children [ 
#          DEF JOINT7 CylinderSensor { diskAngle 0 minAngle -1.5708 
maxAngle 1.5708 } 
          Group { 
          children [Inline { url "7.wrl" } 
         
        DEF ARM8 Transform { 
        rotation 0 0 -1 0 
        translation -1.78 61.39 -192.29 
          children [ 
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#          DEF JOINT8 CylinderSensor { diskAngle 0 minAngle -3.1416 
maxAngle 3.1614 } 
          Group { 
          children [Inline { url "8.wrl" } 
  
        ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]}]} ]} 
  
#        ROUTE WCT.translation_changed TO Chair.set_translation 
#        ROUTE WCR.rotation_changed TO Chair.set_rotation 
#        ROUTE LW.rotation_changed TO LWheel.set_rotation 
#        ROUTE RW.rotation_changed TO RWheel.set_rotation 
#        ROUTE JOINT1.rotation_changed TO ARM1.set_rotation 
 #       ROUTE JOINT2.rotation_changed TO ARM2.set_rotation 
  #      ROUTE JOINT3.rotation_changed TO ARM3.set_rotation 
   #     ROUTE JOINT4.rotation_changed TO ARM4.set_rotation 
    #    ROUTE JOINT5.rotation_changed TO ARM5.set_rotation 
     #   ROUTE JOINT6.rotation_changed TO ARM6.set_rotation 
      #  ROUTE JOINT7.rotation_changed TO ARM7.set_rotation 
       # ROUTE JOINT8.rotation_changed TO ARM8.set_rotation 
  
]} 
 

Box 

#VRML V2.0 utf8 
Group { 
children [ 
    Transform { 
    translation 0 0 0 
    children [ 
        DEF BOX Shape { 
                    appearance  Appearance { 
                        material    DEF _mat1 Material { 
                            ambientIntensity    0.2 
                            diffuseColor    0.2 0.2 0 
                            emissiveColor   0 0 0 
                            shininess   0.2 
                            specularColor   0 0 0 
                            transparency    0 
                        } 
} 
  
        geometry Box { size 300 200 300} 
} 
] 
} 
] 
} 
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Couch 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Group { 
    children [  
        NavigationInfo { 
        } 
  
        Transform { 
            scale   60 60 60 
            children [  
            Group { 
                children Transform { 
                    translation 8 2 4 
                    children [  
                        Shape { 
                            appearance  Appearance { 
                                material    DEF _mat1 Material { 
                                    ambientIntensity    0.2 
                                    diffuseColor    0.1 0.4 0.5 
                                } 
  
                                texture ImageTexture { 
                                    url "texture/leather_white.jpg" 
                                } 
  
                            } 
  
                            geometry    Sphere { 
                                radius  1 
                            } 
  
                        } 
  
                        Transform { 
                            translation 0 0 -4 
                            rotation    1 0 0  1.57 
                            children Shape { 
                                appearance  Appearance { 
                                    material    USE _mat1  
                                    texture ImageTexture { 
                                        url "texture/leather_white.jpg" 
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                                   } 
  
                                } 
  
                                geometry    Cylinder { 
                                    height  8 
                                    radius  1 
                                } 
  
                            } 
                        } 
                    ] 
                } 
            } 
  
            Group { 
                children Transform { 
                    translation -8 2 4 
                    children [  
                        Shape { 
                            appearance  Appearance { 
                                material    USE _mat1  
                                texture ImageTexture { 
                                    url "texture/leather_white.jpg" 
                                } 
  
                            } 
  
                            geometry    Sphere { 
                                radius  1 
                            } 
  
                        } 
  
                        Transform { 
                            translation 0 0 -4 
                            rotation    1 0 0  1.57 
                            children Shape { 
                                appearance  Appearance { 
                                    material    USE _mat1  
                                    texture ImageTexture { 
                                        url "texture/leather_white.jpg" 
                                    } 
  
                                } 
  
                                geometry    Cylinder { 
                                    height  8 
                                    radius  1 
                                } 
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                    } 
                        } 
                    ] 
                } 
            } 
  
            Group { 
                children Transform { 
                    translation 7.5 -1.5 0 
                    children [  
                        Shape { 
                            appearance  Appearance { 
                                material    USE _mat1  
                                texture ImageTexture { 
                                    url "texture/leather_white.jpg" 
                                } 
  
                            } 
  
                            geometry    Box { 
                                size    1 7 8 
                            } 
  
                        } 
  
                        Transform { 
                            translation -15 0 0 
                            children Shape { 
                                appearance  Appearance { 
                                    material    USE _mat1  
                                    texture ImageTexture { 
                                        url "texture/leather_white.jpg" 
                                    } 
  
                                } 
  
                                geometry    Box { 
                                    size    1 7 8 
                                } 
  
                            } 
                        } 
                    ] 
                } 
            } 
  
            Group { 
                children Transform { 
                    translation 0 -3.5 0 
                    children Shape { 
                        appearance  Appearance { 
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                         material    USE _mat1  
                            texture ImageTexture { 
                                url "texture/leather_white.jpg" 
                            } 
  
                        } 
  
                        geometry    Box { 
                            size    14 3 8 
                        } 
  
                    } 
                } 
            } 
  
            Group { 
                children Transform { 
                    translation 0 1.5 -3.5 
                    children [  
                        Shape { 
                            appearance  Appearance { 
                                material    USE _mat1  
                                texture ImageTexture { 
                                    url "texture/leather_white.jpg" 
                                } 
  
                            } 
  
                            geometry    Box { 
                                size    15 7 1 
                            } 
  
                        } 
  
                        Transform { 
                            translation 7.5 3.5 -0.5 
                            children [  
                            Shape { 
                                appearance  Appearance { 
                                    material    USE _mat1  
                                    texture ImageTexture { 
                                        url "texture/leather_white.jpg" 
                                    } 
  
                                } 
  
                                geometry    Sphere { 
                                    radius  1 
                                } 
  
                            } 
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                            Transform { 
                                translation -15 0 0 
                                children [  
                                    Shape { 
                                        appearance  Appearance { 
                                            material    USE _mat1  
                                            texture ImageTexture { 
                                                url 
"texture/leather_white.jpg" 
                                            } 
  
                                        } 
  
                                        geometry    Sphere { 
                                            radius  1 
                                        } 
  
                                    } 
  
                                    Transform { 
                                        translation 7.5 0 0 
                                        rotation    0 0 1  1.57 
                                        children Shape { 
                                            appearance  Appearance { 
                                                material    USE _mat1  
                                                texture ImageTexture { 
                                                    url 
"texture/leather_white.jpg" 
                                                } 
  
                                            } 
  
                                            geometry    Cylinder { 
                                                height  15 
                                                radius  1 
                                            } 
  
                                        } 
                                    } 
                                ] 
                            } 
                            ] 
                        } 
                    ] 
                } 
            } 
  
            Group { 
                children Transform { 
                    translation 0 -1 0 
                    children [  
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                        Shape { 
                            appearance  Appearance { 
                                material    USE _mat1  
                                texture ImageTexture { 
                                    url "texture/leather_white.jpg" 
                                } 
  
                            } 
  
                            geometry    Box { 
                                size    14 2 6 
                            } 
  
                        } 
  
                        Transform { 
                            translation 0 0 3 
                            rotation    0 0 1  1.57 
                            children Shape { 
                                appearance  Appearance { 
                                    material    USE _mat1  
                                    texture ImageTexture { 
                                        url "texture/leather_white.jpg" 
                                    } 
  
                                } 
  
                                geometry    Cylinder { 
                                    height  15 
                                    radius  1 
                                } 
  
                            } 
                        } 
                    ] 
                } 
            } 
            ] 
        } 
    ] 
} 
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Door 

#VRML V1.0 ascii 
Separator { 
MaterialBinding { 
value OVERALL 
} 
Material { 
ambientColor [ 
 0.796078 0.823529 0.937255 
] 
diffuseColor [ 
 0.796078 0.823529 0.937255 
] 
emissiveColor [ 
 0.063686 0.065882 0.074980 
] 
specularColor [ 
 0.756275 0.782353 0.890392 
] 
shininess [ 
 0.550000 
] 
transparency [ 
 0.000000 
] 
} 
Coordinate3 { 
point [ 
 0.000000 0.000000 0.000000, 0.000000 0.000000 2.200000, 0.000000 
0.010000 0.000000, 0.000000 0.010000 2.200000, 0.900000 0.000000 -
0.000000, 
 0.900000 0.000000 2.200000, 0.900000 0.010000 -0.000000, 0.900000 
0.010000 2.200000 
] 
} 
IndexedFaceSet { 
coordIndex [ 
 2, 6, 0, -1, 0, 6, 4, -1, 3, 2, 1, -1, 
 1, 2, 0, -1, 7, 3, 5, -1, 5, 3, 1, -1, 
 6, 7, 4, -1, 4, 7, 5, -1, 3, 7, 2, -1, 
 2, 7, 6, -1, 5, 1, 4, -1, 4, 1, 0, -1 
] 
} 
} 
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Laser 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Transform { 
scale   60 60 60 
    translation 0 0 0 
    rotation    1 0 0 3.141592 
        children Shape { 
            appearance  Appearance { 
                        material    DEF _mat1 Material { 
                            ambientIntensity    0.2 
                            diffuseColor    0 0 0 
                            emissiveColor   1 0 0 
                            shininess   0.2 
                            specularColor   0 0 0 
                            transparency    0 
                        } 
} 
            geometry    Cone { 
            bottomRadius    0.05 
            height  3.8 
        } 
  
    } 
} 
 
Laser Mount 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Transform { 
    translation -9.53674e-007 -3.21865e-006 0 
    children Shape { 
        appearance  Appearance { 
            material    Material { 
            } 
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            texture DEF Metal ImageTexture { 
                url "texture/Metal.jpg" 
            } 
  
        } 
  
        geometry    Box { 
            size    20 20 20 
        } 
  
    } 
} 
 
Shelf 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Transform { 
    translation -110.317 -144.058 -153.659 
    rotation    -0.173679 0.966449 -0.189238  0.0127889 
    scale   799.999 799.999 799.999 
    children Shape { 
        appearance  Appearance { 
            material    Material { 
                ambientIntensity    1 
                diffuseColor    0.668235 0.564706 0.404706 
                emissiveColor   0.167059 0.141176 0.101176 
                shininess   0.31 
                specularColor   0.668235 0.564706 0.404706 
            } 
  
            texture DEF Wood_Tan ImageTexture { 
                url "texture/Wood_6.gif" 
            } 
  
        } 
  
        geometry    IndexedFaceSet { 
            color   Color { 
                color   0.835294 0.705882 0.505882 
            } 
  
            coord   Coordinate { 
                point   [ -0.044476 -0.045526 -0.02, 
                          -0.044476 -0.045526 0.4, 
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                          -0.044476 1.75447 -0.02, 
                          -0.044476 1.75447 0.4, 
                          -0.016654 -0.023677 0, 
                          -0.016654 -0.023677 0.4, 
                          -0.016654 0.393539 0, 
                          -0.016654 0.393539 0.4, 
                          -0.016654 0.413539 0, 
                          -0.016654 0.413539 0.4, 
                          -0.016654 0.908174 0, 
                          -0.016654 0.908174 0.4, 
                          -0.016654 0.928174 0, 
                          -0.016654 0.928174 0.4, 
                          -0.016654 1.35288 0, 
                          -0.016654 1.35288 0.4, 
                          -0.016654 1.37288 0, 
                          -0.016654 1.37288 0.4, 
                          -0.016654 1.73632 0, 
                          -0.016654 1.73632 0.4, 
                          0.927702 -0.023677 0, 
                          0.927702 -0.023677 0.4, 
                          0.927702 0.393539 0, 
                          0.927702 0.393539 0.4, 
                          0.927702 0.413539 0, 
                          0.927702 0.413539 0.4, 
                          0.927702 0.908174 0, 
                          0.927702 0.908174 0.4, 
                          0.927702 0.928174 0, 
                          0.927702 0.928174 0.4, 
                          0.927702 1.35288 0, 
                          0.927702 1.35288 0.4, 
                          0.927702 1.37288 0, 
                          0.927702 1.37288 0.4, 
                          0.927702 1.73632 0, 
                          0.927702 1.73632 0.4, 
                          0.955524 -0.045526 -0.02, 
                          0.955524 -0.045526 0.4, 
                          0.955524 1.75447 -0.02, 
                          0.955524 1.75447 0.4 ] 
            } 
  
            normal  Normal { 
                vector  [ -1 0 0, 
                          0 -1 0, 
                          0 0 -1, 
                          0 0 1, 
                          0 1 0, 
                          1 0 0 ] 
            } 
  
            colorPerVertex  FALSE 
            normalPerVertex TRUE 
            coordIndex  [ 7, 3, 5, -1, 5, 3, 1, -1, 



 

78 

Appendix A (Continued) 

                 5, 1, 21, -1, 21, 1, 37, -1, 
                      21, 37, 23, -1, 13, 15, 3, -1, 
                      29, 13, 11, -1, 11, 13, 3, -1, 
                      11, 3, 9, -1, 9, 3, 7, -1, 
                      9, 7, 25, -1, 3, 35, 39, -1, 
                      39, 35, 33, -1, 7, 23, 25, -1, 
                      25, 23, 37, -1, 25, 37, 27, -1, 
                      27, 37, 39, -1, 11, 27, 29, -1, 
                      29, 27, 39, -1, 29, 39, 31, -1, 
                      31, 39, 33, -1, 31, 33, 15, -1, 
                      15, 33, 17, -1, 15, 17, 3, -1, 
                      3, 17, 19, -1, 3, 19, 35, -1, 
                      0, 1, 2, -1, 2, 1, 3, -1, 
                      36, 37, 0, -1, 0, 37, 1, -1, 
                      38, 39, 36, -1, 36, 39, 37, -1, 
                      2, 3, 38, -1, 38, 3, 39, -1, 
                      19, 17, 18, -1, 18, 17, 16, -1, 
                      17, 33, 16, -1, 16, 33, 32, -1, 
                      33, 35, 32, -1, 32, 35, 34, -1, 
                      35, 19, 34, -1, 34, 19, 18, -1, 
                      21, 23, 20, -1, 20, 23, 22, -1, 
                      23, 7, 22, -1, 22, 7, 6, -1, 
                      7, 5, 6, -1, 6, 5, 4, -1, 
                      5, 21, 4, -1, 4, 21, 20, -1, 
                      25, 27, 24, -1, 24, 27, 26, -1, 
                      27, 11, 26, -1, 26, 11, 10, -1, 
                      11, 9, 10, -1, 10, 9, 8, -1, 
                      9, 25, 8, -1, 8, 25, 24, -1, 
                      15, 13, 14, -1, 14, 13, 12, -1, 
                      13, 29, 12, -1, 12, 29, 28, -1, 
                      29, 31, 28, -1, 28, 31, 30, -1, 
                      31, 15, 30, -1, 30, 15, 14, -1, 
                      28, 30, 12, -1, 12, 30, 14, -1, 
                      10, 8, 26, -1, 26, 8, 24, -1, 
                      6, 4, 22, -1, 22, 4, 20, -1, 
                      32, 34, 16, -1, 16, 34, 18, -1, 
                      0, 2, 36, -1, 36, 2, 38, -1 ] 
            normalIndex [ 3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
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                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      2, 2, 2, -1, 2, 2, 2, -1 ] 
        } 
  
    } 
} 
 
 

Sink Door 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Transform { 
    scale   800 800 800 
    children Shape { 
        appearance  Appearance { 
            material    Material { 
                ambientIntensity    1 
                diffuseColor    0.721569 0.646275 0.404706 
                emissiveColor   0.180392 0.161569 0.101176 
                shininess   0.31 
                specularColor   0.721569 0.646275 0.404706 
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           } 
  
            texture DEF Wood_Tan ImageTexture { 
                url "texture/Wood_6.gif" 
            } 
  
        } 
  
        geometry    IndexedFaceSet { 
            color   Color { 
                color   0.901961 0.807843 0.505882 
            } 
  
            coord   Coordinate { 
                point   [ 0 0 0, 
                          0 0 0.02, 
                          0 1 0, 
                          0 1 0.02, 
                          0.553993 0.46 0.02, 
                          0.553993 0.46 0.05, 
                          0.553993 0.47 0.02, 
                          0.553993 0.47 0.04, 
                          0.553993 0.51 0.02, 
                          0.553993 0.51 0.04, 
                          0.553993 0.52 0.02, 
                          0.553993 0.52 0.05, 
                          0.563994 0.46 0.02, 
                          0.563994 0.46 0.05, 
                          0.563994 0.47 0.02, 
                          0.563994 0.47 0.04, 
                          0.563994 0.51 0.02, 
                          0.563994 0.51 0.04, 
                          0.563994 0.52 0.02, 
                          0.563994 0.52 0.05, 
                          0.6 0 0, 
                          0.6 0 0.02, 
                          0.6 1 0, 
                          0.6 1 0.02 ] 
            } 
  
            normal  Normal { 
                vector  [ -1 0 0, 
                          0 -1 0, 
                          0 0 -1, 
                          0 0 1, 
                          0 1 0, 
                          1 0 0 ] 
            } 
  
            colorPerVertex  FALSE 
            normalPerVertex TRUE 
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           coordIndex  [ 18, 23, 10, -1, 10, 23, 3, -1, 
                      10, 3, 8, -1, 6, 14, 16, -1, 
                      16, 8, 6, -1, 6, 8, 3, -1, 
                      6, 3, 4, -1, 4, 3, 1, -1, 
                      4, 1, 12, -1, 12, 1, 21, -1, 
                      12, 21, 14, -1, 14, 21, 23, -1, 
                      14, 23, 16, -1, 16, 23, 18, -1, 
                      1, 3, 0, -1, 0, 3, 2, -1, 
                      21, 1, 20, -1, 20, 1, 0, -1, 
                      23, 21, 22, -1, 22, 21, 20, -1, 
                      3, 23, 2, -1, 2, 23, 22, -1, 
                      22, 20, 2, -1, 2, 20, 0, -1, 
                      6, 4, 7, -1, 7, 4, 5, -1, 
                      7, 5, 9, -1, 9, 5, 11, -1, 
                      9, 11, 8, -1, 8, 11, 10, -1, 
                      13, 5, 12, -1, 12, 5, 4, -1, 
                      16, 18, 17, -1, 17, 18, 19, -1, 
                      17, 19, 15, -1, 15, 19, 13, -1, 
                      15, 13, 14, -1, 14, 13, 12, -1, 
                      7, 15, 6, -1, 6, 15, 14, -1, 
                      11, 19, 10, -1, 10, 19, 18, -1, 
                      17, 9, 16, -1, 16, 9, 8, -1, 
                      7, 9, 15, -1, 15, 9, 17, -1, 
                      13, 19, 5, -1, 5, 19, 11, -1 ] 
            normalIndex [ 3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      2, 2, 2, -1, 2, 2, 2, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      0, 0, 0, -1, 0, 0, 0, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      5, 5, 5, -1, 5, 5, 5, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      4, 4, 4, -1, 4, 4, 4, -1, 
                      1, 1, 1, -1, 1, 1, 1, -1, 
                      2, 2, 2, -1, 2, 2, 2, -1, 
                      3, 3, 3, -1, 3, 3, 3, -1 ] 
        } 
  
    } 
} 
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Table 

 
#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Group { 
  
    children [  
  
        NavigationInfo { 
        } 
        Transform { 
        scale   60 60 60 
         
            children [  
                         Shape { 
             
            appearance  Appearance { 
                material    DEF _mat1 Material { 
                    ambientIntensity    0.2 
                    diffuseColor    0.25 0.15 0.1 
                    emissiveColor   0 0 0 
                    shininess   0.2 
                    specularColor   0 0 0 
                    transparency    0 
                } 
  
                texture DEF Wood_Brown ImageTexture { 
                    url "texture/Wood_5.jpg" 
                } 
  
            } 
                     
            
            geometry    Cylinder { 
                 
                height  0.5 
                radius  8 
            } 
  
        } 
]} 
        Transform { 
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            translation 0 -1 0 
            scale   60 60 60 
            children [  
            Shape { 
                appearance  Appearance { 
                    material    USE _mat1  
                    texture DEF Wood_Brown ImageTexture { 
                        url "texture/Wood_5.jpg" 
                    } 
  
                } 
  
                geometry    Cylinder { 
                    height  1 
                    radius  1 
                } 
  
            } 
  
            Transform { 
                translation 0 -0.5 0 
                children [  
                    Shape { 
                        appearance  Appearance { 
                            material    USE _mat1  
                            texture DEF Wood_Brown ImageTexture { 
                                url "texture/Wood_5.jpg" 
                            } 
  
                        } 
  
                        geometry                            Sphere { 
                        radius  1 
                        } 
  
                    } 
  
                    Transform { 
                        translation 0 -1.5 0 
                        children [  
                        Shape { 
                            appearance  Appearance { 
                                material    USE _mat1  
                                texture DEF Wood_Brown ImageTexture { 
                                    url "texture/Wood_5.jpg" 
                                } 
  
                            } 
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                            geometry                                
Sphere { 
                                radius  1 
                            } 
  
                        } 
  
                        Transform { 
                            translation 0 -1.5 0 
                            children [  
                                Shape { 
                                    appearance  Appearance { 
                                        material    USE _mat1  
                                        texture DEF Wood_Brown 
ImageTexture { 
                                            url "texture/Wood_5.jpg" 
                                        } 
  
                                    } 
  
                                    geometry                                        
Sphere { 
                                    radius  1 
                                    } 
  
                                } 
  
                                Transform { 
                                    translation 0 -1.5 0 
                                    children [  
                                    Shape { 
                                        appearance  Appearance { 
                                            material    USE _mat1  
                                            texture DEF Wood_Brown 
ImageTexture { 
                                                url 
"texture/Wood_5.jpg" 
                                            } 
  
                                        } 
  
                                        geometry                                            
Sphere { 
                                            radius  1 
                                        } 
  
                                    } 
  
                                    Transform { 
                                        translation 0 -1.5 0 
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                                      children [  
                                            Shape { 
                                                appearance  Appearance 
{ 
                                                    material    USE 
_mat1  
                                                    texture DEF 
Wood_Brown ImageTexture { 
                                                        url 
"texture/Wood_5.jpg" 
                                                    } 
  
                                                } 
  
                                                geometry    Cylinder { 
                                                    height  3 
                                                    radius  1 
                                                } 
  
                                            } 
  
                                            Transform { 
                                                translation 0 -1 0 
                                                children [  
                                                Shape { 
                                                    appearance  
Appearance { 
                                                        material    USE 
_mat1  
                                                        texture DEF 
Wood_Brown ImageTexture { 
                                                            url 
"texture/Wood_5.jpg" 
                                                        } 
  
                                                    } 
  
                                                    geometry    Cone { 
                                                        bottomRadius    
2 
                                                        height  3 
                                                    } 
  
                                                } 
  
                                                Transform { 
                                                    translation 0 -1 0 
                                                    children [  
                                                        Shape { 
                                                            appearance  
Appearance { 
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material    USE _mat1  
                                                                texture 
DEF Wood_Brown ImageTexture { 
                                                                    url 
"texture/Wood_5.jpg" 
                                                                } 
  
                                                            } 
  
                                                            geometry    
Cone { 
                                                                
bottomRadius    4 
                                                                height  
1.5 
                                                            } 
  
                                                        } 
  
                                                        Transform { 
                                                            translation 
0 -0.75 0 
                                                            children 
Shape { 
                                                                
appearance  Appearance { 
                                                                    
material    USE _mat1  
                                                                    
texture DEF Wood_Brown ImageTexture { 
                                                                        
url "texture/Wood_5.jpg" 
                                                                    } 
  
                                                                } 
  
                                                                
geometry    Cylinder { 
                                                                    
height  0.25 
                                                                    
radius  5.5 
                                                                } 
  
                                                            } 
                                                        } 
                                                    ] 
                                                } 
                                                ] 
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                                            } 
                                        ] 
                                    } 
                                    ] 
                                } 
                            ] 
                        } 
                        ] 
                    } 
                ] 
            } 
            ] 
        } 
    ] 
} 
  
Wall 

#VRML V2.0 utf8 
  
#Created with V-Realm Builder v2.0 
#Integrated Data Systems Inc. 
#www.ids-net.com 
  
  
Collision { 
    children [] 
} 
Group { 
    children [  
        NavigationInfo { 
        } 
  
        Transform { 
            translation 1.5 0 0 
            children Transform { 
                scale   201 201 201 
                children Shape { 
                    appearance  Appearance { 
                        material    Material { 
                            ambientIntensity    1 
                            diffuseColor    0.9 0.767329 0.619635 
                            shininess   1 
                        } 
  
                        texture NULL 
                    } 
  
                    geometry    Box { 
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                       size    14.8 7.1 0.25 
                    } 
  
                } 
            } 
        } 
    ] 
} 
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WMRA_final_orientation 

% This function simulates the wmra final orientation acording to the 
needs 
% of the task. the final angle to be rotated is an input 
  
% Function Declaration: 
function WMRA_final_orientation(ini, vr, ml, arm, Tiwc, qi,ang) 
  
% Closing the Arm library and Matlab Graphics Animation and Virtual 
Reality Animation and Plots windows: 
if ini==3 
    if arm==1 
        try 
            WMRA_ARM_Motion(ini, 0, 0, 0); 
        end 
    end 
    if vr==1 
        try 
            WMRA_VR_Animation2(ini, 0, 0); 
        end 
    end 
    if ml==1 
        try 
            WMRA_ML_Animation2(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
    end 
    return; 
end 
  
% Defining the used conditions: 
qd=qi(1:7);% Final joint angles 
%qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0];   % Final joint angles (Ready 
Position). 
ts=10;       % (5 or 10 or 20) Simulation time to move the arm from any 
position to the ready position. 
n=100;      % Number of time steps. 
dt=ts/n;    % The time step to move the arm from any position to the 
ready position. 
dqw=(ang)/(0.5*n+5); 
%dq=(qd-qi(1:7))/(0.5*n+5); 
% Initializing the physical Arm: 
if arm==1 
    WMRA_ARM_Motion(ini, 2, [qi;0], dt); 
    ddt=0; 
end 
  
% Initializing Virtual Reality Animation:
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if vr==1 
    WMRA_VR_Animation2(ini, Tiwc, qi); 
 
end 
  
% Initializing Robot Animation in Matlab Graphics: 
if ml==1     
    % Inputting the D-H Parameters in a Matrix form: 
    DH=WMRA_DH(qi); 
     
    % Calculating the transformation matrices of each link: 
    
T01=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(DH(1,4))*WMRA
_transl(0,0,DH(1,3)); 
    
T12=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(DH(2,4))*WMRA
_transl(0,0,DH(2,3)); 
    
T23=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(DH(3,4))*WMRA
_transl(0,0,DH(3,3)); 
    
T34=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(DH(4,4))*WMRA
_transl(0,0,DH(4,3)); 
    
T45=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(DH(5,4))*WMRA
_transl(0,0,DH(5,3)); 
    
T56=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(DH(6,4))*WMRA
_transl(0,0,DH(6,3)); 
    
T67=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(DH(7,4))*WMRA
_transl(0,0,DH(7,3)); 
    % Calculating the Transformation Matrix of the initial and desired 
arm positions: 
    Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
    Td=Tiwc*WMRA_q2T(qd); 
    WMRA_ML_Animation2(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, 
T67); 
end 
  
% Check for the shortest route: 
diff=qd-qi(1:7); 
for i=1:7 
    if diff(i) > pi 
        diff(i)=diff(i)-2*pi; 
    elseif diff(i) < (-pi) 
        diff(i)=diff(i)+2*pi; 
    end 
end 
  
% Joint angle change at every time step. 
dq=[diff/n;0;0]; 
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% Initialization: 
qo=qi; 
tt=0; 
  
while tt <= (ts-dt) 
    % Starting a timer: 
    tic; 
                 
    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Updating the physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || tt>=(ts-dt) 
            WMRA_ARM_Motion(2, 1, [qn;0], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation2(2, Tiwc, qn); 
    end 
     
    % Updating Matlab Animation: 
    if ml==1 
        % Calculating the new Transformation Matrix: 
        
T1a=WMRA_rotx(DH(1,1))*WMRA_transl(DH(1,2),0,0)*WMRA_rotz(qn(1))*WMRA_t
ransl(0,0,DH(1,3)); 
        
T2a=WMRA_rotx(DH(2,1))*WMRA_transl(DH(2,2),0,0)*WMRA_rotz(qn(2))*WMRA_t
ransl(0,0,DH(2,3)); 
        
T3a=WMRA_rotx(DH(3,1))*WMRA_transl(DH(3,2),0,0)*WMRA_rotz(qn(3))*WMRA_t
ransl(0,0,DH(3,3)); 
        
T4a=WMRA_rotx(DH(4,1))*WMRA_transl(DH(4,2),0,0)*WMRA_rotz(qn(4))*WMRA_t
ransl(0,0,DH(4,3)); 
        
T5a=WMRA_rotx(DH(5,1))*WMRA_transl(DH(5,2),0,0)*WMRA_rotz(qn(5))*WMRA_t
ransl(0,0,DH(5,3)); 
        
T6a=WMRA_rotx(DH(6,1))*WMRA_transl(DH(6,2),0,0)*WMRA_rotz(qn(6))*WMRA_t
ransl(0,0,DH(6,3)); 
        
T7a=WMRA_rotx(DH(7,1))*WMRA_transl(DH(7,2),0,0)*WMRA_rotz(qn(7))*WMRA_t
ransl(0,0,DH(7,3)); 
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        WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, 
T6a, T7a); 
    end 
  
    % Updating the old values with the new values for the next 
iteration: 
    Tiwc=Tiwc*WMRA_rotz(dqw); 
    qn(9)=qn(9)+dqw; 
    qo=qn; 
    tt=tt+dt; 
  
    % Pausing for the speed sync: 
    pause(dt-toc); 
     
end 
 
WMRA_Main_Both 

% This is a simplified version of the Main program to acomplish a 
subtask 
% with motion control. most of the options are prespecified and will 
not be 
% changed by the user 
  
% Declaring the global variables to be used for the touch screen 
control: 
global VAR_DX 
global VAR_SCREENOPN 
global dHo 
  
% Defining used parameters: 
d2r=pi/180; % Conversions from Degrees to Radians. 
r2d=180/pi; % Conversions from Radians to Degrees. 
  
% Reading the Wheelchair's constant dimentions, all dimentions are 
converted in millimeters: 
L=WMRA_WCD; 
radi=1000; 
e=1; 
% User input prompts: 
  
%choice000 = input('\n Choose what to control: \n For combined 
Wheelchair and Arm control, press "1", \n For Arm only control, press 
"2", \n For Wheelchair only control, press "3". \n','s'); 
choice000 = 1; 
    WCA=1; 
%choice00000 = input('\n Choose whose frame to base the control on: \n 
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For 
Gripper Frame, press "3". \n','s'); 
choice00000=1; 
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    coord=1; 
%choice0000 = input('\n Choose the cartesian coordinates to be 
controlled: \n For Position and Orientation, press "1", \n For Position 
only, press "2". \n','s'); 
choice0000 =1; 
    cart=1; 
%choice5 = input('\n Please enter the desired optimization method: (1= 
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'); 
choice5 =1;     
    optim=1; 
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= 
Yes, 2= No) \n','s'); 
choice50 =1; 
    JLA=1; 
%choice500 = input('\n Do you want to include Joint Limit/Velocity and 
Obstacle Safety Stop? (1= Yes, 2= No) \n','s'); 
choice500 = 1; 
        JLO=1; 
%choice0 = input('\n Choose the control mode: \n For circle control, 
press "6", \n For position control, press "1", \n For velocity control, 
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask 
control, press "4", \n For Touch Screen control, press "5",\n For 
Switch, press "7". \n','s'); 
choice0 ='1'; 
if choice0=='1' 
    cont=1; 
    %Td = input('\n Please enter the transformation matrix of the 
desired position and orientation from the control-based frame \n (e.g. 
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n'); 
    %Td=[0 0 1 1955;-1 0 0 -3000;0 -1 0 800; 0 0 0 
1]*WMRA_rotx(90)*WMRA_roty(70); 
    Td=[0 0 1 1955;-1 0 0 -1169;0 -1 0 999; 0 0 0 1] *WMRA_rotx(-
pi/6)*WMRA_roty(pi/4); 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 
    %choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    choice00=1; 
        trajf=1; 
   elseif choice0=='7' 
    cont=1; 
    Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]; 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    if choice00=='2' 
        trajf=2; 
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    elseif choice00=='3' 
        trajf=3; 
    else 
        trajf=1; 
    end 
elseif choice0=='2' 
    cont=2; 
    ts = input('\n Please enter the desired simulation time in seconds 
(e.g. 2) \n'); 
    if cart==2 
        Vd = input('\n Please enter the desired 3x1 cartesian velocity 
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n'); 
    else 
        Vd = input('\n Please enter the desired 6x1 cartesian velocity 
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n'); 
    end 
elseif choice0=='3' 
    cont=3; 
    % Space Ball will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
elseif choice0=='4' 
    cont=4; 
    % BCI 2000 Psychology Mask will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    port1 = input('\n Please enter the desired port number (e.g. 19711) 
\n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function, or \n press "4" for a Circular Polynomial function with 
Blending. \n','s'); 
elseif choice0=='6' 
    choice0=6; 
    cont=6; 
    %radi = input('\n Please enter the radius of the cirle in mm (e.g. 
1000) \n'); 
    radi=1000; 
    %e = input('\n If the door opens to the left press "1".\n If it 
opens to the right press "2" \n'); 
    e=2; 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 
    trajf=4; 
else 
    cont=5; 
    % Touch Screen will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
end 
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choice1 = input('\n Choose animation type or no animation: \n For 
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation, 
press "2", \n For BOTH Animations, press "3", \n For NO Animation, 
press "4". \n','s'); 
if choice1=='2' 
    vr = 0; ml = 1; 
elseif choice1=='3' 
    vr = 1; ml = 1; 
elseif choice1=='4' 
    vr = 0; ml = 0; 
else 
    vr = 1; ml = 0; 
end 
  
%choice10 = input('\n Would you like to run the actual WMRA? \n For 
yes, press "1", \n For no, press "2". \n','s'); 
choice10='2'; 
if choice10=='1' 
    arm=1; 
else 
    arm=0; 
end 
%choice2 = input('\n Press "1" if you want to start at the "ready" 
position, \n or press "2" if you want to enter the initial joint 
angles. \n','s'); 
choice2='1'; 
if choice2=='2' 
    qi = input('\n Please enter the arms initial angles vector in 
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n'); 
    WCi = input('\n Please enter the initial x,y position and z 
orientation of the WMRA base from the ground base in millimeters and 
radians (e.g. [200;500;0.3]) \n'); 
    ini=0; 
else 
    qi=[90;90;0;90;90;90;0]*d2r; 
    WCi=[0;0;0]; 
    ini=0; 
    if vr==1 || ml==1 || arm==1 
        %choice3 = input('\n Press "1" if you want to include "park" to 
"ready" motion, \n or press "2" if not. \n','s'); 
        choice3= '1'; 
        if choice3=='2' 
            ini=0; 
        else 
            ini=1; 
        end 
    end 
end 
%choice4 = input('\n Press "1" if you do NOT want to plot the 
simulation results, \n or press "2" if do. \n','s'); 
choice4 ='2'; 
if choice4=='2' 
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    plt=2; 
else 
    plt=1; 
end 
  
% Calculating the Transformation Matrix of the initial position of the 
WMRA's base: 
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3)); 
  
% Calculating the initial Wheelchair Variables: 
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)]; 
  
% Calculating the initial transformation matrices: 
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi, 
[0;0], Tiwc); 
  
if cont==1 
    % Calculating the linear distance from the initial position to the 
desired position and the linear velocity: 
    if coord==2 
        D=sqrt( (Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2); 
    elseif coord==3 
        D=sqrt( (Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2); 
    else 
        D=sqrt( (Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2); 
    end 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1); 
    end 
elseif cont==2 
    % Calculating the number of iterations and the time increment 
(delta t) if the linear step increment of the gripper is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=ts;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
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    dt=total_time/n;    % Adjusted time increment in seconds. 
    dx=Vd*dt; 
    Td=Ti; 
elseif cont==3 
    WMRA_exit(); % This is to stop the simulation in SpaceBall control 
when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
    dg=spdata1(7); 
    Td=Ti; 
    n=1; 
elseif cont==4 
    WMRA_exit(); % This is to stop the simulation in Psychology Mask 
control when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*WMRA_psy(port1); 
    dg=dx(7); 
    dx=dx(1:6); 
    Td=Ti; 
    n=1; 
elseif cont==6 
    % Calculating the desired transformation matrix based on the 
radius: 
    Tdoor=Ti; 
    Tdoor(1,4)=Ti(1,4)+radi/2; 
    Tdoor(2,4)=Ti(2,4)+radi/2; 
    Td=Tdoor; 
    Td(1,4)=Td(1,4)-radi; 
    Td(2,4)=Td(2,4)-((-1)^e)*radi; 
    % Calculating the circular distance from the initial position to 
the desired position and the linear velocity: 
    D=0.5*pi*radi; 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e); 
    end     
else 
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    WMRA_screen('0');   % This is to start the screen controls. 
Argument: '0'=BACK button disabled, '1'=BACK button enabled. 
    dt=0.05; 
    dx=v*dt*VAR_DX(1:6); 
    dg=VAR_DX(7); 
    Td=Ti; 
    n=1; 
end 
  
% Initializing the joint angles, the Transformation Matrix, and time: 
dq=zeros(9,1); 
dg=0; 
qo=[qi;qiwc]; 
To=Ti; 
Toa=Tia; 
Towc=Tiwc; 
tt=0; 
i=1; 
dHo=[0;0;0;0;0;0;0]; 
  
% Initializing the WMRA: 
if ini==0   % When no "park" to "ready" motion required. 
    % Initializing Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(1, Towc, qo); 
    end 
    % Initializing Robot Animation in Matlab Graphics: 
    if ml==1 
        WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, 
T56, T67); 
    end 
    % Initializing the Physical Arm: 
    if arm==1 
        WMRA_ARM_Motion(1, 2, [qo;dg], 0); 
        ddt=0; 
    end 
elseif ini==1 && (vr==1 || ml==1 || arm==1)  % When "park" to "ready" 
motion is required. 
    WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9)); 
    if arm==1 
        ddt=0; 
    end 
end 
  
% Re-Drawing the Animation: 
if vr==1 || ml==1 
    drawnow; 
end 
  
% Starting a timer: 
tic 
ANG=zeros(1,n+1); 
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while i<=(n+1) 
     
%Calculating the angle between the trajectory and the wheelchair's x 
axis 
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67); 
ANG(i)=the; 
% Starting the Iteration Loop: 
     
    % Calculating the 6X7 Jacobian of the arm in frame 0: 
    [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67); 
     
    % Calculating the 6X2 Jacobian based on the WMRA's base in the 
ground frame: 
    phi=atan2(Towc(2,1),Towc(1,1)); 
    Jowc=WMRA_Jga(1, phi, Toa(1:2,4)); 
     
    % Changing the Jacobian reference frame based on the choice of 
which coordinates frame are referenced in the Cartesian control: 
    % coord=1 for Ground Coordinates Control. 
    % coord=2 for Wheelchair Coordinates Control. 
    % coord=3 for Gripper Coordinates Control. 
    if coord==2 
        Joa=Joa; 
        Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc; 
    elseif coord==3 
        Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa; 
        Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc; 
    elseif coord==1 
        Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa; 
        Jowc=Jowc; 
    end 
     
    % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system 
based on the ground frame: 
    if cart==2 
        Joa=Joa(1:3,1:7); 
        detJoa=sqrt(det(Joa*Joa')); 
        Jowc=Jowc(1:3,1:2); 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    else 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    end 
         
    % Finding the Cartesian errors of the end effector: 
    if cont==1 || cont==6 
        % Calculating the Position and Orientation errors of the end 
effector, and the rates of motion of the end effector:             
        if coord==2 
            invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0 
1]; 
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            Ttnew=invTowc*Tiwc*Tt(:,:,i); 
            dx=WMRA_delta(Toa, Ttnew); 
        elseif coord==3 
            invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1]; 
            Ttnew=invTo*Ti*Tt(:,:,i); 
            dx=WMRA_delta(eye(4), Ttnew); 
        else 
            dx=WMRA_delta(To, Tt(:,:,i)); 
        end             
    elseif cont==2 
  
    elseif cont==3 
        dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
        dg=spdata1(7); 
    elseif cont==4 
        dx=v*dt*WMRA_psy(port1); 
        dg=dx(7); 
        dx=dx(1:6); 
    else 
        dx=v*dt*VAR_DX(1:6); 
        dg=VAR_DX(7); 
    end 
  
    % Changing the order of Cartesian motion in the case when gripper 
reference frame is selected for control with the screen or psy or 
SpaceBall interfaces:  
    if coord==3 && cont>=3 
        dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)]; 
    end 
  
    if cart==2 
        dx=dx(1:3); 
    end 
  
    % Calculating the resolved rate with optimization: 
    % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= 
SR-I & ENE, 4= P-I & ENE: 
    if WCA==2 
        dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt, 
qo,the,n,choice0); 
        dq=[dq;0;0]; 
    elseif WCA==3 
        dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 
1,the,n,choice0); 
        dq=[0;0;0;0;0;0;0;dq]; 
    else 
        dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, 
qo,the,n,choice0); 
    end 
     
    % Calculating the new Joint Angles: 
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    qn=qo+dq; 
  
    % Calculating the new Transformation Matrices: 
    [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, 
dq(8:9), Towc); 
  
    % A safety condition function to stop the joints that may cause 
colision of the arm with itself, the wheelchair, or the human user: 
    if JLO==1 && WCA~=3 
        dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56, 
T67); 
        % Re-calculating the new Joint Angles: 
        qn=qo+dq; 
        % Re-calculating the new Transformation Matrices: 
        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, 
qn, dq(8:9), Towc); 
    end 
     
    % Saving the plot data in case plots are required: 
    if plt==2 
        WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, 
detJo); 
    end 
  
    % Updating Physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || i>=(n+1)                 
            WMRA_ARM_Motion(2, 1, [qn;dg], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tnwc, qn); 
    end 
  
    % Updating Matlab Graphics Animation: 
    if ml==1 
        WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, 
T56, T67); 
    end 
  
    % Re-Drawing the Animation: 
    if vr==1 || ml==1 
        drawnow; 
    end 
  
    % Updating the old values with the new values for the next 
iteration: 
    qo=qn; 
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    To=Tn; 
    Toa=Tna; 
    Towc=Tnwc; 
    tt=tt+dt; 
    i=i+1; 
  
    % Stopping the simulation when the exit button is pressed: 
    if cont==3 || cont==4 || cont==5 
        if (VAR_SCREENOPN == 1) 
            n=n+1; 
        else 
            break 
        end 
    end 
  
    % Delay to comply with the required speed: 
    if toc < tt 
        pause(tt-toc); 
    end 
end 
  
% Reading the elapsed time and printing it with the simulation time: 
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f 
seconds.\n' , total_time); end 
toc 
  
% Plotting: 
  
  
if vr==1 || ml==1 || arm==1 
    %Orienting the Wheelchair to a desired final orientation 
    choice9 = input('\n Do you want to rotate the wheelchair? \n Press 
"1" for Yes, or press "2" for No. \n','s'); 
    if choice9=='1' 
        ang = input('\n enter the desired angle in radians \n'); 
      WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)   
    else  
        ang=0; 
    end 
    if plt==2 
    WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
    end 
     
    % Going back to the ready position: 
    %choice6 = input('\n Do you want to go back to the "ready" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice6 ='2'; 
    if choice6=='1' 
        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
        % Going back to the parking position: 
        choice7 = input('\n Do you want to go back to the "parking" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
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        if choice7=='1' 
            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
        end 
    end 
  
    % Closing the Arm library and Matlab Graphics Animation and Virtual 
Reality Animation and Plots windows: 
    %choice8 = input('\n Do you want to close all simulation windows 
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice8 ='2'; 
    if choice8=='1' 
        if arm==1 
            WMRA_ARM_Motion(3, 0, 0, 0); 
        end 
        if vr==1 
            WMRA_VR_Animation(3, 0, 0); 
        end 
        if ml==1 
            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
        if plt==2 
            close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12)); 
        end 
    end 
     
end 
qn=[qn(1:8);qn(9)+ang] 
Tnwc 
  
WMRA_Main_Open(qn,Tnwc) 
 

WMRA_Main_Open 

% This is a simplified version of the Main program to acomplish a 
subtask 
% with motion control. most of the options are prespecified and will 
not be 
% changed by the user 
  
% Declaring the global variables to be used for the touch screen 
control: 
function WMRA_Main_Open(qn,Tnwc) 
global VAR_DX 
global VAR_SCREENOPN 
global dHo 
  
% Defining used parameters: 
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d2r=pi/180; % Conversions from Degrees to Radians. 
r2d=180/pi; % Conversions from Radians to Degrees. 
  
% Reading the Wheelchair's constant dimentions, all dimentions are 
converted in millimeters: 
L=WMRA_WCD; 
radi=1000; 
e=1; 
% User input prompts: 
  
%choice000 = input('\n Choose what to control: \n For combined 
Wheelchair and Arm control, press "1", \n For Arm only control, press 
"2", \n For Wheelchair only control, press "3". \n','s'); 
choice000 = 1; 
    WCA=1; 
%choice00000 = input('\n Choose whose frame to base the control on: \n 
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For 
Gripper Frame, press "3". \n','s'); 
choice00000=1; 
    coord=1; 
%choice0000 = input('\n Choose the cartesian coordinates to be 
controlled: \n For Position and Orientation, press "1", \n For Position 
only, press "2". \n','s'); 
choice0000 =1; 
    cart=1; 
%choice5 = input('\n Please enter the desired optimization method: (1= 
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'); 
choice5 =1;     
    optim=1; 
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= 
Yes, 2= No) \n','s'); 
choice50 =1; 
    JLA=1; 
%choice500 = input('\n Do you want to include Joint Limit/Velocity and 
Obstacle Safety Stop? (1= Yes, 2= No) \n','s'); 
choice500 = 1; 
        JLO=1; 
%choice0 = input('\n Choose the control mode: \n For circle control, 
press "6", \n For position control, press "1", \n For velocity control, 
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask 
control, press "4", \n For Touch Screen control, press "5",\n For 
Switch, press "7". \n','s'); 
choice0 ='6'; 
if choice0=='1' 
    cont=1; 
    %Td = input('\n Please enter the transformation matrix of the 
desired position and orientation from the control-based frame \n (e.g. 
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n'); 
    Td=[0 0 1 1955;-1 0 0 -1169;0 -1 0 999; 0 0 0 1] *WMRA_rotx(-
pi/6)*WMRA_roty(pi/4); 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 



Appendix B (continued) 
 

105 

    %choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    choice00=1; 
        trajf=1; 
   elseif choice0=='7' 
    cont=1; 
    Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]; 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    if choice00=='2' 
        trajf=2; 
    elseif choice00=='3' 
        trajf=3; 
    else 
        trajf=1; 
    end 
elseif choice0=='2' 
    cont=2; 
    ts = input('\n Please enter the desired simulation time in seconds 
(e.g. 2) \n'); 
    if cart==2 
        Vd = input('\n Please enter the desired 3x1 cartesian velocity 
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n'); 
    else 
        Vd = input('\n Please enter the desired 6x1 cartesian velocity 
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n'); 
    end 
elseif choice0=='3' 
    cont=3; 
    % Space Ball will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
elseif choice0=='4' 
    cont=4; 
    % BCI 2000 Psychology Mask will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    port1 = input('\n Please enter the desired port number (e.g. 19711) 
\n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function, or \n press "4" for a Circular Polynomial function with 
Blending. \n','s'); 
elseif choice0=='6' 
    choice0=6; 
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    cont=6; 
    %radi = input('\n Please enter the radius of the cirle in mm (e.g. 
1000) \n'); 
    radi=1000; 
    %e = input('\n If the door opens to the left press "1".\n If it 
opens to the right press "2" \n'); 
    e=2; 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 
    trajf=4; 
else 
    cont=5; 
    % Touch Screen will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
end 
  
choice1 = input('\n Choose animation type or no animation: \n For 
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation, 
press "2", \n For BOTH Animations, press "3", \n For NO Animation, 
press "4". \n','s'); 
if choice1=='2' 
    vr = 0; ml = 1; 
elseif choice1=='3' 
    vr = 1; ml = 1; 
elseif choice1=='4' 
    vr = 0; ml = 0; 
else 
    vr = 1; ml = 0; 
end 
  
%choice10 = input('\n Would you like to run the actual WMRA? \n For 
yes, press "1", \n For no, press "2". \n','s'); 
choice10='2'; 
if choice10=='1' 
    arm=1; 
else 
    arm=0; 
end 
%choice2 = input('\n Press "1" if you want to start at the "ready" 
position, \n or press "2" if you want to enter the initial joint 
angles. \n','s'); 
choice2='2'; 
if choice2=='2' 
    %qi = input('\n Please enter the arms initial angles vector in 
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n'); 
    %WCi = input('\n Please enter the initial x,y position and z 
orientation of the WMRA base from the ground base in millimeters and 
radians (e.g. [200;500;0.3]) \n'); 
    qi=qn(1:7); 
    ini=0; 
else 
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    qi=[90;90;0;90;90;90;0]*d2r; 
    WCi=[0;0;0]; 
    ini=0; 
    if vr==1 || ml==1 || arm==1 
        %choice3 = input('\n Press "1" if you want to include "park" to 
"ready" motion, \n or press "2" if not. \n','s'); 
        choice3= '1'; 
        if choice3=='2' 
            ini=0; 
        else 
            ini=1; 
        end 
    end 
end 
%choice4 = input('\n Press "1" if you do NOT want to plot the 
simulation results, \n or press "2" if do. \n','s'); 
choice4 ='2'; 
if choice4=='2' 
    plt=2; 
else 
    plt=1; 
end 
  
% Calculating the Transformation Matrix of the initial position of the 
WMRA's base: 
Tiwc=Tnwc; 
  
% Calculating the initial Wheelchair Variables: 
qiwc=[qn(8);qn(9)]; 
  
% Calculating the initial transformation matrices: 
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi, 
[0;0], Tiwc); 
  
if cont==1 
    % Calculating the linear distance from the initial position to the 
desired position and the linear velocity: 
    if coord==2 
        D=sqrt( (Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2); 
    elseif coord==3 
        D=sqrt( (Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2); 
    else 
        D=sqrt( (Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2); 
    end 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
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    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1); 
    end 
elseif cont==2 
    % Calculating the number of iterations and the time increment 
(delta t) if the linear step increment of the gripper is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=ts;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    dx=Vd*dt; 
    Td=Ti; 
elseif cont==3 
    WMRA_exit(); % This is to stop the simulation in SpaceBall control 
when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
    dg=spdata1(7); 
    Td=Ti; 
    n=1; 
elseif cont==4 
    WMRA_exit(); % This is to stop the simulation in Psychology Mask 
control when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*WMRA_psy(port1); 
    dg=dx(7); 
    dx=dx(1:6); 
    Td=Ti; 
    n=1; 
elseif cont==6 
    % Calculating the desired transformation matrix based on the 
radius: 
    Tdoor=Ti; 
    Tdoor(1,4)=Ti(1,4)+radi/2; 
    Tdoor(2,4)=Ti(2,4)+radi/2; 
    Td=Tdoor; 
    Td(1,4)=Td(1,4)-radi; 
    Td(2,4)=Td(2,4)-((-1)^e)*radi; 
    % Calculating the circular distance from the initial position to 
the desired position and the linear velocity: 
    D=0.5*pi*radi; 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
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    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e); 
    end     
else 
    WMRA_screen('0');   % This is to start the screen controls. 
Argument: '0'=BACK button disabled, '1'=BACK button enabled. 
    dt=0.05; 
    dx=v*dt*VAR_DX(1:6); 
    dg=VAR_DX(7); 
    Td=Ti; 
    n=1; 
end 
  
% Initializing the joint angles, the Transformation Matrix, and time: 
dq=zeros(9,1); 
dg=0; 
qo=[qi;qiwc]; 
To=Ti; 
Toa=Tia; 
Towc=Tiwc; 
tt=0; 
i=1; 
dHo=[0;0;0;0;0;0;0]; 
  
  
  
% Starting a timer: 
tic 
  
while i<=(n+1) 
     
%Calculating the angle between the trajectory and the wheelchair's x 
axis 
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67); 
% Starting the Iteration Loop: 
     
    % Calculating the 6X7 Jacobian of the arm in frame 0: 
    [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67); 
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    % Calculating the 6X2 Jacobian based on the WMRA's base in the 
ground frame: 
    phi=atan2(Towc(2,1),Towc(1,1)); 
    Jowc=WMRA_Jga(1, phi, Toa(1:2,4)); 
     
    % Changing the Jacobian reference frame based on the choice of 
which coordinates frame are referenced in the Cartesian control: 
    % coord=1 for Ground Coordinates Control. 
    % coord=2 for Wheelchair Coordinates Control. 
    % coord=3 for Gripper Coordinates Control. 
    if coord==2 
        Joa=Joa; 
        Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc; 
    elseif coord==3 
        Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa; 
        Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc; 
    elseif coord==1 
        Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa; 
        Jowc=Jowc; 
    end 
     
    % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system 
based on the ground frame: 
    if cart==2 
        Joa=Joa(1:3,1:7); 
        detJoa=sqrt(det(Joa*Joa')); 
        Jowc=Jowc(1:3,1:2); 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    else 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    end 
         
    % Finding the Cartesian errors of the end effector: 
    if cont==1 || cont==6 
        % Calculating the Position and Orientation errors of the end 
effector, and the rates of motion of the end effector:             
        if coord==2 
            invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0 
1]; 
            Ttnew=invTowc*Tiwc*Tt(:,:,i); 
            dx=WMRA_delta(Toa, Ttnew); 
        elseif coord==3 
            invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1]; 
            Ttnew=invTo*Ti*Tt(:,:,i); 
            dx=WMRA_delta(eye(4), Ttnew); 
        else 
            dx=WMRA_delta(To, Tt(:,:,i)); 
        end             
    elseif cont==2 
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    elseif cont==3 
        dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
        dg=spdata1(7); 
    elseif cont==4 
        dx=v*dt*WMRA_psy(port1); 
        dg=dx(7); 
        dx=dx(1:6); 
    else 
        dx=v*dt*VAR_DX(1:6); 
        dg=VAR_DX(7); 
    end 
  
    % Changing the order of Cartesian motion in the case when gripper 
reference frame is selected for control with the screen or psy or 
SpaceBall interfaces:  
    if coord==3 && cont>=3 
        dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)]; 
    end 
  
    if cart==2 
        dx=dx(1:3); 
    end 
  
    % Calculating the resolved rate with optimization: 
    % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= 
SR-I & ENE, 4= P-I & ENE: 
    if WCA==2 
        dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt, 
qo,the,n,choice0); 
        dq=[dq;0;0]; 
    elseif WCA==3 
        dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 
1,the,n,choice0); 
        dq=[0;0;0;0;0;0;0;dq]; 
    else 
        dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, 
qo,the,n,choice0); 
    end 
     
    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Calculating the new Transformation Matrices: 
    [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, 
dq(8:9), Towc); 
  
    % A safety condition function to stop the joints that may cause 
colision of the arm with itself, the wheelchair, or the human user: 
    if JLO==1 && WCA~=3 
        dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56, 
T67); 
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        % Re-calculating the new Joint Angles: 
        qn=qo+dq; 
        % Re-calculating the new Transformation Matrices: 
        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, 
qn, dq(8:9), Towc); 
    end 
     
    % Saving the plot data in case plots are required: 
    if plt==2 
        WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, 
detJo); 
    end 
  
    % Updating Physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || i>=(n+1)                 
            WMRA_ARM_Motion(2, 1, [qn;dg], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tnwc, qn); 
    end 
  
    % Updating Matlab Graphics Animation: 
    if ml==1 
        WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, 
T56, T67); 
    end 
  
    % Re-Drawing the Animation: 
    if vr==1 || ml==1 
        drawnow; 
    end 
  
    % Updating the old values with the new values for the next 
iteration: 
    qo=qn; 
    To=Tn; 
    Toa=Tna; 
    Towc=Tnwc; 
    tt=tt+dt; 
    i=i+1; 
  
    % Stopping the simulation when the exit button is pressed: 
    if cont==3 || cont==4 || cont==5 
        if (VAR_SCREENOPN == 1) 
            n=n+1; 
        else 
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            break 
        end 
    end 
  
    % Delay to comply with the required speed: 
    if toc < tt 
        pause(tt-toc); 
    end 
end 
  
% Reading the elapsed time and printing it with the simulation time: 
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f 
seconds.\n' , total_time); end 
toc 
  
% Plotting: 
if plt==2 
    WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
end 
  
if vr==1 || ml==1 || arm==1 
    %Orienting the Wheelchair to a desired final orientation 
    choice9 = input('\n Do you want to rotate the wheelchair? \n Press 
"1" for Yes, or press "2" for No. \n','s'); 
    if choice9=='1' 
        ang = input('\n enter the desired angle in radians \n'); 
      WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)   
    end 
    % Going back to the ready position: 
    %choice6 = input('\n Do you want to go back to the "ready" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice6 ='2'; 
    if choice6=='1' 
        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
        % Going back to the parking position: 
        choice7 = input('\n Do you want to go back to the "parking" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
        if choice7=='1' 
            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
        end 
    end 
  
    % Closing the Arm library and Matlab Graphics Animation and Virtual 
Reality Animation and Plots windows: 
    %choice8 = input('\n Do you want to close all simulation windows 
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice8 ='2'; 
    if choice8=='1' 
        if arm==1 
            WMRA_ARM_Motion(3, 0, 0, 0); 
        end 
        if vr==1 
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            WMRA_VR_Animation(3, 0, 0); 
        end 
        if ml==1 
            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
        if plt==2 
            close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12)); 
        end 
    end 
     
end 
end 
 
 

WMRA_Main_Reach 

% This is a simplified version of the Main program to acomplish a 
subtask 
% with motion control. most of the options are prespecified and will 
not be 
% changed by the user 
  
% Declaring the global variables to be used for the touch screen 
control: 
function WMRA_Main_Reach 
global VAR_DX 
global VAR_SCREENOPN 
global dHo 
  
% Defining used parameters: 
d2r=pi/180; % Conversions from Degrees to Radians. 
r2d=180/pi; % Conversions from Radians to Degrees. 
  
% Reading the Wheelchair's constant dimentions, all dimentions are 
converted in millimeters: 
L=WMRA_WCD; 
radi=1000; 
e=1; 
% User input prompts: 
  
%choice000 = input('\n Choose what to control: \n For combined 
Wheelchair and Arm control, press "1", \n For Arm only control, press 
"2", \n For Wheelchair only control, press "3". \n','s'); 
choice000 = 1; 
    WCA=1; 
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%choice00000 = input('\n Choose whose frame to base the control on: \n 
For Ground Frame, press "1", \n For Wheelchair Frame, press "2", \n For 
Gripper Frame, press "3". \n','s'); 
choice00000=1; 
    coord=1; 
%choice0000 = input('\n Choose the cartesian coordinates to be 
controlled: \n For Position and Orientation, press "1", \n For Position 
only, press "2". \n','s'); 
choice0000 =1; 
    cart=1; 
%choice5 = input('\n Please enter the desired optimization method: (1= 
SR-I & WLN, 2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n','s'); 
choice5 =1;     
    optim=1; 
%choice50 = input('\n Do you want to include Joint Limit Avoidance? (1= 
Yes, 2= No) \n','s'); 
choice50 =1; 
    JLA=1; 
%choice500 = input('\n Do you want to include Joint Limit/Velocity and 
Obstacle Safety Stop? (1= Yes, 2= No) \n','s'); 
choice500 = 1; 
        JLO=1; 
%choice0 = input('\n Choose the control mode: \n For circle control, 
press "6", \n For position control, press "1", \n For velocity control, 
press "2", \n For SpaceBall control, press "3", \n For Psychology Mask 
control, press "4", \n For Touch Screen control, press "5",\n For 
Switch, press "7". \n','s'); 
choice0 ='1'; 
if choice0=='1' 
    cont=1; 
    %Td = input('\n Please enter the transformation matrix of the 
desired position and orientation from the control-based frame \n (e.g. 
[0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]) \n'); 
    Td = [0 0 1 1455;-1 0 0 -1169;0 -1 0 999; 0 0 0 1]; 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 
    %choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    choice00=1; 
        trajf=1; 
   elseif choice0=='7' 
    cont=1; 
    Td = [0 0 1 1455;-1 0 0 369;0 -1 0 999; 0 0 0 1]; 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function.\n','s'); 
    if choice00=='2' 
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        trajf=2; 
    elseif choice00=='3' 
        trajf=3; 
    else 
        trajf=1; 
    end 
elseif choice0=='2' 
    cont=2; 
    ts = input('\n Please enter the desired simulation time in seconds 
(e.g. 2) \n'); 
    if cart==2 
        Vd = input('\n Please enter the desired 3x1 cartesian velocity 
vector of the gripper (in mm/s) (e.g. [70;70;-70]) \n'); 
    else 
        Vd = input('\n Please enter the desired 6x1 cartesian velocity 
vector of the gripper (in mm/s, radians/s) (e.g. [70;70;-
70;0.001;0.001;0.001]) \n'); 
    end 
elseif choice0=='3' 
    cont=3; 
    % Space Ball will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
elseif choice0=='4' 
    cont=4; 
    % BCI 2000 Psychology Mask will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    port1 = input('\n Please enter the desired port number (e.g. 19711) 
\n'); 
    choice00 = input('\n Chose the Trajectory generation function: \n 
Press "1" for a Polynomial function with Blending, or \n press "2" for 
a Polynomial function without Blending, or \n press "3" for a Linear 
function, or \n press "4" for a Circular Polynomial function with 
Blending. \n','s'); 
elseif choice0=='6' 
    choice0=6; 
    cont=6; 
    %radi = input('\n Please enter the radius of the cirle in mm (e.g. 
1000) \n'); 
    radi=1000; 
    %e = input('\n If the door opens to the left press "1".\n If it 
opens to the right press "2" \n'); 
    e=2; 
    %v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
    v=50; 
    trajf=4; 
else 
    cont=5; 
    % Touch Screen will be used for control. 
    v = input('\n Please enter the desired linear velocity of the 
gripper in mm/s (e.g. 50) \n'); 
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end 
  
choice1 = input('\n Choose animation type or no animation: \n For 
Virtual Reality Animation, press "1", \n For Matlab Graphics Animation, 
press "2", \n For BOTH Animations, press "3", \n For NO Animation, 
press "4". \n','s'); 
if choice1=='2' 
    vr = 0; ml = 1; 
elseif choice1=='3' 
    vr = 1; ml = 1; 
elseif choice1=='4' 
    vr = 0; ml = 0; 
else 
    vr = 1; ml = 0; 
end 
  
%choice10 = input('\n Would you like to run the actual WMRA? \n For 
yes, press "1", \n For no, press "2". \n','s'); 
choice10='2'; 
if choice10=='1' 
    arm=1; 
else 
    arm=0; 
end 
%choice2 = input('\n Press "1" if you want to start at the "ready" 
position, \n or press "2" if you want to enter the initial joint 
angles. \n','s'); 
choice2='1'; 
if choice2=='2' 
    qi = input('\n Please enter the arms initial angles vector in 
radians (e.g. [pi/2;pi/2;0;pi/2;pi/2;pi/2;0]) \n'); 
    WCi = input('\n Please enter the initial x,y position and z 
orientation of the WMRA base from the ground base in millimeters and 
radians (e.g. [200;500;0.3]) \n'); 
    ini=0; 
else 
    qi=[90;90;0;90;90;90;0]*d2r; 
    WCi=[0;0;0]; 
    ini=0; 
    if vr==1 || ml==1 || arm==1 
        %choice3 = input('\n Press "1" if you want to include "park" to 
"ready" motion, \n or press "2" if not. \n','s'); 
        choice3= '1'; 
        if choice3=='2' 
            ini=0; 
        else 
            ini=1; 
        end 
    end 
end 
%choice4 = input('\n Press "1" if you do NOT want to plot the 
simulation results, \n or press "2" if do. \n','s'); 
choice4 ='2'; 
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if choice4=='2' 
    plt=2; 
else 
    plt=1; 
end 
  
% Calculating the Transformation Matrix of the initial position of the 
WMRA's base: 
Tiwc=WMRA_p2T(WCi(1),WCi(2),WCi(3)); 
  
% Calculating the initial Wheelchair Variables: 
qiwc=[sqrt(WCi(1)^2+WCi(2)^2);WCi(3)]; 
  
% Calculating the initial transformation matrices: 
[Ti, Tia, Tiwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(1, qi, 
[0;0], Tiwc); 
  
if cont==1 
    % Calculating the linear distance from the initial position to the 
desired position and the linear velocity: 
    if coord==2 
        D=sqrt( (Td(1,4)-Tia(1,4))^2 + (Td(2,4)-Tia(2,4))^2 + (Td(3,4)-
Tia(3,4))^2); 
    elseif coord==3 
        D=sqrt( (Td(1,4))^2 + (Td(2,4))^2 + (Td(3,4))^2); 
    else 
        D=sqrt( (Td(1,4)-Ti(1,4))^2 + (Td(2,4)-Ti(2,4))^2 + (Td(3,4)-
Ti(3,4))^2); 
    end 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1); 
    end 
elseif cont==2 
    % Calculating the number of iterations and the time increment 
(delta t) if the linear step increment of the gripper is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=ts;     % Total time of animation. 
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    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    dx=Vd*dt; 
    Td=Ti; 
elseif cont==3 
    WMRA_exit(); % This is to stop the simulation in SpaceBall control 
when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
    dg=spdata1(7); 
    Td=Ti; 
    n=1; 
elseif cont==4 
    WMRA_exit(); % This is to stop the simulation in Psychology Mask 
control when the user presses the exit key. 
    dt=0.05; 
    dx=v*dt*WMRA_psy(port1); 
    dg=dx(7); 
    dx=dx(1:6); 
    Td=Ti; 
    n=1; 
elseif cont==6 
    % Calculating the desired transformation matrix based on the 
radius: 
    Tdoor=Ti; 
    Tdoor(1,4)=Ti(1,4)+radi/2; 
    Tdoor(2,4)=Ti(2,4)+radi/2; 
    Td=Tdoor; 
    Td(1,4)=Td(1,4)-radi; 
    Td(2,4)=Td(2,4)-((-1)^e)*radi; 
    % Calculating the circular distance from the initial position to 
the desired position and the linear velocity: 
    D=0.5*pi*radi; 
    % Calculating the number of iteration and the time increment (delta 
t) if the linear step increment of the tip is 1 mm: 
    dt=0.05;    % Time increment in seconds. 
    total_time=D/v;     % Total time of animation. 
    n=round(total_time/dt); % Number of iterations rounded up. 
    dt=total_time/n;    % Adjusted time increment in seconds. 
    % Calculating the Trajectory of the end effector, and once the 
trajectory is calculated, we should redefine "Td" based on the ground 
frame: 
    if coord==2 
        Tt=WMRA_traj(radi,trajf, Tia, Td, n+1,e); 
        Td=Tiwc*Td; 
    elseif coord==3 
        Tt=WMRA_traj(radi,trajf, eye(4), Td, n+1,e); 
        Td=Ti*Td; 
    else 
        Tt=WMRA_traj(radi,trajf, Ti, Td, n+1,e); 
    end     
else 
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    WMRA_screen('0');   % This is to start the screen controls. 
Argument: '0'=BACK button disabled, '1'=BACK button enabled. 
    dt=0.05; 
    dx=v*dt*VAR_DX(1:6); 
    dg=VAR_DX(7); 
    Td=Ti; 
    n=1; 
end 
  
% Initializing the joint angles, the Transformation Matrix, and time: 
dq=zeros(9,1); 
dg=0; 
qo=[qi;qiwc]; 
To=Ti; 
Toa=Tia; 
Towc=Tiwc; 
tt=0; 
i=1; 
dHo=[0;0;0;0;0;0;0]; 
  
% Initializing the WMRA: 
if ini==0   % When no "park" to "ready" motion required. 
    % Initializing Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(1, Towc, qo); 
    end 
    % Initializing Robot Animation in Matlab Graphics: 
    if ml==1 
        WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, 
T56, T67); 
    end 
    % Initializing the Physical Arm: 
    if arm==1 
        WMRA_ARM_Motion(1, 2, [qo;dg], 0); 
        ddt=0; 
    end 
elseif ini==1 && (vr==1 || ml==1 || arm==1)  % When "park" to "ready" 
motion is required. 
    WMRA_park2ready(1, vr, ml, arm, Towc, qo(8:9)); 
    if arm==1 
        ddt=0; 
    end 
end 
  
% Re-Drawing the Animation: 
if vr==1 || ml==1 
    drawnow; 
end 
  
% Starting a timer: 
tic 
ANG=zeros(1,n+1); 
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bmax=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67); 
while i<=(n+1) 
     
%Calculating the angle between the trajectory and the wheelchair's x 
axis 
the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, T67); 
ANG(i)=the; 
% Starting the Iteration Loop: 
     
    % Calculating the 6X7 Jacobian of the arm in frame 0: 
    [Joa,detJoa]=WMRA_J07(T01, T12, T23, T34, T45, T56, T67); 
     
    % Calculating the 6X2 Jacobian based on the WMRA's base in the 
ground frame: 
    phi=atan2(Towc(2,1),Towc(1,1)); 
    Jowc=WMRA_Jga(1, phi, Toa(1:2,4)); 
     
    % Changing the Jacobian reference frame based on the choice of 
which coordinates frame are referenced in the Cartesian control: 
    % coord=1 for Ground Coordinates Control. 
    % coord=2 for Wheelchair Coordinates Control. 
    % coord=3 for Gripper Coordinates Control. 
    if coord==2 
        Joa=Joa; 
        Jowc=[Towc(1:3,1:3)' zeros(3); zeros(3) Towc(1:3,1:3)']*Jowc; 
    elseif coord==3 
        Joa=[Toa(1:3,1:3)' zeros(3); zeros(3) Toa(1:3,1:3)']*Joa; 
        Jowc=[To(1:3,1:3)' zeros(3); zeros(3) To(1:3,1:3)']*Jowc; 
    elseif coord==1 
        Joa=[Towc(1:3,1:3) zeros(3); zeros(3) Towc(1:3,1:3)]*Joa; 
        Jowc=Jowc; 
    end 
     
    % Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system 
based on the ground frame: 
    if cart==2 
        Joa=Joa(1:3,1:7); 
        detJoa=sqrt(det(Joa*Joa')); 
        Jowc=Jowc(1:3,1:2); 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    else 
        Jo=[Joa Jowc]; 
        detJo=sqrt(det(Jo*Jo')); 
    end 
         
    % Finding the Cartesian errors of the end effector: 
    if cont==1 || cont==6 
        % Calculating the Position and Orientation errors of the end 
effector, and the rates of motion of the end effector:             
        if coord==2 
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            invTowc=[Towc(1:3,1:3)' , -Towc(1:3,1:3)'*Towc(1:3,4);0 0 0 
1]; 
            Ttnew=invTowc*Tiwc*Tt(:,:,i); 
            dx=WMRA_delta(Toa, Ttnew); 
        elseif coord==3 
            invTo=[To(1:3,1:3)' , -To(1:3,1:3)'*To(1:3,4);0 0 0 1]; 
            Ttnew=invTo*Ti*Tt(:,:,i); 
            dx=WMRA_delta(eye(4), Ttnew); 
        else 
            dx=WMRA_delta(To, Tt(:,:,i)); 
        end             
    elseif cont==2 
  
    elseif cont==3 
        dx=v*dt*[spdata1(3)/20 ; -spdata1(1)/40 ; spdata1(2)/30 ; 
spdata1(6)/1500 ; -spdata1(4)/900 ; spdata1(5)/1300]; 
        dg=spdata1(7); 
    elseif cont==4 
        dx=v*dt*WMRA_psy(port1); 
        dg=dx(7); 
        dx=dx(1:6); 
    else 
        dx=v*dt*VAR_DX(1:6); 
        dg=VAR_DX(7); 
    end 
  
    % Changing the order of Cartesian motion in the case when gripper 
reference frame is selected for control with the screen or psy or 
SpaceBall interfaces:  
    if coord==3 && cont>=3 
        dx=[-dx(2);-dx(3);dx(1);-dx(5);-dx(6);dx(4)]; 
    end 
  
    if cart==2 
        dx=dx(1:3); 
    end 
  
    % Calculating the resolved rate with optimization: 
    % Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= 
SR-I & ENE, 4= P-I & ENE: 
    if WCA==2 
        dq=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq(1:7), dx, dt, 
qo,the,n,choice0,bmax); 
        dq=[dq;0;0]; 
    elseif WCA==3 
        dq=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dq(8:9), dx(1:2), dt, 
1,the,n,choice0,bmax); 
        dq=[0;0;0;0;0;0;0;dq]; 
    else 
        dq=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, 
qo,the,n,choice0,bmax); 
    end 
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    % Calculating the new Joint Angles: 
    qn=qo+dq; 
  
    % Calculating the new Transformation Matrices: 
    [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, qn, 
dq(8:9), Towc); 
  
    % A safety condition function to stop the joints that may cause 
colision of the arm with itself, the wheelchair, or the human user: 
    if JLO==1 && WCA~=3 
        dq(1:7)=WMRA_collide(dq(1:7), T01, T12, T23, T34, T45, T56, 
T67); 
        % Re-calculating the new Joint Angles: 
        qn=qo+dq; 
        % Re-calculating the new Transformation Matrices: 
        [Tn, Tna, Tnwc, T01, T12, T23, T34, T45, T56, T67]=WMRA_Tall(2, 
qn, dq(8:9), Towc); 
    end 
     
    % Saving the plot data in case plots are required: 
    if plt==2 
        WMRA_Plots(1, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, 
detJo); 
    end 
  
    % Updating Physical Arm: 
    if arm==1 
        ddt=ddt+dt; 
        if ddt>=0.5 || i>=(n+1)                 
            WMRA_ARM_Motion(2, 1, [qn;dg], ddt); 
            ddt=0; 
        end 
    end 
  
    % Updating Virtual Reality Animation: 
    if vr==1 
        WMRA_VR_Animation(2, Tnwc, qn); 
    end 
  
    % Updating Matlab Graphics Animation: 
    if ml==1 
        WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, T45, 
T56, T67); 
    end 
  
    % Re-Drawing the Animation: 
    if vr==1 || ml==1 
        drawnow; 
    end 
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    % Updating the old values with the new values for the next 
iteration: 
    qo=qn; 
    To=Tn; 
    Toa=Tna; 
    Towc=Tnwc; 
    tt=tt+dt; 
    i=i+1; 
  
    % Stopping the simulation when the exit button is pressed: 
    if cont==3 || cont==4 || cont==5 
        if (VAR_SCREENOPN == 1) 
            n=n+1; 
        else 
            break 
        end 
    end 
  
    % Delay to comply with the required speed: 
    if toc < tt 
        pause(tt-toc); 
    end 
end 
  
% Reading the elapsed time and printing it with the simulation time: 
if cont==1 || cont==2 || cont==6, fprintf('\nSimula. time is %6.6f 
seconds.\n' , total_time); end 
toc 
  
% Plotting: 
  
  
if vr==1 || ml==1 || arm==1 
    %Orienting the Wheelchair to a desired final orientation 
    choice9 = input('\n Do you want to rotate the wheelchair? \n Press 
"1" for Yes, or press "2" for No. \n','s'); 
    if choice9=='1' 
        ang = input('\n enter the desired angle in radians \n'); 
      WMRA_final_orientation(2, vr, ml, arm, Tnwc, qn,ang)   
    end 
    if plt==2 
    WMRA_Plots(2, L, r2d, dt, i, tt, qn, dq, Tn, Tnwc, detJoa, detJo); 
    end 
     
    % Going back to the ready position: 
    %choice6 = input('\n Do you want to go back to the "ready" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice6 ='2'; 
    if choice6=='1' 
        WMRA_any2ready(2, vr, ml, arm, Tnwc, qn); 
        % Going back to the parking position: 
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        choice7 = input('\n Do you want to go back to the "parking" 
position? \n Press "1" for Yes, or press "2" for No. \n','s'); 
        if choice7=='1' 
            WMRA_ready2park(2, vr, ml, arm, Tnwc, qn(8:9)); 
        end 
    end 
  
    % Closing the Arm library and Matlab Graphics Animation and Virtual 
Reality Animation and Plots windows: 
    %choice8 = input('\n Do you want to close all simulation windows 
and arm controls? \n Press "1" for Yes, or press "2" for No. \n','s'); 
    choice8 ='2'; 
    if choice8=='1' 
        if arm==1 
            WMRA_ARM_Motion(3, 0, 0, 0); 
        end 
        if vr==1 
            WMRA_VR_Animation(3, 0, 0); 
        end 
        if ml==1 
            WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
        end 
        if plt==2 
            close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),
figure(9),figure(10),figure(12)); 
        end 
    end 
     
end 
TIME=[1:n+1]; 
Or=ANG+0.75; 
figure(17) 
plot(TIME,ANG,'LineWidth',5) 
axis([0 700 0 5]) 
grid on; title('Angle \Theta Vs Iteration number');xlabel('Iteration 
number');ylabel('\Theta'); 
figure(15) 
plot(TIME,Or,'LineWidth',5) 
axis([0 700 0 5]) 
grid on; title('Wheechair orientation Vs Iteration 
number');xlabel('Iteration number');ylabel('\Orientation'); 
end 
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WMRA_OP 

%######################################################################
#### 
% This M file creates optimized parameters for the weighted matrix 
values 
% of the wheels to account for positition during the 
% execution of a given trajectory. 
  
  
% Function Declaration 
function W1=WMRA_OP(the,i,n,bmax) 
if atan2(sin(the),cos(the))<0.3 
  
    W1=1; 
elseif atan2(sin(the),cos(the))~=0 
   W1=10; 
end 
 

WMRA_Opt 

% This function is for the resolved rate and optimization solution of 
the USF WMRA with 9 DOF. 
% Function Declaration: 
function [dq]=WMRA_Opt(i, JLA, JLO, Jo, detJo, dq, dx, dt, 
q,the,n,choice0,bmax) 
  
% Declaring a global variable: 
global dHo 
% Reading the Wheelchair's constant dimentions, all dimentions are 
converted in millimeters: 
L=WMRA_WCD; 
% The case when wheelchair-only control is required with no arm motion: 
if i==0 
    WCA=3; 
    % claculating the Inverse of the Jacobian, which is always non-
singular: 
    pinvJo=inv(Jo(1:2,1:2)); 
    % calculating the joint angle change: 
    % Here, dq of the wheels are translated from radians to distances 
travelled after using the Jacobian. 
    dq=pinvJo*dx; 
    dq(1)=dq(1)*L(5); 
else 
    % Reading the physical joint limits of the arm: 
    [qmin,qmax]=WMRA_Jlimit; 
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    % Creating the gradient of the optimization function to avoid joint 
limits: 
    dH=[0;0;0;0;0;0;0]; 
    if JLA==1 
        for j=1:7 
            dH(j)=-0.25*(qmax(j)-qmin(j))^2*(2*q(j)-qmax(j)-
qmin(j))/((qmax(j)-q(j))^2*(q(j)-qmin(j))^2); 
            % Re-defining the weight in case the joint is moving away 
from it's limit or the joint limit was exceeded: 
            if abs(dH(j)) < abs(dHo(j)) && q(j) < qmax(j) && q(j) > 
qmin(j) 
                dH(j)=0;  
            elseif abs(dH(j)) < abs(dHo(j)) && (q(j) >= qmax(j) || q(j) 
<= qmin(j)) 
                dH(j)=inf; 
            elseif abs(dH(j)) > abs(dHo(j)) && (q(j) >= qmax(j) || q(j) 
<= qmin(j)) 
                dH(j)=0; 
            end 
        end 
    end 
    dHo=dH; 
% The case when arm-only control is required with no wheelchair motion: 
    if max(size(dq))==7 
        WCA=2; 
        wo=20000000; 
        ko=350000; 
        % The weight matrix to be used for the Weighted Least Norm 
Solution with Joint Limit Avoidance: 
        W=diag(1*[1;1;1;1;1;1;1]+1*abs(dH)); 
        % The inverse of the diagonal weight matrix: 
        dia=diag(W); 
        Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 
1/dia(6); 1/dia(7)]); 
% The case when wheelchair-and-arm control is required: 
    else 
        WCA=1; 
        wo=34000000; 
        ko=13; 
        % The weight matrix to be used for the Weighted Least Norm 
Solution: 
        if choice0==6; 
        W=diag([1*[1;1;1;1;1;1;1]+1*abs(dH);0.5;1000]); 
        else 
        
W=diag([1*[1;1;1;1;1;1;1]+1*abs(dH);WMRA_OP(the,i,n,bmax);WMRA_OR(the,i
,n,bmax)]); 
        end 
        % The inverse of the diagonal weight matrix: 
        dia=diag(W); 
        Winv=diag([1/dia(1); 1/dia(2); 1/dia(3); 1/dia(4); 1/dia(5); 
1/dia(6); 1/dia(7); 1/dia(8); 1/dia(9)]); 
    end 
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    % Redefining the determinant based on the weight: 
    if i==1 || i==2 
        detJo=sqrt(det(Jo*Winv*Jo')); 
    end 
    dof=max(size(dx)); 
end 
  
% SR-Inverse and Weighted Least Norm Optimization: 
if i==1 
    % Calculating the variable scale factor, sf: 
    if detJo<wo 
        sf=ko*(1-detJo/wo)^2;        % from eq. 9.79 page 268 of 
Nakamura's book. 
    else 
        sf=0; 
    end 
    % claculating the SR-Inverse of the Jacobian: 
    pinvJo=Winv*Jo'*inv(Jo*Winv*Jo'+sf*eye(dof)); 
    % calculating the joint angle change optimized based on the 
Weighted Least Norm Solution: 
    % Here, dq of the wheels are translated from radians to distances 
travelled after using the Jacobian. 
    if WCA==2 
        dq=pinvJo*dx; 
    else 
        dq=pinvJo*dx; 
        dq(8)=dq(8)*L(5); 
    end 
     
% Pseudo Inverse and Weighted Least Norm Optimization: 
elseif i==2 
    % claculating the Pseudo Inverse of the Jacobian: 
    pinvJo=Winv*Jo'*inv(Jo*Winv*Jo'); 
    % calculating the joint angle change optimized based on the 
Weighted Least Norm Solution: 
    % Here, dq of the wheels are translated from radians to distances 
travelled after using the Jacobian. 
    if WCA==2 
        dq=pinvJo*dx; 
    else 
        dq=pinvJo*dx; 
        dq(8)=dq(8)*L(5); 
    end 
     
% SR-Inverse and Projection Gradient Optimization based on Euclidean 
norm of errors: 
elseif i==3 
    % Calculating the variable scale factor, sf: 
    if detJo<wo 
        sf=ko*(1-detJo/wo)^2;        % from eq. 9.79 page 268 of 
Nakamura's book. 
    else 
        sf=0; 
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    end 
    % claculating the SR-Inverse of the Jacobian: 
    pinvJo=Jo'*inv(Jo*Jo'+sf*eye(dof)); 
    % calculating the joint angle change optimized based on minimizing 
the Euclidean norm of errors: 
    % Here, dq of the wheels are translated from distances travelled to 
radians, and back after using the Jacobian. 
    if WCA==2 
        %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH; 
    else 
        %dq(8)=dq(8)/L(5); 
        %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0]; 
        dq(8)=dq(8)*L(5); 
    end 
     
% Pseudo Inverse and Projection Gradient Optimization based on 
Euclidean norm of errors: 
elseif i==4     
    % claculating the Pseudo Inverse of the Jacobian: 
    pinvJo=Jo'*inv(Jo*Jo'); 
    % calculating the joint angle change optimized based on minimizing 
the Euclidean norm of errors: 
    % Here, dq of the wheels are translated from distances travelled to 
radians, and back after using the Jacobian. 
    if WCA==2 
        %dq=pinvJo*dx+(eye(7)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(7)-pinvJo*Jo)*dH; 
    else 
        %dq(8)=dq(8)/L(5); 
        %dq=pinvJo*dx+(eye(9)-pinvJo*Jo)*dq; 
        dq=pinvJo*dx+0.001*(eye(9)-pinvJo*Jo)*[dH;0;0]; 
        dq(8)=dq(8)*L(5); 
    end 
end 
  
if JLO==1 
    % A safety condition to stop the joint that reaches the joint 
limits in the arm: 
    if WCA~=3 
        for k=1:7 
            if q(k) >= qmax(k) || q(k) <= qmin(k) 
                dq(k)=0; 
            end 
        end 
    end 
    % A safety condition to slow the joint that exceeds the velocity 
limits in the WMRA: 
    if WCA==3 
        dqmax=dt*[100;0.15]; % Joiny velocity limits when the time 
increment is dt second. 
    else 
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        dqmax=dt*[0.5;0.5;0.5;0.5;0.5;0.5;0.5;100;0.15]; % Joiny 
velocity limits when the time increment is dt second. 
    end 
    for k=1:max(size(dq)) 
        if abs(dq(k)) >= dqmax(k) 
            dq(k)=sign(dq(k))*dqmax(k); 
        end 
    end 
end 
 
 

WMRA_opt_angle 

 
%######################################################################
#### 
%This M-File keeps track of the angel created between the projection of 
the 
%trajectory in the XY plane and the center axis of the whhechair. 
  
  
function the=WMRA_opt_angle(Td,Ti,Towc,L,T01, T12, T23, T34, T45, T56, 
T67) 
  
 % Arm: 
    T1=Towc*T01; 
    T2=T1*T12; 
    T3=T2*T23; 
    T4=T3*T34; 
    T5=T4*T45; 
    T6=T5*T56; 
    T7=T6*T67; 
  
Lt=sqrt((T7(1,4)-Td(1,4))^2+(T7(2,4)-Td(2,4))^2+(T7(3,4)-Td(3,4))^2); 
   
%Updating the transformation matrices  
 T8=Towc;                                      % Arm Base Position. 
 T9=T8*WMRA_transl(-L(2),-L(3),-L(4));         % Wheelbase Center. 
 T10=T9*WMRA_transl(0,-L(1)/2,0);              % Right Wheel Center. 
 T11=T9*WMRA_transl(0,L(1)/2,0);               % Left Wheel Center. 
  
V3D=[Td(1,4)-Ti(1,4);Td(2,4)-Ti(2,4);Td(3,4)-Ti(3,4)]; 
%Let n be the normal vector to the plane Z = 0  
n=[0;0;1]; 
%Computing the cross product between these two vectors will give us a 
%pivotal vector in the X Y plane: 
Vpiv=cross(V3D,n); 
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%Then computing the cross product between this vector and the plane 
normal 
%again will result in the third vector of an orthogonal triad which is 
the 
%projection of the trajectory in the X Y plane: 
Vp=cross(n,Vpiv); 
%find the vector defined by the wheels’ axis of rotation, we subtract 
the X 
%Y Z coordinates from their transformation Matrices 
Vw1=[T11(1,4)-T10(1,4);T11(2,4)-T10(2,4);T11(3,4)-T10(3,4)]; 
Vw=cross(Vw1,n); 
%Finding the angle between the two vectors 
the=acos(dot(Vp,Vw)/(norm(Vp)*norm(Vw))); 
 
 

WMRA_OR 

%######################################################################
#### 
% This M file creates optimized parameters for the weighted matrix 
values 
% of the wheels to account for rotation during the 
% execution of a given trajectory. 
  
  
% Function Declaration 
function W1=WMRA_OR(the,i,n,bmax) 
%if atan2(sin(the),cos(the))~=0 
%W1=1; 
%elseif atan2(sin(the),cos(the))<0.3 
%W1=10; 
bmin=-bmax; 
W1=1/(((bmax-bmin)^2*(2*the-bmax-bmin))/(4*(bmax-the)^2*(the-bmin)^2)); 
  
end 
 
 

WMRA_VR_Animation2 

% This function does the animation of USF WMRA with 9 DOF using Virtual 
Reality Toolbox. 
% Function Declaration: 
function WMRA_VR_Animation2(i, Twc, q) 
  
% Declaring the global variables: 
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global L WMRA 
  
% The initialization of the animation plot: 
if i==1     
    % Reading the Wheelchair's constant dimentions, all dimentions are 
converted in millimeters: 
    L=WMRA_WCD; 
    % Opening the WMRA file: 
    WMRA = vrworld('\9_wmra.wrl'); 
    open(WMRA); 
    % Changing the View Point of the simulation: 
    WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)]; 
    % Calculating the wheelaxle transform instead of the arm base 
transform: 
    Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1]; 
    % The orientation about Z of the wheelchair: 
    phi=q(9); 
    % Calculating wheelchair's wheels' angles: 
    ql=q(8)/L(5)-L(1)*q(9)/(2*L(5)); 
    qr=q(8)/L(5)+L(1)*q(9)/(2*L(5)); 
    % Updating the VRML file for the new angles and distances:   
    WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)]; 
    WMRA.Chair.rotation=[0 0 1 phi]; 
    WMRA.LWheel.rotation=[0 1 0 ql]; 
    WMRA.RWheel.rotation=[0 1 0 qr]; 
    WMRA.ARM2.rotation=[0 0 -1 q(1)]; 
    WMRA.ARM3.rotation=[0 1 0 q(2)]; 
    WMRA.ARM4.rotation=[0 0 -1 q(3)]; 
    WMRA.ARM5.rotation=[0 1 0 q(4)]; 
    WMRA.ARM6.rotation=[0 0 -1 q(5)]; 
    WMRA.ARM7.rotation=[0 1 0 q(6)]; 
    WMRA.ARM8.rotation=[0 0 -1 q(7)]; 
    % Viewing the simulation: 
    view(WMRA); 
     
% Closing the animation plot: 
elseif i==3 
    close(WMRA); 
    delete(WMRA); 
  
% Updating the animation plot: 
else 
    WMRA.DynamicView.translation=[Twc(1,4) 0 -Twc(2,4)]; 
    Twc=Twc*[eye(3) -L(2:4) ; 0 0 0 1]; 
    phi=q(9); 
    ql=q(8)/L(5)-L(1)*q(9)/(2*L(5)); 
    qr=q(8)/L(5)+L(1)*q(9)/(2*L(5));   
    WMRA.Chair.translation=[Twc(1,4) Twc(2,4) L(5)]; 
    WMRA.Chair.rotation=[0 0 1 phi]; 
    WMRA.LWheel.rotation=[0 1 0 ql]; 
    WMRA.RWheel.rotation=[0 1 0 qr]; 
    WMRA.ARM2.rotation=[0 0 -1 q(1)]; 
    WMRA.ARM3.rotation=[0 1 0 q(2)]; 



Appendix B (continued) 
 

133 

    WMRA.ARM4.rotation=[0 0 -1 q(3)]; 
    WMRA.ARM5.rotation=[0 1 0 q(4)]; 
    WMRA.ARM6.rotation=[0 0 -1 q(5)]; 
    WMRA.ARM7.rotation=[0 1 0 q(6)]; 
    WMRA.ARM8.rotation=[0 0 -1 q(7)]; 
  
end 
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