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Photoluminescence Spectroscopy of Bioconjugated Quantum Dots and their Application 
for Early Cancer Detection 

 
Ganna Chornokur 

ABSTRACT 

 Most of the bio-applications of semiconductor quantum dots (QDs) show and 

utilize their superior optical properties over organic fluorophores. An estimated 3–35% of 

all cancer deaths could be avoided through early detection, therefore, there is a critical 

need to develop sensitive probes.  

 The objectives of this work are: 

Research the phenomena of “blue” photoluminescence (PL) spectral shift on the dried 

bioconjugated QDs and develop the relevant mechanism;  

Develop a methodology that will allow successful confirmation of the bioconjugation 

reaction between biomolecules and QDs;  

Propose a modification of an existent method or approach to employ the “blue” spectral 

shift of bioconjugated QDs for early cancer detection.  

 Results indicated that the “blue” spectral shift, observed for dried on the silicon 

substrates bioconjugated QDs, is increased with the time of storage and reaches 30-40nm 

in 14 days. It is accelerated at elevated temperatures and slowed down at lower 

temperatures. Larger size QDs generate spectral shifts of larger magnitudes, and the 

spectral shift is positively correlated with the biomolecule’s size/weight. This 



 xii

phenomenon is explained by elastic and compression stress due to nonhomogenious 

drying of the QD droplet and the reaction with the solid surface. 

Agarose gel electrophoresis technique, optimized with organic dye fluorescamine, is 

suitable for bioconjugation verification. The optimal running parameters were found to be 

2% agarose gel, 1.5V working voltage, 0.5X TBE as a running buffer, and about 120 

mins running time. 

 The spectral shift was implemented for improving the sensitivity of Prostate 

Specific Antigen (PSA) Enzyme-Linked ImmunoSorbent Assay (ELISA). It was found 

that QD ELISA could be as much, as 100 times more sensitive than the regular 

commercial ELISA, based on the enzymatic detection. 

 The results of this work show that QDs may be very useful for early detection of 

several types of cancers, including prostate cancer in men and breast/ovarian/uterine 

cancers in women.  
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1. Introduction 
 

1.1 Scope and motivation 
 

 Cancer is a major cause of illness and death in the United States, second after 

heart diseases in 2004 [1]; approximately, half a million people die because of cancer in 

the United States alone every year. An estimated 3–35% of all cancer deaths could be 

avoided through early detection [2]. Clinical outcome of cancer is strongly related to the 

stage at which malignancy is detected, especially for breast cancer in women and prostate 

cancer in men [3]. Most solid tumors, however, are detectable with standard diagnostic 

methods during a late phase of disease when it may have already metastasized. Therefore, 

there is a critical need to develop sensitive probes for early cancer detection. Quantum 

dots (QDs) represent state-of-the-art nano-scale devices that exhibit promising results 

toward the development of a sensitive probe for screening cancer markers. Currently, 

QDs are successfully used for in vitro and in vivo imaging of tumors [4, 5], 

immunochemistry [6, 7], DNA hybridization [8–10], cell imaging [11–16] and potential 

photodynamic therapy [17]. QDs possess inherent advantages over organic fluorophores 

[18], such as SYPRO protein stains [19] or fluorescamine [20, 21], and are a possible 

replacement in biomedical imaging applications [22, 23].  

 There are several reasons why QD’s have advantages over organic fluorophores 

[18, 22, 23]. The first of these is that QD’s can absorb a wide band of light for their 
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excitation, but they emit in a very narrow spectral interval. In contrast, most molecular 

dyes can absorb only a very narrow band of wavelength, so most of the illuminating light 

is not used. This is illustrated in Figure 1.1. 

 

Figure 1.1 Comparison of the emission and absorption spectra of QD (continuous 
line) and organic dye (dotted line) (curves with the shaded area are the 
absorption spectra) [18] 
 

 Also, dye molecules emit in a much wider band of wavelengths compared to 

QD’s. As a result, to distinguish separate features one needs to use very different 

molecular dyes, each with its own required excitation wavelengths. In the case of QD’s 

the emission wavelength depends on the size. So, QD’s made of the same semiconductor 

material, but of different sizes, can all be excited by the same light source (provided 

above band-gap energy is used), but then they emit distinctly different wavelengths. 



 

3

Emission is very efficient in Quantum Dots and doesn’t decrease so rapidly with time 

under UV illumination as in organic tags [24]. Quantum dots have large molar extinction 

coefficient value [25], typically on the order of 0.5-5 x 10-6 M-1cm-1 [26] which means 

that quantum dots are capable of absorbing excitation photons very efficiently; the 

absorption rate of QD’s is approximately 10-50 times faster than organic dyes [27]. The 

higher rate of absorption is directly correlated to the quantum dot brightness and it has 

been found that QD’s are 10-20 times brighter than organic dyes [24, 25, 28], allowing 

highly sensitive luminescence imaging. Their photo stability over long periods of time is 

one of the key factors that put them as the best fluorophores so far. In comparison to 

organic dyes that bleach after a couple of minutes under a standard confocal microscope, 

QD’s can last for several hours under same illumination conditions [29]. Another feature 

of QD’s that makes them a preferable candidate for tagging purposes is that their tagging 

property is controllable. With proper chemistry these objects can be attached to specific 

biomolecules that perform specific tasks, such as anti-gene and antibody recognition, for 

example. This is in contrast to traditionally used molecular tags that have well defined 

binding characteristics. As a result a particular fluorophore tag may or may not bind with 

a given molecule or surface of interest. QD’s have a surface that can bind with a variety 

of molecules, they can be prepared (functionalized) so as to attach to well defined targets. 

 Enzyme Linked Immuno-Sorbent Assay (ELISA) is a powerful technique for 

detection and quantitation of biological substances such as proteins, peptides, antibodies, 

and hormones. By combining the specificity of antibodies with the sensitivity of simple 

enzyme assay, ELISA can provide a quick and useful measurement of the concentration 

of an unknown antigen or antibody. The "sandwich" technique is so called because the 
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antigen being assayed is held between two different antibodies. The secondary 

antibodies, also called captured antibodies, are usually linked to either a substrate for 

certain enzyme, or the organic dye which emits light and is used for visualization. The 

sensitivity of this method is low, for instance the  threshold of PSA AG detection for 

“sandwich”-ELISA with organic dyes, is about 0.1 ng/ml [30],  which is usually low 

enough for most cancer detections. However, lowering the threshold for PSA AG 

detection may be very useful in forensic analysis, dealing with sexual assaults. In this 

case, forensic scientists may deal with the smallest traces of semen liquids which require 

extremely sensitive methods of PSA detection [31-32].  

 The recent scientific works [33-39] have indicated that the PSA is not an 

exquisitely a male molecule. It is produced in female organisms as well, but at much 

lower concentrations (usually in the range of  0.01-1.1 ng/ml [33-39]), and its 

concentrations are being associated with breast, ovarian and uterine cancers. Therefore, 

the need for a sandwich ELISA modification, which lowers its threshold for antigen 

detection, is evident. 

  One of the current problems in QD usage for biomedical applications is that 

bioconjugation reactions may be incomplete and result in residual non-conjugated QDs in 

the same bio-conjugated solution. Therefore, the need for a reliable spectroscopic feature 

which allows to confirm the bioconjugation reaction, is also evident. In this work, both 

issues were successfully addressed.  
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1.2 The need for earlier cancer detection 
 
 Cancer is a major cause of illness and death in the US, occupying the second 

place after the diseases of the heart in 2004 [1] (Figure 1.2); approximately half a million 

people die of cancer in the United States alone every year.  

 
Figure 1.2 Ten leading causes of death in the USA [40] 
 
 

An estimated 3 to 35 percent of all cancer deaths could be avoided through early 

detection [2]. Clinical outcome of cancer is strongly related to the stage, at which the 

malignancy is detected, especially for breast cancer in women and prostate cancer in men 

[3]. In order for an outcome to be successful, the solid tumor must be detected until it 

reaches 1cm in diameter. However, most solid tumors are detectable with standard 

diagnostic methods during a late phase of disease when it may have already metastasized. 

Therefore, there is a critical need to develop sensitive probes for early cancer detection.  
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1.3. Research plan 

 This research is divided into two major parts which are strongly interconnected. 

The first part describes experimental data of a short-wavelength “blue” spectral shift in 

photoluminescence (PL) spectra of bioconjugated QDs, while the second part employs 

this spectroscopic effect for the sake of early cancer detection via the ELISA molecular 

tool modification.  

 The “blue” PL spectral shift of QDs bioconjugated to different Abs is being 

investigated. For this, the bioconjugation was performed with different cancer specific 

antibodies followed by and PL spectroscopic analysis of samples dried on solid substrates 

of both bioconjugated and pure QDs. The PL spectroscopy and PL spectroscopic 

mapping at room temperature was performed in the effort to accurately record and 

evaluate the spectral properties of the QD luminescence, such as full-width-at-half-

maximum (FWHM), spectral peak position and intensity.  The effects of physical 

conditions (temperature, vacuum, moisture, gases, light and ultrasonic agitation) on the 

dried sample has been investigated. The TEM experiments were performed in order to 

reveal the shape and size of both pure and bioconjugated QDs The different substrate 

chemistry was also analyzed and correlated with the “blue” spectral shift magnitude. The 

quality of bioconjugation reaction was verified with the agarose gel electrophoresis 

technique, improved with the organic dye fluorescamine to detect free (unconjugated) 

antibodies. This technique was also optimized to better fit the needs to detect 

bioconjugation. The result provided a phenomenological model of the “blue” spectral 

shift mechanism on bioconjugated QDs, dried on the solid substrate (silicon chip). 
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 The second part is focused on the employing the described above “blue” spectral 

shift of bioconjugated QDs to improve accuracy of early cancer detection. To achieve this 

goal, the modification of the sandwich-ELISA method has been proposed so that 

bioconjugated QDs are employed instead of commonly used organic dyes or the 

enzymatic substrate to detect target biomolecules. It was documented that sandwich-

ELISA employing QDs is by two orders of magnitude more sensitive than the regular 

ELISA technique. A possibility of detecting antigen molecules at smaller concentrations 

evidently benefits the earlier detection of cancer and can be used in forensic science. The 

biomolecule, for which sandwich-ELISA with QDs was used, was Prostate Specific 

Antigen (PSA) which is a well known, and so far only one well established prostate 

cancer biomarker. It was shown that QD ELISA may be as much, as 100, or at least 20 

times more sensitive, than commercial PSA ELISA. The negative dependence of the 

“blue” spectral shift VS the PSA concentration was found, which may become the 

fingerprint of the bioconjugation reaction  and serve as an additional variable (together 

with the intensity) in the cancer detection. It is suggested that the results of this work 

could be employed both in research and clinics for cancer screening and detection. There 

is a possibility to use the improved ELISA technique in forensic science.  

 In the process of this work, several papers in the pier-reviewed journals were 

published (see pages 121-122 for details), as well as it was presented at several 

interdisciplinary conferences, including Material Research Society Meeting in San-

Francisco, CA (March 2008), Nano-science Conference (Paris, 2007) and The 9th 

International Workshop on Beam Injection Assessment of Microstructures in 

Semiconductors (BIAMS 2008), Barcelona, Spain. The spectroscopic part of this work 
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was performed at the College of Engineering at USF, while the bioconjugation, agarose 

gel electrophoresis and ELISA were done at H. Lee Moffitt Cancer Center and Research 

Institute.  

1.4 Summary 
 

 Unique optical properties of quantum dots structures in colloidal solutions make 

them suitable for medical applications as fluorescent markers. CdSe/ZnS and 

CdSeTe/ZnS QDs have been studied for photoluminescence (PL)  signatures of possible 

biomolecules attachment (bioconjugation). The “blue” spectral shift of the dried 

bioconjugated QD sample can increase the sensitivity of any nowadays applicable cancer 

tests which is very desirable and motivation for this type research is clear. The sensitivity 

of sandwich-ELISA method, which is widely used for detection of almost any 

biomolecules, benefits from the implication of bioconjugated QDs instead of organic 

dyes. The author believes that the results of this work could be used in: 

1. Science – as a base for further research of physical, chemical and biological   

particularities of bioconjugated QDs; 

2.  Medicine  - to benefit early cancer detection; 

3. Forensic science - to detect trace amounts of biomolecules, such as PSA. 

 The objectives of the research are: 

1.  Research the phenomena of “blue” PL spectral shift on the dried bioconjugated QDs 

and develop the relevant mechanism; 

2. Develop a methodology that will allow successful confirmation of the bioconjugation 

reaction between biomolecules and QDs; 
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3. Propose a modification of an existent method or approach to employ the “blue” 

spectral shift of bioconjugated QDs for early cancer detection  
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2. Bioconjugated Quantum Dots 

 

2.1 Introduction 

 

 Quantum dots are colloidal nanocrystalline semi-conductors that, as a result of 

their unique light emitting properties, are starting to attract considerable attention as a 

novel luminescent probes. Quantum dots in a spherical shape have diameters between 1 

and 12 nm, with each dot containing a relatively small number of atoms in a discrete 

cluster [41]. Semiconductor nanocrystals can also be produced with other shapes such as 

rods and tetrapods [42], but spherical QDs are the most widely used for biological 

Applications [23, 27].One of the most intriguing features of QDs is that the particle size 

determines many of the QD optical properties, most importantly the wavelength of 

luminescence emission (Fig.2.1 ).By altering the QD size and its chemical composition, 

luminescence emission may be tuned from the near ultraviolet, throughout the visible, 

and into the near-infrared spectrum, spanning a broad wavelength range of 400–2000 nm 

[10–14]. Currently, scientists and engineers are utilizing these unique optical properties 

to create useful nanoscale devices. Give n the fact that the QD photoluminescence 

emission maximum can be manipulated by changing the particle size, their use as 

fluorescent labels for biological macromolecules has attracted considerable attention. 
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Fig.2.1 Tuning the QD emission wavelength by changing the nanoparticle size or 
composition.(A) The emission of a CdSe QD may be adjusted to anywhere within the 
visible spectrum (450–650 nm) by selecting a nanoparticle diameter between 2 and 7.5 
nm. The relative sizes of these particles of constant composition are shown schematically 
below the luminescence spectrum.(B) While keeping the nanoparticle size constant (5nm 
diameter) and varying the composition of the ternary alloy CdSexTe1_x, the emission 
maximum may be tuned to any wavelength between 610 and 800 nm.The emission 
wavelength of this alloy is longer than that of both of the binary alloys due to a nonlinear 
relationship between the bandgap energy and the composition [41]. 
 

2.2 Photoluminescence and Quantum Dots 
 
 Luminescence (also known as fluorescence) spectroscopy is a widely used tool in 

physics, engineering, chemistry as well as in biology. The urgent need to measure more 

biological indicators simultaneously places new demands on the fluorescent probes used 

in these experiments. For example, an eight-color, three-laser system has been used to 

measure a total of 10 parameters on cellular antigens with flow cytometry [43], and in 

cytogenetics, combinatorial labeling has been used to generate 24 falsely colored probes 

for spectral karyotyping [44]. Ideal probes for multicolor experiments should emit at 



 

12

spectrally resolvable energies and have a narrow, symmetric emission spectrum, and the 

whole group of probes should be excitable at a single wavelength [24]. 

 Photoluminescence (PL) is a process in which a chemical compound absorbs a 

photon with a wavelength in the range of visible or UV electromagnetic radiation, thus 

transitioning to a higher electronic energy state, and then radiates a photon back out, 

returning to a lower energy state. The period between absorption and emission is 

typically extremely short, of the order of 10 nanoseconds. Under special circumstances, 

however, this period can be extended into minutes or hours [45]. Ultimately, available 

chemical energy states and allowed transitions between states (and therefore wavelengths 

of light preferentially absorbed and emitted) are determined by the rules of quantum 

mechanics. A basic understanding of the principles involved can be gained by studying 

the electron configurations and molecular orbitals of simple atoms and molecules. More 

complicated molecules and advanced substrates are treated in the field of computational 

chemistry. 

 The simplest PL processes are resonant radiations, in which a photon of a 

particular wavelength is absorbed and an equivalent photon is immediately emitted. This 

process involves no significant internal energy transitions of the chemical substrate 

between absorption and emission and is extremely fast, on the order of 10 nanoseconds. 

More interesting processes occur when the chemical substrate undergoes internal energy 

transitions before re-emitting the energy from the absorption event. The most familiar 

such effect is a non-radiative transition, which is also a fast process when part of the 

absorbed energy is dissipated in heat (phonons) so that the emitted light is of lower 

energy than that absorbed. 
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Figure 2.2 Schematic representations of the basic photoluminescence mechanisms for 
Quantum Dots [46] 
 
 Photoluminescence in QD is governed by the same mechanisms as in the bulk 

materials, however major difference is that all the energy levels inside the quantum dots 

are strongly quantized due to small dimensions of QD. Direct consequences of this 

quantization are very sharp emission spectral lines (δ function – like for a single QD), 

that are in general broadened only by the QD size distribution (Figure 2.2). A typical 

core-shell nanoparticle used for bio-tagging is shown on Figure 2.3. This figure 

represents the scheme with the highest quantum efficiency design, in some cases the core 

is protected only by single-layer shell [22]. Structurally, QDs consist of a metalloid 

crystalline core and a "cap" or "shell" that shields the core and renders the QD 

bioavailable (Figure 2.3). QD cores consist of a variety of metal complexes such as 

semiconductors, noble metals, and magnetic transition metals. For instance, group III-V 
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series QDs are composed of indium phosphate (InP), indium arsenate (InAs), gallium 

arsenate (GaAs) and gallium nitride (GaN) metalloid cores, and group II-IV series QDs, 

of zinc sulfide (ZnS), zinc-selenium (ZnSe), cadmium-selenium (CdSe), and cadmium-

tellurium (CdTe) cores (28, 47). For biological tagging applications CdSe/CdTe (core) 

nanocrystals are the most popular. They are covered with a wide-gap ZnS or CdS (shell) 

capping layer providing a barrier for quantum confinement and also improved quantum 

yield and photo stability [Fig 2.3]. 

 
Figure 2.3 Schematic diagram of a typical core-shell nanoparticle used for bio-tagging. 
This figure represents the scheme with the highest quantum efficiency design, 
in some cases the core is protected only by single-layer shell [22] 
 

 It is possible to assign the biocompatible coatings and/or functional groups to the 

QD which gives them a desired bioactivity. Newly synthesized QDs are usually 

hydrophobic in nature and not useful for usage in biological sustems, because a 

hydrophobic cap forms on the metalloid core during the QD synthesis in organic solvents. 

To make QDs biologically compatible and active, newly synthesized QDs are 
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"functionalized," or given secondary coatings, which improves water solubility, QD core 

durability, and suspension characteristics and renders them a desired bioactivity. For 

instance, QD cores can be coated with hydrophilic polyethylene glycol (PEG) groups 

which makes them biocompatible and water soluble, and enables further conjugation with 

bioactive molecules to target specific biologic cellular structural features (Figure 2.4). 

Hence, bonding various molecular entities to the QD core functionalizes QDs for specific 

diagnostic or therapeutic purposes. Functionalization may be achieved via electrostatic 

interactions, adsorption, multivalent chelation, or covalent bonding, important 

physicochemical features when considering QD durability/stability and in vivo reactivity. 

In the literature, QD physicochemical characteristics are typically referred to as "core-

shell-conjugate" or vice versa. CdSe/ZnS, for example, would refer to a QD with a CdSe 

core and ZnS shell, and a CdSe/ZnS QD conjugated with sheep serum albumin (SSA) 

would be referred to as CdSe/ZnS-SSA. Controlling the physicochemical properties 

during synthesis, which can be done with high precision, allows tailoring QDs for 

specific functions/uses. [48-49, 88] 
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Figure 2.4 Biofunctionalized CdSe/ZnS Quantum Dot [48] 
 
 
2.2.1. TEM visualization of QDs 

 Transmission electron microscopy (TEM) is a widely used microscopy technique. 

It’s principle is based on a beam of electrons is transmitted through a very thin specimen, 

interacting with the specimen as they pass through [50]. An image is formed from the 

interaction of the electrons transmitted through the specimen, which is magnified and 

focused onto an imaging device, such as a fluorescent screen, as is common in most 

TEMs, on a layer of photographic film, or to be detected by a sensor such as a CCD 

camera (Figure 2.5).  
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Figure 2.5 TEM basic schematic [51] 
 
 TEMs are capable of imaging at a significantly higher resolution than light 

microscopes, owing to the small de Broglie wavelength of electrons. This enable the 

instrument to be able to examine fine detail -- even as small as a single column of atoms, 

which is tens of thousands times smaller than the smallest resolvable object in a light 

microscope. TEM forms a major analysis method in a range of scientific fields, in both 

physical and biological sciences [52].  

 

2.3. Biofunctionalization of QDs and bioconjugation, general information 
 
 Bioconjugation is the process of coupling two biomolecules together in a covalent 

linkage. As was described in the Section 2.2 of this work, the typical QD used for 

bioconjugation experiments, has a CdSe or CdSeTe core, which is responsible for PL, but 

the core is unstable, so it is capped with the inorganic shell – ZnS, in our case. The third 
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layer, organic coating, provides water solubility and functional groups for conjugation 

[figure 2.6 ]. The process of this layer addition to the QD is called biofunctionalization.  

 
 

 

Figure 2.6 Invitrogen Quantum Dot schematic [26] 

 
In order to add functionality (organic coating) to the QD surface, a ligand-exchange 

process is required. 

 For this purpose, we need a ligand with two functional groups: 

1. one group should have high affinity for the QD surface (e.g., thiol, carbonyl or amine); 

and, 

2. the other must be a polar group (e.g., carboxylate) to make the NPs soluble in aqueous 

media. 

The most commonly used ligands include, but are not limited to: thiol, cystein, citrate,  

surfactants, purine, and nitroxide groups [53].  The adding ligand strategies can be 
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divided into two fundamentally different ways solving this problem via functional 

polymers. One approach completely replaces the surface bound ligands remaining from 

synthesis; the other only caps the present ligands on the QDs with suitable amphiphilic 

polymers [54] (Fig. 2.7). 

 
Figure 2.7 Scheme of the (a) ligand exchange and (b) the ligand capping 
Strategy [54].  
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Figure 2.8 Schematic diagram showing various methods for QD-antibody (QD-Ab) 
bioconjugation. A. QD conjugation to antibody fragments via disulphide reduction and 
sulfhydryl-amino coupling; B. covalent coupling between carboxylic acid (-COOH) 
coated QDs and primary amines (-NH2) on intact antibodies usind EDAC as a catalyst; 
C. site-directed conjugation via oxidized carbohydrate groups on the antibody Fc portion 
and covalent reactions with hydrazide-modified QDs; D. conjugation of histidine-tagged 
peptides or antibodies to Ni-NTA modified QDs; E. noncovalent conjugation of 
streptavidin-coated to biotinylated antibodies [6] 
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Now, when the biofunctionalized QD is ready for conjugation with different 

biomolecules, several approaches may be used at this stage [Figure 2.8]  The first 

approach, QD conjugation to antibody fragments via disulphide reduction and sulfhydryl-

amino coupling, is being the most used for cancer diagnostics.  

 
2.3.1. Bioconjugation, procedure 
 
 Development or substantial improvement of a conjugation procedure, however, is 

not proposed in the scope  of this work. Therefore a commercially available Qdot® 

Antibody Conjugation Kit, made by Invitrogen was utilized. In this procedure [26], 

Qdot® 705 nanocrystals (Figure 2.6) are used, which are composed of CdSeTe/ZnS 

core/shell, covered with a thick layer of polymer and PEG molecules to facilitate 

solubility and prevent aggregation [26]. These QDs also have protein molecules on the 

surface as  conjugation linkers, but the exact surface chemistry is  proprietary information 

of the vendor. The core is not stable alone; it is very reactive. It can collect counterions 

different impurities and then no longer fluoresce. The shell protects the core, but  is 

water-insoluble. The organic coating is an amphiphilic polymer (inner portion 

hydrophobic, outer portion hydrophilic, bound non-covalently to the shell) to make the 

final Qdot® nanocrystal product water-soluble and provide sites for conjugation. PEG 

(polyethylene glycol) is provided on the various products to minimize stickiness.  

The conjugation procedure is described step by step in the Qdot® 705 Antibody 

Conjugation Kit , made by Invitrogen, and is shown on Fig 2.9  [26]. 
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Figure 2.9 Workflow diagram of the Qdot® antibody conjugation procedure [26]. 
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2.3.2. Confirming bioconjugation, general information 

 Confirmation of the QD-AB conjugation is a very important stage in the proposed 

study. According to our understanding and experience, it must follow any newly 

beginned conjugation procedure to be sure we actually have a quality conjugate. 

 Bioconjugated quantum dots are characterized with increased size/volume/weight 

due to attached biomolecules which makes possible to employ different separation 

techniques for bioconjugation verification [Figure 2.10].  

 

Figure 2.10 Schematic representation of the QD bound to a biomarker (molecules are 
drawn to scale) – after Jaiswal [55]. Note that a single QD size is usually up to 12nm. 
 
 According to the scientific publications, several bioconjugation verification 

methods/procedures are currently available, however, the different variations of gel 
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electrophoresis are the most popular [4, 56-60]. The other two most widely used methods 

are variations of  capillary electrophoresis [61] and protein microarrays [62].  

 Gel electrophoresis is a simple method to separate the substances by size and 

charge in the electric field. In this case, the separation is happening in gel media. The 

researchers [4] used this method to successfully confirm bioconjugation of CdSe/ZnS 

QDs to Luc-8 antibodies. The conjugated band performed retarded mobility in a gel when 

the electric field was applied (Fig 2.11) [4] 

 

Figure 2.11 Gel electrophoresis analysis of the conjugation of Luc8 to QD655: (1) 
unconjugated QD655, (2) the mixture of QD655 and the coupling reagent EDC and (3) 
purified QD655-Luc8 conjugates [4]. 
 

 Capillary electrophoresis is a technique which can be used to separate ionic 

species by their charge and frictional forces [20]. The separation takes place interior of a 

small capillary filled with an electrolyte, and the detection is based on the 

photoluminescence of QDs, under the laser excitation. The researchers [61] have 

successfully used this method to both verify bioconjugation and separate the 
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bioconjugated by the ratio of conjugated QDs. In  Fig 2.12 A are shown three cases of 

54.9% bioconjugated fraction of QDs, B – 82.1%, and C – 98.2%. 

 

Figure 2.12 Analysis of QD–BSA conjugates by capillary electrophoresis with LIF 
Detection [61]. 
 

 Protein microarrays are mostly used to employ bioconjugates for the antigen 

detection [63], but results have been reported that this method is successfully used to 

confirm bioconjugation [64]. For example, on Fig 2.13 the microarray assay for the 

different concentrations of IL10 antigen is shown. Brighter spots correspond to the 

increased antigen concentrations which gives a rationale to conclude that bioconjugation 

was successful.  
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Figure 2.13 Example of fluorescent microscope image (mag. 2.5x) of the small part of 
an array printed from micro array printer (QD655 + IL10 complex) with 
100 µm spot diameter (a), spots description (b) [64] 
 

2.3.3. Confirming bioconjugation, agarose gel electrophoresis with fluorescamine  

 Although the gel electrophoresis technique is widely used for bioconjugation 

confirmation, it has several weak points which should be addressed. First of all, it does 

not allow the visualization of pure antibodies, used for bioconjugation, which together 

with pure QDs may serve as an important control. Also, the fraction of nonconjugated 

antibodies is expected to be present in each bioconjugate, so it may be useful to visualize 

it. And lastly, the important running parameters, such as running time and voltage, and 

gel thickness should be tested and optimized for the best separation.  

 The author of the current work upgraded this methodic with the use of organic 

dye Fluorescamine (4-phenylspiro[furan-2(3H),1'-phthalan]-3,3'-dione, [65], which is a 

very well known protein dye and widely used since 1970 [65-66]. It reacts with primary 

amino groups found in terminal amino acids and the e amine of lysine to form fluorescent 

pyrrolinone type moieties [67].Several factors make fluorescamine suitable for labeling 
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primary amines, including amino acids, peptides, and proteins. Reaction with primary 

amines proceeds at room temperature, with a half time of a fraction of a second, and it is 

active in a wide pH range (4-10). Excess reagent is concomitantly destroyed with a half-

time of several seconds. The competing reactions are shown in Fig. 2.14. Fluorescamine, 

as well as its hydrolysis products, is nonfluorescent. Studies with small peptides have 

shown that the reaction goes to near completion (about 88 to 95 percent of theoretical 

yield) even when fluorescamine is not present in large excess. The resulting 

luminescence is proportional to the amine concentration and the fluorophors are stable 

over several hours.  

 

Figure 2.14 Reaction of fluorescamine with primary amines and hydrolysis of the reagent 
[68] 
 

This dye has an excitation wavelength at 390nm and emission at 480nm [69], which 

makes it appropriate for visualization under either a UV lamp (365 nm) or UV laser 

excitation (325nm). The emission at 480nm (green light) allows to distinguish the QD 

emission (which in this work was red with maxima usually at 705nm) from the dye 

emission. This dye also does not luminescence,  only the protein-fluorescamine complex 

fluoresces and the resultant  PL spectra could be recorded [69]. This is very advantageous 

and  convenient for our use in the agarose gel electrophoresis. Fluorescamine gives us an 
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opportunity to visualize the pure, unconjugated ABs under UV light and therefore 

compare the band of pure proteins and conjugated proteins in the agarose gel.  

 In this work, the agarose gel electrophoresis technique was performed using 

genetic analysis grade agarose and Tris-Borate-EDTA buffer (TBE) 10X stock solution, 

purchased from Fisher Scientific. A horizontal electrophoresis batch purchased from Owl 

Separation Systems Inc, rated as 0-150V, 0-100mA, was used to run the gel with X0.5 

EDTA as a running buffer. The running buffer was prepared from stock EDTA solution 

by dilution with distilled water. The organic dye fluorescamine was purchased from 

Invitrogen Inc. The fluorescamine bulk 1% solution was prepared by diluting the 

fluorescamine powder in acetone, and stored at 40C in the dark. To make a sample, 5µl of 

AB solution was mixed with 5µl TBE buffer at pH 7.4, followed by the addition of 2µl 

1% solution of fluorescamine in acetone, and mixed for 30 seconds [66]. The sample was 

then left exposed to air for approximately 30 minutes to let the acetone evaporate. To 

prevent the protein from denaturing under the influence of acetone, the samples were 

stored continuously on ice (~2-40C) until the gel procedure was started. Non-conjugated 

QDs were tracked in the electrophoresis study using their own luminescence emission 

without adding fluorescamine.  

 

2.4. Bioconjugated QD applications in biology and medicine 

 The development of high-sensitivity and high-specificity probes that lack the 

intrinsic limitations of organic dyes and fluorescent proteins is of considerable interest in 

many areas of research, from molecular and cellular biology to molecular imaging and 
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medical diagnostics.  QDs are believed to overcome these limitations [70]. The Figure 

2.15 shows the main applications of bioconjugated QDs in biology and medicine. 

 

Figure 2.15 Applications of quantum dots [70] 

 In vivo targeting: Most recently, QDs have been used as stable fluorescent tracers 

for nonspecific uptake studies and lymph node mapping in living animals [71-72]. 

Antibody-conjugated QDs have allowed real-time imaging and tracking of single receptor 

molecules on the surface of living cells with improved sensitivity and resolution [14]. 

 The group [73] reported the development of bioconjugated QD probes suitable for 

in vivo targeting and imaging of human prostate cancer cells growing in mice. They were 

able to get an image of the prostate tumor using  bioconjugated QDs targeting Prostate-

Specific Membrane Antigen which is a a cell surface marker for both prostate epithelial 
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cells and neovascular endothelial cells. Figure 2.16 shows excellent visualization of the 

tumor in mice. 

 

 
Figure 2.16 Spectral imaging of QD-PSMA Ab conjugates in live animals harboring C4-
2 tumor xenografts. Orange-red fluorescence signals indicate a prostate tumor growing in 
a live mouse [73].  
 
The similar work was successfully performed to target different tumors/cells etc in 

animals by other groups [4, 14, 74,]. 

 Drug delivery is another possible in vivo application of QDs. The same group 

(73) modified the original CdSe QD with an impermeable coating of polymer that 

prevented the leaking out of highly toxic cadmium ions from the QD conjugate and 

provided a means to chemically attach tumor-targeting molecules and drug delivery 

functionality to the QD conjugate. 

 It was reported by [75] that QDs can be successfully used for the in vitro imaging 

of cells and tissues. For instance, SiHa cell culture, overexpressing epidermal growth 

factor receptor (EGFR) was successfully labeled with QDs, conjugated to anti-EGFR. 

EGFR targeting is of a great importance, because it is overexpressed in many cancers, 

including cervical cancer. The results are evident from Figure 2.17 : Images of the SiHa 

with the specific targeting due to anti-EGFR antibody showed significantly stronger 

intensity than the controls with non-specific IgG antibody 
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Figure 2.17 Confocal fluorescence images of SiHa cervical cells labeled with 30 nM anti-
EGFR quantum dots [75] 
 
 There are other publications reporting similar QD in vitro targeting of different 

cells/cultures [76, 77]. 

 
 QDs are also suitable for use in the bioanalytical assays. The in vitro analysis of 

extracted cellular proteins may give a wealth of information on their expression level, 

modification, degradation, complex formation, activity, and localization. One of such 

analyses is the high-throughput measurement allowed by patterning the protein in a 

microarray format [78-79]. The proteins can be covalently linked to or immobilized by 

high-capacity absorption on a substrate surface, then detected with immunochemistry. 

This method, although is widely used for years, has one main challenge: their level of 

detection permits a lower detection threshold in the picomolar range. Therefore, there is 

an urgent need to develop detection techniques that do not rely on organic dyes. 

 The group [59] performed assays on the reversed phase protein lysate arrays using 

both the conventional method and  novel streptavidin–Qdot-based method. The relative 

luminescence unit  data obtained through the Qdot method has shown a close linear 
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correlation with relative protein concentration on a logarithmic scale.  This suggests that 

Qdots can be used for protein quantification in high-density microarray format (Figure 

2.18). 

 

 
Figure 2.18 Spot image of reverse phase protein microarray. Each column consists of 10 
two-fold dilutions of protein DNA-dependent protein kinase catalytic subunit spiked 
lysate of M059J cells. There are six repeats at each dilution point. (a) Qdot staining. (b) 
DAB staining [59] 
 
 There is a number of other publication on in vitro bioanalytical QD assays 

available, which assumes this field is gaining growing attention [80, 81, 82].  

QDs are used as labels in immunoassays, immunohistochemical  staining, and cellular 

imaging. The fact that multiple QDs may be excited by a single light makes them 

amenable for multiplex diagnostics [83, 84]. Figure 2.19 depicts, how different targets 

(biomolecules) can be detected in the solution using multicolored QDs, covered with 

different functional groups. The spectral analysis then reveals the spectra with different 

intensity and peak positions, which corresponds to the fractions of detecting 
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biomolecules. Goldman et al. [7] developed a  multiplex immunoassay for the 

simultaneous detection of cholera toxin, ricin, shiga-like toxin 1, and staphylococcal 

enterotoxin B using the relevant antibodies conjugated to QDs of different sizes (different 

emission colors). The lowest detectable concentrations were 10 ng/ml (cholera toxin), 30 

ng/ml (ricin), 300 ng/ml (shiga-like toxin 1), and 3 ng/ ml (staphylococcal enterotoxin B).  
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Figure 2.19. Schematic diagram for simultaneous detection of different targets in a serum 
sample using QDs of different sizes, functionalized with different recognition moieties: 
peptide/ protein (QD1), biotin (QD2), oligonucleotide (QD3), or antibodies (QD4). 
Abbreviations: B (biotin), S (streptavidin). Emission spectra of different sized-QDs (1–4) 
are shown in the upper left corner [85]. 
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2.4.1. Challenges and limitations of bioconjugated QDs applications 

 Although the case for using QD-based fluorescent labels is compelling, it should 

be noted that QDs are not likely to replace organic dyes in all biological applications. 

Some of the challenges that have yet to be overcome include economic factors: QDs are 

expensive in comparison to organic dyes, and there is an initial investment required for 

researchers and instrument suppliers to produce systems optimized for use with QDs. 

Also, probe size and steric hindrance must be examined when assessing the suitability of 

a QDbased approach to fluorescent labeling of molecules. Since QDs are an order of 

magnitude larger than organic dyes, the extent to which their presence perturbs the 

biological process being observed must be determined. This is particularly important 

when multicolor experiments are desired, since labeling several biomolecules with QDs 

of different sizes could result in varying degrees of perturbation due to the large 

differences in the QD sizes. In contrast, most organic dyes are of similar size in spite of 

their large differences in absorption/ emission characteristics. [86]  

 Although QDs were considered to be safe for living organisms, the question about 

QD’s toxicity has been rising by many groups. QDs have been found to cause vascular 

thrombosis in the pulmonary circulation [87], could induce apoptosis and cell death [88], 

and may accumulate in the lungs, spleen, liver and kidneys [89]. Therefore, QDs may not 

be as safe for humans, as previously reported. This factor is especially important for the 

in vivo QD applications (bioimaging, drug delivery), as in this case, QDs are injected into 

humans directly. In vitro applications of QDs could also be affected, but at least these 

issues may be solved with the proper precautious measures (wearing protective 

equipment, washing hands etc). 
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 To summarize, although QDs may look very promising as novel fluorescent 

biomarkers, there are still many issues to be overcame for them to be widely used in 

clinics. 

2.4.2. Future QD applications 

 One of the most exciting bioconjugated QD future applications is for in vivo 

noninvasive bioimaging in humans and for the drug delivery [90]. Today this powerful 

methodic was proven to perfectly visualize tumors in mice and other live animals [91-

92], but the toxicity of such probes is an open question [87-90]. The issues of better DQ 

surface biofictionalization must be addressed in order to protect the organism from toxic 

Cadmium leak, which is a compoment of QD core. Also, the coating must be opitimized 

in order to allow better excretion of QDs with urine, desirably in 2-3 hours. The small 

part of injected bioconjugated QDs was found to stay in the area of injection and 

occasionally other sites [87-88], which must be avoided in humans. All these and other 

current flaws of QD bioimaging are to be solved in the future. QDs will definitely be one 

of the components of the envisioned multifunctional nanodevices that can detect diseased 

tissue, provide treatment and report progress in real time. 

 

2.5 Enzyme-Linked Immuno Assay (ELISA) technique 

 ELISA is a biomolecular method which allows determination of the 

concentration of an antigen or antibody in a  sample. One of the most well known 

examples is a  HIV-antibody test [93-96]. Proteins from the virus are adsorbed (or 

chemically bound in some cases) to the walls of a reaction tube (usually 96 such tubes are 

fused together to form a plate, that simplifies handling). Then a serum sample is added 
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into the tube and incubated for some time. If that sample contains antibodies against HIV 

proteins, they will bind. The serum is then discarded and the tube washed a couple of 

times, to remove all antibodies that did not bind to antigen. Then, the tube is filled with a 

solution of antibodies directed to the constant part of human antibodies (raised in sheep, 

horse, donkey or similar animals). This second antibody is chemically linked to an 

enzyme like alkaline phosphatase or horseraddish peroxidase. If any human antibodies 

are present, the second antibody will bind to it. After washing away unbound second 

antibody the amount of bound enzyme is determined by a colour reaction. So you get a 

kind of sandwich: the enzyme is chemically bound to the second antibody, which is 

immuno adsorbed to the human antibody, which is immunoabsorbed to the virus protein 

on the walls of the tube. There are modifications to this principle, but that is the basic 

form [97]. 

 The advantages of the ELISA are as follows: 

1. it employs no radioactivity which is very beneficial and safe 

2. it is sensitive  

3. it is reasonably specific, and allows to achieve low noise to signal ratios 

4. it is fairly cheap, because a large number of samples (usually at least up to 48) can be 

analyzed simultaneously and  small amounts of reagents (usually up to 50 µl are 

required). [98] 

 Enzyme Linked Immuno-Sorbent Assay (ELISA) is a powerful technique for 

detection and quantitation of biological substances such as proteins, peptides, antibodies, 

and hormones. By combining the specificity of antibodies with the sensitivity of simple 

enzyme assay, ELISA can provide a quick and useful measurement of the concentration 
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of an unknown antigen or antibody. Currently, there are three major types of ELISA 

assays commonly used by researchers [99]. They are: indirect ELISA, typically used for 

screening antibodies; sandwich ELISA (or antigen capture), for analysis of antigen 

present; and competitive ELISA, for antigen specificity. Figure 2.20 A depicts a typical 

96-well ELISA plate, while Figure 2.20 B shows a sample standard curve for the IL-4 

Antigen. 

 

A         B  

Figure 2.20. A: typical 96-well ELISA plate [100]; B: typical standard curve for an IL-4 
antigen [101]. 
 
 
2.5.1. “Sandwich” ELISA technique 

 The "sandwich" technique is so called because the antigen being assayed is held 

between two different antibodies. In this method (Figure 2.21): 1. Plate is coated with a 

capture antibody. 2. Sample is then added, and antigen present binds to capture antibody. 

3. The detecting antibody is then added and binds to a different region (epitope) of the 

antigen. 4. Enzyme linked secondary antibody is added and binds to the detecting 

antibody. 5. The substrate is then added and the reaction between the substrate and the 

enzyme produces a color change. The optical density (OD) values can be measured 



 

39

spectrophotometrically. 6. The signal generated is directly proportional to the amount of 

antibody bound antigen. Optimizing an ELISA assay requires the careful selection of 

antibodies and enzyme-substrate reporting system. Once optimized, sandwich ELISA 

technique is fast and accurate. If a purified antigen standard is available, this method can 

be used to detect the presence and to determine the quantity of antigen in an unknown 

sample [98-99].  

 The sensitivity of the sandwich ELISA is dependent on 3 factors:  

1. The number of molecules of the first antibody that are bound to the solid phase, 

namely, the microtiter plate. 

2. The avidity of the antibodies (both capture and detection) for the antigen  

3. The specific activity of the detection antibody that is in part dependent on the number 

and type of labeled moieties it contains. It is important to note that while an ELISA assay 

is a useful tool to detect the presence and the quantity of an antigen in the sample, it does 

not provide information concerning the biological activity of the sample. ELISAs are not 

generally used to discriminate active or non-active forms of a protein. It may also detect 

degraded proteins that have intact epitopes. [102-103] 
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Figure 2.21. An example of a “sandwich” ELISA, which uses the enzymatic reaction for 
detection [104]. 
 

2.6.  Prostate Specific Antigen (PSA), general information 

 PSA is a protein with molecular weight ~ 33-34kDa [105] which is produced 

mainly by the prostate gland in males, and its highest concentrations are found in prostate 

cells and seminal fluid [106]. It is now clear, that PSA is found in a variety of  both male 

and female estrogen dependent tissues and biological liquids, including serum, urine, 

nipple aspirate, breast milk, amniotic fluid etc [33-39]. It is well known that the elevated 

above 4ng/ml tPSA levels in male serum may serve as an evidence of PSA-dependent 

prostate cancer [106], therefore, PSA screening is nowadays one of the most reliable 
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early prostate cancer detection test [107]. A body of publications is now available on the 

presence of PSA in female tissues/biological fluids, as well as role of tPSA levels in 

females with cancer [33-39]. It was found that small quantities of PSA are expressed by 

the breast, ovaries, uterus, and other estrogen and progesterone dependent tissues (Table 

2.1) [108]. The elevated levels of PSA were found in the breast aspirate, saliva, serum 

and urine of pregnant women [33]. PSA concentrations in healthy not pregnant females 

who do not receive oral contraceptives or other estrogen supplements are so small that the 

exact numbers remain unclear because of the current detection threshold limits, however, 

according to the available sources, they usually fall in the range far below 0.1ng/ml [33-

39] with the levels of 0.1ng/ml and higher being considered elevated and associated with 

either taking estrogen supplements, being pregnant or developing a breast tumor.  It was 

reported that about 30% of all breast tumors are PSA positive (accompanied by the 

elevated PSA levels in female biological liquids, especially nipple aspirate and serum). In 

addition, a significant advantage in both overall and disease free survival rates were 

observed for PSA positive tumors, because these tumors tend to be more benign and 

respond to a selective estrogen receptor modulator treatment because of the over 

expression of the estrogen receptor [109]. Overexpression of the PSA in breast tumors, 

therefore, may be a good marker for the estrogen receptor positive (ER+) cancers and a 

reliable predictor of how well a person will respond to a selective estrogen receptor 

modulator treatment (the drugs like Tamoxifen, Anastrozole or Raloxifene) [110]. 

Keeping in mind, that even overexpressed levels of PSA in female’s biological fluids 

may still be around 0.1ng/ml [33], the need of a molecular tool with the lower threshold 

for PSA detection is evident.  
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 Prostate specific antigen (PSA), a glycoprotein in human serum, has been proved 

to be the most reliable and specific clinical tool for preoperative diagnosing and 

monitoring prostate cancer. Normally, prostate cancer is suspected if the total PSA level 

is higher than 10 ng ml−1 [111]. Therefore, sensitive and specific detection of PSA for 

early prostate cancer detection is of great significance. 

 Human prostate-specific antigen (PSA or KLK3) is an important marker for the 

diagnosis and management of prostate cancer. This is an androgen-regulated glycoprotein 

of the kallikrein-related protease family secreted by prostatic epithelial cells. Its 

physiological function is to cleave semenogelins in the seminal coagulum and its 

enzymatic activity is strongly modulated by zinc ions [112]. 

 Besides cancer detection, the molecular tool with low PSA threshold detection 

may benefit the forensic science cases, dealing with sexual assaults [113]. Because the 

ratio of morphologically intact spermatozoa detected in victims’ samples is frequently 

low, the other substances present in seminal fluid are needed to be detected, and PSA is 

currently one of such molecules [31], as it is always present in seminal fluid in huge 

concentrations. Because it was proved that PSA is not an exquisitely male’s protein [33-

39 ], the control of a female victim’s unaffected biological fluid must always be taken, 

and here the need for a method with lower  PSA threshold detection is also evident.  

Table 2.1. PSA concentrations in biological fluids 

Concentration of PSA in human body fluids 
Fluid PSA (ng/mL) 
semen 200,000 to 5.5 million 
amniotic fluid 0.60-8.98 
breast milk 0.47-100 
saliva 0 
female urine 0.12-3.72 
female serum 0.01-.53 
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2.7. Summary 
 
 Nanoscience has become an emerging field in the recent 20 years, opening new 

possibilities in the biology and medicine. Photoluminescence QDs possess several 

advantages over currently used organic fluorophores, including their reduced tendency to 

photobleach, and the emission wavelength dependence on their size. In addition, QDs 

may be excited by a wide range of wavelengths which  makes it possible to use one light 

source for different QDs. This feature is especially useful for multiplexing analysis, ie for 

labeling and determining several biomolecules with differently sized QDs. CdSe/ZnS 

QDs are the most used in biomolecular field. It is possible to create a unique surface 

chemistry by capping different groups on top of QDs, which enables the subsequent 

bioconjugation of QDs to different biomolecules, including cancer biomarkers.  

 Bioconjugation is an attachment of the biomolecules to QDs. It may be performed 

in a number of different ways, and the choice of procedure depends upon the needs 

bioconjugate will be used for. In this work, conjugation to antibody fragments via 

disulphide reduction and sulfhydryl-amino coupling was chosen and the commercially 

available conjugation kit, made by Invitrogen, was used. The conjugation was 

successfully confirmed with the agarose gel electrophoresis, improved with organic dye 

fluoprescamine, it was found that bioconjugated QDs have a retarded movement in the 

gel, because of their increased size. The working conditions of this methods  have been 

optimized to allow better separation of conjugated and pure QDs. TEM analysis of pure 

705nm QDs and bioconjugated QDs revealed the ellipsoid shape and approx dimensions 

11x6nm +/- 0.5nm. No significant difference in the shape and size was observed between 

pure and bioconjugated QDs.  
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 ELISA and one of its types, “sandwich” ELISA were described and proved to be 

useful techniques in cancer detection. These methods can detect most cancer biomarkers 

in nanomolar concentrations, however, as was proven with the PSA molecule, this 

sensitivity may not be low enough to detect it in biological fluids. PSA molecule is a 

standard, and most reliable prostate cancer biomarker in men, and there is a growing 

body of evidence, that PSA is present in female biological fluids in extremely low 

concentrations. The presence of PSA in female body may correlate with breast, uterine or 

ovarian cancers, but the sensitivity of the standard PSA ELISA is not low enough, to 

detect the concentrations at or below 0.1 ng/ml. This is why QD modification of PSA 

ELISA will be presented in the last section of this work. 

The literature review, described in this section, will serve as a solid base for the further 

experiments, described in the subsequent sections of this work.  

 

 

 

 

 

 

 

 

 

 

 



 

45

 

 

 

3. Confirming bioconjugation, photoluminescence (PL) measurements and short- 

wavelength spectral shift of bioconjugated QDs 

 
 
3.1. Introduction 
 
 Quantum dots, attached to different biomolecules, have being investigated for a 

long period of time, and a number of publications are available on this topic [114-118]. 

However, due to the nature of bioconjugate further use in biology and medicine, the 

research is mostly being focused on the liquid bioconjugate [114-118]. To the best of our 

knowledge, for the first time, it was noticed by our group, that CdSe/ZnS QDs, 

bioconjugated to IL6 antibodies, perform a short-wavelength, so-called “blue” spectral 

shift (I may be referring to it as simply “the shift” in future) when dried on the silicon 

chip substrate at room ambience [119-123]. Figure 3.1 illustrates this effect. This is one 

of the first recorded evidence of the “blue” spectral shift, which appears on bioconjugated 

QDs, dried on the silicon substrate, in comparison to pure, non-conjugated QDs of the 

same type. Both conjugated and pure QDs were used to make a drop approx 3mm in 

diameter on the silicon substrate, dried for several hours at room ambience, and then up 

to 80 spectra per spot were generated for both bioconjugated and nonconjugated drops. It 

allows to generate more than one spectra per spot which allows a more accurate 

spectroscopic analysis in comparison to just one spectra per spot [123-125]. The Figure 
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3.1 clearly shows, that conjugated QDs spectra are shifted approx 5nm to the short-

wavelength region in comparison to pure QDs. 

 
 
Figure 3.1  Normalized spectra of CdSe/ZnS quantum dots with principal emission 
maxima around 655 nm (nonconjugated) and same quantum dots after IL10 antibody 
attachment (conjugated). 
 
 Investigation of this short-wavelength “blue” spectral shift of bioconjugated QDs 

was one of the main tasks of this PhD work. Different QDs, as wells as a number of 

antibodies, which are known to be important cancer biomarkers (Section 3.4, Table 3.2) 

have been investigated, as well as the time of dried sample storage and the ambient 

conditions (temperature, gases, light, vacuum, substrates etc) and their effect on the shift. 

 At the end of this section (discussion section) several mechanisms which may 

cause the shift, have been proposed. The author believes the shift may be used in favor of 

early cancer detection as well as benefit forensic science.  
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3.2. Hardware description 
 
 Two lasers were used as the excitation sources in the PL experiments. In Table 

3.1 their specifications are presented: 

 
Table 3.1 Lasers used in the PL experiments 
 
Laser type Emisson wavelength, nm Output power, mW Manufacturer/Mod

el 
HeCd (cw) 325 50 Coherent Inc HeCd 

seires 74 
Ar+ (cw) 488 50-100 Coherent inc 
 
 The photoluminescence signal was dispersed with a 0.5 m SPEX-500M grating 

spectrometer possessing a reciprocal dispersion of 3.2 nm/mm (2nd order) with a 600 

lines/mm diffraction grating. The dispersed signal was registered in the spectral range of 

400 - 800 nm with either a cooled photomultiplier (Electron Tubes) or in the range of 700 

– 1700 nm with a liquid nitrogen cooled Ge detector (North Coast Scientific Corp.). A 

mechanical chopper modulated the excitation light of the CW laser with 82 Hz frequency. 

AC signal from the detectors was fed to Lock-in amplifier EG&G Model 5209 and 

collected by a computer. Both ELISA sample and dried QD spots deposited on silicon 

were used for spectroscopic PL mapping with a smallest step of 0.5mm to produce a set 

of up to 160 individual PL spectra for each well and spot. The scanning PL spectroscopy 

was performed at room temperature using a 488 nm Ar laser with power density of 70 

W/cm2 as the excitation source. ELISA samples or silicon wafers with deposited QD 

spots were mounted on a computer-controlled X–Y moving stage. The typical mapping 

area was 8mm x 8mm for ELISA wells, and 3.5mm x 3.5mm for dried QD samples. The 

PL spectrum was dispersed by a SPEX 500M spectrometer and recorded by a cooled 
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photomultiplier tube coupled with a lock-in amplifier. A schematic of the PL setup is 

shown on Figure 3.2 

 
 
 
Figure 3.2 Photoluminescence setup for room temp measurements of quantum dots 
 
 The PL mapping experiment was done with the use of an X-Y computer 

controlled moving stage (Velmex 8300) with 10 µm step precision and (Klinger CC 1.2) 

for 1 µm resolution maps. 

 

3.3 TEM visualization of pure and bioconjugated 705nm QDs 

 Quantum dots, possessing the size of at most 12nm, are hard to visualize with 

other techniques, however, with the TEM technique they can successfully be visualized. 

In this work,  Transmission Electron Microscope Tecnai T20 with the line resolution of 
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1.2 A and electronic images captured using Orius 831 7 MP CCD camera. The TEM 

analysis of pure and conjugated 705nm QDs was conducted. It revealed an ellipsoid 

shape approximately 11x6 nm +/- 0.5nm (Fig 3.3). 

 
 
Figure 3.3. TEM image of the individual 705nm CdSeTe/ZnS core/shell quantum dot. 

 

 TEM analysis of conjugated to Caveolin-1 (CAV-1) Anribodies was also 

performed in order to establish any size/shape differences with the pure QDs. The Figure 

of bioconjugated QDs is shown on Fig 3.4 
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Figure 3.4. 705nm QDs, conjugated to CAV-1 antibodies. 
 
 According to the pictures, no significant differences between pure and 

bioconjugated QDs was found. This analysis, however, provides important data that the 

short wavelength “Blue” spectral shift of bioconjugated QDs (discussed in the sections 

3.6 – 3.11) is not because of the size decrease or shape change resulting from the 

bioconjugation reaction directly. 

 There is, however, one remark about this effect which should be taken into 

account. It is in detail described in the section 3.5 of this dissertation. QD solutions, used 
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for the TEM analysis, were dried on the copper grits, covered with the amorphous carbon 

layer [126]. This was done in order to protect QD samples from contact with copper, as 

copper reacts with the CdSe core and quenches PL [127-128]. As will be shown in the 

section 3.8, substrate plays an important role in the “blue” shift development, and it was 

not developed on the soft and porous rubber substrates. Same effect may be observed 

with the carbon amorphous coating. Additional research in this direction is needed in 

order to carefully examine the size/shape of bioconjugated QDs. 

 

3.4. Biomolecules, used for bioconjugation 
 
 A wide range of biomolecules (antibodies) was used for bioconjugation 

experiments within the scope of this work. The careful choice of the antibodies was based 

on the following reason: all of them are known for being cancer biomarkers. Table 3.2 

summarizes the list of biomolecules, their molecular weights, and cancers for which these 

molecules serve as biomarkers.  
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Table 3.2 The list of biomolecules, their molecular weights, and cancers   for which these 
molecules serve as biomarkers 
 
 Antibody Molecular 

weight, 
kDa 

Type of cancer Remarks 

Interleukin-6 
(IL-6) 

28 Prostate cancer One of the seven biomarkers 
which predict the risk of 
recurrence for  prostate cancer: all 
seven elevated – 86.6% [129] 

Interleukin-10 
(IL-10) 

23 Ovarian cancer, 
lymphoma and 
myeloma 

Elevated levels alone may serve as 
biomarkers for mentioned cancers 
[130-132] 

Osteoprotegetin 
OPG 

55 myeloma, breast 
and prostate 
cancer 

Elevated levels serve as tumor cell 
survival factors by inhibiting 
apoptosis [133] 

Protein 53 (P53) 53 Adenocarcinomas 
and other cancers 

Important tumor suppressor, often 
altered in cancers, or its levels 
lowered [134] 

kallikrein 14 
(KLK14) 

31 Breast cancer KLK14 is overexpressed in breast 
cancer in comparison to normal 
breast tissues and is positively 
associated with conventional 
parameters of tumour 
aggressiveness [135] 

Prostate Specific 
Antigen (PSA) 

34 Prostate cancer in 
men, 
breast/ovarian 
cancers in women

At least 2/3 of all prostate cancer 
are characterized by the PSA 
elevated levels [106-107, 111-113]

(Caveolin1) 
CAV-1 

22-23 Prostate cancer Involved into predisposition of 
high aggressive prostate cancer 
[136] 

 

 

3.5 Verifying bioconjugation  
 
 Agarose gel electrophoresis represents an easy, inexpensive and reliable method 

to verify the conjugation of QDs to different monoclonal ABs. According to Invitrogen 

[26], one QD molecule, covered with all layers, has a molecular weight about 750 KDa, 

which is larger in comparison to AB molecules being in the weight range of 20-55 KDa. 
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One QD molecule could attach 2-3 AB molecules [26], therefore  we should see a 

difference in the electric field drift and separation of the 750KDa pure QDs  and  800-

850KDa conjugated QDs  This task requires careful optimization of the experimental 

conditions to improve the separation distance in gel.  

 Several works are available on agarose electrophoresis, which conclude that for 

bigger fragments higher agarose concentrations are recommended [137]. Therefore, we 

used 2% agarose gel, applied  voltages up to 1.5V and  running time up to 2 hours. In 

figure 3.5 the agarose gel image is shown after 120 min of running time. Here the 

retardation in movement between the pure 705nm QDs and conjugated 705nm QDs is 

evident (compare wells #1 and #2; #5 and #6).  In this image pure ABs mixed with 

Fluorescamine (wells #3 and #7) have already run out of the gel, and only the trace PL 

from them could be seen in well #3.  We observed also that two different ABs, PSA and 

IL6, move with different velocities in the gel experiment as illustrated in Figure 6 (wells 

#2 and #6).  According to [138], molecular weight of the PSA molecule is 32-33 kDa, 

while the one for IL6 is  22-28kDa [139]. It is logical to assume that QDs conjugated to 

IL6 molecule will move faster than these conjugated to PSA, because of the size 

difference.  This hypothesis is confirmed (wells 2 and 6): the PSA movement is retarded 

in comparison to IL6 movement. Also, the trace of the PSA + Fluorescamine PL is 

visible in well 3, while no PL could be observed for the Il6 molecule, where there’s an 

IL6 + Fluorescamine mixture. Therefore, the separation capacity of the agarose gel is 

high enough for this type of application. 
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        1          2         3        4         5         6          7 

 
 
Figure 3.5. Agarose gel electrophoresis photograph, 2% agarose gel, 1.5V, 120 mins 
running time, 0.5xTBE running buffer. Wells are as follows: (1) non-conjugated 705nm 
QDs; (2) PSA conjugated to 705nm QDs; (3) PSA pure protein + Fluorescamine, (4) 
empty, (5) non-conjugated 705nm QDs, (6) IL6 conjugated to 705nm QDs, and (7) IL6 
pure protein + Fluorescamine. 
 
 
 In every biological procedure, timing is an important option, and it is highly 

desirable to minimize the running time. Therefore, the gel which is shown on Figure 3.5, 

was analyzed 30mins after the run cycle started. The result is shown on Figure 3.6  
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         1               2                3              4                5              6              7 
 

 
 
Figure 3.6. Agarose gel electrophoresis photograph, 2% agarose gel, 1.5V, 30 mins 
running time, 0.5xTBE running buffer. Wells are as follows: (1) non-conjugated 705nm 
QDs; (2) PSA conjugated to 705nm QDs; (3) PSA pure protein + Fluorescamine, (4) 
empty, (5) non-conjugated 705nm QDs, (6) IL6 conjugated to 705nm QDs, and (7) IL6 
pure protein + Fluorescamine. 
 
By comparing wells # 1 and 2; and # 5 and 6, it is evident that 30mins is not enough for 

the complete separation of conjugated and nonconjugated QDs. However, the 30mins gel 

allows the clear visualization of pure PSA (well #3) and IL6 (well #7) antibodies, mixed 

with fluorescamine. It is evident, that because of their smaller size they run much faster 

in a gel.  

 So, the following agarose gel specifications are proposed to be optimum for 

CdSe/ZnS QDs + various antibodies conjugation verification: 2% agarose gel, 1.5V, 120 

mins running time, 0.5xTBE running buffer. The amount of time may be increased 15-30 

mins if the satisfactory enough separation is not achieved within the 120 minutes slot.  
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3.6. QD samples in liquid and in the agarose gel 
 
 After the shift of dried bioconjugated samples was discovered, it was necessary to 

find out, if the pure QD and bioconjugated QD emission spectra are identical in the liquid 

state. For this purpose, for any new batch of bioconjugated QDs the measurements of 

liquid samples were conducted. The results showed no or a negligibly small (below 2nm) 

blue spectral shift of all liquid samples analyzed. In Figure 3.7 one liquid sample 

measurement is shown: 705nm CdSe/ZnS QDs, conjugated to Prostate Specific Antigen 

(PSA) antibodies. The measurement was done on the system shown in Fig 3.2 , and the 

plastic tubes with liquid samples were attached to the moving stage. As could be seen 

from Figure 3.7B, the blue shift here is ~1nm which is below the precision limit of the PL 

measurements. Additionally, the storage of the liquid samples in dark and lowered (2-4C) 

temperature did not influence a position of the PL maximum. Therefore, it was concluded 

that the blue spectral shift of bioconjugated QDs appears only when the samples are 

dried.  
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   A       B 

Figure 3.7 Liquid measurements of pure 705nm QDs (line) and 705nm QDs, 
bioconjugated to PSA antibodies (circles): A – whole spectra; B – magnified center of the 
plot to better reveal peak positions.  
 

 The similar observation was made for the pure and bioconjugated QD solutions, 

used to run the agarose gel to check conjugation (Figures 3.5 and 3.6). No statistically 

significant spectral shift was detected for the 705nm QDs, conjugated to  PSA antibodies, 

in comparison with the control pure QD samples (Figure 3.8). The measurement was 

done in a fresh not dried gel as shown in Figures 3.5 and 3.6, wells #2 and # 1. This data 

allows us to suggest, that drying is an important factor, which causes the spectral shift of 

bioconjugated QDs. 
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A       B 
 
Figure 3.8. Gel measurements of pure 705nm QDs (line) and 705nm QDs, bioconjugated 
to PSA antibodies (circles): A – whole spectra; B – magnified center of the plot to better 
reveal peak positions.  
 
 
3.7. QD samples dried on the silicon substrate 
 
 In order to dry the sample on the silicon substrate, the spots of different, but 

known, volume were placed on the clean silicon chip with the automatic pipette and let 

dry on air for at least 30 mins before the initial PL spectrum was measurement. For all 

experiments the nonconjugated fraction of the same size QDs was used as a reference. 

All samples were clearly marked and dated on the chip to avoid possible confusion. 

Between the measurements, the samples were stored in clear plastic boxes to minimize 

contamination, or stored on the oven surface for higher temperature measurements. A 

typical sample is shown on Fig 3.9 
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Figure 3.9. 705nm QD samples, dried on silicon chip: “-“ is nonconjugated drop; “+” – 
conjugated to PSA drop. The scale is in centimeters. 
 

 The single PL spectrum was recorded from the shown above sample 

approximately in 30 to 60 mins after the drops deposition. This first measurement of 

dried samples will be referred further as the “initial measurement”.  Figure 3.10 

illustrates that although the liquid samples did not have a valid “blue” shift (Figure 3.7), 

the initial shift of the dried samples is 6-7nm. The initial shift depends upon several 

factors, including the QD size and the biomolecule molecular weight, but in average it is 

between 4 and 8 nm.   
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Figure 3.10. Dried measurements of pure 705nm QDs (line) and 705nm QDs, 
bioconjugated to PSA antibodies (circles): A – whole spectra; B – magnified center of the 
plot to better reveal peak positions.  
 

3.7.1. Time dependence of the “blue” spectral shift  

 As soon as the initial shift of bioconjugated QDs was discovered, it was necessary 

to research, if it changes with the time of storage of the dried sample. To do this, the 

sample shown in Figure 3.9 was stored in the clear plastic box at room ambience and the 

spectra were taken once a day to monitor the peak positions. It was discovered that the 

blue spectral shift of bioconjugated QDs increases with time: the PL spectrum of bio-

conjugated spot gradually shifts to the short-wavelength region, while the pure QDs 

retain the same peak position within 2nm accuracy threshold (Figure 3.11 A). As could 

be seen from the Figure 3.11 B, for this particular 705nm QDs + PSA sample, the blue 

shift increased from 6-7nm up to ~27nm in 11 days of storage. This effect was also 

observed and documented for other QDs and Antibodies as described below. The average 

spectral shift after 10-13 days of storage at room ambience is usually 22-35nm.  
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Figure 3.11. The blue shift dependence on the sample storage time at room ambience: A 
– PL spectra of pure 705nm QDs and conjugated to PSA QDs, initial and after the 11 
days of storageas room T; B – PL peak positions on a daily basis for pure 705nm QDs 
and same 705 nm QDs conjugated to PSA. 
 
 
3.7.2. The influence of QD size (emission color) 
 
 
 The drying experiments were conducted with different QD sizes in order to 

research the possible influence of QDs size on this effect. 

  The shift was also observed for other QD sizes (different emission wavelength 

maxima) namely 605 (4 nm in diameter) and 705 (7 nm in diameter) [3]. Experiments 

were carried out in a similar manner as for the 655 QDs. The spots were dried out on a Si 

surface and mapped with 0.2 mm spatial resolution. Spectra were recorded at each spot 

and their maxima position and relative shift vs. non conjugated QDs is presented in 

Figure 3.12.  
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Figure 3.12 Peak position of the PL maximum measured on non-conjugated (open 
shapes) and conjugated  with IL 10 antibody molecule (close shapes) CdSe/ZnS core-
shell QDs of three different sizes with maxima at (a) 605nm, (b) 655nm and (c) 705nm.   
Spectral shift caused by the conjugation was observed for majority of measured PL 
spectra that were collected for each sample in the PL mapping mode.  
 
 
 From the Figure 3.12 it is clear that larger size QDs exhibit in average larger 

spectral shift. The possible mechanisms for this effect will be explained in the discussion 

section of this chapter. Because we are interested in maximization of the blue spectral 

shift, it was decided to continue the experiments with the 705nm QDs. Therefore, most of 

the data presented in this work, is for the 705nm QDs. 

 
3.7.3. The influence of drying temperatures  
 
 In order to establish the influence of the ambient temperature on the blue shift, 

two identical dried samples were stored at the room (+22 - +23C) and fridge (+2 - +4C) 

ambiences for 13 days and the spectra were taken daily. The fridge samples were kept in 

a fridge for the whole time, except for the measurement which did not exceed 10mins a 

day. Each sample had a pure 705nm QD drop and bioconjugated to PSA QD drop. The 
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results are shown on Fig 3.13. It is clear that conjugated sample which was kept in a 

fridge performs smaller blue shift than the one which was kept in the room ambience, 

suggesting that lower temperatures slow down the blue shift formation. The relative 

difference between the shift magnitudes is ~26%.  
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Figure 3.13 The blue shift of the conjugated to PSA sample (stars) in comparison to pure 
QD sample (rounds) after the 13 days of storage. The average shift of the room 
conjugated sample (open shapes) is ~ 26% bigger in comparison to the fridge conjugated 
sample (closed shapes).  
 
 Because the lower storage temperatures show a diminishing effect of the shift 

formation, the assumption was made that the higher temperatures may speed its 

formation. To test this, conjugated and reference samples were dried in a temperature 

stabilized oven at air ambient atmosphere at various temperatures up to 245 °C. It is 

realized that high-temperature processing may produce a decomposition of the protein 

structure. However, it was used to facilitate PL shift process for exploration purposes. 

 The kinetics of the annealing process was monitored using PL spectra at room 

temperature. Figure 3.14 shows the kinetic curves of the PL spectral shift versus 
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annealing time at different temperatures over a period of 12 h. At annealing temperatures 

of 140 and 190 °C, the kinetic curves show an exponential growth with saturation of the 

relative PL spectral shift allowing for an estimate of the time constant of this process at 5 

hrs and 8 hrs for 190oC and 140 °C, respectively. The spectral shift rate was much higher 

for 250 °C drying temperature, while for 115 °C observable shift change does not show 

full exponential saturation level even after 12 hours of storage.  

 Apart from the PL spectral shift, we noticed a gradual reduction of the PL 

intensity. In contrast, the nonconjugated reference QD samples are stable at the same 

annealing conditions with respect to the peak position, intensity, and FWHM values.  
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 Figure 3.14 Kinetics of the PL spectral shift enhancement in the bio-conjugated sample 
due to annealing at different temperatures: 1 – room, 2 - 115°C, 3 - 140°C, 4 - 190°C and 
5 – 250°C. Non-conjugated QD samples retain a PL band spectral position within 
experimental accuracy of ~1 nm.  
 
 The observed results may be described by the influence of temperatures on the 

proteins, attached to QDs. At lower temperatures, proteins dry and denature slower, 

which may reduce the tension on the QD-substrate surface or have the chemical effect of 

the QD. It will be discussed in detail in the discussion section.  
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3.7.4. The influence of a biomolecule’s molecular weight  
 
 
 We extended this study to other types of cancer related antibodies. In this 

experiment the identical type and size of QDs with the PL maximum at 705 +/- 2 nm was 

used. The bioconjugation and subsequent PL spectroscopic analysis was performed on 6 

monoclonal ABs, currently being considered as cancer biomarkers. They are: IL-6, IL-10, 

PSA, P53, OPG and CAV-1. 705nm QDs, conjugated to all ABs, mentioned above, 

perform “blue” spectral shift of different magnitude with the IL-6 giving the smallest 

shift, and OPG – the largest approaching 36 nm after 11 days of room temperature 

sample storage (figure 3.15).  

 

0 2 4 6 8 10
660

670

680

690

700

710

b

a

c

Pe
ak

 W
av

el
en

gt
h 

[n
m

]

Drying time [days]

 

Figure 3.15. “Blue” spectral shift developed during 11 days of sample drying at room 
temperature. (a) 705nm QDs conjugated to OPG AB; (b) 705nm QDs, conjugated to IL-6 
AB and (c) non-conjugated 705 QDs used as a control. 
 



 

66

 The different magnitude of the blue spectral shift for different ABs, is repeatable 

and observed in samples  dried  at room or higher temperatures. For instance, we 

previously observed an approximately 40 nm spectral shift for IL-10 antibody after 12 

days drying at room temperature or after annealing at 140C for 12 hours [123]. In figure 

3.16 we present data of the maximum PL spectral shift for different ABs after room-

temperature drying and correlated this shift with the AB molecular weight. It occurred 

that the AB molecules with larger molecular weight show a larger “blue” shift of the 

conjugated 705 nm QDs. For instance, molecular weight of the IL6 AB molecule is 22-26 

kDa [139], while OPG AB molecule weights 48 kDa [140], which corresponds to 27 and 

36 nm PL shifts.    

 

Figure 3.16 Dependence of the QD “blue” spectral shift on the molecular weight of the 
AB molecule, used for bioconjugation. The samples were deposited on silicon and dried 
at room temperatures for 11 days.  
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3.7.5. The influence of vacuum, argon, nitrogen and oxygen gases, increased 

moisture  

 In order to establish the possible influence of some environmental conditions on 

the shift, the two identical QD samples, pure and conjugated to CAV1 antibodies, were 

stored for 10-13 hours and measured hourly or every other hour. In order to speed up the 

shift development and shorten the experiment time to hours instead of days, the 50C 

storage temperature was applied (Figure 3.17). This temperature is not enough to 

denature the proteins [141-142], but it is good in elevating the shift development (Figure 

3.14). The room controls were stored at room ambience, under constant 50C temperature, 

and the samples were maintained in the closed metallic boxes in constant 

gase/moisture/vacuum environments and under constant 50C temperature. The samples 

were taken out for the measurement which did not take longer than 10mins a day. 
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Figure 3.17 The blue shift of the conjugated to CAV1 sample (stars) in comparison to 
pure QD sample (rounds) after the 10-13 hours of storage under 50C. No noticeable 
influence of the following conditions (closed shapes) on the “blue” spectral shift was 
noticed in comparison to identical room ambience controls (open shapes): A – oxygen; B 
– increased moisture; C – vacuum; D – nitrogen; E – Argon. 
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 The results are shown on Figure 3.17. It is clear, that no statistically important 

influence of the oxygen, moisture, argon, nitrogen and vacuum on the blue spectral shift 

was recorder. Nonconjugated, pure 705nm QDs don’t seem to be affected as well.  

Based on these results, we conclude that chemical interaction of the QD-AB with gas 

molecules plays a negligible role in the observed effect. This will be further elaborated in 

the Discussion.  

 
3.8. QD samples dried on the other substrates 
 
 Different substances were tried as substrates for drying of QD samples. In every 

case, the silicon sample served as a control. The initial hypothesis was such that more 

porous, less dense substrates may influence the spectral shift magnitude, as they influence 

the drying kinetics of the drops. The first experiment included four substrates – Si, SiC, 

Quartz and rubber. All samples were dried at room ambience for 12 days. The increased 

temperature was not used to enhance the shift, as rubber may melt. From the Figure 3.18 

it is obvious that rubber sample had a very small (at most 4nm) blue shift in comparison 

to the three other substrates which developed a standard “blue” sift of the comparable 

magnitude.  
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Figure 3.18. The relative “blue” shift of the 705nm QDs, bioconjugated to PSA 
antibodies, dried on the different substrates.  
 
 Similar results were obtained with the CMP pad which has a continuous porosity 

in its structure and is therefore similar to rubber (Figure 3.19). The conjugated to PSA 

705nm QD sample, dried on silicon, developed approximately 28nm “blue” shift, while 

the CMP pad sample is just about 4-5nm in comparison to pure 705nm QD sample. The 

difference between the silicon and CMP samples is, therefore, about 23nm. These 

experiments allowed us to make a conclusion that the substrate’s porosity, density and 

possibly other qualities have a noticeable effect on the shift magnitude. This data, along 

with the high and low temperature data, allows to draw a conclusion that the “blue” shift 

of bioconjugated QDs is probably caused by the particularities of the drying process. This 

will be further elaborated in the discussion section.  
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Figure 3.19. The blue shift of the conjugated to PSA sample (stars) in comparison to pure 
QD sample (rounds) after the 10 days of storage at room ambience. The silicon (closed 
shapes) conjugated sample performed a 23nm bigger “blue” shift in comparison to the 
rubber (open shapes) conjugated sample. 
 
   
 
3.9. PL mapping measurements 
 
 In order to more carefully examine the “blue” shift pattern across the dried spot of 

QDs, the PL mapping technique was utilized. Silicon wafers with deposited QD spots 

were mounted on a computer controlled X-Y moving stage with a smallest step of 0.1 

mm. The typical mapping area was 3 mm x 3 mm with a step of 0.25 mm. PL system, 

shown on the Figure 3.2, was employed to make the spectral maps.  

 PL spectral mapping technique has several important advantages over a “one 

spectra per spot” measurement, because it allows to: 

1. track the spectral peak position inhomogenities across the dried spot; 

2. obtain the lowest, the highest and the average peak positions for one spot;  
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3. compare the highest, the lowest and the average peak positions of bioconjugated 

spot vs the nonconjugated control, or the bioconjugated spot at a certain amount 

of time with the same spot at the different amount of time and/or after treatment; 

4. helps to identify possible mechanism of the shift appearance, because of certain 

physical mechanisms (discussion); 

The following advantages are illustrated in the Figure 3.20 and 3.21. 
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Figure 3.20. Initial spectral maps of the 705nm QDs, bioconjugated to PSA Antibody: A. 
peak position – pure QDs (in A); B. Peak position – bioconjugated QDs (in A); C. spectra 
of the maps, presented above. Each spectra corresponds to one spot on the spectral map. 
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Figure 3.21. Spectral maps of the 705nm QDs, bioconjugated to PSA, stored for 14 days 
at 50C. : A. peak position – pure QDs (in A); B. Peak position – bioconjugated QDs (in 
A); C. spectra of the maps, presented above. Each spectra corresponds to one spot on the 
spectral map. 
 
 
 Figs 3.20 and 3.21 illustrate the spectral mapping of the same 705nm QD sample, 

bioconjugated to PSA Antibodies. As could be seen from the A and B parts of both 
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figures, the spectral peak positions differ from one spot to another even within the same 

sample (lighter spots correspond to higher PL intensity and more “red” PL peak 

positions). This spectral inhomogenity exists for both pure and conjugated QD, and the 

magnitude increases with time of storage. Having a spectral mapping data gives us an 

opportunity to calculate the average peak position for each spot, along with the spectral 

range. Therefore, such terms as an average spectral shift, or a maximum (minimum) 

spectral shift are becoming available. For instance, for the initial nonconjugated spot, the 

maximum high spectral position is 714nm, the lowest minimal is 702nm, therefore, the 

peak positions range for this spot is 702-714nm. The average peak position for the whole 

spot is calculated by simple summation of all peaks and dividing the sum on the number 

of spectra, which for this spot equals to 708nm. This number is in a good agreement with 

the one spectrum per spot measurement. The summary of the average spectral peak 

positions for each sample, along with their magnitudes, are shown in Table  3.3. 

 
Table 3.3. The summary of the average spectral peak positions for each sample, along 
with their magnitudes. 
 
 Minimal 

position, nm 
Maximal 
position, nm 

Average 
position, nm 

The shift 
compared to 
pure QD 
sample, nm 

The shift 
compared 
to initial 
conjugated 
sample, nm 

Initial 
705nm QD 

702 714 708 N/A N/A 

Initial PSA 
QD 

694 703 702 Max: 20 
Average: 10 

N/A 

Stored 
705nm QD 

701 712 704 N/A N/A 

Stored PSA 
QD 

673 700 681 Max: 40 
Average: 35 

Max:30 
Average:25 
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 From the Table 3.3 it is clear, that the spectroscopic peak position and the shift 

magnitudes may vary across the sample drastically, and the shift may almost double, 

depending on the site of measurement. This data is helpful in the spectral shift 

appearance explanation and may be used as an additional tool to enhance the spectral 

shift. This effect may be used in favor of early cancer detection, as will be showed in the 

next section.  

 

3.9.1. The intensity measurements and the spectral mapping 
 
 It is possible to create the similar spectral maps for intensity, as it was shown for 

the spectral shift (Figures 3.20 and 3.21). Intensity, however, may vary up to 40%, 

depending on the optical set up, and it is very hard to conclude you have the same exact 

optical set up every time when you turn on the PL system. Therefore, after several 

preliminary experiments, it was decided to exclude the intensity from the spectral peak 

investigation. This is why all spectra shown before are normalized, i.e. divided on the 

highest peak position to convert the scale from actual intensity to 0-1. This technique also 

helps in visualizing and detecting the spectral shift, as it is hard to see any shift if for 

some spots the PL intensity is very low, and the other’s – very high (Figure 3.22). For 

illustration purposes, in Figure 3.22 to the Figure 3.21 C the same spectra are shown, but 

the Figure 3.21 C they are normalized. It is much easier to compare and study the spectral 

shift when the plots are normalized, therefore, all figures in this work are shown in 

normalized format. 
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Figure 3.22. Non-normalized (raw) spectra of the 705nm QDs, conjugated to PSA 
Antibodies, stored for 14 days at 50C.  
 
 
 
3.9.2. The “plate-shape” effect 
 
 As was mentioned in the previous section, both the peak position and the intensity 

are inhomogenious over a single dried QD spot. First we noticed that after sample 

deposition on the substrate and the initial 30 minutes of drying, the PL intensity shows a 

radial gradient profile with higher PL at the ring area at the spot periphery and reduced 

PL intensity in the central part. A similar PL intensity profile is maintained after 3 days 

of sample drying (fig 3.20A). Various regions, however, exhibit different rates of PL 

intensity reduction due to drying, as presented in figure 3.20C. Analysis of the PL spectra 

measured on different individual spots revealed a characteristic blue PL shift pattern 

across the sample which we assigned as a “plate-shape” pattern. This means that the blue 

spectral shift is more pronounced in the center of the spot and reduced in the periphery, 

as shown in figure 3.23B. Consistent with the data  of the room temperature drying, we 
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also observed a strong enhancement of the PL shift which is quantified in figure 3.23D as 

two line scans of the PL peak position measured across the center of the sample. This 

effect is very pronounced on the conjugated dried samples and shows very small gradient 

from the center to periphery . 

 The observed “plate-shape” effect is important, because it provides a method to 

obtain a maximum blue spectral shift, concentrated in a central area of the deposited 

sample. Its origin and mechanism will be discussed below.  

 
                                 C                                                          D 

0 1 2 3 4 5 6 7 8 9
0

2000
4000
6000
8000

10000
12000
14000
16000
18000

(b)

(a)

in
te

ns
ity

, a
rb

 u
ni

ts

spectra #
          

0 1 2 3 4 5 6 7 8 9
676

680

684

688

692

696

(b)

(a)

pe
ak

 p
os

iti
on

, n
m

spectra #
 

 
Figure 3.23.  Photoluminescence (PL) maps of a conjugated to CAV1 antibodies sample 
stored for 3 days at 500C: A – PL intensity; B – PL peak position. The linescans of (a) 30 
minuets dried and (b) stored for three days at 50C conjugated sample: C – PL intensity: D 
– PL peak position. 
 The non-conjugated control QD samples dried at identical conditions demonstrate 

the similar effect, however, it is less pronounced. Figure 3.24 illustrates the linescans of a 
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freshly dried (30mins at room ambience) and stored for 14days at 50C 705nm QD 

samples. The spectral maps of this exact sample is shown on the Figure 3.21. 

 

1 2 3 4 5 6 7
702

704

706

708

710

712

4nm

 705nm QD initial
 705nm QD 14days at 500C

w
av

el
en

gt
h,

 n
m

spectra #

 
Figure 3.24. The linescans of 705nm pure QD sample, freshly dried (open shapes) and 
stored at 50C for 14 days (closed shapes).  
 
 The “blue” spectral shift of a pure QD sample shown in Figure 3.24, is in the 

range of 1 to 4nm and it takes a relatively long time to develop even such a small shift. In 

order to visually compare the linescans of pure 705nm QDs and bioconjugated QDs, they 

are shown together on one graph (Figure 3.25). Both samples were stored for 14days at 

50C. Now it is obvious, that the blue shift of pure 705nm QDs is negligibly small in 

comparison to bioconjugated QDs.  
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Figure 3.25. The linescans of pure 705nm QDs (rounds) and conjugated to PSA antibody 
705nm QDs (stars) after 14 days of storage at 50C. The blue shift of a pure QD sample is 
negligibly small. The average blue shift is ~30-35nm.  
 
 
 The discovered “plate-shape” effect allows to maximize the measured “blue” 

spectral shift by selecting the central part of the dried sample. It also provides an 

understanding of a certain mechanisms of its appearance which will be discussed below.  

This effect is very repeatable and was observed on all the spectral maps, performed in the 

process of work. These samples included 705nm QDs, conjugated to mentioned above 

(table 3.2) antibodies, and dried on the silicon surfaces. The total number of spectral 

maps, analyzed in the scope of this work, is estimated to be at least 50 spectral mappings. 

 
 
3.10. “Blue” spectral shift – discussion 
 

 In this section we address and discuss two major findings observed in the 

experimental part. The first is a blue PL spectral shift of the bio-conjugated QDs 

deposited on solid substrates compared to identical but non-conjugated QDs and the 

enhancement of this shift with drying time at elevated temperatures. The second is a 
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distribution of the blue shift across the dried spot as reveled by a spectroscopic PL 

mapping. It is obvious that various physical and chemical processes in the bulk, interface 

and surface of a quantum dot can modify the QD’s excited states and exhibited in the PL 

band spectral shift.  We will discuss two different mechanisms which can account for the 

blue PL shift in bio-conjugated QDs. The first mechanism is the elastic field applied to 

conjugated QDs caused by compressions that build up after drying the spot on a solid 

substrate. The second mechanism is a variation of the local electric field applied to the 

QD electronic levels caused by bioconjugation with charged or polar molecules that 

resulted in changes of the QD surface charge.  

3.10.1 Compression stress 

 It is experimentally observed and theoretically explained that compression stress 

applied to II-VI compounds with embedded nano-scale objects having quantum confined 

wave functions provides a high-energy shift of the exciton transitions [143]. A typical 

example is represented by a super-lattice structure with quantum wells stressed due to 

lattice mismatch between the well and barrier materials, such as ZnSeTe/ZnSxSe1-x 

quantum well/barrier structure. The objects in our study can be modeled as a similar 

system with stress originated at the interface between dried QD sample and a solid 

substrate, such as a silicon wafer.  One can assume that stress is applied to the QDs 

caused by the change of the QD sample volume due to a slow drying process. Presumably 

the surface tension between the substrate and the drying sample is a driving force to 

generate this stress field.  
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 Our experiments demonstrate a substantial role of elastic stress in the observed PL 

blue shift. One of critical results is a negligible PL shift in conjugated and non-

conjugated QDs diluted in the buffer solution or immersed in the agarose gel. This must 

be compared to a substantial PL shift in identical bio-conjugated QDs dried on solid 

substrates at room or elevated temperatures. This mechanism is also consistent with the 

PL experiments on QDs dried on various substrates. The largest shift, up to 36 nm, is 

found on crystalline Si and SiC while a negligibly small shift on grids covered with 

amorphous carbon film, highly porous CMP pads and plain rubber substrate. These 

observations supply an evidence that the elastic properties of the substrate play an 

important role in determining the elastic stress applied to the QD. We suggest that 

compressive stress is applied to dried bio-conjugated QD samples at the interface 

between the substrate and a dried droplet (Figure 3.26 and 3.27). To support this 

hypothesis, TEM analysis of pure and conjugated 705nm QDs was conducted. It revealed 

an ellipsoid shape approximately 11x6 nm as illustrated in figures 3.3 and 3.4. Further 

TEM analyses of bioconjugated QDs are needed to confirm the absence of possible 

changes in the shape and/or size of bioconjugated QDs, caused by compression stress. 
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Figure 3.26. Schematic, explaining the rationale of a “blue” spectral shift.  

 A direct confirmation of the stress model was recently received using X-ray 

diffraction in similar QDs bioconjugated with IL-10 antigen and dried on silicon [122]. In 

this study a substantial increase of compression stress and corresponding compressive 

strain was directly measured. The increase of strain from 7.9 10-4 up to 9.6 10-3 was 

accompanied by 6 nm PL spectral shift. We conclude here that the stress effect is the 

most probable mechanism for the observed blue PL shift.  

 The second interesting feature we observed is a “plate-shape” profile of the PL 

shift in dried bioconjugated QDs (figures 3.23). According to our data, the largest PL 

shift is observed in the spot central part with gradual reduction toward the periphery. This 
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feature can be interpreted as a radial reduction of stress in dried sample from its center to 

the edge (Figure 3.27).  

 

Figure 3.27.  Schematic, explaining the “plate-shape” effect. 

 This would explain the similar but much smaller radial profile in a non-

conjugated sample. On the other hand, another explanation is quite feasible. As we 

documented in figures 3.23A and 3.23C, the PL intensity also shows this type of non-

homogeneity; the highest PL intensity is at the spot periphery and the smallest in the 

center. This intensity profile can be attributed to diffusion of the QDs to the sample 

periphery during drying. Taking into account that the bioconjugated sample contains 

some fraction of non-conjugated QDs we may suggest that the periphery region is 

enriched with non-conjugated QDs which is revealed as smaller blue PL shift at the 
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periphery. This process is explained by a higher mobility of non-conjugated QDs 

compared to bioconjugated, as confirmed by our gel electrophoreses study.   

3.10.2. Electric field 

 We will also discuss a potential role of electric field variation on the observed PL 

shift. The influence of electric field was intensively studied and discussed in publications 

on quantum dots [144-145]. The following arguments, however, are generally in 

contradiction with the electric field model in our case, but we will discuss them as an 

alternative to the stress mechanism. We noticed that the appearance of the extra charge in 

the ensemble of non-oriented QDs is expected to lead to the “red” PL shift due to a 

quadratic Stark’s effect [144]. At the same time, a compensation (reduction) of the initial 

charge which may be caused by bioconjugation and drying processes can explain that the 

PL shift will be in opposite, i.e. blue direction. Therefore, we would like to discuss this in 

more details. Electric field applied to the QDs can be changed due to conjugation with 

charged or polar biomolecules. We expect that this feature will be quite similar in the 

liquid and dried phase, which is in contrast with our data. Additionally, electric field 

should be affected by various gas environments due to photo-absorption of gas molecules 

[146]. However, our data on the sample drying in oxygen, nitrogen, argon and vacuum, 

are in a strong contrast with this process, i.e. PL spectral shift is independent of drying 

conditions performed at the same temperature. The PL shift is also not affected by light 

illumination and observed in a sample after storage in darkness. Finally, the electric field 

may be changed after drying due to evaporation of water molecules from the buffer 

solution and water ions attached directly to the bio-molecules.  This, however, would 
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rather increase a net charge on the QD, and therefore lead to the “red” PL shift. All these 

considerations still can not rule out the electric field effect as an alternative to the stress 

mechanism.   

 3.10.3. Importance of the “blue” spectral shift phenomenon for early cancer 

detection 

 The described above “blue” spectral shift of bioconjugated QDs, is very 

interesting from the fundamental physics point of view, but also can be utilized in favor 

of the early cancer detection. In the scope of this research, four different QD types were 

analyzed, and six different types of Antibodies were used for bioconjugation. All of them 

performed a stable and repeatable “blue” spectral shift when dried on a solid substrate 

(silicon). The summary of QDs, antibodies, and the spectral shifts, along with the special 

remarks, are shown in the Table 3.4. As was already indicated earlier in this dissertation 

(Table 3.2), all the antibodies are important cancer biomarkers, and when bioconjugated, 

may be used in either in vitro detection assays (like ELISA), or for multiplexing analysis, 

as a part of the panel biomarkers. The last application is possible, because of the different 

magnitude of the spectral shift, conjugated to different antibodies (figures. 3.15 and 

3.16). 

 As was already indicated, the author suggests to use the 705nm QDs, because 

after conjugation and drying they exhibit the largest “blue” spectral shift. This effect is 

attributed by the fact, that bigger QDs have more spaces for the antibody attachment, 

resulting in the increased elastic stress which is applied to such QDs. For instance, if the 

smaller (“blue”) QDs with the size 3-6nm could attach 1-2 antibodies, the relatively big 

705nm QDs with the size up to 12nm, could possibly attach 3 or more biomolecules. In 
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the scope of this research, about 80% of all effort was put into the 705nm QDs, 

conjugated to PSA antibodies. This is motivated by the fact, that PSA is an important 

(and the one reliable so far!) prostate cancer biomarker, which according to the recent 

data [33-39, 109-110] is present in a very small concentrations in a females body fluids, 

and such small amounts are on or below the standard method’s of detection threshold. 

The final part of this work was dedicated to the utilization of the “blue” spectral shift 

effect for the early cancer detection via lowering the PSA ELISA threshold limit of 

detection. 
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Table 3.4. The summary of QDs, antibodies and spectral shifts of all experiments, 
performed in the scope of this work. 
 
Antibodies 705 (CdTeSe) 655 (CdSe) 605 (CdSe) 580 (CdSe) 
IL-10 

 
Time-induced 
shift ~27nm 
during storage 
at room 

Time-induced 
shift ~10nm 
during storage 
at room 

Time-induced 
shift ~7nm  
during storage 
at room  

~4nm initial shift; 
up to ~65nm T 
shift (190C, 12h); 
~ 14nm room T 
aging shift (12 
days) 

PSA Time-induced 
shift ~27nm 
during storage 
at room 

No experiment No experiment No experiment 

KLK19 
(CAV1) 

No experiment ~3nm initial 
shift; ~10nm T  
shift (190C, 
12h); ~ 14nm 
room T aging 
shift (12 days) 

No experiment No experiment 

P53 No experiment ~5nm initial 
shift; ~15nm 
temperature 
induced shift 
(190C, 12h); ~ 
18nm room T 
aging shift (12 
days) 

No experiment No experiment 

IL-6 ~4nm initial 
shift; ~20-
25nm T 
induced shift 
(190C, 8h); 
~21nm room T 
aging shift 
(12days); 

No experiment No experiment No experiment 

OPG ~10nm initial 
shift; ~36nm 
room T aging 
shift (12days); 
~32-36nm 
temp induced 
shift (190C, 
10h) 

No experiment No experiment No experiment 
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3.11. Summary 

 Section 3 of this PhD dissertation describes and discuss the origin of a new “blue” 

or short-wavelength spectral shift of the photoluminescence spectrum in bioconjugated 

QDs, dried on the solid substrates. This shift starts to develop after the initial 

bioconjugated QD drop was dried on the solid substrate, and gradually increases with 

time, reaching the value of up to 40nm depending on the QD and biomolecule type after 

12 days of room storage. Further storage causes a very slow increase and is therefore 

considered not effective. It must be pointed out that neither liquid, nor gel bioconjugated 

QD samples perform the “blue” spectral shift. It means, that the shift is most likely 

caused by the tensile and other forces, which influence the dried bioconjugated QDs. 

  The shift was found to be affected by the ambient temperature (high temperatures 

speed it up, low – slow down), and by the substrate type (more solid, crystal substrates, 

i.e. the Silicon chip, quartz cause bigger shifts than porous, more amorphous substrates, 

like rubber) , and it was not found to be influenced by different gases, vacuum and high 

moistures. This allows to conclude that the PL spectral shift is caused by elastic stress 

field applied to bio-conjugated QDs dried on solid substrates.  

 The inhomogenity of the spectral peak position and intensity across the dried spot 

was found with the PL spectroscopic mapping technique. This effect is called a “plate-

shape effect” because more pronounced shifts and lower intensities are always located in 

the center of the dried spot. This effect was explained by the fact, that QDs, attaching 

more biomolecules, are heavier (bulkier) and therefore tend to settle in the center, causing 

increased stress forces and therefore increased spectral shift in that area. This effect is 

very interesting by itself, because it gives an opportunity to concentrate the biggest 
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spectral shift in the small area (or maximize it). The results, presented in this section, are 

useful from the fundamental science point of view, as well as may benefit the applied 

biomedical science. The last prospective is described in the next section of this work. 
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4. Modification of PSA ELISA technique with bioconjugated QDs for early      

cancer detection 

 

4.1 Introduction 

 

 ELISA is a very sensitive molecular biology tool, allowing detection of most 

known biomarkers in nanomolar concentrations [97, 103]. However, as was shown in the 

section 2 of this work, the sensitivity of currently used PSA ELISA may not be low 

enough to detect it in women’s biological fluids, presumably, because of this reason, for a 

long time it was not known, that female’s organism also produces PSA and that this is not 

an exclusively “males” molecule [33-39]. PSA in female’s organism was found to be 

elevated in may cancers, including breast, ovarian and uterine cancers, but even its 

elevated levels may be below 0.1-0.2 ng/ml, which makes this molecule virtually 

undetectable by standard PSA ELISA’s. In effort to overcome this obstacle, standard 

“sandwich” PSA ELISA was modified with bioconjugated 705nm QDs as detection tags. 

This was expected to lower the method’s limit of detection for the PSA molecule at least 

several times to allow the PSA detection in female’s biological fluids. The results 

showed, that QD PSA ELISA may be much more sensitive than a standard “sandwich” 

PSA ELISA, employing optical density measurement. In this work, QD ELISA was able 

to detect 20 to 100 times smaller PSA concentrations, depending on the type of 

measurement. Despite the fact, that currently QD ELSIA is more labor and cost 



 

92

consuming in comparison to a standard PSA ELISA, the author believes it may benefit 

both early cancer detection and forensic science. 

 

4.2 ELISA QD procedure 

 Uncoated polystyrene ELISA wells were purchased from NUNC.  All buffers in 

stock solutions (coating, stopping and washing) were purchased from Immunochemistry 

Technologies LLC. The scheme of the “sandwich”-ELISA method is shown in Fig. 4.1. 

 
 

 
 
Figure 4.1. “Sandwich”-ELISA method schematic. Modified, original taken from [147] 
 
 
 Wells were coated with capture PSA AB by adding 50ul of 5X diluted coating 

buffer mixed with AB in concentration 7.5 µg/ml. The wells were then covered with 
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aluminum foil to prevent light exposure and incubated overnight at 4C. After that coated 

wells were washed 3 times with washing buffer and incubated with blocking buffer 

(300µl/well) at the same conditions to ensure blocking of all unused sites on the well, 

available for further protein bonding. This stage was also followed with 3-times washing, 

and immediately proceed to the AG solution/sera addition. 50 µl of PSA AG solution or 

sera was added to wells #2- 4 in the following concentrations: well #2 – 1.0ng/ml; well 

#3 – 0.1ng/ml; well #4 -0.01ng/ml; and well #5 was a control – pure PBS (pH 7.4) added, 

no AG. The wells were incubated in the same conditions for 12h, washed 3 times with 

washing buffer, and the 50 µl of 2X diluted AB*QD solution was added immediately, 

incubated for 12h at the same conditions, washed 3 times and let dry on air until the 

further spectroscopic analysis. The 2X dilution of a conjugate with QD incubation buffer 

was used in the effort to lower the expenses, associated with the experiment. QD*AB 

conjugated is very concentrated in ABs (the AB solution used for conjugation is 1mg/ml), 

therefore, they are taken in excess even if the conjugate is diluted 2 times. The 2X 

dilution of a conjugate with QD incubation buffer (obtained from Invitrogen Inc) was 

used in the effort to lower the expenses, associated with the experiment. QD*AB 

conjugated is very concentrated in ABs, therefore, they are taken in excess even if the 

conjugate is diluted 2 times (table 4.1): 
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Table 4.1: AB concentration estimate 
 
Main stage 
of 
conjugation 

Brief description Estimated AB 
concentration and 
volume 

Initial Stock AB solution 1 mg/ml, 300µl [inv] 
Mixed with 
QD 

125ul of QD solution 0.7mg/ml, 425µl 

Separation 
column 

To get rid of unconjugated ABs; 
Assuming no AB losses 

0.6mg/ml, 500µl 

Final 
volume 

Assuming 50% of AB losses 0.3mg/ml, 500µl 

 Assuming 90% of AB losses 0.06mg/ml, 500µl, 
or 60ug/ml, 500µl 

 Assuming 99% of AB losses 0.003mg/ml, 500µl 
or 3ug/ml, 500µl 

 

 Therefore, even assuming 99% of all AB losses we still have 3µg/ml AB solution, 

which diluted 2 times gives us 1.5µg/ml solution, which is 1000-100000 times more than 

target AG concentrations.  

 QD concentration could also be the limiting point in effort to use diluted 

conjugate for ELISA. The authors believe that it is possible to use even more diluted 

conjugate solution and  the most suitable dilution should be determined empirically. The 

research in this direction is currently in progress.   

 

4.3 ELISA standard procedure 

 In order to compare the QD PSA ELISA results with the established, 

commercially available ELISA, the regular ELISA was run with a tPSA detection kit 

supplied by CanAg (CanAg PSA EIA 340-10) [148]. The methods sensitivity, claimed by 

the vendor, is above 0.1 ng/ml. The detailed ELISA procedure could be found at the 

wendor’s website [148]. The main stages are shown on Figure 4.2 . The method employs 
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a classic “sandwich” ELISA principle, where the optical detection is based on the 

Horseradish peroxidase (HRP) enzyme, cleaving the substrate, yields to the change of 

color [149]. An  enzyme horseradish peroxidase (HRP), found in horseradish, is used 

extensively in molecular biology applications primarily for its ability to amplify a weak 

signal and increase detectability of a target molecule [150]. Commercial kit includes 96 

precovered with the PSA coating Antibody wells, to which the samples (PSA antigens) 

are added, following with the addition of detecting PSA Antibody, conjugated to HRP. 

Next, the substrate is added, following with the stopping solution addition, and 

absorbance reading at 450nm (Figure 2.21). All samples were run in duplicates and the 

results are the averages of the two [148]. The reading was performed using a Synergy™ 

HT Multi-Mode Microplate Reader supplied by BioTek, at 450nm.  

 

 
 

Figure 4.2. The brief schematic of the CanAg EIA procedure 

 

 After the final washing, ELISA wells were first filled with 50µl of PBS and the 

PL was measured on the Synergy™ HT Multi-Mode Microplate Reader (Biotek) with the 

360 +/- 20nm excitation and 640 +/- 40nm emission filters. In order to ensure correct 

QD’s PL reading by the microplate reader with the mentioned above filters, the pure QD 

dilutions were prepared and measured which resulted in a straight PL dependence on QD 

concentration [Fig 4.3A]. Because the working range is expected to be in the high QD 
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dilutions (0-10% of the original QD in the solution), this area is presented separately on 

the Figure 4.3B. 

0 20 40 60 80 100
0

10000

20000

30000

40000

A

PL
 in

te
ns

ity
, a

rb
.u

ni
ts

QD fraction in the solution, %
 

0 2 4 6 8 10
0

1000

2000

3000

4000

B

PL
 in

te
ns

ity
, a

rb
.u

ni
ts

QD fraction in the solution, %
 

100 101 102

103

104

C

PL
 in

te
ns

ity
, a

rb
.u

ni
ts

QD fraction in solution, %
 

 

Figure 4.3. PL intensity dependence on the QD dilutions: A – the full range; B – high 
dilutions (QD portion is 0-10%); C – subfigure A in a double log scale. 
 
 After the mentioned above measurement, the PBS was disposed and the wells 

were dried in the room ambience for several hours, and ELISA wells were taken for the 

spectroscopic analysis. 
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4.4 Spectroscopic mappings of ELISA plates  

 After the final washing, ELISA wells were dried on air at room ambience for up 

to 120min, and then each well was stored in a clear plastic box in order to minimize 

contamination of the wells. In order to get rid of QDs which may occasionally stick to the 

walls of the well and have no relation to the “sandwich” formation, the bottom was 

separated from the walls with the clean heated blade which allowed a very accurate cut. 

Future spectroscopic measurements were conducted with ELISA bottoms only. We 

realize that this procedure is complicated and hardly to use as described in clinics, but we 

believe it is suitable for the main purposes of this work – to research a possibility to form 

a “sandwich” with conjugated QDs, using lower AG concentrations, and measure and 

research the spectral shift of bioconjugated QDs, involved into the “sandwich” formation.  

In order to accurately measure, record and analyze the PL signal across the samples, the 

spectroscopic mapping technique was employed. 

 Spectra, obtained from ELISA wells are shown in Figure 4.4. It is obvious that all 

wells, containing AG (B-D) provide the PL spectrum that matches to the QD 

luminescence. In contrast, the control well # 5 (E) without PSA AG shows negligible PL 

peak intensity in the range of 575-800nm, although was loaded with the same amount of 

conjugated QDs and undergone identical washing regime. Clearly, the AB*QD conjugate 

in the well # 5 did not form a “sandwich” because of the PSA AG absence, and was  

therefore washed out. We point out that a residual optical signal observed in the well #5, 

is a spectroscopic tail of 488nm laser line, scattered by the plastic well, and therefore has 

no relation to the QD luminescence. Well # 1 (A) was included in the experiment in order 

to compare the “blue” spectral shift of conjugated QDs in comparison to nonconjugated. 
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Well # 1 was precovered with primary AB in the same way all other wells were, but did 

not undergo any washing cycles, therefore, the PL spectral peak position of 

nonconjugated QDs, dried on the plastic ELISA well, could be taken from the well #1. 
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Figure 4.4. Normalized PL spectra measured on ELISA wells # 1-5 (A-E, respectively). 
Dashed lines correspond to the average PL peak positions.  
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 PL spectra, obtained in the process of the spectral mapping of ELISA wells, were 

compared with the spectra, obtained from identical batch of nonconjugated and 

conjugated QDs, dried on the silicon substrate. The results are shown on Figure 4.5. From 

Figures 4.5 and 4.6 it is evident, that conjugated QDs show a “blue” spectral shift, and its 

numerical values (13-37nm)  and standard deviations will be described below. 
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A      B 
 

Figure 4.5. Normalized PL spectra from the spectroscopic mapping on non-conjugated 
705nm QDs (A) and bio-conjugated with PSA antibody 705nm QDs (B), dried on a 
silicon substrate. Dashed lines correspond to the PL peak positions averaged across the 
sample area. 
 
 
4.5. Spectral mapping and “blue” spectral shifts 

 All ELISA wells, which contained PSA AG, have a PL signal from the 

conjugated QDs, involved into the “sandwich” formation. It was obvious that PL 

intensity and PL peak spectral position are not uniform across the well area, and this 

nonuniformity was tracked with the PL spectroscopic mapping procedure. The spectral 

maps of the #2-4 ELISA wells are shown in Figure 4.6.  The spectral map of the well #1 

is not informative (because nonconjugated QDs were simply dried in the well), while the 
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well #5 does not exhibit a measurable PL intensity from the 705nm QDs.  The well #4 

(with the smallest AG concentration of 0.01 ng/ml) shows the QD PL peaks mostly at the 

periphery area, the wells # 2 and #3 at the centers, and the well # 3 all over the sample. 

This inhomogeneity can be attributed to a non-uniform capture of the PSA AG molecules 

by the capturing antibodies, when forming a sandwich structure.  

 In this experiment using the PL spectral mapping technique we observed a new 

effect, as a dependence of the “blue” spectral shift versus the AG concentration. In Figure 

4.7 the average peak positions, along with the PL shift are presented. The average PL 

peak position is shifted towards the “blue” (short wavelength) region for wells with 

decreased AG concentrations, and its standard deviations are also increasing for wells 

with decreased AG concentrations. The average peak positions, along with their standard 

deviations, are as follows in wells # 1-4: 7080 (+-10); 6900 (+-32); 6870 (+-40); 6810 (+-

52). Additional research in the effort to confirm this interesting effect is currently in 

progress. 
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Figure 4.6 Spectral maps of the ELISA wells # 2-4 (A-C, respectively). Left column – 
peak positions [A], right column – corresponding intensities [arb units].  
 
 
 



 

102

0.01 0.1 1
6700

6800

6900

7000

pe
ak

 p
os

iti
on

, A

AG concentration, ng/ml

 
Figure 4.7. Average spectroscopic peak (close to 705nm) positions and their standard 
deviations of the ELISA wells with corresponding AG concentrations, used in the 
experiment. 
 
 To identify if the “blue” spectral shift vs the PSA dependence is statistically 

significant, the two-tailored t-test was performed with the following hypotheses: 

H0: The slope of the regression line is equal to zero.  

Ha: The slope of the regression line is not equal to zero.  

For this analysis, the significance level is 0.05. We get the slope (b1) and the standard 

error (SE) from the simple excel calculations, for the following set of data: 

b1 = (-6.75676)       SE = 0.3161  

We compute the degrees of freedom and the t-score test statistic, using the following 

equations. 
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DF = n - 2 = 3 - 2 = 1  

t = b1/SE = 6.75676/0.3161 = 18.3315 

 Based on the t-score test statistic and the degrees of freedom, we determine the P-

value. The P-value is the probability that a t-score having 1 degree of freedom is more 

extreme than 18.3315. Since this is a two-tailed test, "more extreme" means greater than 

18.3315 or less than -18.3315. We use the t Distribution Calculator to find P(t > 18.3315) 

= 0.0173. Therefore, the P-value is 0.0173 + 0.0173 or 0.0347.  

Interpret results.  

 Since the P-value (0.0347) is less than the significance level (0.05), we cannot 

accept the null hypothesis. It means that the slope of the regression line is NOT equal to 

zero, and the inverse relationship of the “blue” spectral shift VS the PSA concentration IS 

statistically significant. 

4.6. “Plate-shape” effect and residual nonconjugated QDs 
 
 As was described in our works [119-123], the authors found a so-called “plate-

shape” effect on the QD samples dried on the solid surface (silicon). This effect was 

especially pronounced for conjugated samples. It means the different intensity and peak 

profiles across the area of a dried sample, with both intensity and peak positions being 

elevated in the periphery region and decreased in the center. The typical “plate-shape” 

effect for 705nm QD, conjugated to PSA AB, dried on the clear silicon chip, is shown on 

the Figure 4.8.  
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  A      B 
Figure 4.8. Spectroscopic peak position (A) and PL intensity (B) maps of 705nm QD 
sample, conjugated to PSA AB, dried on a clear silicon chip. Lighter areas correspond to 
elevated intensity/peak position values. Peak positions in angstroms, intensity in arb. 
units. 
 
 The authors attributed this effect to either increased stress applied to QDs in the 

center, which may change their shape/size, or to the increased concentration of 

nonconjugated QDs in the periphery region, which is caused by their increased mobility 

because of their small size in comparison to heavy and bulky conjugated QDs. In the 

effort to approve one of this hypothesis, an average peak position values along with their 

ranges were analyzed for ELISA wells #2-4 and conjugated sample, presented in Figure 

4.6. The results are shown in the Table 4.2. 

 
Table 4.2. Average peak positions for different conjugated samples and their magnitudes. 
 
Sample Average PL peak 

position, nm 
PL peak range, nm 

Conj dried on Si 694 682-706  
Well #2 690 687-693  
Well#3 687 675-694  
Well#4 681 671-691  

 

 From the Table 4.2 it is clear that the upper limit of the sample, dried on the 

silicon surface, is 11-13nm elevated in comparison to any of the ELISA wells. And what 

is even more important, is that the upper limit of the dried on Si chip conjugated sample 
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surely lies on the very periphery (Figure 4.8A) and corresponds to the wavelength of 

emission of pure, 705nm QD sample, deposited on the silicon surface [119-123]. This 

helps to draw a conclusion that because only conjugated QDs take part in the ELISA 

“sandwich” formation, nonconjugated QDs, small fraction of which is always present in a 

conjugate, are washed away and don’t interfere with the PL from conjugated QDs. 

However, when a small droplet of conjugate is deposited on silicon, the nonconjugated 

fraction of QDs contributes to the PL signal. This observation is important, because 

allows to separate and eliminate the residual nonconjugation QDs, and their PL signal 

which may interfere with conjugated QDs and cause false positive results. It is also 

important, because serves as an additional proof that the PL, coming from ELISA wells, 

is the PL of conjugated 705nm QDs, involved into the “sandwich” formation, and not the 

residual QDs, got stuck into the plastic. 

 

4.7. QD ELISA is more sensitive than the regular tPSA ELISA 

 

 The regular, commercially available and QD modified PSA ELISA’s were 

performed on the same set of samples, which included four female serum samples with 

known tPSA concentrations (1.82, 0.66, 0.093 and 0.013 ng/ml) and four PSA AG 

solutions in PBS (0.1, 0.01, 0.005 and 0.001 ng/ml). As for the serum samples, the two 

lowest concentrations were prepared by dilutions of other samples with greater 

concentrations.  The samples in commercially available ELISA were run in duplicates, 

and the samples in QD ELISA were run in just one sample each. This was done in order 

to minimize the cost of the experiment, which is at the moment high, especially for the 
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QD ELISA. The main goal of the experiment was to determine if the QD ELISA can go 

lower than the current threshold (0.1ng/ml), and if yes, how low can it possibly go.  

 On Fig.4.9,  the results of commercial ELISA is shown. As expected, among the 

plasma samples 0.013 and 0.093 ng/ml were undetectable (Fig 4.9A), as well as the 

whole range of the AG dilutions in PBS (Fig 4.9B). According to our results, 0.1ng/ml 

and below were undetectable in both the serum and AG dilutions samples which is in a 

good agreement with the claimed method threshold [148]. 
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Figure 4.9 CanAg PSA AG detection limits: A – in sera samples; B – in AG solution in 

PBS. 

 

 Different results, however, were obtained with the QD ELISA using same set of 

samples (Figure 4.10). As obvious from the Pic 4.10A, all plasma samples were 

successfully detected, including the 0.013 and 0.093 ng/ml dilutions. As for the AG in 

PBS solutions, the the lowest 0.001ng/ml concentration was almost at zero level (Figure 

4.10C), so it is considered undetectable, however, the next dilution – 0.005ng/ml, was 

detected (Figure 4.10B) and therefore may be considered as a new threshold for the PSA 

AG detection with the QD ELISA method. 



 

107

0.0 0.5 1.0 1.5 2.0

2000

4000

6000

8000

0
0.013

0.093
0.66

1.82
PL

 in
te

ns
ity

, a
rb

. u
ni

ts

PSA AG concentration in sera, ng/ml
0.00 0.02 0.04 0.06 0.08 0.10

500

1000

1500

2000

2500

PL
 in

te
ns

ity
, a

rb
. u

ni
ts

PSA AG concentration in solution, ng/ml
 

A       B 

0.000 0.004 0.008
0

100

200

300

400

500

600

700

0.001 ng/ml

zero density

PL
 in

te
ns

ity
, a

rb
.u

ni
ts

PSA AG concentration, ng/ml
 

C 

Figure 4.10. QD ELISA detection limits: A – in sera samples; B – in AG solution in PBS; 
C – the range 0 – 0.01 ng/ml for the AG solution in PBS, to better see the lowest (0.001 
ng/ml) concentration. 
 

 So, based on the mentioned above results, the authors conclude that ELISA, 

which utilizes bioconjugated QDs as detection markers is at least 20 times more sensitive 

that the currently available commercial ELISA (0.005 vs 0.1 ng/ml). This is attributed to 

a very efficient mechanism of QD emission, so that just a relatively small amount of 

QDs, which are engaged into the sandwich formation, is enough to create  detectable PL 

signal.  
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4.8. Spectroscopic measurements of ELISA wells – pure AG solution 

 After the liquid PL measurements on the microplate reader, the PBS was 

disposed, wells were dried and used for the spectroscopic analysis. Initial mapping was 

performed (next day), and it was repeated on the 5th day. Between the measurements, the 

wells were stored in a clear plastic boxes at the room temperature (RT). An attempt was 

made to map the wells later, but it was a substantial intensity drop, probably because of 

the sandwich gradual denaturation, and therefore, the further mappings of these wells was 

impossible.  

 The actual spectral PL maps at the lowest concentration of 0.001ng/ml for the 

antigen solution (subfigure A) and 0.013 ng/ml for serum sample (subfigure B,) after 5 

days of storage are shown on Figure 4.11. These pictures show the distribution of the PL 

peak positions and intensities across the ELISA wells. The lowest concentrations are 

shown, because they generate the largest spectral shift. Note that non-conjugated samples 

exhibit the PL peak position in the range of 702 – 706 nm, therefore the samples dried in 

ELISA wells (Fig 4.11) show a substantial average spectral shift ~ 35 nm with the PL 

maximum in the range 655-687 nm.  



 

109

 

Figure 4.11. The actual spectral maps for the lowest concentrations of the pure Antigen 
solution (A, 0.001 ng/ml), and the serum sample (B, 0.013 ng/ml) after 5 days of room 
storage. Peak position (nm) – left column, intensity (arb. Un.) – right column. 
 
 
 The results of the spectral mappings are shown on figures 4.12 (pure PSA Ag 

solution) and 4.13 (female serum samples, analyzed for the presence of PSA Ag). 

Subfigures A show comparison of the average peak positions across the wells during the 

initial and after 5 days of storage treatment, while the subfigures B shows the same 

dynamics for the sample’s intensity. Subfigures C depicts the difference between the 

highest and lowest concentrations of Antigen and its relation to the spectral shift – after 5 

days of storage with the spectral peak position around 703nm. Initial data has the similar, 

just the less pronounced, trend, and therefore is not shown.  
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 The standard deviation for Figures 4.12A and 4.13A (spectral peak position) did 

not exceed 1% (+/- 7nm) for the initial measurement, and did not exceed 2% (+/- 14nm) 

for the 5 days measurement.  
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Figure 4.12. QD ELISA of the pure PSA Ag solution samples: A – comparison of the 
spectral peak positions (initial and after 5days of room storage); B - comparison of the 
intensities (initial and after 5days of room storage); C – spectra of the highest (0.1ng/ml) 
and lowest (0.001ng/ml) PSA Ag concentrations after 5 days of room storage, compared 
to pure 705nm QDs. 
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4.9.  Spectroscopic measurements of ELISA wells – serum samples 
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Figure 4.13. QD ELISA of female serum samples: A – comparison of the spectral peak 
positions (initial and after 5days of room storage); B - comparison of the intensities 
(initial and after 5days of room storage); C – spectra of the highest (1.87ng/ml) and 
lowest (0.013ng/ml) PSA Ag concentrations after 5 days of room storage. 
 
 Table 4.3 A and B summarizes the most important numbers for the spectral shift 

and intensity changes between the different samples, AG concentrations and the time of 

storage. The most important findings will be discussed below. 
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Table 4.3 The most important numbers for the spectral shift and intensity changes 
between the different samples, AG concentrations and the time of storage. 
A 

 Pure PSA AG solution 

INITIAL 

Female serum samples 

INITIAL 

Conc AG, 

ng/ml 

0.001 0.005 0.01 0.1 0.013 0.091 0.66 1.87 

Avg init peak 

pos nm 

689 690 691 702 691 692 696 702 

Peak ranges 685-

702 

685-

703 

687-

705 

700-

705 

684-  

703 

686-

703 

691-

703 

699-

705 

Avg init 

intens a.u. 

35 37 40 90 78 86 110 145 

Intens ranges 8-57 10-66 9-69 17-126 43-111 57-99 71-148 92-188 
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 B 

 Pure PSA AG solution 

5 DAYS AT ROOM T 

Female serum samples 

5 DAYS AT ROOM T 

Conc AG, 

ng/ml 

0.001 0.005 0.01 0.1 0.013 0.091 0.66 1.87 

Avg init peak 

pos nm 

674 676 677 694 678 681 686 692 

Peak ranges 665-

683 

671-

688 

672-

687 

674-

699 

659-

694 

670-

690 

674-

694 

679-

700 

Avg init 

intens a.u. 

7 11 14 49 20 23 38 63 

Intens ranges 0-29 0-31 2-43 5-77 0-39 1-41 7-56 11-89 

 

 

4.10. Pure PSA AG solution and female serum samples ELISA results discussion 

 When the described above experiment was planned, the two main goals or set of 

questions were asked: 

This project targeted two main objectives 

1. How sensitive is  QD ELISA compared to the commercially available ELISA 

test used for PSA detection; and 

2. what is a dependence between the “blue” spectral shift of bioconjugated QDs 

and the PSA AG concentration.  

 The results clearly show the following.  
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 705nm QD ELISA can detect the PSA AG concentrations which are undetectable 

with commercial CanAg ELISA. The manifested and observed threshold of the 

commercial ELISA used was about 0.5ng/ml PSA AG, and QD ELISA was able to detect 

as low, as 0.001ng/ml of PSA AG in the solution, and this amount may not be the lowest 

possible. The sensitivity was even increased with the spectroscopic detection via the 

mapping technique in comparison to the microplate reader detection, as in the microplate 

reader the 0.001 ng/ml was very close to the zero photoluminescence intensity (Figure 

4.10C), while the spectroscopic mapping technique was able to detect a pretty good red 

PL (Figure 4.12B). Based on this results, one may conclude that QD ELISA is ~100 more 

sensitive, than commercial ELISA, if the spectroscopic mapping technique was used. If 

the microplate reader was used, it is 20 more sensitive.  

 The “blue” spectra shift range is inversely dependent on the PSA AG (detection 

molecule) concentration. It means, that for the PSA AG ranges used (0.001-2 ng/ml) the 

“blue” shift was observed to be more pronounced for higher AG concentrations.  This 

effect was observed for both serum and pure antigen solution samples. This effect was 

not checked on other Antigens or biomolecules, and if confirmed, may be the reliable 

additional (together with the intensity) feature, allowing the careful biomolecules 

detection/quantitation in extremely low concentrations. In future, two detection 

techniques – the PL intensity and the spectral shift assessment – may be used for ELISA, 

allowing generation of two separate standard curves and comparison of the results. This 

may potentially allow a better accuracy of detection, because two independent variables 

are used, instead of just one (intensity). This may even eliminate the need to run ELISA 

samples in duplicates. The observed effect is very interesting both by itself, and from the 
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diagnostics point of view, and requires additional research. The possible rationale for this 

effect will be proposed below.  

 

4.11. Inverse “blue” spectral shift versus the PSA dependence - discussion 

 According to Figures 4.12A and 4.13A, decreased AG concentration causes an 

enhancement of the spectral shift up to maximum value of 35 nm at the lowest AG 

concentration of 0.001ng/ml. We will  briefly discuss a mechanism which may contribute 

to this unusual spectroscopic effect. It is known that one AG molecule can attach several 

(usually up to three) AB molecules [151], and the blue shift magnitude may depend on 

the amount of AB*QD complexes, attached to one AG as well as on the special 

configuration of ELISA sandwiches. However, a preferable model to account for 

observed experimental results can be qualitatively described as following.  

 As was shown in [119-123], the blue shift is enhanced after a drop of conjugate is 

dried on a solid surface, and its magnitude is determined by elastic stress caused by the 

tensile forces at the sample-substrate interface. In the current project, the ELISA samples 

were also dried on the solid substrate (the bottom of the well), therefore it is conceivable 

that in this case the blue shift is caused by a similar elastic stress mechanism. The 

average blue shift magnitude of the AB-AG-AB*QD sandwich is larger than that of 

isolated AB*QD conjugate, which may be explained by the increased size/weight of the 

complex. This is in a good agreement with the previously published data on increased 

blue shift with increasing of the AB molecular weight [120]. This model is partially 

supported by the blue shift dynamics with the drying time of the sample (Figures 4.12A 

and 4.13A – compare the initial shift and the one after 5 days of storage).  
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Because the magnitude of the mechanical forces are maximized near the interface of the 

dried sample and the substrate, and it is gradually decreased in the perpendicular 

direction, it is obvious that the blue shift will depend particularly on orientation of the 

QD*Ab complex with respect to the interface. We suggest that at high Ag concentration 

the distance between the neighboring QD*Ab complexes, attached to the bottom of the 

well is decreased and complexes are oriented as illustrated in (Figure 4.14A). For such 

complexes the blue shift caused by interface stress is relatively small. If the Ag 

concentration is extremely low, then some QD*Ab pairs are reoriented in a manner that 

the QD is located near the interface and experience maximum elastic stress (Figure 

4.14B). Therefore, with decreasing Ag concentration a fraction of complexes oriented 

along the interface will be high which leads to increasing blue spectral shift. In this case, 

the blue shift is maximized consistent with the experiment. 
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Figure 4.14. Possible orientation of the AG molecules, capturing AB and QDs in ELISA 
wells with different AG concentration: A - higher AG concentrations, most of the 
capturing ABs are occupied, the complexes are parallel to the bottom of the well and 
more or less uniformly distributed across the bottom area; B – lower AG concentrations, 
some of the capturing ABs are empty, one AG molecule may be attached by two 
capturing ABs. The “sandwiches” may be more concentrated near the interface with the 
well bottom.  

 

4.12. QD ELISA vs regular ELISA, benefits 

 As was explained before, QD ELISA has several important benefits over the 

standard commercially available ELISA. 

 It allows to lower the PSA AG limit of detection up to 100 times, in comparison 

to standard techniques, based on the PL intensity measurements alone. This feature may 

be used for early detection of some female cancers, as well as in the forensic science.  
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 The tracking of bioconjugated QDs spectral shift may provide additional evidence 

of the sandwich formation and add another variable to the detection parameters. Because 

of the negative “blue” shift magnitude vs PSA antigen concentration dependence, it may 

be possible to track the biomolecule’s concentration, based on the spectral shift alone, or 

on the intensity combined with the spectral shift measurements separately. This may 

eliminate the need in the duplicates as well as improve the overall reliability and 

sensitivity of the method. 

 The samples of the QD ELISA retain their PL for days (at least for 5 days in the 

PSA experiment) in comparison to standard ELISAs which must be measured within 

minutes after the experiment ends. This feature is very convenient, because it’s not 

always possible to perform the measurement immediately after the experiment ends. It 

also allows repeatedeasurement of the samples, if the results of the first one may cannot 

be used. 

 

4.13. Possible limitations of QD ELISA 

Although QD ELISA may look very promising from the research point of view, 

several limitations/disadvantages are currently needed to be overcame in order to 

implement it in clinics. 

 As for now, the reliable estimation of the number of biomolecules, attached to one 

QD, is not possible.  For instance, the 705nm Invitrogen QDs may possible attach 1-3 

biomolecules, however, the exact estimation of how much was attached is not available at 

the time. This is a serious limitation, which may lead to the wrong PL intensity and/or 

spectral shift assessment. For instance, if the majority of bioconjugated QDs in the 
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conjugate attached 1 biomolecule, the final intensity of the sample will be higher, than if 

the conjugate, containing mostly 1 QD+3 biomolecules, is used. This may lead to failure 

to discriminate between the samples with similar, but different, concentrations (especially 

when the low concentrations are used). This may also have an effect on the spectral shift 

magnitude. In future, if the reliable method of estimation the number of biomolecules, 

attached to one QD, is developed, this limitation may be successfully overcomed. 

 Possible toxicity of QDs. Although properly capped/shelled QDs are considered 

safe for living organisms, the growing body of publications are available on the possible 

QD toxicity to living organisms. It was published, that different types of QDs may cause 

the following effects in living objects: vascular thrombosis in the pulmonary circulation 

[87], could induce apoptosis and cell death [88], and may accumulate in the lungs, spleen, 

liver and kidneys [89]. It may happen, therefore, that it is not safe to work with QDs 

without the proper protection. Although this factor by itself is not the major obstacle in 

using QDs for in vitro studies, possible negative consequences for the lab personnel may 

be considered before starting the work with QDs. This may impose additional charges 

and/or other limitations of the QD ELISA in comparison to standard ELISAs, making it 

not as favorable as it may have been otherwise.   

 The time and labor efforts may also be a limiting factor in implementing QD 

ELISA. Although it is possible to order the bioconjugated QDs directly from the 

company, it is very expensive and may require additional excessive waiting times, and it 

is not very common. Performing the bioconjugation procedure in the lab requires 

additional  time (about 5 hours) and the trained personnel, which clearly adds a new big, 

rather tedious step to the QD ELISA. Spectroscopic analysis of the samples is also time 
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consuming, and may take several days for the spectral shift to develop. The mapping 

itself also requires time, and depending on the step size (precision), may take as long as 8 

hours per well (usually, at least 3 hours). Optimization of the QD ELISA procedure and 

implementation of the new equipment (i.e. PL system, capable of mapping several wells 

at the same time) may improve the timing, but as for now it was not done. 

 QD ELISA is more expensive than any of the current commercial ELISAs. The 

major limiting factor which makes QD ELISA not cost-effective, is the conjugate 

quantity. For the Invitrogen conjugation kit, which allows 2 conjugations, each 

conjugation produces approx 200µl of conjugate, which was determined, can be diluted 

twice (table 4.1). So, one conjugation kit produces up to 800µl of conjugate, accepting 

one sample needs at least 40µl of it, one kit is enough to analyze at most 20 samples. 

 Table 4.4 describes the average cost of one sample analysis for this work (the 

table excludes expenses associated with the microplate readers, as it is common for both 

ELISAs, and the laser/equipment charges, associated with the spectroscopic mapping, as 

it is hard to accurately estimate). It is obvious, that the cost of $52 per sample, compared 

to $7.80 per sample in a standard ELISA, is more than excessive. In future, however, 

if/when QDs become cheaper and more readily available, this technique may become 

very popular. 
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Table 4.4 Summary of the costs associated with the regular and QD PSA ELISAs. 

Charge QD PSA ELISA Average regular PSA 

ELISA 

Average ELISA kit cost N/A $350-400 

(1 kit, 96 wells, 48 

samples) 

QD 705nm conjugation kit $600 N/A 

Coating and detection antibodies $400 Included in the kit 

Misc. ELISA supplies (buffers, 

plates etc) 

$50 Included in the kit 

Average sample amount 20 48 

Average cost per sample, $ 52 7.30-8.30 

7.80 average 
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Table 4.5 summarizes the benefits and limitations of the QD ELISA in comparison to 

regular ELISA. 

Table 4.5 The benefits and limitations of the QD ELISA in comparison to regular ELISA. 

Feature QD PSA ELISA Commercial PSA ELISA 

Sensitivity by intensity + - 

Sensitivity by spectral shift + - 

Samples PL shelf-life + - 

Time, cost and overall effort to 

perform the experiment 

- + 

Imperfections of the 

bioconjugation procedure 

- N/A 

Possible QD toxicity - + 

 

 The author of this work believes, that if the increased sensitivity of ELISA is 

needed, QD ELISA will be used even regardless of the increased cost. However, if in 

future the cost and overall tediousness of the procedure is reduced, QD ELISA has all 

chances to successfully compete with the regular, commercially available ELISAs.  

 

 

 

 

 

 



 

123

4.14. Conclusions  

 Several important conclusions may be drawn from this PhD dissertation. 

  Agarose gel electrophoresis technique, optimized with organic dye 

fluorescamine, could successfully be used to verify bioconjugation. The optimal 

parameters for 705nm PEGylated QDs, conjugated to different antibodies, were found. 

They are: 2% agarose gel, 1.5V working voltage, 0.5X TBE as a running buffer, and 

about 120 mins running time. We have achieved an obvious retardation in movement of 

bioconjugated QDs, in comparison to pure QDs, because of their increased weight and 

size. Pure antibodies, labeled with fluorescamine, have the fastest speed due to their small 

size and run out of the gel in approx. 30-40mins. The optimal parameters for different 

QDs may vary, and could be experimentally optimized further if necessary. 

  The shape and size of pure 705nm QDs was verified with the TEM technique. 

QDs were found to be oval shaped, approximately 11x6nm. Bioconjugated QDs were not 

found to have substantially changed shape and/or size, however, the TEM analysis should 

be performed on substrates, not covered with amorphous carbon film, to finalize this 

conclusion. 

 The “blue” spectral shift of bioconjugated QDs was described, conditions which 

may influence it were listed, and the possible mechanism of its appearance was proposed. 

It was found that the short-wavelength spectral shift of bioconjugated QDs is observed 

for all samples dried on the silicon substrates, in comparison to pure QDs of the same 

size/color, dried at the same conditions. The shift was increased with the time of storage 

at the room ambience for all samples, reaching 27-40nm in approx 14 days. Further 

storage caused a very slow increase and was considered not effective.  
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 Larger size QDs generate spectral shifts of larger magnitudes, presumably 

because they have more sites for biomolecule attachment and can therefore attach more 

biomolecules. Six biomolecules, currently being considered cancer biomarkers (IL-6, IL-

10, CAV1, OPG, p53, and PSA), were used for bioconjugation, and all of them 

performed a repeatable “blue” spectral shift, when dried on the silicon surface. The shift 

positively correlated with the biomolecule’s size/weight. This effect can be explained by 

greater tensile forces which are generated at the bioconjugate-substrate interface in the 

process of drying for biomolecules with bigger molecular weights. 

  The shift was substantially accelerated at elevated temperatures of sample drying 

(50-250C) and slowed down at lower temperatures (2-4C). This effect was attributed to 

the slower drying of attached biomolecules at lower temperatures. Argon, nitrogen, 

oxygen, moisture and vacuum were not found to influence the rate of the spectral shift 

development, suggesting that it is caused mostly by physical (stress), rather than chemical 

(chemical reactions between the QD/biomolecule) factors.  

 Samples dried on porous and elastic substrates (CMP pad, rubber, grid) did not 

exhibited PL spectral shift, or the shift was mush smaller in comparison to crystalline 

silicon substrates. The PL shift was attributed to the elastic and compression stress due to 

nonhomogenious drying of the QD droplet and the reaction with the solid surface.  

 Dried bioconjugated QD drops were found to have an nonhomogenious profile 

across the spot (lower in the periphery and higher in the center). This effect was named a 

“plate-shape effect” and was observed for all conjugated samples. It is important, because 

gives a chance to concentrate the maximal spectral shift in the smaller area.  
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 The final part of this study implements the spectral shift for improving the 

sensitivity of PSA ELISA. It was found that QD ELISA could be as much, as 100 times 

more sensitive than the regular commercial ELISA, based on the enzymatic detection. 

The cut off for commercial ELISA was about 0.1ng/ml, while QD ELISA was able to 

detect as low, as 0.001 ng/ml of the PSA Antigen when the spectroscopic mapping 

technique was used, or as low as 0.005 ng/ml when the standard microplate reader was 

used for the PL detection.  

 The magnitude of the spectral shift was found to be in a negative correlation with 

the PSA antigen concentration, suggesting a new variable, besides PL intensity, in the 

biomolecules detection process. As of now, QD PSA ELISA was found to be labor and 

cost expensive in comparison to a regular PSA ELISA, but if the cost of QDs drop in 

future, or if the urgent need for increased sensitivity arises, it may become a valuable 

alternative.  

 The further experiments following this work are described and proposed in the 

next chapter. 
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5. Recommendation for further research 
 
 Further experiments related to the revealing the mechanisms of the “blue” spectral 

shift appearance are recommended. More biomarkers should be involved into the study, 

as well as other QDs, possibly of a bigger size (deep red to near infrared emission). It 

may be useful to try the near infrared QDs, as they  may generate the largest spectral 

shift. This may lead to the database of the spectral shift magnitudes for different QD-AB 

combinations, under certain environmental conditions/storage times. The combinations of 

environmental factors (for instance, increased temperature, higher moisture and oxygen 

environment) may be tested in order to reveal the conditions under which the spectral 

shift is maximal.  

 TEM analysis of bioconjugated QDs shall be conducted on the grits, which are 

not covered with the amorphous carbon grit, because the grit may diminish the tension 

forces and reduce the deformation of QDs, which appear on solid crystal substrates and is 

responsible for the spectral shift. 

 Further QD ELISA experiments shall be conducted with different antibodies, in 

order to establish the sensitivity of this method for other biomarkers. Substantial amount 

of samples must be generated in order to create a reliable database of both the sensitivity 

cutoff and the negative spectral shift dependence on the biomolecule’s concentration. If 

confirmed for all or at least several biomolecules, this effect may be implemented as a 

detection parameter, along with the PL intensity, to increase the detection accuracy.  
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 Spectral shifts of ELISA sandwiches for different antibodies may be compared 

under certain conditions, and the database of them created. This may serve as a future 

base for a simultaneous detection of several biomolecules in one probe, based on the 

detected wavelength and spectral shifts. As the overall goal, proposed research may lead 

to a substantial increase in the ELISA sensitivity and serve as a better tool for earlier 

cancer detection. 
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