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Stochastic Modeling and Statistical Analysis 

Ling Wu 

ABSTRACT 

 

The objective of the present study is to investigate option pricing and forecasting problems in 

finance. This is achieved by developing stochastic models in the framework of classical modeling 

approach. 

In this study, by utilizing the stock price data, we examine the correctness of the existing 

Geometric Brownian Motion (GBM) model under standard statistical tests. By recognizing the 

problems, we attempted to demonstrate the development of modified linear models under 

different data partitioning processes with or without jumps. Empirical comparisons between the 

constructed and GBM models are outlined.  

By analyzing the residual errors, we observed the nonlinearity in the data set. In order to 

incorporate this nonlinearity, we further employed the classical model building approach to 

develop nonlinear stochastic models. Based on the nature of the problems and the knowledge of 

existing nonlinear models, three different nonlinear stochastic models are proposed. Furthermore, 

under different data partitioning processes with equal and unequal intervals, a few modified 

nonlinear models are developed. Again, empirical comparisons between the constructed nonlinear  

ix 



stochastic and GBM models in the context of three data sets are outlined. 

Stochastic dynamic models are also used to predict the future dynamic state of processes.  

This is achieved by modifying the nonlinear stochastic models from constant to time varying 

coefficients, and then time series models are constructed. Using these constructed time series 

models, the prediction and comparison problems with the existing time series models are 

analyzed in the context of three data sets. The study shows that the nonlinear stochastic model 2 

with time varying coefficients is robust with respect different data sets. 

We derive the option pricing formula in the context of three nonlinear stochastic models with 

time varying coefficients. The option pricing formula in the frame work of hybrid systems, 

namely, Hybrid GBM (HGBM) and hybrid nonlinear stochastic models are also initiated. 

Finally, based on our initial investigation about the significance of presented nonlinear stochastic 

models in forecasting and option pricing problems, we propose to continue and further explore 

our study in the context of nonlinear stochastic hybrid modeling approach.  
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Chapter 1 

Review and Basic Concepts 

 

1.0 Introduction 

 

Financial mathematics derives and extends the mathematical or numerical models that are 

suggested by financial economists. Stochastic process is widely used here to obtain the fair price 

of derivatives of an asset. In this chapter, we first review some financial terminologies and 

methodologies, in Sections1.1. In Section 1.2, we present the development of stochastic models. 

General stochastic differential equations and ˆIto Doob−  formula are reviewed in Section 1.3. 

Furthermore, the least square estimation method is reviewed to estimate the parameters in Section 

1.4. Finally, the maximum likelihood estimation method of time series model (ARMA model) is 

outlined in Section 1.5. 

 

1.1 Financial Mathematics 

 

1.1.1 Fundamental Concepts 

During 1600s, Tulip dealing was big business in Holland. Flower growers and dealers were 

trading in options to guarantee prices. Until 1700s, options were declared illegal in London. The 

Investment Securities Act of 1934 created the Securities and Exchange Commission (SEC), and 

gave the SEC the power to regulate options. In April 26, 1973, the Chicago Board Option 

Exchange (CBOE) started trading and listed 16 call options on 16 stocks. A few years later, 

CBOE began trading put option, and ten years later, CBOE began trading Index option. On the 

first day of trading in 1973, 911 contracts traded. Today, the CBOE’s average daily volume 

consistently exceeds one million contracts per day [4]. The concept of financial derivatives plays 

an important role in an interconnected financial world. 
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Definition 1.1.1 Derivatives: Derivatives are financial instruments whose value is derived from 

the value of something else. They generally take the form of contracts under which the parties 

agree to payments between them based upon the value of an underlying asset or other data at a 

particular point in time [2, 4, 19].  

 

The main types of derivatives are futures, forwards, options and swaps. The main use of 

derivatives is to minimize risk for one party while offering the potential for a high return (at 

increased risk) to another. In a short term, the main use of derivatives is in risk management. The 

diverse range of potential underlying assets and payoff alternatives lead to a huge range of 

derivatives contracts available to be traded in the market. One of the most important derivatives is 

option. In the following, we define option, and outline different types options. 

 

Definition 1.1.2 Options: Options are financial instruments that convey the right, but not the 

obligation to engage in a future transaction on some underlying security. Financial instruments 

are cash, evidence of an ownership interest in an entity, or a contractual right to receive, or 

deliver, cash or another financial instrument [2, 4, 19]. 

 

For example, buying a call option provides the right to buy a specified amount of a security at a 

set strike price at some time on or before expiration, while buying a put option provides the right 

to sell. There are 4 kinds of options: 

(i) European option: An option that may only be exercised on expiration. 

(ii) American option: An option that may be exercised on any trading day on or before expiration. 

(iii) Bermuda option: An option that may be exercised only on specified dates on or before 

expiration. 

(iv) Barrier option: Any option with the general characteristic that the underlying security’s price 

must reach some trigger level before the exercise can occur.  

 

Definition 1.1.3 Strike price (K): For an option, the strike price (K) or exercise price, is the key 

variable in a derivatives contract between two parties. Where the contract requires delivery of the 

underlying instrument, the trade will be at the strike price, regardless of the spot price (market 

price S) of the underlying instrument at that time. Strike price is the fixed price at which the  
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owner of an option can purchase, in the case of a call, or the fixed price at which the owner of an 

option can sell, in the case of a put, the underlying security or commodity [2, 4, 19]. 

 

The concepts of payoff for options are defined as below. 

 

Definition 1.1.4 Payoff: The payoff for a call option at time T is Max{(ST - K); 0}, or formally 

(ST - K)+.The payoff for a put option at time T is Max{(K – ST); 0}, or formally (K – ST)+. T is 

the maturity time at which the derivative contract expires [2, 4, 19]. 

 

In the following, we define the concept of hedge in finance. 

Definition 1.1.5 Hedge: A hedge is an investment that is taken out specifically to reduce or 

cancel out the risk in another investment [2, 4, 19]. 

 

Hedging is a strategy designed to minimize exposure to an unwanted business risk, while still 

allowing the business to profit from an investment activity. Typically, a hedger might invest in a 

security that he/she believes to be under-priced relative to its "fair value", and combines this with 

a short sale of a related security or securities. Thus the hedger is indifferent to the movements of 

the market as a whole, and is interested in only the performance of the 'under-priced' security 

relative to the hedge.  

  

1.1.2 Option Pricing 

 

Modern option pricing techniques, usually using stochastic calculus, are often considered among 

the most mathematically complex of all applied areas of finance. In 1959, M. F. M. Osborne 

wrote a paper "Brownian Motion in the Stock Market" [36]. In 1964, another paper, by A. James 

Boness, focused on options. In his work, entitled "Elements of a Theory of Stock Option Value", 

Boness developed a pricing model that made a significant theoretical jump from that of his 

predecessors [8]. More significantly, his work served as a precursor to that of Fischer Black and 

Myron Scholes who in 1973 introduced their landmark option pricing model – Black Scholes 

Model [33] 
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There are two types of option pricing approaches namely discrete and continuous processes. In 

the following, we briefly describe the discrete time option pricing process. 

 

Discrete Time Option Pricing Process (Binomial Tree): We suppose that the market is 

observable at times 0 = t0 < t1 < t2 < … < tN = T. On each time period [ti, ti+1], the stock price 

follows the binary model. After i time periods, the stock has 2i possible values. We also suppose 

that the length of any time period has the same length tδ . We define  to be the 

discounted stock process, such that, , where r is the interest rate. Figure 1.1.1 is the 

binomial tree for a stochastic stock price process. 

0{ }k kS ≥
%

kr t
kS e Sδ−=%

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.1 Binomial Tree for a Stochastic Stock Price Process 

 

In the following, before we state very important result, we first give some definitions: 

In probability theory, when we talk about a random variable, we specify a probability triple  

( , , )F PΩ , where Ω  is the sample apace, F is a collection of subsets of Ω ,also called σ -field, 

and P is the probability of each event A F∈ . 
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To specify a stochastic process, we required not only a single σ -field, F, but also an increasing 

sequence of sub σ - algebras, . The collection  is called a filtration 

and the quadruple  is called a filtered probability space. 

1 ...n nF F F+⊆ ⊆ ⊆

0} , )n P≥

0{ }n nF ≥

( , ,{F FΩ

 

In probability theory, suppose that 0( , ,{ } , )nF F P≥Ω is a filtered probability space. The sequence 

of random variables  is a martingale with respect to P and  if 0{ }n nX ≥ 0{ }n nF ≥

[| |] ,nE X < ∞  and 1[ | ]n nE X F X+ n= , for all n.  

 

Theorem 1.1.1 (The binomial representation theorem) [19]: Suppose that the measure Q is such 

that the discounted binomial price process NnnS ≤≤0}~{

0{ }n nF ≥

 is a Q-martingale. If  is any other 

(Q,{Fn}n≥0,)-martingale, then there exists an  – predictable process 

0{ }n n NV ≤ ≤
%

1{ }n nφ ≥  (portfolio 

process) such that   
1

0 1 1
0

( )
n

n

.j j j
j

V V S Sφ
−

+ +
=

= + −∑ % %% %  

Remark 1.1.1 [19]: From Theorem 1.1.1, we know that if 0}~{ ≥iiV  is the discounted price of a 

claim (European call or put option), then such a predictable process 1}{ ≥iiφ  (portfolio process) 

arises as the stock holding when we construct out replicating portfolio.  

There are three steps to pricing and hedging a claim CT at time T:  

(i) Find a probability measure Q under which the discounted stick price (with its natural filtration) 

is a martingale. 

(ii) Form the discounted value process, ]|[~
iT

rtQ
i

tri
i FCeEVeV −− == δ . 

(iii) Find a predictable process Nii ≤≤1}{φ  such that iii SV ~~ Δ=Δ φ . 

 

In the following, we present a very fundamental result in the theory of continuous time option 

pricing process. 

 

Theorem 1.1.2 [19]: The fundamental theorem of continuous option pricing is: 

(i) There is a probability measure Q equivalent to P under which the discounted stock price  

0}~{ ≥ttS is a martingale.  
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(ii) Under the probability measure Q, suppose that a claim at time T is given by the non-negative 

random variable . If . TT FC ∈ ∞<][ 2
T

Q CE

Then, the claim is replicable and the value at time t of any replicating portfolio is given by, 

, in particular, the fair price at time 0 for the option is  ]|[),( )(
tT

tTrQ FCeEtSV −−=

]~[][0 T
Q

T
rTQ CECeEV == − . 

tS  is a stock price process,  is the discounted stock price process. tS%

 

Theorem 1.1.3 Black-Scholes Model [7,19]: Under the following assumptions: 

(i) There is no credit risk, we can buy and sell cash bond without credit risk. And there is only 

market risk, which means the stock price can go up and down arbitrarily. 

  

(ii) The market is maximally efficient, that is, it is infinitely liquid and does not exhibit any 

friction. This means all relevant information is fully reflected and priced in the stock price, and 

there are no any other additional costs. 

 

(iii) Continuous trading is possible.  

 

(iv) The time evolution of the asset price is stochastic process and called geometric Brownian 

motion, the mathematical expression is t t tdS S dt S dWtμ σ= + . is a stock process, μ and σ are 

constant. 

tS

 

(v) There is no dividend.  

 

(vi) The underlying asset is arbitrarily divisible. And the market is arbitrage free, which means 

the market prices do not allow for profitable arbitrage. 

 

The value at time t of a European option whose payoff at maturity ( )T TC f S= ,  is  

( , )tV F t S= t , where 

2

21 2( )( )( ) 2( , ) ( )
2

y

r T t y T tr T t eF t x e f xe dy
σ σ

π

−
∞ − − + −− −

−∞
= ∫ . 
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For European call option, suppose that ( ) ( )T Tf S S K += − . Then, let T tθ = − , 

1 2( , ) ( ) ( )rF t x x d Ke dθ−= Φ − Φ , 

where, 

   is the standard normal cumulative distribution function,  (.)Φ

  

2

1

log ( )
2

x r
Kd

σ θ

σ θ

+ +
= ,   

and   2 1d d σ θ= − . 

 

For European put option, suppose that ( ) ( )T Tf S K S += − , then let T tθ = − ,  

2 1( , ) ( ) ( )rF t x Ke d x dθ−= Φ − − Φ − , 

where, 

   is the standard normal cumulative distribution function,  (.)Φ

  

2

1

log ( )
2

x r
Kd

σ θ

σ θ

+ +
= ,  

and   2 1d d σ θ= − . 

 

The Black-Scholes formula is based on assumption of log-normal stock diffusion with constant 

volatility, that is, the stock price process is a stochastic process described by the following 

stochastic differential equation of the form: 

   t t tdS S dt S dWtμ σ= + .  

This has become the universal benchmark for option pricing. But, we are all aware of that it is 

flawed. The drift and volatility are not a constant. In 1973, Merton first allows the drift and 

volatility to be a deterministic function of time. Later on, other models allow not only time, but 

also state dependence of the volatility. This method is called as a local volatility approach.  

 

There are some very famous local volatility models. For example, Merton’s model  (1973) takes 

the form tdr dt dWtα σ= +  [33]. Vasicek (1977) deriving an equilibrum model of  discount bond  
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price process by using the Ornstein-Uhlenbeck process [41]. It takes the form 

( )t tdr r dt dWtα β σ= + + . Dothan (1978) used model t tdr r dWtσ=  in valuing discount bonds 

[18]. And Brennan and Schwartz (1980) used model ( )t tr d tdr t r dWtα β σ= + +  in deriving a 

numerical model for convertible bond prices [11]. These are called linear models. Other nonlinear 

models such as Cox-Ingersoll-Ross model [15] and Black-Karasinski model [6],  take nonlinear 

functions of the asset price at time t as the drift and/or volatility. In the next section, we will 

introduce how to develop the stochastic process. 

1.2 Development of Stochastic Modeling 

In this section, by following a real stochastic modeling approach [26], we outline the derivation 

of stochastic model of stock price. This is based on the basic descriptive statistical approach. It 

utilizes the Random Walk process to initiate a scope and a development of stochastic models of 

dynamic processes. Here, a state is a conceptually common term and description of processes in 

the sciences and engineering is used, for example, a “state” can be “distance” traveled by an 

object in the physical process, “concentration” of a chemical substance in a chemical process, 

“number of species” in a biological process, and in social science or this thesis, state is the 

“price” of an asset in a sociological process. 

1.2.1 Conditions of Stochastic Process – Random Walk 

Let St be a price of a stock at time t. The price of the asset is observed over an interval of [t, t+Δt], 

where Δt is a small increment in t. Without loss in generality, we assume that Δt is positive. The 

price process is under the influence of random perturbations. We experimentally observe price 

process , 
0t tS S=

1 2
, ,...,

nt t t t tS S S S +Δ=  of a stock at 0t t= , 1 ,t t τ= +  2 2 ,t t τ= + … , 

,kkt t τ= +  … , over the time interval [t, t+Δt], where n belongs to {1, 2, 3, …} and 

τ=Δt/n. These observations are made under the following conditions: 

,nt t t= + Δ

C1. The stock price is under the influence of independent and identical random impulses that are 

taken place at . 1 2, ,..., ,...,k nt t t t
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C2. The influence of a random impact on the stock price is observed on every time subinterval of 

length τ. 

C3. For each k∈I(1,n)={1,2,…,k,…n}, it is assumed that the stock price is either increased by 

or decreased by . We refer 
kt

SΔ
kt

SΔ
kt

SΔ as a microscopic/local experimental or knowledge-

base observed increment to the price of the stock per impact on the subinterval of length τ. 

C4. It is assumed that is constant for k∈I(1,n) and is denoted by 
kt

SΔ
kt

SΔ ≡Zk=Z with 

|Zk|=ΔS >0. Thus, for each k∈I(1,n), there is a constant random increment Z of magnitude ΔS to 

the price of the stock per impact on the subinterval of length τ. 

In short, from the first three conditions, under n independent and identical random impacts, the 

initial price and n knowledge-base observed random increments Zk of constant magnitude ΔS in 

the state at over the given interval [t, t+Δt] of length Δt are: 1 2, ,..., ,...,kt t t tn

k

n

0

1 0

2 1

1

1

1

2

......

......
k k

n n

t t

t t

t t

t t

t t

S S

S S Z

S S Z

S S Z

S S Z

−

−

=

− =

− =

− =

− =

 

Zk’s are defined by 

,
,k

S for positive increment
Z

S for negative increment
Δ⎧

= ⎨−Δ⎩
 

The 4th condition implies that they are mutually independent random variables. From the above 

discussion, the prices and are random impacts at the k-th instance and the final time on the 

price process respectively. Moreover, they are expressed by: 

kt
S

nt
S
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1
k

k

t k t t i
i

S S Sτ+
=

− = + Z∑  and 
1

n

t t t i
i

S S+Δ
=

= + Z∑  

where 
1

n

i
i

Z
=
∑ is referred as an aggregate increment to the given price tS S≡ of the stock at the 

given time t over the interval [t, t+Δt] of length Δt. 

In this case, the aggregate change of the price of the stock t t tS +Δ S− under n observations of the 

system over the given interval [t, t+Δt] of length Δt is described by 

1

n

i
i

t t t n

Z
tS S n

n τ
=

+Δ
Δ

− = =
∑

S ,     (1.2.1) 

where 
1

1 n

n
i

S
n =

= ∑ iZ . Sn is the sample average of the aggregate price incremental data. 

1.2.2 Mean and Variance of Aggregate Change of Price 

For each random impact and any real number p, 0<p<1, it is assumed that 

{ 0}kP Z S p= Δ > =  and { 0} 1kP Z S p q= −Δ ≤ = − =  

It is clear that  is a discrete-time-real-valued stochastic process which is the sum of k 

independent Bernouli random variables Zi , i=1, 2, …, k and k=1, 2, …,n. We note that for each k, 

is binomial random variable random variable with parameters (k, p). Moreover, the 

random variable  takes values from the set        {-kΔS, (1-k)ΔS, …, (2m-k)ΔS, …, kΔS}. 

The stochastic price process 

0kt
S S−

kt
S −

t

t0kt
S S−

0t
S

0kt tS S−  is called a Random Walk process. In particular, for k=n, let 

m be a number of positive increments ΔS to the price of the stock out of total n changes. (n-m) is 

the number of negative increment -ΔS to the price of the stock out of total n changes. Furthermore, 

m∈I(0, n), we have that 
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(0, ) (0, )
| |

1 [ ( )
i i

i I n i I n
n ]

Z Z
S m n m

n m n m
+ −∈ ∈= − −

−

∑ ∑
 

     
1 [ ( )m S n m S
n

= Δ − − Δ ]  

     
1

1 1[(2 ) | |]
n

i
i

m n Z
n n =

= − ∑  

     
1 [(2 ) ]nm n S
n

+= − ,      (1.2.2) 

where (0, )I n+ and (0, )I n−  are denoted by (0, ) { (0, ) :| | }i iI n i I n Z Z+ = ∈ = and              

(0, (0 }i) { , ) :| | iI n i= ∈ I Z− = −n Z  respectively, and 
1

1 | |
n

n i
i

S Z
n

+

=

= ∑ . 

Thus from (1.2.1) and (1.2.2), we get  

1 (2 ) n
t t t

SS S m n
n τ

+

+Δ − = − Δt

)

.     (1.2.3) 

Furthermore, in this case, the aggregate change of price of the stock ( ) (S t t S t+ Δ −  over the 

time interval of length Δt under n identical random impacts on the stock over the given interval [t, 

t+Δt] of time is also described by: 

1

n

t t t i
i

S S+Δ
=

− =∑Z  

= total amount of positive increment – total amount of negative increment 

1( ) (2 ) (2 ) n
n

Sm S n m S m n S m n t
n τ

+
+= Δ − − Δ = − = − Δ . 
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This is identical with the expression in (1.2.3). So, the mean of the aggregate change of the price 

of the stock  over the interval [t, t+Δt] is given by: t t tS +Δ − S

[ ]t t tE S S+Δ −
0

1 !(2 ) (1 )
( )!

n
m n m n

m

Snm n p p t
n n m τ

+
−

=

= − −
−∑ Δ  

         = ( ) nSp q t
τ

+

− Δ , 

and the variance is: 

[ ]t t tVar S S+Δ − 2[ ( ) ( ) ( ) ]nSE S t t S t p q t
τ

+

= + Δ − − − Δ  

2 2

0
2

1[ (2 ) ] P( , ) [( ) ]

( )4 .

n
n n

m

n

S Sm n t m np p q t
n

Spq t

τ τ

τ

+ +

=

+

= − Δ − −

= Δ

∑ Δ
  (1.2.4) 

/nS τ+  (or S
τ
Δ ) and 2( ) /nS τ+     (or 2( )S

τ
Δ ) are microscopic or local stock average increment 

and sample microscopic or local average square increment per unit time over the uniform length 

of sample subinterval [tk-1, tk], k=1,2, …, n of interval [t, t+Δt]. 

1.2.3 Wiener Process 

In reality we note that there are restrictions on ΔS and τ. Similarly, the parameter p cannot be 

taken arbitrary. Moreover, the price of the stock cannot go to “infinity” on an interval whose 

length is small. In view of these considerations, for sufficiently large n, the following conditions 

seem to be natural: 

  = , t t tS S+Δ − n SΔ t nτΔ = ,  

2 24 ( ) ( ) 1 ( 2)pq p q p q p q= + − − = − − , 
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2

0

( )lim[ ] 2nS D
τ τ

+

→
= ,  

0 0
lim lim[( ) ]n

S

Sp q C
τ τ

+

Δ → →
− = ,  

and   . 
0 0

lim lim 4 1
S

pq
τΔ → →

=

Here C and D are certain constants. C is called drift, and D is called diffusion coefficient. 

Moreover, C can be interpreted as the average/mean/expected rate of change of price of the stock 

per unit time, and D can be interpreted as the mean square rate of price change of the stock per 

unit time over an interval of length Δt.  

From the above discussion, we obtain  

0 0
lim lim [ ]t t tS

E S S C t
τ +ΔΔ → →

− = Δ       (1.2.5) 

and   
0 0

lim lim [ ] 2t t tS
Var S S D t

τ +ΔΔ → →
− = Δ .     (1.2.6) 

Now, we define 
2

( )( , , )
4 ( )

t t t n

n

S S n p q Sy t n t
npq S

+
+Δ

+

− − −
Δ = . By Central Limit Theorem [37], we 

conclude that the process ( , , )y t n tΔ  is approximated by standard normal random variable for 

each t. 

Moreover, from 
tn
τ
Δ

= , we have 
2

( )
( , , )

( )4

n
t t t

n

SS S p q
y t n t

Spq t

τ

τ

+

+Δ

+

t− − − Δ
Δ =

Δ

,  

Hence,  
0 0

lim lim ( , , )
x

y t n t
τΔ → →

Δ
20 0

( )
lim lim[ ]

( )4

n
t t t

S
n

SS S p q t

Spq t
τ

τ

τ

+

+Δ

+Δ → →

t− − − Δ Δ
=

Δ

 

2
t t tS S C

D t
+Δ − − Δ

=
Δ

t
. 

13 



For fixed Δt, the random variable 
0 0

lim lim ( , , )
S

y t n t
τΔ → →

Δ  has standard normal distribution.  Now, by 

rearranging the above expression, we get  

t t tS S+Δ −
0 0

2 [ lim lim ( , ,
S

C t D t y t n t
τΔ → →

)]= Δ + Δ Δ ,  

and denoting 
0 0

[ lim lim ( , , )] t t tS
t y t n t W W

τ +ΔΔ → →
Δ Δ = Δ = tW− , it can be rewritten as: 

2t t t tS S C t D+Δ − = Δ + ΔW

S

,     (1.2.7) 

where Wt is Wiener process. Thus the aggregate price change of the stock  under 

independent and identical random impacts over the given interval [t, t+Δt] is interpreted as the 

sum of the average/mean/expected price change of the stock CΔt, and the mean square price 

change of the stock 

t t tS +Δ −

2 tD WΔ due the random environmental perturbations. 

If Δt is very small, then its differential dt=Δt, and the Itô-Doob dS is defined by: 

2tdS Cdt DdW= + t ,      (1.2.8) 

where C and D are the drift and the coefficients, respectively. Equation in (1.2.8) is called the Itô-

Doob type stochastic differential equation. 

This Random Walk modeling process can be applied to formulate mathematical model in finance. 

Let St be either a rate of price/value of an asset per unit item/size and per unit time. The specific 

rate of price/value or the rate of price/value is observed over an interval of [t, t+Δt], where Δt is a 

small increment in t. Without loss in generality, we assume that Δt>0. The process is under the 

influence of exogenous or endogenous random perturbations of 

national/international/commerce/trade/monetary/social welfare polices. As the result of this, the St 

is affected by the random environmental perturbations. By following the development of the 

above Random Walk Model, its mathematical description is as described in (1.2.8). 
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Furthermore for very small Δt, the Random Walk modeling approach leads to the formulation of 

mathematical model in finance. Usually it takes the following form: 

tdS dt dWtμ σ= + .      (1.2.9) 

We note that if St is the specific rate of the price/value at time t, then μ (μ=C) is called a measure 

of the average specific rate (per capital growth/decay rate) of the price/value of the asset at the 

time t, and σ (σ2=2D) is called the volatility which measures the standard deviation of the specific 

rate (per capital growth/decay rate) of the price/value at a time t over an interval of small length 

Δt=dt. 

Remark 1.2.1: Here, for the sake of simplicity, we only assume that 
nt

SΔ  is constant. Actually, it 

need not be constant. Moreover, it can be any smooth function of t or St. The expected value of 

the increment E[St+Δt- St] can be replaced by the conditional expected value E[St+Δt- St| St]. C and 

D may be any smooth function of time t and the state S, satisfying certain conditions. We will 

discuss this issue in the next section. 

1.3 General Stochastic Differential Equations 

 

In this section, we outline the fundamental result that assures to undertake the study of dynamic 

modeling. 

 

In financial engineering, it is common to model a continuous time price process described by the 

ˆIto Doob−  type stochastic differential equation. A general stochastic differential equation takes 

the form: 

0 0( , ) ( , ) , .t t t t tdS S t dt S t dW S Sμ σ= + =    (1.3.1) 

 

Here, , Wt is a Brownian motion, and St > 0, which is the price process.  0t t≥

Under the following smoothness conditions on functions μ  and σ , one can establish the 

existence and uniqueness of the solution of process of (1.3.1).  
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Theorem 1.3.1 (Existence and Uniqueness Theorem) [23]: Suppose that there exist some 

constants K, L > 0 such that the functions μ  and σ  in (1.3.1) satisfy the following conditions 

2 2( , ) ( , ) (1 )S t S t K Sμ σ+ ≤ + 2

2 |

 (Growth Condition)   (1.3.2) 

and 

1 2 1 2 1| ( , ) ( , ) | | ( , ) ( , ) | |S t S t S t S t L S Sμ μ σ σ− + − ≤ −  (Lipschitz Condition) (1.3.3) 

Then, it can be shown that the stochastic differential equation in (1.3.1) has a unique solution.  

 

This is very important and well known in financial engineering, because the unique solution of 

the stochastic equation in (1.3.1) is a stochastic process adapted to Brownian filtration  

[23]. 

0}{ ≥ttF

 

These two conditions, growth condition (1.3.2) and Lipschitz condition (1.3.3) (named after 

Rudolf Lipschitz), are sufficient conditions, not necessary conditions for the existence and a 

uniqueness. In this dissertation, all models represented by stochastic differential equations must 

satisfy these two conditions. 

 

In equation (1.3.1), it is known that Wt is a Brownian motion, which is continuous everywhere, 

but it is not differentiable anywhere. To find the information about the solution of the equation 

(1.3.1), we need a way to take integral of a stochastic process. In 1951, ˆIto  Kiyoshithe published 

his very famous ˆIto ’s formula. 

 

Theorem 1.3.2 ( ˆIto Doob−  Formula) [21]: Let f be a function such that , 

its partial derivatives 

],),[[ RRbaCf ∨∈

f
t

∂
∂

, 
f
x
∂
∂

 and 
2

2

f
x

∂
∂

 exist and are continuous. Then we have 

2

0 20 0 0

1( , ) (0, ) ( , ) ( , ) ( , )
2

t t t

t s s s
f f f

sf t W f W s W dW s W ds s W ds
x s s
∂ ∂ ∂

− = + +
∂ ∂ ∂∫ ∫ ∫ . (1.3.4) 

Moreover, ˆIto Doob− ’s formula in differential form is represented by 
2

2

1( , ) ( , ) ( , ) ( , )
2t t t tdf t W f t W dW f t W dt f t W dt

S t S
∂ ∂ ∂

= + +
∂ ∂ ∂ t   (1.3.5) 

This is fundamental result in ˆIto Doob− stochastic calculus [10]. We use this formula frequently. 
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1.4 Least Square Method 

The credit for discovery of the method of Least squares is given to Carl Fridrich Gauss who used 

the procedure in the early part of the nineteenth century [33]. It is the most widely used technique 

in data analysis. The least square technique can be interpreted as a method of fitting data. The 

best fit in the least-squares sense is an instance of the model for which the sum of squared 

residuals has its least value. A residual is the difference between an observed value and the value 

predicted by the model. Unlike maximum likelihood [37], the least square estimation does not 

require the distribution assumption. When the parameters appear linearly in an expression, then 

the estimation problem can be solved in closed form. We recall the formula of the linear model 

that y is related linearly to the regressor variable x’s  as: 

 

0 1 1 2 2 ...i i i k ky x x x i iβ β β β= + + + + +ε   ( 1, 2,..., ; 1)i n n k= ≥ +  (1.4.1) 

 

The ideal conditions of the least square model are 

a) iε  is model error, with mean zero, 

b) the iε  are uncorrelated, and have common variance (homogeneous variance). 

1.5 Maximum Likelihood Estimation Method of ARIMA Model 

ARIMA(p,d,q) (autoregressive integrated moving average) process provides a very general class 

of models for modeling and forecasting dynamic phenomena in science and engineering which 

can be stationarized by applying transformations, namely, difference, logarithm, or other 

transformations. Here, p stands for the number of autoregressive terms, called autoregressive 

order; d is the order (or degree) of difference of the time series; and q is the number of lagged 

forecast errors in the prediction equation, called moving average order. ARIMA(p,d,q) models are 

ARMA(p,q) models with dth-order difference transformation. First, we introduce the difference 

filter as follows: 

dB)1( −      (1.5.1) 

where B is called backward shift operator, and ,1−= tt zBz mtt
m zzB −= , and is a  ntzt ,...,1, =
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time series data set. In ARIMA(p,d,q) models, after taking dth-order difference transformation, 

we suppose that the time series is stationary. For stationary time series, ARMA(p,q) models have 

following form: 

,...... 1111 qtqttptptt zzz −−−− ++++++= εθεθεφφ    (1.5.2) 

that is, 

,)...1()...1( 2
21

2
21 t

q
qt

p
p BBBzBBB εθθθφφφ −−−−=+−−   

or, 

   tt BzB εθφ )()( = ,      (1.5.3) 

where )(Bφ  and )(Bθ  are polynomials of degree p and q in B [10]. 

Therefore, ARIMA(p,d,q) model can be represented as  

tt
d BzBB εθφ )()1)(( =− ,     (1.5.4) 

where d, B, )(Bφ  and )(Bθ  are as defined above. 

 

Even though, the values of p and q can be determined by the number of significant spikes in 

PACF (partial auto correlation function) and ACF (auto correlation function) plots respectively. 

There are several models that are adequately represented by a give time series. Hence, criterions 

such as AIC (Akaike’s information criterion) and BIC (Bayesian information criterion) are used 

to selecte the best model. In our study, we choose AIC, because BIC penalizes more with larger 

data sets. AIC was defined by Akaike in 1973 and takes the following form [3]: 

    kLAIC 2)ln(2 +−= ,      (1.5.5) 

where, L is maximized value of the likelihood function for the estimated model, k is the number 

of parameters in the model. If the model errors are assumed to be normally and independently 

distributed, RSS is the residual sum of square and is defined as , where n is the 

number of observations. Maximizing the likelihood, the AIC can be written as 

∑
=

=
n

i
iRSS

1

2ε̂

]1)2[ln(2 +
×

+=
n
RSSnkAIC π

. After simplification and remove the unaffected constant term, 

AIC is simplifies to: 

)][ln(2
n

RSSnkAIC += .    (1.5.6) 
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The unconditional log-likelihood function of a ARMA(p,q) model is defined by Box, Jenkins, and 

Reinsel in 1994 as follows [10]: 

,
2

),,()2ln(
2

)ln( 2
2

ε
ε σ

θμφπσ SnL −−=    (1.5.7) 

where, ),,( θμφS  is the unconditional sum of residual square, exampled by 

∑∑ ≈=
−∞=

n

M
t

n

t
t zEzES 22 )],,,|([)],,,|([),,( θμφεθμφεθμφ ,  (1.5.8) 

where, ),,,|( zE t θμφε is the conditional expected tε , given z,,, θμφ . M is a large integer such 

that the backforecast increment |),,, z|),,,|(| 1zE tt (E θμφεθμφε −−  is less than any arbitrary 

predetermined small value for ).1( +−≤ Mt  

 

Then problem of parameters estimation in ARIMA model reduces to the problem of finding out 

how to estimate of φ , θ  and so that2
tε ),,( θμφS has minimum value. For example, the 

backforecasting for ARMA(1,1): 

 

Given 11 −− ++= tttt zz θεεφ , we rewrite as 
θ

εφ
ε ttt

t
zz −−

= −
−

1
1 . If we let 0=tε , by giving  

φ  and θ , we can recursively solve 1−tε . Then parameters φ  and θ  can be estimated as those 

value which minimize ),,( θμφS . 

 

After obtaining , and , which maximize the log-likelihood function (1.5.7), the estimator 

of is computed by  

μφ ˆ,ˆ θ̂
2
εσ

n
S )ˆ,ˆ,ˆ(ˆ 2 θμφσ ε = .     (1.5.9) 

Applying (1.5.9) and (1.5.7) in (1.5.5) and reducing the constant in AIC, (1.5.5) is expressed as 

knAIC 2)ˆln( 2 += εσ     (1.5.10) 

Therefore, we can choose the ARIMA model with smallest AIC. The estimated parameters 

,,...,1 pφφ and qθθ ,...,1  by least square and maximum likelihood are not identical, but the 

difference is always trivial. 
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Statistical Model Identification Procedure 1.5.1 [38]: Now, we summarize the development of 

the ARIMA(p,d,q) model as follows: 

i. Transform the original observations ntSt ,...,2,1, =  into ntSfV tt ,...,2,1),( == , if 

necessary. 

ii. Seasonal differences chosen if needed using a variation on the Canova-Hansen test [14]. 

iii. Check for stationarity of ntVt ,...,2,1, = by determining the order of differencing d, 

according to KPSS test [22]. 

iv. Set 5≤+ qp , 3≤p  and 3≤q .  List all possible set of ).,(  qp

v. For each possible set of ),( qp , applying maximum likelihood method, to estimate the 

parameters ,,...,1 pφφ and qθθ ,...,1 of each model. 

vi. Computer AIC for each model. 

vii. Choose the model which has the smallest AIC. 
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Chapter 2 

Linear Stochastic Models 

 

2.0 Introduction 

 

Certain stochastic processes are functions of Brownian motion process and have many 

applications in financial engineering and sciences. Some special processes are solutions of 

ˆIto Doob−  type stochastic differential equations. Moreover, such processes also describe the 

stochastic behavior of an asset price in finance [23].  

 

In this chapter, we introduce the well-known linear stochastic models, which are also called GBM 

(Geometric Brownian Motion) models. By following the historical model building process, we 

attempt to develop a stochastic model for stock market price system. As the part of the model 

building process, we employ two stock prices selected from Fortune 500 companies and one 

stock Index S&P500. The first step in the classical model building approach is to draw a sketch of 

the data set. The second step is to use a proper knowledge of the dynamic process and the given 

data set to estimate the parameters in functions.  

 

In section 2.1, we briefly review a basic conceptual model – GBM model. We utilize statistical 

procedure to sketch a stock price data set and to estimate the parameters in the historical GBM 

model in Section 2.2. The Q-Q plot of residual error of model in Section 2.2 motivates to seek a 

modified version of GBM. By using the same modeling procedure, we discuss several different 

results with different data partitioning processes, in Section 2.3. Again, after studying the Q-Q 

plots of residual errors of models in Section 2.3, we introduce the different data partitioning 

schemes combined with jumps in Section 2.4. We give other examples in Section 2.5 and Section 

2.6 using the same procedure. A few of conclusions are drawn in Section 2.7. The data sets we 

applied here are the two stocks selected from Fortune 500 companies and the S&P 500 index. The 

daily adjusted closing prices can be free downloaded from the website http://finance.yahoo.com. 
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2.1 GBM Models 

 

In this dissertation, as we noted before, we will be following the classical model building process. 

For this purpose we use a data about the dynamic process of interest and some prior information 

about the dynamic process. In our case, we do have a data set about the stock prices selected from 

Fortune 500 companies and a prior well-known theoretical model – GBM model. Our initial 

attempt is to use the stock price data, the GBM model and the statistical techniques. To use these 

three basic components of modeling, first we need to perform the reduction process of converting 

the GBM model into linear regression equation. This reduction technique is systematically 

outlined in this section.  

 

We initiate the usage of a classical modeling approach to develop suitable modified stochastic 

models for the price movement of individual stocks. For this purpose, we first utilize the recent 

trend in the literature that starts with a conceptual model, and attempt to fit a dataset into it. We 

begin with utilizing the existing Geometric Brownian Motion (GBM) model and try to fit a 

dataset into it, and then use the basic statistics to validate the model in the statistical framework. 

The commonly used benchmark for comparison is the well-known Black-Scholes model which is 

based on Geometric Brownian motion [32]. 

 

St is called GBM (Geometric Brownian Motion) process, that is, the solution of the following 

linear ˆIto Doob−  type stochastic differential equation 

 

t t tdS S dt S dWtμ σ= + ,        (2.1.1) 

 

where μ and σ are some constants, μ is called drift, σ is called volatility, and Wt is a normalized 

Brownian motion process. Let K be any number greater than ( 2 2μ σ+ ), and L be any number 

greater than | | | |μ σ+ . From this we conclude that equation (2.1.1) satisfies conditions (1.3.2) 

and (1.3.3). Applying ˆIto Doob− ’s formula applied to ( ) lnt tf S S= , we have 

 
21( )

2
0

tt W

tS S e
μ σ σ− +

= ,       (2.1.2) 
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where, Wt is a Brownian motion process as usual.  is also called exponential Brownian motion 

process, since St takes the exponential form of Wt. As we already introduced in Chapter 1, one of 

the most important assumptions in Black-Scholes model [7] is that the stock price process is 

GBM process. 

tS

 

We want to use the historic stock data set to examine the GBM model (2.1.1), that is, we want to 

estimate the parameters μ and σ. Here, we try to use the least square method to estimate 

parameters in the GBM model. 

 

In equation (2.1.1), the error term does not have common variance. It is related to St. This means 

that as the stock price increases, the variance also increases.  

With a transformation , using lntV = tS ˆIto Doob− ’s formula, we obtain 

2
2

2

1(ln ) ( (ln ))( )
2t t t t

t t

dV S dS S dS
S S
∂ ∂

= +
∂ ∂ t  

            

2
2

2 2 2
2

2

1 1 1( )( )
2

1 1 ( )
2

1( ) .
2

t t
t t

t t
t

t

dS dS
S S

dt dW S dW
S

dt dW

μ σ σ

μ σ σ

= + −

= + −

= − +

t       (2.1.3) 

Thus,  

21(ln ) ( )
2t td S dt dWμ σ σ= − +        (2.1.4) 

 

From the Euler type discretization [24] of the stochastic differential equation (2.1.4), we have 

2
1 1

1ln ln ( ) ( )
2t t t tS S t W Wμ σ σ− −− = − Δ + − .      (2.1.5) 

Let 1ln lnt t ty S S −= − , 1t t tW Wε −= − , and we know 1tΔ = , equation (2.1.5) can be rewritten as  

21
2ty tμ σ σε= − + .         (2.1.6)  

μ and σ are parameters that we want to estimate. 
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According to the properties of standard Brownian motion process, for each n≥1, and any 

sequence of time , the random variables 0 10 ... ...it t t t≤ ≤ ≤ ≤ ≤ ≤ n 1i it tW W
−

−  are independent, 

1t t tW Wε −= −  has the standard normal distribution with mean zero and variance 1. Thus the 

conditions of least square estimations are satisfied. 21
2

μ σ−  can be estimated as the average 

value of ty , which is 1ln lnt tS S −− , σ can be estimated as the standard deviation of 

 [35]. We will use this least square estimation in our work for both linear and 

nonlinear models. 

1ln lnt tS S −−

 

Remark 2.1.1: An alternative way to estimate the parameters is as described below. Since 

1t t tW Wε −= −  is standard normal distribution,  is log-normally distributed with mean tS 21
2

μ σ−  

and variance σ2. Then we can estimate the drift μ and volatility σ parameters by using the 

historical price data. Taking the logarithm of , we can estimate tS 21
2

μ σ− as the average values of 

 , and can estimate the volatility σ by taking the standard deviation of 

 [35]. This is exactly the same as what we have estimated by using least square 

method. 

1ln lnt tS S −−

1ln lnt tS S −−

 

2.2 GBM Model on Overall Data 

 

In this section, by using fortune 500 companies price dataset, we estimate the parameters 21
2

μ σ−  

and 2σ  in (2.1.6). This is achieved in the framework of the overall price data of stock X. 

Suppose we let St be the daily adjusted closing values of stock X that we collect form the fortune 

500 companies that we mentioned early. A plot of the actual data set is drawn in Figure 2.2.1. 
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Figure 2.2.1 Daily Adjusted Closing Price Process for Stock X 

 

We pick one stock X over long period (3 ½  years) of time to build its GBW model. The Figure 

2.2.1 shows its daily adjusted closing price process from 8/19/2004 to 12/31/2007. Using the least 

square method described in Section 1.4, the estimates of drift and volatility are as follows 

ˆ 0.002501028μ = , and ˆ 0.02107507σ = .  

 

Hence the GBM process for the stock X price is the solution of the following linear ˆIto Doob−  

stochastic differential equation: 

ˆ ˆ0.002501028 0.02107507t tdS S dt S dW= + ˆ
t t .      (2.2.1) 

 

The stock price process is 
20 .0 2 1 0 7 5 0 7( 0 .0 0 2 5 0 1 0 2 8 ) 0 .0 2 1 0 7 5 0 7

2
0

ˆ tt W

tS S e
− +

=      (2.2.2) 

In equation (2.2.2),  is the initial stock price of the price of the stock process. Wt is Brownian 

motion, that is, it is a random process. Under direct simulation of the stock price process as we 

generate the Brownian motion, we get the different values. We first use the Monte Carlo method 

[34] to predict the stock price process and then calculate the average of the process. This is a very  

0S
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general approach that is used in many areas, such as physics, chemistry, finance etc. Here, we 

simulate the stock price process 2000 times. Using Monte Carlo method a plot of the stock price 

process of (2.2.1) is given in Figure 2.2.2. The red curve in Figure 2.2.2 represents the result 

using Monte Carlo simulation method. The process in blue curve is one resulted from simulation 

which varies from time to time. 
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Figure 2.2.2 Prediction and One Possible Path of Stock X’s Price Process 

Using Model (2.2.1) 

 

After we estimate the parameters, is estimated by tŜ 2
1 ˆ

2
1ˆlnˆln σμ −+= −tt SS . The basic 

statistics reflecting the accuracy of model in Equation (2.2.1) are mean of the residuals r , 

variance of the residuals, and standard deviation of the residuals, where residual errors are 

defined as . Table 2.2.1 shows these basic statistics. 

2
rS

tr

rS

tt SS ˆ−=

 

Table 2.2.1 Basic Statistics for Model in Equation (2.2.1) 

r  2
rS  rS  No. of Parameters 

28.29653 8752.84 93.55661 2 
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To test the homogeneous errors in equation (2.1.6), actually, we assume that the error term is 

normally distributed. We use Q-Q plot to test it. In statistics, a Q-Q plot ("Q" stands for quantile) 

is a graphical method for diagnosing differences between the probability distribution of a  

population from which a random sample has been drawn and a comparison distribution. An 

example of this kind of difference that can be tested is non-normality of the population 

distribution. The normal distribution is represented by a straight line. The Q-Q plot is in Figure 

2.2.3 
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Figure 2.2.3 Q-Q Plot for Model in Equation (2.2.1) 

 

Remark 2.2.1: From the table 2.2.1, the average residual is 28.29653. This means that zero mean 

condition obviously is not satisfied. Also, the variance is too large. From the Figure 2.2.2, we can 

see that the prediction line (in red) cannot describe the stock process. Furthermore, we can see a 

reverse “S” shape in the Q-Q plot. All these observations suggest that we need a more work to get 

the better model. 

 

2.3 GBM Models under Data Partitioning Schemes without Jumps 

 

The usage of the overall data in estimating the parameters in (2.1.6) suggests to modify the usage 

of data. The estimated parameters in section 2.2 are not realistic. This has been  
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evidenced by the Q-Q plot test for the homogeneous of error in (2.1.6) over the entire period 

of the data. As a result of this, it is natural to partition the data, and repeat the procedure outlined 

in Section 2.2. 

 

In this section, we will use the same stock price process under different data partitioning to 

develop the GBM models. The data is reorganized half-yearly, quarterly, and monthly to build 

GBM models on different segments of periods of the overall period of dataset. 

 

If we revise the dataset more closely, we will find some pattern. Figures 2.3.1-2.3.4 show that the 

daily difference of stock X in 4 quarters from August 2004 to end of year 2007. The daily 

differences in quarter 2 (Q2) and quarter 3 (Q3) are in the range [-20, 20]. The daily differences 

in quarter 1 (Q1) and quarter 4 (Q4) are much bigger than those in quarter 2 (Q2) and quarter 3 

(Q3).  Also in a particular quarter, most of the daily differences follow the similar pattern.  
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Figure 2.3.1 Daily Difference of Stock X in Q1 
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Figure 2.3.2 Daily Difference of Stock X in Q2 
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Figure 2.3.3 Daily Difference of Stock X in Q3 
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Figure 2.3.4 Daily Difference of Stock X in Q4 

 

Table 2.3.1 also shows the standard deviations in Q1 and Q4 are larger than the standard 

deviations in Q2 and Q3. This suggests us that we might reorganize the sample dataset into two 

sub data sets – Q2 and Q3 as subset 1 and Q1 and Q4 as subset 2. Furthermore, we also divide the 

sample dataset into 4 sub datasets -- 4 quarters. For each subset, we use the same method, which 

is described in Section 2.2 to develop its GBM model, separately. 

 

Table 2.3.1 Mean and Standard Deviation of Daily Differences 

of 4 Quarters of Stock X 

 2007 2006 2005 2004 

 mean s.d. mean s.d. mean s.d. mean s.d. 

Q1 -0.038 7.468 -0.401 12.496 -0.201 4.489 NA NA 

Q2 1.024 5.263 0.466 7.511 1.776 4.963 NA NA 

Q3 0.595 6.573 -0.152 5.569 0.349 4.483 NA NA 

Q4 1.941 13.637 0.930 7.947 1.562 7.659 0.987 5.843 
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Data Partition Process 2.3.1: From the description of construction of Figures 2.3.1-2.3.4 and 

Table 2.3.1, we partition the overall data set into two sub datasets. 

 represent the quarter year time intervals starting Q1, Q2, 

Q3 and Q4 etc. The sub dataset 1 contains observations in the Q1 or the Q4. The sub dataset 2 

contains observations in the Q2 or the Q3. 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t

 

GBM Model without Jumps 2.3.1(Half Yearly GBM Model without Jumps): The GBM 

processes without jumps using Data Partition Process 2.3.1 are the solutions of the following 

linear ˆIto Doob−  type stochastic differential equation: 

 

  , if  t is in Q1 or Q4, , 14 14 14 14 14Q Q Q Q Q
t t tdS S dt S dWμ σ= + t

t

00 SS =

23 23 23 23 23Q Q Q Q Q
t t tdS S dt S dWμ σ= + , if t is in Q2 or Q3.      (2.3.1) 

14Qμ  and 23Qμ are drifts, and 14Qσ  and 23Qσ  are volatility rates for two sub datasets, respectively. 

 

By following definition [16, 26, 27], the price process is the solution of (2.3.1), it take the form 

 

214 14 14
14

223 23 23
23 14

1

214 14 14
2314

3

223 23 23
23

1( ( ) )
2

0 0 0
1( ( ) )
2

1 1

1( ( ) )
2

2 2

1( ( ) )
2

3 3

, 0

lim ,

lim ,

lim

Q Q Q
t

Q Q Q
t

Q Q Q
t

Q Q Q
t

t WQ
t

t WQ Q
t tt t

t W QQt
t tt t

t WQ
t t

S S e S S t

S S e S S t t

S S S e S S t t

S S e S

μ σ σ

μ σ σ

μ σ σ

μ σ σ

− +

− +

→

− +

→

− +

= =

= =

= = =

= = 23

5
5 7,

... ... ...

Q
tt

S t t
→

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ ≤ <
⎪
⎪
⎩

1

1 3

3 5

t

t

t

≤ <

≤ <

≤ <

t

    (2.3.2) 

0S  is the initial value of the price process. There are 4 parameter 14Qμ , 14Qσ  and 23Qμ , 23Qσ  n

to be estimated.  

eed 

 

For stock X, the estimated results are as following  
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 , if  t is in Q1 or Q4. 14 14 14ˆ ˆ0.002284141 0.02447219Q Q
t tdS S dt S dW= + ˆQ

t t

ˆQ
t t

23 23 23ˆ ˆ0.002733729 0.01671308Q Q
t tdS S dt S dW= + , if  t is in Q2 or Q3.    (2.3.3) 

 

And the estimated stock X’s price process is: 
2

14

0 .02447219( 0 .002284141 ) 0 .02447219
2
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ˆ tt WQ

tS S e
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= ,  if ; 1[0, )t t∈
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23 14
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     … …          

(2.3.4) 

 

The prediction result of stock X’s price process of in (2.3.3) is provided in Figure 2.3.5. We see 

that the blue curve and red curve are very close. Because the two drifts in Equation (2.3.3) are 

very close. The most different part in Equation (2.3.3) is the volatilities.  
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Figure 2.3.5 Comparison on Model (2.2.1) with Model (2.3.3) of Stock X 
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Table 2.3.2 Basic Statistics for Model in Equation (2.3.2) 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with 

Overall Data 

28.29653 8752.84 93.55661 1 2 

Q14 and Q23 

GBM without jumps 

29.67727 8836.837 94.00445 8 4 
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Figure 2.3.6 Q-Q Plot for Model in Equation (2.3.3) 

 

Remark 2.3.1: From Figure 2.3.6, we still can see there are reverse “S” shapes in the two Q-Q 

plots for both Q1 and Q4, and Q2 and Q3. Table 2.3.2 provides the basic statistics. And from 

Figure 2.3.5, we don’t see an improvement from GBM model on overall data. All these suggest 

that we need more work to get the better model. 

 

In the following, we try to reorganize the dataset into 4 sub datasets – quarter 1 (Q1), quarter 2 

(Q2), quarter 3 (Q3), and quarter 4 (Q4). 

 

Data Partition Process 2.3.2: The time intervals  as defined 

in data partition process 2.3.1. The sub datasets 1, 2, 3, and 4 contain observations in Q1, Q2 , Q3, 

and Q4, respectively.  

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t
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The GBM Model without Jumps 2.3.2 (Quarterly GBM Model without Jumps): The GBM 

processes without jumps using Data Partition Process 2.3.2 are the solutions of the following 

linear ˆIto Doob−  type stochastic differential equation: 

 

  , if  t is in Q1. 1 1 1 1 1Q Q Q Q Q
t t tdS S dt S dWμ σ= + t

t

t

t

2 2 2 2 2Q Q Q Q Q
t t tdS S dt S dWμ σ= + , if t is in Q2.   

3 3 3 3 3Q Q Q Q Q
t t tdS S dt S dWμ σ= + , if  t is in Q3. 

4 4 4 4 4Q Q Q Q Q
t t tdS S dt S dWμ σ= + , if t is in Q4.       (2.3.5) 

 

1Qμ , 2Qμ , 3Qμ  and 4Qμ  are drifts, and 1Qσ , 2Qσ , 3Qσ  4Qσ  are volatilities for four quarters 

respectively. By following definition [16, 26, 27], the price process is the solution of Equation 

(2.3.5), and takes the form 
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    (2.3.6) 

 

There are 8 parameters 1Qμ , 2Qμ , 3Qμ , 4Qμ , 1Qσ , 2Qσ , 3Qσ  and 4Qσ . These parameters need to 

be estimated. For stock X, the estimated results are as following: 
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1 1ˆ ˆ0.0004185944 0.02459217Q Q
t tdS S dt S dW= − + 1ˆQ

t t

2ˆQ
t t

3ˆQ
t t

4ˆQ
t t

, if  t is in Q1. 

2 2ˆ ˆ0.003792002 0.01712985Q Q
t tdS S dt S dW= + , if  t is in Q2. 

3 3ˆ ˆ0.001815337 0.01632730Q Q
t tdS S dt S dW= + , if  t is in Q3. 

4 4ˆ ˆ0.004238625 0.02424493Q Q
t tdS S dt S dW= + , if  t is in Q4.    (2.3.7) 

 

Following the earlier arguments, Figure 2.3.7 exhibists the result of prediction of stock X’s price 

process of (2.3.7). We note that the red curve (quarterly GBM model) is not similar to the blue 

curve (Overall GBM model) as well as orange curve (Q14 and Q23 GBM model). This is due to 

obvious reasons 
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Figure 2.3.7 Comparison on Model (2.2.1), (2.3.3) with Model (2.3.7) of Stock X 

 

Table 2.3.3 provides the statistics for 3 models, namely, overall GBM Model, Q14 and Q23 GBM 

model and Quarterly GBM model. 
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Table 2.3.3 Basic Statistics for Model in Equation (2.2.1) (2.3.3) and (2.3.7) 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 

Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 

Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 
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Figure 2.3.8 Q-Q Plot of Model (2.3.7) 
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Remark 2.3.2: (a) From Figure 2.3.7, we notice the large deviation between the predicted result 

and the observed data set. (b) From Table 2.3.3, we note that the quarterly partition data set 

approach gives the least variance with the largest mean of the residuals. (c) Figure 2.3.8 is the Q-

Q plots for model (2.3.7). We observe that there is still a reverse “S” shape in the Q-Q plot for Q2 

and Q4. In Q1 and Q3, most points fall in the normal distributions and there are a few outliers. (d) 

Again, after careful review of the Figures 2.3.1-2.3.4, we found some patterns. The daily 

differences in quarter 1 (Q1) and quarter 4 (Q4) are much larger than those differences with 

regards to in quarter 2 (Q2) and quarter 3 (Q3). The daily differences do not follow the same 

pattern in the same quarter in different year, that is, the dynamic of stock price in the same quarter 

with different year follows different pattern. As a result of this, we develop two kinds of data 

partitioning schemes, we don’t put the observations in different years together. 

 

Data Partition Process 2.3.3: Let  be a monthly 

sub intervals for m month data set. The sub dataset 1 contains observations in the 1st month, the 

sub dataset 2 contains observations in the 2nd month, the sub dataset 3 contains observations in the 

3rd month, …, the sub dataset m contains observations in the m-th month.  

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ , )m mt t−

 

GBM Model without Jumps 2.3.3 (Monthly GBM Model without Jumps): Let 

 be the m monthly sub intervals. The GBM process 

without jumps is the solution of the following linear 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ ,m mt t− )

ˆIto Doob−  type stochastic differential 

equation: 

i i i i iM M M M M
t t tdS S dt S dWμ σ= + t 00 SS, = , if 1i it t− t≤ < , 1,...,i m= .     (2.3.8) 

 

Here,
iMμ  and iMσ , , are monthly drift and volatility coefficients, respectively. Again, 

by following definition [16, 26, 27], the price process is the solution of (2.4.8), and takes the 

following form: 

1,...,i = m
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    (2.3.9) 

There are  parameters 2 m×
iMμ  and iMσ , 1,...,i m= , need to be estimated. m is the number of 

month of stock price process. The methods of estimation parameters are the same. For stock X, 

the estimated results are as following.  
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  (2.3.10) 

 

All estimated parameters ˆ iMμ  and ˆ iMσ , 1,...,i m= , are given in Appendix A1. Figure 2.3.9 is 

the prediction of stock X’s prices process. Table 2.3.4 provides the basic statistics for estimated 

model corresponding to the original Equation (2.3.8). 
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Figure 2.3.9 Comparison on Model (2.2.1), (2.3.3), (2.3.7) with Model (2.3.10) of Stock X 
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Table 2.3.4 Basic Statistics for Model in Equation (2.2.1) (2.3.3) (2.3.7) and (2.3.10) 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 

Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 

Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 

Monthly GBM 

without jumps 

-80.10483 11754.25 108.4170 41 82 

 

Remark 2.3.3: (a) From Figure 2.3.9 we can see that the monthly GBM model in red really 

catches the dynamic of the stock price process. (b) The stock price process shows it is always 

over predicted. The basic statistics in Table 2.3.4 shows that the variance and standard deviation 

of the residual are very large in this monthly GBM model. 

 

Data Partition Processes 2.3.1-2.3.3 have a common character, that is, the length of time interval 

in each model is exactly the same. For examples, the length of time interval in Data Partition 

Process 2.3.1, 2.3.2, and 2.3.3 are two quarters, one quarter, and one month respectively. If there 

is a big shock in the stock price in one of the intervals, this kind of equal length model cannot 

incorporate the effects of the big shock. To avoid this problem, we provide a modified data 

partition process, this allows us to have unequal length of intervals. 

 

Data Partition Process 2.3.4: Let  be the data set 

time decomposition into n time intervals. We suppose all the big shocks come at times 

. The sub dataset 1 contains observations in the 1st time interval, that is in , the 

sub dataset 2 contains observations in the 2nd interval, that is , the sub dataset 3 contains 

observations in the 3rd interval, that is , …, the sub dataset n contains observations in the 

nth interval, that is .  
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GBM Models without Jumps 2.3.4 (Unequal Interval GBM Model without Jumps): By utilizing 

the above described sub interval decomposition, GBM processe without jumps is the solution of 

the following linear ˆIto Doob−  type stochastic differential equation: 

 

i i i i iI I I I I
t t tdS S dt S dWμ σ= + t 00 SS, =  if 1i it t− t≤ < , 1,...,i n= .    (2.3.11) 

 

iIμ  and iIσ , , are the i-th drift and i-th volatility coefficients, respectively. By 

following the definition [16, 26, 27], The solution to Equation (2.3.11) is, and takes the following 

form: 

1,...,i = n

21 1 1
1

22 2 2
2 1

1

2

1

1

1( ( ) )
2

0 0 0
1( ( ) )
2

1 1

1( ( ) )
2

1 1

,

lim ,

... ... ...

lim ,

I I I
t

I I I
t

I I In n n
t

n n

n

t WI
t

t WI I
t tt t

t

t WI I
t n n t nt t

S S e S S t t t

S S e S S t t t
S

S S e S S t t t

μ σ σ

μ σ σ

μ σ σ
−

−

− +

− +

→

− +

− − →

⎧
= =⎪

⎪
⎪ = =⎪= ⎨
⎪
⎪
⎪ = =⎪⎩

0 1

1 2

1 n−

≤ <

≤ <

≤ <

   (2.3.12) 

There are  parameters 2 n× iIμ  and iIσ , 1,...,i n= , and these parameters need to be estimated.  

 

Now the key issue is how to define unequal length of time interval. The basic idea about defining 

the time intervals is that we want to identify the dates, having the large daily relative difference. 

So we need to define the threshold first, that is, we need to define the threshold of daily relative 

difference of stock price. There are two issues that we want to consider. The first issue is that the 

threshold cannot be either too large or too small. This is because of the fact that if the threshold is 

too large, then we may have too few intervals, and it cannot incorporate the dynamic of stock 

price process. Therefore, we cannot have a good model. If the threshold is too small, then we may 

have too many intervals, that is, for some time intervals, there are few observations so that we 

cannot reasonably develop a model. The second issue is, after defining the threshold, the lengths 

of some time intervals are still too long. In this case, we break these time intervals into months, 

since monthly GBM model shows very good dynamic character. Once we define unequal length 

of time intervals, we apply the same procedure to estimate parameters. 
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The method of estimation parameters is as described in chapter 1. For stock X, the estimated 

results are as  
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  (2.3.13)  

The estimated parameters ˆ iIμ  and ˆ iIσ , 1,...,i n= , are given in Appendix A2. Figure 2.3.10 is the 

predicted stock X’s price process. Table 2.3.5 provides the basic statistics for estimated model 

corresponding to (2.3.13). 
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Figure 2.3.10 Comparison on Model (2.3.1), (2.3.3), (2.3.7), (2.3.10) with. Model (2.3.13) of 

Stock X 

 

Table 2.3.5 Basic Statistics for Model in Equation (2.2.1), (2.3.3), (2.3.7), 

(2.3.10) and (2.3.13) 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 
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Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 

Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 

Monthly GBM 

without jumps 

-80.10483 11754.25 108.4170 41 82 

Unequal Interval 

GBM without jumps 

24.91557 3992.349 63.18504 39 78 

 

Remark 2.3.4: Figure 2.3.10 shows that the Monthly GBM model (dashed red curve) and 

Unequal interval GBM model (solid red curve) are approximations of the true stock price 

movements in comparison to other linear models. However, Table 2.3.5 shows all these 5 models 

have very large residuals. This is largely due to the accumulated errors in models without jumps. 

When we make a prediction, we only use the stock price at time 0 as the initial value to predict a 

long time behavior of the stock price. In section 2.4, we will add jumps to this model to reduce 

the cumulative error. 

 

2.4 GBM Models under Data Partitioning Schemes with Jumps 

 

All models in Section 2.3 are without jumps, that is, we take the left limit of the right endpoint of 

previous time interval as the initial value of the next time interval. This simplistic approach 

carries the previous time interval error to next time interval. The cumulated error might be very 

big. Here, we modify the models of Section 2.3 by adding jumps into the models. The data 

partition processes and other parameters such as drifts and volatilities remain the same. We will 

not repeat in this section. 

 

GBM Model with Jumps 2.4.1 (Half Yearly GBM Model with Jumps): Let 

 be the time intervals as defined in Data Partition Process 

2.3.1. By following the argument, the GBM solution process with jumps of (2.3.1) has the 

following form: 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t
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Here, 1φ , 2φ , 3φ  … are jump coefficients corresponding  to jump times , and can be 

estimated as 

,...,, 531 ttt

1

14

1

1̂φ = ˆlim
t

Q
tt t

S

S
→

, 3

23

3

2̂ ˆlim
t

Q
tt t

S

S
φ

→

= , 5

14

5

3̂ ˆlim
t

Q
tt t

S

S
φ

→

= , …. 

 

GBM Model with Jumps 2.4.2 (Quarterly GBM Model with Jumps): Let 

 be the time intervals as defined in Data Partition Process 

2.3.2. Again, the GBM solution process with jumps of (2.3.2) has the following form: 
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Here, 1φ , 2φ , 3φ  … are jump coefficients corresponding to the jump time , and can 

be estimated as 
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Figure 2.4.1 is the result of prediction of stock X’s price process of (2.3.3) with jumps and of 

(2.3.7) with jumps. We see that the red and blue curves are not as smooth as green and orange 

curves, this is because of the fact that there are jumps in green and orange curves of (2.3.3) and 

(2.3.7), respectively with respect to jumps. It is obvious that models with jumps provide better 

predicted results. 
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Figure 2.4.1 Comparison of Models (2.3.3), (2.3.7) with and without Jumps of Stock X 

 

Table 2.4.1 provides the basic statistics that reflects the accuracy of model (2.3.1), (2.4.1) and 

(2.3.5) with jumps.  

 

Table 2.4.1 Basic Statistics for Linear Models 

(2.2.1), (2.3.3), (2.3.7), (2.3.10), (2.3.13) and with Jumps (2.3.3), (2.3.7) of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 

Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 
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Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 

Monthly GBM 

without jumps 

-80.10483 11754.25 108.4170 41 82 

Unequal-Interval 

GBM without jumps 

24.91557 3992.349 63.18504 39 78 

Q14 and Q23 GBM 

with jumps 

1.759521 3181.759 56.40708 8 11 

Quarterly GBM with 

jumps 

-10.26338 1450.633 38.08717 14 21 

 

Remark 2.4.1: From the Figure 2.4.1 and Table 2.4.1, we notice that models with jumps are 

much better than models without jumps. Moreover, the quarterly data partition has better result 

than half yearly data partition. 

 

GBM Models with Jumps 2.4.3 (Monthly GBM Model with Jumps): Let 

 be the m monthly time intervals as defined in data 

partition process (2.3.3). The GBM solution process with jumps of (2.3.10) takes the form: 
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Here, 1φ , 2φ , 3φ  … are jump coefficients and can be estimated as 
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The methods of estimation parameters are the same as we mentioned in Section 2.3. For stock X,  
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the estimated parameters ˆ iMμ  and ˆ iMσ , 1,...,i m= , are given in Appendix A1, the estimated 

jump coefficients 1̂φ , 2̂φ , 3̂φ  … 1m̂φ −  are provided in Appendix A3. Figure 2.4.2 is the prediction 

of stock X’s prices process. Table 2.4.2 provides the basic statistics of model (2.3.13) with jumps. 
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Figure 2.4.2 Comparison of Models (2.3.10) and (2.3.13) with and without Jumps of Stock X 

 

Table 2.4.2 Basic Statistics for Linear Models (2.2.1), (2.3.3), (2.3.7), and with and without 

Jumps Models (2.3.10), (2.3.13) of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 

Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 

Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 
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Monthly GBM 

without jumps 

-80.10483 11754.25 108.4170 41 82 

Unequal Interval 

GBM without jumps 

24.91557 3992.349 63.18504 39 78 

Q14 and Q23 GBM 

with jumps 

1.759521 3181.759 56.40708 8 11 

Quarterly GBM with 

jumps 

-10.26338 1450.633 38.08717 14 21 

Monthly GBM with 

jumps 

-1.22683 207.3278 14.3989 41 122 

 

Remark 2.4.2: The solid red curve in Figure 2.4.2 follows the same dynamic pattern as the 

dashed red curve. The only difference between these two curves is that Monthly GBM with 

Jumps model doesn’t accumulate large error, while the models without jumps do accumulate 

large errors. This can also be further confirmed from basic statistics in Table 2.4.2. The monthly 

GBM model with jumps has the least mean, variance, and standard error of residual error. 

 

GBM Model with Jumps 2.4.4 (Unequal Interval GBM Model with Jumps): Let 

 be the n time intervals as defined in Data Partition 

Process (2.3.4). Similarly, by following definition [16, 26, 27], the GBM solution processes with 

jumps of (2.3.11) has the following form: 
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    (2.4.4) 

There are  parameters 2 n× iIμ  and iIσ , 1,...,i n= , and these parameters need to be estimated. n 

is the number of intervals of stock price process. We adapt the earlier procedure to create unequal 
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 intervals, and estimate the drifts and volatilities as in Section 2.3. Here, 1φ , 2φ , 3φ  … are jump 

coefficients corresponding to jump times at  and can be estimated as ,...,, 321 ttt
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For stock X, we use the estimated parameters ˆ iIμ  and ˆ iIσ , 1,...,i n= , (Appendix A2), and the 

estimated jump coefficients 1̂φ , 2̂φ , 3̂φ  … 1m̂φ −  (Appendix A4). Figure 2.4.3 is the predicted 

process of stock X. Table 2.4.3 provides the basic statistics for model in Model (2.3.13) with 

jumps. 
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Figure 2.4.3 Comparisons of Models with and without jumps (2.3.10), (2.3.13), (2.4.3) 

of Stock X 

 

Table 2.4.3 Basic Statistics for Linear Models (2.2.1) 

and Models with and without Jumps  (2.3.3), (2.3.7), (2.3.10), (2.3.13) of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

28.29653 8752.84 93.55661 1 2 
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Q14 and Q23 GBM 

without jumps 

29.67727 8836.837 94.00445 8 4 

Quarterly GBM 

without jumps 

53.49948 5570.643 74.63674 14 8 

Monthly GBM 

without jumps 

-80.10483 11754.25 108.4170 41 82 

Unequal Interval 

GBM without jumps 

24.91557 3992.349 63.18504 39 78 

Q14 and Q23 GBM 

with jumps 

1.759521 3181.759 56.40708 8 11 

Quarterly GBM with 

jumps 

-10.26338 1450.633 38.08717 14 21 

Monthly GBM with 

jumps 

-1.22683 207.3278 14.3989 41 122 

Unequal Interval 

GBM with jumps 

-1.962899 258.1040 16.06562 39 116 

 

Remark 2.4.3: In Table 2.4.3 we remark that overall the Monthly GBM Model with jumps and 

Unequal Interval GBM model with jumps, relatively provides the least mean and the variance of 

residual error. Generally speaking, for stock X, the GBM models with jumps perform better than 

those GBM models without jumps. 

 

2.5 Illustration of GBM Models to Data Set of Stock Y 

 

Before we make conclusions about this chapter, we apply the developed linear stochastic models 

to the other company’s (Y) stock price process. It is more than 22 years and has 5630 

observations. Figure 2.5.1 shows its daily adjusted closing price from 9/10/1984 to 12/31/2006.  
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Figure 2.5.1 Daily Adjusted Closing Price for Stock Y 

 

We apply those linear models, under different data portioning process with or without jumps to 

the price data set of stock Y. The procedures are exactly the same as those applied to stock X in 

Sections 2.2, 2.3 and 2.4. To minimize the repetition, here we only give Figure 2.5.2 with regard 

to the best two estimated models and the summary of basic statistics of different linear models of 

stock Y in Table 2.5.1. 
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Figure 2.5.2 The Best Two Estimated Models of Stock Y 
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Table 2.5.1 Basic Statistics for Linear Models without Jumps (2.2.1), 

with and without Jumps (2.3.3), (2.3.7), (2.3.10), (2.3.13) of Stock Y 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

-10.22182 211.7418 14.55135 1 2 

Q14 and Q23 GBM 

without jumps 

-10.48387 214.6396 14.65058 45 4 

Quarterly GBM 

without jumps 

-10.54319 216.0761 14.69953 89 8 

Monthly GBM 

without jumps 

-0.5712012 137.0789 11.70807 268 536 

Unequal Interval 

GBM without jumps 

-1.461658 77.70724 8.815171 256 512 

Q14 and Q23 GBM 

with jumps 

0.993067 26.28088 5.126488 45 48 

Quarterly GBM with 

jumps 

0.4321374 12.24818 3.49974 89 96 

Monthly GBM with 

jumps 

-0.0098261 1.206479 1.098399 268 803 

Unequal Interval 

GBM with jumps 

-0.0124816 1.199703 1.095310 256 767 

 

Remark 2.5.1: From, in Table 2.5.1 we note that for stock Y, two models: the Monthly GBM 

Model with jumps and Unequal Interval GBM model with jumps, both relatively provide the least 

mean, variance of residual error. Generally speaking, for stock Y, the GBM models with jumps 

perform better than those GBM models without jumps. 
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2.6 Illustration of GBM Models to Data Set of S&P 500 Index 

 

In our previous estimation, we applied the above developed linear stochastic models to two 

individual stock price data sets of X and Y. In this section, we apply the GBM models to S&P500 

Index. It is more than 59 years, and has 14844 observations. Figure 2.6.1 shows its daily adjusted 

closing price from 1/1/1950 to 12/31/2008.  
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Figure 2.6.1 Daily Adjusted Closing Price for S&P500 Index 

 

We apply same linear models, under different data portioning process with or without jumps to 

the data set of S&P500 Index. The procedures are exactly the same as those applied to stock X in 

Sections 2.2, 2.3, 2.4, and section 2.5. To minimize the repetition, here we only give Figure 2.6.2 

with regard to the best two estimated models and the summary of basic statistics of different 

linear models of S&P500 Index in Table 2.6.1. 
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Figure 2.6.2 The Best Two Estimated Models of S&P500 Index 

 

Table 2.6.1 Basic Statistics for Linear Models without Jumps (2.2.1), 

with and without Jumps (2.3.3), (2.3.7), (2.3.10), (2.3.13) of S&P500 Index 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

GBM with Overall 

Data 

141.3899 55048.98 234.6252 1 2 

Q14 and Q23 GBM 

without jumps 

141.6477 55031.77 234.5885 119 4 

Quarterly GBM 

without jumps 

142.6970 55408.23 235.3895 236 8 

Monthly GBM 

without jumps 

-0.0171440 148.0943 12.1694 708 1416 

Unequal Interval 

GBM without jumps 

2.541547 210.3291 14.50273 570 1140 
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Q14 and Q23 GBM 

with jumps 

-0.2859031 4717.424 68.6835 119 122 

Quarterly GBM with 

jumps 

-0.8944856 1954.800 44.21312 236 243 

Monthly GBM with 

jumps 

58.30902 486.4579 22.05579 708 2123 

Unequal Interval 

GBM with jumps 

2.471564 210.2159 14.49882 570 1709 

 

Remark 2.6.1: Again, from Table 2.6.1 we remark that for S&P500 Index, there are two models: 

the Monthly GBM Model without jumps and Unequal Interval GBM model with jumps, both 

relatively, provide the least mean and variance of residual error with the least number of time 

intervals. Generally speaking, for S&P500 Index, the GBM models with jumps perform better 

than those GBM models without jumps. 

 

2.7 Conclusions and Comments 

 

In this chapter, by employing classical model building process, we develop the modified version 

of GBM models under different data partitioning processes and coupled with or without jumps. 

The main focus was how to modify the existing GBM model in order to have a best fit with least 

mean and variance of residual error. Based on the study of three data sets in Chapter 2, one can 

immediately draw a couple of conclusions. (i) The first one is the usage of GBM model of overall 

dataset might not give us a good fit. Data partitioning improves the result. (ii) Also we show that 

models with jumps perform much better than the ones without jumps. This improvement is 

largely due to the accumulated errors in the model without jumps. Moreover, the environmental 

random perturbations cause to modify parameters in GBM model. In the next chapters, we will 

focus on models with jumps using monthly data partitioning and unequal interval data 

partitioning process, since models with these two data partitioning with jumps have less mean and 

variance of residual error.  
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The GBM process is the solution of a linear stochastic differential equation. Because the drift and 

volatility rate functions are linear. From the equation (2.1.6), we know that 1ln lnt t ty S S −= −  is 

expected to have a random pattern around the 21ˆ ˆ
2

μ σ− . Moreover, we would like to see the 

values in the neighborhood of the line y= 21ˆ ˆ
2

μ σ− . Figure 2.7.1 is a residual plot of monthly 

GBM model of Stock X. 

 
(a)      (b) 

 
   (c)      (d) 

Figure 2.7.1 Some Residual Plots of Stock X 
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In Figure 2.7.1(a), we see that the residual values start out close to the line, then deviate from it. 

In Figure 2.7.1(b), there are a lot of runs of many negative residuals in a row. In Figure 2.7.1(c), 

we see there is a trend of the residuals. The magnitude of the residuals gets bigger as time goes on. 

Moreover, in Figure 2.7.1(b) and (d), we see the number of positive points are much larger than 

the number of negative points. From these observations and the Q-Q plots for model (2.2.1) 

(Figure 2.2.3), (2.3.3) (Figure 2.3.6) and (2.3.7) (Figure 2.3.8) suggest that the linear GBM model 

and its generalized models are inadequate to represent the stock price models. All these indicate 

that the linear model might not be good enough to fit the dataset. To build more precise models 

for competitive business processes, even a small difference is important. In Chapter 3, we find a 

remedy to partially solve the cited limitations by developing the nonlinear stochastic models. 
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Chapter 3 

Nonlinear Stochastic Models 

 

3.0 Introduction 

 

In Chapter 2, we initiated the development of stochastic modeling by using the classical modeling 

procedure in a systematic way. We made an attempt to modify the GBM model. The developed 

modified GBM models raised the issue about the stochastic linear models of stock price processes. 

This was eluded in Section 2.7. There are many nonlinear stochastic models that describe the 

stochastic behavior of asset price in finance. In this chapter, we will focus on the nonlinear 

stochastic models. In Chapter 2, we have already seen that modified GBM models with monthly 

and unequal interval data partitioning process with jumps have better results in terms of minimum 

mean and variance of residual error, even though, we needed to estimate more parameters. Here, 

we will just focus on monthly and unequal interval data partitioning processes with jumps. In 

Sections 3.1, 3.2 and 3.3, we develop three different nonlinear stochastic models to our three 

datasets. In each section, we will first introduce the nonlinear stochastic model. We then develop 

the monthly and unequal interval nonlinear models with jumps based on each data set. 

Furthermore, we analyze and compare the nonlinear models with corresponding modified GBM 

models. In Sections 3.4 and 3.5, we illustrate nonlinear stochastic models in the context of data 

sets stock Y and S&P 500 Index respectively. Finally, conclusions are drawn in Section 3.6. 

 

3.1 Stochastic Nonlinear Dynamic Model 1 (Black-Karasinski Model) 

 

Black-Karasinski (BK) model [6] describes a short-term interest rate process. It takes the 

following form  
2

( ln )
2t t t tdS S S dt S dWσα β σ= + + + t    (3.1.1) 

where, ,α β  and σ  are parameters and  is Brownian motion. tW
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To test the existence of a unique solution, let K be any number greater than 

22
2

1 )
2

( σσβα +++M , and L be any number greater than ||
2

||||
2

2 σσβα +++M , where 

and  are sufficiently large constants such that and 1M 2M tSM ln1 ≥ |lnln|
1

2

1

22 t
t

t
t S

S
S

SM +≥ . 

It is obvious that equation (3.1.1) satisfy the conditions (1.3.2) and (1.3.3).  is the unique 

solution of  (3.1.1). Even though, The BK model usually describes a short-term interest rate 

process, it may also be applied to the short-term stock price process. 

tS

 

We note that the volatility function is linear and drift function is nonlinear. In order to derive the 

regression equation, we use the following transformation tt SV ln=  and apply  

differential formula (1.3.5) to obtain, 

DooboIt −ˆ

2
2

2

1(ln ) ( (ln ))( )
2t t t t

t t

dV S dS S dS
S S
∂ ∂

= +
∂ ∂ t  

        

2
2

2
2 2 2

2

1 1 1( )( )
2

1 1(( ln ) ) ( )
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t t
t t

t t t t t
t t

t t

dS dS
S S

S S dt S dW S dW
S S

S dt dW

σα β σ σ

α β σ

= + −

= + + + −

= + +

1
t  

Then,  

ttt dWdtVdV σβα ++= )(      (3.1.2) 

 

By using the Euler type discretization process [24], stochastic differential equation (3.1.2) can be 

reduced to 

1 1( ) (t t t t tV V V t W W 1)α β σ− −− = + Δ + − − .   (3.1.3) 

From 1t t tW Wε −= −  and , equation (3.1.3) can be rewritten as  1tΔ =

ttt VV σεβα +++= −1)1(      (3.1.4)  

where ,α β  and σ  are as defined in (3.1.1). By applying the least square regression method [35] 

and using above cited data sets, we can estimate these parameters. 
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Nonlinear Stochastic Model 3.1.1 (Monthly Nonlinear Model 1 with Jumps): Let 

 be the m monthly time intervals as defined in 

Data Partition Process (2.3.3). The nonlinear stochastic model is described by following 

stochastic differential equation: 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ ,m mt t− )

2( )( ln )
2

i
i i i i i i i

M
M M M M M M M
t t t t t 00 SSdS S S dt S dWσα β σ= + + + , =  

    if , 1i it t− ≤ < t 1,...,i m= .     (3.1.5) 

iMα , iMβ , and iMσ ,  are parameters. These parameters need to be estimated. By 

following definition [16, 26, 27], the solution of (3.1.5) takes the form 
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Here,  is the initial value of the stock price process. 0S 1 2, 1, ..., mφ φ φ −  are jumps. These jumps are 

estimated by .ˆ
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The estimated parameters in Monthly Nonlinear Stochastic Model (3.1.1) of stock X are 

presented in Table 3.1.1. The AIC (Akaike's information criterion) criterion [3] defined in (1.5.6). 

Here, we use AIC as the criterion whenever we need to compare different models. The preferred 

model is the model with the lowest AIC value. 

Table 3.1.1 Estimated Parameters in Model 3.1.1 of Stock X 

Interval 

Index 

Monthly GBM Model with Jumps Monthly Nonlinear Model 1 with Jumps 

μ̂  σ̂  AIC α̂  β̂  σ̂  AIC 

1 0.003217 0.037758 24.99217 -0.93259 4.347902 0.025463 20.74442 

2 0.011469 0.021817 42.50585 0.010445 -0.03801 0.021799 44.52993 

3 0.01924 0.041526 83.16599 -0.00148 0.025789 0.041526 85.15694 

4 -0.00152 0.037226 82.10229 -0.27051 1.398991 0.034175 80.71667 

5 0.002806 0.019117 57.44675 -0.05069 0.26617 0.018992 59.16818 

6 0.001162 0.029425 72.08337 -0.3736 1.966097 0.026578 69.95869 
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7 -0.0017 0.027966 67.90378 -0.32282 1.700644 0.02585 66.93144 

8 -0.00177 0.012578 39.10143 -0.23453 1.217925 0.011507 37.27279 

9 0.009641 0.020969 63.75357 -0.03145 0.175542 0.020858 65.44605 

10 0.01115 0.016296 61.93046 0.089916 -0.48049 0.015445 61.48279 

11 0.002921 0.021646 83.43298 -0.33056 1.873092 0.019655 81.20437 

12 -0.00096 0.016438 66.92268 -0.2209 1.257716 0.015708 67.08642 

13 -0.00017 0.013734 66.01481 -0.19786 1.119452 0.013038 65.65693 

14 0.004932 0.015047 67.11831 -0.14534 0.835089 0.014276 66.79189 

15 0.008161 0.02977 98.04718 0.027813 -0.15265 0.029718 99.9177 

16 0.004194 0.01872 87.811 -0.18623 1.118515 0.017263 86.41869 

17 0.001243 0.013153 74.5625 -0.22105 1.33551 0.012174 73.30687 

18 0.002672 0.033797 109.8641 -0.32346 1.974105 0.030375 107.9387 

19 -0.00865 0.035981 101.9126 -0.39163 2.309854 0.028169 93.75399 

20 0.003501 0.025925 105.6795 -0.07197 0.426261 0.025685 107.2806 

21 0.003837 0.019752 83.25841 -0.26766 1.615277 0.017746 81.18764 

22 -0.00514 0.018633 90.55914 -0.24664 1.46339 0.016451 86.83802 

23 0.005609 0.01691 85.99189 -0.12762 0.767304 0.016503 87.09986 

24 -0.00399 0.011988 65.98114 -0.04066 0.240058 0.011892 67.73263 

25 -0.00081 0.014567 81.26636 -0.55654 3.301192 0.01207 74.65778 

26 0.003112 0.015259 75.33679 -0.1616 0.969446 0.01435 74.72001 

27 0.007971 0.022015 103.9302 -0.05786 0.35943 0.021685 105.1114 

28 0.000937 0.014354 85.01112 -0.15455 0.956602 0.01374 85.10525 

29 -0.0025 0.012368 73.32039 -0.11528 0.707825 0.012047 74.33965 

30 0.004407 0.016734 87.08846 -0.41656 2.58325 0.013689 81.1518 

31 -0.00564 0.016148 80.05819 -0.38312 2.351359 0.013406 74.47795 

32 0.000967 0.013749 83.07253 -0.2835 1.7344 0.012763 81.86601 

33 0.001484 0.011091 69.15906 -0.39337 2.423194 0.009461 64.82723 

34 0.00256 0.011958 79.16138 -0.01537 0.097133 0.011955 81.16398 

35 0.002363 0.009975 71.65205 -0.21045 1.315889 0.00921 70.31184 

36 -0.00107 0.014438 88.62695 -0.07007 0.438718 0.014276 90.13775 
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37 0.000524 0.012519 88.16149 -0.34231 2.134238 0.011438 85.94986 

38 0.00511 0.00978 65.80358 -0.02092 0.136596 0.009749 67.64959 

39 0.009694 0.015521 108.0988 -0.02538 0.173118 0.015449 109.955 

40 -0.00057 0.027629 125.7364 -0.15358 0.99984 0.026446 125.9705 

41 2.59E-06 0.014992 96.70551 -0.28643 1.874382 0.013882 95.61875 

Figures 3.1.1- 3.1.3 are the plots of predicted value of Monthly Nonlinear Model 1 of stock X 

with Jumps with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively. 
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Figure 3.1.1 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 1-300) 
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Figure 3.1.2 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 300-600) 
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Figure 3.1.3 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 600-848) 

 

Table 3.1.2 shows the overall basic statistics of Monthly GBM Model and Monthly Nonlinear 

Model 3.1.1. 

 

Table 3.1.2 Basic Statistics of Model 3.1.1 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters

Monthly GBM with 

Jumps 

-1.242020 207.264 14.39667 41 122 

Monthly Nonlinear 

Model 1 with Jumps 

-1.928296 141.1754 11.88173 41 163 

 

Remark 3.1.1: From Table 3.1.2 we can see that overall, the Monthly Nonlinear Model 3.1.1 

with Jumps has less variance of the residual error. From the Table 3.1.1 and Figures 3.1.1 – 3.1.3, 

we remark that for some months, GBM Model is better than Nonlinear Model 3.1.1 in terms of 

AIC. For example, in the 2nd, 3rd, 5th, 9th, 12th, 15th month etc, GBM model has less AIC than 

Nonlinear Model 3.1.1. There are 17 out of 41 months (41%), that GBM model has less AIC than 

Nonlinear Model 1. We further note that the Nonlinear Model 3.1.1 has 3 parameters and the 

GBM model has 2 parameters. 
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Nonlinear Stochastic Model 3.1.2 (Unequal Interval Nonlinear Model 1 with Jumps): Let 

 be the n time intervals as defined in Data Partition 

Process 2.3.4. The nonlinear stochastic differential equation is described by: 
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iIα , iIβ , and iIσ  , , are parameters which can be estimated by the method as 

described above. 
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The parameters of stochastic model (3.1.7) are presented in Table 3.1.3. Furthermore, the AIC for 

both GBM and nonlinear model are also included in Table 3.1.3. 

 

Table 3.1.3 Estimated Parameters in Model 3.1.2 of Stock X 

Interval 

Index 

Unequal Interval GBM Model 

with Jumps 

Unequal Interval Nonlinear Model 1 

with Jumps 

μ̂  σ̂  AIC α̂  β̂  σ̂  AIC 

1 0.006621 0.024521 53.16678 -0.06936 0.331231 0.024124 54.29912 

2 0.013391 0.028731 52.68493 -0.28443 1.411569 0.023982 48.97729 

3 0.009891 0.055846 66.41971 -0.48125 2.509755 0.042146 61.5785 

4 0.001149 0.030116 76.19733 -0.41257 2.131512 0.026637 72.7967 

5 0.009663 0.019472 36.22862 -0.24579 1.292223 0.016518 34.07066 
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6 -0.00134 0.026352 49.0021 -0.70337 3.70968 0.021988 45.88822 

7 0.005189 0.038095 50.92597 -0.27218 1.436821 0.035407 51.11064 

8 -0.00261 0.015574 80.28809 -0.13185 0.68589 0.014794 78.59092 

9 0.008553 0.017281 92.29718 -0.03304 0.185145 0.017021 93.15485 

10 0.00884 0.022777 99.00801 -0.20055 1.137652 0.020094 95.10469 

11 -0.00053 0.014418 40.64565 -0.69145 3.933416 0.011311 36.36812 

12 7.88E-05 0.015385 117.7922 -0.12929 0.733401 0.014874 117.2144 

13 0.000596 0.015815 94.64219 -0.36491 2.091368 0.014159 90.2432 

14 0.016518 0.033196 71.0436 -0.35994 2.137839 0.02067 61.21107 

15 0.009311 0.013909 44.40171 -0.14129 0.856515 0.012957 44.72932 

16 -0.00076 0.016247 90.84893 -0.25676 1.548757 0.015142 89.6624 

17 0.004541 0.025039 60.94867 -0.41581 2.549001 0.019093 56.78929 

18 -0.01211 0.036582 105.6407 -0.0507 0.290682 0.036318 107.3503 

19 0.000358 0.028831 120.3625 -0.20871 1.226962 0.027295 119.5099 

20 0.010446 0.022202 84.47223 -0.31116 1.870249 0.015605 74.16229 

21 -0.00389 0.02337 57.79999 -0.10737 0.642615 0.022928 59.33579 

22 -0.0026 0.019065 78.89382 -0.26636 1.579654 0.017477 77.70388 

23 0.002168 0.015421 115.5262 -0.15501 0.931566 0.014359 113.3126 

24 -0.00417 0.014351 64.01523 -0.2814 1.66841 0.012898 62.11432 

25 0.003034 0.012816 66.33031 -0.52939 3.146627 0.01112 62.77867 

26 0.003202 0.014617 99.57111 -0.20284 1.224103 0.013662 98.0609 

27 0.007015 0.020763 116.315 -0.37375 2.313722 0.015966 106.9751 

28 -0.00327 0.012388 57.10168 -0.88324 5.459753 0.005951 36.7315 

29 1.37E-05 0.015938 96.23449 -0.116 0.715536 0.015467 96.88494 

30 -0.00115 0.017478 101.1193 -0.18984 1.169378 0.016698 100.9772 

31 -0.00045 0.014767 97.74304 -0.37187 2.273761 0.013167 94.06035 

32 2.02E-05 0.01084 100.6316 -0.36305 2.234232 0.009826 96.81189 

33 0.007892 0.011226 46.63383 -0.07094 0.445688 0.011061 48.32431 

34 0.0025 0.008967 101.7473 -0.04038 0.255452 0.008882 103.1137 

35 -0.00407 0.016643 80.90792 -0.77061 4.807935 0.008814 59.38289 
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36 0.003471 0.010888 113.8111 0.010153 -0.06017 0.01088 115.7619 

37 0.008705 0.015797 75.73326 -0.11488 0.745197 0.015096 76.28284 

38 0.010025 0.015063 59.36543 -0.13148 0.86973 0.014223 60.01012 

39 -0.00136 0.022851 199.8702 -0.21082 1.373688 0.021244 196.409 

Figures 3.1.4 - 3.1.6 are the plots of predicted value of Unequal Interval Nonlinear Model 3.1.2 of 

stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively. 
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Figure 3.1.4 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X 

(Observations 1-300) 

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

30
0

35
0

40
0

45
0

50
0

55
0

T i m e

P
ric

e

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

30
0

35
0

40
0

45
0

50
0

55
0

T i m e

P
ric

e

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

30
0

35
0

40
0

45
0

50
0

55
0

T i m e

P
ric

e

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

30
0

35
0

40
0

45
0

50
0

55
0

T i m e

P
ric

e

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

30
0

35
0

40
0

45
0

50
0

55
0

T i m e

P
ric

e

R a w  D a t a
M o n t h ly  G B M  w i t h  J u m p s
M o n t h ly  N o n l i n e a r  M o d e l 1  w i t h  J u m p s
U n e q u a l In t e r v a l  G B M  w i t h  J u m p s
U n e q u a l In t e r v a l  N o n l i n e a r  M o d e l  1  w i t h  J u m p s

 
Figure 3.1.5 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X 

(Observations 300-600) 
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Figure 3.1.6 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X 

(Observations 600-848) 

 

Table 3.1.4 shows the overall basic statistics of monthly GBM model 2.4.3 with jumps, Monthly 

Nonlinear Model 3.1.1 with Jumps, Unequal Interval GBM model 2.4.4 with Jumps and Unequal 

Interval Nonlinear Model 3.1.2 with jumps. 

 

Table 3.1.4 Basic Statistics of Models 2.4.3, 3.1.1, 2.4.4 and 3.1.2 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters

Monthly GBM with Jumps -1.242020 207.264 14.39667 41 

 

122 

Monthly Nonlinear Model 

1 with Jumps 

-1.928296 141.1754 11.88173 41 163 

Unequal Interval GBM 

with Jumps 

1.962899 258.1040 16.06562 39 116 

Unequal Interval Nonlinear 

Model 1 with Jumps 

0.5315015 131.2354 11.4558 39 155 

 

 

66 



Remark 3.1.2: From Table 3.1.4, we note that, the Unequal Interval Nonlinear Model 3.1.2 with 

Jumps has least mean and variance of the residual error. From the Table 3.1.3 and Figures 3.1.4 – 

3.1.6 we conclude that on some intervals, the GBM model is better than Nonlinear Model 3.1.2. 

In addition the GBM model is better than Nonlinear Model 3.1.2 in terms of AIC. For example, 

on the 7th, 9th, 15th, 21st, 29th, 33rd, … intervals, the GBM model has less AIC than Nonlinear 

Model 3.1.2. There are 12 out of 39 intervals (31%), on which the GBM model has less AIC than 

Nonlinear Model 3.1.2. 

 

3.2 Stochastic Nonlinear Dynamic Model 2 

 

This nonlinear stochastic model 2 [26] is described by the following DooboIt −ˆ  differential 

equation 
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uniqueness of solution [23,28]. We note that the volatility and drift functions are nonlinear 
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Then, 

ttt dWdtVNdV σβα ++−= ))1((     (3.2.2) 

 

Again by using Euler type discretization process [24], stochastic differential equation (3.2.2) can 

be reduced to 
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)())1(( 111 −−− −+Δ+−=− ttttt WWtVNVV σβα   (3.2.3) 

From 1t t tW Wε −= −  and , equation (3.2.3) can be rewritten as  1tΔ =

ttt VNV σεβα ++−+= − )))1(1(( 1     (3.2.4)  

where ,α β  and σ  are as defined in (3.2.1). For given N, by applying the least square regression 

method [35] and using above cited data set, these parameters can be estimated, analogously. N is 

estimated by the value, under which the model has least variance of residual error. 

 

Nonlinear Stochastic Model 3.2.1 (Monthly Nonlinear Model 2 with Jumps): Let 

 be the m monthly time intervals as defined in 

stochastic model 3.1.1. The nonlinear stochastic model 3.2.1 with jumps takes the following form 

of nonlinear 
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ˆ

3 4 4 5, ),[ , )...t t t t 1[ ,m mt t− )
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iMα , iMβ , and iMσ ,  are parameters. These parameters are estimated as described 

above. As before, following definition [16, 26, 27], the solution of (3.2.5) takes the form: 

1,...,i = m

2−

 

1

1

1 0 0 0 1

1 2 1 1 1 2 1 1 0 0

1 1 1 1 1 1 2

( , , ),
( , , ), , lim ( , , )

( )
... ... ...

( , , ), , lim ( , , )
m

t t

m m m m m m m m m nt t

S t t S t t t
S t t S t t t S S t t S

S t

S t t S t t t S S t t S

φ

φ

−

−
−

→

− − − − − − −
→

≤ <⎧
⎪ ≤ < =⎪⎪= ⎨
⎪
⎪ ≤ < =
⎪⎩

  (3.2.6) 

 

Again,  is the initial value of the stock price process. 0S 1 2, 1, ..., mφ φ φ −  are jumps, and can. 
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Table 3.2.1 gives estimated parameters by applying Monthly Nonlinear Stochastic Model 3.2.1 of 

stock X. 
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Table 3.2.1 Estimated Parameters of Model 3.2.1 of Stock X 

Interval 

Index 

Monthly Nonlinear Model 2 with Jumps 

α̂  β̂  σ̂  N̂  

1 -0.93097 98.58582 2.685764 0 

2 0.015167 -0.40094 2.562583 0 

3 0.006386 0.702974 2.43304 0.2 

4 -0.26424 46.59828 6.056676 0 

5 -0.04732 9.06878 3.426131 0 

6 3.111272 -1.65455 0.014153 1.12 

7 -0.32461 63.03162 5.104841 0 

8 -0.23319 41.98315 2.08146 0 

9 0.162624 -0.05328 0.007219 1.2 

10 -0.43324 0.148857 0.005128 1.2 

11 -0.32678 94.48073 5.651904 0 

12 -3.1569 4.702766 0.02342 0.93 

13 -0.19667 56.36633 3.738925 0 

14 0.726705 -0.2303 0.004546 1.2 

15 0.227674 -0.4653 0.06296 0.87 

16 0.934944 -0.28125 0.005202 1.2 

17 1.106195 -0.33042 0.003641 1.2 

18 -0.30599 136.999 13.06886 0 

19 1.943516 -0.59744 0.008646 1.2 

20 -0.06734 25.27551 9.241028 0 

21 1.339686 -0.4007 0.005306 1.2 

22 1.223408 -0.37344 0.004986 1.2 

23 -0.11434 46.91534 6.455683 0 

24 -0.04108 15.00859 4.799298 0 

25 -0.55537 209.269 4.546397 0 

26 0.805277 -0.24258 0.004332 1.2 

27 0.291471 -0.08414 0.006396 1.2 
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28 0.770865 -0.22354 0.00398 1.2 

29 -0.11439 53.08718 5.661491 0 

30 2.085035 -0.60321 0.003964 1.2 

31 1.903402 -0.55777 0.003924 1.2 

32 -0.27964 126.9381 5.734823 0 

33 -0.39253 185.8715 4.464326 0 

34 -0.00631 4.182385 5.648348 0 

35 -0.20829 108.206 4.736808 0 

36 0.348545 -0.09964 0.004068 1.2 

37 1.709708 -0.49133 0.003289 1.2 

38 0.107688 -0.02919 0.002777 1.2 

39 -0.01282 14.14102 9.792642 0 

40 -0.15131 101.7773 17.81769 0 

41 1.431732 -0.38677 0.003751 1.2 

 

Figures 3.2.1- 3.2.3 are the plots of predicted value of Monthly Nonlinear Model 3.2.1 of stock X 

with observation ranging from 1 to 300, 300 to 600 and 600 to 848 respectively. 
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Figure 3.2.1 Comparison of Model 2.4.3, 3.1.1 with Model 3.2.1 of Stock X 

(Observations 1-300) 
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Figure 3.2.2 Comparison of Model 2.4.3, 3.1.1 with Model 3.2.1 of Stock X 

(Observations 300-600) 
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Figure 3.2.3 Comparison of Model 2.4.3, 3.1.1 with Model 3.2.1 of Stock X 

(Observations 600-848) 

 

Table 3.2.2 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear 

Model 3.1.1 and Monthly Nonlinear Model 3.2.1 with Jumps of Stock X. 
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Table 3.2.2 Basic Statistics of Models 2.4.3, 3.1.1 and 3.2.1 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters

Monthly GBM with 

Jumps 

-1.242020 207.264 14.39667 41 122 

Monthly Nonlinear 

Model 1 with Jumps 

-1.928296 141.1754 11.88173 41 163 

Monthly Nonlinear 

Model 2 with Jumps 

-2.090806 143.2248 11.96765 41 204 

 

Remark 3.2.1: From Table 3.2.2, we observe that under the same data partition process, Monthly 

Nonlinear Model 3.2.1 with Jumps has less variance than Monthly GBM with Jumps. Overall, the 

Monthly Nonlinear Model 3.1.1 with Jumps has less variance of the residual error than Monthly 

GBM Model and Monthly Nonlinear Model 3.2.1 with Jumps.  

 

Nonlinear Stochastic Model 3.2.2 (Unequal Interval Nonlinear Model 2 with Jumps): Let 

 be the n time intervals defined in stochastic model 

3.1.2. The nonlinear stochastic model 3.2.2 with jumps takes the following form: 
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iIα , iIβ , and iIσ  , , are parameters and can be estimated as described before. 1,...,i = n

2−

By following definition [16, 26, 27], the solution of (3.2.7)  takes the form 
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Here,  is the initial value of the stock price process. 0S 1 2, 1, ..., nφ φ φ −  are jumps and can be 
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Table 3.2.3 gives estimated parameters with regard to Unequal Interval Nonlinear Stochastic 

Model 3.2.2 of stock X. 

 

Table 3.2.3 Estimated Parameters of Model 3.2.2 of Stock X 

Interval 

Index 

Unequal Interval Nonlinear Model 2 with Jumps 

α̂  β̂  σ̂  N̂  

1 -0.06298 7.518172 2.580372 0 

2 -0.2657 38.08205 3.391367 0 

3 -0.44948 82.83006 7.48971 0 

4 -0.41314 72.45667 4.66966 0 

5 -0.23482 45.135 3.059264 0 

6 -0.75107 106.8789 3.141901 0.06 

7 -0.27195 53.40573 6.840905 0 

8 0.656408 -0.23191 0.005193 1.2 

9 0.172972 -0.05645 0.005866 1.2 

10 -0.18794 54.75371 5.654817 0 

11 -0.68875 203.5307 3.345713 0 

12 0.646214 -0.20781 0.004773 1.2 

13 -0.36426 112.3249 4.348781 0 

14 -0.32689 124.4562 7.29626 0 

15 -0.13146 56.60131 5.240336 0 

16 -0.25507 106.2544 6.30183 0 

17 -0.40544 186.3563 8.661997 0 

18 0.239471 -0.07623 0.010924 1.2 

19 1.039288 -0.32073 0.008402 1.2 

20 -0.29476 120.2958 6.163061 0 

21 0.531576 -0.16061 0.00685 1.2 

22 -0.26539 99.89832 6.775433 0 

23 -0.14965 60.98254 5.730283 0 

24 1.402875 -0.42858 0.003933 1.2 

25 -0.52427 199.9783 4.240122 0 
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26 -0.1963 82.03641 5.598122 0 

27 -0.34739 169.7543 7.612169 0 

28 4.412648 -1.28169 0.001728 1.2 

29 -0.1149 54.87902 7.372088 0 

30 0.945964 -0.27597 0.004852 1.2 

31 -0.37018 167.4691 5.936408 0 

32 -0.36119 170.0127 4.617445 0 

33 -0.05807 31.62257 5.295368 0 

34 -0.03837 21.49953 4.633074 0 

35 3.847553 -1.10474 0.002529 1.2 

36 0.01336 -5.18139 5.645615 0 

37 0.58191 -0.15902 0.00418 1.2 

38 -0.12128 90.81585 9.907542 0 

39 1.050197 -0.2853 0.005779 1.2 

 

Figures 3.2.4, 3.2.5 and 3.2.6 are the plots of predicted value of Unequal Interval Nonlinear 

Model 3.2.2 of stock X with Jumps with observations ranging from 1 to 300, 300 to 600 and 600 

to 848 respectively. 
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Figure 3.2.4 Comparison of Model 2.4.3, 2.4.4, 3.2.1 with Model 3.2.2 of Stock X 

(Observations 1-300) 
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Figure 3.2.5 Comparison of Model 2.4.3, 2.4.4, 3.2.1 with Model 3.2.2 of Stock X 

(Observations 300-600) 
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Figure 3.2.6 Comparison of Model 2.4.3, 2.4.4, 3.2.1 with Model 3.2.2 of Stock X 

(Observations 600-848) 
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Table 3.2.4 shows the overall basic statistics of Monthly GBM model 2.4.3, Nonlinear Model 

3.1.1 and 3.1.2 with Jumps, Unequal GBM model 2.4.4, and Unequal Nonlinear Model 3.2.1 and 

3.2.2 with Jumps. 

Table 3.2.4 Basic Statistics of Models 2.4.3, 3.1.1, 3.1.2, 2.4.4, 3.2.1 and 3.2.2 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

Monthly GBM with 

Jumps 

-1.242020 207.264 14.39667 41 122 

Monthly Nonlinear 

Model 1 with Jumps 

-1.928296 141.1754 11.88173 41 163 

Monthly Nonlinear 

Model 2 with Jumps 

-2.090806 143.2248 11.96765 41 204 

Unequal GBM with 

Jumps 

-1.962899 258.1040 16.06562 39 116 

Unequal Nonlinear 

Model 1 with Jumps 

-0.5315015 131.2354 11.4558 39 155 

Unequal Nonlinear 

Model 2 with Jumps 

-0.6097021 131.3068 11.45892 39 194 

 

Remark 3.2.2: From Table 3.2.4 we observe that under the same data partition processes, 

Nonlinear Models 3.1.1 and 3.2.1 have less variance of the residual error than Monthly GBM 

model, and Nonlinear Models 3.1.2 and 3.2.2 also have less variance of the residual than Unequal 

GBM model.  Overall, the nonlinear models 3.1.2 and 3.2.2 under the Unequal Interval data 

partition process have less variance of the residual error than the nonlinear models 3.1.1 and 

3.2.1under the monthly data partition process. 

 

3.3 Stochastic Nonlinear Dynamic Model 3 

 

This nonlinear stochastic model 3 [26] is described by the following DooboIt −ˆ  differential 

equation  
2 2( )t t t t tdS S S S dt S dWα β σ σ= + + + t     (3.3.1) 
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where, ,α β  and σ  are parameters and  is Brownian motion. It is easy to check that rate 

functions in  (3.3.1) satisfies the conditions for existence and uniqueness of solution [23,28]. In 

order to derive a regression equation, we use the following transformation 

tW

1
t

t

V
S
−

=  and applying 

 differential formula to obtain DooboIt −ˆ
2

2
2
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Then, 

tttt dWVdtVdV σβα −+−= )(     (3.3.2) 

Again, the Euler type discretized version of (3.3.2) is as follows 

1 1 1( ) (t t t t t tV V V t V W W 1)α β σ− − −− = − + Δ − − − .   (3.3.3) 

From the definition of V, we note that 1 1

1

1t t t
t

t t

V V Sy
V S

− −

−

−
= = − , 1t t tW Wε −= − , and . 

With this notation, equation (3.3.3) can be rewritten as       

  

1tΔ =

1

1( )t
t

y
V tα β

−

= − + −σε .      (3.3.4)  

Then, parameters ,α β  and σ  can be estimated using least square method [35]. 

 

Nonlinear Stochastic Model 3.3.1 (Monthly Nonlinear Model 3 with Jumps): Let 

 be the m monthly time intervals as defined in 

stochastic model 3.1.1. The nonlinear stochastic model 3.3.1 takes the form of following 

nonlinear 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [

ˆ

3 4 4 5, ),[ , )...t t t t 1[ ,m mt t− )

Ito Doob−  type stochastic differential equation: 

 
2 2( ( ) ( ) )i i i i i i i i iM M M M M M M M M

t t t t tdS S S S dt S dWα β σ σ= + + + t ,  

00 SS = , if 1i it t− t≤ < , 1,...,i m= .     (3.3.5) 
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iMα , iMβ , and iMσ ,  are parameters and are estimated as described above. Thus, the 

solution of equation (3.3.5) is given by 

1,...,i = m

2−
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where  is the initial value of the stock price process. 0S 1 2, 1, ..., mφ φ φ −  are jumps. These jumps are 

estimated as .ˆ
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The estimated parameters of Monthly Nonlinear Stochastic Model 3.3.1 of stock X are recorded 

in Table 3.3.1. 

 

Table 3.3.1 Estimated Parameters of Model 3.3.1 of Stock X 

Interval 

Index 

 

Monthly Nonlinear Model 3 with Jumps 

α̂  β̂  σ̂  
1 0.922514 -0.0087161 0.025344 

2 0.004041 6.17E-05 0.021409 

3 0.023693 -4.18E-05 0.039823 

4 0.261409 -0.0014855 0.034493 

5 0.050772 -0.0002666 0.018895 

6 0.37251 -0.0019314 0.026447 

7 0.318094 -0.0016404 0.025629 

8 0.229969 -0.0012777 0.011528 

9 0.041487 -0.0001638 0.020631 

10 -0.07527 0.00036332 0.015148 

11 0.330384 -0.0011435 0.019702 
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12 0.219936 -0.0007408 0.015711 

13 0.196132 -0.0006846 0.013041 

14 0.153618 -0.0004918 0.014218 

15 -0.0255 0.00010249 0.028538 

16 0.190213 -0.0004688 0.017376 

17 0.222578 -0.0005293 0.012198 

18 0.312192 -0.0006983 0.031076 

19 0.381663 -0.001048 0.028307 

20 0.071652 -0.0001924 0.025384 

21 0.269717 -0.0006458 0.017525 

22 0.246151 -0.0006521 0.016515 

23 0.12528 -0.0003065 0.016356 

24 0.03558 -9.80E-05 0.011957 

25 0.552865 -0.0014675 0.012074 

26 0.167816 -0.0004166 0.014242 

27 0.06565 -0.0001331 0.021147 

28 0.158273 -0.0003247 0.013793 

29 0.111985 -0.0002415 0.01214 

30 0.422469 -0.0008563 0.013585 

31 0.381775 -0.0008249 0.013505 

32 0.278473 -0.0006137 0.012737 

33 0.392775 -0.0008295 0.009392 

34 0.01369 -2.39E-05 0.011873 

35 0.210991 -0.0004062 0.009164 

36 0.071916 -0.0001373 0.014521 

37 0.345019 -0.0006763 0.011447 

38 0.025629 -3.84E-05 0.009695 

39 0.033435 -3.82E-05 0.01535 

40 0.150713 -0.0002246 0.026663 

41 0.287854 -0.0004142 0.013927 
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Figures 3.3.1, 3.3.2 and 3.3.3 are the plots of predicted value of Monthly Nonlinear Model 3.3.1 

of stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively. 
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Figure 3.3.1 Comparison of Model 2.4.3, 3.1.1, 3.2.1 with Model 3.3.1 of Stock X 

(Observations 1-300) 
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Figure 3.3.2 Comparison of Model 2.4.3, 3.1.1, 3.2.1 with Model 3.3.1 of Stock X 

(Observations 300-600) 
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Figure 3.3.3 Comparison of Model 2.4.3, 3.1.1, 3.2.1 with Model 3.3.1 of Stock X 

(Observations 600-848) 

 

Table 3.3.2 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear 

Model 3.1.1, 3.2.1, and Monthly Nonlinear Model 3.3.1 with Jumps. 

 

Table 3.3.2 Basic Statistics of Models 2.4.3, 3.1.1, 3.2.1 and 3.3.1 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters

Monthly GBM with 

Jumps 

-1.242020 207.264 14.39667 41 122 

Monthly Nonlinear 

Model 1 with Jumps 

-1.928296 141.1754 11.88173 41 163 

Monthly Nonlinear 

Model 2 with Jumps 

-2.090806 143.2248 11.96765 41 204 

Monthly Nonlinear 

Model 3 with Jumps 

-1.731151 139.2792 11.80166 41 163 

 

 

81 



Remark 3.3.1: From Table 3.3.2 we remark that overall, the Monthly Nonlinear Model 3.3.1 

with Jumps has least variance of the residual error than Monthly GBM Model 2.4.3, Nonlinear 

Model 3.1.1 and 3.2.1.  

 

Nonlinear Stochastic Model 3.3.2 (Unequal Interval Nonlinear Model 3 with Jumps): Let 

 be the n time intervals as defined stochastic model 

3.1.2. The nonlinear stochastic model 3.3.2 is described by: 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ ,n nt t− )

t
2 2( ( ) ( ) )i i i i i i i i iM M M M I I I I I

t t t t tdS S S S dt S dWα β σ σ= + + + ,  

  , if 00 SS = 1i it t− t≤ < , 1,...,i n= .     (3.3.7) 

where, iIα , iIβ , and iIσ  , , are parameters as defined and estimated. The solution of 

equation (3.3.7) is represented by: 
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  (3.3.8) 

0S  is the initial value of the stock price process. 1 2, 1, ..., nφ φ φ −  are jumps and can be estimated as 

11 2

1 2 1

1 2 1
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The estimated parameters of Unequal Interval Nonlinear Stochastic Model 3.3.2 of stock X are 

recorded in Table 3.3.3. 

 

Table 3.3.3 Estimated Parameters of Model 3.3.2 of Stock X 

Interval 

Index 

 

Monthly Nonlinear Model 3 with Jumps 

α̂  β̂  σ̂  

1 0.071226 -0.0006014 0.023908 

2 0.29716 -0.0020805 0.023786 

3 0.471856 -0.0025641 0.042281 
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4 0.409774 -0.0023388 0.026435 

5 0.251018 -0.0013076 0.016441 

6 0.700165 -0.0035874 0.021907 

7 0.270348 -0.0013796 0.034988 

8 0.130079 -0.0007162 0.014833 

9 0.040871 -0.0001544 0.01686 

10 0.210273 -0.000724 0.020032 

11 0.689476 -0.0023335 0.011359 

12 0.129436 -0.0004453 0.014872 

13 0.364516 -0.0011824 0.014153 

14 0.362752 -0.0009541 0.020535 

15 0.147044 -0.0003428 0.01289 

16 0.257365 -0.0006181 0.015308 

17 0.422811 -0.0009202 0.019309 

18 0.043869 -0.0001438 0.036822 

19 0.213002 -0.0005966 0.027236 

20 0.322719 -0.0007918 0.015437 

21 0.106569 -0.0002685 0.022847 

22 0.262288 -0.0006972 0.017497 

23 0.153312 -0.0003764 0.014273 

24 0.278518 -0.0007413 0.012968 

25 0.527504 -0.0013832 0.011062 

26 0.200628 -0.0004803 0.013615 

27 0.36656 -0.0007506 0.015936 

28 0.88476 -0.0018291 0.005951 

29 0.114746 -0.0002405 0.01549 

30 0.19202 -0.0004058 0.016691 

31 0.368976 -0.0008158 0.013194 

32 0.358247 -0.0007612 0.009788 
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33 0.074069 -0.0001383 0.010944 

34 0.041831 -7.49E-05 0.008841 

35 0.766581 -0.001496 0.008805 

36 -0.00713 2.00E-05 0.010855 

37 0.123638 -0.000189 0.01503 

38 0.137906 -0.0001851 0.014094 

39 0.21229 -0.0003142 0.021393 

 

Figures 3.3.4, 3.3.5 and 3.3.6 are plots of predictions of Unequal Interval Nonlinear Model 3.3.2 

of stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively. 
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Figure 3.3.4 Comparison on Model 2.4.3, 2.4.4, 3.3.1 with Model 3.3.2 of Stock X 

(Observations 1-300) 
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Figure 3.3.5 Comparison on Model 2.4.3, 2.4.4, 3.3.1 with Model 3.3.2 of Stock X 

(Observations 300-600) 
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Figure 3.3.6 Comparison on Model 2.4.3, 2.4.4, 3.3.1 with Model 3.3.2 of Stock X 

(Observations 600-848) 
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Table 3.3.4 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear 

Model 3.1.1, 3.2.1 and 3.3.1 with jumps, and Unequal Nonlinear Model 3.1.2, 3.2.2 and 3.3.2 

with Jumps. 

 

Table 3.3.4 Basic Statistics for Models 2.4.3, 3.1.1, 3.2.1, 3.3.1, 3.1.2, 3.2.2 

and 3.3.2 of Stock X 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

Monthly GBM with Jumps -1.22683 207.3278 14.3989 41 122 

 

Monthly Nonlinear Model 1 

with Jumps 

-1.928296 141.1754 11.88173 41 163 

Monthly Nonlinear Model 2 

with Jumps 

-2.090806 143.2248 11.96765 41 204 

Monthly Nonlinear Model 3 

with Jumps 

-1.731151 139.2792 11.80166 41 163 

Unequal Interval GBM with 

Jumps 

-1.962899 258.1040 16.06562 39 116 

Unequal Interval Nonlinear 

Model 1 with Jumps 

-0.531502 131.2354 11.4558 39 155 

Unequal Interval Nonlinear 

Model 2 with Jumps 

-0.609702 131.3068 11.45892 39 194 

Unequal Interval Nonlinear 

Model 3 with Jumps 

-0.402368 132.16 11.49609 39 155 

 

Remark 3.3.2: From Table 3.3.4 we conclude that overall, the Nonlinear Model 3.1.2 with 

Unequal Interval has less variance among all Models (Monthly and Unequal Intervals) . With 

Monthly data partitioning, Nonlinear Model 3.3.1 with Jumps has the least mean and variance of 

residual error. With Unequal Interval data partitioning, all Nonlinear Models 3.1.2, 3.2.2 and 

3.3.2 have less mean and variance of residual error than GBM (linear) model. 
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3.4 Illustration of Nonlinear Stochastic Models to Data Set of Stock Y 

 

In this section, we apply the Monthly Nonlinear Models 1, 2 and 3 with jumps, that is, Nonlinear 

Model 3.1.1, 3.2.1 and 3.3.1 to stock Y. We also apply the Unequal Interval Nonlinear Models 1, 

2 and 3 with jumps, that is, Nonlinear Model 3.1.2, 3.2.2 and 3.3.2 to stock Y. To minimize the 

repetition, here we only give the summary of these 6 models in Table 3.4.1.  

 

The price data set of stock Y is relative larger than the price data set of stock X. There are 5630 

observations over the past 22 years from September 1984 to December 2006. The Monthly 

Nonlinear Models have 268 monthly intervals, and the Unequal Interval Models have 256 

intervals with the daily relative difference = 3.5% as the threshold. 

 

Table 3.4.1 Basic Statistics for Models of Stock Y 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters 

Monthly GBM with Jumps 

 

-0.009826 1.206479 1.098399 268 803 

Monthly Nonlinear Model 

1 with Jumps 

0.020068 1.469688 1.212307 268 1071 

Monthly Nonlinear Model 

2 with Jumps 

-0.002057 1.155363 1.074878 268 1339 

Monthly Nonlinear Model 

3 with Jumps 

0.026632 1.295051 1.138003 268 1071 

Unequal Interval GBM 

with Jumps 

-0.012482 1.199703 1.095310 256 767 

Unequal Interval Nonlinear 

Model 1 with Jumps 

-0.004258 0.606470 0.778762 256 1023 

Unequal Interval Nonlinear 

Model 2 with Jumps 

-0.011478 0.603385 0.776779 256 1279 

Unequal Interval Nonlinear 

Model 3 with Jumps 

0.006577 0.612513 0.782632 256 1023 
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Remark 3.4.1: Table 3.4.1 shows the overall basic statistics of Stock Y with respect to all stated 

Monthly and Unequal Interval Nonlinear Models. Under the Monthly data partitioning, Nonlinear 

Model 2 has the least mean and variance of residual error. Under the Unequal Interval data 

partitioning, all stated Nonlinear Models 1, 2 and 3 have less mean and variance of residual error 

than the GBM model. Moreover, Nonlinear Model 2 with Unequal Interval has the least variance 

and standard deviation of residual error among all models. Furthermore, this unequal data 

partitioning process has less number of subintervals than the monthly data partitioning process. 

 

3.5 Illustration of Nonlinear Stochastic Models to Data Set of S&P 500 Index 

 

In this section, we apply the Monthly Nonlinear Models 1, 2 and 3, that is, Nonlinear Model 3.1.1, 

3.2.1 and 3.3.1 of S&P 500 Index. We also apply the Unequal Interval Nonlinear Models 1, 2 and 

3, that is, Nonlinear Model 3.1.2, 3.2.2 and 3.3.2 on S&P 500 Index. Again, to minimize the 

repetition, here we only give the summary of these 6 models in Table 3.5.1. Since the dataset is 

too large, here we only provide the summary of the models. The dataset of SP500 Index is larger 

than the previous datasets of stocks X and Y. There are 14844 observations over the past 59 years 

starting from January 1950 to December 2008. The Monthly Nonlinear Models have 708 monthly 

intervals, and the Unequal Interval Models have 570 intervals with the daily relative difference = 

0.8% as the threshold. 

 

Table 3.5.1 Basic Statistics for Models of S&P 500 Index 

Model r  2
rS  rS  No. of 

Intervals 

No. of 

Parameters

Monthly GBM with Jumps 58.30902 486.4579 22.05579 708 2123 

 

Monthly Nonlinear Model 

1 with Jumps 

4.027517 281.7153 16.78438 708 2831 

Monthly Nonlinear Model 

2 with Jumps 

4.084275 330.1271 16.78393 708 3539 

Monthly Nonlinear Model 

3 with Jumps 

4.274907 282.7780 16.81600 708 2831 

 

 

88 



Unequal Interval GBM 

with Jumps 

2.471564 210.2159 14.49882 570 1709 

Unequal Interval Nonlinear 

Model 1 with Jumps 

0.6186245 79.46592 8.914366 570 2279 

Unequal Interval Nonlinear 

Model 2 with Jumps 

0.5835638 78.5180 8.861039 570 2849 

Unequal Interval Nonlinear 

Model 3 with Jumps 

0.6590607 79.5725 8.920342 570 2279 

Remark 3.5.1: Table 3.5.1 shows the overall basic statistics of S&P 500 Index for all stated 

Monthly and Unequal Interval Nonlinear Models. Under the Monthly data partitioning, Nonlinear 

Model 1 has the least mean and variance of residual error. Under the Unequal Interval data 

partitioning, all stated Nonlinear Models 1, 2 and 3 have less mean and variance of residual error 

than the GBM model. Nonlinear Model 2 with Unequal Interval has the least mean and the 

variance of residual error among all stated models. Furthermore, this unequal interval nonlinear 

model 2 has the least variance of residual error and the number of intervals. 

 

3.6 Conclusions and Comments 

 

In this chapter, we presented three nonlinear stochastic models. By using classical model building 

process, we developed the modified version of nonlinear stochastic models under equal and 

unequal data partitioning processes with jumps. Based on our study, in the following, we draw a 

few important conclusions. 

(a) The Following Table 3.6.1 provides the summary of results for all three datasets. It shows that 

Nonlinear Model 2 ranks No.1 in both monthly and unequal interval data partitioning models of 2 

out 3 data sets (stock X, stock Y and S&P 500 Index). 

 

Table 3.6.1 Summary of Models in Chapter 3 

Stock Monthly Interval Unequal Interval 

Rank1 Rank2 Rank3 Rank4 Rank1 Rank2 Rank3 Rank4 

X Non.3 Non.2 Non.1 GBM Non.1 Non.2 Non.3 GBM 

Y Non.2 GBM Non.3 Non.1 Non.2 Non.1 Non.3 GBM 

S&P500 Non.2 Non.1 Non.3 GBM Non.2 Non.1 Non.3 GBM 
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The three data sets in our study, both stocks X and Y are from world Fortune 500 companies; 

S&P 500 Index is a stock Index. From Table 3.6.1, we notice that for two data sets (stock Y and 

S&P 500 Index) with both Monthly Interval and Unequal Interval data partitioning  processes, 

Nonlinear Model 2 is the best model. These two data sets (stock Y and S&P 500 Index) share a 

common characteristic. Comparing to data set stock X (848 observations), both of these two 

dataset are very large, having 5630 and 14844 observations, respectively. 

 

(b) Tables 3.3.4, 3.4.1 and 3.5.1 show the overall basic statistics of different models of stocks X, 

Y and S&P 500 Index. For the monthly data partitioning, Nonlinear Model 2 is better than GBM 

Model for Stock Y and S&P 500 Index, and Nonlinear Model 3 is better than GBM model for 

stock X. For the unequal interval data partitioning process, Nonlinear Model 2 is better than 

GBM Model for Stock Y and S&P 500 Index, and Nonlinear Model 3 is better than GBM model 

for stock X.  

(i) For monthly data partitioning, all three nonlinear models are better than GBM model for 

all three price data sets. The Nonlinear Model 2 is better than GBM model and Nonlinear 

Models 1 and 3. 

(ii) Under unequal interval data partitioning process and for all three stock data sets, all non-

linear models are better than GBM model. 

(iii) The unequal data partitioning approach is superior than the monthly data partitioning 

approach. 

(iv) Under both equal and unequal data partitioning approach, the Nonlinear Model 2 is the 

best for stock Y and S&P 500 Index, and Nonlinear Model 1 is best for stock X.  
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(a) (b) 

Figure 3.6.1 The Predicted Value of Stock X 
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(c) Again, from three tables 3.3.4, 3.4.1 and 3.5.1, we observe that the performance of Nonlinear 

Models 1, 2, and 3 are very similar. The predicted values for a particular interval are in Figure 

3.6.1(a) and (b). In Figure 3.6.1 (a) and (b), we notice that the 3 red curve, orange curve and 

green curve are overlapped on each other. The blue curve represents the predicted value using 

GBM model. Furthermore, from the plot (the 13th interval and the 6th interval), we conclude that 

in this particular intervals Nonlinear Models estimates the stock price better than the GBM model. 

The reason is in that particular time interval, every possible environmental information often 

leads to wild movements in stock price. The drift and volatility are not constant any more in that 

particular time interval. Hence the nonlinear model can describe the stock price process much 

better than the GBM model. 

 

(d) So far, we focused our attention to build stochastic models for stock price data sets. This 

modeling approach can also be used for any other type of data sets. Furthermore, our preceding 

stochastic modeling analysis of stock price confirms that a stock price process is nonlinear and 

non stationary stochastic models. However, the next important problem in modeling is to predict 

the future dynamic state of processes, in particular, stock market price. The study of this problem 

is focused in the next chapter. 
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Chapter 4 

Nonlinear Stochastic Models with Time Varying Coefficients 

 

4.0 Introduction 

 

Stochastic dynamic models described in Chapters 2 and 3 were applicable to piece-wise time-

invariant dynamic processes. In this chapter, based on our study of three stochastic nonlinear 

models, we generalize our stochastic modeling dynamic process by using the nonlinear stochastic 

differential equations with time varying coefficients. We focus our attention to only nonlinear 

models 1 and 2 that have been exhibited better than model 3 in Chapter 3. 

 

Corresponding to nonlinear time invariant models 1 and 2, we present nonlinear stochastic 

models with time varying coefficient in Section 4.1 and 4.2, respectively. Using these nonlinear 

time varying models, we derive corresponding time series models. These time series models are 

tested by the three data sets, stock X, Y and S&P 500 Index. Furthermore, they are compared to 

the existing time series models [10, 12, 13, 38, 39] in Section 4.3. Finally, conclusions are drawn 

in Section 4.4. 

 

4.1 Nonlinear Stochastic Dynamic Model 1 with Time Varying Coefficients 

 

In Chapters 3, nonlinear stochastic dynamic models with constant coefficients were investigated. 

In this section, we assume that the rate parameters in the nonlinear stochastic dynamic model 1 

(in Section 3.1, Chapter 3) are functions of time.  

 

Nonlinear Stochastic Model 1 on Overall Data: Let us consider a stochastic nonlinear model 

corresponding to equation (3.1.1) as 

tttt
t

tttt dWSdtSSdS σ
σ

βα +++= )
2

ln(
2

 , 0)0( SS =   (4.1.1) 
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where, parameters βα ,  and σ are time varying smooth functions [6, 26]. We note that the 

existence and uniqueness of solution process of (4.1.1) follows by following similar arguments 

used in Section 3.1. 

 

By following the arguments and using the transformation tt SV ln= , we obtain 

   tttttt dWdtVdV σβα ++= )( .     (4.1.2) 

 

To estimate the time varying parameters βα ,  and σ , we first use a numerical integration 

applied (4.1.2) as:  

∫∫∫∫

∫∫∫
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    εσεσββααα 1111111 ......... +++++++++≈ +−−+−−− , 

where, k is any positive integer and ),1,0(~1 NWW ititit −−−− −=ε  for  .1,...,1,0 −= ki

By denoting 11... ββββ ++= −kk , and rearranging terms in the equation, we have the following 

equation 

 

tktktktkktkt VVVV εσεσβααα 111111 ......)1( ++++++++= +−−+−−− .  (4.1.3) 

 

This is exactly a time series ARIMA model with order (p,q), where p=k and q=k-1. The constant 

termβ  can be eliminated by taking the first order difference filter (d=1). Obviously, we notice 

that when k=1, we have the constant coefficients case (3.1.4) in Chapter 3. If k=2, equation (4.1.3) 

is equivalent to ARIMA(2,1). If we assume that k=2 and 02 =σ , then equation (4.1.3) is 

equivalent to ARIMA(2,0).  

 

Under the transformation and following the Statistical Model Identification Procedure 

1.5.1 described in Section 1.5, the AICs of ARIMA models of three data sets (stock X, Y and 

S&P 500 Index) are presented in Table 4.1.1. 

tt SV ln=
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Table 4.1.1 AIC of Time Varying Coefficients Nonlinear Model 1 

of Different Models of Three Datasets: Stock X, Stock Y and S&P 500 Index 

Model Stock X Stock Y S&P 500 Index 

AIC AIC AIC 

(3,1,2) -4122.57 -22693.15 -96126.87 

(3,1,1) -4124.70 -22694.84 -96126.3 

(3,1,0) -4124.20 -22687.87 -96128.11 

(2,1,3) -4127.76 -22692.57 -96126.82 

(2,1,2) -4125.36 -22685.91 -96128.74 

(2,1,1) -4126.42 -22682.35 -96130.18 

(2,1,0) -4126.20 -22683.14 -96126.53 

(1,1,3) -4124.86 -22694.39 -96127.68 

(1,1,2) -4124.19 -22682.03 -96130.20 

(1,1,1) -4126.21 -22681.05 -96120.59 

(1,1,0) -4128.10 -22683.05 -96082.23 

(0,1,3) -4124.30 -22687.57 -96129.77 

(0,1,2) -4126.20 -22682.90 -96130.02 

(0,1,1) -4127.92 -22683.06 -96086.05 

 

From Table 4.1.1, we notice that for stock X, ARIMA model (1,1,0) gives us the minimum AIC, 

that is, a mix model of a first order autoregressive with a first difference filter. The model is 

written as 

t0.02110687)1)(0872.01( ε=−− tVBB . 

After expanding the autoregressive operator and the difference filter, we have 

ttVBB ε0.02110687)0872.00872.11( 2 =−−  

which implies   

tttt VVV ε0.021106870872.00872.1 21 ++= −− . 

By letting 0=tε , we have the one day ahead forecasting formula of of stock X as tV

21 0872.00872.1ˆ
−− += ttt VVV .     (4.1.4) 
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Then, by applying the inverse transformation of “ln”, we get . The residual error  )ˆexp(ˆ
tt VS =

iii SSr ˆ−=  is computed, and its basic statistics is recorded in Table 4.1.2. 

 

Similarly, for data set Stock Y, the fitted ARIMA model (3,1,1) gives us the minimum AIC. The 

model is 

tt BVBBBB ε)6638.003220248.0()1)(0523.00156.06575.01( 32 +=−+++ . 

By following above argument, we have 

14321 6638.003220248.00523.00367.06419.03425.0 −−−−− +++−+= ttttttt VVVVV εε
. 

By letting 0=tε , we obtain the one day ahead forecasting formula of of stock Y as tV

14321 6638.00523.00367.06419.03425.0ˆ
−−−−− ++−+= tttttt VVVVV ε .  (4.1.5) 

 

Again, by applying the inverse transformation of “ln”, we get . The residual error 

 is computed, and its basic statistics are recorded in Table 4.1.2. 

)ˆexp(ˆ
tt VS =

iii SSr ˆ−=

 

For data set S&P 500 Index, the fitted ARIMA models (1,1,2) gives us the minimum AIC, and 

the model is 

tt BBVBB ε)0438.02787.020.00949052()1)(2297.01( 2−+=−+  

 

By following above argument, we have 

2121 0438.02787.0009490522.02297.07703.0 −−−− −+++= tttttt VVV εεε  

 

By letting 0=tε , we obtain the one day ahead forecasting formula of of S&P 500 Index as tV

2121 0438.02787.02297.07703.0ˆ
−−−− −++= ttttt VVV εε   (4.1.6) 

 

Again, by applying the inverse transformation of “ln”, we get . The residual error 

 is computed, and its basic statistics are recorded in Table 4.1.2. 

)ˆexp(ˆ
tt VS =

iii SSr ˆ−=
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Table 4.1.2 Basic Statistics of Time Varying Coefficients Nonlinear Model 1 

of Three Data Sets: Stock X, Stock Y and S&P 500 Index 

Data Set Model Mean of residual Variance of residual Standard deviation 

of residual 

Stock X (1,1,0) 0.628727 57.38475 7.575272 

Stock Y (3,1,1) 0.015286 0.344827 0.587220 

S&P 500 Index (1,1,2) 0.058922 46.90737 6.848895 

 

Remark 4.1.1: For data set stock X, from Tables 3.3.4 and 4.1.2, the nonlinear stochastic model 1 

with time varying coefficients has the minimum variance of residual error. This is the same as for 

stock Y (Tables 3.4.1 and 4.1.2) and S&P 500 Index (Tables 3.5.1 and  4.1.2). We note that the 

nonlinear stochastic model 1 with time varying coefficients is applied to overall data set. The 

study in Chapter 3 is with regard to the unequal interval data partitioning process. 

 

In the following we apply the unequal interval Data Partitioning Process 2.3.4 for nonlinear 

stochastic model 1 with time varying coefficients. 

 

Nonlinear Stochastic Model 4.1.1 (Unequal Interval Nonlinear Model 1 with Time Varying 

Coefficients): Let  be the n time intervals as 

defined in Data Partition Process 2.3.4. The nonlinear stochastic differential equation is described 

by:  

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ , )n nt t−

t
I
t

I
t

I
t

I
tI

t
I
t

I
t

I
t dWSdtSSdS iii

i
iiii σ

σ
βα +++= )

2
)(ln(

2

,  

00 SS = , if 1i it t− t≤ < , 1,...,i n= .    (4.1.7) 

ii II βα ,  and  , , are time varying parameters.  iIσ 1,...,i = n

 

As before, by imitating the time series definition process, we arrive at 

. (4.1.8) iiiiiiiiiiiii I
t

II
kt

I
k

I
kt

I
k

I
t

II
kt

I
k

I
kt

I
k

I
t VVVV εσεσεσβααα 11111111 ......)1( +++++++++= +−−+−−+−−−

Furthermore,  and  are defined analogous to (3.1.8). tS 1,...,2,1,ˆ −= niiφ
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Stochastic Model Identification Procedure 4.1.1: In the following, we present a modified 

version of Statistical Model Identification Procedure 1.5.1 [10,12,38]. It is as follows: 

 

i. By following the Data Partition Process 2.3.4, the entire data set is decomposed into n 

sub data sets. 

ii. For every sub data set, use the transformation i , 1,...,i I
t

I
t SV ln= i n= . 

iii. For every sub data sets, repeat steps ii – v in Stochastic Model Identification Procedure 

1.5.1. 

iv. For every sub data set, and for each possible set of (p, q), compute the predicted 

value ),(ˆ qpI
t

iV , and then compute the predicted value ),(ˆ qpI
t

iS , by using the inverse of “ln” 

transformation, that is, )ˆ . exp(ˆ ),(),( qpI
t

qpI
t

ii VS =

v. For every sub data set and for each possible models, compute the residual error 

.,...,2,1 . ,,ˆ
1

),(),( nitttSSr ii
qpI

tt
qp

t
i =<≤−= −

vi. For all possible set of (p, q), compute mean, variance and standard deviation of overall 

residual error .  The model provides the smallest variance of residual is 

the fitted model. 

1,),( Ttr qp
t ≤≤

 

Table 4.1.3, 4.1.4 and Table 4.1.5 exhibit the basic statistics of the residuals using different value 

of k with unequal interval data partitioning of three datasets: Stock X, Y and S&P 500 Index 

respectively. Here the thresholds of daily relative difference for three data sets are set to 5%, 

4.5% and 2%, respectively, and the corresponding number of intervals are 10, 66 and 87.  

 

Table 4.1.3 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q) 

Under Log-Transformation with Unequal Data Partition, threshold=5% of Stock X 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

Intervals 

(3,1,2) 0.535531 44.01918 6.634695 10 

(3,1,1) 0.477112 46.09286 6.789173 10 

(3,1,0) 0.584083 47.90231 6.92115 10 
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(2,1,3) 0.571359 43.62668 6.60505 10 

(2,1,2) 0.588372 44.5358 6.673515 10 

(2,1,1) 0.648873 47.5926 6.898739 10 

(2,1,0) 0.652255 48.23812 6.945367 10 

(1,1,3) 0.479333 45.94483 6.778261 10 

(1,1,2) 0.558626 46.4712 6.816979 10 

(1,1,1) 0.562882 46.79851 6.840944 10 

(1,1,0) 0.636871 48.66251 6.975852 10 

(0,1,3) 0.640242 48.47799 6.962613 10 

(0,1,2) 0.64442 48.24343 6.945749 10 

(0,1,1) 0.640242 48.47799 6.962613 10 

 

Table 4.1.4 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q) 

Under Log-Transformation with Unequal Data Partition, threshold=4.5% of Stock Y 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

intervals 

(3,1,2) 0.013137 0.284444 0.533333 66 

(3,1,1) 0.010776 0.303817 0.551196 66 

(3,1,0) 0.011263 0.305855 0.553041 66 

(2,1,3) 0.012679 0.287968 0.536626 66 

(2,1,2) 0.00985 0.296015 0.544072 66 

(2,1,1) 0.010492 0.306466 0.553593 66 

(2,1,0) 0.012846 0.308965 0.555846 66 

(1,1,3) 0.010388 0.302722 0.550202 66 

(1,1,2) 0.010206 0.306028 0.553198 66 

(1,1,1) 0.013911 0.308552 0.555475 66 

(1,1,0) 0.013396 0.311613 0.558223 66 

(0,1,3) 0.013494 0.31157 0.558185 66 

(0,1,2) 0.013209 0.30873 0.555635 66 

(0,1,1) 0.013494 0.31157 0.558185 66 
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Table 4.1.5 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q) 

Under Log-Transformation with Unequal Data Partition, threshold=2% of S&P 500 Index 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

intervals 

(3,1,2) 0.116613 39.73163 6.303303 87 

(3,1,1) 0.107649 41.31667 6.427805 87 

(3,1,0) 0.108677 42.04793 6.484438 87 

(2,1,3) 0.130816 37.94544 6.159987 87 

(2,1,2) 0.118426 40.47064 6.361654 87 

(2,1,1) 0.105609 41.83156 6.467732 87 

(2,1,0) 0.107766 42.51392 6.52027 87 

(1,1,3) 0.112032 41.55797 6.446547 87 

(1,1,2) 0.115318 41.9422 6.47628 87 

(1,1,1) 0.113373 42.86889 6.547434 87 

(1,1,0) 0.110322 43.49516 6.595086 87 

(0,1,3) 0.105709 43.30008 6.580279 87 

(0,1,2) 0.105485 42.55877 6.523708 87 

(0,1,1) 0.105709 43.30008 6.580279 87 

 

From Table 4.1.3 and Table 4.1.5, we can see that the model (2,1,3) has minimum variance and 

standard deviation of residuals, for stock X and S&P 500 Index. From Table 4.1.4 we see that the 

model (3,1,2) is the best model which provides the minimum variance of the residual. We further 

note that ARIMA model (2,1,3) is the best for three all data sets. 

 

Remark 4.1.2: For stock X, we compare Table 3.3.4, 4.1.2, with Table 4.1.3, we notice that 

nonlinear model 1 with time varying coefficients under unequal interval data partitioning process 

provides least variance and standard deviation of residual error. Similarly, for stock Y, comparing 

Table 3.4.1, 4.1.2 with Table 4.1.4; for S&P 500 Index, comparing Table 3.5.1, 4.1.2 with Table 

4.1.5, we have the same conclusion. 
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4.2 Nonlinear Stochastic Dynamic Model 2 with Time Varying Coefficients 

 

In this section, we assume that the rate parameters in the nonlinear stochastic dynamic model 2 

(in Section 3.2, Chapter 3) are not constants, that is, the rates, βα ,  and σ are functions of time, 

and N is still a constant.  

 

Nonlinear Stochastic Model 2 on Overall Data: Let us consider a stochastic nonlinear model 

corresponding to equation (3.2.1) as 

t
N
tt

N
tt

N
ttttt dWSdtSNSSdS σσβα +++= − )

2
( 122  ,  (4.2.1) 0)0( SS =

where, coefficients βα ,  and σ are time varying smooth functions [26]. We note that the 

existence and uniqueness of solution process of (4.2.1) follows by following similar arguments 

used in Section 3.2. 

By following the arguments and using the transformation 
N

SV
N

t
t −
=

−

1

1

, we obtain 

  tttttt dWdtVNdV σβα ++−= ))1(( .     (4.2.2) 

To estimate the time varying parameters βα ,  and σ , we first use a numerical integration 

applied to (4.2.2) as follows:  
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tktkkktktk VNVN εσεσβββαα 111111 ......)1(...)1( ++++++−++−≈ +−−−− , 

where, k is any positive integer and ),1,0(~1 NWW ititit −−−− −=ε  for  .1,...,1,0 −= ki

By denoting 11... ββββ ++= −kk  and rearranging terms in the equation, we have the following 

equation 

tktktktkktkt VNVNVNV εσεσβααα 11111 ...)1(...)1()1)1(( ++++−++−++−= −−+−−− . 

(4.2.3) 

This is also a time series ARIMA model with order (p,q), where p equals k and q equals k-1. The 

constant termβ  can be eliminated by taking the first order difference filter (d=1).  

 

100 



Similarly, we notice that when k=1, we have the constant coefficients case (3.2.4) in Chapter 3. If 

k=2, equation (4.2.3) is equivalent to ARIMA(2,1). If we assume that k=2 and 02 =σ , then 

equation (4.2.3) is equivalent to ARIMA(2,0).  

 

Stochastic Model Identification Procedure 4.2.1: The difference between the nonlinear model 1 

and 2 is that nonlinear model 2 has a parameter N that can not be estimated directly. In the 

following, we present a modified version of Statistical Model Identification Procedure 1.5.1. It is 

as follows: 

i. Let 2.1  and N≠1. 0 ≤≤ N

ii. For each value of N, say NN ˆ= , use the transformation, Tt
N

S
V

N
t

t ,...,2,1,ˆ1

ˆ1

=
−

=
−

. 

iii. Follow the Stochastic Model Identification Procedures 1.5.1 (ii-vii). 

iv. By knowing the best model )ˆ(),( Nqp for each value of N, compute the predicted value of 

price process by applying the inverse transformation of .)ˆ)ˆ1((ˆ ˆ1
1

)ˆ( N
t

N
t VNS −−=  

v. Computer the residual error T .  tSSr N
ttt ,...,2,1,ˆ )ˆ( =−=

vi. Repeat the steps (ii-v) for each given ]2.1,1( . )1,0[ˆ ∪∈= NN

vii. The value N̂ and the corresponding model provides the smallest variance of residual error 

( T,1 ) is the estimated N and fitted model. trt , = ,...,2

 

We apply the Stochastic Model Identification Procedure 4.2.1 to three data sets and the result is 

exhibited in Table 4.2.1. 

 

Table 4.2.1 Basic Statistics of Time Varying Coefficients Nonlinear Model 2 

of Three Data Sets: Stock X, Stock Y and S&P 500 

Data Set Model N̂  Mean of 

residual 

Variance of 

residual 

Standard deviation 

of residual 

Stock X (3,1,2) 0.07 0.623089 56.59861 7.523205 

Stock Y (2,1,2) 0.03 0.013675 0.340876 0.583846 

S&P 500 Index (3,1,2) 0.03 0.071906 46.27549 6.802609 

 

101 



Table 4.2.1 shows basic statistics of time varying coefficients of nonlinear stochastic model 2  

for three Data Sets: Stock X, Stock Y and S&P 500. From the table, we can see that for stock X, 

ARIMA model (3,1,2) gives us the minimum variance of residual. The model is 

tt BBVBBBB ε)999.06804.04.942671()1)(0841.09055.05837.01( 232 ++=−+−− . 

 

After expanding the autoregressive operator and the difference filter, we have 

tt BBVBBBB ε)999.06804.04.942671()0841.08214.03218.05837.11( 2432 ++=++−−  

which implies  

.999.06804.04.9426710841.08214.03218.05837.1 214321 −−−−−− +++−−+= tttttttt VVVVV εεε
By letting 0=tε , we have the one day ahead forecasting formula of of stock X as tV

.999.06804.00841.08214.03218.05837.1ˆ
214321 −−−−−− ++−−+= ttttttt VVVVV εε  (4.2.4) 

Then, by applying the inverse transformation, N
tt VNS ˆ1

1

)ˆ)ˆ1((ˆ −−= ,  the residual error 

 is computed, and its basic statistics are recorded in Table 4.2.1. 

07.0ˆ =N

iii SSr ˆ−=

 

Similarly, for data set Stock Y, the fitted ARIMA model (2,1,2) gives us the minimum variance 

of residual. The model is 

tt BBVBBB ε)7420.03207.10.5260228()1)(6948.02999.11( 22 +−=−−+  

 

By following above argument, we have 

21321 7420.03207.10.52602286448.09947.12999.0 −−−−− +−+−+−= ttttttt VVVV εεε . 

By letting 0=tε , we obtain the one day ahead forecasting formula of of stock Y as tV

21321 7420.03207.16448.09947.12999.0ˆ
−−−−− +−−+−= tttttt VVVV εε .  (4.2.5) 

Again, by applying the inverse transformation, N
tt VNS ˆ1

1

)ˆ)ˆ1((ˆ −−= ,  the residual 

error  is computed, and its basic statistics are recorded in Table 4.2.1. 

03.0ˆ =N

iii SSr ˆ−=

 

For data set S&P 500 Index, the fitted ARIMA models (3,1,2) gives us the minimum variance of 

residual, and the model is 

 

102 



tt BBVBBBB ε)2477.03932.05.517246()1)(0385.01991.03286.01( 232 −−=−+++  

By following above argument, we have 

214321 2477.03932.0517246.50385.01606.01295.06714.0 −−−−−− −−+−++= tttttttt VVVVV εεε  

By letting 0=tε , we obtain the one day ahead forecasting formula of of S&P 500 Index as tV

214321 2477.03932.00385.01606.01295.06714.0ˆ
−−−−−− −−−++= ttttttt VVVVV εε  (4.2.6) 

Again, by applying the inverse transformation, N
tt VNS ˆ1

1

)ˆ)ˆ1((ˆ −−= ,  the residual 

error  is computed, and its basic statistics are recorded in Table 4.2.1. 

03.0ˆ =N

iii SSr ˆ−=

 

Remark 4.2.1: For data set stock X, comparing Table 3.3.4, 4.1.1 and Table 4.2.1, nonlinear 

stochastic model 2 with time varying coefficients has the minimum variance of residual error. 

This is the same as for stock Y (Table 3.4.1, 4.1.1 and Table 4.2.1) and S&P 500 Index (Table 

3.5.1, 4.1.1and Table 4.2.1). 

 

In the following we apply the unequal interval Data Partitioning Process 2.3.4 for nonlinear 

stochastic model 2 with time varying coefficients. 

 

Nonlinear Stochastic Model 4.2.1 (Unequal Interval Nonlinear Model 2 with Time Varying 

Coefficients): Let  be the n time intervals as 

defined in Data Partition Process 2.3.4. The nonlinear stochastic differential equation is described 

by:  

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ , )n nt t−

t
NI

t
I
t

NI
t

I
t

NI
t

I
t

I
t

I
t

I
t dWSdtSNSSdS iiiiiiiii )())()(

2
)(( 122 σσβα +++= −  , 

00 SS = , if 1i it t− t≤ < , 1,...,i n= .    (4.2.7) 

ii II βα ,  and  , , are time varying parameters, N is constant.[26,27,29].  iIσ 1,...,i = n

As before, by imitating the time series definition process, we arrive at  

    

                 (4.2.8) 

iiiiiii I
t

II
kt

I
k

I
kt

I
k

I
t VNVNVNV 1111 )1(...)1()1)1(( −+−−− −++−++−= ααα

iiii I
t

II
kt

I
k εσεσβ 11 ...++++ +−

Furthermore,  and  are defined analogous to (3.2.8). tS 1,...,2,1,ˆ −= niiφ
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Stochastic Model Identification Procedure 4.2.2: In the following, we present a modified 

version of Statistical Model Identification Procedure 1.5.1. It is as follows: 

i. By following the Data Partition Process 2.3.4, the entire data set is decomposed into n sub 

data sets. 

ii. For each sub data set, follow steps i-ii of the Stochastic Model Identification Procedures 

4.2.1. 

iii. For each sub data set, follow the Stochastic Model Identification Procedures 1.5.1 steps ii-v.  

iv. Using estimated parameters in step iii and compute the residual error 

T  for all possible (p,q). tSSr qpN
tt

qpN
t ,...,2,1,ˆ ),)(ˆ(),)(ˆ( =−=

v. Repeat steps ii-iv for ]2.1,1( . )1,0[ˆ ∪∈= NN

vi. For, a given set of (p, q), we compute overall sum of squared error for every value of N̂  

by . ( )∑
=

=
T

t

qpN
t

qpN rRSS
1

2),)(ˆ(),)(ˆ(

vii. For the given (p, q) in step vi, we find the best N, corresponding to the minimum RSS. 

viii. Repeat steps vi – vii for all possible model (p,q), we find the best N’s with respect to the 

minimum RSS. 

ix. From viii we choose the model with corresponding N̂ , which provides the smallest RSS. 

 

Table 4.2.2, 4.2.3 and Table 4.2.4 show the basic statistics of the residual error using different set 

of (p, q) with unequal interval data partitioning of three datasets: Stock X, Y and S&P 500 Index, 

respectively. Here the thresholds of daily relative difference for three data sets are set to 5%, 

4.5% and 2%, respectively, such that the sub intervals have enough observations to estimate the 

parameters. The residual error is defined as well as  for all observations. iii SSr ˆ−=

 

Table 4.2.2 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q) 

under Transformation 
N

S N
t

−

−

1

1  with Unequal Data Partition, threshold=5% of Stock X 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

intervals 

(3,1,2) 0.48359 42.8776 6.548099 10 

(3,1,1) 0.531298 45.89411 6.774519 10 
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(3,1,0) 0.571061 47.81292 6.914689 10 

(2,1,3) 0.527294 41.97917 6.479133 10 

(2,1,1) 0.631136 47.1654 6.867707 10 

(2,1,0) 0.636309 48.16542 6.940131 10 

(1,1,3) 0.520179 45.68867 6.75934 10 

(1,1,2) 0.532497 46.36265 6.809013 10 

(1,1,0) 0.619884 48.62252 6.972985 10 

(0,1,3) 0.623101 48.43584 6.959586 10 

(0,1,2) 0.627815 48.17912 6.941118 10 

(0,1,1) 0.623101 48.43584 6.959586 10 

 

Table 4.2.3 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q) 

under Transformation 
N

S N
t

−

−

1

1

 with Unequal Data Partition, threshold=4.5% of Stock Y 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

intervals 

(3,1,2) 0.013494 0.280789 0.529895 66 

(3,1,1) 0.012033 0.301285 0.548894 66 

(3,1,0) 0.011385 0.305035 0.552300 66 

(2,1,3) 0.012897 0.281243 0.530324 66 

(2,1,0) 0.012724 0.308477 0.555407 66 

(1,1,3) 0.009512 0.301548 0.549134 66 

(1,1,2) 0.011650 0.305205 0.552454 66 

(1,1,0) 0.012968 0.311111 0.557773 66 

(0,1,3) 0.012975 0.311157 0.557814 66 

(0,1,2) 0.013045 0.308202 0.555160 66 

(0,1,1) 0.012975 0.311157 0.557814 66 
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Table 4.2.4 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q) under 

Transformation 
N

S N
t

−

−

1

1

 with Unequal Data Partition, threshold=2% of S&P 500 Index 

Model Mean of Residual Variance of 

Residual 

Standard Deviation of 

Residual 

Number of 

intervals 

(3,1,1) 0.084646 41.14148 6.414162 87 

(3,1,0) 0.093201 41.90288 6.473243 87 

(2,1,3) 0.114031 37.68062 6.138454 87 

(2,1,0) 0.091409 42.38462 6.510347 87 

(1,1,3) 0.099771 41.4015 6.43440 87 

(1,1,2) 0.093127 41.76005 6.462202 87 

(1,1,0) 0.095328 43.36592 6.585281 87 

(0,1,3) 0.08993 43.17434 6.570719 87 

(0,1,2) 0.090155 42.4362 6.514308 87 

(0,1,1) 0.08993 43.17434 6.570719 87 

 

Remark 4.2.2: For stock X, we compare Table 3.3.4, 4.2.1, with Table 4.2.2, we notice that 

nonlinear model 2 with time varying coefficients under unequal interval data partitioning process 

provides least variance and standard deviation of residual error. Similarly, for stock Y, comparing 

Table 3.4.1, 4.2.1 with Table 4.2.3; for S&P 500 Index, comparing Table 3.5.1, 4.2.1 with Table 

4.2.4, we have the same conclusion. 

 

4.3 Prediction and Comparison on Overall Data Sets 

 

In Sections 4.1 and 4.2, using nonlinear continuous time varying stochastic models, we derived 

time series models. In this section, we compare our study of Sections 4.1 and 4.2 with the existing 

time series models, namely, k-th moving average model, k-th weighted and k-th exponential 

weighted moving average models [13,38,39]. A comparative study is made in the context of three 

overall data sets. In fact, the following models are compared with each other. 

 Time series model (ARIMA) [10,12] 

 k-th moving average model (Shi’s model 1) [13,38,39] 

 k-th weighted moving average model (Shi’s model 2) [13,38,39] 
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 k-th exponential weighted moving average model (Shi’s model 3) [13,38,39] 

 Nonlinear Models with constant coefficients, Chapter 3 

 Nonlinear Stochastic Model 1 on Overall Data Set, Section 4.1 

 Nonlinear Stochastic Model 2 on Overall Data Set, Section 4.2 

 

We summary the results for stock X, stock Y and S&P 500 Index in Table 4.3.1 , Table 4.3.2 and 

Table 4.3.3 respectively. 

 

Table 4.3.1 Comparison Cited Models in Section 4.3 for Stock X 

Model 
Mean of Residual 

Variance of 

Residual 

Standard Deviation 

of Residual 

ARIMA 

 

0.6385010 57.39102 7.575686 

k-th Moving Average Model 

 

0.6342918 57.03750 7.552318 

k-th Weighted Moving 

Average Model 

0.6359891 57.14087 7.559158 

k-th Exponential Weighted 

Moving Average Model 

0.8944923 64.64898 8.040459 

Nonlinear Models with 

Constant Coefficients 

-0.6097021 131.2354 11.45580 

Nonlinear Model 1 with Time 

Varying Coefficients 

0.628727 57.38475 7.575272 

Nonlinear Model 2 with Time 

Varying Coefficients 

0.623089 56.59861 7.523205 

 

Remark 4.3.1: For stock X, five models perform pretty much close to each other. They are 

ARIMA model, k-th moving average model, k-th weighted moving average model, nonlinear 

stochastic models 1 and 2 with time varying coefficients. Among these models, nonlinear 

stochastic model 2 with time varying coefficients has the least variance and standard deviation. 
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Table 4.3.2 Comparison Cited Models in Section 4.3 for Stock Y 

Model 
Mean of Residual 

Variance of 

Residual 

Standard Deviation 

of Residual 

ARIMA 

 

0.00725343 0.3419923 0.5848011 

k-th Moving Average Model 

 

0.00748872 0.3418268 0.5846595 

k-th Weighted Moving 

Average Model 

0.00741209 0.3411141 0.5840498 

k-th Exponential Weighted 

Moving Average Model 

0.01503370 0.3773675 0.6143024 

Nonlinear Models with 

Constant Coefficients 

-0.01147757 0.6033852 0.776779 

Nonlinear Model 1 with Time 

Varying Coefficients 

0.015286 0.344827 0.587220 

Nonlinear Model 2 with Time 

Varying Coefficients 

0.013675 0.340876 0.583846 

 

Remark 4.3.2: Like stock X, for stock Y, five models perform pretty much close to each other. 

They are also ARIMA model, k-th moving average model, k-th weighted moving average model, 

nonlinear stochastic models 1 and 2 with time varying coefficients. Among these models, 

nonlinear stochastic model 2 with time varying coefficients has the least variance and standard 

deviation. 

 

Table 4.3.3 Comparison Cited Models in Section 4.3 for S&P 500 Index 

Model 
Mean of Residual 

Variance of 

Residual 

Standard Deviation 

of Residual 

ARIMA 

 

0.07225937 46.2575 6.801286 

k-th Moving Average Model 

 

0.08731528 59.17083 7.692258 
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k-th Weighted Moving 

Average Model 

0.07014848 46.25595 6.801173 

k-th Exponential Weighted 

Moving Average Model 

0.09544027 56.68555 7.52898 

Nonlinear Models with 

Constant Coefficients 

0.5835638 78.5180 8.861039 

Nonlinear Model 1 with 

Time Varying Coefficients 

0.058922 46.90737 6.848895 

Nonlinear Model 2 with 

Time Varying Coefficients 

0.071906 46.27549 6.802609 

 

Remark 4.3.3: In Table 4.3.3, for S&P 500 Index, four models perform pretty much close to each 

other. There are ARIMA model, k-th weighted moving average model, nonlinear stochastic 

models 1 and 2 with time varying coefficients. Among these models, k-th weighted moving 

average model has least variance and standard deviation of residual error. We note that our 

nonlinear model 2 is reasonably close to linear weighted model. 

 

From above discussion, we draw a few conclusions:  

 For all three datasets, nonlinear stochastic models with time vary coefficient have less 

variance and standard deviation of residual than the nonlinear models with constant 

coefficients. 

 Nonlinear stochastic model 2 with time varying coefficients has the least variance and 

standard deviation of residual among all models for two data sets, namely, stocks X and Y. 

 Dr. Shi’s k-th weighted moving average model [38] has the least variance and standard 

deviation of residual among all models for one dataset – S&P 500 Index. We remark the 

standard deviation of nonlinear stochastic model 2 is larger 0.01954, that is, about 0.04% 

larger than Dr. Shi’s k-th weighted moving average model. 

 

Knowing the performance of nonlinear stochastic models with constant coefficients, we present 

Tables 4.3.4, 4.3.5 and 4.3.6 for remaining six models, namely, ARIMA model, k-th moving 

average model, k-th weighted moving average model, k-th exponential weighted moving average  

model, nonlinear stochastic models 1 and 2 with time varying coefficients. These tables contain 

the actual and forecasted values for three data sets. 
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Table 4.3.4 Actual and Predicted Price for Stock X 

 

t 

Actual 

Value 

Predicted Value 

ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

848 685.19 690.5668 683.002 687.8663 688.95 690.5245 688.9735 

849 685.33 684.6626 669.0717 678.8684 680.7026 684.642 684.7898 

850 657 685.3417 675.2173 683.2993 684.0164 685.3423 685.6791 

851 649.25 654.6294 634.8802 645.5674 648.7488 654.5775 655.224 

852 631.68 648.5779 613.5021 636.6892 640.2909 648.5692 647.6274 

853 653.2 630.1105 601.3531 622.4698 625.3764 630.1352 630.6804 

854 646.73 654.9494 649.3253 655.5306 655.3039 655.0986 654.9312 

855 638.25 646.2265 659.2641 650.889 649.8597 646.1798 647.0794 

856 653.82 637.5815 630.9644 632.4086 633.6497 637.5274 635.8812 

857 637.65 655.0054 655.3506 657.6908 656.6988 655.16 654.9123 

858 615.95 636.504 639.1148 636.6878 637.1356 636.3224 637.4456 

859 600.79 614.2723 587.4148 601.4316 605.362 614.1321 612.8671 

860 600.25 599.5327 562.7062 588.4312 591.9794 599.4835 599.1939 

861 584.35 600.2053 576.8988 595.1241 597.1468 600.2029 601.133 

862 548.62 583.0321 566.9171 576.6775 579.0589 582.9814 583.1959 

863 574.49 545.2863 505.6626 528.6499 533.91 545.4584 544.1784 

864 566.4 576.4021 550.7285 573.7575 574.4719 576.695 574.846 

865 555.98 565.8405 575.6357 571.1122 570.1095 565.7497 566.9464 

866 550.52 555.2441 549.3242 548.4349 550.4871 555.1378 553.4377 

867 548.27 550.1295 532.6924 545.7815 547.0418 550.0745 549.7962 

868 564.3 548.1087 536.8028 545.8932 546.8686 548.0856 546.3439 

869 515.9 565.4388 572.9851 569.0178 567.9075 565.6321 565.2503 

870 495.43 513.1611 496.6788 502.3305 506.0323 512.4411 512.5852 

871 506.8 493.965 434.953 471.6746 478.8219 493.7756 491.6517 

872 501.71 507.562 478.7335 505.019 506.1324 507.7206 505.5978 
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Table 4.3.5 Actual and Predicted Price for Stock Y 

 

t 

Actual 

Value 

Predicted Value 

ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

5631 83.8 84.82902 86.77076 85.95206 85.54406 84.87698 84.7722 

5632 85.66 84.00733 87.0601 84.66872 84.41756 83.74178 83.90168 

5633 85.05 85.66035 87.22635 86.23666 86.03169 85.51144 85.77717 

5634 85.47 85.15029 86.28798 85.54065 85.43127 85.16966 85.14353 

5635 92.57 85.52184 85.80557 85.64303 85.62554 85.30488 85.46407 

5636 97 92.53652 97.42856 94.78931 93.93159 92.758 92.42399 

5637 95.8 97.25259 107.4367 100.8205 99.56975 96.75397 97.02509 

5638 94.62 96.03867 102.1023 97.29214 96.84044 95.48694 96.09939 

5639 97.1 94.72032 94.26917 94.38129 94.52896 94.60442 95.00356 

5640 94.95 97.146 97.17758 97.85285 97.66013 97.20943 97.29875 

5641 89.07 95.14956 95.76419 94.89111 94.93671 94.90279 95.07715 

5642 88.5 89.20548 84.0502 86.72816 87.58486 88.98043 89.02443 

5643 86.79 88.50399 81.45928 86.72795 87.39757 88.74691 88.18962 

5644 85.7 86.87246 83.05968 85.62383 85.99651 86.91702 86.35764 

5645 86.7 85.75254 83.14882 84.53992 84.89636 85.66368 85.31255 

5646 86.25 86.74345 85.69431 86.68557 86.72493 86.83622 86.48165 

5647 85.38 86.34851 86.61938 86.425 86.38849 86.1994 86.26917 

5648 85.94 85.45339 84.8209 84.94762 85.08256 85.36444 85.54056 

5649 85.55 85.9905 85.31589 85.98491 86.02736 85.99153 86.15072 

5650 85.73 85.63656 85.58075 85.61227 85.6082 85.54971 85.74118 

5651 84.74 85.80065 85.76531 85.66177 85.67719 85.70833 85.81162 

5652 84.75 84.82062 84.19112 84.5681 84.68931 84.76484 84.6882 

5653 83.94 84.80058 83.82978 84.54765 84.62527 84.73972 84.61102 

5654 84.15 84.01544 83.17927 83.60801 83.7308 83.99208 83.83675 

5655 86.15 84.19971 83.51475 84.04115 84.10393 84.12795 84.05082 
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Table 4.3.6 Actual and Predicted Price for S&P 500 Index 

 

t 

Actual 

Value 

Predicted Value 

ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

14845 931.8 900.8314 922.4829 909.6238 905.9727 902.5525 900.9227 

14846 927.45 929.2406 970.9482 944.2084 939.3075 932.9931 929.0251 

14847 934.7 925.1714 953.0097 932.0198 929.1136 925.6639 925.1775 

14848 906.65 933.7874 944.5406 936.7494 935.8587 935.8555 933.9431 

14849 909.73 906.9402 895.3576 899.2609 901.1965 904.6217 907.0545 

14850 890.35 910.8315 889.0191 904.3632 906.3103 911.6803 911.0914 

14851 870.26 891.0103 870.3993 884.6703 886.3622 888.6707 891.0485 

14852 871.79 873.1138 843.0015 860.8976 865.2716 870.6269 873.2177 

14853 842.62 873.4106 852.11 868.7196 870.5928 872.5018 873.1921 

14854 843.74 844.7466 810.8334 832.4831 837.2048 840.9775 845.0018 

14855 850.12 846.7019 835.1808 841.1104 843.4486 845.4405 846.3571 

14856 805.22 850.2321 836.0299 848.9394 849.8067 849.7196 850.1915 

14857 840.24 808.6526 790.8013 796.2332 801.0583 803.0576 808.5679 

14858 827.5 841.9541 837.8833 841.4893 841.914 844.4779 841.5228 

14859 831.95 825.9884 813.0403 827.1792 827.3513 824.1323 826.4057 

14860 836.57 834.0853 855.8398 834.8218 834.2957 833.7654 833.6063 

14861 845.71 836.0695 841.6322 838.2363 838.3141 835.7427 835.7924 

14862 874.09 844.725 838.8276 847.1184 846.0498 846.1652 845.2083 

14863 845.14 872.1378 915.9827 886.4861 881.3798 874.839 871.5874 

14864 825.88 844.9611 849.1547 841.3719 842.5598 842.5651 845.1329 

14865 825.44 828.8902 812.1273 818.3743 822.268 826.9521 828.9131 

14866 838.51 825.9724 788.507 816.5074 819.2051 825.8489 826.2782 

14867 832.23 837.8741 832.4872 841.8058 840.0885 839.0741 838.1304 

14868 845.85 832.6112 852.194 834.7648 833.7577 831.2401 832.112 

14869 868.6 845.546 846.6754 849.1995 848.8302 847.0508 845.5924 
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Then we compute the basic statistics for residual errors using different predicted models for the 

three data sets. Table 4.3.7, 4.3.8 and 4.3.9 contain the results. 

 

Table 4.3.7 Basic Statistics by Using Different Predicted Models for Stock X 

Stat. ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

Mean 6.979054 -9.14724 1.737706 3.528108 6.95156 6.495499 

Var. 312.6866 868.8794 461.1024 406.0678 312.5214 327.0268 

S.D. 17.68295 29.47676 21.4733 20.15112 17.67828 18.08388 

 

Table 4.3.8 Basic Statistics by Using Different Predicted Models for Stock Y 

Stat. ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

Mean 0.031855 0.247946 0.096411 0.067641 -0.0583 -0.0523 

Var. 5.767871 16.25066 6.582993 5.9614 5.6971 5.741183 

S.D. 2.401639 4.03121 2.565734 2.441598 2.38686 2.396077 

 

Table 4.3.9 Basic Statistics by Using Different Predicted Modelsfor S&P 500 Index 

Stat. ARIMA k-th k-th Weighted k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

Mean 1.73382 -0.96296 0.579749 1.01513 1.362997 1.717323 

Var. 406.8795 850.3763 463.5857 430.691 423.539 404.9443 

S.D. 20.17126 29.16121 21.53104 20.7531 20.58006 20.12323 

 

Table 4.3.10 Summary of Predictions for Three Data Sets 

Data 

Set 

ARIMA k-th k-th 

Weighted 

k-th Exp. 

Weighted 

Nonlinear 

Model 1 

Nonlinear 

Model 2 

Stock X 5 5 5 3 3 4 

Stock Y 4 4 5 1 6 5 

S&P 500 5 8 5 1 2 4 
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Remark 4.3.4: From Table 4.3.7, 4.3.8 and 4.3.9, we conclude that the statistics of using 

different model to predict a future value, the nonlinear stochastic model 1 with time varying 

coefficients model has less standard deviation of residual for two data sets stock X and stock Y. 

For S&P 500 Index, our nonlinear stochastic model 2 with time varying coefficients has the least 

standard deviation of residual. Table 4.3.10 summarizes the frequency of best model when 

predicting three data sets using different models. We further note that Table 4.3.10 summarizes 

the frequency of the best performance of models under three data sets predicted values. This 

summary in the context of Table 4.3.7, 4.3.8 and 4.3.9 suggests that nonlinear stochastic model 2 

with time varying coefficients is robust with respect different data sets. 

 

4.4 Conclusions 

 

In Section 4.3, we studied prediction and comparison about the performance of presented and 

existing models. This was based on three overall data sets. So far the formulations of stochastic 

nonlinear Models 4.1.1 and 4.2.1 with time varying coefficient were utilized for the data fitting. 

We note that the performance of these models in the framework of data fitting is superior than the 

existing time series models nonlinear stochastic models 1 and 2 for overall data. Due to the nature 

of these models, the forecasting problem is open. This problem will be part of our future research 

plan. 
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Chapter 5 

European Option Pricing 

 

5.0 Introduction 

 

In this chapter, we investigate the option pricing problem in the frame of nonlinear stochastic 

models described in Chapters 3 and 4. By employing the nonlinear stochastic models of stock 

price process, the formulas of option pricing are derived. In particular, we derive the European 

call and put option pricing formulas of nonlinear stochastic models 1, 2 and 3. These results are 

presented in Sections 5.1, 5.2 and 5.3. 

  

5.1 European Option Pricing for Nonlinear Stochastic Model 1 

 

The probabilistic approach to pricing options will result in a price expressed as the discounted 

expected value of a claim with respect to a probability measure. The solution process of 

stochastic differential equation in (1.3.1) is a stochastic process adapted to Brownian filtration 

. Under conditions (1.3.2) and (1.3.3) it has a unique solution process [23, 28]. We recall 

that (4.1.1) has a unique solution of equation (4.1.1). 

0}{ ≥ttF

 

The nonlinear stochastic model 1 (Section 4.1) with time varying coefficients, takes the following 

form 

tttt
t

tttt dWSdtSSdS σ
σ

βα +++= )
2

ln(
2

, 0)0( SS = , 

where, coefficients βα ,  and σ are time varying smooth functions, and  is Brownian motion. tW

In Section 4.1, by using the transformation tt SY ln= , equation (4.1.1) is transformed into linear 

form  

tttttt dWdtYdY σβα ++= )( . 
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The solution to this stochastic differential equation is   
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Then by using the inverse transformation of “ln”, we obtain 
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Remark 5.1.1: For nonlinear stochastic model 1 with constant coefficients (3.1.1) and 00 =t , 

(5.1.1) and (5.1.2) reduce to 
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,      (5.1.4) 

respectively. 

 

Now, let V  be the European option for a stock with respect to nonlinear stochastic model 1 with 

time varying coefficients (4.1.1).  is the value of the option at time t, where  is the 

stock price defined in (5.1.2). The strike price K and maturity time T are as defined in Section 1.1, 

and r is fixed interest rate. Applying to Theorem 1.1.2, we have 

( , )V S t tS
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There is no a simple formula to compute the value of . To compute the numerical value of 

, we use equations (5.1.2) to simulate the value of  and then compute the expected 

value in (5.1.5). 

( , )V S t

TS( , )V S t

 

From (5.1.1), knowing , T and tS TT SY ln= , let tt SStt ==
0

,0  and tT −=θ , for nonlinear 

stochastic model 1 with constant coefficients, we note that  is normally distributed with TY
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where Z is standard normal random variable. 
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First, we establish for the range of values of Z the integrand is non-zero. 
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Similarly, the formula corresponding to a European put option is 
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where Z is standard normal random variable. 

 

Again, first we establish for the range of values of Z the integrand is non-zero. 
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Illustration 5.1.1: In the following, we outline an illustration to exhibit the usefulness of the 

resented result. Suppose the yearly interest rate %5.6=r , by applying (5.1.7) and (5.1.9), the 

call and put option price are computed and recorded in Table 5.1.1 for three data sets. Similarly, 

the call and put option price of GBM model are computed and recorded in Table 5.1.2 for three 

data sets. 

 

Table 5.1.1 Call and Put Option Price of Nonlinear Model 1 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 18.17 32.71 2.96 7.76 13.56 17.27 

60 27.53 52.99 6.63 10.76 27.60 25.29 

100 30.55 65.45 9.21 12.71 38.22 29.96 

200 30.75 83.54 13.83 15.93 59.61 36.77 
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Table 5.1.2 Call and Put Option Price of GBM Model 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 23.18 29.25 2.96 7.81 13.64 17.21 

60 44.42 45.63 6.69 10.92 27.91 25.16 

100 59.71 56.09 9.39 12.99 38.80 29.77 

200 89.00 73.46 14.48 16.54 61.05 36.52 

 

 

5.2 European Option Pricing for Nonlinear Stochastic Model 2 

 

The nonlinear stochastic model 2 (Section 4.2) with time varying coefficients, takes the following 

form 

t
N
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where, coefficients βα ,  and σ are time varying smooth functions, N is a constant 

, and  is Brownian motion. An argument about the existence and 

uniqueness of solutions of this equation can be reformulated. 
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Remark 5.2.1: For nonlinear stochastic model 2 with constant coefficients (3.2.1) and 00 =t , 

(5.2.1) and (5.2.2) reduce to 
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respectively. 

 

Now, let V  be the European option on a stock with respect to nonlinear stochastic model 2 with 

time varying coefficients.  is the value of the option at time t, where  is the stock price 

process defined in (5.2.2). The strike price K and maturity time T are as defined in Section 1.1. r 

is fixed interest rate. Applying to Theorem 1.1.2, we have 
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There is no a simple formula to compute the value of . To compute the numerical value of 

, we use equations (5.2.2)  to simulate the value of  and then compute the expected 

value in (5.2.5). 
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Hence, for European call option, (5.2.5) reduces to 
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where Z is standard normal random variable. 
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First, we establish for the range of values of Z the integrand is non-zero. 
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Similarly, the formula corresponding to a European put option is 
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where Z is standard normal random variable. 

We establish for the range of values of Z the integrand is non-zero. 
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           (5.2.9) 

 

Illustration 5.2.1: In the following, we illustration the usefulness of the above presented result. In 

(5.2.7) and (5.2.9), σβα ,,

r

 and N are estimated from observations. Other parameters such as the 

yearly interest rate is set to , by applying (5.2.7) and (5.2.9), the call and put option 

price are computed and recorded in Table 5.2.1 for three data sets. 

%5.6=

 

Table 5.2.1 Call and Put Option Price of Nonlinear Model 2 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 13.41 13.37 0.13 3.46 9.17 15.67 

60 31.89 15.32 2.06 1.65 17.98 23.99 

100 47.57 15.26 5.13 0.86 24.00 29.53 

200 81.73 13.25 14.61 0.20 34.77 39.12 
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5.3 European Option Pricing for Nonlinear Stochastic Model 3 

 

Similarly, the nonlinear stochastic model 3, with time varying coefficients, takes the following 

form 

tttttttttt dWSdtSSSdS σσβα +++= )( 22 , 0)0( SS = ,  (5.3.1) 

where, coefficients βα ,  and σ are time varying smooth functions, and  is Brownian motion. 

We note that the existence and uniqueness of solution process of (5.3.1) is justied in Section 3.3. 

tW

 

In Section 3.3 (Chapter 3), by using the transformation , equation (5.3.1) was 

transformed into linear form  
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Remark 5.3.1: For nonlinear stochastic model 3 with constant coefficients (3.3.1) and 00 =t , 

(5.3.2) and (5.3.3) reduce to 
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respectively. 

 

Similarly, let V  be the European option on a stock with respect to nonlinear stochastic model 3 

with time varying coefficients.  is the value of the option at time t, where  is the stock 

price process defined in (5.3.3). The strike price K and maturity time T are as defined in Section 

1.1. r is fixed interest rate. Applying to Theorem 1.1.2, we have 

( , )V S t tS

 

]|[),( )(
tT

tTrQ FCeEtSV −−= , where    (5.3.6) 
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T },0),max{(

},0),max{(

 

There is no a simple formula to compute the value of .  ( , )V S t

 

Illustration 5.3.1: In the following, we illustrate the usefulness of the above presented result. To 

compute the numerical value of , we use equations (5.3.3) or (5.3.5) to simulate the value 

of  and then compute the expected value in (5.3.6). Suppose the yearly interest rate 

( , )V S t

TS %5.6=r , 

the call and put option price are computed and recorded in Table 5.3.1 for three data sets. 

 

 

 

 

126 



Table 5.3.1 Call and Put Option Price of Nonlinear Model 3 

T Stock X 

0S =691.48 

K=600 

Stock Y 

0S =84.84 

K=70 

S&P 500 Index 

0S =903.25 

K=800 

call put call put call put 

5 58.92 5.18 16.16 0.56 101.56 0.02 

10 2.73 65.75 15.39 0.58 92.16 0.06 

20 0 286.2 11.57 1.03 56.24 0.91 

60 0 525.13 0.11 17.25 0 210.66 

100 0 556.44 0 38.04 0 431.09 
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Chapter 6 

Option Pricing for Hybrid Models 

 

6.0 Introduction 

 

We studied GBM models and nonlinear stochastic models under the different data partitioning 

processes in Chapter 2, 3 and 4. In Chapter 5, we derived the European option pricing formulas 

for three nonlinear stochastic models, and apply to three data sets. In this chapter, we first derive 

the European call and put option pricing formulas in Section 6.1 for Hybrid GBM Models. In 

Section 6.2, we present option pricing formulas for hybrid nonlinear stochastic models.  

 

6.1 Option Pricing for Hybrid GBM Models 

 

In 2003, G.Yin, et proposed a hybrid GBM model (HGBM). In HGBM model, drift and volatility 

are not deterministic functions anymore. They are perturbed by stochastic process such as a 

Markov Chain.  

By following development of a class of stochastic hybrid GBM system [16,44]: 

 

,,)(,))(,())(,( kkkt ttStSSdWttSdtttdS ≠=+= ησημ    

 1 1 1 1( ( , , , ), ),k k k k k k kS G S t t S η η−
− − − −= 0 0( ) ,S t S =  

1 0 0( , ), ( ) , (1, ),k kM S t k Iη η η η+ = = ∈ ∞     (6.1.1) 

 

where, is a continuous price of the stock, S ))(,( tt ημ and ))(,( tt ησ  are drift and volatility 

governed by the underlying discrete events that can be modeled by a stochastic process )(tη with 

a finite state. Figure 6.1.1 illustrate system switching from state k to state k+1 when at time , 

event occurs, a jump 

kt

)(tηφ  also occurs here. 
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Figure 6.1.1 State Switch Illustration of Hybrid GBM 

 

In Chapter 2, we develop several modified GBM models which are HGBM models. The solution 

process of these HGBM models takes the general form:  
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   (6.1.2) 

where,  be any one of data partition processes 

which are defined in  Chapter 2. 

1 1 2 2 3[0, ),[ , ),[ , ),t t t t t [ 3 4 4 5, ),[ , )...t t t t 1[ ,m mt t− )
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Now, let V  be the European option on a stock with respect to hybrid GBM model (6.1.1). 

 is the value of the option at time t, where  is the stock price process defined in (6.1.2). 

The strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate. 

Applying to Theorem 1.1.2, we have 
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Hence, for European call option, (6.1.3) reduces to 
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where Z is standard normal random variable. 

First, we establish for the range of values of Z the integrand is non-zero. 
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Similarly, the corresponding formula for a European put option is 
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where Z is standard normal random variable. 
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First, we establish for the range of values of Z the integrand is non-zero. 
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Illustration 6.1.1: In the following, we illustrate the usefulness of the above presented result. 

Suppose the yearly interest rate %5.6=r , by applying (6.1.5) and (6.1.7), the call and put 

option price of three data sets are computed and recorded in Tables 6.1.1 and 6.1.2 for Hybrid 

GBM models 2.4.3 and 2.4.4, respectively. 

 

Table 6.1.1 Call and Put Option Price of Hybrid GBM Model 2.4.3 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 22.19 12.99 2.06 5.30 11.57 106.96 

60 95.38 12.97 5.99 6.04 34.26 130.94 

100 165.04 8.68 9.56 6.32 50.87 148.54 

200 373.42 3.76 18.20 6.37 80.60 180.52 
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Table 6.1.2 Call and Put Option Price of Hybrid GBM Model 2.4.4 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 28.75 15.66 4.71 4.07 44.70 48.50 

60 107.67 8.25 8.25 5.35 51.33 87.26 

100 185.16 6.60 11.96 5.86 64.30 106.90 

200 486.84 1.34 20.79 6.37 81.72 136.09 

 

 

6.2 Option Pricing for Hybrid Nonlinear Stochastic Models 

 

By following development of a class of stochastic hybrid dynamic system [16]: 

 

,,)(,))(,,())(,,(0 kkkte ttStSdWtStFdttStFdS ≠=+= ηη  

1 1 1 1( ( , , , ), )k k k k k kS G S t t S ,kη η−
− − − −=  0 0( ) ,S t S=  

1 0 0( , ), ( ) , (1, ),k kM S t k Iη η η η+ = = ∈ ∞     (6.2.1) 

where, 

S  is a continuous price of the stock, 

for nonlinear model 1, t
t
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for nonlinear model 2, 122
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tte SF )(ησ=

and 

for nonlinear model 3, , and tttttt SSSF 2
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2
)()(0 ηηη σβα ++= tte SF )(ησ= , 

))(,,(0 tStF η  and ))(,,( tStFe η are governed by the underlying discrete events that can be 

modeled by a stochastic process )(tη with a finite state. 
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Figure 6.2.1 illustrate system switching from state k to state k+1 when at time , event occurs, a 

jump 

kt

)(tηφ  also occurs here. 

 
Figure 6.2.1 State Switch Illustration of Hybrid Nonlinear Stochastic Model 

 

In Chapter 3, we develop several nonlinear stochastic models which are hybrid nonlinear 

stochastic models. The solution process of these hybrid stochastic models takes the following 

form: 
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where,  be any one of data partition processes 

which are defined in  Chapter 2. 
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6.2.1 Hybrid Nonlinear Stochastic Model 1 

 

The solution process of the hybrid nonlinear stochastic models 3.1.1 and 3.1.2 is given by,  
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Recursively, we have 
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Now, let V  be the European option on a stock with respect to hybrid nonlinear model 1.  

is the value of the option at time t, where  is the stock price process defined in (6.2.4). The 

strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate. Applying 

to Theorem 1.1.2, we have 
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Hence, for European call option,  
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Now we compute a European call option as 
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Similarly, the corresponding formula for a European put option is 
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Illustration 6.2.1: In the following, we illustrate the usefulness of the above presented result. 

Suppose the yearly interest rate %5.6=r , by applying (6.2.7) and (6.2.8), the call and put 

option price of three data sets are computed and recorded in Tables 6.2.1 and 6.2.2 for Hybrid 

nonlinear models 3.1.1 and 3.1.2, respectively. 
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Table 6.2.1 Call and Put Option Price of Hybrid Nonlinear Model 3.1.1 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 3.54 16.17 0 3.27 1.98 35.93 

60 8.03 10.40 0 9.75 61.27 0.64 

100 0 92.73 0 12.58 170.64 0 

200 0 169.69 0 21.40 262.25 0 

 

Table 6.2.2 Call and Put Option Price of Hybrid Nonlinear Model 3.1.2 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 9.27 7.66 0 12.76 0.40 31.67 

60 9.10 8.86 0 15.74 3.08 31.02 

100 0 123.62 0 19.09 61.14 0.36 

200 0 171.43 0 21.37 192.99 0 

 

 

6.2.2 Hybrid Nonlinear Stochastic Model 2 

 

Similarly, the solution process of the hybrid nonlinear stochastic models 3.2.1 and 3.2.2 is given 

by,  
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Now, let V  be the European option on a stock with respect to hybrid nonlinear model 2.  

is the value of the option at time t, where  is the stock price process defined in (6.2.10). The 

strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate. Applying 

to Theorem 1.1.2, we have 
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Hence, for European call option,  
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where Z is standard normal random variable. 

First, we establish for the range of values of Z the integrand is non-zero. 
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where, )(Tμ  and )(Tσ  are defined in (6.2.11) and (6.2.12) respectively. 

 

Now we compute a European call option as 

( )∫
∞ −

−
− ⎟

⎠
⎞

⎜
⎝
⎛ −−+=

d

z

Nm
r dzeKNZTTetSV m

π
σμθ

2
)1)()()((),(

2
1

1

2

 ( ) )(
2

)1)()()((
2

1
1

2

dKedzeNZTTe r

d

z

Nm
r

m −Φ−−+= −
∞ −

−
−∫ θθ

π
σμ .    (6.2.13) 

Similarly, the corresponding formula for a European put option is 
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Illustration 6.2.2: In the following, we illustrate the usefulness of the above presented result. 

Suppose the yearly interest rate %5.6=r , by applying (6.2.13) and (6.2.14), the call and put 

option price of three data sets are computed and recorded in Tables 6.2.3 and 6.2.4 for Hybrid 

nonlinear models 3.2.1 and 3.2.2, respectively. 
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Table 6.2.3 Call and Put Option Price of Hybrid Nonlinear Model 3.2.1 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 29.06 33.76 6.01 9.49 3.49 1.45 

60 55.40 10.04 8.56 13.13 4.15 2.08 

100 74.16 9.68 6.30 11.76 27.22 32.74 

200 114.6 9.06 13.57 20.97 53.77 59.20 

 

Table 6.2.4 Call and Put Option Price of Hybrid Nonlinear Model 3.2.2 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 92.56 105.79 17.06 22.34 4.33 0.59 

60 50.09 19.55 40.90 44.69 4.98 0.58 

100 61.06 22.46 19.68 23.50 5.02 1.20 

200 84.54 29.72 16.38 21.94 9.23 14.66 

 

 

6.2.3 Hybrid Nonlinear Stochastic Model 3 

 

The solution process of the hybrid nonlinear stochastic models 3.3.1 and 3.3.2 is given by,  
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Now, let V  be the European option on a stock with respect to hybrid nonlinear stochastic model 

3. V S  is the value of the option at time t, where  is the stock price process defined in 

(6.2.15). The strike price K and maturity time T are as defined in Section 1.1. r is fixed interest 

rate. Applying to Theorem 1.1.2, we have 

( , )t TS

]|[),( )(
tT

tTrQ FCeEtSV −−= , where   (6.2.16) 
⎩
⎨
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−
−

=
putSK
callKS

C
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T
T },0),max{(

},0),max{(

 

Illustration 6.2.2: In the following, we illustrate the usefulness of the above presented result. 

There is no a simple formula to compute the value of . To compute the numerical value of 

, we use equations (6.2.15) to simulate the value of  and then compute the expected 

value in (6.2.16). Suppose the yearly interest rate 

( , )V S t

TS

%5.6

( , )V S t

=r , by applying (6.2.16), the call and 

put option price of three data sets are computed and recorded in Tables 6.2.5 and 6.2.6 for Hybrid 

nonlinear models 3.3.1 and 3.3.2, respectively. 
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Table 6.2.5 Call and Put Option Price of Hybrid Nonlinear Model 3.3.1 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 420.52 0 35.75 0 56.62 0 

60 298.64 0 32.59 0 55.61 0 

100 279.83 0 30.44 0 54.63 0 

200 291.04 0 31.85 0 53.65 0 

 

Table 6.2.6 Call and Put Option Price of Hybrid Nonlinear Model 3.3.2 

T Stock X 

0S =691.48 

K=700 

Stock Y 

0S =84.84 

K=90 

S&P 500 Index 

0S =903.25 

K=910 

call put call put call put 

20 353.42 0 45.34 0 79.12 0 

60 295.16 0 50.79 0 78.17 0 

100 338.64 0 53.46 0 77.24 0 

200 315.10 0 54.45 0 76.21 0 
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Chapter 7 

Future Research Plan 

 

The nonlinear stochastic modeling approach initiated in this work for solving forecasting and 

option pricing problems generates several interesting research problems in the financial 

engineering. 

 

7.1 Data Smoothing Transformation 

 

We note that a stochastic differential equation describes the continuous stock price process. The 

data sets we apply in our study are daily stock prices. In our future research, we want to explore 

the smoothing functions approach for better prediction and forecasting results.  

 

7.1.1 Nonlinear Stochastic Model 1 

 

In the following, a preliminary study with regard to nonlinear stochastic model 1 is presented. 

Here, we apply the smoothing function 1,...,2,1,1 1

+−== ∑
−+

=

nTjS
n

Z
nj

ji
ij . Table 7.1.1 contains 

the result of AIC when we use value 3=n , and then apply to the Nonlinear Stochastic Model 1 

using overall data set (Section 4.1). The basic statistics of the residual errors of fitted model are 

recorded in Table 7.1.2. 

 

Table 7.1.1 AIC of Time Varying Coefficients Nonlinear Model 1 (n=3) 

of Different Models of Three Datasets: Stock X, Stock Y and S&P 500 Index 

 Stock X Stock Y S&P500 Index 

(3, 1, 2) -5925.74 -34022.21 -128409.7 

 (3, 1, 1) -5667.26 -32847.02 -123984.7 
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(3, 1, 0) -5600.38 -32401.51 -122989.2 

(2, 1, 3) -5925.82 -34016.82 -128410.7 

(2, 1, 2) -5927.59 -34019.93 -128409.8 

(2, 1, 1) -5575.21 -32161.64 -122653.9 

(2, 1, 0) -5566.89 -32090.21 -122485.6 

(1, 1, 3) -5927.38 -34019.00 -128404.0 

(1, 1, 2) -5929.58 -34019.86 -128373.8 

(1, 1, 1) -5549.04 -31995.15 -121906.5 

(1, 1, 0) -5528.05 -31892.23 -121206.7 

(0, 1, 3) -5929.52 -34019.89 -128377.2 

(0, 1, 2) -5926.42 -34021.24 -128345.8 

(0, 1, 1) -5335.44 -30982.72 -118845.7 

 

Table 7.1.2 Basic Statistics of Time Varying Coefficients Nonlinear 

Model 1 (n=3) of Three Data Sets: Stock X, Stock Y and S&P500 Index 

 Model mean variance Standard 

deviation 

Stock X (1, 1, 2) 0.590782 59.550900 7.716923 

Stock Y (3, 1, 2) 0.012320 0.387723 0.622674 

S&P 500 Index (2, 1, 3) 0.045248 47.82333 6.915441 

 

 

7.1.2 Nonlinear Stochastic Model 2 

 

We repeat the smoothing transformation approach with regard to nonlinear stochastic model 2. 

The Stochastic Model Identification Procedure 4.2.1 is applied to obtain the time series model 

corresponding to the nonlinear stochastic model 2. Table 7.1.3 exhibits the basic statistics of the 

residual errors of nonlinear model 2 with 3=n .  
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Table 7.1.3 Basic Statistics of Time Varying Coefficients Nonlinear 

Model 2 (n=3) of Three Data Sets: Stock X, Stock Y and S&P500 Index 

 Model N mean variance Standard 

deviation 

Stock X (1, 1, 2) 0.04 0.632399 57.25794 7.566898 

Stock Y (2, 1, 3) 0 0.014074 0.341886 0.58471 

S&P 500 Index (2, 1, 2) 0.02 0.067176 46.31976 6.805862 

 

From this preliminary study, comparing the results in Tables 7.1.2, 7.1.3, 4.3.1, 4.3.2 and 4.3.3, 

we propose to utilize the smoothing function 1,...,2,1,1
+−== ∑

+

=

nTjS
n

Z
nj

ji
ij , and also other 

smoothing linear and nonlinear functions to investigate forecasting problem. 

 

7.2 Forecasting Problem 

 

We recall that, in Section 4.3, we studied prediction problem and comparison about the 

performance of presented and existing models. This was based on three overall data sets. We 

simply attempted to use the formulations of stochastic nonlinear Models 4.1.1 and 4.2.1 with time 

varying coefficient for the data fitting problem. We further note that the performance of these 

models in the framework of data fitting is superior than the existing time series models and 

nonlinear stochastic models 1 and 2. The forecasting in the frame work of these models is open 

research problem. This problem will be also addressed in the future. 

 

7.3 Option Pricing Problem 

 

We observe that the parameters in our option pricing illustrations in Chapter 5 and 6 are estimated 

from stock price data sets. In practice, these implied parameters are computed from the historical 

option pricing data set. In our future research, we attempt to find the historical option pricing data 

(if available) and then apply to develop modified option pricing models. 
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Appendix A1: The Estimated Parameters of Stock X Applying Monthly GBM Model 

 

 2004 2005 

μ̂  σ̂  μ̂  σ̂  

January   0.001161554 0.02942549 

February   -0.001702899 0.02796643 

March   -0.001766466 0.01257827 

April   0.009640864 0.02096884 

May   0.01115012 0.01629551 

June   0.002920542 0.02164556 

July   -0.0009630533 0.01643769 

August 0.003216502 0.03775822 -0.0001724213 0.01373443 

September 0.01146937 0.02181682 0.00493249 0.01504678 

October 0.01924003 0.04152636 0.008160907 0.02977017 

November -0.001520906 0.03722648 0.004194011 0.01871986 

December 0.002805678 0.01911732 0.001242512 0.01315277 
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Appendix A1:  (Continued) 

 

 2006 2007 

μ̂  σ̂  μ̂  σ̂  

January 0.002671674 0.03379703 0.004406722 0.01673394 

February -0.008647245 0.03598111 -0.005636942 0.01614764 

March 0.003500880 0.02592455 0.0009669722 0.01374949 

April 0.003836704 0.01975170 0.001483809 0.01109096 

May -0.005141313 0.01863313 0.002560355 0.01195841 

June 0.005608799 0.01690952 0.002363476 0.009974502 

July -0.003991524 0.0119881 -0.001067062 0.01443759 

August -0.0008110875 0.01456686 0.0005236452 0.01251902 

September 0.003111817 0.01525902 0.005110094 0.009779767 

October 0.007971126 0.02201493 0.009694167 0.0155215 

November 0.0009373092 0.01435362 -0.0005707263 0.0276292 

December -0.002497903 0.01236763 2.591382e-06 0.01499199 
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Appendix A2: The Estimated Parameters of Stock X Applying Unequal Interval GBM Model 

 

Index μ̂  σ̂   Index μ̂  σ̂  

1 0.006621 0.024521  20 0.010446 0.022202 

2 0.013391 0.028731  21 -0.00389 0.02337 

3 0.009891 0.055846  22 -0.0026 0.019065 

4 0.001149 0.030116  23 0.002168 0.015421 

5 0.009663 0.019472  24 -0.00417 0.014351 

6 -0.00134 0.026352  25 0.003034 0.012816 

7 0.005189 0.038095  26 0.003202 0.014617 

8 -0.00261 0.015574  27 0.007015 0.020763 

9 0.008553 0.017281  28 -0.00327 0.012388 

10 0.00884 0.022777  29 1.37E-05 0.015938 

11 -0.00053 0.014418  30 -0.00115 0.017478 

12 7.88E-05 0.015385  31 -0.00045 0.014767 

13 0.000596 0.015815  32 2.02E-05 0.01084 

14 0.016518 0.033196  33 0.007892 0.011226 

15 0.009311 0.013909  34 0.0025 0.008967 

16 -0.00076 0.016247  35 -0.00407 0.016643 

17 0.004541 0.025039  36 0.003471 0.010888 

18 -0.01211 0.036582  37 0.008705 0.015797 

19 0.000358 0.028831  38 0.010025 0.015063 

    39 -0.00136 0.022851 
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Appendix A3: The Estimated Jump Coefficient of Stock X Applying Monthly GBM Model 

 

 2004 2005 2006 2007 

Jan to Feb N/A 

 

0.9333078 0.8899062 0.9496149 

Feb to 

Mar 

N/A 1.0128700 1.0826370 1.0392360 

Mar to 

Apr 

N/A 1.0101639 0.9906786 1.0042266 

Apr to 

May 

N/A 1.0139198 0.9524189 0.9933268 

May to 

June 

N/A 1.0276019 1.0794418 1.0103405 

June to 

July 

N/A 0.9493318 0.9786493 1.0100002 

July to 

Aug 

N/A 1.0248249 0.9630886 0.9895443 

Aug to 

Sep 

0.9751628 0.9868456 1.0288616 1.0153643 

Sep to 

Oct 

1.0456927 1.0070887 0.9986621 1.0084123 

Oct to 

Nov 

1.0101994 1.0134436 0.9816198 0.9663877 

Nov to 

Dec 

0.9644825 1.0051667 1.0108246 0.9845458 

Dec to 

next Jan 

1.0668690 1.0269237 1.0249850 N/A 
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Appendix A4: The Estimated Jump Coefficient of Stock X Applying Unequal Interval GBM 

Model with Jumps 

 

Index Jump Coefficient  Index Jump Coefficient 

1 N/A  21 1.015838 

2 0.938119  22 1.017131 

3 0.929323  23 0.994225 

4 1.058691  24 1.073491 

5 1.040035  25 0.940836 

6 0.99704  26 0.994028 

7 1.09544  27 0.961578 

8 0.995219  28 1.123955 

9 0.937131  29 0.996198 

10 0.973401  30 0.924911 

11 1.090801  31 1.079305 

12 0.936869  32 0.936505 

13 0.999014  33 0.998823 

14 0.92379  34 1.008491 

15 1.086789  35 1.07922 

16 1.082488  36 0.96916 

17 0.908315  37 0.952614 

18 1.146248  38 0.988914 

19 0.855107  39 1.096968 

20 1.000371    
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