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Development and Deployment of an Underwater Mass Spectrometer for Quantitative 
Measurements of Dissolved Gases 

 
Ryan J. Bell 

ABSTRACT 

Manual collection and processing of seawater samples for dissolved gas analyses 

are technically challenging, time consuming and costly.  Accordingly, in situ analysis 

techniques present attractive alternatives to conventional gas measurement procedures.  

To meet the demands of sustained, high-resolution chemical observations of the oceans, 

the University of South Florida and SRI International developed underwater mass 

spectrometer systems for quantitative measurements of dissolved gases and volatile 

organic compounds.  This work describes the influence of variable in situ conditions on 

the performance of a membrane introduction mass spectrometer used for measurements 

in both the water column and sediment porewater. 

Laboratory experiments to simulate the effects of field conditions on the 

membrane were performed by varying sample flow rate, salinity, hydrostatic pressure, 

and chemistry.  Data indicate that membrane permeability has a strong dependence on 

hydrostatic pressure, and a weak dependence on salinity.  Under slow flow conditions 

bicarbonates in solution contributed to carbon dioxide instrument response as a result of 

carbon system equilibration processes in the boundary layer at the membrane interface.  

In addition, method development was undertaken to enable underwater sediment 

porewater analyses and quantitative (calibrated) measurements of total dissolved 
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inorganic carbon (DIC).  This work establishes the capability of membrane introduction 

mass spectrometry to measure two compatible variables (DIC and dissolved CO2) for 

comprehensive CO2-system characterizations. 

In addition to laboratory studies three types of field observation were obtained in 

this work.  High-resolution vertical profiles of dissolved gases in the Gulf of Mexico 

were obtained through system calibration and characterization of the influence of 

hydrostatic pressure on the behavior of polydimethylsiloxane membranes.  In the South 

Atlantic Bight, sediment porewater profiles of dissolved gases were repeatedly obtained 

over a 54 hr period.  Data trends were in agreement with high remineralization rates 

facilitated by porewater advection.  Finally, time-series underwater DIC measurements 

that were undertaken proved to be in good accord with results obtained using 

conventional techniques.  These measurements constitute the first quantitative 

observations of dissolved gas ocean profiles, sediment porewater profiles, and DIC 

measurements by underwater mass spectrometry.
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Chapter 1: Introduction 
 

Modern mass spectrometers have an extraordinarily wide range of analytical 

capabilities including isotopic ratios determinations, ultra-trace analyte detection, and 

large molecule fingerprinting (Hoffmann and Stroobant, 2007). Even simple systems 

such as membrane inlet mass spectrometers (MIMS) are able to simultaneously quantify 

multiple analytes over a wide dynamic range (Ketola et al., 1997).  As MIMS systems 

require no reagent or sample preparation for analyses of gaseous or aqueous gas samples, 

they are easily configured for work in the field, including in situ analysis.  Field portable 

instrumentation is advantageous because it provides for adaptive analysis, enhances 

spatial and temporal coverage, and reduces the likelihood of contamination during sample 

collection and handling.  MIMS analytes have ranged from simple gases such as 

hydrogen, methane, dinitrogen, nitrous oxide, oxygen, hydrogen sulfide, argon, and 

carbon dioxide to volatile organic compounds such as dimethyl sulfide, chloroform, 

benzene, and toluene (LaPack, 1995; Lennemann, 1999; Bell et al., 2004).  

Methodologies for portable MIMS systems have been developed for semi-volatile 

compounds (Matz et al., 1999), and capabilities for accurate isotope ratio measurements 

are emerging (Camilli and Duryea, 2009; Kibelka et al., 2009). 

Development of underwater mass spectrometry at the University of South Florida 

(Center for Ocean Technology) and SRI International has focused on the use of MIMS 

systems for in situ applications (Short et al., 1999) (see Appendix 1 for specifications and 

system level design). Measurement accuracy is a significant issue for in situ MIMS 
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measurements because instrument signal intensity, which is dependent on analyte 

concentration gradients across a gas-permeable membrane, is affected by two 

phenomena; a) development of a depleted boundary layer at the membrane surface and b) 

changes in membrane permeability that result from changes in hydrostatic pressure, 

temperature, and salinity.  The central goal of this dissertation was to quantitatively 

characterize the extent to which various parameters influence the response of underwater 

MIMS instrumentation, and thereby to expand the instrumental capabilities and 

applications of MIMS for analysis of seawater and other natural solutions.   

In situ MIMS measurements at full ocean depths require characterization of the 

influence of hydrostatic pressure on the permeability of MIMS inlet systems.  Chapter 2 

addresses the effect of hydrostatic pressure on membrane permeability.   In order to 

simulate measurement conditions in the field, a laboratory apparatus was constructed to 

control sample flow rate, temperature, pressure, and solution composition.  The pressure 

correction methodology developed in this study was then applied to in situ underwater 

mass spectrometer data to generate high-resolution vertical profiles of dissolved gases in 

the Gulf of Mexico. 

In situ measurements of sediment porewaters require analysis of very small 

sample volumes at very low flow conditions.  Chapter 3 discusses the development of an 

automated sediment probe coupled with an underwater syringe pump that permits precise 

control of sample flow rate and intake location.  To demonstrate this capability in the 

field, an underwater mass spectrometer was deployed on the Georgia continental shelf 

(depth = 27 m) to measure dissolved gas concentrations in the porewaters of highly 

permeable, medium-grained sands.  Persistent porewater advection in these sands 
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considerably magnifies the ecological significance of benthic fluxes on Georgia’s broad, 

shallow continental shelf (Jahnke et al., 2005).  

Due to capabilities for measuring not only ambient levels of dissolved carbon 

dioxide, but also total dissolved inorganic carbon (DIC), MIMS instruments are well-

suited for comprehensive carbon system determinations in seawater.  Measurement of 

compatible carbon system parameters (e.g., DIC and either CO2 concentration or 

fugacity) on a single platform allows comprehensive characterization of the marine CO2 

system.  Chapter 4 explores characterization of MIMS carbon system measurements 

wherein an underwater mass spectrometer was used to investigate (a) relationships 

between sample flow rate and kinetic behavior at the MIMS membrane/solution interface 

(b) linearity of MIMS instrument response over a wide range of carbon dioxide 

concentrations, and (c) the influence of sample salinity on membrane permeability.   

The ability to measure carbon dioxide partial pressure, DIC and other important 

marine analytes (e.g. methane, dinitrogen, oxygen, argon, hydrogen sulfide, total sulfide, 

and dimethylsulfide) in a wide range of oceanic environments establishes underwater 

MIMS as a uniquely capable means of characterizing both aerobic and anaerobic 

ecosystems in situ. 
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Chapter 2: Calibration of an In Situ Membrane Inlet Mass Spectrometer for 
Measurements of Dissolved Gases and Volatile Organics in Seawater 

 
Abstract 

Use of membrane inlet mass spectrometers (MIMS) for quantitative 

measurements of dissolved gases and volatile organics over a wide range of ocean depths 

requires characterization of the influence of hydrostatic pressure on the permeability of 

MIMS inlet systems.  In order to simulate measurement conditions in the field, a 

laboratory apparatus was constructed for control of sample flow rate, temperature, 

pressure, and the concentrations of a variety of dissolved gases and volatile organic 

compounds.  MIMS data generated with this apparatus demonstrated that the 

permeability of polydimethylsiloxane (PDMS) membranes is strongly dependent on 

hydrostatic pressure.  For the range of pressures encountered between the surface and 

2000 m ocean depths, the pressure-dependent behavior of PDMS membranes could not 

be satisfactorily described using previously published theoretical models of membrane 

behavior.  The observed influence of hydrostatic pressure on signal intensity could, 

nonetheless, be quantitatively modeled using a relatively simple semi-empirical 

relationship between permeability and hydrostatic pressure.  The semi-empirical MIMS 

calibration developed in this study was applied to in situ underwater mass spectrometer 

(UMS) data to generate high-resolution vertical profiles of dissolved gases in the Gulf of 

Mexico.  These measurements constitute the first quantitative observations of dissolved 

gas profiles in the oceans obtained by in situ membrane inlet mass spectrometry.  
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Alternative techniques used to produce dissolved gas profiles were in good accord with 

UMS measurements. 

  



 

6 

 

 
 
 
 
 

 Introduction  

Since the late 1990’s underwater mass spectrometer (UMS) systems have been 

under development for direct measurements in freshwater and seawater (Gereit et al., 

1998; Short et al., 1999; Hemond and Camilli, 2002).  Many field portable mass 

spectrometers, including submersible systems, depend on the use of membrane inlets 

(Kotiaho, 1996; Matz et al., 1999; Johnson et al., 2000; Bossuyt and McMurtry, 2004; 

Camilli and Hemond, 2004; Tortell, 2005; Short et al., 2006; Janfelt et al., 2006).  

Membrane inlets are advantageous as a means of reducing sample preparation 

requirements and decreasing gas loads on vacuum pumps.  In addition, membrane inlets 

are rugged and allow many simple gases and volatile organic compounds (VOCs) to be 

monitored simultaneously (Thompson et al., 2006). 

Membrane inlet mass spectrometry (MIMS) has been used for chemical 

measurements since 1963 (Hoch and Kok, 1963).  However, many of the complexities of 

membrane inlet systems are still under investigation (Futo and Degn, 1994; Ørsnes et al., 

1997; Hansen et al., 1996), and theoretical treatments of gas permeation in polymers have 

been met with varying degrees of success (Klopffer and Flaconneche, 2001; Lipnizki and 

Trägårdh, 2001).  Although Fick’s Law describes a simple linear relationship between 

analyte flux and partial pressure or fugacity gradient, permeation characteristics can 

change when a polymer membrane undergoes compression, swelling, competitive 

sorption, or changes in geometry (Fujita, 1961).  Some of these potential complexities are 

not relevant to environmental measurements.  For example, significant swelling and 
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competitive sorption are not expected with aqueous samples (Favre et al., 1994), and 

properly supported membranes greatly reduce the potential significance of changes in 

system geometry under pressure.  For aqueous samples, the principal expected influences 

on the behavior of membrane inlet systems are temperature, pressure and hydrodynamics 

at the MIMS membrane/solution interface. 

Calibration of membrane permeability as a function of temperature, pressure and 

system hydrodynamics is likely to be a formidable task.  In view of this expectation, it 

has proven advantageous to perform in situ MIMS measurements at constant temperature 

and flow conditions (LaPack et al., 1990).  The MIMS systems described in this work 

provide continuous sample-flow at constant temperature, whereupon variable hydrostatic 

pressure is the predominant uncontrolled influence on the membrane inlet system.  

Although control of hydrostatic pressure in MIMS systems is inherently feasible, such a 

capability is likely to substantially reduce sample throughput and add undesirable 

complexity to MIMS measurements.  Therefore, in order to extend the capabilities of 

MIMS systems to observe important phenomena in the deep sea (e.g., hydrothermal 

venting and benthic fluxes, including those emanating from methane hydrates), the 

performance of MIMS inlet systems must be characterized over a wide range of pressure.  

Herein we report the effect of hydrostatic pressure on the permeability of a 

polydimethylsiloxane (PDMS) membrane to dissolved gases and VOCs.  Physical 

mechanisms for hydrostatically-induced variations in membrane permeability are 

discussed, and a semi-empirical equation is developed to describe the dependence of 

membrane permeability on hydrostatic pressure.  Our characterization of PDMS 

membrane behavior is used to quantitatively interpret in situ MIMS observations of 
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dissolved gases in the Gulf of Mexico.  The performance of the MIMS system is then 

evaluated through comparisons with measurements obtained using conventional 

oceanographic methods. 

Theory 

Steady State Permeation.  The permeability (PG) of gas G through a membrane 

can be described in terms of a solution-diffusion mechanism (LaPack et al., 1990): 

                                            ,   2.1 

where DG is the diffusion coefficient of gas G in the membrane, and KG is a gas partition 

coefficient defined as the quotient of the dissolved gas concentrations on the membrane 

side and the solution side of the membrane-water interface.  Fick’s First Law defines the 

gas flux (FG) in steady state at location (x) in the membrane: 

                  , 2.2 

where A is the membrane area, and dCG(x)/dx is the gas concentration gradient at x.  Mass 

spectrometer ion current intensity is proportional to gas flux through the membrane and, 

for our case, can be related to sample dissolved gas concentrations via the solution to 

Fick’s First Law for a cylindrical flow-over membrane: 

                                  , 2.3 

where L is the membrane length, and (CG,o -CG,i) is the difference in gas concentrations 

between the cylindrical membrane’s outer (ro ) and inner radius (ri). In the case that a 

vacuum is maintained within the membrane capillary, CG,1 is negligible compared to CG,2. 
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Laminar flow at the surface of the membrane intensifies analyte depletion at the 

membrane surface and reduces the steady-state analyte flux (Sysoev, 2000; Woldring, 

1970).  Analyte depletion in the boundary layer can be partially mitigated by a high 

sample flow rate through restrictive geometries around the membrane.  As the depletions 

are dependent upon sample velocity, a constant flow rate is required to obtain quantitative 

results. 

Non Steady-State Permeation.  Characterization of non steady-state membrane 

permeation can be gained through analysis of step function dynamics.  For cylindrical 

membrane ro/ri values less than about four, the theoretical solution for a stepwise 

increase in sample concentration is closely approximated by that of a sheet membrane 

(Pasternak et al., 1970; Crank, 1975): 

         , 2.4 

where l is membrane thickness, FG, t is gas flux at time, t, and FG, ss is gas flux at steady-

state.  Diffusion coefficients can be determined by fitting eq 2.4 to a concentration step 

function.  Accurate descriptions are obtained using only a few terms in the summation. 

Molar Volume Correction.  Pressure influences the activities of permeants in 

both the solution and the membrane.  Changes in partition coefficients with pressure can 

be described in terms of the difference between the molar volumes of a given permeant in 

different solution phases (Wijmans, 2004).  As such, partition coefficient variations with 

pressure are described as follows (Millero, 2005): 
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                                 , 2.5 

 

where   is a partition coefficient at pressure p,   is a partition coefficient at standard 

pressure, po (0.101 MPa), DVG,m is the difference between a gas partial molar volume in 

the membrane and the liquid phase, R is the ideal gas constant (8.31 cm3 MPa/mol K), 

and T is Kelvin temperature.  

Experimental Methods 

Membrane Characterization.  The membrane inlet assembly used in this study 

was developed for underwater mass spectrometry at depths to at least 2000 m, where 

hydrostatic pressure is approximately 20 MPa.  Although this was the maximum pressure 

used for the tests performed here, we have observed that the membrane can support 

pressures of at least 40 MPa.   
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Figure 1.   A view of the high pressure flow over membrane inlet assembly.  Before sample enters the 
heater block, several wraps of the sample tubing around the block warm the sample solution.  The 
heater cartridges regulate temperature adjacent to the membrane at the center of the heater block.  
Restrictive dimensions around the membrane produced high sample flow velocities (~15 cm/s) using 
moderate flow rates (~8 mL/min) while allowing passage of particulates. 
 

The membrane inlet assembly, Figure 1, consisted of a hollow fiber PDMS 

membrane (0.064 cm i.d., 0.119 cm o.d.) (Model 60-011-03; Helixmark, Carpinteria, CA, 

USA) mounted in a stretched state on a  porous sintered Hastelloy C rod (0.14 cm o.d. 

0.75 cm length, 2 µm pore size).  The supported membrane was capped on one end with a 

2 mm length of polyetheretherketone (PEEK) rod (0.14 cm o.d.) and epoxy, while the 

other end was connected using epoxy and a Swagelok fitting to the vacuum chamber via 

a 10 cm length of stainless steel tubing (0.127 cm i.d., 0.159 cm o.d.).  The membrane 

assembly was inserted into a stainless steel heater block (0.25 cm i.d., 3 cm o.d.) that also 

housed a thermocouple and heater cartridges for controlling sample and membrane 
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temperature (+/- 0.1 °C of the set point).  During variable flow experiments, a secondary 

heater was used to pre-heat samples to the set point before entry into the membrane 

assembly.  This significantly reduced temperature fluctuations at the membrane. 

The membrane inlet assembly was fitted to a Transpector 2.0 quadrupole residual 

gas analyzer (Inficon, Syracuse, New York) installed in a custom vacuum housing that 

was regulated at 100 °C.  The chamber was evacuated using a turbo-molecular pump 

(Model V70LP; Varian, Palo Alto, CA, USA) backed by a dry diaphragm roughing pump 

(KNF Neuberger, Inc, Trenton, NJ, USA).  Open source electron impact ionization was 

performed with a thoriated tungsten filament.  An electron multiplier was used for 

detection of ions.  Samples were passed through the membrane inlet assembly at 

8 mL/min using a high performance liquid chromatography (HPLC) pump (Shimadzu, 

Kyoto, Japan).  Hydrostatic pressure at the membrane was monitored with a digital 

pressure gauge (Cecomp Electronics, Libertyville, IL, USA) fitted to the sample outlet.  

Pressure was controlled manually using a backpressure regulator (Swagelok, Solon, OH, 

USA).  A schematic of the experimental setup is shown in Figure 2.  A pulse dampener 

(Restek, Bellefonte, PA, USA) reduced pressure pulses to less than 1% of the ambient 

pressure.  Sample flow rate was periodically measured manually to ensure that flow rates 

were consistent with flows defined by the HPLC pump.  The maximum sample pressure 

was limited to 20 MPa by the HPLC pump.  A stream selection valve (VICI Valco 

Instruments, Houston, TX, USA) was used to control the sample introduction and to 

provide user-defined proportional mixing of samples in order to obtain calibration curves. 
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Figure 2.   Lab apparatus for membrane inlet experiments.  Sample concentration, flow rate, 
temperature, and pressure at the membrane inlet can each be controlled independently.  Sample 
concentrations were determined by mixing two or more solutions at selected ratios by switching the 
valve at specified duty cycles at high frequencies.  Linear concentration calibration plots can be 
obtained for a wide range of hydrostatic pressure set-points. 
 

The primary calibration solution containing simple dissolved gases was prepared 

by sparging (>1 hr) phosphate-buffered deionized water (pH = 3.7, T = 25°C) with a 

calibrated gas mixture (Airgas, Radnor, PA, USA) containing 21% oxygen, 0.9% argon, 

0.1% carbon dioxide, 0.1% methane, and nitrogen as the balance gas.  The low pH of the 

phosphate-buffered solution reduced the sum concentration of HCO3
- plus CO3

2- to less 

than 0.3% of the total dissolved CO2 concentration. Dissolved gas concentrations were 

determined using MATLAB (Version R2006a; Mathworks, Natwick, MA, USA) scripts 

developed from a variety of sources (Weiss, 1974; Hamme and Emerson, 2004; 

Wiesenburg and Guinasso, 1979; Garcia and Gordon, 1992).  A second solution, 

deionized water at a vigorous boil (>1 hr), served as a blank.  A constant temperature 

bath (25 °C) cooled the water inline, upstream of the stream selector valve. 

A third solution containing dissolved VOCs was prepared by adding small 

quantities of dimethyl sulfide, benzene, chloroform, and toluene to 10mL of methanol.  

An aliquot of the methanol solution (1.5 mL) was then added to 1 L of deionized water in 
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a septum-sealed flask.  Subsequently, sodium sulfide nonahydrate (0.2 g) and 1,4-dioxane 

(0.56 mL) were directly added to the 1 L solution, and monobasic potassium phosphate 

was used to buffer the pH to 5.3.  All chemicals were obtained from Sigma-Aldrich, St. 

Louis, MO, USA.  Concentrations were chosen to create signal intensities that, at 

minimum, were an order of magnitude above the baseline values for each ion.  The 

requisite concentrations for VOC analyses were determined by incremental additions of 

each VOC to an experimental solution.  It was noted that, upon addition of each VOC, 

the ion currents for other VOCs did not change.  This indicates that the m/z values chosen 

for quantification of each analyte (Table 1) were free of interferences, and that there was 

no detectable swelling of the membrane as a result of VOC sorption. 
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Table 1.  Ions and permeant concentration used for analysis of permeability. 
Analyte mass/charge Concentration 

(µmol/kg) 

Methane 15 1.4 

Water 17 55.6 × 106 

Nitrogen 28 473 

Methanol 30 37 × 103 

Oxygen 32 251 

Hydrogen sulfide 34 1.2 × 103 

Argon 40 11.8 

Carbon dioxide 44 34.1 

Dimethyl sulfide 62 100 

Benzene 78 9.9 

Chloroform 83 10 

1,4-Dioxane 88 6.6 × 103 

Toluene 91 0.99 

 

Relative changes in signal intensity were assumed to be proportional to relative 

changes in membrane permeability.  With the exception of water, all signals were 

baseline subtracted.  The baseline of water is known to be small relative to the signal 

intensity attributed to membrane permeation.  Baseline values were determined by two 

independent methods that were in complete agreement: (1) sampling water that was being 

degassed by vigorous boiling; and (2) reducing of sample flow rate to zero, whereupon 

the aqueous sample in contact with the membrane became completely degassed.  In the 
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latter case, degassing was exponential, with 90% degassing occurring in about 1.5 min 

(Figure 3).  The latter method is particularly convenient as it also provides a simple and 

effective method for the determination of baseline values in the field.  Furthermore, 

subsequent to sample degassing, diffusion coefficients can be determined by returning the 

pump to its set flow rate, whereupon a step-change in concentration occurs at the 

membrane surface.  This procedure avoids the step function dispersion that would result 

during propagation of a concentration interface through a length of small diameter tubing.  

As mass spectrometer response times are much faster than membrane response times, the 

observed signal step function was used to determine diffusion coefficients via eq 2.4 and 

the non-linear fitting algorithms provided by MATLAB. 

 

Figure 3.   Demonstration of the two methods of blank preparation. 1) Air equilibrated deionized 
water was sampled while being brought to a vigorous boil.  2) Sample pump was stopped and the 
sample in contact with the membrane was completely degassed.  

Boundary layer conditions have a strong influence on measurements of 

permeability and diffusion (Krogh et al., 2006), so it is meaningful to report these 

parameters only in a relative sense, normalized to ambient atmospheric pressure.  
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Furthermore, changes in membrane permeability due to changing hydrostatic pressure 

results in varying degrees of boundary layer depletion, making changes in signal intensity 

a summation of two influences.  To address this point, experiments were performed using 

a range of flow rates.  For the membrane inlet configuration used in the present study, 

variations in boundary layer depletion that resulted from changes in membrane 

permeability were negligible at flow rates above ~6 mL/min.  Thus, changes in signal 

intensity with hydrostatic pressure were effectively only a function of changing 

membrane permeability.  This observation is demonstrated in Figure 4 by the ratio of 

signal intensity at ambient pressure to signal intensity at 10 MPa, which becomes 

independent of the flow rate at elevated rates. 

 

Figure 4.   Ion current for m/z 28 (Nitrogen) at various flow rates.  Data were collected at ambient 
pressures (*) and 10 MPa (♦) and each were normalized to flow at 9 mL/min.  The dashed line 
represents the ratio of data at ambient pressure and 10 MPa.  A decrease in membrane permeability 
results in a decrease in the boundary layer thickness.  Thus, the ratio increases at low flow rates.  At 
higher flow rates, the boundary layer is small and the decrease in boundary layer thickness will be 
insignificant compared to the change in membrane permeability.  Thus, changes in ion current are a 
result of changes in membrane permeability. 
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Field Experiment.  UMS field measurements were obtained using previously 

described instrumentation (Short et al., 2001) with the following modifications: the 

membrane assembly was replaced with the high pressure assembly described above; the 

sample pump was replaced with a custom-made system capable of generating 10 mL/min 

flow rates at 42 MPa, with a power requirement near 1 W, and the tungsten filament was 

replaced with an yttria-coated iridium filament.  The Ir/Y2O3 filament has a lower work 

function than tungsten and, being inert relative to tungsten, provides longer lifetimes at 

elevated water and oxygen partial pressures (Harvey, 1974).  This reduces gas-filament 

reactions that have been shown to create high baselines (Hoch and Kok, 1963; Ørsnes et 

al., 1997) and other problems (Kana et al., 2004). 

Field data were collected on the West Florida Shelf in the Gulf of Mexico (27° 

17.8’ N, 85° 07.9’ W) on August 8 and 9, 2006 using the Florida Institute of 

Oceanography’s R/V Suncoaster.  The UMS was mounted on an aluminum Rosette frame 

(General Oceanics Inc, Miami, FL, USA) with a custom-made battery pack, and an SBE 

25 Sealogger conductivity, temperature and depth sensor (CTD) (Sea-Bird Electronics, 

Inc, Bellevue, WA, USA) (Figure 5).  The CTD also accommodated a dissolved oxygen 

sensor (SBE 23).  The package was deployed using a standard University National 

Oceanographic Laboratory System (UNOLS) oceanographic cable and winch.  The 

battery stack consisted of 80 1.2 V ‘C’ sized nickel metal hydride batteries.  The batteries 

were wired to produce 24 V, which allowed continuous UMS operation for more than 8 

hours. 
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Figure 5.   Deployment of the General Oceanic Rosette frame.  On board were the following: a) UMS 
system b) batteries c) CTD d) Niskin water samplers. 
 

An Ethernet extender (Patton Electronics, Gaithersburg, MD, USA) established 

high bandwidth real-time communications through the UNOLS cable.  Although 

communication through the tether was intermittent due to a faulty winch slip ring, all data 

were recorded autonomously using the UMS embedded computer and Labview software 

(National Instruments, Austin, TX, USA) so data collection was not affected.  The UMS 

computer also recorded depth, temperature, salinity, and dissolved oxygen from the CTD.  

Temperature and salinity data were used for calculation of seawater gas saturation states 

(Hamme and Emerson, 2002) relative to equilibrium with the atmosphere. 

UMS deployment parameters were as follows: selected ion scan mode; 256 ms 

dwell time for m/z 14, 28, 32, 34, 40, 44, 62 and 64 ms dwell time for m/z 2, 12, 15, 16, 
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17, 18, 20, 29, 30, 36, 45, 47, 67, 73, 78, 91 yielding a 3.5 s scan time per cycle; 1000 V 

electron multiplier; 40 eV electron energy; 200 mA electron current; 4 mL/min sample 

flow rate; and 35 °C membrane temperature.  Prior to deployment, a three-point 

instrumental calibration was performed for methane, nitrogen, oxygen, argon, and carbon 

dioxide.  Intercept (zero) concentrations were created at zero sample flow whereby 

surface seawater made stationary in contact with the membrane was completely degassed.  

Two additional calibration solutions were generated by sparging surface seawater (S = 

36.5, T = 25.5 °C) for more than 30 minutes with calibrated gas standards (Airgas, 

Radnor, PA, USA). 

Three UMS casts were performed over two days.  These casts were to a depth of 

500 m, about 20 m short of the seafloor.  During the first cast, the UMS sampled the 

water column on both the downcast and the upcast. On the subsequent cast nine hours 

later the UMS sampled a 1 L Tedlar bag (SKC Inc, Eighty Four, PA, USA) that contained 

surface seawater equilibrated with a standard gas mixture.  A third cast was performed 

the following day without the UMS. This cast was performed to examine the temperature 

and salinity profile of the water column.  These data were absent from the first two casts 

due to a faulty CTD power supply.  Table 2 outlines the sequence of events for each cast. 
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Table 2.  Sequence of events for deployment of the UMS in the Gulf of Mexico. 

Step Activity Depth 
(m) 

Descent/Ascent Rate 
(m/min) 

Duration 
(min) 

1 Descent 0 to 30 20 1.5 

2 Hold for bubble dissolution 30m 0 10 

3 Return to surface 30 to 1 20 1.5 

4 Descent to bottom 1 to 500 15 33 

5 Hold for equilibration 500 0 5 

6 Ascent to surface 500 to 1 15 33 

7 Hold for Equilibration 1 0 1 

8 Return to deck n.a. n.a. <1 

 

Results and Discussion 

Membrane Characterization.  MIMS ion currents were linearly dependent on 

concentration at both ambient and elevated hydrostatic pressures (data not shown).  

However, Figure 6 shows non-linear results for MIMS ion currents plotted against 

hydrostatic pressure for a selection of dissolved gases and VOCs.  In the case of simple 

gases, ion current decreases with increased pressure, indicating a decrease in membrane 

permeability.  Larger and non-polar permeants show an initial decrease in ion current, but 

an increase at higher pressure.  The signal variations shown in Figure 6 are attributable to 

variations in membrane permeability that result from variations in diffusion coefficients 
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and/or partition coefficients.  Figure 7 shows both components of permeability are 

pressure dependent.  

 

Figure 6.   Ion current dependency on hydrostatic pressure for selected permeants.  Blue (*) data 
were obtained as hydrostatic pressure was increased, and red (+) data as pressure was decreased.  
Data were normalized to the ion current at 0.1 MPa (ambient), and fitted using eq 2.7.  Data shown 
were obtained at 35 °C. 
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Figure 7.   Change in membrane transport behavior with hydrostatic pressure.  Permeability (---), 
diffusion (-·-), and partition coefficients (···) data are determined at 35 °C, are normalized to 
0.1 MPa, and fit with polynomial to visually link the data.  Relative permeability coefficients were 
determined using steady state signal intensity, relative diffusion coefficients were extracted from 
concentration step functions and relative partition coefficient were calculated via eq 2.1. 
 

Toward the goal of simple quantitative membrane inlet calibrations with respect 

to pressure, several models were applied to the permeability data embodied in Figure 6.  

However, the utility of each model was limited by (a) the large number of coefficients 

required to obtain acceptable data-fits and (b) unrealistic extrapolations that were 

obtained using the best-fit coefficients of each model.  Consequently, the pressure 

dependence of membrane permeability for small permeants was assessed using the 

following simple, semi-empirical model: 

                              , 2.6 
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where k corresponds to the fraction of an analyte’s permeability that is independent of 

pressure, and b’ is related to polymeric free volume and, therefore, membrane 

compressibility.  For a given membrane, best-fit b’ values are approximately constant for 

different permeants, while k values are specific to each permeant.  For small polar 

compounds, k values are small, suggesting a strong permeation dependence on polymeric 

free volume.  Large non-polar compounds have k values near 1, indicating a minimal 

dependence on polymeric free volume, and a propensity for dissolution within the 

structure of the polymer. 

Equation 1.6 does not predict the increase in ion current observed for many 

VOCs.  For large permeants, a molar volume term can be included.  This is achieved by 

combining the concepts developed in eqs 2.5  and 2.6 to produce the following semi-

empirical expression: 

  2.7 

Significant differences are expected in the molar volumes of large non-polar 

molecules within a polar solvent (water) and the non-polar polymer (PDMS).  Positive 

increases in permeability with pressure indicate that the molar volumes of large non-polar 

permeants in PDMS are smaller than in water.  Equation 2.72.72.7 coefficients for 13 

permeants were determined via non-linear fits at 35 °C and 15 °C as pressure was 

increased (simulating downcast condition) and as pressure was decreased (simulating 

upcast conditions).  The coefficients reported in Table 3 varied with temperature and 

membrane history, and were specific to individual membrane inlets.  Notably, the 
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temperature-dependent k values indicate that MIMS system pressure calibrations are 

greatly simplified by maintaining constant membrane temperature.  Values for ∆VG,m 

have the correct order of magnitude relative to those reported by Kamiya et al. (Kamiya 

et al., 2000).  Also, Table 3 shows that hysteresis in the MIMS response produces 

significant uncertainties in ∆VG,m determinations.  Hysteresis can be attributed to 

imperfect PDMS elasticity, and is consistent with compression characteristics reported in 

the product datasheet.  Increased precision for ∆VG,m and slightly better fits are achieved 

if b’ is allowed to vary between analytes. 
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Table 3.  Equation 1.7 coefficients for various permeants determined by non-linear least-square 
analysis. 1 

 Analyte k2  (35 °C)  k2,3 (15 °C) ∆VG,m
2,4 (35 °C) 

Downcast Upcast Downcast Upcast Downcast Upcast 

Methane 0.37 ± 0.04 0.44 ± 0.05 0.27 ± 0.05 0.25 ± 0.03 04 04 

Water 0.35 ± 0.04 0.32 ± 0.05 - - 04 04 

Nitrogen 0.31 ± 0.03 0.33 ± 0.04 0.21 ± 0.02 0.23 ± 0.05 04 04 

Methanol 0.47 ± 0.07 0.51 ± 0.05 - - 04 04 

Oxygen 0.29 ± 0.04 0.35 ± 0.04 0.23 ± 0.04 0.24 ± 0.04 04 04 

Hydrogen sulfide 0.03 ± 0.1 0.13 ± 0.07 - - 04 04 

Argon 0.31 ± 0.03 0.32 ± 0.04 0.24 ± 0.03 0.26 ± 0.04 04 04 

Carbon dioxide 0.18 ± 0.04 0.15 ± 0.04 0.08 ± 0.01 0.07 ± 0.04 04 04 

Dimethyl sulfide 0.52 ± 0.06 0.59 ± 0.04 - - 04 04 

Benzene 0.6 ± 0.1 0.93 ± 0.09 - - 52 ± 21 16 ± 11 

Chloroform 0.5 ± 0.2 0.8 ± 0.1 - - 53 ± 46 19 ± 20 

1,4-Dioxane 0.5 ± 0.3 0.7 ± 0.2 - - 85 ± 60 46 ± 29 

Toluene 0.8 ± 0.1 1.1 ± 0.1 - - 57 ± 17 20 ± 15 

(1) Downcast data were normalized to data obtained prior to pressurization and upcast 
data were normalized to data obtained after depressurization. 

(2) b’ was determined as 0.10 ± 0.03 MPa-1 at 35 °C and 0.13 ± 0.07 MPa-1 at 15 °C.  
Although use of b’ as a best-fit variable between gases and casts would improve 
estimates of k and ∆VG,m.  This provides only small improvements in calibrations. 

(3) VOCs and water were not analyzed at 15 °C. 
(4) Values reported as zero for ∆VG,m were set to zero as there was no indication that 

signal intensity increased with pressure, which reduced the number of calibration 
coefficients without a loss in accuracy for this pressure range.  

 

Field Data.  Several UMS dissolved gas profiles obtained in the Gulf of Mexico 

are presented in Figure 8.  VOC depth profiles were, as expected in the open ocean, 

below instrument detection limits.  Figure 8a-c show UMS signals at m/z 17 (water), m/z 

28 (nitrogen) and m/z 32 (oxygen) expressed in terms of concentrations via calibrations at 

one atmosphere hydrostatic pressure.  Water activity is dependent on temperature and, to 

a lesser extent, salinity (Millero and Leung, 1976).  Since the membrane temperature was 
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35 °C and salinity was essentially constant between the surface and 500 m, the water 

profile shows a decrease with depth that must be attributable to compression of the 

PDMS membrane.  Nitrogen and oxygen profiles differ distinctly from the water profile.  

Nitrogen concentrations in seawater are strongly dominated by ambient seawater 

temperature and salinity during equilibration with the atmosphere.  Since neither 

temperature nor nitrogen concentrations are substantially altered during water mass 

subduction, the nitrogen profile shown in Figure 8b increases with depth in response to 

decreasing in situ temperature.  Oxygen concentrations are influenced strongly by both 

physical and biological processes. Subsequent to atmospheric equilibrium, dissolved 

oxygen concentrations are, like nitrogen, inversely related to both temperature and 

salinity.  Photosynthesis at shallow depths typically produces small supersaturations with 

respect to atmospheric equilibrium, and net respiration at greater depths typically reduces 

oxygen concentrations to levels much below saturation.  All of these influences are seen 

in Figure 8c. 
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Figure 8.   Concentration depth profiles from the Gulf of Mexico.  Figures a, b, and c were obtained 
using 0.1 MPa concentration calibrations.  Figures d, e, and f show pressure corrected data; the blue 
lines were corrected using eq 7, and the magenta lines were corrected using data obtained with a 
standard solution.  Figures g, h, and i show data determined with an independently-deployed CTD 
and oxygen sensor.  Downcasts and upcasts are shown. 
 

Although the influence of membrane compression on signal intensities is seen 

most clearly in Figure 8a, it is apparent that membrane compression is an important effect 

for all UMS observations.  Two independent methods were used to account for the effects 

of hydrostatic pressure on instrument response.  In the first case, calibration coefficients 

obtained via eq 2.6 were used to generate the activity and concentration profiles (blue) 

shown in Figure 8d-f.  Although this method is complicated by calibration coefficients 



 

29 

 

that may vary between casts, it provides an essential first order account of pressure-

corrected instrument response when deployment logistics do not allow in situ calibration, 

as described below. 

As an alternative to pressure corrections via eq 2.6, the pressure dependence of 

UMS signals was examined while the UMS sampled a standard solution during a follow-

up profile to 500 m. The data from this follow-up profile were normalized to the UMS 

signal intensities obtained while the standard solution was sampled at the surface.  High 

frequency noise was smoothed using a 4th degree polynomial fit.  These data were then 

used to correct the raw in situ data obtained during the first cast.  The results obtained in 

this analysis, which provide a first order account of the influence of membrane 

deformation kinetics on UMS measurements, are shown in Figure 8d-f (magenta, 

downcast and upcast).  The juxtaposition of magenta and blue profiles shows no 

systematic depth-dependent differences between calibration methods.  It appears then that 

hysteresis is a minor influence in the upper 500 m and can be accounted for 

quantitatively.  Nevertheless, it should be noted that this type of procedure should 

become increasingly important if UMS observations were to include a wider range of 

depth in the water column. 

Figure 8g-i show activity and concentration profiles that were determined 

independent of UMS observations.  Water vapor pressure, calculated from salinity 

(Hamme, 2006) and normalized to vapor pressure at the sea surface, is shown vs. depth in 

Figure 8g.  As directly observed in Figure 8d, in the absence of strong salinity gradients, 

variations in water activity (and hence vapor pressure) are expected to be very small.  

Figure 8h shows predicted nitrogen saturation concentrations (calculated from 
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temperature and salinity) for equilibrium with the atmosphere.  Good accord is observed 

with the UMS data shown in Figure 8e and 8h.  Figure 8i shows a dissolved oxygen 

profile obtained with the SBE 23 dissolved oxygen sensor.  The data shown in Figure 8f 

and 8i are in close agreement and it can be noted that, due to hysteresis effects, the 

dissolved oxygen sensor shows downcast/upcast differences that are generally as large as 

or larger than those obtained by the UMS.  These measurements, which constitute the 

first quantitative observations of dissolved gas profiles in the oceans obtained by in situ 

membrane inlet mass spectrometry, indicate that UMS systems are capable of providing 

unique quantitative assessments of fine-scale processes in the marine environment. 

  



 

31 

 

 
 
 
 
 

Chapter 3: Dissolved Gas Analysis of South Atlantic Bight Sediment Porewater by Flow-
Through Membrane Introduction Mass Spectrometry 

 
Abstract 

An underwater membrane introduction mass spectrometer was deployed on the 

Georgia continental shelf (depth = 27 m) to measure in situ dissolved gas concentrations 

in sediment porewaters.  Over a 54-hour period, 30 profiles of sediment porewater (up to 

18 cm deep) were sampled using an automated sediment probe coupled with an 

underwater positive displacement syringe pump.  The porewater was analyzed with a 

flow-through membrane assembly at constant sample flow rate (0.35 ml/min) and 

membrane temperature (45 °C).  Calibration was performed using on-site seawater 

equilibrated with gas standards.  During the seafloor deployment, spar buoys provided 

continuous power to the instrumentation as well as communication, allowing real-time 

data analysis and instrumental control.   

Sediment at the deployment site is highly permeable medium to coarse grained 

sand.  It is non-accumulating and has very low organic matter content.  Measurements of 

methane, nitrogen, argon, oxygen and carbon dioxide concentrations were used to 

produce depth-time contours and demonstrate the dynamics of dissolved gases in the 

porewater.  Porewater methane concentrations indicated the presence of methanogenic 

bacteria, and elevated methane concentrations in ambient water suggest that methane 

production in the sediment porewater may be a significant source of methane in the water 

ecosystem.  Dynamic, elevated nitrogen-argon ratios suggest a complex denitrification-
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nitrification system.  Oxygen and carbon dioxide sediment profiles were closely coupled.  

A correlation between chemocline depth and sediment ripple height suggested that the 

porewater environment is controlled by water inundation and upwelling advection 

processes related to the presence of ripple troughs and crests respectively. 
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Introduction 

Knowledge of dissolved gas concentrations in ecological porewaters is critical to 

understanding many complex environmental processes including nutrient cycling 

(Cornwell et al., 1999), climate change (Conrad, 1996), ground water contamination 

(Squillace et al., 1999), waste disposal (Sheppard et al., 2005), carbon sequestration 

(Ersland et al., 2009), and energy resource management (Reimers et al., 2006; Dickens et 

al., 1997; Lapham et al., 2008).  However, porewater dissolved gas analyses present a 

particularly challenging set of logistical problems (Sansone et al., 2008).  The dynamic 

nature of dissolved gases in natural systems demands sampling frequencies that are 

capable of resolving diurnal cycles and brief, episodic events.  In some porewater 

systems, strong gradients necessitate sub-centimeter spatial resolution to accurately 

resolve the chemical profile (Benstead and Lloyd, 1994).  Further, due to the volatility of 

gases, contamination of collected samples is a fundamental problem.  This is particularly 

true for samples with fugacities that deviate significantly from fugacities in the 

atmosphere.   

Some sampling problems can be mitigated by reproducing the natural 

environment of cored samples ex situ (Eyre et al., 2002; Kana et al., 1994).  Extensive 

measurements of a core can then be obtained by non-destructive chemical analyses such 

as membrane inlet mass spectrometry (MIMS) (Kana et al., 1998), microelecrode 

potentiometry (Taillefert et al., 2000) or optrode (Klimant et al., 1995).  Ideally, logistical 

considerations involving such procedures would include maintenance of temperature, 
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salinity, hydrostatic pressure, light intensity, fluid advection, and ambient water 

chemistry.  As such, alternative in situ analytical options can be quite appealing. 

MIMS has proven to be a reliable and multifaceted tool for analysis of dissolved 

gases in a wide variety of media, including sediment porewater (Lauritsen et al., 1992; 

Hansen and Degn, 1996; Johnson et al., 2000; An et al., 2001; Smith et al., 2008).  

Excellent spatial and temporal resolution has been achieved using MIMS probes, further 

they are capable of analyses of hydrogen, methane, dinitrogen, nitrous oxide, oxygen, 

hydrogen sulfide, argon, carbon dioxide and numerous volatile organic compounds 

(Tortell, 2005; Lauritsen and Gylling, 1995; Lloyd et al., 1996, 2002).  Smaller and more 

efficient portable MIMS devices are increasingly used in the field to produce laboratory 

quality analyses, minimizing the likelihood of sampling artifacts (Lauritsen et al., 2008; 

Taylor and Bierbaum, 2008).  It is natural then, that in situ analysis of sediment 

porewater by MIMS in the underwater environment be developed.  

Previous MIMS analysis of sediment porewater analysis involved direct insertion 

of membrane probes into sediment cores ex situ.   Though achieving excellent spatial 

resolution, such systems can control neither the probe’s membrane temperature nor the 

probe’s boundary depletion layer.  In the present work, an underwater mass spectrometer 

(UMS) system with a flow-through membrane inlet assembly (Short et al., 1999) is used 

to examine sediment porewater in situ.  As the flow-through inlet allows samples to be 

pumped to the MIMS, sample and membrane temperatures can be regulated thereby 

fixing membrane permeability. Further, by ensuring constant sample flow velocities at 

the UMS membrane interface during analysis, the flow-though inlet allows control of the 

boundary depletion layer at the membrane interface.  Several problems are addressed by 
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achieving constant boundary layer conditions. (a) By flushing the boundary layer 

instrument sensitivity is maximized (Hartnett and Seitzinger, 2003);  (b)  changes in 

instrument response attributable to sediment tortuosity are averted (Sheppard and Lloyd, 

2002);  and (c)  calibrations of carbon dioxide fugacity in solutions with a pH greater than 

3 are enabled by fixing the contributions of HCO3
-, and CO3

-2 to the carbon dioxide 

signal intensity.  Perturbations in carbon dioxide fugacity are particularly intense and 

difficult to predict when the membrane boundary depletion layer is large and 

uncontrolled, as is the case with directly inserted membrane probes (Chapter 4). 

Porewater analysis with a flow-through underwater mass spectrometer (UMS) 

system was conducted using a positive displacement syringe pump coupled to a vertically 

controlled sediment sampling probe.  The UMS system was deployed for analysis on the 

Georgia continental shelf (depth = 27 m).  Porewater and ambient water were sampled 

over a vertical distance of 18 cm.  Integration of the sediment probe with the UMS’s 

embedded computer enabled complex autonomous sampling protocols.   This approach 

provides good sensitivity, obviates liquid nitrogen traps, mitigates analytical variables 

that influence signal intensity, and substantially simplifies system calibration.  This work 

constitutes the first use of UMS for investigation of dissolved gases in sediment 

porewaters. 

Study Setting and Methods 

 Sample Site.  Data were collected (August, 2008) mid-shelf in the South Atlantic 

Bight (SAB) at the R2 Navy tower station (31° 22’ N, 80° 34’ W) (Figure 9).  Work was 

conducted with the collaborative research program, Benthic Observatory and Technology 

Testbed On the Mid Shelf – Understanding Processes (BOTTOMS-UP).  The R/V 
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Savannah was used to access the sample site and deploy instrumentation.  Tidal height, 

wave height and light intensity data during the deployment were obtained from the R2 

tower via the Skidaway Institute of Oceanography South Atlantic Bight Synoptic 

Offshore Observational Network (SABSOON) website 

(www.skio.peachnet.edu/Skioresearch/physical/sabsoon/).  Sediments at the R2 site are 

non-accumulating, and have a 250-500 µm median grain size (Gorsline, 1963), high 

metabolic activity, low fine particulate content, and substantial benthic microalgal 

photosynthesis (Jahnke et al., 2005).  Strong sediment-water interactions in this shallow 

continental shelf region, establishes the system’s porewater chemistry as an essential 

component of the overall SAB ecosystem (Jahnke et al., 2005). 

 

Figure 9.   Deployment site located at US Navy Tower R2.  The site is located 81 km offshore of 
Skidaway Institute of Oceanography (SkIO). 
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Sampling System.  The sediment porewater sampling system was fabricated from 

an oil-filled vessel containing three stepper motors and a programmable controller board 

(Figure 10).  The motors can be affixed to a variety of translational motion devices.  For 

this study only two motors were operated.  Motor 1 drove a lead screw fixed to a 5 mL 

sampling syringe to provide sample flow.  Motor 2, also affixed to a lead screw, provided 

precise vertical control of a sediment sampling probe.  Oil pressure in the vessel 

sustained at about 8 psi using a flexible polyurethane oil-water interface.  This positive 

pressure ensures that seawater cannot enter the vessel in the event of a gasket or 

component failure.  The total travel distance of the sediment probe (18 cm), was 

determined by the length of the lead screw. 

 
Figure 10.  Sediment sampling sytem.  a) oil filled vessel  b) sampling syringes c) plunger d) lead 
screw e) sediment probe support tube f) sediment probe.  Sampling tubes not shown for clarity.  
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The flow-through membrane inlet assembly and UMS system are similar to that 

previously published (Bell et al., 2007).  A Hastelloy C (HC) sampling tube directly 

coupled the UMS membrane assembly inlet to the sediment probe tip.  A second HC 

sampling tube coupled the membrane assembly outlet to the sampling syringe.  A tee and 

two check valves fixed to the sampling syringe ensured that withdrawing the syringe 

plunger would cause porewater to travel from the sediment probe tip, through the 

membrane assembly, and into the syringe.  When the syringe plunger was plunged, the 

check valves directed sample flow into the ambient seawater.  Sample flow rate was set 

to 0.35 mL/min during analysis. 

 
 Figure 11.  Sedimentary porewater sampling probe design.  a) support tube b) sampling tube c) 
perforated base d) sintered intake filter e) penetrating tip. 

 

 The sampling probe consists of tip assembly, a 1.6 mm HC sampling tube, and a 

6.4 mm stainless steel support tube (Figure 11).   The tip assembly consists of an inlet 

filter sandwiched between a pointed polyaryletheretherketone (PEEK) tip and a 

perforated PEEK base.  The base was threaded on both ends allowing construction of the 
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probe tip assembly.  The perforated base directed porewater flow between the intake filter 

and sampling tube.  A 6.4 mm diameter, 1.0 mm thick sintered HC disc with a 2 µm pore 

size and a 3.2 mm center-bore hole served as the intake filter.  The sampling tube 

(0.76 mm i.d.) was press-fitted into the perforated base and epoxied in place to ensure a 

leak-free fit. 

Deployment.  The sampling system was mounted on a profiling frame that 

included an internally-logging conductivity-temperature-depth (CTD) sensor, a pressure 

vessel containing NiH batteries (which operated as a backup power source during power 

interruptions) and an underwater camera.  The camera produced time-lapse photography 

of the sediment probe. 

Two PVC spar buoys were tethered to the UMS system on the seafloor.  The 

buoys contained sufficient Li-ion polymer batteries to allow 12 hours of UMS operation.  

As battery recharge time was less than 6 hours, replacement of the buoys every 12 hours 

allowed continuous UMS operation.  To enable real-time UMS control and data 

monitoring, the tether routed DSL communications between the buoys and the UMS 

system.  A wireless RF link was then used to transmit the data between the buoys and a 

computer on the R/V Savannah. 

The UMS system was deployed from the R/V Savannah about 650 m southeast of 

the R2 navy tower station (27 m regional depth).  A tethered buoy was deployed 

concurrently and, once communication with the UMS was confirmed, the UMS system 

was released from the vessel.  The R/V Savannah’s rigid-inflatable boat (RIB) was used 

to swap the spar buoys and divers periodically inspected the instrument for problems.  

After 50 hours of operation, the system was recovered and calibrated.  
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Sampling Methodology.  The porewater sampling system was mounted on the 

deployment frame with the sediment probe’s intake filter 4.5 cm from the base of the 

frame (the predicted sediment interface location).  The probe was preprogrammed to 

sample porewater at depths of 0, 3.8, 5.1, 7.6, 10.2, 12.7, 15.2, and 17.8 cm below the 

initial position.  It was anticipated that the first two sampling depths would be in ambient 

water and would allow detection of gas concentration gradients above the sediment 

interface.  Sampling depths were referenced to the sediment-water interface.  At each 

position, 2.45 mL were sampled at 0.35 mL/min. 

During sampling, porewater traveled from the inlet filter to the membrane in 

165 s.  However, mixing within the sample tubing, and pervaporation of analyte through 

the membrane necessitated a six minute signal-stabilization period before measurements 

were taken.  The syringe pump stopped for one minute during the stabilization period 

while the sediment probe travelled to the next depth.  Laboratory observations showed 

that this procedure reduced the likelihood of clogging the sintered intake filter. 

Calibration.  The system was calibrated by equilibrating surface water from the 

R2 site for more than one hour with gas mixtures that contained certified mole fractions 

of methane, nitrogen, oxygen, argon and carbon dioxide.  Sample salinity, measured 

during sample collection via the research vessel’s water sampling system, and sample 

temperature, measured during sample analysis, allowed calculation of dissolved gas 

concentrations (Weiss, 1970, 1974; Hamme and Emerson, 2004; Wiesenburg and 

Guinasso, 1979; Garcia and Gordon, 1992).  Gas mole fractions are shown in Table 4.    

Each sample was analyzed until a stable signal was achieved. The UMS was calibrated 

for carbon dioxide using only gas mixture 1.  Bubbles in the sample line formed 
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periodically and were flushed out immediately prior to analysis.  Blank samples were 

measured by leaving deionized water in the MIMS assembly with the sample pump 

inactivated overnight to allow complete degassing of the sample in contact with the 

membrane.  The MIMS assembly temperature was controlled at 45 °C.  

Table 4.  Standard gas mixtures used for equilibration (in mole fraction). 

Gas Mixture 1 Mixture 2 Mixture 3 

Methane 0.00403 0.00501 0.00200 

Nitrogen Balance Balance Balance 

Oxygen 0.209 0.100 0.180 

Argon 0.00768 0.0150 0.00992 

Carbon Dioxide 0.000404 0.0020 0.000606 

 

Linear least-squares regressions provided UMS calibration coefficients for 

methane, nitrogen, oxygen, argon and carbon dioxide concentrations using measured 

UMS ion currents, , at m/z 15, 28, 32, 40 and 44.   was also used in the nitrogen 

regression to account for contributions from carbon dioxide fragmentation.  Additionally, 

all signal intensities were background corrected by subtracting the signal intensity at 

m/z 5, ; this subtraction accounts for changes in electronic noise resulting from UMS 

temperature variability.  UMS calibration parameters and deployment parameters were 

identical: selected ion scan mode; 256 ms dwell time for m/z 14, 28, 32, 34, 40, 44, 62; 63 

ms dwell time for m/z 2, 5, 12, 15, 16, 17, 19, 20, 29, 30, 33, 36, 45, 47, 67, 73, 78, 91, 

yielding a 3.5 s scan time per cycle; electron multiplier at 1000 V; electron impact energy 

of 40 eV; 200 mA electron current. 
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Calibration Correction Terms.  Water vapor contributes strongly to MIMS 

baseline ion currents (Ørsnes et al., 1997).   Under hydrostatic pressure, water 

transmission into the vacuum chamber is significantly reduced (Bell et al., 2007).  

Therefore, the first calibration coefficient term,  (y-intercept or baseline) was corrected 

for differences in water vapor contributions between field measurements and calibration.  

A multiplicative correction factor,  was defined as follows (eq 3.1).  

  3.1 

Where  is the average ion current at m/z 17 during calibration,  is the ion current 

at m/z 17 during field measurements and  is the corrected first calibration coefficient. 

 was calculated and applied to each field data point. 

The second calibration coefficient term,  (slope or sensitivity), was multiplied 

by an argon correction term to produce  (eq 3.2).  

  3.2 

The argon correction term, , equal to the ratio of argon saturation concentration, 

[Ar]sat, to the uncorrected argon concentration measured with the UMS using  and , 

[Ar]meas.  This term accounts for changes in membrane permeability to gases due to 

hydrostatic pressure.  CTD determinations of water temperature and salinity allowed 

calculation of argon saturation concentrations.   was generated for each UMS sample 

taken above the sediment interface, and was interpolated linearly with time for all data 

points.  
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Carbon dioxide concentrations were corrected to account for the 

thermodynamically-induced change in concentration created by the sample temperature 

difference between in situ or equilibration values and the MIMS measurement value 

(45 °C) (Guéguen and Tortell, 2008).  The alkalinity of the surface seawater, analyzed 

post-cruise using the spectrophotometric method of Yao and Byrne (1998) was 

2380 µmol/kg.  Knowing input in situ temperature, salinity, alkalinity and MIMS 

temperature, MATLAB (Version R2008b; Mathworks, Natwick, MA, USA) scripts 

adapted to include the CO2SYS program from van Heuven et al. (2009) were used to 

calculate the change in carbon dioxide concentration.  The average equilibration 

temperature during calibration was 22 °C and the average in situ temperature was 26 °C.  

The difference between these values resulted in an average correction of 3.5% for in situ 

data. 

Results and Discussion 

Porewater Sampling Analysis.  Thirty profiles were completed over a period of 

54 hours, producing 240 independent sets of gas concentration measurements.  Raw UMS 

data are presented in Figure 12.  The stability of the argon data set ( ) indicates that the 

sample flow rate was constant and bubbles did not form in the sample line during 

analysis.  Bubble formation was mitigated by hydrostatic pressure, and flow rate 

variability was mitigated through use of the positive displacement syringe pump.  

Constant sample flow was further ensured through analysis at discrete sample depths.  

This reduced inlet filter clogging because only small volumes of the sediment column are 

filtered at discrete depths.  However, this added precaution may not be necessary in 

sediments with percentages of fine grained material as low as are found in the SAB. 
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Figure 12.  Raw UMS data in time series during three sediment depth profiles.  I32, I40 , and I44 are 
shown in magenta, black, and blue respectively.  

 

In order to establish the system’s ability to define sharp porewater chemoclines it 

is useful to estimate the system’s vertical sampling resolution.  Using a sample volume of 

2.46 mL and a sediment porosity of 37% (Rao et al., 2007), it was calculated that a 

6.6 mL volume of sediment was sampled at each depth.  The sampled porewater volume 

geometries depicted in Figure 13a and 13b were used to estimate the vertical resolution 

assuming two different torus shaped sampling volumes, a) being the worst case and b) 

being an optimistic case.  Here, the vertical resolution is defined as twice the radius of the 

toroidal tube representing the porewater volume.  Using the probe’s outside radius (r2 = 

3.2 mm), the calculated sediment sample volume (V = 6.6 mL), and the two sampling-

geometries shown in Figure 13, the estimated vertical sampling resolution was estimated 

to be between 1.2 and 1.9 cm.  In this work, measurement intervals were 2.5 cm; thus a 

vertical resolution of < 2.0 cm is sufficient to prevent undue smoothing of each depth 

profile.  Though the vertical sampling resolution may be too large to accurately resolve 
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some sediment porewater gradients, future work and design modifications may enable 

improved vertical resolutions. 

 

Figure 13.  Toroidal models used for estimating sampling resolution shown in 2D.  The lightly shaded 
regions represent the sediment probe, the darkly shaded region represents the sample inlet, and the 
circular regions represent the volume of porewater sampled. The models were used to constrain 
estimates of vertical sampling resolutions (2r1) of porewater around the sediment sampling probe.  

 

Local wave-driven redistribution of sediment resulted in oscillations of the 

sediment interface between 2.8 and 4.0 cm from the probe’s initial reference position.  

Due to the movement of the interface, 24 of the 30 profiles had only a single 

determination of ambient water concentrations.  To avoid spurious interpolations across 

the sediment interface, the ambient water was assumed to be homogenous.  This 

assumption was confirmed by the 6 profiles that had a second ambient-water 

determination close to the sediment interface.  Sampling depths from each profile were 

referenced to the sediment-water interface as determined by time-lapse photography.   

Each vertical profile was interpolated using a piecewise cubic Hermite algorithm 

to obtain continuous gas concentration depth profiles for methane, nitrogen, oxygen, 

argon and carbon dioxide.  Concentrations at each depth were then interpolated linearly 

through time to obtain the data presented as a depth-time contour in Figure 14.  Nitrogen 
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concentrations were divided by argon concentrations to remove the effects of physical 

processes that would affect nitrogen and argon similarly.  For each gas, a chemocline 

time series was calculated as the depth in the sediment at which the maximum change in 

concentration occurred.   
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Figure 14.  Depth-time contours of calibrated UMS data in sediment porewater.  a)  Methane 
concentration (µmol/kg). b)  Nitrogen-argon ratio (no  units).  c)  Oxygen concentration (µmol/kg).  
d)  Carbon dioxide concentration (µmol/kg).  The horizontal line at 0 cm represents the sediment-
water interface as determined by time lapse photography.  The ‘•’ markers represent sample 
locations in time and depth. 
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Methane concentrations ranging from 0.032 µmol/kg in ambient water to 0.137 

µmol/kg in porewater (Figure 14a) indicated the presence of methanogenic bacteria in the 

sediment.  The methane detection limit (three times the standard deviation of the 

instrumental noise) was determined to be 0.025 µmol/kg.  As a result, the methane depth-

time contour has substantial uncertainties.  Nevertheless, a chemocline is detectable about 

3 cm below the sediment interface.  Though porewater methane concentrations are low 

compared to more organic-rich environments (Lloyd et al., 1998), detectable methane 

concentrations in ambient water suggests that methane production in SAB sediments may 

be a significant source to the water column.  This is consistent with a porewater 

environment that is dominated by intense metabolic activity and strong advective 

processes (Janssen et al., 2005; Sansone and Martens, 1981; Jahnke et al., 2005). 

Nitrogen-argon ratios data point to active denitrifying-nitrifying biology (Figure 

14b).  CTD temperature (~26.5 °C) and salinity (~36.0) indicated that nitrogen-argon 

ratios in ambient water should be between 38.36 and 38.40.  Measured values between 

39.3 and 40.9 indicate that nitrogen porewater and ambient water concentrations are 

elevated by 10-20  µmol/kg.  The data suggest that increased denitrification occurred on 

the evening of 08/27/08.  The most dynamic region of nitrogen-argon ratios was the 

suboxic region (~2 cm).  This appears to be consistent with the occurrence of 

denitrification-nitrification across steep redox gradients in suboxic microenvironments 

(Rao et al., 2008).  As these experiments were a first attempt to measure in situ porewater 

gas concentrations, it was not determined whether a correction for small changes in UMS 

ionization energy or nitrogen-oxygen interactions is necessary (An et al., 2001).    These 

effects may be contributing to some of the subtle variations detected in the nitrogen-
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argon ratio.  However, the methods laid out here should enable more precise 

denitrification estimates in the future. 

Oxygen concentrations ranged from 0 µmol/kg below the oxygen chemocline 

(oxycline) to 200 µmol/kg in the ambient water (Figure 14c).  Oxygen determinations 

using both I34 and I32 were very closely coupled (data not shown), indicating that 

hydrogen sulfide, which would have an interfering contribution only at I34, was not 

present in detectable quantities.  Calculated oxygen concentrations at saturation were 

between 199 and 201 µmol/kg in ambient water.  As such, UMS measurements were 

consistent with ambient water values in near equilibrium with the atmosphere. 

Although the carbon dioxide chemocline depth is closely coupled to the oxygen 

chemocline, on average it was 0.8 cm deeper (Figure 14d).  Carbon dioxide concentration 

maxima were observed at approximately 5.1 cm.  The observed maxima point to 

prevalent methane oxidization and respiration processes.  Saturated CO2
* concentrations 

(CO2+H2CO3) in ambient water were calculated to vary between 10.2 and 10.4 µmol/kg.  

UMS results were in agreement with these values. 

Oxygen and carbon dioxide chemocline depths were closely coupled in time.  The 

methane chemocline was poorly defined due to similar magnitudes of chemical signals 

and measurement uncertainties.  Nitrogen-argon ratios do not appear to have a clearly 

defined chemocline.  As carbon dioxide had the most distinct chemocline, it was used for 

comparison with other environmental variables.  Carbon dioxide chemocline data are 

plotted in Figure 15 along with CTD depth (a proxy for tidal height), absorbed 

photosynthetically active radiation (APAR) (a proxy for photosynthetic production), and 
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sediment interface depth relative to the probe’s initial reference position (a proxy for 

fine-scale sediment ripple height). 

 

Figure 15.  Carbon dioxide chemocline depth time series.  Chemocline depth (black) plotted with 
CTD depth (blue) representing the tidal height, APAR (red) representing, light intensity, and the 
sediment interface depth (green), which is the distance between the probes starting position and the 
sediment interface. 

 

A multilinear regression was performed using standardized CTD depth, APAR 

and sediment interface data, and standardized carbon dioxide chemocline depth as the 

independent variable.   APAR exhibited a relatively low contributing importance to the 

observed of chemocline depth with a beta coefficient, b, equal to 0.26.  Tidal height 

exhibited a medium importance with b = 0.49, and sediment interface depth exhibited a 

relatively strong importance with b = 0.64.  This suggests that the chemocline depth is 

predominantly regulated by movement of ripple crests and troughs.  This is in agreement 

with observations (Precht et al., 2004) that changes in advective porewater exchange can 

be strongly correlated with changes in fine scale sediment topography.  Data indicate that 



 

51 

 

inflow of oxic water into ripple troughs aerates porewater while anoxic upwelling under 

ripple crests creates a very shallow chemocline. 

Conclusions 

Sediment porewater dissolved gas concentrations were successfully measured in 

situ over a 54 hr period in the South Atlantic Bight.  Contours of dissolved gas 

concentrations vs. depth and time were produced for methane, nitrogen-argon ratio, 

oxygen and carbon dioxide.  Methane concentrations were near instrument detection 

limits, but indicated the presence of methanogenic bacteria in the porewater and elevated 

concentrations in ambient seawater.   Elevated nitrogen-argon ratios suggest that 

denitrification has a significant impact on porewater nutrient cycling.  Concentration 

profiles for oxygen and carbon dioxide were closely coupled.  Subtle changes in 

chemocline depths were positively correlated with sediment interface depth, suggesting 

that advective conditions are regulated by ripple topography.  These underwater 

measurements, which constitute the first in situ measurements of dissolved gas porewater 

profiles by a MIMS system, identify a novel pathway for future in situ porewater 

analysis. 
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Chapter 4: In Situ Determination of Total Dissolved Inorganic Carbon by Underwater 
Membrane Introduction Mass Spectrometry 

 
Abstract 

Procedures were developed for determination of total dissolved inorganic carbon 

(DIC) in acidified seawater using an underwater mass spectrometer.  Factors affecting the 

response of the membrane introduction mass spectrometer (MIMS) system were carefully 

examined in an effort to optimize calibration procedures and maintain the accuracy and 

precision required for oceanic carbon system determinations.  Laboratory studies 

examined the following influences on MIMS measurements of DIC: bicarbonate and 

carbonate contributions to the MIMS CO2 signal intensity, linearity of MIMS response to 

carbon dioxide concentration, and the influence of sample salinity on membrane 

permeability.  Results indicate that (a) bicarbonate and carbonate contributions to carbon 

dioxide signal intensity were significant at slow flow rates, (b) MIMS response was linear 

to DIC within the concentration range of interest, (c) and salinity has an effect on 

membrane permeability that is influenced by hydrostatic pressure.  A short time-series 

experiment was performed in Bayboro Harbor, St Petersburg, FL to observe temporal 

variations in DIC. 
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Introduction 

In the absence of atmospheric/oceanic CO2 exchange, the atmospheric partial 

pressure of carbon dioxide (pCO2) in 2004 would have been 55 ppm higher than observed 

values near 380 µatm (Sabine et al., 2004).  Although oceanic CO2 uptake is beneficial 

with respect to removal of greenhouse CO2 from the atmosphere, the ecological, societal 

and economic significance of high oceanic pCO2 is not yet well understood (Doney et al., 

2009; Scholes et al., 2009).  Facing the prospect of ocean acidification and dramatic 

climate-change-related decisions based on unreliable and incomplete data, attempts are 

currently being made to improve the quality and extent of global ocean carbon system 

observations (Monteiro et al., 2009). 

At present, inorganic carbon system species that are commonly measured using 

laboratory and shipboard methods include pH, alkalinity (AT), dissolved inorganic carbon 

(DIC) and carbon dioxide fugacity (fCO2) (Dickson and Goyet, 1994).  Comprehensive 

inorganic carbon system determinations can be obtained by measuring two or more 

system parameters (Millero, 2007).  In order to minimize problems associated with 

shipboard and laboratory manual analysis, it is desirable to supplement conventional 

sampling protocols with in situ sensing techniques.  Accordingly, pH and fCO2 sensors 

suited for in situ measurements are gaining acceptance in the oceanographic community 

(Lefèvre et al., 1993; DeGrandpre et al., 1995; Martz et al., 2003; Liu et al., 2006).  

However, calculation of DIC and AT using pH-fCO2 as paired parameters produces 

uncertainties much larger than state-of-the-art direct measurements (Millero, 2007).  As 
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an alternative to paired pH and fCO2 parameters, in situ measurements of DIC or AT can 

be used to provide compatible analytical pairs: DIC plus either pH or fCO2 and AT plus 

either pH or fCO2.  Consequently, efforts are currently being devoted to measure an 

expanded set of in situ parameters (Choi et al., 2002; Martz et al., 2006; Byrne and Yao, 

2008; Sayles and Eck, 2009). 

Membrane introduction mass spectrometers (MIMS) are effective in situ sensors 

for simultaneous determinations of a wide variety of volatile compounds including CO2 

(Bell et al., 2007; Schlüter and Gentz, 2008; Camilli and Duryea, 2009).  MIMS 

measurements are enabled by gas-permeable membranes, usually polydimethylsiloxane 

(PDMS), which allow diffusion of gases into a vacuum chamber.  The use of MIMS 

dissolved CO2 measurements plus potentiometric pH has been demonstrated in laboratory 

experiments that were focused on non-destructive analysis of small bioreactor samples 

(Yang et al., 2003; Andersen et al., 2005).  The scale of oceanographic measurement, 

wherein sample volumes are negligible relative to that of the sampled medium, allows for 

in situ acidification and direct measurements of DIC. 

The goal of this work is to understand phenomena that affect MIMS 

measurements of CO2 and DIC and, thereby, to provide comprehensive, accurate CO2-

system analysis with a single in situ instrument.  To this end, the following questions 

were addressed in this work: 1) how do CO2-system equilibria (e.g. CO2 + H2O ↔ HCO3
- 

+ H+) affect the CO2 signal intensity in circumneutral seawater solutions?  2) Is MIMS 

instrument response to dissolved CO2 linear across the two order of magnitude CO2 

concentration range between circumneutral seawater solutions and acidified seawater 

solutions? 3) What is the effect of salinity on instrument response?  4) How do in situ 
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DIC measurements of natural solutions compare to those obtained using a standard 

discrete sampling technique? 

MIMS Carbon System Measurement Theory 

pCO2 Equilibrium.  Dissolved CO2 concentrations in seawater samples can be 

established by equilibration of seawater with calibrated gas mixtures at a specified 

temperature, T, and salinity, S.   To avoid evaporative changes in sample salinity and 

temperature, dry gas can be hydrated by passing the gas stream through water prior to 

equilibration with samples.  The partial pressure of carbon dioxide in a hydrated gas, 

pCO2
wet, can be calculated from the vapor pressure of H2O in seawater, pH2O, and the 

original carbon dioxide partial pressure of the dry gas, pCO2
dry, using eq 4.1. 

  4.1 

Water vapor pressure is calculated by methods outlined in Millero et al. (1976).  Using 

pCO2
wet (expressed as a mole ratio) the carbon dioxide fugacity, fCO2 (expressed in 

atmospheres), can then be calculated using the Virial equation (Weiss, 1974), expressed 

in terms of T and total pressure, p.  The solution concentration of carbon dioxide can then 

be calculated from The Henry’s Law constant for CO2,  (eq 4.2) also given by Weiss 

(1974) as a function of T and S.  

  4.2 

 

CO2 Solution Equilibrium.  Dissolved CO2 reacts with water to produce 

carbonic acid, H2CO3.  It is analytically inconvenient to distinguish dissolved CO2 from 

H2CO3.  Therefore they are combined to produce a single parameter, CO2
* ([CO2

*] = 
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[CO2] + [H2CO3]).  Carbonic acid dissociates to produce bicarbonate, HCO3
-  and 

carbonate, CO3
-2 (eq 4.3 and  4.4) to an extent that is dependent on solution pH.  In 

seawater, the CO2 system equilibrium constants,  and , are functionally dependent 

on S, T and p.  In this work  and  were taken from Mehrbach et al. (1973) 

parameterized on the total hydrogen ion scale by Dickson and Millero (1987).  

Calculations were performed using MATLAB scripts written by the author that 

incorporate carbon system scripts published by van Heuven et al. (2009). The total pH 

scale and molinity (mol.kg-soln-1) concentration units were used for carbon system 

calculations.  

  4.3 

 

  4.4 

 

DIC is defined as the sum of all the inorganic carbon species in solution ([DIC] = 

[CO2
*] + [HCO3

-] + [CO3
-2]).  At a typical surface seawater pH near 8.1 at 25 °C, CO2

* 

constitutes less than 0.5% of DIC.  At pH 3, 99.9% of DIC is in the form of CO2
*.  

Therefore, DIC can be measured by acidifying seawater to a pH below 3.0, whereupon 

[CO2
*] can be determined by techniques including coulometry, manometry, spectroscopy 

and mass spectrometry (Johnson et al., 1993; Guenther et al., 1994; Salata et al., 2000; 

Byrne et al., 2002; Kaltin et al., 2005).   

The activity coefficient, γ, of dissolved CO2
* in solution increases with ionic 

strength.  The solubility, , of CO2 is therefore smaller in seawater than in freshwater (i.e. 
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).  The dependence of CO2 solubility on ionic strength, µ, can be expressed in 

terms the Setschenow equation (eq 4.5) (Randall and Failey, 1927; Weiss, 1970; Millero, 

2000).   

    , 4.5 

where  is the salting in (negative) or salting out (positive) coefficient with respect to 

gas solubility.  The ionic strength of seawater can be simulated with NaCl solutions and 

related to salinity using eq 4.6 (Dickson and Goyet, 1994).   

  4.6 

Relation of UMS Signal Intensities to Dissolved Gas Concentrations.  MIMS 

instrument response at a specified mass to charge ratio (m/z) is reported as ion current, 

Im/z,.  As a measure of instrumental background, I at m/z = 5 (i.e., I5) is subtracted from all 

ion current measurements to account for UMS electronics system temperature 

fluctuation.  As I5 is negligible for N2, O2, Ar and CO2 determinations, it is not explicitly 

included in following expressions.  Calibration baselines, , for gas G, were 

determined by measuring the sample matrix in the absence of analytes.  This condition 

can be generated by either (a) sparging the solution with a gas, (b) sampling from the 

solution while it is vigorously boiling, or (c) degassing samples that are in contact with 

the membrane interface under conditions of no flow (Bell et al., 2007). The analyte 

sensitivity parameter or slope, , is determined by regression analysis of aqueous 

standards produced by either (a) equilibration of seawater with calibrated gas mixtures, 

(b) certification of a large batch of samples though conventional analysis or, (c) 
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quantitative addition of reagents to a blank matrix.  Because the baseline intensity is 

directly determined with a blank measurement, best results are obtained by subtracting 

baseline values from all subsequent measurements and forcing calibration plots through 

zero. 

As shown by Bell et al. (2007) membrane permeability to water and dissolved 

gases is affected by hydrostatic pressure.  Since water is the primary contributor to 

baseline signal intensities (Ørsnes et al., 1997), analytical accuracy can be improved by 

the multiplying calibration baseline values by a water correction factor, CF17, calculated 

for each field measurement: 

  4.7 

Where  is the average ion current at m/z = 17 during calibration and  is the ion 

current at m/z = 17 during field measurements. Thus, UMS field measurements of the 

dissolved of gas concentrations, [G]meas, can be related to instrument response (Im/z) using 

eq 4.8. 

  4.8 

The accuracy of MIMS measurements can occasionally be enhanced through use 

of an Ar correction factor.  Saturated Ar concentrations in seawater can be calculated by 

measuring salinity and potential temperature and assuming the water sample came into 

equilibrium with the atmosphere at the measured S and potential temperature (Pilson, 

1998).  Thus, ratios of saturated and UMS-measured Ar concentrations, [Ar]sat, and 

[Ar]meas, compensate for changes in analyte sensitivity created by variability in 

instrument response (eq 4.9).   
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  4.9 

Examples of parameters that influence instrument response include, temperature, 

hydrostatic pressure, salinity, and flow rate.  By assuming that perturbations in Ar signal 

intensities are similar to those of other analytes, instrument accuracy can be improved 

significantly (Kana et al., 1994). 

Methods 

MIMS System.  The UMS system used in this work is based on a previously-

published UMS design (Bell et al., 2007) that employs a temperature-regulated flow-

through membrane-introduction assembly and PDMS membrane.  Significant design 

modifications relative to the Bell et al. (2007) instrument include the use of a single 

pressure vessel with all electrical and fluidic feedthroughs on a single endcap, enabling 

easier access inside the pressure vessel.  The roughing pump is currently mounted on 

vibrational dampeners, and its exhaust (~90% water vapor) is scrubbed with desiccant.  

Indicating desiccant (Sigma-Aldrich, St Louis, MO) becomes saturated only after months 

of continuous scrubbing.  Therefore, long term deployments are feasible.  Further design 

changes include replacement of fluidic tubing with 1/8” Hastelloy C tubing for additional 

inertness and use of a fluidic tee that allows two fluid streams to mix before passing over 

the membrane.  Additionally, the sample pump was removed from the UMS pressure 

vessel.  During laboratory-based experiments, sample flow was provided by either an 

external peristaltic pump (Instech Laboratories, Plymouth Meeting, PA) or an HPLC 

pump (Hitachi, Japan).  During field experiments, sample flow was provided by an 

underwater syringe pump. 
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Carbonate Contribution to CO2 Signal Intensity.  To determine the effect of 

dissolved HCO3
- and CO3

-2 (and other seawater buffering compounds) on the response of 

the MIMS instrument to CO2
*, two 1 L seawater samples (S = 36.5 collected from the 

South Atlantic Bight) were equilibrated with a hydrated air mix (404 ppm pCO2
dry) for 

over 4 hours.  One seawater sample was acidified with 1 mL of 6 M HCl, while the other 

retained its original alkalinity (AT = 2390 µmol/kg-soln, determined using the method of 

Yao et al. (1998)).  The two seawater samples and the MIMS assembly were submerged 

in a 35 °C temperature bath, depicted in Figure 16, Schematic I.  Boundary layer 

depletion-intensity was varied by adjusting sample flow rates between 0 and 16 mL/min 

during MIMS measurements.  This experimental setup is designed to prevent thermally-

driven perturbations to carbon system equilibria as demonstrated by Guéguen and Tortell 

(2008). 
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Figure 16.  Schematics I, II, and III of laboratory-based experiments.  a. Dry gas standard (shown in 
I-III).  b. Gas hydration cell (I, III).  c. CO2 scrubber (II).  d. Sample (I-III). e. Constant temperature 
bath (I-III).  f. Reagent addition syringe (II).  g. HPLC pump (II-III).  h. MIMS Assembly (I-III).  i. 
Peristaltic pump (I).  j. Mass Analyzer (I-III).  k. Pulse dampener (II-III).  l. Pressure gauge (II-III).  
m. Back pressure regulator (II-III).  n. Sample exhaust (I-III). 

MIMS DIC Linearity Experiment.  DIC standard solutions were generated by 

gravimetric additions of dried Na2CO3 (Sigma-Aldrich, St Louis, MO) to degassed 
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deionized water (analytical balance model P1-2250, Denver Instruments, Denver, CO).  

Samples of deionized water (1 L) were purged of CO2 using N2 gas scrubbed with 

NaOH/CaO (Sigma-Aldrich, St Louis, MO).   The 1 L flask was then sealed with a 

Teflon stopper and the total water mass was determined using a calibrated top-loading 

balance (A&D Weighing, San Jose, CA).  NaCl and Na2CO3 (Sigma-Aldrich, St Louis, 

MO) were used to generate solutions with ionic strengths of 0.67 µm.kg-soln-1 and 

various DIC concentrations.  The Na2CO3 used for standardizations was stored at 150 °C 

and added gravimetrically while still hot. After complete dissolution of the Na2CO3, the 

resulting sample was partially submerged in a 14 °C bath for 10 to 15 minutes, allowing a 

thermocline to develop.  This ensured that any air contamination would not circulate to 

the bottom of the sample where the solution was being sampled for MIMS analysis.   To 

prevent inflow of CO2 into the alkaline standards, the headspace above the solution was 

flushed with CO2-free nitrogen gas.  A 3.6 M HCl solution (Sigma-Aldrich, St Louis, 

MO) that had been purged with scrubbed nitrogen gas was injected into the sample 

stream using a syringe pump (Cole Parmer, Vernon Hills, IL).  The sample flow rate was 

4 mL/min and the mix ratio was 266:1.  A dilution correction was applied to the 

calculated DIC concentration to account for the acid addition. This experimental setup is 

depicted in Figure 16, Schematic II.  The MIMS assembly was maintained at 35.0 °C, for 

one dataset and 30 °C for another and an HPLC pump plus a back-pressure regulator 

were used to maintain hydrostatic pressure at 1.27 atm absolute to reduce bubble 

formation that can result from increased gas tension at the MIMS assembly during 

acidification. 
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MIMS Response to Sample Salinity.  The experimental schematic depicted in 

Figure 16, schematic III, represents the setup for determining the effect of ionic strength 

(and salinity) on membrane permeability.  This setup enables experiments to be 

performed at elevated hydrostatic pressure.  NaCl solutions with ionic strengths 

equivalent to salinities of 0, 8, 16, 24, 32 and 36 were acidified to pH 2.2.  A certified 

reference standard (CRM #91, S = 33.4) provided by Dr. Andrew Dickson (La Jolla, 

California) was acidified to pH 2.2.  All samples were then simultaneously equilibrated at 

23.5 °C with an air mixture containing 990 ppm pCO2
dry

 and 1% Ar for a minimum of 30 

minutes before sampling.  Equilibrations continued throughout the experiment.   

Solutions were generally analyzed three times at a hydrostatic pressure of 184 atm 

absolute and three times at 1.27 atm absolute.  The MIMS assembly was maintained at 

35 °C. 

In Situ Deployment.  For demonstration of in situ capabilities, the UMS was 

lowered 5.6 m to the seafloor of Bayboro Harbor (St Petersburg, FL).  The UMS was 

mounted on a deployment frame along with an underwater battery, conductivity-

temperature-depth (CTD) sensor (RBR Ltd, Ottawa, Canada), and syringe pump system.  

Continuous power and communication were provided to the instrumentation from shore 

by a tether.  Ethernet communication was routed to the internet, allowing remote data 

access and commands to the UMS.  A 100 µm screen was affixed to the UMS sample 

inlet, 50 cm from the base of the deployment frame. 

During the field deployment, sample flow was provided by the custom-built 

syringe pump described in Chapter 3.  However, the pump was altered by replacing the 

sediment probe with a 1 mL syringe containing 3.6 M HCl for acidification of the sample 
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stream.  This syringe was equipped with two check valves that enabled periodic 

replenishment of reagent from a 100 mL acid reservoir that was stored in two 60 mL 

syringes.  Seawater flow rate at 1 mL/min and acid flow rate at 5.0 µL/min created a 

mixing ratio of 200:1. 

Polyurethane tubing (½”) fixed to the UMS deployment frame immediately 

adjacent to the UMS inlet was equipped with a 100 mesh strainer.  Harbor water was 

periodically drawn to shore through the tubing, stored in 500 mL pyrex vessels, and 

poisoned with 0.2 mL HgCl2 (Sigma-Aldrich, St Louis, MO).  The vessels were then 

sealed with a greased stopper and taped closed.  An air bubble (~4 mL) in each vessel 

permitted temperature-driven changes in sample volume without loss of sample.  The 

samples were stored in a dark, air-conditioned location prior to total carbon analysis for 

comparison to in situ MIMS results.  

  Discrete sample analysis was conducted coulometrically (CM5014, UIC Inc, 

Joliet, IL).  Carrier gas, scrubbed of CO2 by a 40% KOH solution, was used to sparge a 

20 mL subsample that was acidified with two 2.5 mL aliquots of 2 N phosphoric acid.  

The carrier gas was subsequently scrubbed for interfering gases with a 40% KI solution 

and analyses were conducted in the coulometer’s titration cell.  Samples were run in 

duplicate or triplicate.  Eight hours of sample analyses were preceded by a blank 

measurement. A CRM was analyzed after 4 hours, and a second blank was analyzed at 

the end of 8 hours of analyses.  The CRMs were used to ensure measurement consistency 

and accuracy. 

The UMS was also calibrated for DIC with a CRM.  For calibration of UMS Ar 

measurements, two samples of Bayboro Harbor water (S = 32.4) were equilibrated 
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overnight in a constant temperature bath with two calibrated gas mixtures (Airgas, 

Radnor, PA).  A blank was produced for both Ar and DIC by acidifying a sample of 

harbor water to pH 2.2, and equilibrating the sample with N2 gas scrubbed with 

NaOH/CaO. 

Results and Discussion 

Carbonate Contribution to CO2 Signal Intensity. Figure 17 shows CO2 signal 

intensities obtained during analysis of acidified and unacidified seawater samples over a 

range of flow rates.  At high flow rates, the closely comparable results obtained using 

acidified and unacidified samples suggest that the depleted boundary layer behavior at the 

membrane interface is very similar for the two types of samples.  Reductions in ion 

currents from both samples at low flow rates are attributable to CO2 depletion in the 

boundary layer.  Under low flow conditions, signal intensities obtained with unacidified 

sample were systematically higher than those for the acidified sample. Further, the ion 

currents declined to baseline levels within 10 minutes after sample flow was stopped 

(flow rate = 0 mL/min) only for the acidified sample.  This occurs due to complete 

degassing of CO2
* in the membrane boundary layer of the acidified sample.  In contrast, 

the ion currents observed using unacidified samples continued to slowly decrease for 

more than one hour.  In this case, CO2 was continuously replenished by production of 

CO2
* from HCO3

-. 
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Figure 17.  Ion current (I44) vs. sample flow rate.  The difference between the unacidified sample 
(black line) and the acidified sample (red) demonstrates the influence of bicarbonate ions on carbon 
dioxide signal intensity for the unacidified seawater.  Values are baseline subtracted.   Solid lines 
were interpolated using a non-linear fit of the form I44= exp(a+b/x +clnx), where x is flow rate. 
 

In circumneutral solutions (7 ≤ pH ≤ 8), removal of CO2
* from the 

membrane/solution boundary layer results in CO2
* replenishment from the reaction 

H+ + HCO3
- → CO2 + H2O.  At a given flow rate, the extent of replenishment will be 

determined by a sample’s buffering intensity and bicarbonate concentration.  At slow 

flow rates this distinction between the behavior of acidified and unacidified solutions 

confounds comparisons of CO2
* measurements obtained at different pH or AT.  For 

measurements at low flow rates, CO2
* calibrations must be obtained using media that are 

chemically similar to the expected measurement medium.  At high flow rates, CO2
* 

replenishment at the membrane boundary layer is not detectable and CO2-system kinetics 

(e.g. H+ + HCO3
- → CO2 + H2O) are unimportant.  At high flow rates CO2

* calibrations 

appropriate to circumneutral seawater can be obtained using acidified standards 

(e.g. Na2CO3 standards acidified inline).  This is important because preservation issues 

make the use of CO2
* standards in circumneutral seawater problematic. 
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Although carbon system perturbations that result from boundary layer depletion in 

circumneutral seawater can be minimized through the use of high flow rates, 

perturbations that result from changes in sample temperature (in situ vs. measured) 

remain an inherent aspect of UMS analysis.  In laboratory work, carbon system thermal 

effects can be eliminated by maintaining identical membrane temperatures and sample 

temperatures.  In the field, thermal effects can be significant when in situ temperatures 

are variable.  Guéguen and Tortell (2008) showed that carbon system re-equilibrations 

due to sample temperature perturbations can be addressed through thermodynamic 

calculations.  The CO2SYS software of and Lewis and Wallace (1998) can be used to 

compensate for this type of thermal perturbation.  Though this effect can be minimized 

by exposing the MIMS membrane to the ambient water during deployment, thermal 

latency and the influence of temperature on membrane permeability must then be taken 

into account (Camilli and Duryea, 2009).  

MIMS DIC Linearity Experiment.  High pCO2 in compressed gaseous samples 

can swell PDMS membranes (Royer et al., 1999; Watson and Payne, 1990).  Although 

such effects should be small over the range of CO2
* concentrations encountered in 

analysis of acidified and unacidified natural seawater, it is prudent to assess the linearity 

of instrument response to CO2 over the relevant range of conditions.  Results obtained 

through online acidification of Na2CO3 DIC standards (see Figure 16-III) are shown in 

Figure 18a.  Data sets were collected using membrane temperatures of 30 °C (black 

circles) and 35 °C (red squares).  A baseline measurement was subtracted from all 

subsequent measurements and the calibration plot was forced through zero.  Figure 18b 

shows the resulting residuals.  The skewed distribution of the residuals is suggestive of a 
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quadratic component in the data.  As such, Figure 19a shows the same data set, also 

baseline subtracted, but fit with a quadratic expression (i.e. DIC = β1I44 + β2I44
2).  The 

residuals shown in Figure 19b exhibit a normal distribution and a significantly improved 

root mean squared error (RMSE) for the 30 °C dataset relative to the linear fit.  The 

RMSE did not improve for the 35 °C dataset indicating the quadratic fit did not improve 

the fit as much as would be expected given the reduced degree of freedom. As such, it is 

presently unclear if the quadratic fit is a better model.  Future calibrations should provide 

additional clarity.  

 

Figure 18.  Linear calibration plots using Na2CO3 standards acidified inline.  Samples represented by 
black circles were collected using a membrane temperature of 30 °C and red squares represent data 
collected using a membrane temperature of 35 °C.  Data were baseline subtracted, and the linear 
regression was forced through zero.  a) DIC vs. ion current and b) residuals vs. ion current. 
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Figure 19.  Quadratic calibration plots using Na2CO3 standards acidified inline.  Samples 
represented by black circles were collected using a membrane temperature of 30 °C and red squares 
represent data collected using a membrane temperature of 35 °C.  Data were baseline subtracted and 
fit with a quadratic expression.  a) DIC vs. ion current and b) residuals vs. ion current. 
 

 

MIMS Response to Sample Salinity.  Figure 20 shows the results of 

experiments in which acidified solutions were equilibrated with a calibrated Ar and CO2 

gas mixture and measured with the UMS over a range of ionic strength.  As a result of the 

salting out effect (Weiss, 1974; Millero, 2000), samples bubbled with a given gas mixture 

have identical fugacities (i.e. fAr and fCO2) but different concentrations (i.e. [Ar] and 

[CO2
*]).  The ratio of gas phase and solution phase concentrations at a given ionic 

strength can be described by gas solubility constants via the Setschenow equation 

(eq 4.5).  Expected equilibrium dissolved gas concentrations in Figure 20 are shown in 
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black.  The ratio of gas fugacity in pure water to gas fugacity in NaCl solution is equal to 

one for all ionic strengths and, as a horizontal line, is not plotted.  The ratio of instrument 

response in pure water (GI0) to the response in NaCl solution (GIsw) is shown with 68% 

confidence intervals (red for analysis at 1.27 atm, and in blue for analysis at 184 atm).  

MIMS data were fit with the Setschenow equation.  The instrument responses shown in 

Figure 20 are intermediate to the expected responses for concentration and fugacity.  For 

both gases it is also observed that increased hydrostatic pressure shifts observed 

responses toward improved concordance with the response based on fugacity.  

 

Figure 20.  Ion current and sample concentration vs. salinity.  Calculated gas concentrations for 
argon and carbon dioxide are plotted against salinity in black.  Ion currents against salinity are 
presented in red (1.27 atm absolute) and blue (184 atm absolute).  Relative gas fugacity is constant 
(unity) for all salinities.  Arrows indicate data obtained from CRM analyses.  Good agreement was 
shown between the CRM and NaCl solutions, indicating NaCl solutions and natural seawater with 
identical ionic strength produced comparable results.   
 

 

MIMS instrument response is regulated by membrane permeability, and can be 

described by a solution-diffusion mechanism (LaPack et al., 1990).  This mechanism 

assumes that partition coefficients, K, can be used to describe the chemical equilibria of 

dissolved gases between the liquid phase and the polymer phase.  If it is assumed that 
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changing instrument response with salinity is a result of a changing membrane partition 

coefficients and the Setschenow equation adequately describes this change, then salting 

coefficients can be determined using eq 4.10, where K0 is the membrane partition 

coefficient in pure water, Ksw is the membrane coefficient in NaCl solution or seawater 

and kK is the corresponding membrane salting coefficient.  Experimental data are given in 

Appendix 2 and the resulting salting coefficients are shown in Table 5.   

  4.10 

 

Table 5.  Salting coefficients at 35 °C.  Membrane salting coefficients, kK, are presented with 95% 
confidence intervals.  Gas solubility salting coefficients, , are also listed. 

Gas kK (1.27 atm) 
 (kg-H2O.mol-1 ) 

kK (184 atm) 
 (kg-H2O.mol-1 ) 

 - 
Concentration 

 (kg-H2O.mol-1 ) 
 

 – Fugacity 

Ar 0.19±0.02 0.065±0.006 0.32 0 

CO2 0.09±0.01 0.03±0.01 0.26 0 

 
These data suggest that gas pervaporation is driven by two transport mechanisms- 

one proportional to concentration, the other proportional to fugacity, and the ratio 

between the two mechanisms is dependent on hydrostatic pressure.  At near-atmospheric 

pressure Ar transport through the membrane is 59% concentration dependent and 41% 

fugacity dependent.  At 184 atm, Ar flux is 21% concentration dependent and 79% 

fugacity dependent.  Similarly, at atmospheric pressure, carbon dioxide flux through the 

membrane is 35% concentration dependent and 65% fugacity dependent, and at 184 atm 

flux is 11% concentration dependent and 89% fugacity dependent.   
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Equilibration-based sensors that employ semi-permeable membranes are 

responsive to gas fugacities (DeGrandpre et al., 1995; Gouin et al., 1997).  Aside from 

response time, membrane transport behavior in these instruments is not relevant to sensor 

calibration.  MIMS operation is based on measurement of fluxes.  Gas concentrations on 

one side of the membrane are negligible compared to those on the other, and gas fluxes 

across the membrane are driven by diffusion (Hoch and Kok, 1963).  This produces rapid 

response times and instrument responses that are proportional to membrane permeability. 

Prior publications do not provide a definitive account of the effect of salinity on 

MIMS instrument response.  For example, Kasthurikrishnan and Cooks (1995), 

employing PDMS and microporous Teflon membranes, provided data indicating that 

instrument response to volatile organic compounds can be proportional to concentration, 

independent of matrix affects, and salinity variations.  The MIMS analyses of Kana et al. 

(1994) also showed gas transport data (PDMS membrane, O2, N2, Ar) that were 

proportional to dissolved gas concentrations.  However, the observed instrument 

responses to changes in salinity between of 0 and 36 in the work of Kana et al. (1994) 

had a systematic deviation from the expected concentration-based response by about 5%.  

This observation and the results shown in Figure 20 suggest that gas transport through 

PDMS membranes may be more complicated than has been previously supposed.  

Further, the work of de Vos Petersen et al. (2004) showed that salinity exerted a strong 

influence on instrument response to methyl-branched aldehydes.  In support of the 

observations shown in Figure 20, the observations of de Vos Petersen et al. (2004) 

indicate that some portion of the transport behavior of PDMS membranes is proportional 

to analyte fugacity rather than analyte concentration.   
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Use of Standard Reference Materials in MIMS Analysis.  Procedures for 

producing reliable Na2CO3 standards for DIC determinations are inconvenient for 

shipboard use.  Consequently, CRMs have become a widely used to ensure the reliability 

of carbon system data (Lamb et al., 2001).  These reference standards, composed using 

Pacific Ocean seawater, generally have salinities between 33 and 34.  If CRMs are used 

for calibration, salinity correction factors ( ) are needed for samples that have a 

range of salinities.  Using eqs 4.11 and 4.6, the ion current for a given gas, GI, at a given 

hydrostatic pressure can be corrected to account for variations in salinity to yield GIconc, 

which is the ion current expressed proportionally to gas concentration.  

  4.11 

If the instrument is calibrated using standards with salinities approximately equal 

to the salinity of each field sample, the correction terms (e.g.  for the calibration 

standards and for the field samples) will cancel and salinity corrections are 

negligible.  However, as an example, if the difference between standard and sample 

salinities varies by 10 units, the resulting fugacity correction factor  will be 0.97 for 

carbon dioxide.  As such, this is a substantial effect that must be considered. 

Since the salinity correction factors must be applied to both argon and carbon 

dioxide signal intensities, and the magnitude of each correction is similar, it may be 

appropriate to obtain salinity corrections simply by normalizing with the argon signal (eq 

4.9).  This correction also accounts for variations in signal intensity that result from 

changes in membrane temperature, hydrostatic pressure, and membrane conditions.  In 

this case it is assumed that each parameter affects carbon dioxide and argon signal 

intensities equally.  Best results from this method would be obtained using standards 
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containing known concentrations of both Ar and DIC in order to as to produce 

simultaneous Ar and DIC calibrations.  Measurement errors attributed to fluctuating 

analysis conditions (as listed above) will then largely cancel.  Similarly, field 

measurement of Ar and DIC should be concurrent. At present, a means of producing (or 

certifying) standards for concurrent measurements of Ar and DIC concentrations has not 

been identified.   

Predictions of oceanic Ar concentrations can be made based on solubility 

behavior (Pilson, 1998).  However, Ar concentrations in seawater are influenced by a 

number of non-thermodynamic processes (e.g.  bubble injection, thermal perturbation or 

bubble exchange (Leifer and Patro, 2002; Emerson and Hedges, 2008)).  Under these 

circumstances corrections using Ar normalizations would not appropriately account for 

all processes that influence the comparative transport behavior of Ar and CO2.  As such, 

direct corrections for salinity (eq 4.11) and pressure (Chapter 2, eq 2.7) would be 

required. 

In Situ Deployment.  DIC data were collected in Bayboro harbor over a period of 

68 hours, and samples were drawn periodically for coulometric DIC analysis (Figure 21).  

Since the salinity of the CRM used for UMS calibration was within one unit of the in situ 

water being analyzed (33.2 ≤ S ≤ 32.3) and the UMS depth was less than six meters, 

pressure and salinity correction factors were very small.  However, UMS results were in 

poor agreement with coulometry data until the Ar correction method was applied 

(eq 4.9).  The magnitude of the offset between the UMS and coulometry DIC analyses, 

even with Ar normalization, points to the need for improved UMS accuracy.  

Observations of seawater density (calculated from temperature and salinity) demonstrate 
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the existence of high frequency changes in water conditions that are not resolved by 

either the discrete coloumetric data or the in situ UMS data.  A diurnal trend is not 

observed in either the MIMS DIC data or the coulometric DIC data.  Nor did a severe 

rain event that occurred on the evening of 05/17/09 produce an observable DIC response.  

 

Figure 21.  DIC as measured by the UMS and by coulometry.  The black line represents DIC 
collected via UMS, and the blue squares represent discrete coulometric samples with 95% confidence 
intervals.  Red data represent seawater density.  The mean absolute error between the in situ UMS 
data and discrete coulometric data is 43 µmol/kg-soln. 

 

It was expected that the hydrostatic pressure at ~6 m depth would preclude gas 

supersaturation and bubble formation subsequent to acidification at 35 °C.  However, 

sudden spurious changes in MIMS ion currents indicated the formation of bubbles in the 

sample line.  Consequently, the routine controlling the syringe pump was modified in 

situ: the continuous pumping protocol was changed to a discrete sampling protocol that 

included a flushing stage.  Samples were drawn at 7 mL/min for 30 seconds with a 

corresponding increase in acid flow to flush the system of bubbles, and then flow was set 

to 1 mL/min for 28 minutes during analysis.  Data were collected 5 to 10 minutes after 
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the flush, allowing time for the membrane temperature to stabilize after the sudden 

changes in flow rate.  

The occurrence of bubbles in the sample line is attributed to negative head 

pressure produced by drawing (instead of pushing) the sample through the MIMS 

assembly.  As a result of the described problems with bubbles, analytical accuracy and 

sampling frequency did not match the measurement capabilities that had been 

demonstrated in the laboratory.  Future work will focus on improvement of field DIC 

accuracy through modifications to the sampling methodology, and through periodic 

sampling of an in situ standard.  It would also be advantageous for future deployments to 

occur at depths on the order of ten to more meters.  

Conclusions 

Determinations of DIC by MIMS were found to be largely linear over a wide 

range of concentrations.  However, measurement accuracy was somewhat improved by 

inclusion of a very small quadratic term.  Contributions to CO2 signal intensity from 

HCO3
- and CO3

-2 occurred at low flow rates.  This effect, which resulted from depleted 

boundary layer conditions, was virtually undetectable at higher sample flow rates.  Flow 

rate effects thus need to be taken into consideration when MIMS instruments are 

calibrated for pCO2 measurements.  MIMS response to CO2 and Ar is dependent on 

salinity, and the extent of the salinity dependence is affected by hydrostatic pressure.  The 

effect of salinity on MIMS response can be modeled by calibration over a wide range of 

salinities or, alternatively, minimized through use of Ar normalization.   

Although additional work is needed before MIMS instruments are capable of 

examining the marine CO2 system with state of the art accuracy and precision, the ability 
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to make simultaneous measurements of pCO2, DIC and other important marine analytes 

(i.e. CH4, N2, O2, H2S, Total Sulfide, Ar and DMS) makes the UMS a uniquely capable 

instrument.  Simultaneous detection of these analytes using a single in situ sensor 

provides a novel approach toward comprehensive understanding of the biogeochemical 

processes that regulate our oceans.  
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Summary 
 

Sustained ocean observations with high spatial and temporal resolution require 

robust in situ instrumentation.  To meet the requirements of modern research, 

quantification procedures and performance of in situ instruments must be carefully 

documented.  As such, the behavior of underwater membrane introduction mass 

spectrometers developed at the University of South Florida and SRI International were 

characterized with respect to the influences of sample hydrostatic pressure, salinity, flow 

rate, and chemistry.  These characterizations enabled the collection of quantified 

dissolved gas profiles in the Gulf of Mexico to depths of 500 m.  Development of a 

sediment probe/syringe pump system enabled repeated analysis of sediment porewater 

dissolved gas concentration profiles at 27 m depth in the South Atlantic Bight over a 54 

hour period.  Further broadening the applications of underwater membrane introduction 

mass spectrometer systems, measurements of total dissolved inorganic carbon (DIC) 

were demonstrated by means of inline sample acidification.  DIC measurements of 

acidified seawater in conjunction with CO2 measurements in unacidified seawater allow 

comprehensive determinations of the marine carbon system using two compatible carbon 

system variables with a single instrument.  The measurements described in this 

dissertation constitute the first quantitative observations of dissolved gas ocean profiles, 

sediment porewater profiles, and DIC measurements by underwater mass spectrometry. 
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Appendix 1:  Instrument Specifications 

Table 6.  Underwater mass spectrometer system specifications. 
Parameter Specification 

Mass Analyzer Type Linear Quadrupole Mass Filter 

Mass Range 1-200 amu 

Inlet System Membrane Introduction (PDMS) 

Power Consumption ~100 Watts 

Operation Voltage 24 VDC or 120 VAC 

Maximum Deployment Time 10-14 Days (exhaust limited) 

Dimensions Diameter 19 cm, Length 114 cm 

Weight 33 kg 

Depth Capability 1000 m (extendable to >2000 m) 

 

 

 

Figure 22.  System level image of the underwater mass spectrometer. 
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Appendix 2:  Instrument Response to Salinity 

Raw instrumental data corresponding to instrument response with respect to 

salinity is shown in Figure 20.  Triplicate subsamples obtained at 1.27 atm absolute and 

184 atm absolute hydrostatic pressure show changes in gas fluxes with changing ionic 

strength (µ).  Samples had identical fugacities that were generated by equilibrating NaCl 

solutions with a known gas mixture at a constant temperature.  Dissolved gas 

concentrations can be calculated for comparison using the solubility equations of Weiss 

(1974) and Hamme and Emerson (2004).  Samples were acidified to pH = 2, sample 

temperatures were 23.5 °C and membrane temperature was 35.0 °C.  The gas mixture 

contained 990 ppm pCO2
dry

 and 1% Ar. 

Table 7.  Baseline subtracted ion current data for argon (I40) and carbon dioxide (I44). 

µ  (µmol/kg-H2O) I40 (nA)  
1.27 atm 

I40 (nA)  
184 atm 

I44 (nA)  
1.27 atm 

I44 (nA)  
184 atm 

0.0 3.17, 3.10, 3.11 0.600, 0.598, 0.599 3.16, 3.16, 3.12 0.451, 0.456, 0.457 

0.16 3.11, 3.09, 3.05 0.587, 0.591, 0.593 3.18, 3.14, 3.13 0.444, 0.453, 0.456 

0.32 3.10, 3.00, 2.97 0.583, 0.597, 0.591 3.15, 3.11, 3.08 0.444, 0.455, 0.465 

0.48 2.89, 3.00, 2.87 0.582, 0.586, 0.578 3.03, 3.10, 3.04 0.448, 0.447, 0.450 

0.64 2.80, 2.77 0.570, 0.577, 0.574 3.03, 2.99 0.432, 0.449, 0.454 

0.67(CRM) 2.80, 2.76, 2.79 0.573, 0.575, 0.571 2.98, 2.98, 2.97 0.445, 0.450, 0.443 

0.72 2.73, 2.72, 2.78 0.573, 0.574, 0.568 2.95, 2.96, 3.02 0.445, 0.453, 0.451 
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