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Stochastic Modeling and Statistical Analysis
Ling Wu

ABSTRACT

The objective of the present study is to investigate option pricing and forecasting problems in
finance. This is achieved by developing stochastic models in the framework of classical modeling
approach.

In this study, by utilizing the stock price data, we examine the correctness of the existing
Geometric Brownian Motion (GBM) model under standard statistical tests. By recognizing the
problems, we attempted to demonstrate the development of modified linear models under
different data partitioning processes with or without jumps. Empirical comparisons between the
constructed and GBM models are outlined.

By analyzing the residual errors, we observed the nonlinearity in the data set. In order to
incorporate this nonlinearity, we further employed the classical model building approach to
develop nonlinear stochastic models. Based on the nature of the problems and the knowledge of
existing nonlinear models, three different nonlinear stochastic models are proposed. Furthermore,
under different data partitioning processes with equal and unequal intervals, a few modified
nonlinear models are developed. Again, empirical comparisons between the constructed nonlinear

iX



stochastic and GBM models in the context of three data sets are outlined.

Stochastic dynamic models are also used to predict the future dynamic state of processes.

This is achieved by modifying the nonlinear stochastic models from constant to time varying

coefficients, and then time series models are constructed. Using these constructed time series

models, the prediction and comparison problems with the existing time series models are

analyzed in the context of three data sets. The study shows that the nonlinear stochastic model 2

with time varying coefficients is robust with respect different data sets.

We derive the option pricing formula in the context of three nonlinear stochastic models with

time varying coefficients. The option pricing formula in the frame work of hybrid systems,

namely, Hybrid GBM (HGBM) and hybrid nonlinear stochastic models are also initiated.

Finally, based on our initial investigation about the significance of presented nonlinear stochastic

models in forecasting and option pricing problems, we propose to continue and further explore

our study in the context of nonlinear stochastic hybrid modeling approach.



Chapter 1
Review and Basic Concepts

1.0 Introduction

Financial mathematics derives and extends the mathematical or numerical models that are
suggested by financial economists. Stochastic process is widely used here to obtain the fair price
of derivatives of an asset. In this chapter, we first review some financial terminologies and
methodologies, in Sections1.1. In Section 1.2, we present the development of stochastic models.
General stochastic differential equations and 1t6 — Doob formula are reviewed in Section 1.3.
Furthermore, the least square estimation method is reviewed to estimate the parameters in Section
1.4. Finally, the maximum likelihood estimation method of time series model (ARMA model) is

outlined in Section 1.5.

1.1 Financial Mathematics

1.1.1 Fundamental Concepts

During 1600s, Tulip dealing was big business in Holland. Flower growers and dealers were
trading in options to guarantee prices. Until 1700s, options were declared illegal in London. The
Investment Securities Act of 1934 created the Securities and Exchange Commission (SEC), and
gave the SEC the power to regulate options. In April 26, 1973, the Chicago Board Option
Exchange (CBOE) started trading and listed 16 call options on 16 stocks. A few years later,
CBOE began trading put option, and ten years later, CBOE began trading Index option. On the
first day of trading in 1973, 911 contracts traded. Today, the CBOE’s average daily volume
consistently exceeds one million contracts per day [4]. The concept of financial derivatives plays

an important role in an interconnected financial world.



Definition 1.1.1 Derivatives: Derivatives are financial instruments whose value is derived from
the value of something else. They generally take the form of contracts under which the parties
agree to payments between them based upon the value of an underlying asset or other data at a

particular point in time [2, 4, 19].

The main types of derivatives are futures, forwards, options and swaps. The main use of
derivatives is to minimize risk for one party while offering the potential for a high return (at
increased risk) to another. In a short term, the main use of derivatives is in risk management. The
diverse range of potential underlying assets and payoff alternatives lead to a huge range of
derivatives contracts available to be traded in the market. One of the most important derivatives is

option. In the following, we define option, and outline different types options.

Definition 1.1.2 Options: Options are financial instruments that convey the right, but not the
obligation to engage in a future transaction on some underlying security. Financial instruments
are cash, evidence of an ownership interest in an entity, or a contractual right to receive, or

deliver, cash or another financial instrument [2, 4, 19].

For example, buying a call option provides the right to buy a specified amount of a security at a
set strike price at some time on or before expiration, while buying a put option provides the right
to sell. There are 4 kinds of options:

(i) European option: An option that may only be exercised on expiration.

(i1) American option: An option that may be exercised on any trading day on or before expiration.
(iii) Bermuda option: An option that may be exercised only on specified dates on or before
expiration.

(iv) Barrier option: Any option with the general characteristic that the underlying security’s price

must reach some trigger level before the exercise can occur.

Definition 1.1.3 Strike price (K): For an option, the strike price (K) or exercise price, is the key
variable in a derivatives contract between two parties. Where the contract requires delivery of the
underlying instrument, the trade will be at the strike price, regardless of the spot price (market

price S) of the underlying instrument at that time. Strike price is the fixed price at which the



owner of an option can purchase, in the case of a call, or the fixed price at which the owner of an

option can sell, in the case of a put, the underlying security or commodity [2, 4, 19].

The concepts of payoff for options are defined as below.

Definition 1.1.4 Payoff: The payoff for a call option at time T is Max {(St - K); 0}, or formally
(St - K)".The payoff for a put option at time T is Max {(K — St); 0}, or formally (K — St)". T is

the maturity time at which the derivative contract expires [2, 4, 19].

In the following, we define the concept of hedge in finance.
Definition 1.1.5 Hedge: A hedge is an investment that is taken out specifically to reduce or

cancel out the risk in another investment [2, 4, 19].

Hedging is a strategy designed to minimize exposure to an unwanted business risk, while still
allowing the business to profit from an investment activity. Typically, a hedger might invest in a
security that he/she believes to be under-priced relative to its "fair value", and combines this with
a short sale of a related security or securities. Thus the hedger is indifferent to the movements of
the market as a whole, and is interested in only the performance of the ‘under-priced' security

relative to the hedge.

1.1.2 Option Pricing

Modern option pricing techniques, usually using stochastic calculus, are often considered among
the most mathematically complex of all applied areas of finance. In 1959, M. F. M. Osborne
wrote a paper "Brownian Motion in the Stock Market" [36]. In 1964, another paper, by A. James
Boness, focused on options. In his work, entitled "Elements of a Theory of Stock Option Value",
Boness developed a pricing model that made a significant theoretical jump from that of his
predecessors [8]. More significantly, his work served as a precursor to that of Fischer Black and
Myron Scholes who in 1973 introduced their landmark option pricing model — Black Scholes
Model [33]



There are two types of option pricing approaches namely discrete and continuous processes. In

the following, we briefly describe the discrete time option pricing process.

Discrete Time Option Pricing Process (Binomial Tree): We suppose that the market is
observable at times 0 =t, <t; <t, <... <ty=T. On each time period [t;, ti+{], the stock price

follows the binary model. After i time periods, the stock has 2’ possible values. We also suppose
that the length of any time period has the same length St. We define {S, },., to be the

krot S

discounted stock process, such that, §k =e 7S, , where r is the interest rate. Figure 1.1.1 is the

binomial tree for a stochastic stock price process.

Yo
O bo B a0 8 go 8 G0 b

time

m
4

Figure 1.1.1 Binomial Tree for a Stochastic Stock Price Process

In the following, before we state very important result, we first give some definitions:
In probability theory, when we talk about a random variable, we specify a probability triple

(Q,F,P), where Q is the sample apace, F is a collection of subsets of (2 ,also called o -field,

and P is the probability of each event Ae F .



To specify a stochastic process, we required not only a single o -field, F, but also an increasing

sequence of sub o - algebras, F, c F,, = ... F . The collection {F},., is called a filtration

and the quadruple (Q, F,{F} _,,P) is called a filtered probability space.

n=0°

In probability theory, suppose that (€, F,{F} _ ,P)is a filtered probability space. The sequence

n20>
of random variables {X, }, ., is a martingale with respect to P and {F_} ., if

E[l X,|]<o, and E[X ., |F, 1= X,, forall n.

n+1

Theorem 1.1.1 (The binomial representation theorem) [19]: Suppose that the measure Q is such
that the discounted binomial price process {§ nVosnen 18 @ Q-martingale. If {V~n }o<ney 18 any other

(Q,{Fu}ns0,)-martingale, then there exists an {F,}, ., — predictable process {@, } ., (portfolio

n=0

process) such that
n-I
V =V, +> 4.,(5.,-5).
i=0

Remark 1.1.1 [19]: From Theorem 1.1.1, we know that if {\7I }iso 18 the discounted price of a

claim (European call or put option), then such a predictable process {@. }.., (portfolio process)

arises as the stock holding when we construct out replicating portfolio.
There are three steps to pricing and hedging a claim Cr at time T:
(1) Find a probability measure Q under which the discounted stick price (with its natural filtration)

is a martingale.

(ii) Form the discounted value process, V, =e "V, = E?[e "C, | F,].

(iil) Find a predictable process {¢, },.y such that A\7i =g, AS, -

In the following, we present a very fundamental result in the theory of continuous time option

pricing process.

Theorem 1.1.2 [19]: The fundamental theorem of continuous option pricing is:

(1) There is a probability measure Q equivalent to P under which the discounted stock price

{SNt }0 1S @ martingale.



(i1) Under the probability measure Q, suppose that a claim at time T is given by the non-negative
random variableC; € F; . If E°[C}]< 0.

Then, the claim is replicable and the value at time t of any replicating portfolio is given by,
V(S,t) = E°[e™""""C, | K], in particular, the fair price at time 0 for the option is

V, =E°[e"C, 1= E?[C,].

S, is a stock price process, S, is the discounted stock price process.

Theorem 1.1.3 Black-Scholes Model [7,19]: Under the following assumptions:
(1) There is no credit risk, we can buy and sell cash bond without credit risk. And there is only

market risk, which means the stock price can go up and down arbitrarily.

(i1) The market is maximally efficient, that is, it is infinitely liquid and does not exhibit any
friction. This means all relevant information is fully reflected and priced in the stock price, and

there are no any other additional costs.
(ii1) Continuous trading is possible.

(iv) The time evolution of the asset price is stochastic process and called geometric Brownian

motion, the mathematical expression is dS, = xS, dt +oS,dW, . S, is a stock process, i and o are

constant.
(v) There is no dividend.

(vi) The underlying asset is arbitrarily divisible. And the market is arbitrage free, which means

the market prices do not allow for profitable arbitrage.

The value at time t of a European option whose payoff at maturity C; = f(S;), is

y2

r%a2 )(T—t)+ayﬂ) e_7

2z

V= F(t,S,), where F(t,0=e" ™[ f e dy



For European call option, suppose that f(S;)=(S; —K), . Then, let =T —t,

F(t, x) = xd(d,) - Ke ™d(d,),

where,
®(.) is the standard normal cumulative distribution function,
X o’
log—+(r+—)>~¢
d = K 2
o6
and d,=d, - o6 .

For European put option, suppose that f(S;)=(K —=S;),,thenlet 6 =T —t,

F(t,x) = Ke "’ (-d,) — xd(-d,),

where,
®(.) is the standard normal cumulative distribution function,
X o’
log—+(r+—)>~&
d = K 2
o6
and d,=d, - o6 .

The Black-Scholes formula is based on assumption of log-normal stock diffusion with constant
volatility, that is, the stock price process is a stochastic process described by the following
stochastic differential equation of the form:

dS, = xS, dt+oS,dW, .
This has become the universal benchmark for option pricing. But, we are all aware of that it is
flawed. The drift and volatility are not a constant. In 1973, Merton first allows the drift and
volatility to be a deterministic function of time. Later on, other models allow not only time, but

also state dependence of the volatility. This method is called as a local volatility approach.

There are some very famous local volatility models. For example, Merton’s model (1973) takes

the form dr, = adt + odW, [33]. Vasicek (1977) deriving an equilibrum model of discount bond



price process by using the Ornstein-Uhlenbeck process [41]. It takes the form
dr, = (a + gr,)dt + ocdW, . Dothan (1978) used model dr, = or,dW, in valuing discount bonds

[18]. And Brennan and Schwartz (1980) used model dr, = (a + gr,)dt + or,dW, in deriving a

numerical model for convertible bond prices [11]. These are called linear models. Other nonlinear
models such as Cox-Ingersoll-Ross model [15] and Black-Karasinski model [6], take nonlinear
functions of the asset price at time t as the drift and/or volatility. In the next section, we will

introduce how to develop the stochastic process.
1.2 Development of Stochastic Modeling

In this section, by following a real stochastic modeling approach [26], we outline the derivation
of stochastic model of stock price. This is based on the basic descriptive statistical approach. It
utilizes the Random Walk process to initiate a scope and a development of stochastic models of
dynamic processes. Here, a state is a conceptually common term and description of processes in
the sciences and engineering is used, for example, a “state” can be “distance” traveled by an
object in the physical process, “concentration” of a chemical substance in a chemical process,
“number of species” in a biological process, and in social science or this thesis, state is the

“price” of an asset in a sociological process.
1.2.1 Conditions of Stochastic Process — Random Walk

Let S; be a price of a stock at time t. The price of the asset is observed over an interval of [t, t+At],
where At is a small increment in t. Without loss in generality, we assume that At is positive. The

price process is under the influence of random perturbations. We experimentally observe price
process S, =S, S;,S, ,...,5 =35, ofastockatt, =t, t, =t+7, t,=t+27,...,
t =t+Kkrz, ..., t =t+At, over the time interval [t, t+At], where n belongs to {1, 2, 3, ...} and

1=At/n. These observations are made under the following conditions:

C;. The stock price is under the influence of independent and identical random impulses that are

taken place at t,t,,....{,,...,t

n-



C,. The influence of a random impact on the stock price is observed on every time subinterval of

length .

C;. For each kel(1,n)={1,2,....k,...n}, it is assumed that the stock price is either increased by

AStk or decreased by AStk . We refer AStk as a microscopic/local experimental or knowledge-

base observed increment to the price of the stock per impact on the subinterval of length .

C,. It is assumed that AStk is constant for kel(1,n) and is denoted by AStk =7,=7 with

|Z|=AS >0. Thus, for each kel(1,n), there is a constant random increment Z of magnitude AS to

the price of the stock per impact on the subinterval of length .

In short, from the first three conditions, under n independent and identical random impacts, the

initial price and n knowledge-base observed random increments Zj of constant magnitude AS in

the state at {,t,,...,1,,...,{ over the given interval [t, t+At] of length At are:

StO =S,

St1 - Stﬂ = Z1
S-S, =2,
Stk b, — £k
S, -S, =2,

Zy’s are defined by

AS, for positive increment
K —AS, for negative increment

The 4™ condition implies that they are mutually independent random variables. From the above

discussion, the prices Stk and S, are random impacts at the k-th instance and the final time on the

price process respectively. Moreover, they are expressed by:



k n
Steke = Stk =5+ Zzi and S, =S, + Zzi

i=1 i=1

n
where Z Z, is referred as an aggregate increment to the given price S =S, of the stock at the
i=1

given time t over the interval [t, t+At] of length At.

In this case, the aggregate change of the price of the stock S, ,, — S, under n observations of the

system over the given interval [t, t+At] of length At is described by

2 At
ot — S =NE—=—5 . (12.1)
n T

n
=1

S

where S

1 n
= z Z, . S, is the sample average of the aggregate price incremental data.

i=1
1.2.2 Mean and Variance of Aggregate Change of Price

For each random impact and any real number p, 0<p<l, it is assumed that
P{Z, =AS >0} =p and P{Z, =-AS<0}=1-p=q

Itis clear that S, —S, is a discrete-time-real-valued stochastic process which is the sum of k

independent Bernouli random variables Z; , i=1, 2, ..., k and k=1, 2, ...,n. We note that for each k,

Stk - StO is binomial random variable random variable with parameters (k, p). Moreover, the
random variable S, —S, takes values from the set {-kAS, (1-k)AS, ..., 2m-k)AS, ..., kKAS}.
The stochastic price process Stk - Sto is called a Random Walk process. In particular, for k=n, let

m be a number of positive increments AS to the price of the stock out of total n changes. (n-m) is
the number of negative increment -AS to the price of the stock out of total n changes. Furthermore,

mel(0, n), we have that

10



1 ; Z Zi ) Z |Zi |
Sn =—[m iel, (0,n) _(n_m)lel,(o,n) 1
n m n—m

:%[mAS —(nN—m)AS]
1 I
_H[(Zm_n)ﬁi;' Z ]

:%[(2m—n)5n+], (1.2.2)

where |, (0,n)and | _(0,n) are denoted by I, (0,n)={ie1(0,n):|Z, |=Z,}and

I (0,n)={iel(0,n):|Z |=—Z} respectively,and S :lZ| Z|.
n

i=I
Thus from (1.2.1) and (1.2.2), we get

1 S,
Spp =S =—(2m—n)>" At | (1.2.3)
n T
Furthermore, in this case, the aggregate change of price of the stock S(t+ At) —S(t) over the

time interval of length At under n identical random impacts on the stock over the given interval [t,

t+At] of time is also described by:
n

St+At - St = z Zi

i=1

= total amount of positive increment — total amount of negative increment

+

=mMAS —(N—m)AS =(2m—n)S, :l(Zm—n)S—”At.
n T

11



This is identical with the expression in (1.2.3). So, the mean of the aggregate change of the price

of the stock S,,,, —S, over the interval [t, t+At] is given by:

n!

S+
"(1- p)" " 2 At
(n_m)!p (1-p) .

o]
E[S,,—S]= Zﬁ(zm—n)
m=0

S,
= ( p - q) At 5
T
and the variance is:

var[S,,,, - S,] = E[S(t+At)—S(t)—(p—q)S—“+At]2
T

t+At

51 S’ g
= Z[H(zm —n) >0 At P(m,np) —[(p - q) =™ At
" +3\2 ! ‘ (124)
=4 pq&m.
T

2 . . :
S, /7 (or AS yand (S;) /7T (or (AS)* ) are microscopic or local stock average increment
T T

and sample microscopic or local average square increment per unit time over the uniform length

of sample subinterval [, t], k=1,2, ..., n of interval [t, t+At].
1.2.3 Wiener Process

In reality we note that there are restrictions on AS and t. Similarly, the parameter p cannot be
taken arbitrary. Moreover, the price of the stock cannot go to “infinity” on an interval whose
length is small. In view of these considerations, for sufficiently large n, the following conditions

seem to be natural:

S, —S.,= NAS, At=nr,

t+At

4pg=(p+a)°—(p-a)° =1-(p—0q)°,

12



(S+)2 S+

lim{ =2, lim lim[(p~q)~"]=C.
and Algl()lflgg4 pg=1.

Here C and D are certain constants. C is called drift, and D is called diffusion coefficient.
Moreover, C can be interpreted as the average/mean/expected rate of change of price of the stock
per unit time, and D can be interpreted as the mean square rate of price change of the stock per

unit time over an interval of length At.

From the above discussion, we obtain

lim lim E[S,,  —S,]=CAt (1.2.5)
and lim limVar[S,.,, - S,]=2DAt. (1.2.6)

-S,—n(p—-q)S,
J4npa(s; )’

conclude that the process Y(t,Nn, At) is approximated by standard normal random variable for

S
Now, we define y(t,n,At) = 4 . By Central Limit Theorem [37], we

each t.

S+
St+At _St _(p_q)fAt

A
Moreover, from N = —t, we have Y(t,n,At) = -
T +
\ /4 pq (S”T) At

S+
St+At - St - ( p— q)inAtAt
Hence, lim lim y(t,n, At) = lim lim[ L ]
AX—0 70 AS—0 70 (S + )2
4pg—""—At
T
_ St+At - St —CAt
J2DAt

13



For fixed At, the random variable lim lim y(t,n, At) has standard normal distribution. Now, by

AS—0 70

rearranging the above expression, we get

S,.x —S, = CAt+2D~/At] lim lim y(t,n, At)],

and denoting JAt [lim lim y(t,n,At)] = AW, =

W, , it can be rewritten as:
AS—0 70

t+At

S, —S, =CAt++/2DAW,, (1.2.7)

where W, is Wiener process. Thus the aggregate price change of the stock S, ,, —S, under

independent and identical random impacts over the given interval [t, t+At] is interpreted as the

sum of the average/mean/expected price change of the stock CAt, and the mean square price

change of the stock +2DAW, due the random environmental perturbations.
If At is very small, then its differential dt=At, and the It6-Doob dS is defined by:
dS, =Cdt+~+2DdW,, (1.2.8)

where C and D are the drift and the coefficients, respectively. Equation in (1.2.8) is called the Ito-

Doob type stochastic differential equation.

This Random Walk modeling process can be applied to formulate mathematical model in finance.
Let S; be either a rate of price/value of an asset per unit item/size and per unit time. The specific
rate of price/value or the rate of price/value is observed over an interval of [t, t+At], where At is a
small increment in t. Without loss in generality, we assume that At>0. The process is under the
influence of exogenous or endogenous random perturbations of
national/international/commerce/trade/monetary/social welfare polices. As the result of this, the S;
is affected by the random environmental perturbations. By following the development of the

above Random Walk Model, its mathematical description is as described in (1.2.8).

14



Furthermore for very small At, the Random Walk modeling approach leads to the formulation of

mathematical model in finance. Usually it takes the following form:

dS, = udt +odW,. (1.2.9)

We note that if S; is the specific rate of the price/value at time t, then p (u=C) is called a measure
of the average specific rate (per capital growth/decay rate) of the price/value of the asset at the
time t, and 6 (6°=2D) is called the volatility which measures the standard deviation of the specific
rate (per capital growth/decay rate) of the price/value at a time t over an interval of small length

At=dt.

Remark 1.2.1: Here, for the sake of simplicity, we only assume that AStn is constant. Actually, it

need not be constant. Moreover, it can be any smooth function of t or S;. The expected value of
the increment E[Si. 4 S¢] can be replaced by the conditional expected value E[Su 4~ S| S¢]. C and
D may be any smooth function of time t and the state S, satisfying certain conditions. We will

discuss this issue in the next section.

1.3 General Stochastic Differential Equations

In this section, we outline the fundamental result that assures to undertake the study of dynamic

modeling.

In financial engineering, it is common to model a continuous time price process described by the
Itd — Doob type stochastic differential equation. A general stochastic differential equation takes
the form:

dS, = u(S,,Hydt+ (S, AW, , S, =S, (13.1)

Here, t 21, W, is a Brownian motion, and S; > 0, which is the price process.
Under the following smoothness conditions on functions £ and o, one can establish the

existence and uniqueness of the solution of process of (1.3.1).

15



Theorem 1.3.1 (Existence and Uniqueness Theorem) [23]: Suppose that there exist some

constants K, L > 0 such that the functions ¢ and o in (1.3.1) satisfy the following conditions
(S, )+’ (S,1) <K(1+S%) (Growth Condition) (1.3.2)
and
| 1(S,,t) = u(S,,t) | +]0(S,,t)—0o(S,,t) < L|S, =S, | (Lipschitz Condition) (1.3.3)

Then, it can be shown that the stochastic differential equation in (1.3.1) has a unique solution.

This is very important and well known in financial engineering, because the unique solution of

the stochastic equation in (1.3.1) is a stochastic process adapted to Brownian filtration {F,},.,

[23].

These two conditions, growth condition (1.3.2) and Lipschitz condition (1.3.3) (named after
Rudolf Lipschitz), are sufficient conditions, not necessary conditions for the existence and a
uniqueness. In this dissertation, all models represented by stochastic differential equations must

satisfy these two conditions.

In equation (1.3.1), it is known that W; is a Brownian motion, which is continuous everywhere,
but it is not differentiable anywhere. To find the information about the solution of the equation
(1.3.1), we need a way to take integral of a stochastic process. In 1951, 1t0 Kiyoshithe published

his very famous 1t0 ’s formula.

Theorem 1.3.2 (1t6 — Doob Formula) [21]: Let f be a function such that f € C[[a,b)Vv R,R],

f > f
its partial derivatives 2_'[ , 8— and 0

5 N exist and are continuous. Then we have
X X

2
f(t,W,)— f(O,W,) = j (s,W,)dW, j = (s,W,)ds + j g(s,ws)ds . (1.3.4)
0s
Moreover, 1t0— Do0Db ’s formula in differential form is represented by
2
df(tW)— f(tW)dW + f(tW)dt l;—f('[W)d'[ (1.3.5)

This is fundamental result in 1t0 — D00OD stochastic calculus [10]. We use this formula frequently.
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1.4 Least Square Method

The credit for discovery of the method of Least squares is given to Carl Fridrich Gauss who used
the procedure in the early part of the nineteenth century [33]. It is the most widely used technique
in data analysis. The least square technique can be interpreted as a method of fitting data. The
best fit in the least-squares sense is an instance of the model for which the sum of squared
residuals has its least value. A residual is the difference between an observed value and the value
predicted by the model. Unlike maximum likelihood [37], the least square estimation does not
require the distribution assumption. When the parameters appear linearly in an expression, then
the estimation problem can be solved in closed form. We recall the formula of the linear model

that y is related linearly to the regressor variable x’s as:

Vi = By + BX; + BoXy oot B X +E (i=12,..,mn>k+1) (1.4.1)

The ideal conditions of the least square model are

a) & is model error, with mean zero,

b) theg; are uncorrelated, and have common variance (homogeneous variance).

1.5 Maximum Likelihood Estimation Method of ARIMA Model

ARIMA(p,d,q) (autoregressive integrated moving average) process provides a very general class
of models for modeling and forecasting dynamic phenomena in science and engineering which
can be stationarized by applying transformations, namely, difference, logarithm, or other
transformations. Here, p stands for the number of autoregressive terms, called autoregressive
order; d is the order (or degree) of difference of the time series; and q is the number of lagged
forecast errors in the prediction equation, called moving average order. ARIMA(p,d,q) models are
ARMA(p,q) models with dth-order difference transformation. First, we introduce the difference

filter as follows:
(1-B)* (1.5.1)

where B is called backward shift operator, and Bz, =z, ,, B"z, =z, ,and z,,t=1,....,nisa

t-m >
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time series data set. In ARIMA(p,d,q) models, after taking dth-order difference transformation,
we suppose that the time series is stationary. For stationary time series, ARMA(p,q) models have
following form:

Z, =9z, .. +P,2 ,te +0E  +..+0¢ (1.5.2)

>
that is,

(1-¢B-¢,B*..+¢,B")z, =(1-6B-0,B* —...—6,B")s,,
or,

#(B)z, =0(B)¢,, (1.5.3)
where ¢(B) and O(B) are polynomials of degree p and q in B [10].
Therefore, ARIMA(p,d,q) model can be represented as

#(B)(1-B)*z, =6(B)s,, (1.5.4)

where d, B, #(B) and 0(B) are as defined above.

Even though, the values of p and q can be determined by the number of significant spikes in
PACEF (partial auto correlation function) and ACF (auto correlation function) plots respectively.
There are several models that are adequately represented by a give time series. Hence, criterions
such as AIC (Akaike’s information criterion) and BIC (Bayesian information criterion) are used
to selecte the best model. In our study, we choose AIC, because BIC penalizes more with larger
data sets. AIC was defined by Akaike in 1973 and takes the following form [3]:

AIC =-21In(L) + 2k, (1.5.5)
where, L is maximized value of the likelihood function for the estimated model, k is the number
of parameters in the model. If the model errors are assumed to be normally and independently
distributed, RSS is the residual sum of square and is defined as RSS = Zn:éiz , where n is the

i=l
number of observations. Maximizing the likelihood, the AIC can be written as

27 x RSS
AIC =2k + n[ln(ﬂ-—) +1]. After simplification and remove the unaffected constant term,
n

AIC is simplifies to:

AIC = 2K + n[ln(RTSS)] . (1.5.6)
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The unconditional log-likelihood function of a ARMA(p,q) model is defined by Box, Jenkins, and
Reinsel in 1994 as follows [10]:

2
&

In(L) =—%1n(2mj)—w, (1.5.7)

where, S(¢, 1,6) is the unconditional sum of residual square, exampled by

n n

S(¢,11,0) = D [E(e, | 4,1.0,D) = D [E(e, | 4,.6,D)] (1.5.8)

t=—c0 M
where, E(g, | @, 1,0, 7) is the conditional expected €,, given @, 1£,6,Z . M is a large integer such
that the backforecast increment | E(g, | @, 11,0,2) — E(s,, | @, 1,0,2) | is less than any arbitrary

predetermined small value for t < —(M +1).

Then problem of parameters estimation in ARIMA model reduces to the problem of finding out
how to estimate of ¢, @ and & so that S(g, 1, @) has minimum value. For example, the

backforecasting for ARMA(1,1):

. . Z, — QL —& .
Given z, = ¢z, | + &, +0s,_,, werewrite as &,_, = % If we letg, =0, by giving

¢ and @, we can recursively solve &, . Then parameters ¢ and € can be estimated as those

value which minimize S(¢, 1,6).

After obtaining (13, A, and 0 , which maximize the log-likelihood function (1.5.7), the estimator
of o"f is computed by

0'\_2 — S(¢51U70) .

2 (1.5.9)
n

Applying (1.5.9) and (1.5.7) in (1.5.5) and reducing the constant in AIC, (1.5.5) is expressed as
AIC =nIn(é2) + 2k (1.5.10)

Therefore, we can choose the ARIMA model with smallest AIC. The estimated parameters

Py »ees @y, and 6,,..., 0, by least square and maximum likelihood are not identical, but the

difference is always trivial.
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Statistical Model Identification Procedure 1.5.1 [38]: Now, we summarize the development of
the ARIMA(p,d,q) model as follows:

i.

Vi.

Vil.

Transform the original observations S,,t =1,2,...,n into V, = f(S,),t =12,...,n, if

necessary.

Seasonal differences chosen if needed using a variation on the Canova-Hansen test [14].

Check for stationarity of V,,t = 1,2,...,n by determining the order of differencing d,

according to KPSS test [22].
Set p+q<5, p<3and g<3. Listall possible set of (P,Q).

For each possible set of (P, Q) , applying maximum likelihood method, to estimate the
parameters @,,...,4,,and 6,,...,0, of each model.

Computer AIC for each model.
Choose the model which has the smallest AIC.
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Chapter 2
Linear Stochastic Models

2.0 Introduction

Certain stochastic processes are functions of Brownian motion process and have many
applications in financial engineering and sciences. Some special processes are solutions of
It6 — Doob type stochastic differential equations. Moreover, such processes also describe the

stochastic behavior of an asset price in finance [23].

In this chapter, we introduce the well-known linear stochastic models, which are also called GBM
(Geometric Brownian Motion) models. By following the historical model building process, we
attempt to develop a stochastic model for stock market price system. As the part of the model
building process, we employ two stock prices selected from Fortune 500 companies and one
stock Index S&P500. The first step in the classical model building approach is to draw a sketch of
the data set. The second step is to use a proper knowledge of the dynamic process and the given

data set to estimate the parameters in functions.

In section 2.1, we briefly review a basic conceptual model — GBM model. We utilize statistical
procedure to sketch a stock price data set and to estimate the parameters in the historical GBM
model in Section 2.2. The Q-Q plot of residual error of model in Section 2.2 motivates to seek a
modified version of GBM. By using the same modeling procedure, we discuss several different
results with different data partitioning processes, in Section 2.3. Again, after studying the Q-Q
plots of residual errors of models in Section 2.3, we introduce the different data partitioning
schemes combined with jumps in Section 2.4. We give other examples in Section 2.5 and Section
2.6 using the same procedure. A few of conclusions are drawn in Section 2.7. The data sets we

applied here are the two stocks selected from Fortune 500 companies and the S&P 500 index. The

daily adjusted closing prices can be free downloaded from the website http://finance.yahoo.com.
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2.1 GBM Models

In this dissertation, as we noted before, we will be following the classical model building process.
For this purpose we use a data about the dynamic process of interest and some prior information
about the dynamic process. In our case, we do have a data set about the stock prices selected from
Fortune 500 companies and a prior well-known theoretical model — GBM model. Our initial
attempt is to use the stock price data, the GBM model and the statistical techniques. To use these
three basic components of modeling, first we need to perform the reduction process of converting
the GBM model into linear regression equation. This reduction technique is systematically

outlined in this section.

We initiate the usage of a classical modeling approach to develop suitable modified stochastic
models for the price movement of individual stocks. For this purpose, we first utilize the recent
trend in the literature that starts with a conceptual model, and attempt to fit a dataset into it. We
begin with utilizing the existing Geometric Brownian Motion (GBM) model and try to fit a
dataset into it, and then use the basic statistics to validate the model in the statistical framework.
The commonly used benchmark for comparison is the well-known Black-Scholes model which is

based on Geometric Brownian motion [32].

St is called GBM (Geometric Brownian Motion) process, that is, the solution of the following

linear 1t6 — Doob type stochastic differential equation
dS, = xS, dt+ oS, dW,, (2.1.1)

where 1 and ¢ are some constants, p is called drift, o is called volatility, and W; is a normalized
Brownian motion process. Let K be any number greater than ( ,L12 +0o’ ), and L be any number
greater than | #| +| o |. From this we conclude that equation (2.1.1) satisfies conditions (1.3.2)

and (1.3.3). Applying I1t6 — Doob ’s formula applied to f(S,)=1nS,, we have

(,u—%o‘z)t+0'W‘

S, =S,e : (2.1.2)
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where, W, is a Brownian motion process as usual. S, is also called exponential Brownian motion

process, since S; takes the exponential form of W;. As we already introduced in Chapter 1, one of
the most important assumptions in Black-Scholes model [7] is that the stock price process is

GBM process.

We want to use the historic stock data set to examine the GBM model (2.1.1), that is, we want to
estimate the parameters u and 6. Here, we try to use the least square method to estimate

parameters in the GBM model.

In equation (2.1.1), the error term does not have common variance. It is related to S;. This means

that as the stock price increases, the variance also increases.

With a transformation V, =In S, , using 1t6 — Doob ’s formula, we obtain

o 1, &
th = a—St(h’l St)dSt +E(Kt2 (h’l St ))(dst)2

| 11
= dS, + = (——)(dS, )?
5, % 2( St2)( 0)

= pdt +odw, —%é o’ (dw,)’ (2.1.3)

t

=(u —%az)dt +odW,.
Thus,

d(lnSt)=(,u—%az)dt+0th (2.1.4)

From the Euler type discretization [24] of the stochastic differential equation (2.1.4), we have
1
InS, —InS,_, =(u —Eaz)At +oW,-W,_,). (2.1.5)
Let y,=InS,-InS, |, ¢ =W, =W,_,, and we know At =1, equation (2.1.5) can be rewritten as
L,
yt=,u—50' + 0%, . (2.1.6)

u and o are parameters that we want to estimate.
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According to the properties of standard Brownian motion process, for each n>1, and any

sequence of time 0 <t <t <..<t; <...<t, the random variables W, —W, ~are independent,

& =Wt —WH has the standard normal distribution with mean zero and variance 1. Thus the
" L . 1 .
conditions of least square estimations are satisfied. z/— EO‘ can be estimated as the average

value of Y,, whichis InS, —InS, |, o can be estimated as the standard deviation of

InS, —InS, , [35]. We will use this least square estimation in our work for both linear and

nonlinear models.

Remark 2.1.1: An alternative way to estimate the parameters is as described below. Since

& =W, =W, is standard normal distribution, S, is log-normally distributed with mean /J*%O‘Z

and variance 6°. Then we can estimate the drift p and volatility ¢ parameters by using the

historical price data. Taking the logarithm of S, , we can estimate ,Ll*ifo'z as the average values of

InS, —InS, , , and can estimate the volatility ¢ by taking the standard deviation of

InS, —InS, | [35]. This is exactly the same as what we have estimated by using least square

method.

2.2 GBM Model on Overall Data

In this section, by using fortune 500 companies price dataset, we estimate the parameters W%az

and o in (2.1.6). This is achieved in the framework of the overall price data of stock X.
Suppose we let S, be the daily adjusted closing values of stock X that we collect form the fortune

500 companies that we mentioned early. A plot of the actual data set is drawn in Figure 2.2.1.
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Figure 2.2.1 Daily Adjusted Closing Price Process for Stock X

We pick one stock X over long period (3 /2 years) of time to build its GBW model. The Figure
2.2.1 shows its daily adjusted closing price process from 8/19/2004 to 12/31/2007. Using the least
square method described in Section 1.4, the estimates of drift and volatility are as follows

£=0.002501028, and & =0.02107507 .

Hence the GBM process for the stock X price is the solution of the following linear 1t6 — Doob

stochastic differential equation:

dS, = 0.002501028S,dt +0.02107507S,dW, . (2.2.1)

The stock price process is

2
(0.002501028—M)t+0,02107507W‘

S, =S,e 2 (2.2.2)
In equation (2.2.2), S, is the initial stock price of the price of the stock process. W; is Brownian

motion, that is, it is a random process. Under direct simulation of the stock price process as we
generate the Brownian motion, we get the different values. We first use the Monte Carlo method

[34] to predict the stock price process and then calculate the average of the process. This is a very
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general approach that is used in many areas, such as physics, chemistry, finance etc. Here, we

simulate the stock price process 2000 times. Using Monte Carlo method a plot of the stock price

process of (2.2.1) is given in Figure 2.2.2. The red curve in Figure 2.2.2 represents the result

using Monte Carlo simulation method. The process in blue curve is one resulted from simulation

which varies from time to time.
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Figure 2.2.2 Prediction and One Possible Path of Stock X’s Price Process
Using Model (2.2.1)

. A 1. .
After we estimate the parameters, S, is estimated by InS, =InS, | + 21— 56 ? . The basic

statistics reflecting the accuracy of model in Equation (2.2.1) are mean of the residuals T,

. 2 . .. . .
variance S; of the residuals, and standard deviation S, of the residuals, where residual errors are

defined as T, :St—§t . Table 2.2.1 shows these basic statistics.

Table 2.2.1 Basic Statistics for Model in Equation (2.2.1)

r 5?2 S No. of Parameters

r r

28.29653 8752.84 93.55661 2
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To test the homogeneous errors in equation (2.1.6), actually, we assume that the error term is
normally distributed. We use Q-Q plot to test it. In statistics, a Q-Q plot ("Q" stands for quantile)
is a graphical method for diagnosing differences between the probability distribution of a
population from which a random sample has been drawn and a comparison distribution. An
example of this kind of difference that can be tested is non-normality of the population
distribution. The normal distribution is represented by a straight line. The Q-Q plot is in Figure
223

Normal Q-Q plot

Sample Quantiles

Theoretical Quantiles

Figure 2.2.3 Q-Q Plot for Model in Equation (2.2.1)

Remark 2.2.1: From the table 2.2.1, the average residual is 28.29653. This means that zero mean
condition obviously is not satisfied. Also, the variance is too large. From the Figure 2.2.2, we can
see that the prediction line (in red) cannot describe the stock process. Furthermore, we can see a

reverse “S” shape in the Q-Q plot. All these observations suggest that we need a more work to get

the better model.

2.3 GBM Models under Data Partitioning Schemes without Jumps

The usage of the overall data in estimating the parameters in (2.1.6) suggests to modify the usage

of data. The estimated parameters in section 2.2 are not realistic. This has been
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evidenced by the Q-Q plot test for the homogeneous of error in (2.1.6) over the entire period
of the data. As a result of this, it is natural to partition the data, and repeat the procedure outlined

in Section 2.2.

In this section, we will use the same stock price process under different data partitioning to
develop the GBM models. The data is reorganized half-yearly, quarterly, and monthly to build

GBM models on different segments of periods of the overall period of dataset.

If we revise the dataset more closely, we will find some pattern. Figures 2.3.1-2.3.4 show that the
daily difference of stock X in 4 quarters from August 2004 to end of year 2007. The daily
differences in quarter 2 (Q2) and quarter 3 (Q3) are in the range [-20, 20]. The daily differences
in quarter 1 (Q1) and quarter 4 (Q4) are much bigger than those in quarter 2 (Q2) and quarter 3

(Q3). Also in a particular quarter, most of the daily differences follow the similar pattern.

Dialy Difference (Q1)

—— 2005
—— 2006
—— 2007

|
—
—
S
=
—
—

o
=
§<

=
=
4
=

S

Figure 2.3.1 Daily Difference of Stock X in Q1
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Figure 2.3.2 Daily Difference of Stock X in Q2

Dialy Difference (Q 3)

Figure 2.3.3 Daily Difference of Stock X in Q3
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Figure 2.3.4 Daily Difference of Stock X in Q4
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Table 2.3.1 also shows the standard deviations in Q1 and Q4 are larger than the standard

deviations in Q2 and Q3. This suggests us that we might reorganize the sample dataset into two

sub data sets — Q2 and Q3 as subset 1 and Q1 and Q4 as subset 2. Furthermore, we also divide the

sample dataset into 4 sub datasets -- 4 quarters. For each subset, we use the same method, which

is described in Section 2.2 to develop its GBM model, separately.

Table 2.3.1 Mean and Standard Deviation of Daily Differences

of 4 Quarters of Stock X
2007 2006 2005 2004
mean s.d. mean s.d. mean s.d. mean s.d.
Q1 -0.038 7.468 -0.401 12.496 | -0.201 4.489 NA NA
Q2 1.024 5.263 0.466 7.511 1.776 4.963 NA NA
Q3 0.595 6.573 -0.152 5.569 0.349 4.483 NA NA
Q4 1.941 13.637 0.930 7.947 1.562 7.659 0.987 5.843
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Data Partition Process 2.3.1: From the description of construction of Figures 2.3.1-2.3.4 and

Table 2.3.1, we partition the overall data set into two sub datasets.
[0,t),[t,,t,).[L,,1,), [t;,1,),[t,,t5)... represent the quarter year time intervals starting Q1, Q2,

Q3 and Q4 etc. The sub dataset 1 contains observations in the Q1 or the Q4. The sub dataset 2

contains observations in the Q2 or the Q3.

GBM Model without Jumps 2.3.1(Half Yearly GBM Model without Jumps): The GBM
processes without jumps using Data Partition Process 2.3.1 are the solutions of the following

linear 1t6 — Doob type stochastic differential equation:

{ dS2 = p2+S24dt + o S2#dW, , if tisin Ql or Q4, S, = S,,

dS2 = 4% S dt + % S dW, , if t is in Q2 or Q3. (2.3.1)

QM QM

/,l and ﬂQ23

are drifts, and o2* and o are volatility rates for two sub datasets, respectively.

By following definition [16, 26, 27], the price process is the solution of (2.3.1), it take the form

-

1
(HA = (@)t AW,

Q . —
StH_SOe SO_SO’ OSt<tl
1
(=™ )+, .
Sths — Sle 2 ' Sl = hm StQ14 . tl St < t3
t-t
1
S = (uA4 (V)N .
t StQ14 — Sze 2 i 82 = llm StQ23 . t3 St < t5

=t (2.3.2)

1
( ,UQ23 ——( o3 )2 2+ o23W .
2 © S, =1limS>, t <t<t

t—ts

S =S.e

.

Qs

S, is the initial value of the price process. There are 4 parameter ,uQ“‘ , o2 and >, o® need

to be estimated.
For stock X, the estimated results are as following
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{ dS2¢ =0.00228414152+dt +0.02447219S2dW, , if tis in Q1 or Q4.

dS& =0.002733729S 2 dt +0.01671308S2dW, , if tis in Q2 or Q3. (2.3.3)
And the estimated stock X’s price process is:
2
r &o (0‘002284141—%)t+0.02447219Wt
St 14 = Soe , if te[0,t);
2Q . Q0 (0.002733729—M)t+0.01671308Wt
< St S = ql_)l’l;l St 14)8 Jiftelt,t);
1
2
20 ) 0 (0.002284141—%)&0.02447219Wt
14 — 23
S = (%1_)113 S;¥)e Jif telt,t);
3
«
(2.3.4)

The prediction result of stock X’s price process of in (2.3.3) is provided in Figure 2.3.5. We see

that the blue curve and red curve are very close. Because the two drifts in Equation (2.3.3) are

very close. The most different part in Equation (2.3.3) is the volatilities.
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Figure 2.3.5 Comparison on Model (2.2.1) with Model (2.3.3) of Stock X
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Table 2.3.2 Basic Statistics for Model in Equation (2.3.2)

Model r Sr2 S, No. of No. of
Intervals Parameters
GBM with 28.29653 8752.84 93.55661 1 2
Overall Data
Q14 and Q23 29.67727 8836.837 94.00445 8 4
GBM without jumps
Q -0 Plotfor Q1 Q 4 Q -0 Plotfor Q 2 & Q 3
. & . s
Tg o — g o —]
& o
-; I I 1I 2 3I »; I »::. lI 2I 3I

Theoretical Q uantile s

Theoretical Q uantile s

Figure 2.3.6 Q-Q Plot for Model in Equation (2.3.3)

Remark 2.3.1: From Figure 2.3.6, we still can see there are reverse “S” shapes in the two Q-Q
plots for both Q1 and Q4, and Q2 and Q3. Table 2.3.2 provides the basic statistics. And from

Figure 2.3.5, we don’t see an improvement from GBM model on overall data. All these suggest

that we need more work to get the better model.

In the following, we try to reorganize the dataset into 4 sub datasets — quarter 1 (Q1), quarter 2

(Q2), quarter 3 (Q3), and quarter 4 (Q4).

Data Partition Process 2.3.2: The time intervals [0,t,),[t,,t,),[t,,t;), [t;,t,),[t,,t5)... as defined

in data partition process 2.3.1. The sub datasets 1, 2, 3, and 4 contain observations in Q1, Q2 , Q3,

and Q4, respectively.
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The GBM Model without Jumps 2.3.2 (Quarterly GBM Model without Jumps): The GBM
processes without jumps using Data Partition Process 2.3.2 are the solutions of the following

linear 1t6 — Doob type stochastic differential equation:

- dS2 = 4 SRdt+o2S2dW, , if tis in Ql.
dS2 = p@S2dt + o= SEdW, , if tis in Q2.

dS2 = u*S2dt + o S=dW, , if tis in Q3.

L dSY = u¥Sdt+o¥SZdW,, if tis in Q4. (2.3.5)

,uQ' , ,uQ2 , ,uQ‘ and ,uQ“ are drifts, and 0% ,0%,0% o are volatilities for four quarters

respectively. By following definition [16, 26, 27], the price process is the solution of Equation
(2.3.5), and takes the form

1 2
(1% = (Bt OW,

S» =S,e

1
(12 = (o)W,

S, =9, 0<t<t,

S& =S.e S, =limS™, t <t<t,

t—>t

1
(1 =) )t+a W, .
S2 =S.e 2 " S, =1imS%, t,<t<t,
St = t-t,
1
(ﬂQz — (@ )2 )t+aQ2W . (2.3.6)
S& =S 2 " S, =1limS?, t,<t<t,

t>t;

| :
W@ (@@ Pte®w, S, =1im S <
StQ3 = S4e 2 t 4 tot, ! t4 _t < t5

There are 8 parameters ,uQ' , ,uQ2 , ,uQ3 , ,uQ“ , o2 , o ,O'Q3 and o . These parameters need to

be estimated. For stock X, the estimated results are as following:
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dS2 =—0.0004185944S52 dt +0.02459217S2dW. , if tis in Q1.
dS& =0.00379200252dt +0.017129855%dW, , if tis in Q2.

dS2 =0.001815337S%dt +0.01632730S2dW, , if t is in Q3.

dS% = 0.004238625S2 dt +0.02424493S 2 dW, , if t is in Q4. (2.3.7)

Following the earlier arguments, Figure 2.3.7 exhibists the result of prediction of stock X’s price
process of (2.3.7). We note that the red curve (quarterly GBM model) is not similar to the blue
curve (Overall GBM model) as well as orange curve (Q14 and Q23 GBM model). This is due to

obvious reasons
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Figure 2.3.7 Comparison on Model (2.2.1), (2.3.3) with Model (2.3.7) of Stock X

Table 2.3.3 provides the statistics for 3 models, namely, overall GBM Model, Q14 and Q23 GBM
model and Quarterly GBM model.
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Table 2.3.3 Basic Statistics for Model in Equation (2.2.1) (2.3.3) and (2.3.7)

Model r Srz S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
Q14 and Q23 GBM 29.67727 8836.837 94.00445 8 4
without jumps
Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
Q-QPlot for Q1 Q-QPlot for Q2
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Figure 2.3.8 Q-Q Plot of Model (2.3.7)
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Remark 2.3.2: (a) From Figure 2.3.7, we notice the large deviation between the predicted result
and the observed data set. (b) From Table 2.3.3, we note that the quarterly partition data set
approach gives the least variance with the largest mean of the residuals. (¢) Figure 2.3.8 is the Q-
Q plots for model (2.3.7). We observe that there is still a reverse “S” shape in the Q-Q plot for Q2
and Q4. In Q1 and Q3, most points fall in the normal distributions and there are a few outliers. (d)
Again, after careful review of the Figures 2.3.1-2.3.4, we found some patterns. The daily
differences in quarter 1 (Q1) and quarter 4 (Q4) are much larger than those differences with
regards to in quarter 2 (Q2) and quarter 3 (Q3). The daily differences do not follow the same
pattern in the same quarter in different year, that is, the dynamic of stock price in the same quarter
with different year follows different pattern. As a result of this, we develop two kinds of data

partitioning schemes, we don’t put the observations in different years together.

Data Partition Process 2.3.3: Let [0,t,),[t,,t,),[t,,t,), [t;,1,),[t,,t5)... [t,,,t,,) be a monthly

sub intervals for m month data set. The sub dataset 1 contains observations in the 1 month, the
sub dataset 2 contains observations in the 2™ month, the sub dataset 3 contains observations in the

3" month, ..., the sub dataset m contains observations in the m-th month.

GBM Model without Jumps 2.3.3 (Monthly GBM Model without Jumps): Let

[0,t),[t,t).[L,. 1), [t;,t,).[t,.t5)... [t,,t,,) be the m monthly sub intervals. The GBM process
without jumps is the solution of the following linear 1td — Doob type stochastic differential
equation:

ds = xMSMidt + o™ S Mdw,, S, =S,,if t,, <t<t,,i=1..,m. (2.3.8)

i-1 —

Mi MI i = . aqe . . .
Here,¥ and 0 ', =1...m , are monthly drift and volatility coefficients, respectively. Again,
by following definition [16, 26, 27], the price process is the solution of (2.4.8), and takes the

following form:
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Sy =95,

M, _ _1: M,
 _ s¥> =Se S, =lims}".

M _L oMm)?)traMmy,
gMn _g g h
t m-1

m

t—>tn

S, = lim S¥, t

t, <t<t,

t <t<t,

(2.3.9)

<t<t,

m-1 —

M M = . .
There are 2x M parameters H " and © ,I =L...m , need to be estimated. m is the number of

month of stock price process. The methods of estimation parameters are the same. For stock X,

the estimated results are as following.

dSM =0.00321650 SMidt +0.03775822 SMdw,,

All estimated parameters ,[tM‘ and &V ,I =1

dSM: =0.01146937 SM:dt +0.02181682 SM:dw,,

dSM« =0.00000 259 S M dt +0.01499199 SM«dw,,

if  tel0,t));

if  te[t,t,);
cltit) (2.3.10)

if te[t,.t,).

s M , are given in Appendix Al. Figure 2.3.9 is

the prediction of stock X’s prices process. Table 2.3.4 provides the basic statistics for estimated

model corresponding to the original Equation (2.3.8).
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Figure 2.3.9 Comparison on Model (2.2.1), (2.3.3), (2.3.7) with Model (2.3.10) of Stock X
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Table 2.3.4 Basic Statistics for Model in Equation (2.2.1) (2.3.3) (2.3.7) and (2.3.10)

Model r Srz S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
Ql4 and Q23 GBM | 29.67727 8836.837 94.00445 8 4
without jumps
Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
Monthly GBM -80.10483 11754.25 108.4170 41 82
without jumps

Remark 2.3.3: (a) From Figure 2.3.9 we can see that the monthly GBM model in red really
catches the dynamic of the stock price process. (b) The stock price process shows it is always
over predicted. The basic statistics in Table 2.3.4 shows that the variance and standard deviation

of the residual are very large in this monthly GBM model.

Data Partition Processes 2.3.1-2.3.3 have a common character, that is, the length of time interval
in each model is exactly the same. For examples, the length of time interval in Data Partition
Process 2.3.1, 2.3.2, and 2.3.3 are two quarters, one quarter, and one month respectively. If there
is a big shock in the stock price in one of the intervals, this kind of equal length model cannot
incorporate the effects of the big shock. To avoid this problem, we provide a modified data

partition process, this allows us to have unequal length of intervals.

Data Partition Process 2.3.4: Let [0,t,),[t,,t,),[t,.1,), [t;,t,),.[t,.t)... [t,_,,t,) be the data set
time decomposition into n time intervals. We suppose all the big shocks come at times
t,t,,...L, . The sub dataset 1 contains observations in the 1* time interval, that is in [0,t,), the
sub dataset 2 contains observations in the 2™ interval, that is [t,,1,), the sub dataset 3 contains

observations in the 3 interval, that is [t,,t,), ..., the sub dataset n contains observations in the

nth interval, that is [t .t ).
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GBM Models without Jumps 2.3.4 (Unequal Interval GBM Model without Jumps): By utilizing
the above described sub interval decomposition, GBM processe without jumps is the solution of

the following linear 1t6 — Doob type stochastic differential equation:

dS = 4"Sldt+o"S/"dw,, S, =S, if t_, <t<t,i=1..,n. (2.3.11)

,u'i and " ,i=1,...,n, are the i-th drift and i-th volatility coefficients, respectively. By

following the definition [16, 26, 27], The solution to Equation (2.3.11) is, and takes the following

form:
1
(1 —(@"))t+a' W
S'=S,e 2 ‘ S, =S, t, <t<t,
, (42 (o' o ol
S*=Se ? S =limS", t <t<t
S t 1 1T et 1 2
= 1
t (2.3.12)
1
(©——(a" Y tro"nw,
hh — 2 . B I
S"=S, e S, ,=lmS™, t  <t<t,
t—>t,
There are 2x N parameters ,u'i and o ,i=1,...,n, and these parameters need to be estimated.

Now the key issue is how to define unequal length of time interval. The basic idea about defining
the time intervals is that we want to identify the dates, having the large daily relative difference.
So we need to define the threshold first, that is, we need to define the threshold of daily relative
difference of stock price. There are two issues that we want to consider. The first issue is that the
threshold cannot be either too large or too small. This is because of the fact that if the threshold is
too large, then we may have too few intervals, and it cannot incorporate the dynamic of stock
price process. Therefore, we cannot have a good model. If the threshold is too small, then we may
have too many intervals, that is, for some time intervals, there are few observations so that we
cannot reasonably develop a model. The second issue is, after defining the threshold, the lengths
of some time intervals are still too long. In this case, we break these time intervals into months,
since monthly GBM model shows very good dynamic character. Once we define unequal length

of time intervals, we apply the same procedure to estimate parameters.
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The method of estimation parameters is as described in chapter 1. For stock X, the estimated

results are as

dS," =0.006501 S"dt +0.024052 S"'dw,, if
dS,” =0.013391 S/>dt +0.028731 S >dw,, if

t € [Oatl )9

t € [tl 9t2 )7
(2.3.13)

dS™ =0.00000259S " dt +0.014992 S'*dW,, if telt,,ty).

The estimated parameters £ and &" ,i=1,...,n, are given in Appendix A2. Figure 2.3.10 is the

predicted stock X’s price process. Table 2.3.5 provides the basic statistics for estimated model

corresponding to (2.3.13).
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Figure 2.3.10 Comparison on Model (2.3.1), (2.3.3), (2.3.7), (2.3.10) with. Model (2.3.13) of
Stock X

Table 2.3.5 Basic Statistics for Model in Equation (2.2.1), (2.3.3), (2.3.7),
(2.3.10) and (2.3.13)

Model r S; S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
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Q14 and Q23 GBM 29.67727 8836.837 94.00445 8 4
without jumps
Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
Monthly GBM -80.10483 11754.25 108.4170 41 82
without jumps
Unequal Interval 2491557 3992.349 63.18504 39 78
GBM without jumps

Remark 2.3.4: Figure 2.3.10 shows that the Monthly GBM model (dashed red curve) and
Unequal interval GBM model (solid red curve) are approximations of the true stock price
movements in comparison to other linear models. However, Table 2.3.5 shows all these 5 models
have very large residuals. This is largely due to the accumulated errors in models without jumps.
When we make a prediction, we only use the stock price at time 0 as the initial value to predict a
long time behavior of the stock price. In section 2.4, we will add jumps to this model to reduce

the cumulative error.

2.4 GBM Models under Data Partitioning Schemes with Jumps

All models in Section 2.3 are without jumps, that is, we take the left limit of the right endpoint of
previous time interval as the initial value of the next time interval. This simplistic approach
carries the previous time interval error to next time interval. The cumulated error might be very
big. Here, we modify the models of Section 2.3 by adding jumps into the models. The data
partition processes and other parameters such as drifts and volatilities remain the same. We will

not repeat in this section.

GBM Model with Jumps 2.4.1 (Half Yearly GBM Model with Jumps): Let

[0,t),[t,,t).[L,,1,), [t;,1,),[t,,t5)... be the time intervals as defined in Data Partition Process

2.3.1. By following the argument, the GBM solution process with jumps of (2.3.1) has the

following form:
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Here, ¢, @,,4, ... are jump coefficients corresponding to jump times t,,t;,t,,..., and can be

s, . S, ., S

o T o T 2o,
lim StQM lim StQ23 lim SIQ”

t>t t—t; t—ts

estimated as ¢ =

GBM Model with Jumps 2.4.2 (Quarterly GBM Model with Jumps): Let

[0,t),[t,,t).[L,,1,), [t;,t,),[t,,t5)... be the time intervals as defined in Data Partition Process

2.3.2. Again, the GBM solution process with jumps of (2.3.2) has the following form:

5o _ g e(u%—;—(a% P tro W,
t - 0
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Here, ¢, ¢,,4, ... are jump coefficients corresponding to the jump time t,,t,,t,,t,,..., and can

s, ., S ., S . S

& t

. 2 > 72 = . 2 > 73 = . A s Va4 = . ~ 5 seee
limS2 lim S lim S lim S
tot; t-t, tot; t-ty

be estimated as ¢, =
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Figure 2.4.1 is the result of prediction of stock X’s price process of (2.3.3) with jumps and of

(2.3.7) with jumps. We see that the red and blue curves are not as smooth as green and orange

curves, this is because of the fact that there are jumps in green and orange curves of (2.3.3) and

(2.3.7), respectively with respect to jumps. It is obvious that models with jumps provide better

predicted results.
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Figure 2.4.1 Comparison of Models (2.3.3), (2.3.7) with and without Jumps of Stock X

Table 2.4.1 provides the basic statistics that reflects the accuracy of model (2.3.1), (2.4.1) and

(2.3.5) with jumps.

Table 2.4.1 Basic Statistics for Linear Models

(2.2.1), (2.3.3), (2.3.7), (2.3.10), (2.3.13) and with Jumps (2.3.3), (2.3.7) of Stock X

Model r S; S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
Q14 and Q23 GBM 29.67727 8836.837 94.00445 8 4
without jumps
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Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
Monthly GBM -80.10483 11754.25 108.4170 41 82
without jumps
Unequal-Interval 2491557 3992.349 63.18504 39 78
GBM without jumps
Q14 and Q23 GBM 1.759521 3181.759 56.40708 8 11
with jumps
Quarterly GBM with | -10.26338 1450.633 38.08717 14 21

jumps

Remark 2.4.1: From the Figure 2.4.1 and Table 2.4.1, we notice that models with jumps are

much better than models without jumps. Moreover, the quarterly data partition has better result

than half yearly data partition.

GBM Models with Jumps 2.4.3 (Monthly GBM Model with Jumps): Let
[0,t),[t,t,).[L,. 1), [t;,t,),.[t,.t5)... [t,;,t,) be the m monthly time intervals as defined in data

partition process (2.3.3). The GBM solution process with jumps of (2.3.10) takes the form:

1
(UM=M)W,

My _ _
S, =S¢ S, =S,, t, <t<t
1
(M2 — (M) )traM2w .
SV =¢Se 2 ‘ S, =limSM, t <t<t
t 1¥1 1 t 1 2
St = t—t,
1
(M (M)t Mmw,
Mm _ 2 t _ . Mm—
S;’"=¢..,S,. e S, ,=lim S ", t  <t<t,
t>tn,
Here, ¢, @,,¢, ... are jump coefficients and can be estimated as
. Stl - St2 . St3 A St4
(T v e ey T YR 2 S s vanr
lim S lim S lim S lim S™M
t->t t—t, t—t; t-t,

(2.4.3)

The methods of estimation parameters are the same as we mentioned in Section 2.3. For stock X,
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the estimated parameters 2" and 6™ ,i=1,...,m, are given in Appendix A1, the estimated

jump coefficients ¢31, ¢?2 , ¢23 ¢?m—l are provided in Appendix A3. Figure 2.4.2 is the prediction

of stock X’s prices process. Table 2.4.2 provides the basic statistics of model (2.3.13) with jumps.
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Figure 2.4.2 Comparison of Models (2.3.10) and (2.3.13) with and without Jumps of Stock X

Table 2.4.2 Basic Statistics for Linear Models (2.2.1), (2.3.3), (2.3.7), and with and without
Jumps Models (2.3.10), (2.3.13) of Stock X

Model r Srz S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
Q14 and Q23 GBM 29.67727 8836.837 94.00445 8 4
without jumps
Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
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Monthly GBM -80.10483 11754.25 108.4170 41 82
without jumps
Unequal Interval 24.91557 3992.349 63.18504 39 78
GBM without jumps
Q14 and Q23 GBM 1.759521 3181.759 56.40708 8 11
with jumps
Quarterly GBM with | -10.26338 1450.633 38.08717 14 21
jumps
Monthly GBM with -1.22683 207.3278 14.3989 41 122
jumps

Remark 2.4.2: The solid red curve in Figure 2.4.2 follows the same dynamic pattern as the
dashed red curve. The only difference between these two curves is that Monthly GBM with
Jumps model doesn’t accumulate large error, while the models without jumps do accumulate
large errors. This can also be further confirmed from basic statistics in Table 2.4.2. The monthly

GBM model with jumps has the least mean, variance, and standard error of residual error.

GBM Model with Jumps 2.4.4 (Unequal Interval GBM Model with Jumps): Let
[0,t),[t,,t).[L,. 1), [t;,t,),[t,.t5)... [t,;,t,) be the n time intervals as defined in Data Partition

Process (2.3.4). Similarly, by following definition [16, 26, 27], the GBM solution processes with
jumps of (2.3.11) has the following form:

1
(" — (" )tra'W
| _ 2 t _
S =S,e S, =S,, t, <t<t,
| (2o tro'w, |
Sh=gSe" ? S, =lmS", t <t<t,
S = -t
t (2.4.4)
. (4 (Pt o
S =¢4.5,.8 Spy=lmS™, t <t<t
L -t
There are 2x N parameters ,u" and o" i = 1,...,n, and these parameters need to be estimated. n

is the number of intervals of stock price process. We adapt the earlier procedure to create unequal
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intervals, and estimate the drifts and volatilities as in Section 2.3. Here, ¢, ¢, ,¢, ... are jump

coefficients corresponding to jump times at t,,t,,1,,... and can be estimated as

. S . S . S ., S

— 3 _ L
1= . & T A BT &L
limS" lim S, limS;*

4 7 . 21, °
lim S*
t-t; t-t, tot; t-ty

For stock X, we use the estimated parameters " and &" ,i=1,...,n, (Appendix A2), and the

estimated jump coefficients ¢31, ¢?2 , ¢?3 ¢?m_1 (Appendix A4). Figure 2.4.3 is the predicted

process of stock X. Table 2.4.3 provides the basic statistics for model in Model (2.3.13) with

jumps.
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Figure 2.4.3 Comparisons of Models with and without jumps (2.3.10), (2.3.13), (2.4.3)
of Stock X

Table 2.4.3 Basic Statistics for Linear Models (2.2.1)
and Models with and without Jumps (2.3.3), (2.3.7), (2.3.10), (2.3.13) of Stock X

Model r S; S, No. of No. of
Intervals Parameters
GBM with Overall 28.29653 8752.84 93.55661 1 2
Data
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Q14 and Q23 GBM 29.67727 8836.837 94.00445 8 4
without jumps
Quarterly GBM 53.49948 5570.643 74.63674 14 8
without jumps
Monthly GBM -80.10483 11754.25 108.4170 41 82
without jumps
Unequal Interval 2491557 3992.349 63.18504 39 78
GBM without jumps
Q14 and Q23 GBM 1.759521 3181.759 56.40708 8 11
with jumps
Quarterly GBM with | -10.26338 1450.633 38.08717 14 21
jumps
Monthly GBM with -1.22683 207.3278 14.3989 41 122
jumps
Unequal Interval -1.962899 258.1040 16.06562 39 116
GBM with jumps

Remark 2.4.3: In Table 2.4.3 we remark that overall the Monthly GBM Model with jumps and
Unequal Interval GBM model with jumps, relatively provides the least mean and the variance of
residual error. Generally speaking, for stock X, the GBM models with jumps perform better than

those GBM models without jumps.
2.5 Illustration of GBM Models to Data Set of Stock Y
Before we make conclusions about this chapter, we apply the developed linear stochastic models

to the other company’s (Y) stock price process. It is more than 22 years and has 5630

observations. Figure 2.5.1 shows its daily adjusted closing price from 9/10/1984 to 12/31/2006.
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Figure 2.5.1 Daily Adjusted Closing Price for Stock Y

We apply those linear models, under different data portioning process with or without jumps to
the price data set of stock Y. The procedures are exactly the same as those applied to stock X in
Sections 2.2, 2.3 and 2.4. To minimize the repetition, here we only give Figure 2.5.2 with regard
to the best two estimated models and the summary of basic statistics of different linear models of

stock Y in Table 2.5.1.
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Figure 2.5.2 The Best Two Estimated Models of Stock Y
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Table 2.5.1 Basic Statistics for Linear Models without Jumps (2.2.1),
with and without Jumps (2.3.3), (2.3.7), (2.3.10), (2.3.13) of Stock Y

GBM with jumps

Model r Sr2 S, No. of No. of
Intervals Parameters
GBM with Overall -10.22182 211.7418 14.55135 1 2
Data
Q14 and Q23 GBM -10.48387 214.6396 14.65058 45 4
without jumps
Quarterly GBM -10.54319 216.0761 14.69953 89 8
without jumps
Monthly GBM -0.5712012 137.0789 11.70807 268 536
without jumps
Unequal Interval -1.461658 77.70724 8.815171 256 512
GBM without jumps
Q14 and Q23 GBM 0.993067 26.28088 5.126488 45 48
with jumps
Quarterly GBM with | 0.4321374 12.24818 3.49974 89 96
jumps
Monthly GBM with | -0.0098261 1.206479 1.098399 268 803
jumps
Unequal Interval -0.0124816 1.199703 1.095310 256 767

Remark 2.5.1: From, in Table 2.5.1 we note that for stock Y, two models: the Monthly GBM

Model with jumps and Unequal Interval GBM model with jumps, both relatively provide the least

mean, variance of residual error. Generally speaking, for stock Y, the GBM models with jumps

perform better than those GBM models without jumps.
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2.6 lllustration of GBM Models to Data Set of S&P 500 Index

In our previous estimation, we applied the above developed linear stochastic models to two
individual stock price data sets of X and Y. In this section, we apply the GBM models to S&P500
Index. It is more than 59 years, and has 14844 observations. Figure 2.6.1 shows its daily adjusted
closing price from 1/1/1950 to 12/31/2008.
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Figure 2.6.1 Daily Adjusted Closing Price for S&P500 Index

We apply same linear models, under different data portioning process with or without jumps to
the data set of S&P500 Index. The procedures are exactly the same as those applied to stock X in
Sections 2.2, 2.3, 2.4, and section 2.5. To minimize the repetition, here we only give Figure 2.6.2
with regard to the best two estimated models and the summary of basic statistics of different

linear models of S&P500 Index in Table 2.6.1.
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Figure 2.6.2 The Best Two Estimated Models of S&P500 Index
Table 2.6.1 Basic Statistics for Linear Models without Jumps (2.2.1),
with and without Jumps (2.3.3), (2.3.7), (2.3.10), (2.3.13) of S&P500 Index
Model r S; S, No. of No. of
Intervals Parameters
GBM with Overall 141.3899 55048.98 234.6252 1 2
Data

Q14 and Q23 GBM 141.6477 55031.77 234.5885 119 4

without jumps

Quarterly GBM 142.6970 55408.23 235.3895 236 8

without jumps

Monthly GBM -0.0171440 | 148.0943 12.1694 708 1416

without jumps

Unequal Interval 2.541547 210.3291 14.50273 570 1140

GBM without jumps
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Q14 and Q23 GBM | -0.2859031 | 4717.424 68.6835 119 122
with jumps
Quarterly GBM with | -0.8944856 | 1954.800 4421312 236 243
jumps
Monthly GBM with 58.30902 486.4579 22.05579 708 2123
jumps
Unequal Interval 2.471564 210.2159 14.49882 570 1709
GBM with jumps

Remark 2.6.1: Again, from Table 2.6.1 we remark that for S&P500 Index, there are two models:
the Monthly GBM Model without jumps and Unequal Interval GBM model with jumps, both
relatively, provide the least mean and variance of residual error with the least number of time
intervals. Generally speaking, for S&P500 Index, the GBM models with jumps perform better
than those GBM models without jumps.

2.7 Conclusions and Comments

In this chapter, by employing classical model building process, we develop the modified version
of GBM models under different data partitioning processes and coupled with or without jumps.
The main focus was how to modify the existing GBM model in order to have a best fit with least
mean and variance of residual error. Based on the study of three data sets in Chapter 2, one can
immediately draw a couple of conclusions. (i) The first one is the usage of GBM model of overall
dataset might not give us a good fit. Data partitioning improves the result. (i) Also we show that
models with jumps perform much better than the ones without jumps. This improvement is
largely due to the accumulated errors in the model without jumps. Moreover, the environmental
random perturbations cause to modify parameters in GBM model. In the next chapters, we will
focus on models with jumps using monthly data partitioning and unequal interval data
partitioning process, since models with these two data partitioning with jumps have less mean and

variance of residual error.
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The GBM process is the solution of a linear stochastic differential equation. Because the drift and

volatility rate functions are linear. From the equation (2.1.6), we know that Y, =InS, —InS, | is

1 :
expected to have a random pattern around the 7 — E 6 . Moreover, we would like to see the

PO PR . .
values in the neighborhood of the line y= u 3 6. Figure 2.7.1 is a residual plot of monthly

GBM model of Stock X.
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Figure 2.7.1 Some Residual Plots of Stock X
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In Figure 2.7.1(a), we see that the residual values start out close to the line, then deviate from it.

In Figure 2.7.1(b), there are a lot of runs of many negative residuals in a row. In Figure 2.7.1(c),
we see there is a trend of the residuals. The magnitude of the residuals gets bigger as time goes on.
Moreover, in Figure 2.7.1(b) and (d), we see the number of positive points are much larger than
the number of negative points. From these observations and the Q-Q plots for model (2.2.1)
(Figure 2.2.3), (2.3.3) (Figure 2.3.6) and (2.3.7) (Figure 2.3.8) suggest that the linear GBM model
and its generalized models are inadequate to represent the stock price models. All these indicate
that the linear model might not be good enough to fit the dataset. To build more precise models
for competitive business processes, even a small difference is important. In Chapter 3, we find a

remedy to partially solve the cited limitations by developing the nonlinear stochastic models.
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Chapter 3

Nonlinear Stochastic Models
3.0 Introduction

In Chapter 2, we initiated the development of stochastic modeling by using the classical modeling
procedure in a systematic way. We made an attempt to modify the GBM model. The developed
modified GBM models raised the issue about the stochastic linear models of stock price processes.
This was eluded in Section 2.7. There are many nonlinear stochastic models that describe the
stochastic behavior of asset price in finance. In this chapter, we will focus on the nonlinear
stochastic models. In Chapter 2, we have already seen that modified GBM models with monthly
and unequal interval data partitioning process with jumps have better results in terms of minimum
mean and variance of residual error, even though, we needed to estimate more parameters. Here,
we will just focus on monthly and unequal interval data partitioning processes with jumps. In
Sections 3.1, 3.2 and 3.3, we develop three different nonlinear stochastic models to our three
datasets. In each section, we will first introduce the nonlinear stochastic model. We then develop
the monthly and unequal interval nonlinear models with jumps based on each data set.
Furthermore, we analyze and compare the nonlinear models with corresponding modified GBM
models. In Sections 3.4 and 3.5, we illustrate nonlinear stochastic models in the context of data

sets stock Y and S&P 500 Index respectively. Finally, conclusions are drawn in Section 3.6.
3.1 Stochastic Nonlinear Dynamic Model 1 (Black-Karasinski Model)

Black-Karasinski (BK) model [6] describes a short-term interest rate process. It takes the

following form
2
ds, = (aInS, + ﬂ+%)8tdt+ostdwt (3.1.1)

where, a, f and o are parameters and W, is Brownian motion.
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To test the existence of a unique solution, let K be any number greater than

2 2
o o
(aM, +ﬂ+7)2 + 07, and L be any number greater than | M, |+ 3| +7+ | o |, where

M,and M, are sufficiently large constants such that M, > InS and M, 2[5, lnSi +InS, |.
15}

It is obvious that equation (3.1.1) satisfy the conditions (1.3.2) and (1.3.3). S, is the unique

solution of (3.1.1). Even though, The BK model usually describes a short-term interest rate

process, it may also be applied to the short-term stock price process.

We note that the volatility function is linear and drift function is nonlinear. In order to derive the
regression equation, we use the following transformation V, = InS, and apply 1t6 — Doob
differential formula (1.3.5) to obtain,

8 1 o
1 1,1
=—dS, +—(-—)(dS,)?
5 % 2( St2)( o)
=5 (@IS + f+=7)8dt+0S,dW,) - oS "(AW,)
X t

=(aln§, + p)dt + odW,
Then,
dVv, = (aV, + g)dt + odW, (3.1.2)

By using the Euler type discretization process [24], stochastic differential equation (3.1.2) can be

reduced to

V.-V, =@V, +pHAt+ocW, =W, _)). (3.1.3)
From ¢, =W, —W,_, and At =1, equation (3.1.3) can be rewritten as

V., =(a+1)V,_, + B +o0o¢ (3.1.4)
where a, f and o are as defined in (3.1.1). By applying the least square regression method [35]

and using above cited data sets, we can estimate these parameters.
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Nonlinear Stochastic Model 3.1.1 (Monthly Nonlinear Model 1 with Jumps): Let
[0,t),[t,,t).[L,. 1), [t;, ), [L,,t)... [t, ,,t.,) be the m monthly time intervals as defined in

Data Partition Process (2.3.3). The nonlinear stochastic model is described by following
stochastic differential equation:

(")’

ds = (a™ mnSM + g™ +T)StMidt +o™sMidw,, S, =S,
ift  <t<t,i=1..,m. (3.1.5)

a™ , B Mi , and o™ ,i=1,...,m are parameters. These parameters need to be estimated. By
following definition [16, 26, 27], the solution of (3.1.5) takes the form

S,(t,t,,S,), t, <t<t

#S,(1,t.S)), t, <t<t,, S, =limS,(t,t,,S,)

tot]

S(t)= (3.1.6)

lim Sm—l (t, tm—2 5 Sn—z )

totn,

¢m—lsm (t’tm_l s Sm—l ); tm—l < t < tm , S

m-1

Here, S, is the initial value of the stock price process. ¢51,¢2,...,¢m_1 are jumps. These jumps are

estimatedby(/; _ Sy > _ Sy > Sy,
I z %2 T 2 oo Pmor T T 7
lim S, lim S, lim S, |
t—>t to>t, t>t,

The estimated parameters in Monthly Nonlinear Stochastic Model (3.1.1) of stock X are
presented in Table 3.1.1. The AIC (Akaike's information criterion) criterion [3] defined in (1.5.6).
Here, we use AIC as the criterion whenever we need to compare different models. The preferred
model is the model with the lowest AIC value.

Table 3.1.1 Estimated Parameters in Model 3.1.1 of Stock X

Interval Monthly GBM Model with Jumps Monthly Nonlinear Model 1 with Jumps
Index 2 é AIC & B é AIC

1 0.003217 | 0.037758 | 24.99217 | -0.93259 | 4.347902 | 0.025463 | 20.74442

2 0.011469 | 0.021817 | 42.50585 | 0.010445 | -0.03801 | 0.021799 | 44.52993

3 0.01924 | 0.041526 | 83.16599 | -0.00148 | 0.025789 | 0.041526 | 85.15694

4 -0.00152 | 0.037226 | 82.10229 | -0.27051 | 1.398991 | 0.034175 | 80.71667

5 0.002806 | 0.019117 | 57.44675 | -0.05069 | 0.26617 | 0.018992 | 59.16818

6 0.001162 | 0.029425 | 72.08337 | -0.3736 | 1.966097 | 0.026578 | 69.95869
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7 -0.0017 0.027966 | 67.90378 | -0.32282 | 1.700644 | 0.02585 | 66.93144
8 -0.00177 | 0.012578 | 39.10143 | -0.23453 | 1.217925 | 0.011507 | 37.27279
9 0.009641 | 0.020969 | 63.75357 | -0.03145 | 0.175542 | 0.020858 | 65.44605
10 0.01115 0.016296 | 61.93046 | 0.089916 | -0.48049 | 0.015445 | 61.48279
11 0.002921 | 0.021646 | 83.43298 | -0.33056 | 1.873092 | 0.019655 | 81.20437
12 -0.00096 | 0.016438 | 66.92268 | -0.2209 | 1.257716 | 0.015708 | 67.08642
13 -0.00017 | 0.013734 | 66.01481 | -0.19786 | 1.119452 | 0.013038 | 65.65693
14 0.004932 | 0.015047 | 67.11831 | -0.14534 | 0.835089 | 0.014276 | 66.79189
15 0.008161 0.02977 | 98.04718 | 0.027813 | -0.15265 | 0.029718 | 99.9177
16 0.004194 | 0.01872 87.811 -0.18623 | 1.118515 | 0.017263 | 86.41869
17 0.001243 | 0.013153 | 74.5625 | -0.22105 | 1.33551 | 0.012174 | 73.30687
18 0.002672 | 0.033797 | 109.8641 | -0.32346 | 1.974105 | 0.030375 | 107.9387
19 -0.00865 | 0.035981 | 101.9126 | -0.39163 | 2.309854 | 0.028169 | 93.75399
20 0.003501 | 0.025925 | 105.6795 | -0.07197 | 0.426261 | 0.025685 | 107.2806
21 0.003837 | 0.019752 | 83.25841 | -0.26766 | 1.615277 | 0.017746 | 81.18764
22 -0.00514 | 0.018633 | 90.55914 | -0.24664 | 1.46339 | 0.016451 | 86.83802
23 0.005609 0.01691 | 85.99189 | -0.12762 | 0.767304 | 0.016503 | 87.09986
24 -0.00399 | 0.011988 | 65.98114 | -0.04066 | 0.240058 | 0.011892 | 67.73263
25 -0.00081 | 0.014567 | 81.26636 | -0.55654 | 3.301192 | 0.01207 | 74.65778
26 0.003112 | 0.015259 | 75.33679 | -0.1616 | 0.969446 | 0.01435 | 74.72001
27 0.007971 | 0.022015 | 103.9302 | -0.05786 | 0.35943 | 0.021685 | 105.1114
28 0.000937 | 0.014354 | 85.01112 | -0.15455 | 0.956602 | 0.01374 | 85.10525
29 -0.0025 0.012368 | 73.32039 | -0.11528 | 0.707825 | 0.012047 | 74.33965
30 0.004407 | 0.016734 | 87.08846 | -0.41656 | 2.58325 | 0.013689 | 81.1518
31 -0.00564 | 0.016148 | 80.05819 | -0.38312 | 2.351359 | 0.013406 | 74.47795
32 0.000967 | 0.013749 | 83.07253 | -0.2835 1.7344 | 0.012763 | 81.86601
33 0.001484 | 0.011091 | 69.15906 | -0.39337 | 2.423194 | 0.009461 | 64.82723
34 0.00256 | 0.011958 | 79.16138 | -0.01537 | 0.097133 | 0.011955 | 81.16398
35 0.002363 | 0.009975 | 71.65205 | -0.21045 | 1.315889 | 0.00921 | 70.31184
36 -0.00107 | 0.014438 | 88.62695 | -0.07007 | 0.438718 | 0.014276 | 90.13775
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37 0.000524 | 0.012519 | 88.16149 | -0.34231 | 2.134238 | 0.011438 | 85.94986
38 0.00511 0.00978 | 65.80358 | -0.02092 | 0.136596 | 0.009749 | 67.64959
39 0.009694 | 0.015521 | 108.0988 | -0.02538 | 0.173118 | 0.015449 | 109.955
40 -0.00057 | 0.027629 | 125.7364 | -0.15358 | 0.99984 | 0.026446 | 125.9705
41 2.59E-06 | 0.014992 | 96.70551 | -0.28643 | 1.874382 | 0.013882 | 95.61875

Figures 3.1.1- 3.1.3 are the plots of predicted value of Monthly Nonlinear Model 1 of stock X

with Jumps with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively.
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Figure 3.1.1 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 1-300)
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Figure 3.1.2 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 300-600)
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Figure 3.1.3 Comparison of Model 2.4.3 with Model 3.1.1 of Stock X (Observations 600-848)

Table 3.1.2 shows the overall basic statistics of Monthly GBM Model and Monthly Nonlinear
Model 3.1.1.

Table 3.1.2 Basic Statistics of Model 3.1.1 of Stock X

Model r S; S, No. of No. of
Intervals Parameters
Monthly GBM with -1.242020 207.264 14.39667 41 122
Jumps
Monthly Nonlinear -1.928296 141.1754 11.88173 41 163

Model 1 with Jumps

Remark 3.1.1: From Table 3.1.2 we can see that overall, the Monthly Nonlinear Model 3.1.1
with Jumps has less variance of the residual error. From the Table 3.1.1 and Figures 3.1.1 —3.1.3,
we remark that for some months, GBM Model is better than Nonlinear Model 3.1.1 in terms of
AIC. For example, in the 2nd 31 st gth 1ot 15™ month etc, GBM model has less AIC than
Nonlinear Model 3.1.1. There are 17 out of 41 months (41%), that GBM model has less AIC than
Nonlinear Model 1. We further note that the Nonlinear Model 3.1.1 has 3 parameters and the
GBM model has 2 parameters.
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Nonlinear Stochastic Model 3.1.2 (Unequal Interval Nonlinear Model 1 with Jumps): Let

[0,t),[t,,t,).[L,, 1), [t;,1,),[t,,t5)... [t ;,t,) be the n time intervals as defined in Data Partition

Process 2.3.4. The nonlinear stochastic differential equation is described by:

I \2
ds! =(a" InS) + " + (“2) )Sldt+" Sl dW,,

S, =S,,if t

L <t<t,i=L..,n.

i-1 —

(3.1.7)

al , B h ,and o " , 1 =1,...,n, are parameters which can be estimated by the method as

described above.

By following definition [16, 26, 27], the solution of (3.1.7) is given by:

S(t) =

Sl (tatoa S() )9
¢182(t,t1,81),

¢n—lsm (t’tn—l s Sn—1)> t

t, <t<t,
t <t<t,,

S, =lim S, (., S,)

t<t, S, = tg{g St 5,5,5)

n-1 —

(3.1.8)

S, is the initial value of the stock price process. @,¢, ...,@,  are jumps. These jumps are

estimated by: ¢?1 =

t 7

A

. A0
lim§,
t—t

n K A 9eee
lim§,
t—-t,

> n-1

tn—l

~ lim §n_1 .

t—>t,

The parameters of stochastic model (3.1.7) are presented in Table 3.1.3. Furthermore, the AIC for

both GBM and nonlinear model are also included in Table 3.1.3.

Table 3.1.3 Estimated Parameters in Model 3.1.2 of Stock X

Unequal Interval GBM Model Unequal Interval Nonlinear Model 1
Interval with Jumps with Jumps
Index 2 é AIC & B é AIC
1 0.006621 | 0.024521 | 53.16678 | -0.06936 | 0.331231 | 0.024124 | 54.29912
2 0.013391 | 0.028731 | 52.68493 | -0.28443 | 1.411569 | 0.023982 | 48.97729
3 0.009891 | 0.055846 | 66.41971 | -0.48125 | 2.509755 | 0.042146 | 61.5785
4 0.001149 | 0.030116 | 76.19733 | -0.41257 | 2.131512 | 0.026637 | 72.7967
5 0.009663 | 0.019472 | 36.22862 | -0.24579 | 1.292223 | 0.016518 | 34.07066
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6 -0.00134 | 0.026352 | 49.0021 | -0.70337 | 3.70968 | 0.021988 | 45.88822
7 0.005189 | 0.038095 | 50.92597 | -0.27218 | 1.436821 | 0.035407 | 51.11064
8 -0.00261 | 0.015574 | 80.28809 | -0.13185 | 0.68589 | 0.014794 | 78.59092
9 0.008553 | 0.017281 | 92.29718 | -0.03304 | 0.185145 | 0.017021 | 93.15485
10 0.00884 | 0.022777 | 99.00801 | -0.20055 | 1.137652 | 0.020094 | 95.10469
11 -0.00053 | 0.014418 | 40.64565 | -0.69145 | 3.933416 | 0.011311 | 36.36812
12 7.88E-05 | 0.015385 | 117.7922 | -0.12929 | 0.733401 | 0.014874 | 117.2144
13 0.000596 | 0.015815 | 94.64219 | -0.36491 | 2.091368 | 0.014159 | 90.2432
14 0.016518 | 0.033196 | 71.0436 | -0.35994 | 2.137839 | 0.02067 | 61.21107
15 0.009311 | 0.013909 | 44.40171 | -0.14129 | 0.856515 | 0.012957 | 44.72932
16 -0.00076 | 0.016247 | 90.84893 | -0.25676 | 1.548757 | 0.015142 | 89.6624
17 0.004541 | 0.025039 | 60.94867 | -0.41581 | 2.549001 | 0.019093 | 56.78929
18 -0.01211 | 0.036582 | 105.6407 | -0.0507 | 0.290682 | 0.036318 | 107.3503
19 0.000358 | 0.028831 | 120.3625 | -0.20871 | 1.226962 | 0.027295 | 119.5099
20 0.010446 | 0.022202 | 84.47223 | -0.31116 | 1.870249 | 0.015605 | 74.16229
21 -0.00389 0.02337 | 57.79999 | -0.10737 | 0.642615 | 0.022928 | 59.33579
22 -0.0026 0.019065 | 78.89382 | -0.26636 | 1.579654 | 0.017477 | 77.70388
23 0.002168 | 0.015421 | 115.5262 | -0.15501 | 0.931566 | 0.014359 | 113.3126
24 -0.00417 | 0.014351 | 64.01523 | -0.2814 1.66841 | 0.012898 | 62.11432
25 0.003034 | 0.012816 | 66.33031 | -0.52939 | 3.146627 | 0.01112 | 62.77867
26 0.003202 | 0.014617 | 99.57111 | -0.20284 | 1.224103 | 0.013662 | 98.0609
27 0.007015 | 0.020763 | 116.315 | -0.37375 | 2.313722 | 0.015966 | 106.9751
28 -0.00327 | 0.012388 | 57.10168 | -0.88324 | 5.459753 | 0.005951 | 36.7315
29 1.37E-05 | 0.015938 | 96.23449 | -0.116 | 0.715536 | 0.015467 | 96.88494
30 -0.00115 | 0.017478 | 101.1193 | -0.18984 | 1.169378 | 0.016698 | 100.9772
31 -0.00045 | 0.014767 | 97.74304 | -0.37187 | 2.273761 | 0.013167 | 94.06035
32 2.02E-05 0.01084 | 100.6316 | -0.36305 | 2.234232 | 0.009826 | 96.81189
33 0.007892 | 0.011226 | 46.63383 | -0.07094 | 0.445688 | 0.011061 | 48.32431
34 0.0025 0.008967 | 101.7473 | -0.04038 | 0.255452 | 0.008882 | 103.1137
35 -0.00407 | 0.016643 | 80.90792 | -0.77061 | 4.807935 | 0.008814 | 59.38289
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36 0.003471 | 0.010888 | 113.8111 | 0.010153 | -0.06017 | 0.01088 | 115.7619
37 0.008705 | 0.015797 | 75.73326 | -0.11488 | 0.745197 | 0.015096 | 76.28284
38 0.010025 | 0.015063 | 59.36543 | -0.13148 | 0.86973 | 0.014223 | 60.01012
39 -0.00136 | 0.022851 | 199.8702 | -0.21082 | 1.373688 | 0.021244 | 196.409

Figures 3.1.4 - 3.1.6 are the plots of predicted value of Unequal Interval Nonlinear Model 3.1.2 of
stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively.
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Figure 3.1.4 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X
(Observations 1-300)
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Figure 3.1.5 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X
(Observations 300-600)
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Figure 3.1.6 Comparison of Model 2.4.3, 2.4.4, 3.1.1 with Model 3.1.2 of Stock X
(Observations 600-848)

Table 3.1.4 shows the overall basic statistics of monthly GBM model 2.4.3 with jumps, Monthly
Nonlinear Model 3.1.1 with Jumps, Unequal Interval GBM model 2.4.4 with Jumps and Unequal
Interval Nonlinear Model 3.1.2 with jumps.

Table 3.1.4 Basic Statistics of Models 2.4.3, 3.1.1, 2.4.4 and 3.1.2 of Stock X

Model r S; S, No. of No. of
Intervals | Parameters
Monthly GBM with Jumps | -1.242020 | 207.264 14.39667 41 122
Monthly Nonlinear Model | -1.928296 | 141.1754 11.88173 41 163
1 with Jumps
Unequal Interval GBM 1.962899 | 258.1040 16.06562 39 116
with Jumps
Unequal Interval Nonlinear | 0.5315015 | 131.2354 11.4558 39 155

Model 1 with Jumps
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Remark 3.1.2: From Table 3.1.4, we note that, the Unequal Interval Nonlinear Model 3.1.2 with
Jumps has least mean and variance of the residual error. From the Table 3.1.3 and Figures 3.1.4 —
3.1.6 we conclude that on some intervals, the GBM model is better than Nonlinear Model 3.1.2.
In addition the GBM model is better than Nonlinear Model 3.1.2 in terms of AIC. For example,
on the 7™, 9™ 15 21% 29™ 33" _ intervals, the GBM model has less AIC than Nonlinear
Model 3.1.2. There are 12 out of 39 intervals (31%), on which the GBM model has less AIC than
Nonlinear Model 3.1.2.

3.2 Stochastic Nonlinear Dynamic Model 2

This nonlinear stochastic model 2 [26] is described by the following 1t6 — Doob differential

equation
dsS, =(aS, + ,BStN + %O'ZSle)dt + oStN dw, (3.2.1)

where, a, f,N and o are parameters; moreover 0 < N <1.2,N #1, and W, is Brownian
motion. It is easy to verify that rate functions in (3.2.1) satisfies the conditions for existence and
uniqueness of solution [23,28]. We note that the volatility and drift functions are nonlinear
functions of S, . In order to derive the regression equation, we use the following transformation

1-N
V, = | L N and apply 1t0 — Doob differential formula to obtain

S 1, 0> S™
ds, +— L
1—N) ' 2(853(1—N

0 2
av, = a_st( N(AS,)

_ | RSN
= St Ndst +E(St N)(dst)z

=S N(aS, + S + %O'ZSfNI)dt +oSNdwW,) —%StNIGZSfN (dw, )?
= (aS!™ + p)dt + odW,
Then,
dV, = (a(1-N)V, + B)dt + odW, (32.2)

Again by using Euler type discretization process [24], stochastic differential equation (3.2.2) can
be reduced to
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V., -V, =(a-N)N,_, + pHAt+ocW, -W,_,) (3.2.3)
From ¢, =W, —W,_, and At =1, equation (3.2.3) can be rewritten as

V. =((1+a(d-N))V_, + p)+o¢, (3.2.4)
where &, # and o are as defined in (3.2.1). For given N, by applying the least square regression

method [35] and using above cited data set, these parameters can be estimated, analogously. N is

estimated by the value, under which the model has least variance of residual error.

Nonlinear Stochastic Model 3.2.1 (Monthly Nonlinear Model 2 with Jumps): Let
[0,t),[t,t).[L,. 1), [t;,t,),[t,.t5)... [t,,t,) be the m monthly time intervals as defined in

stochastic model 3.1.1. The nonlinear stochastic model 3.2.1 with jumps takes the following form

of nonlinear 1t6 —Do0b type stochastic differential equation:

Mi N Mi Mj Mi
dStM‘ :(aM‘StM‘ +ﬁM‘(StM‘)N +T(O'Mi)2(StM‘)2N _1)dt+O'M‘(StM‘)N th,
Sy =S,,ift_ <t<t,i=L...m. (3.2.5)
a™ , B Mi , and o™ ,i=1,...,m are parameters. These parameters are estimated as described

above. As before, following definition [16, 26, 27], the solution of (3.2.5) takes the form:

S, (L,t,,S,), t, <t<t,
4S,(t.,S,), t <t<t, S, =limS,(t.,t,,S,)
S(t) = e (3.2.6)

G St S, b St<t,, S, =1lmS (¢t .S, ,)

totn,

Again, S is the initial value of the stock price process. ¢,¢, ...,4,_, are jumps, and can.
n — Stl n Stz 7 tm—l
1

—_ K ~ ¥ = K A 9eces = K ~ .
lim§, lim§, lim S
tot; t-t, t—>t,

m-1

Table 3.2.1 gives estimated parameters by applying Monthly Nonlinear Stochastic Model 3.2.1 of
stock X.
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Table 3.2.1 Estimated Parameters of Model 3.2.1 of Stock X

Interval Monthly Nonlinear Model 2 with Jumps

Index a B G N
1 -0.93097 98.58582 2.685764 0
2 0.015167 -0.40094 2.562583 0
3 0.006386 0.702974 2.43304 0.2
4 -0.26424 46.59828 6.056676 0
5 -0.04732 9.06878 3.426131 0
6 3.111272 -1.65455 0.014153 1.12
7 -0.32461 63.03162 5.104841 0
8 -0.23319 41.98315 2.08146 0
9 0.162624 -0.05328 0.007219 1.2
10 -0.43324 0.148857 0.005128 1.2
11 -0.32678 94.48073 5.651904 0
12 -3.1569 4.702766 0.02342 0.93
13 -0.19667 56.36633 3.738925 0
14 0.726705 -0.2303 0.004546 1.2
15 0.227674 -0.4653 0.06296 0.87
16 0.934944 -0.28125 0.005202 1.2
17 1.106195 -0.33042 0.003641 1.2
18 -0.30599 136.999 13.06886 0
19 1.943516 -0.59744 0.008646 1.2
20 -0.06734 25.27551 9.241028 0
21 1.339686 -0.4007 0.005306 1.2
22 1.223408 -0.37344 0.004986 1.2
23 -0.11434 46.91534 6.455683 0
24 -0.04108 15.00859 4.799298 0
25 -0.55537 209.269 4.546397 0
26 0.805277 -0.24258 0.004332 1.2
27 0.291471 -0.08414 0.006396 1.2
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28 0.770865 -0.22354 0.00398 1.2
29 -0.11439 53.08718 5.661491 0
30 2.085035 -0.60321 0.003964 1.2
31 1.903402 -0.55777 0.003924 1.2
32 -0.27964 126.9381 5.734823 0
33 -0.39253 185.8715 4.464326 0
34 -0.00631 4.182385 5.648348 0
35 -0.20829 108.206 4.736808 0
36 0.348545 -0.09964 0.004068 1.2
37 1.709708 -0.49133 0.003289 1.2
38 0.107688 -0.02919 0.002777 1.2
39 -0.01282 14.14102 9.792642 0
40 -0.15131 101.7773 17.81769 0
41 1.431732 -0.38677 0.003751 1.2

Figures 3.2.1- 3.2.3 are the plots of predicted value of Monthly Nonlinear Model 3.2.1 of stock X
with observation ranging from 1 to 300, 300 to 600 and 600 to 848 respectively.
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Figure 3.2.1 Comparison of Model 2.4.3, 3.1.1 with Model 3.2.1 of Stock X
(Observations 1-300)
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Figure 3.2.3 Comparison of Model 2.4.3, 3.1.1 with Model 3.2.1 of Stock X
(Observations 600-848)

Table 3.2.2 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear
Model 3.1.1 and Monthly Nonlinear Model 3.2.1 with Jumps of Stock X.
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Table 3.2.2 Basic Statistics of Models 2.4.3, 3.1.1 and 3.2.1 of Stock X

Model r S r2 S, No. of No. of
Intervals | Parameters
Monthly GBM with -1.242020 207.264 14.39667 41 122
Jumps
Monthly Nonlinear -1.928296 141.1754 11.88173 41 163
Model 1 with Jumps
Monthly Nonlinear -2.090806 143.2248 11.96765 41 204
Model 2 with Jumps

Remark 3.2.1: From Table 3.2.2, we observe that under the same data partition process, Monthly
Nonlinear Model 3.2.1 with Jumps has less variance than Monthly GBM with Jumps. Overall, the
Monthly Nonlinear Model 3.1.1 with Jumps has less variance of the residual error than Monthly

GBM Model and Monthly Nonlinear Model 3.2.1 with Jumps.

Nonlinear Stochastic Model 3.2.2 (Unequal Interval Nonlinear Model 2 with Jumps): Let
[0,t),[t,,t).[L,. 1), [t;,t,),[t,.t5)... [t,_;,t,) be the n time intervals defined in stochastic model

3.1.2. The nonlinear stochastic model 3.2.2 with jumps takes the following form:

dS" = (a"S/  + B (S!HM" + NTh(a'i 2SN ydt + o' (SN dW,

S, =S,,ift_ <t<t,i=L..,n. (3.2.7)
al, p " and ¢" ,i=1,.,Nn,are parameters and can be estimated as described before.
By following definition [16, 26, 27], the solution of (3.2.7) takes the form
S,(t,t,,S,), t, <t<t
?S,(L,1,,S), t, <t<t,, S, =limS,(t,t,,S,)
S(t) = o (3.2.8)

¢n—lsm(tatn_1asn_1), t <t <tn,

n-1 —

Sn—l = 111'1’1 Sn—l (t’tn—zﬂsn—z)
-

tot,

Here, S, is the initial value of the stock price process. @, @, ..., 4, are jumps and can be

. . S, - S, ~ S,
estimatedas ¢ = — ., =——,..4 | =—+—.
lim Sl lim 82 lim Sn—l
tot; toty ot

72



Table 3.2.3 gives estimated parameters with regard to Unequal Interval Nonlinear Stochastic

Model 3.2.2 of stock X.

Table 3.2.3 Estimated Parameters of Model 3.2.2 of Stock X

Interval Unequal Interval Nonlinear Model 2 with Jumps

Index & ,é & N
1 -0.06298 7.518172 2.580372 0
2 -0.2657 38.08205 3.391367 0
3 -0.44948 82.83006 7.48971 0
4 -0.41314 72.45667 4.66966 0
5 -0.23482 45.135 3.059264 0
6 -0.75107 106.8789 3.141901 0.06
7 -0.27195 53.40573 6.840905 0
8 0.656408 -0.23191 0.005193 1.2
9 0.172972 -0.05645 0.005866 1.2
10 -0.18794 54.75371 5.654817 0
11 -0.68875 203.5307 3.345713 0
12 0.646214 -0.20781 0.004773 1.2
13 -0.36426 112.3249 4.348781 0
14 -0.32689 124.4562 7.29626 0
15 -0.13146 56.60131 5.240336 0
16 -0.25507 106.2544 6.30183 0
17 -0.40544 186.3563 8.661997 0
18 0.239471 -0.07623 0.010924 1.2
19 1.039288 -0.32073 0.008402 1.2
20 -0.29476 120.2958 6.163061 0
21 0.531576 -0.16061 0.00685 1.2
22 -0.26539 99.89832 6.775433 0
23 -0.14965 60.98254 5.730283 0
24 1.402875 -0.42858 0.003933 1.2
25 -0.52427 199.9783 4.240122 0
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26 -0.1963 82.03641 5.598122 0
27 -0.34739 169.7543 7.612169 0
28 4.412648 -1.28169 0.001728 1.2
29 -0.1149 54.87902 7.372088 0
30 0.945964 -0.27597 0.004852 1.2
31 -0.37018 167.4691 5.936408 0
32 -0.36119 170.0127 4.617445 0
33 -0.05807 31.62257 5.295368 0
34 -0.03837 21.49953 4.633074 0
35 3.847553 -1.10474 0.002529 1.2
36 0.01336 -5.18139 5.645615 0
37 0.58191 -0.15902 0.00418 1.2
38 -0.12128 90.81585 9.907542 0
39 1.050197 -0.2853 0.005779 1.2

Figures 3.2.4, 3.2.5 and 3.2.6 are the plots of predicted value of Unequal Interval Nonlinear
Model 3.2.2 of stock X with Jumps with observations ranging from 1 to 300, 300 to 600 and 600
to 848 respectively.
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Figure 3.2.4 Comparison of Model 2.4.3, 2.4.4, 3.2.1 with Model 3.2.2 of Stock X
(Observations 1-300)
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Table 3.2.4 shows the overall basic statistics of Monthly GBM model 2.4.3, Nonlinear Model
3.1.1 and 3.1.2 with Jumps, Unequal GBM model 2.4.4, and Unequal Nonlinear Model 3.2.1 and
3.2.2 with Jumps.

Table 3.2.4 Basic Statistics of Models 2.4.3, 3.1.1, 3.1.2,2.4.4, 3.2.1 and 3.2.2 of Stock X

Model r Srz S, No. of No. of
Intervals | Parameters
Monthly GBM with -1.242020 207.264 14.39667 41 122
Jumps
Monthly Nonlinear -1.928296 141.1754 11.88173 41 163
Model 1 with Jumps
Monthly Nonlinear -2.090806 143.2248 11.96765 41 204
Model 2 with Jumps
Unequal GBM with -1.962899 258.1040 16.06562 39 116
Jumps
Unequal Nonlinear -0.5315015 131.2354 11.4558 39 155
Model 1 with Jumps
Unequal Nonlinear -0.6097021 131.3068 11.45892 39 194
Model 2 with Jumps

Remark 3.2.2: From Table 3.2.4 we observe that under the same data partition processes,
Nonlinear Models 3.1.1 and 3.2.1 have less variance of the residual error than Monthly GBM
model, and Nonlinear Models 3.1.2 and 3.2.2 also have less variance of the residual than Unequal
GBM model. Overall, the nonlinear models 3.1.2 and 3.2.2 under the Unequal Interval data
partition process have less variance of the residual error than the nonlinear models 3.1.1 and

3.2.1under the monthly data partition process.
3.3 Stochastic Nonlinear Dynamic Model 3

This nonlinear stochastic model 3 [26] is described by the following 1t6 — Doob differential

equation

dsS, = (asS, + BS;} +c7°S,)dt + oS, dW, (3.3.1)
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where, a, f and o are parameters and W, is Brownian motion. It is easy to check that rate

functions in (3.3.1) satisfies the conditions for existence and uniqueness of solution [23,28]. In

. . : : . -1 :
order to derive a regression equation, we use the following transformation V, = — and applying
t

1t6 — Doob differential formula to obtain

t:E(s_) 2(532

(—))( 5,)?
= 572ds, +1<S;Z>'(dst)2

=S ((aS, +ﬂSZ+JS)dt+anW)——S‘3 282 (dW, )2

= (aS;" + B)dt + oS, dW,

Then,
dVv, = (—aV, + p)dt —oV,dW, (3.3.2)
Again, the Euler type discretized version of (3.3.2) is as follows
Vi =V, =(aV, + fAt—oV, (W, -W,_). (3.3.3)
‘s Vt _Vt—l St—l
From the definition of V, we note that Yy, = v s -1, =W, -W,_,,and At =1.
t-1 t
With this notation, equation (3.3.3) can be rewritten as
1
Y, :(—a+ﬂv—)—0'8t. (3.3.4)

t-1

Then, parameters &, f and o can be estimated using least square method [35].

Nonlinear Stochastic Model 3.3.1 (Monthly Nonlinear Model 3 with Jumps): Let
[0,t),[t,t).[L,. 1), [, 1), [t,.t5)... [t,,,t,) be the m monthly time intervals as defined in

stochastic model 3.1.1. The nonlinear stochastic model 3.3.1 takes the form of following

nonlinear 1t6 — Doob type stochastic differential equation:

dsM = (™8 + M (St'\’Ii Y + (™) SMydt + oM SMadw

S, =S,.ift_ <t<t, i=1..m. (3.3.5)
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a™ , B Mi , and o™ ,i=1,...,m are parameters and are estimated as described above. Thus, the

solution of equation (3.3.5) is given by

S, (L,t,,S,), t, <t<t,
#S,(1,t.S), t <t<t, S, =lim§$(t,t,,S,)
S(t) = e (3.3.6)

,=1mS_ (tt ,.S, ,)

toty

¢S, (L, .S, ), t. <t<t S

m

where S is the initial value of the stock price process. ¢,4, ..., 4, _, are jumps. These jumps are

. ~ St ~ SI A
estimated as ¢ = ———, ¢, =———,.... @, =—=—.
lim$S, lim$S, lim S, ,

t->t; t—t, t—=>t,

tI'nfl

The estimated parameters of Monthly Nonlinear Stochastic Model 3.3.1 of stock X are recorded
in Table 3.3.1.

Table 3.3.1 Estimated Parameters of Model 3.3.1 of Stock X

Interval Monthly Nonlinear Model 3 with Jumps
Index
é B &
1 0.922514 -0.0087161 0.025344
2 0.004041 6.17E-05 0.021409
3 0.023693 -4.18E-05 0.039823
4 0.261409 -0.0014855 0.034493
5 0.050772 -0.0002666 0.018895
6 0.37251 -0.0019314 0.026447
7 0.318094 -0.0016404 0.025629
8 0.229969 -0.0012777 0.011528
9 0.041487 -0.0001638 0.020631
10 -0.07527 0.00036332 0.015148
11 0.330384 -0.0011435 0.019702
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12 0.219936 -0.0007408 0.015711
13 0.196132 -0.0006846 0.013041
14 0.153618 -0.0004918 0.014218
15 -0.0255 0.00010249 0.028538
16 0.190213 -0.0004688 0.017376
17 0.222578 -0.0005293 0.012198
18 0.312192 -0.0006983 0.031076
19 0.381663 -0.001048 0.028307
20 0.071652 -0.0001924 0.025384
21 0.269717 -0.0006458 0.017525
22 0.246151 -0.0006521 0.016515
23 0.12528 -0.0003065 0.016356
24 0.03558 -9.80E-05 0.011957
25 0.552865 -0.0014675 0.012074
26 0.167816 -0.0004166 0.014242
27 0.06565 -0.0001331 0.021147
28 0.158273 -0.0003247 0.013793
29 0.111985 -0.0002415 0.01214
30 0.422469 -0.0008563 0.013585
31 0.381775 -0.0008249 0.013505
32 0.278473 -0.0006137 0.012737
33 0.392775 -0.0008295 0.009392
34 0.01369 -2.39E-05 0.011873
35 0.210991 -0.0004062 0.009164
36 0.071916 -0.0001373 0.014521
37 0.345019 -0.0006763 0.011447
38 0.025629 -3.84E-05 0.009695
39 0.033435 -3.82E-05 0.01535
40 0.150713 -0.0002246 0.026663
41 0.287854 -0.0004142 0.013927

79




Figures 3.3.1, 3.3.2 and 3.3.3 are the plots of predicted value of Monthly Nonlinear Model 3.3.1
of stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively.
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Figure 3.3.2 Comparison of Model 2.4.3, 3.1.1, 3.2.1 with Model 3.3.1 of Stock X
(Observations 300-600)
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Figure 3.3.3 Comparison of Model 2.4.3, 3.1.1, 3.2.1 with Model 3.3.1 of Stock X
(Observations 600-848)

Table 3.3.2 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear

Model 3.1.1, 3.2.1, and Monthly Nonlinear Model 3.3.1 with Jumps.

Table 3.3.2 Basic Statistics of Models 2.4.3, 3.1.1, 3.2.1 and 3.3.1 of Stock X

Model r S; S, No. of No. of
Intervals Parameters
Monthly GBM with -1.242020 207.264 14.39667 41 122
Jumps
Monthly Nonlinear -1.928296 141.1754 11.88173 41 163
Model 1 with Jumps
Monthly Nonlinear -2.090806 143.2248 11.96765 41 204
Model 2 with Jumps
Monthly Nonlinear -1.731151 139.2792 11.80166 41 163
Model 3 with Jumps
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Remark 3.3.1: From Table 3.3.2 we remark that overall, the Monthly Nonlinear Model 3.3.1
with Jumps has least variance of the residual error than Monthly GBM Model 2.4.3, Nonlinear
Model 3.1.1 and 3.2.1.

Nonlinear Stochastic Model 3.3.2 (Unequal Interval Nonlinear Model 3 with Jumps): Let
[0,t),[t,,t).[L,. 1), [t;,t,),[t,.t5)... [t,_;,t,) be the n time intervals as defined stochastic model
3.1.2. The nonlinear stochastic model 3.3.2 is described by:

dS" = (™S + BN (S")? +(c")*SHdt+ oS! dW,,

S, =S,,ift_ <t<t, i=1..n. (3.3.7)

i-1 —
where, a , B h , and o , 1=1,...,n, are parameters as defined and estimated. The solution of
equation (3.3.7) is represented by:
S,(t,t,,S,), t, <t<t

4S,(tt,S),  t<t<t, S, =1im$, (t,t,,S,)
S(t) = o (3.3.8)

4 S, (Lt .S ), t_ <t<t, S _ =1lmS_(tt .S, )

n-1 — n
tot,

S, is the initial value of the stock price process. @, 4, ...,4,_; are jumps and can be estimated as

S, .Sy S

1 . 202 T . Lo0th-l T, 2 :
lim§, lim§, lim S,
tot; tot, tot,

The estimated parameters of Unequal Interval Nonlinear Stochastic Model 3.3.2 of stock X are

recorded in Table 3.3.3.

Table 3.3.3 Estimated Parameters of Model 3.3.2 of Stock X

Interval Monthly Nonlinear Model 3 with Jumps
Index
é p 6
1 0.071226 -0.0006014 0.023908
2 0.29716 -0.0020805 0.023786
3 0.471856 -0.0025641 0.042281
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4 0.409774 -0.0023388 0.026435
5 0.251018 -0.0013076 0.016441
6 0.700165 -0.0035874 0.021907
7 0.270348 -0.0013796 0.034988
8 0.130079 -0.0007162 0.014833
9 0.040871 -0.0001544 0.01686
10 0.210273 -0.000724 0.020032
11 0.689476 -0.0023335 0.011359
12 0.129436 -0.0004453 0.014872
13 0.364516 -0.0011824 0.014153
14 0.362752 -0.0009541 0.020535
15 0.147044 -0.0003428 0.01289
16 0.257365 -0.0006181 0.015308
17 0.422811 -0.0009202 0.019309
18 0.043869 -0.0001438 0.036822
19 0.213002 -0.0005966 0.027236
20 0.322719 -0.0007918 0.015437
21 0.106569 -0.0002685 0.022847
22 0.262288 -0.0006972 0.017497
23 0.153312 -0.0003764 0.014273
24 0.278518 -0.0007413 0.012968
25 0.527504 -0.0013832 0.011062
26 0.200628 -0.0004803 0.013615
27 0.36656 -0.0007506 0.015936
28 0.88476 -0.0018291 0.005951
29 0.114746 -0.0002405 0.01549
30 0.19202 -0.0004058 0.016691
31 0.368976 -0.0008158 0.013194
32 0.358247 -0.0007612 0.009788
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33 0.074069 -0.0001383 0.010944
34 0.041831 -7.49E-05 0.008841
35 0.766581 -0.001496 0.008805
36 -0.00713 2.00E-05 0.010855
37 0.123638 -0.000189 0.01503
38 0.137906 -0.0001851 0.014094
39 0.21229 -0.0003142 0.021393

Figures 3.3.4, 3.3.5 and 3.3.6 are plots of predictions of Unequal Interval Nonlinear Model 3.3.2

of stock X with observations ranging from 1 to 300, 300 to 600 and 600 to 848 respectively.
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Table 3.3.4 shows the overall basic statistics of Monthly GBM Model 2.4.3, Monthly Nonlinear
Model 3.1.1, 3.2.1 and 3.3.1 with jumps, and Unequal Nonlinear Model 3.1.2, 3.2.2 and 3.3.2

with Jumps.

Table 3.3.4 Basic Statistics for Models 2.4.3, 3.1.1, 3.2.1, 3.3.1, 3.1.2,3.2.2

and 3.3.2 of Stock X

Model 3 with Jumps

Model r S; S, No. of No. of
Intervals | Parameters
Monthly GBM with Jumps -1.22683 | 207.3278 14.3989 41 122
Monthly Nonlinear Model 1 | -1.928296 | 141.1754 | 11.88173 41 163
with Jumps
Monthly Nonlinear Model 2 | -2.090806 | 143.2248 | 11.96765 41 204
with Jumps
Monthly Nonlinear Model 3 | -1.731151 | 139.2792 | 11.80166 41 163
with Jumps
Unequal Interval GBM with | -1.962899 | 258.1040 | 16.06562 39 116
Jumps
Unequal Interval Nonlinear | -0.531502 | 131.2354 11.4558 39 155
Model 1 with Jumps
Unequal Interval Nonlinear | -0.609702 | 131.3068 | 11.45892 39 194
Model 2 with Jumps
Unequal Interval Nonlinear | -0.402368 132.16 11.49609 39 155

Remark 3.3.2: From Table 3.3.4 we conclude that overall, the Nonlinear Model 3.1.2 with

Unequal Interval has less variance among all Models (Monthly and Unequal Intervals) . With

Monthly data partitioning, Nonlinear Model 3.3.1 with Jumps has the least mean and variance of

residual error. With Unequal Interval data partitioning, all Nonlinear Models 3.1.2, 3.2.2 and

3.3.2 have less mean and variance of residual error than GBM (linear) model.
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3.4 lllustration of Nonlinear Stochastic Models to Data Set of Stock Y

In this section, we apply the Monthly Nonlinear Models 1, 2 and 3 with jumps, that is, Nonlinear
Model 3.1.1, 3.2.1 and 3.3.1 to stock Y. We also apply the Unequal Interval Nonlinear Models 1,

2 and 3 with jumps, that is, Nonlinear Model 3.1.2, 3.2.2 and 3.3.2 to stock Y. To minimize the

repetition, here we only give the summary of these 6 models in Table 3.4.1.

The price data set of stock Y is relative larger than the price data set of stock X. There are 5630

observations over the past 22 years from September 1984 to December 2006. The Monthly

Nonlinear Models have 268 monthly intervals, and the Unequal Interval Models have 256

intervals with the daily relative difference = 3.5% as the threshold.

Table 3.4.1 Basic Statistics for Models of Stock Y

Model 3 with Jumps

Model r S; S, No. of No. of
Intervals | Parameters
Monthly GBM with Jumps | -0.009826 | 1.206479 | 1.098399 268 803
Monthly Nonlinear Model | 0.020068 | 1.469688 | 1.212307 268 1071
1 with Jumps
Monthly Nonlinear Model | -0.002057 | 1.155363 | 1.074878 268 1339
2 with Jumps
Monthly Nonlinear Model | 0.026632 | 1.295051 1.138003 268 1071
3 with Jumps
Unequal Interval GBM -0.012482 | 1.199703 | 1.095310 256 767
with Jumps
Unequal Interval Nonlinear | -0.004258 | 0.606470 | 0.778762 256 1023
Model 1 with Jumps
Unequal Interval Nonlinear | -0.011478 | 0.603385 | 0.776779 256 1279
Model 2 with Jumps
Unequal Interval Nonlinear | 0.006577 | 0.612513 | 0.782632 256 1023
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Remark 3.4.1: Table 3.4.1 shows the overall basic statistics of Stock Y with respect to all stated

Monthly and Unequal Interval Nonlinear Models. Under the Monthly data partitioning, Nonlinear

Model 2 has the least mean and variance of residual error. Under the Unequal Interval data

partitioning, all stated Nonlinear Models 1, 2 and 3 have less mean and variance of residual error

than the GBM model. Moreover, Nonlinear Model 2 with Unequal Interval has the least variance

and standard deviation of residual error among all models. Furthermore, this unequal data

partitioning process has less number of subintervals than the monthly data partitioning process.

3.5 Hlustration of Nonlinear Stochastic Models to Data Set of S&P 500 Index

In this section, we apply the Monthly Nonlinear Models 1, 2 and 3, that is, Nonlinear Model 3.1.1,
3.2.1 and 3.3.1 of S&P 500 Index. We also apply the Unequal Interval Nonlinear Models 1, 2 and
3, that is, Nonlinear Model 3.1.2, 3.2.2 and 3.3.2 on S&P 500 Index. Again, to minimize the

repetition, here we only give the summary of these 6 models in Table 3.5.1. Since the dataset is

too large, here we only provide the summary of the models. The dataset of SP500 Index is larger

than the previous datasets of stocks X and Y. There are 14844 observations over the past 59 years

starting from January 1950 to December 2008. The Monthly Nonlinear Models have 708 monthly

intervals, and the Unequal Interval Models have 570 intervals with the daily relative difference =

0.8% as the threshold.

Table 3.5.1 Basic Statistics for Models of S&P 500 Index

Model r S; S, No. of No. of
Intervals | Parameters

Monthly GBM with Jumps | 58.30902 | 486.4579 | 22.05579 708 2123
Monthly Nonlinear Model | 4.027517 | 281.7153 | 16.78438 708 2831

1 with Jumps
Monthly Nonlinear Model | 4.084275 330.1271 | 16.78393 708 3539

2 with Jumps
Monthly Nonlinear Model | 4.274907 | 282.7780 | 16.81600 708 2831

3 with Jumps
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Unequal Interval GBM 2471564 | 210.2159 | 14.49882 570 1709
with Jumps
Unequal Interval Nonlinear | 0.6186245 | 79.46592 | 8.914366 570 2279
Model 1 with Jumps
Unequal Interval Nonlinear | 0.5835638 | 78.5180 | 8.861039 570 2849
Model 2 with Jumps
Unequal Interval Nonlinear | 0.6590607 79.5725 | 8.920342 570 2279
Model 3 with Jumps

Remark 3.5.1: Table 3.5.1 shows the overall basic statistics of S&P 500 Index for all stated
Monthly and Unequal Interval Nonlinear Models. Under the Monthly data partitioning, Nonlinear
Model 1 has the least mean and variance of residual error. Under the Unequal Interval data
partitioning, all stated Nonlinear Models 1, 2 and 3 have less mean and variance of residual error
than the GBM model. Nonlinear Model 2 with Unequal Interval has the least mean and the
variance of residual error among all stated models. Furthermore, this unequal interval nonlinear

model 2 has the least variance of residual error and the number of intervals.

3.6 Conclusions and Comments

In this chapter, we presented three nonlinear stochastic models. By using classical model building
process, we developed the modified version of nonlinear stochastic models under equal and
unequal data partitioning processes with jumps. Based on our study, in the following, we draw a
few important conclusions.

(a) The Following Table 3.6.1 provides the summary of results for all three datasets. It shows that
Nonlinear Model 2 ranks No.1 in both monthly and unequal interval data partitioning models of 2

out 3 data sets (stock X, stock Y and S&P 500 Index).

Table 3.6.1 Summary of Models in Chapter 3

Stock Monthly Interval Unequal Interval
Rank1 Rank2 Rank3 Rank4 Rank1 Rank2 Rank3 | Rank4
X Non.3 Non.2 Non.1 GBM Non.1 Non.2 Non.3 GBM
Y Non.2 GBM Non.3 Non.1 Non.2 Non.1 Non.3 GBM
S&P500 | Non.2 Non.1 Non.3 GBM Non.2 Non.1 Non.3 GBM
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The three data sets in our study, both stocks X and Y are from world Fortune 500 companies;
S&P 500 Index is a stock Index. From Table 3.6.1, we notice that for two data sets (stock Y and
S&P 500 Index) with both Monthly Interval and Unequal Interval data partitioning processes,
Nonlinear Model 2 is the best model. These two data sets (stock Y and S&P 500 Index) share a
common characteristic. Comparing to data set stock X (848 observations), both of these two

dataset are very large, having 5630 and 14844 observations, respectively.

(b) Tables 3.3.4, 3.4.1 and 3.5.1 show the overall basic statistics of different models of stocks X,

Y and S&P 500 Index. For the monthly data partitioning, Nonlinear Model 2 is better than GBM

Model for Stock Y and S&P 500 Index, and Nonlinear Model 3 is better than GBM model for

stock X. For the unequal interval data partitioning process, Nonlinear Model 2 is better than

GBM Model for Stock Y and S&P 500 Index, and Nonlinear Model 3 is better than GBM model

for stock X.

(1) For monthly data partitioning, all three nonlinear models are better than GBM model for
all three price data sets. The Nonlinear Model 2 is better than GBM model and Nonlinear
Models 1 and 3.

(i1) Under unequal interval data partitioning process and for all three stock data sets, all non-
linear models are better than GBM model.

(ii1) The unequal data partitioning approach is superior than the monthly data partitioning
approach.

(iv) Under both equal and unequal data partitioning approach, the Nonlinear Model 2 is the
best for stock Y and S&P 500 Index, and Nonlinear Model 1 is best for stock X.
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(c) Again, from three tables 3.3.4, 3.4.1 and 3.5.1, we observe that the performance of Nonlinear
Models 1, 2, and 3 are very similar. The predicted values for a particular interval are in Figure
3.6.1(a) and (b). In Figure 3.6.1 (a) and (b), we notice that the 3 red curve, orange curve and

green curve are overlapped on each other. The blue curve represents the predicted value using
GBM model. Furthermore, from the plot (the 13" interval and the 6™ interval), we conclude that
in this particular intervals Nonlinear Models estimates the stock price better than the GBM model.
The reason is in that particular time interval, every possible environmental information often

leads to wild movements in stock price. The drift and volatility are not constant any more in that
particular time interval. Hence the nonlinear model can describe the stock price process much

better than the GBM model.

(d) So far, we focused our attention to build stochastic models for stock price data sets. This
modeling approach can also be used for any other type of data sets. Furthermore, our preceding
stochastic modeling analysis of stock price confirms that a stock price process is nonlinear and
non stationary stochastic models. However, the next important problem in modeling is to predict
the future dynamic state of processes, in particular, stock market price. The study of this problem

is focused in the next chapter.
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Chapter 4
Nonlinear Stochastic Models with Time Varying Coefficients

4.0 Introduction

Stochastic dynamic models described in Chapters 2 and 3 were applicable to piece-wise time-
invariant dynamic processes. In this chapter, based on our study of three stochastic nonlinear
models, we generalize our stochastic modeling dynamic process by using the nonlinear stochastic
differential equations with time varying coefficients. We focus our attention to only nonlinear

models 1 and 2 that have been exhibited better than model 3 in Chapter 3.

Corresponding to nonlinear time invariant models 1 and 2, we present nonlinear stochastic
models with time varying coefficient in Section 4.1 and 4.2, respectively. Using these nonlinear
time varying models, we derive corresponding time series models. These time series models are
tested by the three data sets, stock X, Y and S&P 500 Index. Furthermore, they are compared to
the existing time series models [10, 12, 13, 38, 39] in Section 4.3. Finally, conclusions are drawn

in Section 4.4.

4.1 Nonlinear Stochastic Dynamic Model 1 with Time Varying Coefficients

In Chapters 3, nonlinear stochastic dynamic models with constant coefficients were investigated.
In this section, we assume that the rate parameters in the nonlinear stochastic dynamic model 1

(in Section 3.1, Chapter 3) are functions of time.

Nonlinear Stochastic Model 1 on Overall Data: Let us consider a stochastic nonlinear model

corresponding to equation (3.1.1) as

2
dS, = (e, InS, + f, + )8 dt +,S,AW, . S(0) =S, (4.11)
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where, parameters &, f and o are time varying smooth functions [6, 26]. We note that the

existence and uniqueness of solution process of (4.1.1) follows by following similar arguments

used in Section 3.1.

By following the arguments and using the transformation V, = InS,, we obtain

dV, = (a,V, + B,)dt + o, dW,. (4.1.2)

To estimate the time varying parameters &, # and o , we first use a numerical integration

applied (4.1.2) as:

t t t
[av, = [(aV, +B)ds + [o,dw,
t—k t—k t-k
t—k+1 t t—k+1 t
Vo=V = @V, +B)ds+...+ [(@V, +B)ds+ [odW, +.+ [odw,
t-k t-1 t—k t-1
~a NV  ta, Nyt taN B+ B roE g Tt OE,
where, k is any positive integer and &,_, =W, ; =W, , ~ N(0,1), for i =0,L,...,k —1.
By denoting f = B, + B, _,...+ B,, and rearranging terms in the equation, we have the following

equation
Vi=(q, + 1V, +o, Vo otV  ++0o8& o+ T OE. (4.1.3)

This is exactly a time series ARIMA model with order (p,q), where p=k and q=k-1. The constant
term £ can be eliminated by taking the first order difference filter (d=1). Obviously, we notice
that when k=1, we have the constant coefficients case (3.1.4) in Chapter 3. If k=2, equation (4.1.3)
is equivalent to ARIMA(2,1). If we assume that k=2 and o, = 0, then equation (4.1.3) is
equivalent to ARIMA(2,0).

Under the transformation V, = In S, and following the Statistical Model Identification Procedure

1.5.1 described in Section 1.5, the AICs of ARIMA models of three data sets (stock X, Y and
S&P 500 Index) are presented in Table 4.1.1.
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Table 4.1.1 AIC of Time Varying Coefficients Nonlinear Model 1
of Different Models of Three Datasets: Stock X, Stock Y and S&P 500 Index

Model Stock X Stock Y S&P 500 Index
AIC AIC AIC
(3,1,2) -4122.57 -22693.15 -96126.87
(3,L,1) -4124.70 -22694.84 -96126.3
(3,1,0) -4124.20 -22687.87 -96128.11
(2,1,3) -4127.76 -22692.57 -96126.82
(2,1,2) -4125.36 -22685.91 -96128.74
2,1,1) -4126.42 -22682.35 -96130.18
(2,1,0) -4126.20 -22683.14 -96126.53
(1,1,3) -4124.86 -22694.39 -96127.68
(1,1,2) -4124.19 -22682.03 -96130.20
(1,1,1) -4126.21 -22681.05 -96120.59
(1,1,0) -4128.10 -22683.05 -96082.23
(0,1,3) -4124.30 -22687.57 -96129.77
(0,1,2) -4126.20 -22682.90 -96130.02
(0,1,1) -4127.92 -22683.06 -96086.05

From Table 4.1.1, we notice that for stock X, ARIMA model (1,1,0) gives us the minimum AIC,
that is, a mix model of a first order autoregressive with a first difference filter. The model is

written as

(1-0.0872B)(1-B)V, =0.02110687¢, .
After expanding the autoregressive operator and the difference filter, we have
(1-1.0872B - 0.0872B WV, =0.02110687¢,
which implies
V, =1.0872V,_, +0.0872V,_, +0.02110687¢, .

By letting &, = 0, we have the one day ahead forecasting formula of V, of stock X as

A

V, =1.0872V,_, +0.0872V,_,. (4.1.4)
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Then, by applying the inverse transformation of “In”, we get §I = exp(\it) . The residual error

=S, - S i 1s computed, and its basic statistics is recorded in Table 4.1.2.

Similarly, for data set Stock Y, the fitted ARIMA model (3,1,1) gives us the minimum AIC. The

model is

(1+0.6575B +0.0156B* +0.0523B°)(1 - B)V, = (0.03220248 + 0.6638B)¢, .

By following above argument, we have

V, =0.3425V,_, +0.6419V,_, —0.0367V, , +0.0523V,_, +0.03220248¢, + 0.6638¢, ,

By letting &, = 0, we obtain the one day ahead forecasting formula of V, of stock Y as

\7t =0.3425V,_, +0.6419V,_, —0.0367V,_; +0.0523V,_, +0.6638¢,_, . (4.1.5)
Again, by applying the inverse transformation of “In”, we get ét = exp(\it) . The residual error

=S, - S i 1s computed, and its basic statistics are recorded in Table 4.1.2.

For data set S&P 500 Index, the fitted ARIMA models (1,1,2) gives us the minimum AIC, and

the model is

(1+0.2297B)(1 - B)V, = (0.009490522 + 0.2787B — 0.0438B )¢,

By following above argument, we have

V, =0.7703V,_, +0.2297V,_, +0.009490522¢, +0.2787¢, , —0.0438¢, ,

By letting &, = 0, we obtain the one day ahead forecasting formula of V, of S&P 500 Index as

A

V, =0.7703V,_, +0.2297V,_, +0.2787¢, , —0.0438¢, _, (4.1.6)

Again, by applying the inverse transformation of “In”, we get ét = exp(\it) . The residual error

r=S, - S i 1s computed, and its basic statistics are recorded in Table 4.1.2.
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Table 4.1.2 Basic Statistics of Time Varying Coefficients Nonlinear Model 1
of Three Data Sets: Stock X, Stock Y and S&P 500 Index

Data Set Model Mean of residual Variance of residual | Standard deviation
of residual
Stock X (1,1,0) 0.628727 57.38475 7.575272
Stock Y (3,1,1) 0.015286 0.344827 0.587220
S&P 500 Index | (1,1,2) 0.058922 46.90737 6.848895

Remark 4.1.1: For data set stock X, from Tables 3.3.4 and 4.1.2, the nonlinear stochastic model 1
with time varying coefficients has the minimum variance of residual error. This is the same as for
stock Y (Tables 3.4.1 and 4.1.2) and S&P 500 Index (Tables 3.5.1 and 4.1.2). We note that the
nonlinear stochastic model 1 with time varying coefficients is applied to overall data set. The

study in Chapter 3 is with regard to the unequal interval data partitioning process.

In the following we apply the unequal interval Data Partitioning Process 2.3.4 for nonlinear

stochastic model 1 with time varying coefficients.

Nonlinear Stochastic Model 4.1.1 (Unequal Interval Nonlinear Model 1 with Time Varying
Coefficients): Let [0,t,),[t,,t,),[t,,t;), [t;,1,),[t,,t:)... [t,,,t,) be the n time intervals as
defined in Data Partition Process 2.3.4. The nonlinear stochastic differential equation is described

by:

I \2
ds! = (" InS!" + B +—("t2 ) )shdt + oS dw,

S, =S,.ift_ <t<t,i=1..n. (4.1.7)

i-1 —

a' ,,B" and ¢" | i=1,..,n,are time varying parameters.

As before, by imitating the time series definition process, we arrive at

i _ li li li li VAL UpNT i oh li ol
Vi' =(e) + DV +a Vo +ra )V + o el YO EC ey Tt 0 (4.1.8)

Furthermore, S, and ¢?i ,i=12,...,n—1 are defined analogous to (3.1.8).
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Stochastic Model Identification Procedure 4.1.1: In the following, we present a modified

version of Statistical Model Identification Procedure 1.5.1 [10,12,38]. It is as follows:

1. By following the Data Partition Process 2.3.4, the entire data set is decomposed into n

sub data sets.

ii. For every sub data set, use the transformatiothIi =In StIi ,i=1..,n.

1. For every sub data sets, repeat steps ii — v in Stochastic Model Identification Procedure
1.5.1.

iv. For every sub data set, and for each possible set of (p, q), compute the predicted
valueV," ™ and then compute the predicted value ét"(p’Q) , by using the inverse of “In”
transformation, that is, ét"(p’q) = exp(\it"(p’q)) .

V. For every sub data set and for each possible models, compute the residual error

P9 =5, —S'® ¢t <t<t,i=12,.,n.

i-1 —
vi. For all possible set of (p, q), compute mean, variance and standard deviation of overall

residual error 1”1 <t <T. The model provides the smallest variance of residual is

the fitted model.

Table 4.1.3, 4.1.4 and Table 4.1.5 exhibit the basic statistics of the residuals using different value
of k with unequal interval data partitioning of three datasets: Stock X, Y and S&P 500 Index
respectively. Here the thresholds of daily relative difference for three data sets are set to 5%,

4.5% and 2%, respectively, and the corresponding number of intervals are 10, 66 and 87.

Table 4.1.3 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q)
Under Log-Transformation with Unequal Data Partition, threshold=5% of Stock X

Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual Intervals
(3,1,2) 0.535531 44.01918 6.634695 10
3,L1D) 0.477112 46.09286 6.789173 10
(3,1,0) 0.584083 47.90231 6.92115 10
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2,1,3) 0.571359 43.62668 6.60505 10
2,1,2) 0.588372 44.5358 6.673515 10
2,1,1) 0.648873 47.5926 6.898739 10
(2,1,0) 0.652255 48.23812 6.945367 10
(1,1,3) 0.479333 45.94483 6.778261 10
(1,1,2) 0.558626 46.4712 6.816979 10
(1,1,1) 0.562882 46.79851 6.840944 10
(1,1,0) 0.636871 48.66251 6.975852 10
(0,1,3) 0.640242 48.47799 6.962613 10
(0,1,2) 0.64442 48.24343 6.945749 10
(0,1,1) 0.640242 48.47799 6.962613 10

Table 4.1.4 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q)
Under Log-Transformation with Unequal Data Partition, threshold=4.5% of Stock Y

Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual intervals
(3,1,2) 0.013137 0.284444 0.533333 66
(3,1,1) 0.010776 0.303817 0.551196 66
(3,1,0) 0.011263 0.305855 0.553041 66
(2,1,3) 0.012679 0.287968 0.536626 66
(2,1,2) 0.00985 0.296015 0.544072 66
(2,1,1) 0.010492 0.306466 0.553593 66
(2,1,0) 0.012846 0.308965 0.555846 66
(1,1,3) 0.010388 0.302722 0.550202 66
(1,1,2) 0.010206 0.306028 0.553198 66
(1,1,1) 0.013911 0.308552 0.555475 66
(1,1,0) 0.013396 0.311613 0.558223 66
(0,1,3) 0.013494 0.31157 0.558185 66
(0,1,2) 0.013209 0.30873 0.555635 66
(0,1,1) 0.013494 031157 0.558185 66
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Table 4.1.5 Basic Statistics of Stochastic Models 4.1.1 with Different Set of (p, q)
Under Log-Transformation with Unequal Data Partition, threshold=2% of S&P 500 Index

Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual intervals
(3,1,2) 0.116613 39.73163 6.303303 87
3,L1D) 0.107649 41.31667 6.427805 87
(3,1,0) 0.108677 42.04793 6.484438 87
(2,1,3) 0.130816 37.94544 6.159987 87
(2,1,2) 0.118426 40.47064 6.361654 87
(2,1,1) 0.105609 41.83156 6.467732 87
(2,1,0) 0.107766 42.51392 6.52027 87
(1,1,3) 0.112032 41.55797 6.446547 87
(1,1,2) 0.115318 41.9422 6.47628 87
(1,1,1) 0.113373 42.86889 6.547434 87
(1,1,0) 0.110322 43.49516 6.595086 87
(0,1,3) 0.105709 43.30008 6.580279 87
(0,1,2) 0.105485 42.55877 6.523708 87
(0,1,1) 0.105709 43.30008 6.580279 87

From Table 4.1.3 and Table 4.1.5, we can see that the model (2,1,3) has minimum variance and
standard deviation of residuals, for stock X and S&P 500 Index. From Table 4.1.4 we see that the
model (3,1,2) is the best model which provides the minimum variance of the residual. We further

note that ARIMA model (2,1,3) is the best for three all data sets.

Remark 4.1.2: For stock X, we compare Table 3.3.4, 4.1.2, with Table 4.1.3, we notice that
nonlinear model 1 with time varying coefficients under unequal interval data partitioning process
provides least variance and standard deviation of residual error. Similarly, for stock Y, comparing
Table 3.4.1, 4.1.2 with Table 4.1.4; for S&P 500 Index, comparing Table 3.5.1, 4.1.2 with Table

4.1.5, we have the same conclusion.
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4.2 Nonlinear Stochastic Dynamic Model 2 with Time Varying Coefficients

In this section, we assume that the rate parameters in the nonlinear stochastic dynamic model 2

(in Section 3.2, Chapter 3) are not constants, that is, the rates, &, f and o are functions of time,

and N is still a constant.

Nonlinear Stochastic Model 2 on Overall Data: Let us consider a stochastic nonlinear model

corresponding to equation (3.2.1) as
N
ds, = (S, + B.S" +?afoN‘l)dt +o,SMdW, , S(0) =S, (4.2.1)

where, coefficients &, f and o are time varying smooth functions [26]. We note that the

existence and uniqueness of solution process of (4.2.1) follows by following similar arguments

used in Section 3.2.
1-N
By following the arguments and using the transformation V, = lt—N , We obtain

dV, = (a,(1-N)V, + g)dt + o, dW, . (4.2.2)
To estimate the time varying parameters &, # and o , we first use a numerical integration

applied to (4.2.2) as follows:

t t t
fav, = J(@, =NV, +B)ds+ [o,dw,
t—k t—k t—k

t—k+1 t t—k+1 t

Vi=Viy = [(@ =NV, +B)ds+..+ [(a,(1-NWV, +B)ds+ [odW, +..+ [o,dW,
t—k t-1 t—k 1

t—
~(1-N)a )V, +..+(1-N)aV,_, + b, + B ... + B, + O &y T T O,

where, k is any positive integer and &,_;, =W, ; =W, , ~ N(0,1), for i =0,L,...,k —1.

By denoting f = B, + fB,_,...+ [, and rearranging terms in the equation, we have the following

equation

Vi, =(1-N)a, + 1)V, , +1-N)ex, V, y,, +..+1=N)aV,_, + f+0,&  +...+0,&.
(4.2.3)

This is also a time series ARIMA model with order (p,q), where p equals k and q equals k-1. The

constant term £ can be eliminated by taking the first order difference filter (d=1).
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Similarly, we notice that when k=1, we have the constant coefficients case (3.2.4) in Chapter 3. If
k=2, equation (4.2.3) is equivalent to ARIMA(2,1). If we assume that k=2 and o, = 0, then
equation (4.2.3) is equivalent to ARIMA(2,0).

Stochastic Model Identification Procedure 4.2.1: The difference between the nonlinear model 1
and 2 is that nonlinear model 2 has a parameter N that can not be estimated directly. In the
following, we present a modified version of Statistical Model Identification Procedure 1.5.1. It is
as follows:

ii Let 0<N <1.2 and N#1.

1-N
ii.  For each value of N, say N = N, use the transformation,V, = L _t=12,..,T.

1-N

iii.  Follow the Stochastic Model Identification Procedures 1.5.1 (ii-vii).

iv. By knowing the best model (p, q)(N) for each value of N, compute the predicted value of

1
price process by applying the inverse transformation of ét(N) =(1- N )\7t )N

v.  Computer the residual error I, =S, — ét(N),t =12,.,T.

vi.  Repeat the steps (ii-v) for each given N = N e [0,Hu(,1.2].

vii,  The value N and the corresponding model provides the smallest variance of residual error

(r,,t=1L2,..,T)is the estimated N and fitted model.

We apply the Stochastic Model Identification Procedure 4.2.1 to three data sets and the result is
exhibited in Table 4.2.1.

Table 4.2.1 Basic Statistics of Time Varying Coefficients Nonlinear Model 2
of Three Data Sets: Stock X, Stock Y and S&P 500

Data Set Model | N Mean of Variance of Standard deviation
residual residual of residual

Stock X (3,1,2) |0.07 0.623089 56.59861 7.523205

Stock Y (2,1,2) | 0.03 0.013675 0.340876 0.583846

S&P 500 Index | (3,1,2) | 0.03 0.071906 46.27549 6.802609
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Table 4.2.1 shows basic statistics of time varying coefficients of nonlinear stochastic model 2
for three Data Sets: Stock X, Stock Y and S&P 500. From the table, we can see that for stock X,

ARIMA model (3,1,2) gives us the minimum variance of residual. The model is

(1-0.5837B —0.9055B> +0.0841B°)(1— B)V, = (4.942671+0.6804B + 0.999B")z, .

After expanding the autoregressive operator and the difference filter, we have

(1-1.5837B —0.3218B* +0.8214B° +0.0841B*)V, = (4.942671+0.6804B + 0.999B%)¢,
which implies

V, =1.5837V,, +0.3218V,_, —0.8214V,_; —0.0841V, , +4.942671¢, + 0.6804¢, , +0.999¢, ,.

By letting &, = 0, we have the one day ahead forecasting formula of V, of stock X as

A

V, =1.5837V,_, +0.3218V, , —0.8214V,_, —0.0841V, , +0.6804¢, , +0.999s,_,. (4.2.4)

1

Then, by applying the inverse transformation, ét =((1- N )Vt)l‘N , N =0.07 the residual error

r=S, - S i 1s computed, and its basic statistics are recorded in Table 4.2.1.

Similarly, for data set Stock Y, the fitted ARIMA model (2,1,2) gives us the minimum variance

of residual. The model is

1+1.2999B —0.6948B*)(1- B)V, = (0.5260228 —1.3207B +0.7420B°)¢
t t

By following above argument, we have

V, =—0.2999V, , +1.9947V, , —0.6448V, , +0.5260228¢, —1.3207¢, , +0.7420¢, .

By letting &, = 0, we obtain the one day ahead forecasting formula of V, of stock Y as

~

V, = —0.2999V, , +1.9947V, , —0.6448V, , —1.3207¢,_, +0.74205,_,.  (4.2.5)

1
Again, by applying the inverse transformation, §t =(1- N )\7t )N N =0.03 the residual

error I, =S, — S i 1s computed, and its basic statistics are recorded in Table 4.2.1.

For data set S&P 500 Index, the fitted ARIMA models (3,1,2) gives us the minimum variance of

residual, and the model is
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(1+0.3286B +0.1991B” +0.0385B°)(1- B)V, = (5.517246 — 0.3932B —0.2477B7)¢,

By following above argument, we have

V, =0.6714V,_, +0.1295V,_, +0.1606V,_, —0.0385V,_, +5.517246¢, —0.3932¢,_, —0.2477¢,_,

By letting &, = 0, we obtain the one day ahead forecasting formula of V, of S&P 500 Index as

A

V, =0.6714V,, +0.1295V, , +0.1606V,_, —0.0385V,_, —0.3932¢,, —0.2477¢,, (4.2.6)

1

Again, by applying the inverse transformation, ét =((1- N )\/At )N N =0.03 the residual

A

error I, =S, — S,

: i —9; is computed, and its basic statistics are recorded in Table 4.2.1.

Remark 4.2.1: For data set stock X, comparing Table 3.3.4, 4.1.1 and Table 4.2.1, nonlinear
stochastic model 2 with time varying coefficients has the minimum variance of residual error.
This is the same as for stock Y (Table 3.4.1, 4.1.1 and Table 4.2.1) and S&P 500 Index (Table
3.5.1,4.1.1and Table 4.2.1).

In the following we apply the unequal interval Data Partitioning Process 2.3.4 for nonlinear

stochastic model 2 with time varying coefficients.

Nonlinear Stochastic Model 4.2.1 (Unequal Interval Nonlinear Model 2 with Time Varying
Coefficients): Let [0,t,),[t,,t,),[t,,t;), [t;,1,),[t,,t;)... [t,,,t,) be the n time intervals as

defined in Data Partition Process 2.3.4. The nonlinear stochastic differential equation is described
by:
dS;" =(a'S" + B (S )" +%(at" )2(S¢)M Hdt+ o (SN dW,
S, =S,,ift_ <t<t,i=L..,n. (4.2.7)
a' P ' and o , 1=1,...,n, are time varying parameters, N is constant.[26,27,29].
As before, by imitating the time series definition process, we arrive at
V' =((1-N)e + DV +(1-N)a Vi, +o+ (=N 'V
+B+0 N, Tt Ool g (4.2.8)

Furthermore, S, and ¢?i ,i=12,...,n—1 are defined analogous to (3.2.8).
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Stochastic Model Identification Procedure 4.2.2: In the following, we present a modified
version of Statistical Model Identification Procedure 1.5.1. It is as follows:
i. By following the Data Partition Process 2.3.4, the entire data set is decomposed into n sub
data sets.
ii. For each sub data set, follow steps i-ii of the Stochastic Model Identification Procedures
4.2.1.
iii. For each sub data set, follow the Stochastic Model Identification Procedures 1.5.1 steps ii-v.

iv. Using estimated parameters in step iii and compute the residual error
I’t(m(p’q) =S, - §t(N)(p’q),t =1,2,...,T for all possible (p,q).
v. Repeat steps ii-iv for N = N e [0,))u(1,1.2].

vi. For, a given set of (p, q), we compute overall sum of squared error for every value of N
. T . )
by RSS (N)(p,9) _ (rt(N)(p,GI)) )
:
vii. For the given (p, q) in step vi, we find the best N, corresponding to the minimum RSS.
viii. Repeat steps vi — vii for all possible model (p,q), we find the best N’s with respect to the

minimum RSS.

ix. From viii we choose the model with corresponding N , which provides the smallest RSS.

Table 4.2.2, 4.2.3 and Table 4.2.4 show the basic statistics of the residual error using different set
of (p, q) with unequal interval data partitioning of three datasets: Stock X, Y and S&P 500 Index,
respectively. Here the thresholds of daily relative difference for three data sets are set to 5%,

4.5% and 2%, respectively, such that the sub intervals have enough observations to estimate the

parameters. The residual error is defined as well as I; = S; — S ; for all observations.

Table 4.2.2 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q)

under Transformation S: " with Unequal Data Partition, threshold=5% of Stock X

1-N
Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual intervals
(3,1,2) 0.48359 42.8776 6.548099 10
3,11 0.531298 45.89411 6.774519 10
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(3,1,0) 0.571061 47.81292 6.914689 10
2,1,3) 0.527294 41.97917 6.479133 10
2,1,1) 0.631136 47.1654 6.867707 10
(2,1,0) 0.636309 48.16542 6.940131 10
(1,1,3) 0.520179 45.68867 6.75934 10
(1,1,2) 0.532497 46.36265 6.809013 10
(1,1,0) 0.619884 48.62252 6.972985 10
0,1,3) 0.623101 48.43584 6.959586 10
(0,1,2) 0.627815 48.17912 6.941118 10
(0,1,1) 0.623101 48.43584 6.959586 10

Table 4.2.3 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q)

under Transformation

1I-N

1 : N with Unequal Data Partition, threshold=4.5% of Stock Y

Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual intervals
(3,1,2) 0.013494 0.280789 0.529895 66
(3,1,1) 0.012033 0.301285 0.548894 66
(3,1,0) 0.011385 0.305035 0.552300 66
(2,1,3) 0.012897 0.281243 0.530324 66
(2,1,0) 0.012724 0.308477 0.555407 66
(1,1,3) 0.009512 0.301548 0.549134 66
(1,1,2) 0.011650 0.305205 0.552454 66
(1,1,0) 0.012968 0311111 0.557773 66
(0,1,3) 0.012975 0311157 0.557814 66
(0,1,2) 0.013045 0.308202 0.555160 66
(0,1,1) 0.012975 0311157 0.557814 66
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Table 4.2.4 Basic Statistics of Stochastic Models 4.2.1 with Different Set of (p, q) under
1-N
Transformation — N with Unequal Data Partition, threshold=2% of S&P 500 Index

Model Mean of Residual Variance of | Standard Deviation of | Number of
Residual Residual intervals
3,11 0.084646 41.14148 6.414162 87
(3,1,0) 0.093201 41.90288 6.473243 87
(2,1,3) 0.114031 37.68062 6.138454 87
(2,1,0) 0.091409 42.38462 6.510347 87
(1,1,3) 0.099771 41.4015 6.43440 87
(1,1,2) 0.093127 41.76005 6.462202 87
(1,1,0) 0.095328 43.36592 6.585281 87
(0,1,3) 0.08993 43.17434 6.570719 87
(0,1,2) 0.090155 42.4362 6.514308 87
(0,1,1) 0.08993 43.17434 6.570719 87

Remark 4.2.2: For stock X, we compare Table 3.3.4, 4.2.1, with Table 4.2.2, we notice that
nonlinear model 2 with time varying coefficients under unequal interval data partitioning process
provides least variance and standard deviation of residual error. Similarly, for stock Y, comparing
Table 3.4.1, 4.2.1 with Table 4.2.3; for S&P 500 Index, comparing Table 3.5.1, 4.2.1 with Table

4.2.4, we have the same conclusion.

4.3 Prediction and Comparison on Overall Data Sets

In Sections 4.1 and 4.2, using nonlinear continuous time varying stochastic models, we derived
time series models. In this section, we compare our study of Sections 4.1 and 4.2 with the existing
time series models, namely, k-th moving average model, k-th weighted and k-th exponential
weighted moving average models [13,38,39]. A comparative study is made in the context of three
overall data sets. In fact, the following models are compared with each other.

® Time series model (ARIMA) [10,12]

® k-th moving average model (Shi’s model 1) [13,38,39]

® k-th weighted moving average model (Shi’s model 2) [13,38,39]
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®  k-th exponential weighted moving average model (Shi’s model 3) [13,38,39]

® Nonlinear Models with constant coefficients, Chapter 3

® Nonlinear Stochastic Model 1 on Overall Data Set, Section 4.1

® Nonlinear Stochastic Model 2 on Overall Data Set, Section 4.2

We summary the results for stock X, stock Y and S&P 500 Index in Table 4.3.1 , Table 4.3.2 and

Table 4.3.3 respectively.

Table 4.3.1 Comparison Cited Models in Section 4.3 for Stock X

Model Variance of Standard Deviation
Mean of Residual
Residual of Residual
ARIMA 0.6385010 57.39102 7.575686
k-th Moving Average Model 0.6342918 57.03750 7.552318
k-th Weighted Moving 0.6359891 57.14087 7.559158
Average Model
k-th Exponential Weighted 0.8944923 64.64898 8.040459
Moving Average Model
Nonlinear Models with -0.6097021 131.2354 11.45580
Constant Coefficients
Nonlinear Model 1 with Time 0.628727 57.38475 7.575272
Varying Coefficients
Nonlinear Model 2 with Time 0.623089 56.59861 7.523205

Varying Coefficients

Remark 4.3.1: For stock X, five models perform pretty much close to each other. They are

ARIMA model, k-th moving average model, k-th weighted moving average model, nonlinear

stochastic models 1 and 2 with time varying coefficients. Among these models, nonlinear

stochastic model 2 with time varying coefficients has the least variance and standard deviation.
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Table 4.3.2 Comparison Cited Models in Section 4.3 for Stock Y

Model Variance of Standard Deviation
Mean of Residual
Residual of Residual
ARIMA 0.00725343 0.3419923 0.5848011
k-th Moving Average Model 0.00748872 0.3418268 0.5846595
k-th Weighted Moving 0.00741209 0.3411141 0.5840498
Average Model
k-th Exponential Weighted 0.01503370 0.3773675 0.6143024
Moving Average Model
Nonlinear Models with -0.01147757 0.6033852 0.776779
Constant Coefficients
Nonlinear Model 1 with Time 0.015286 0.344827 0.587220
Varying Coefficients
Nonlinear Model 2 with Time 0.013675 0.340876 0.583846

Varying Coefficients

Remark 4.3.2: Like stock X, for stock Y, five models perform pretty much close to each other.

They are also ARIMA model, k-th moving average model, k-th weighted moving average model,

nonlinear stochastic models 1 and 2 with time varying coefficients. Among these models,

nonlinear stochastic model 2 with time varying coefficients has the least variance and standard

deviation.

Table 4.3.3 Comparison Cited Models in Section 4.3 for S&P 500 Index

Model Variance of Standard Deviation
Mean of Residual
Residual of Residual
ARIMA 0.07225937 46.2575 6.801286
k-th Moving Average Model 0.08731528 59.17083 7.692258
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k-th Weighted Moving 0.07014848 46.25595 6.801173

Average Model
k-th Exponential Weighted 0.09544027 56.68555 7.52898
Moving Average Model
Nonlinear Models with 0.5835638 78.5180 8.861039

Constant Coefficients

Nonlinear Model 1 with 0.058922 46.90737 6.848895

Time Varying Coefficients
Nonlinear Model 2 with 0.071906 46.27549 6.802609

Time Varying Coefficients

Remark 4.3.3: In Table 4.3.3, for S&P 500 Index, four models perform pretty much close to each
other. There are ARIMA model, k-th weighted moving average model, nonlinear stochastic
models 1 and 2 with time varying coefficients. Among these models, k-th weighted moving
average model has least variance and standard deviation of residual error. We note that our

nonlinear model 2 is reasonably close to linear weighted model.

From above discussion, we draw a few conclusions:

® For all three datasets, nonlinear stochastic models with time vary coefficient have less
variance and standard deviation of residual than the nonlinear models with constant
coefficients.

e Nonlinear stochastic model 2 with time varying coefficients has the least variance and
standard deviation of residual among all models for two data sets, namely, stocks X and Y.

® Dr. Shi’s k-th weighted moving average model [38] has the least variance and standard
deviation of residual among all models for one dataset — S&P 500 Index. We remark the
standard deviation of nonlinear stochastic model 2 is larger 0.01954, that is, about 0.04%

larger than Dr. Shi’s k-th weighted moving average model.

Knowing the performance of nonlinear stochastic models with constant coefficients, we present
Tables 4.3.4, 4.3.5 and 4.3.6 for remaining six models, namely, ARIMA model, k-th moving
average model, k-th weighted moving average model, k-th exponential weighted moving average
model, nonlinear stochastic models 1 and 2 with time varying coefficients. These tables contain
the actual and forecasted values for three data sets.
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Table 4.3.4 Actual and Predicted Price for Stock X

Actual Predicted Value
t Value ARIMA k-th k-th k-th Exp. | Nonlinear | Nonlinear
Weighted | Weighted | Model 1 Model 2
848 685.19 690.5668 683.002 687.8663 688.95 690.5245 | 688.9735
849 685.33 684.6626 | 669.0717 | 678.8684 | 680.7026 684.642 684.7898
850 657 685.3417 | 675.2173 | 683.2993 | 684.0164 | 6853423 | 685.6791
851 649.25 654.6294 | 634.8802 | 645.5674 | 648.7488 | 654.5775 655.224
852 631.68 648.5779 | 613.5021 | 636.6892 | 640.2909 | 648.5692 | 647.6274
853 653.2 630.1105 | 601.3531 | 622.4698 | 6253764 | 630.1352 | 630.6804
854 646.73 654.9494 | 649.3253 | 655.5306 | 655.3039 | 655.0986 | 654.9312
855 638.25 646.2265 | 659.2641 650.889 649.8597 | 646.1798 | 647.0794
856 653.82 637.5815 | 630.9644 | 632.4086 | 633.6497 | 637.5274 | 635.8812
857 637.65 655.0054 | 655.3506 | 657.6908 | 656.6988 655.16 654.9123
858 615.95 636.504 639.1148 | 636.6878 | 637.1356 | 636.3224 | 637.4456
859 600.79 614.2723 | 587.4148 | 601.4316 605.362 614.1321 | 612.8671
860 600.25 599.5327 | 562.7062 | 588.4312 | 591.9794 | 599.4835 | 599.1939
861 584.35 600.2053 | 576.8988 | 595.1241 | 597.1468 | 600.2029 601.133
862 548.62 583.0321 | 566.9171 | 576.6775 | 579.0589 | 582.9814 | 583.1959
863 574.49 545.2863 | 505.6626 | 528.6499 533.91 545.4584 | 544.1784
864 566.4 576.4021 | 550.7285 | 573.7575 | 574.4719 576.695 574.846
865 555.98 565.8405 | 575.6357 | 571.1122 | 570.1095 | 565.7497 | 566.9464
866 550.52 555.2441 | 549.3242 | 548.4349 | 550.4871 | 555.1378 | 553.4377
867 548.27 550.1295 | 532.6924 | 545.7815 | 547.0418 | 550.0745 | 549.7962
868 564.3 548.1087 | 536.8028 | 545.8932 | 546.8686 | 548.0856 | 546.3439
869 515.9 565.4388 | 572.9851 | 569.0178 | 567.9075 | 565.6321 | 565.2503
870 495.43 513.1611 | 496.6788 | 502.3305 | 506.0323 | 512.4411 | 512.5852
871 506.8 493.965 434.953 471.6746 | 478.8219 | 493.7756 | 491.6517
872 501.71 507.562 478.7335 505.019 506.1324 | 507.7206 | 505.5978
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Table 4.3.5 Actual and Predicted Price for Stock Y

Actual Predicted Value

t Value ARIMA k-th k-th k-th Exp. | Nonlinear | Nonlinear
Weighted | Weighted | Model 1 Model 2

5631 83.8 84.82902 | 86.77076 | 85.95206 | 85.54406 | 84.87698 | 84.7722
5632 | 85.66 84.00733 87.0601 84.66872 | 84.41756 | 83.74178 | 83.90168
5633 | 85.05 85.66035 | 87.22635 | 86.23666 | 86.03169 | 85.51144 | 85.77717
5634 | 85.47 85.15029 | 86.28798 | 85.54065 | 85.43127 | 85.16966 | 85.14353
5635 | 92.57 85.52184 | 85.80557 | 85.64303 | 85.62554 | 85.30488 | 85.46407
5636 97 92.53652 | 97.42856 | 94.78931 | 93.93159 92.758 92.42399
5637 95.8 97.25259 | 107.4367 | 100.8205 | 99.56975 | 96.75397 | 97.02509
5638 | 94.62 96.03867 | 102.1023 | 97.29214 | 96.84044 | 95.48694 | 96.09939
5639 97.1 94.72032 | 94.26917 | 94.38129 | 94.52896 | 94.60442 | 95.00356
5640 | 94.95 97.146 97.17758 | 97.85285 | 97.66013 | 97.20943 | 97.29875
5641 | 89.07 95.14956 | 95.76419 | 94.89111 | 94.93671 | 94.90279 | 95.07715
5642 88.5 89.20548 84.0502 86.72816 | 87.58486 | 88.98043 | 89.02443
5643 | 86.79 88.50399 | 81.45928 | 86.72795 | 87.39757 | 88.74691 | 88.18962
5644 85.7 86.87246 | 83.05968 | 85.62383 | 85.99651 | 86.91702 | 86.35764
5645 86.7 85.75254 | 83.14882 | 84.53992 | 84.89636 | 85.66368 | 85.31255
5646 | 86.25 86.74345 | 85.69431 | 86.68557 | 86.72493 | 86.83622 | 86.48165
5647 | 85.38 86.34851 | 86.61938 86.425 86.38849 86.1994 | 86.26917
5648 | 85.94 85.45339 84.8209 84.94762 | 85.08256 | 85.36444 | 85.54056
5649 | 85.55 85.9905 85.31589 | 8598491 | 86.02736 | 85.99153 | 86.15072
5650 | 85.73 85.63656 | 85.58075 | 85.61227 85.6082 85.54971 | 85.74118
5651 | 84.74 85.80065 | 85.76531 | 85.66177 | 85.67719 | 85.70833 | 85.81162
5652 | 84.75 84.82062 | 84.19112 84.5681 84.68931 | 84.76484 | 84.6882
5653 | 83.94 84.80058 | 83.82978 | 84.54765 | 84.62527 | 84.73972 | 84.61102
5654 | 84.15 84.01544 | 83.17927 | 83.60801 83.7308 83.99208 | 83.83675
5655 | 86.15 84.19971 | 83.51475 | 84.04115 | 84.10393 | 84.12795 | 84.05082
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Table 4.3.6 Actual and Predicted Price for S&P 500 Index

Actual Predicted Value
t Value ARIMA k-th k-th k-th Exp. | Nonlinear | Nonlinear
Weighted | Weighted | Model 1 Model 2

14845 | 931.8 900.8314 | 922.4829 | 909.6238 | 905.9727 | 902.5525 | 900.9227
14846 | 927.45 | 929.2406 | 970.9482 | 944.2084 | 939.3075 | 932.9931 | 929.0251
14847 | 934.7 925.1714 | 953.0097 | 932.0198 | 929.1136 | 925.6639 | 925.1775
14848 | 906.65 | 933.7874 | 944.5406 | 936.7494 | 935.8587 | 935.8555 | 933.9431
14849 | 909.73 | 906.9402 | 895.3576 | 899.2609 | 901.1965 | 904.6217 | 907.0545
14850 | 890.35 | 910.8315 | 889.0191 | 904.3632 | 906.3103 | 911.6803 | 911.0914
14851 | 870.26 | 891.0103 | 870.3993 | 884.6703 | 886.3622 | 888.6707 | 891.0485
14852 | 871.79 | 873.1138 | 843.0015 | 860.8976 | 865.2716 | 870.6269 | 873.2177
14853 | 842.62 | 873.4106 852.11 868.7196 | 870.5928 | 872.5018 | 873.1921
14854 | 843.74 | 844.7466 | 810.8334 | 832.4831 | 837.2048 | 840.9775 | 845.0018
14855 | 850.12 | 846.7019 | 835.1808 | 841.1104 | 843.4486 | 845.4405 | 846.3571
14856 | 805.22 | 850.2321 | 836.0299 | 848.9394 | 849.8067 | 849.7196 | 850.1915
14857 | 840.24 | 808.6526 | 790.8013 | 796.2332 | 801.0583 | 803.0576 | 808.5679
14858 | 827.5 841.9541 | 837.8833 | 841.4893 841.914 844.4779 | 841.5228
14859 | 831.95 | 825.9884 | 813.0403 | 827.1792 | 827.3513 | 824.1323 | 826.4057
14860 | 836.57 | 834.0853 | 855.8398 | 834.8218 | 834.2957 | 833.7654 | 833.6063
14861 | 845.71 | 836.0695 | 841.6322 | 838.2363 | 838.3141 | 835.7427 | 835.7924
14862 | 874.09 844.725 838.8276 | 847.1184 | 846.0498 | 846.1652 | 845.2083
14863 | 845.14 | 872.1378 | 915.9827 | 886.4861 | 881.3798 874.839 | 871.5874
14864 | 825.88 | 844.9611 | 849.1547 | 841.3719 | 842.5598 | 842.5651 | 845.1329
14865 | 825.44 | 828.8902 | 812.1273 | 818.3743 822.268 826.9521 | 828.9131
14866 | 838.51 | 825.9724 788.507 816.5074 | 819.2051 | 825.8489 | 826.2782
14867 | 832.23 | 837.8741 | 832.4872 | 841.8058 | 840.0885 | 839.0741 | 838.1304
14868 | 845.85 | 832.6112 852.194 834.7648 | 833.7577 | 831.2401 832.112
14869 | 868.6 845.546 846.6754 | 849.1995 | 848.8302 | 847.0508 | 845.5924
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Then we compute the basic statistics for residual errors using different predicted models for the

three data sets. Table 4.3.7, 4.3.8 and 4.3.9 contain the results.

Table 4.3.7 Basic Statistics by Using Different Predicted Models for Stock X

Stat. | ARIMA k-th k-th k-th Exp. Nonlinear Nonlinear
Weighted Weighted Model 1 Model 2
Mean | 6.979054 -9.14724 1.737706 3.528108 6.95156 6.495499
Var. | 312.6866 868.8794 461.1024 406.0678 312.5214 327.0268
S.D. | 17.68295 29.47676 21.4733 20.15112 17.67828 18.08388
Table 4.3.8 Basic Statistics by Using Different Predicted Models for Stock Y
Stat. | ARIMA k-th k-th k-th Exp. Nonlinear Nonlinear
Weighted Weighted Model 1 Model 2
Mean | 0.031855 0.247946 0.096411 0.067641 -0.0583 -0.0523
Var. | 5.767871 16.25066 6.582993 5.9614 5.6971 5.741183
S.D. | 2.401639 4.03121 2.565734 2.441598 2.38686 2.396077
Table 4.3.9 Basic Statistics by Using Different Predicted Modelsfor S&P 500 Index
Stat. | ARIMA k-th k-th Weighted k-th Exp. Nonlinear | Nonlinear
Weighted Model 1 Model 2
Mean | 1.73382 -0.96296 0.579749 1.01513 1.362997 1.717323
Var. | 406.8795 850.3763 463.5857 430.691 423.539 404.9443
S.D. | 20.17126 29.16121 21.53104 20.7531 20.58006 20.12323
Table 4.3.10 Summary of Predictions for Three Data Sets
Data ARIMA k-th k-th k-th Exp. Nonlinear | Nonlinear
Set Weighted Weighted Model 1 Model 2
Stock X 5 5 5 3 3 4
Stock Y 4 4 5 1 6 5
S&P 500 5 8 5 1 2 4
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Remark 4.3.4: From Table 4.3.7, 4.3.8 and 4.3.9, we conclude that the statistics of using
different model to predict a future value, the nonlinear stochastic model 1 with time varying
coefficients model has less standard deviation of residual for two data sets stock X and stock Y.
For S&P 500 Index, our nonlinear stochastic model 2 with time varying coefficients has the least
standard deviation of residual. Table 4.3.10 summarizes the frequency of best model when
predicting three data sets using different models. We further note that Table 4.3.10 summarizes
the frequency of the best performance of models under three data sets predicted values. This
summary in the context of Table 4.3.7, 4.3.8 and 4.3.9 suggests that nonlinear stochastic model 2

with time varying coefficients is robust with respect different data sets.

4.4 Conclusions

In Section 4.3, we studied prediction and comparison about the performance of presented and
existing models. This was based on three overall data sets. So far the formulations of stochastic
nonlinear Models 4.1.1 and 4.2.1 with time varying coefficient were utilized for the data fitting.
We note that the performance of these models in the framework of data fitting is superior than the
existing time series models nonlinear stochastic models 1 and 2 for overall data. Due to the nature
of these models, the forecasting problem is open. This problem will be part of our future research

plan.
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Chapter 5
European Option Pricing

5.0 Introduction

In this chapter, we investigate the option pricing problem in the frame of nonlinear stochastic
models described in Chapters 3 and 4. By employing the nonlinear stochastic models of stock
price process, the formulas of option pricing are derived. In particular, we derive the European
call and put option pricing formulas of nonlinear stochastic models 1, 2 and 3. These results are

presented in Sections 5.1, 5.2 and 5.3.
5.1 European Option Pricing for Nonlinear Stochastic Model 1

The probabilistic approach to pricing options will result in a price expressed as the discounted
expected value of a claim with respect to a probability measure. The solution process of

stochastic differential equation in (1.3.1) is a stochastic process adapted to Brownian filtration

{F, } > - Under conditions (1.3.2) and (1.3.3) it has a unique solution process [23, 28]. We recall

that (4.1.1) has a unique solution of equation (4.1.1).
The nonlinear stochastic model 1 (Section 4.1) with time varying coefficients, takes the following
form
o2
dS, =(a, InS, + p, +7t)8tdt +0,5,dW,, S(0)=S,,

where, coefficients ¢, f and o are time varying smooth functions, and W, is Brownian motion.

In Section 4.1, by using the transformation Y, =InS,, equation (4.1.1) is transformed into linear

form

dyY, =(a,Y, + f,)dt + o, dW,.
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The solution to this stochastic differential equation is

t t
Y, = ¢th0 + I¢t,sﬁsds + j¢t,so-sdws )
t t

t t
where @, = exp(jasds), and ¢, = exp(.[audu).

to s

ThenY, can be written as

t t t t t
Y =Y, exp(J.anS)+j[exp(IaUdU)Jﬂsds+j(exp(faudu)JadeS . (5.1.1)
ty t S ty S

Then by using the inverse transformation of “In”, we obtain

S, = exp[Yto exp(jf ads)+ j[exp(j- a, du)JﬂSdS + j-(exp(j. a, du)]adeSJ (5.1.2)

Remark 5.1.1: For nonlinear stochastic model 1 with constant coefficients (3.1.1) andt, =0,

(5.1.1) and (5.1.2) reduce to

t t
Y, =InS =e”Y, + ﬁjea“_s)ds + UIe“(t‘s)dWS
0 0

t
=e“Y, +£(e"’t —1)+oe"‘tj'e""deS (5.1.3)
o 0
and
B at at (t,-as
at —(e“' =1)+oe” [je” " dW
S, =S, e“ ' : (5.1.4)
respectively.

Now, let V be the European option for a stock with respect to nonlinear stochastic model 1 with
time varying coefficients (4.1.1). V(S,1) is the value of the option at time t, where S, is the

stock price defined in (5.1.2). The strike price K and maturity time T are as defined in Section 1.1,

and r is fixed interest rate. Applying to Theorem 1.1.2, we have
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S. —K),0}, call
V(S.1) = E®[eTVC, | ], where C, = 42X {(5r —K).05. (5.1.5)
maX{(K - ST )70}5 pUt

There is no a simple formula to compute the value of V (S,t) . To compute the numerical value of

V(S,t), we use equations (5.1.2) to simulate the value of S; and then compute the expected

value in (5.1.5).

From (5.1.1), knowing S,, Tand Y; =1InS;, let t; =t, Sto =S, andd =T —t, for nonlinear

stochastic model 1 with constant coefficients, we note that Y; is normally distributed with

.
E[Y:]1= E[e“”‘” InS, +£(e“”‘” -+ aje“”-“dws]
a t

.
=e*’ InS, +£(e“9 1)+ a.fe“(T’s)E(dWs)
o t

=e”InS, +ﬁ(e"“9 -1,
o
and

.
Var(Y;) = Var(e“”‘” InS, + s €TV —1)+ aj e dw, J
a t

.
=0’ Iezo’(T‘”Var(dWS )
t

T
_ O_zJ‘eza(Tfs)ds
t

S )

Thus, for European call option, (5.1.5) reduces to

2
e’ InS, +ﬂ(e"’g —1)+ j—(ez"’g —I)Z

V(S,t)=E°[e"™C, |F,] =E?e ™Y e a @ —K ||, (.16

where Z is standard normal random variable.

117



First, we establish for the range of values of Z the integrand is non-zero.

InK —e“Ins, -2 (e -1y
a

{2

2a

2
e“’ s, +ﬂ(e“9—l)+ (e2a<9 l)Z
e 2a — K >0 is equivalentto Z >

InK —e“InS, —ﬁ(e“‘g -1)

By letting d = - a , (5.1.6) reduces to
O (,2qa0
—\e -1
\/205 ( )
b T e
«2 e lnSt+ % -1+ g2 _| e 2
V(S,t) = je—rg 2a ~K dz
4 N2

2 e s +L (e*"fl)Jr1 e 1 @ 2
:e‘“g'[e dz— ‘”K.[—dz

d

2

Z 20{(9 k

e’ InS, +'H(e”” -H-roce BN 20‘

=¢ dz — Ke"’d(-d)
d Y, 2
: o) g
e InS, +2 (620 -1)-rg+Z (2 _1)% @ 2
a 4a dZ _ Ke‘“gq)(_d)

—e [*—5s

(e -1)—-d J — Ke"’d(~d). (5.1.7)

ab Bt \ p. O (200 2
e ln5‘+a(e 1] r0+4a (e 1)(13 o
2a

Similarly, the formula corresponding to a European put option is
e’ s, +ﬁ(e“‘9 1)+ o’ (ez.ze l)Z
V(S,t) = EQ[efr(Tft)CT |F] = E°le"™Y K-¢e 2a , (5.1.8)

+

where Z is standard normal random variable.

Again, first we establish for the range of values of Z the integrand is non-zero.
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ab ﬂ ab
00 lnSt+£(e“‘9—l)+ Lz(ezaa_l)z . . InK —e“In St — E(e — 1)
K-e “ 2a >0 is equivalent to Z < \/ =d.

2
o 2a60

— (e —1
> e -1)
From the above discuss, (5.1.8) reduces to

2
e"‘glnst+§(e"9—l)+ Z—a(ez"g—l)z e 2

d
VS,t)= e K-e dz
(S.1) j =

e ins, +2 (e 4)49#’—2 20 | 2
V(S,t) = Ke™d(d)—e @ il )CD[d —1/;—(&“9 —1)}. (5.1.9)
(04

Illustration 5.1.1: In the following, we outline an illustration to exhibit the usefulness of the

resented result. Suppose the yearly interest rate I = 6.5% , by applying (5.1.7) and (5.1.9), the
call and put option price are computed and recorded in Table 5.1.1 for three data sets. Similarly,

the call and put option price of GBM model are computed and recorded in Table 5.1.2 for three

data sets.

Table 5.1.1 Call and Put Option Price of Nonlinear Model 1
T Stock X Stock Y S&P 500 Index

S,=691.48 S,=84.84 S,=903.25

K=700 K=90 K=910
call put call put call put

20 18.17 32.71 2.96 7.76 13.56 17.27
60 27.53 52.99 6.63 10.76 27.60 25.29
100 30.55 65.45 9.21 12.71 38.22 29.96
200 30.75 83.54 13.83 15.93 59.61 36.77
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Table 5.1.2 Call and Put Option Price of GBM Model

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 23.18 29.25 2.96 7.81 13.64 17.21
60 44.42 45.63 6.69 10.92 2791 25.16
100 59.71 56.09 9.39 12.99 38.80 29.77
200 89.00 73.46 14.48 16.54 61.05 36.52

5.2 European Option Pricing for Nonlinear Stochastic Model 2

The nonlinear stochastic model 2 (Section 4.2) with time varying coefficients, takes the following

form
dSt =(a,S, +ﬂtStN +%O'tZStZN_1)dt + O'tStN th, S(0)=S,,

where, coefficients a, f and o are time varying smooth functions, N is a constant
0<N<1.2,N #1, and W, is Brownian motion. An argument about the existence and

uniqueness of solutions of this equation can be reformulated.
1-N
In Section 4.2, using the transformation Y, = " L

, equation (4.2.1) was transformed into linear

form
dYt =(1-N)a,Y, + S, )dt + O'tth.

The solution to this stochastic differential equation is as follows

t t
Yo=Y, +[4.B0s+ |4 oW,
ty t,

to

where, @, = exp(j (1- N)anS}, and ¢ ;= exp“(l - N)audu].
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ThenY, can be written as

Y =Y, exp{j(l— N)er, dsj+.[ (epr(l— N)e, duBﬂ ds +j[exp[j(1— N)e, duDo- dw,

tO 0

(5.2.1)

I-N

Then by using the inverse transformation of Y, = 7 L N

S, =(1-N)
1
1-N
exp( (1-N)a, ds}+j(exp(j(l— N)e, dunﬂ ds +I[exp(j(1— N)a, duBa dw
t

(5.2.2)

Remark 5.2.1: For nonlinear stochastic model 2 with constant coefficients (3.2.1) and t, =0,

(5.2.1) and (5.2.2) reduce to

1N t t
Y, = 18i - :e(l—N)atVO +ﬂJ'e(1—N)a(t—s)dS+O_J'e(1—N)a(t—s)dWS
0
Sl—N ﬂ t
=0 Mt 7 (g-M_1)4 GI e!"Net=9gw (5.2.3)
1-N a(l-N) )
and
1
ﬂ t 1-N
S, =| SiNet-Mat L Z (p=Nat _ 1y 4 (1 N )aIe(l‘N)“<t‘5)dW5 : (5.2.4)
o 0
respectively.

Now, let V' be the European option on a stock with respect to nonlinear stochastic model 2 with
time varying coefficients. V (S,t) is the value of the option at time t, where S, is the stock price

process defined in (5.2.2). The strike price K and maturity time T are as defined in Section 1.1. r

is fixed interest rate. Applying to Theorem 1.1.2, we have

S. —K),0}, call
V(S,1) = E[eTVC, |F.], where C, = " 1Cr ~K).0) (5.2.5)
maX{(K - ST )70}5 pUt
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There is no a simple formula to compute the value of V (S,t) . To compute the numerical value of

V(S,t), we use equations (5.2.2) to simulate the value of S; and then compute the expected

value in (5.2.5).

For nonlinear stochastic model 2 with constant coefficients, from (5.2.1), knowing S, and T,

letting t, =t,S, =S, and@ =T —1, we note that Y; is normally distributed with

-N T
E[Y—l— ] — E e(l—N)a(T—’[) Stl + ﬂ (e(l—N)a(T—t) _ 1) + O_J‘e(l—N)tJt(T—S)d\NS
I-N  (I-N)a t

— p(-N)a? Stl_N 4 b
1-N  (1-N)a

T
(e(l—N)aB ~1)+ E(JJ’e(l—N)a(T—s)dWs]
t

B Sl—N
— e(l N)ab “t + ﬂ

e(-Nad _q ’
1-N (I—N)a( )

and

- T
Var(fy) =Var| ete0 ST B gy, o[ emerogy
1-N  (1-N)a t

T
_ O_zJ'ez(l—N)a(T—s)dS
t

2
o

_ e2(1-N)ad _ 1y
2(1- N)a( )

Hence, for European call option, (5.2.5) reduces to

V(S,)=E°[e""C; | ]

1

2 1-N
—EQ e Stl—Ne(l—N)aQ +£(e(1—N)a6 1+ (1=N) o (ez(l—N)ae —I)Z _K
o 2(1-N)

+

(5.2.6)
where Z is standard normal random variable.
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First, we establish for the range of values of Z the integrand is non-zero.

1
> N
[SSNG(IN)U[Q +£(e(1fN)a9 _1)+ (1 _ N)\/z(lO-—N)(EZ(lN)ae —l)Z —-K>0
a - a

KI—N _ Stl—Ne(l—N)aH _ﬁ(e(l—N)aH _1)

o’ 2(1-N)ab
e

KN _ Stl—Ne(l—N)aH _ﬁ(e(l—N)aﬂ _1)
Setting d = a , (5.2.6) reduces to

o’ 2(1-N)ab
10 e

is equivalent to Z >

V(S,t)

1 22

0 2 1-N >
_ J‘e—re St]—Ne(l—N)ae +£(e(l—N)a9 (- N)\/ o (ez(l—N)aH —I)Z _K e 4z
. o 20-N)x

© 2

1

1-N "5
_ efraj‘ Stl—Ne(l—N)aE‘ n ﬁ(e(l—N)aﬁ “)+(1-N) o (ez(l—N)aE’ _ l)Z € dz
4 a 2(01-N)x

—Ke " ®(-d) (5.2.7)
Similarly, the formula corresponding to a European put option is

V(S,t)=E°[e""C, | F]

1

2 1-N
—E°le || K - Stl—Ne(l—N)aH +£(e(1—N)a0 )+ (1-N) o (EZ(I—N)aB —I)Z ’
a 2(1-N)«

(5.2.8)

where Z is standard normal random variable.

We establish for the range of values of Z the integrand is non-zero.

2

1
1-N
K — Stl,Ne(lfN)mg +£(e(1—N)a6’ _1) +(1_ N) O-—(eZ(l—N)ae _1)2 >0
o 2(1-N)ex
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KN _ Stl—Ne(l—N)aé’ _E(e(pN)aa -1
& =d.

2

is equivalent to Z <
o 2(1-N)ad
- — e -1
e

V(S,t)

1 22

d

2 =N | 072
_ I e_rg K — Stl_Ne(l_N)ae _I_ﬁ(e(l—N)ae _1) +(1_ N) O-—(eZ(l—N)aE’ —l)Z e dz
o N2

2(1-N)a

—00

= Ke "’d(d) -

IS

1 z

d 2

1-N
o0 Sl—Ne(l—N)a6+£ e0-Nad _ 1y L (1= N o p20-Nao _ 1)z e dz
I(‘ a( )+(A-N) 2(1—N)a( ) N2

—00

(5.2.9)

Illustration 5.2.1: In the following, we illustration the usefulness of the above presented result. In

(5.2.7)and (5.2.9), &, f,0 and N are estimated from observations. Other parameters such as the

yearly interest rate is set to I' = 6.5% , by applying (5.2.7) and (5.2.9), the call and put option

price are computed and recorded in Table 5.2.1 for three data sets.

Table 5.2.1 Call and Put Option Price of Nonlinear Model 2

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 13.41 13.37 0.13 3.46 9.17 15.67
60 31.89 15.32 2.06 1.65 17.98 23.99
100 47.57 15.26 5.13 0.86 24.00 29.53
200 81.73 13.25 14.61 0.20 34.77 39.12
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5.3 European Option Pricing for Nonlinear Stochastic Model 3

Similarly, the nonlinear stochastic model 3, with time varying coefficients, takes the following

form
ds, = (S, + B,S} +o.S,)dt +5,S,dW,, S(0)=S,, (5.3.1)
where, coefficients ¢, f and o are time varying smooth functions, and W, is Brownian motion.

We note that the existence and uniqueness of solution process of (5.3.1) is justied in Section 3.3.

In Section 3.3 (Chapter 3), by using the transformation Y, = —S[l , equation (5.3.1) was
transformed into linear form
dY, = (.Y, + g)dt — oY, dW, .

The solution to this stochastic differential equation is
t
Y, = ¢th0 + J.¢t,sﬂsds )
ty

t

1 t
where, @, = €xp I(_as - ng)ds + {[GSdWS ,

to

t t
and ¢t,s = GXP(J.(—OZU - %O-uz)du - jaudwuj-

ThenY, can be written as

Y t
Y, = o + j P, ds (5.3.2)

t t t 1 t
exp(j(as + ;o-f)ds +| O'SdWSJ b eXp(j(—au - ondu- jaudwu]
t, to S s

Then by using the inverse transformation of Y, = =S,

Y t
S - b B i (5.3.3)

+
t t t t t
1 to L,
exp [J(as + ol + tjasolwsJ expu(—oxu - o) - !audwu
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Remark 5.3.1: For nonlinear stochastic model 3 with constant coefficients (3.3.1) and t, =0,
(5.3.2) and (5.3.3) reduce to

2 t 2 t
(—a—%)t—a jo dw, j- (—a—%)(t—s)—aLdW#

Y, =-S5, =Y,e +fe ds
0
0'2 t O'z
—(a+—)t—-oW, (a+—)s+oW (s)
=g 2 Y, +ﬁje 2 ds (5.3.4)
0
and
(o:+°'72)t+awt
S, = t . , (5.3.5)
1 (a+ZYs+oW (s)
——p j e 2 d
S0 0
respectively.

Similarly, let V be the European option on a stock with respect to nonlinear stochastic model 3
with time varying coefficients. V (S,t) is the value of the option at time t, where S, is the stock

price process defined in (5.3.3). The strike price K and maturity time T are as defined in Section

1.1. r is fixed interest rate. Applying to Theorem 1.1.2, we have

S, —K),0}, call
V(S,1) = E[e"TVC, |F.], where C, = " {Cr ~K).0) (5.3.6)
maX{(K - ST )70}5 pUt

There is no a simple formula to compute the value of V (S,1).

Ilustration 5.3.1: In the following, we illustrate the usefulness of the above presented result. To

compute the numerical value of V (S,t) , we use equations (5.3.3) or (5.3.5) to simulate the value

of S; and then compute the expected value in (5.3.6). Suppose the yearly interest rate I = 6.5%,

the call and put option price are computed and recorded in Table 5.3.1 for three data sets.
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Table 5.3.1 Call and Put Option Price of Nonlinear Model 3

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=600 K=70 K=800
call put call put call put
5 58.92 5.18 16.16 0.56 101.56 0.02
10 2.73 65.75 15.39 0.58 92.16 0.06
20 0 286.2 11.57 1.03 56.24 0.91
60 0 525.13 0.11 17.25 0 210.66
100 0 556.44 0 38.04 0 431.09
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Chapter 6
Option Pricing for Hybrid Models

6.0 Introduction

We studied GBM models and nonlinear stochastic models under the different data partitioning
processes in Chapter 2, 3 and 4. In Chapter 5, we derived the European option pricing formulas
for three nonlinear stochastic models, and apply to three data sets. In this chapter, we first derive
the European call and put option pricing formulas in Section 6.1 for Hybrid GBM Models. In

Section 6.2, we present option pricing formulas for hybrid nonlinear stochastic models.
6.1 Option Pricing for Hybrid GBM Models

In 2003, G.Yin, et proposed a hybrid GBM model (HGBM). In HGBM model, drift and volatility
are not deterministic functions anymore. They are perturbed by stochastic process such as a
Markov Chain.

By following development of a class of stochastic hybrid GBM system [16,44]:

dS = uu(t.p(H)Sdt + o (t, 7 (t)SAW,, S(t,) = S, t %,

Sk =GS>S ) )y S(t) =S,

M =M (S,n),n(t) =1,k € 1(1,0), (6.1.1)

where, S is a continuous price of the stock, u(t,77(t))and o(t,77(t)) are drift and volatility
governed by the underlying discrete events that can be modeled by a stochastic process 77(t) with

a finite state. Figure 6.1.1 illustrate system switching from state k to state k+1 when at time t,,

event occurs, a jump ¢”(t) also occurs here.
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state k

event occurs

state k+1

(Hi1:0)

Figure 6.1.1 State Switch Illustration of Hybrid GBM

In Chapter 2, we develop several modified GBM models which are HGBM models. The solution

process of these HGBM models takes the general form:

1
(#4 —50'12 oW

S,e
—1@Se

1 1
(4 *50'12 Ity +o W +(uy *50'22 Y(t=t)+om (W -W )

Let At =t, —0,At, =t, —t,,.,At, , =t —t , At =t—t

m?°

1 1
¢ % S (#my _Eo_é—l Yt—tm ) +om W Wy )+ Ao W+ —5(7;%1 )t =0)+07, (Wy, —-0)
m-1°* 0

0<t<t

t <t<t,

t  <t<t

AW, =W, =W, AW, =W, =W, .., AW, , =W, —W, AW =W, —W, ., the price process

is represented as following

1
(4 —50'12 oW

S
#S.€

Xy

1 1
(m—thAqﬂnMMeuh—Eoba—nwﬂzWWAMJ

i=1

s.[ o e

i=l

1 m-1 1 m
m-1 wmmemn%wwan%M3#Wwaw

0<t<t
t <t<t,

(6.1.2)

t  <t<t

m-1 —

where, [0,t)),[t,,t,),[t,,1,), [t;,1,),[t,,t)... [t .t,) beany one of data partition processes

which are defined in Chapter 2.
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Now, let V be the European option on a stock with respect to hybrid GBM model (6.1.1).
V (S,t) is the value of the option at time t, where S, is the stock price process defined in (6.1.2).

The strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate.

Applying to Theorem 1.1.2, we have

max {(S; — K),0}, call

V(S,t)=E°[e"™VC, | F], where C, = 6.1.3
(S,1) [ 1 RLw T max{(K —S,),0}, put ( )
For hybrid GBM model, from (6.1.3), by knowing S, and 8 =T —t, we note that
S,
Y = In —m-1 | isnormal distributed with
S,I1 ¢
i=1
ENY, 1= E[(um ORI 4, 0w, )+ =S - S
1 2 m-— 1 2 m 1 2
=y ——o)T =1, )+ z (4, — =07 )AY, :Z (44, ——0])AY |,
2 i=1 2 i=1 2
and
Var(Y;) =Val’((2(,ui —%af)mi +ZJiAWi]
i=1 i=1
m-1 m
= 0'; T-t, )+ ZaizAti = ZaizAti .
i=1 i=1
Hence, for European call option, (6.1.3) reduces to
V(S,t)=E°[e"""C, | F]
m_l g(ﬂi—lgiz)mih %aﬁmiz
= EQ|e TV SOH ¢iei:] 2 = - K ’ (6.1.4)
i=1

+
where Z is standard normal random variable.

First, we establish for the range of values of Z the integrand is non-zero.
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m-—1 Z(;z.——a. )AL, + za, AL Z So _ ¢|
SOH;/ﬁ,e' ‘ — K >0 is equivalent to Z > =l

=l \/ 5 oA,
i-1
g = S - oDAY
i=1
S H¢
Let d = = , (6.1.4) reduces to
\/ > o AL,
i=1

ZZ

m-1 $g o‘, YA + za AL Z 2
V(S,t) = je“{sol‘[qﬁ,e A ~K \e/%dz

Z
< mol Z(u.—fa, )AL, + zo, AL Z e 7
r9]501‘[¢,e rgKI—dz
d
2
I za AL Z
Z(ﬂ| 770—| )At -ro m-l 2

e
=gH S —Ke"d(-d
. ¢.£ i (~d)

i-1
(- Eafm- )2

Z(y,—fo', )At+za, At-rg M-l

e s, 1 ¢,je dz - Ke™d(~d)
d

i+=0o; i—r m-—1 m
_ eE](#. 3 )At HSO( QJCD( ZO'iZAti _ d) _ Ke—rﬁq)(_d) )
i=l1

i=1

Similarly, the corresponding formula for a European put option is

V(S,t)=E°[e™"""C, | F]
_ EQ rT t)[K S lm_[l¢e'zl(#'_70| )AL + Zo‘, AtZJ

where Z is standard normal random variable.

B

+
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First, we establish for the range of values of Z the integrand is non-zero.

m-1 gﬁ(ﬂi *lo'iz)mi*, glﬂ'izmiZ
K-S, [Jge" °* >0
i=1

In mK_1 _g(ﬂi_;UiZ)Ati

s 14

is equivalent to Z <

(6.1.6) reduces to
Z2

d ml S (u—otiny+Soianz g 2
V= Jer| Kos [Tt 1S
e i=1 4

3 '—lUiz i—r n il
V(S,t) = Kead) et 2" HSo(Héj‘D(d— So2at).

i=1 I=

(6.1.7)

Ilustration 6.1.1: In the following, we illustrate the usefulness of the above presented result.

Suppose the yearly interest rate I = 6.5% , by applying (6.1.5) and (6.1.7), the call and put

option price of three data sets are computed and recorded in Tables 6.1.1 and 6.1.2 for Hybrid

GBM models 2.4.3 and 2.4.4, respectively.

Table 6.1.1 Call and Put Option Price of Hybrid GBM Model 2.4.3

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90
call put call put call put
20 22.19 12.99 2.06 5.30 11.57 106.96
60 95.38 12.97 5.99 6.04 34.26 130.94
100 165.04 8.68 9.56 6.32 50.87 148.54
200 373.42 3.76 18.20 6.37 80.60 180.52
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Table 6.1.2 Call and Put Option Price of Hybrid GBM Model 2.4.4

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 28.75 15.66 4.71 4.07 44.70 48.50
60 107.67 8.25 8.25 5.35 51.33 87.26
100 185.16 6.60 11.96 5.86 64.30 106.90
200 486.84 1.34 20.79 6.37 81.72 136.09

6.2 Option Pricing for Hybrid Nonlinear Stochastic Models

By following development of a class of stochastic hybrid dynamic system [16]:

dS =R, (t,S,n()dt + F,(t,S,7(1)dW,, S(t, ) = S, .t # 1,

S, =G(S, ., (t .t .S 1)), S(t)=S,,

77k+1 = M (S’Uk)’n(to) =770,k € |(1,00), (6.2.1)

where,

S is a continuous price of the stock,

2
g,

(t)
21 )S,,and F, =0o,,S,,

N
: _ NN o oNa _ N
for nonlinear model 2, F, =&, S, + B,+)S; + 5 o,0S sand F,=0,,S,

for nonlinear model 1, Fy = (&, InS, + S, +

and

for nonlinear model 3, Fy =, S, + ,Bn(t)Stz + O'j(t)St ,and F, =0, S,
F,(t,S,7(t)) and F,(t,S,7(t)) are governed by the underlying discrete events that can be

modeled by a stochastic process 77(1) with a finite state.
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Figure 6.2.1 illustrate system switching from state k to state k+1 when at time t, , event occurs, a

jump ¢”(t) also occurs here.

(A 12T i)
state k+1

(. Brr L)
state k

event occurs

Figure 6.2.1 State Switch Illustration of Hybrid Nonlinear Stochastic Model

In Chapter 3, we develop several nonlinear stochastic models which are hybrid nonlinear

stochastic models. The solution process of these hybrid stochastic models takes the following

form:
S,(t.t,,S,) S, =S, 0<t<t,
#S,(t,1,S)) S, =lim§,, t <t<t,
S, = i (6.2.2)

G Sty ,Sn) Sy =1m S, t  <t<t,

tty

where, [0,t)),[t,,t,),[t,,1,), [t;,1,),[t,,t)... [t .t,) beany one of data partition processes

which are defined in Chapter 2.
6.2.1 Hybrid Nonlinear Stochastic Model 1

The solution process of the hybrid nonlinear stochastic models 3.1.1 and 3.1.2 is given by,

at ﬂ(e““—1)+o-1j(‘)e‘”‘“’”dwS

S, €e” S, =S, 0<t<t,
g2t f—z(e“z“*‘lhnmzj{le"z“’”dws )
S — #S, e S, =1m§,, t <t<t,
t t—t; 5
ot (t-tm1) gi(eam L Ittm,l e“m (=) g )
m J—
¢m718m71 Sm% = lim Sta tm71 <t< tm

totn,

Recursively, we have
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ln St — eam (t—tp_ ) +am Aty +...+oAY ln SO
+ h’l¢ + eam(t—tm,l) h’l¢ s + eam (t—t ) +am_ Aty 1n¢ , +. .+ eam (t=t )+ Aty +.+a3Aty h’l¢
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Now, let V' be the European option on a stock with respect to hybrid nonlinear model 1. V (S, t)

is the value of the option at time t, where S; is the stock price process defined in (6.2.4). The

strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate. Applying

to Theorem 1.1.2, we have

max{(S; —K),0}, call

V(S,t)=E°[e"""C, | F.], where C; = {max{(K s 0n put
ASE)

For hybrid nonlinear model 1, by knowing S, and # =T —t, we note that InS; is normal

distributed with
3 ;A m-1 izamfﬁzAtmfﬁz
E[lnS;]1=e" InS,+Ing,  +| D e~ Ing, ,
i=2
Zi:amfjHAtm—jH
ﬁm (eam(T tor) 1)+ Zﬂm i (eam Aty l)elzl — ﬂ(T)a (625)
mfl
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T m-1
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Hence, for European call option,
V(S,)=E°e"TVC, |F] =E°l V(e —K) ],

where Z is standard normal random variable.

First, we establish for the range of values of Z the integrand is non-zero.

InK - p(T) _
o(T) ’

where, £#(T) and o(T) are defined in (6.2.5) and (6.2.6) respectively.

(M)+o(T)Z

e —K >0 is equivalent to Z >

Now we compute a European call option as

ZZ

e 2
N2

Similarly, the corresponding formula for a European put option is

V(S.0) = [e(e" M2 K )=—dz =e*T (o (T) — d) — Ke (). (6.2.7)
d

ZZ

d 2
V(s.h=[e(K —e”<T>+“<T>Z)ezﬁdz — Ke"’d(d) - T "D(d — o(T)) . (6.2.8)

Ilustration 6.2.1: In the following, we illustrate the usefulness of the above presented result.
Suppose the yearly interest rate I = 6.5% , by applying (6.2.7) and (6.2.8), the call and put
option price of three data sets are computed and recorded in Tables 6.2.1 and 6.2.2 for Hybrid

nonlinear models 3.1.1 and 3.1.2, respectively.
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Table 6.2.1 Call and Put Option Price of Hybrid Nonlinear Model 3.1.1

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put

20 3.54 16.17 0 3.27 1.98 35.93
60 8.03 10.40 0 9.75 61.27 0.64
100 0 92.73 0 12.58 170.64 0
200 0 169.69 0 21.40 262.25 0

Table 6.2.2 Call and Put Option Price of Hybrid Nonlinear Model 3.1.2

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put

20 9.27 7.66 0 12.76 0.40 31.67
60 9.10 8.86 0 15.74 3.08 31.02
100 0 123.62 0 19.09 61.14 0.36
200 0 171.43 0 21.37 192.99 0

6.2.2 Hybrid Nonlinear Stochastic Model 2

Similarly, the solution process of the hybrid nonlinear stochastic models 3.2.1 and 3.2.2 is given

by,
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mo =L — U, At =t =1, recursively, we have

-N
— ¢1_Nm 1-N, Sé 1 e(l_Nm)am(t_tm—l)Jr(l_Nm—l)am—lAtm—l+"'+(1_Nl)alAtl
m-1 @

I-N,

+ ¢;;_’I‘m '“¢11—N2 " (lﬂ_l N )e(I*Nm)a’m (t=ty ) +(A=Np_ap Aty +..+(1-Ny)a, At, (e(l_Nl)alAtl _1)
1 1

L g (lﬂz ™ (Nt PN i Bt 1Ny (=Nt _y

a,(I= N,
+ ¢1_Tm ﬂm—l e(l_Nm)am(t_tmfl)(e(l_Nmfl)amflAtmfl _1) + IBm (e(l_Nm)am(t_tmfl) _1)
m—
am—l(l_Nm—l) am(l_Nm)

tl
+¢rln—_l;lm‘.‘¢11—N2O_le(l—Nm)am(t—tm,l)+(1—Nm,1)am,lAtm,l+...+(1—N2)a2At2J‘e(l—Nl)al(tl—s)dWS
0

t2
+ ¢r}q__';lm . 21_N3 O-Ze(l_Nm)am (t=ty )+(A=Np ) Aty . +(1-N3 ) a3At J.e(lsz)az(tZ’S)dWs + ...
tl

tn1 t
1_Nm (1_Nm)am(t_tm— ) (I_Nm— )am— (tm— _S) (1_Nm)am (t—S)
+¢. "0, ! J' gt W + o J'e dw,

tna [

Hence,

1_Nm-¢—1 1_Nl

Stl_Nm+1 S(l)—Nl m-1 . Zm:(l—Ni)aiAti ﬂ (=N, )a, At
— i+l eI:I +—m e m)n _1
[1# o (1— Nm)( )

138



-1

j (lﬂi . )ej;I(lNi)aiAti (Nt
(=N

m-1 -
+ H
i=1 i
Z(l Nj)ajat; b

to, Ie(l ot () g\ +z (H(él Nj. ]ael = Ie(l_Ni)aim—s)dWS

ti

(6.2.10)

Now, let V be the European option on a stock with respect to hybrid nonlinear model 2. V (S, t)

is the value of the option at time t, where S; is the stock price process defined in (6.2.10). The

strike price K and maturity time T are as defined in Section 1.1. r is fixed interest rate. Applying

to Theorem 1.1.2, we have

max{(S; —K),0}, call

V(S,t)=E°[e""C, | F.], where C, = {max{(K Cs0n put
ASE)

1-N,,
For hybrid nonlinear model 2, by knowing S, and @ =T —1t, we note that Y; = is
—Nm
normal distributed with
SlNl m-1 Z(IN)aAI
Y ]_ (H¢|l Niii jel 1 + 'Bm (e(l_Nm)amAtm _1)
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2

O 200-N, e (Tt ;) 2
+ ——"——-(e L | =1 ) . 6.2.12
T )=0(T) (6:2.12)

Hence, for European call option,
1
V(S,)=E°[e""C; |R] = Eq{e_m_t)(((ﬂ(ﬂ+G(T)Z)(1— Ni) i - K) }

where Z is standard normal random variable.

First, we establish for the range of values of Z the integrand is non-zero.

K M)
(™) +o(T)Z)(1 - Nm))l—le — K >0 is equivalent to Z ANy :
o(T)

where, 1#(T) and o(T) are defined in (6.2.11) and (6.2.12) respectively.

Now we compute a European call option as

Z2

V(S.t)= Ie_rg(((ﬂ(T) + o)1= N,)), - Kjf/% @

ZZ

1 2

= [e (M) + oMZ)1-N,))w. \e/% dz - Ke"d(~d). (6.2.13)

Similarly, the corresponding formula for a European put option is

Z2

V(sH= | e'{K—((y(T)w(T)le—Nm))lLm)j%dz

1 2

= Ke™®(d) - [ & ((u(T)+(T)Z)(1~N,))w, f/gdz. (6.2.14)

Illustration 6.2.2: In the following, we illustrate the usefulness of the above presented result.
Suppose the yearly interest rate I = 6.5% , by applying (6.2.13) and (6.2.14), the call and put
option price of three data sets are computed and recorded in Tables 6.2.3 and 6.2.4 for Hybrid

nonlinear models 3.2.1 and 3.2.2, respectively.
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Table 6.2.3 Call and Put Option Price of Hybrid Nonlinear Model 3.2.1

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 29.06 33.76 6.01 9.49 3.49 1.45
60 55.40 10.04 8.56 13.13 4.15 2.08
100 74.16 9.68 6.30 11.76 27.22 32.74
200 114.6 9.06 13.57 20.97 53.77 59.20
Table 6.2.4 Call and Put Option Price of Hybrid Nonlinear Model 3.2.2
T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 92.56 105.79 17.06 22.34 4.33 0.59
60 50.09 19.55 40.90 44.69 4.98 0.58
100 61.06 22.46 19.68 23.50 5.02 1.20
200 84.54 29.72 16.38 21.94 9.23 14.66

6.2.3 Hybrid Nonlinear Stochastic Model 3

The solution process of the hybrid nonlinear stochastic models 3.3.1 and 3.3.2 is given by,
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Now, let V be the European option on a stock with respect to hybrid nonlinear stochastic model
3. V(S,t) is the value of the option at time t, where S; is the stock price process defined in

(6.2.15). The strike price K and maturity time T are as defined in Section 1.1. r is fixed interest

rate. Applying to Theorem 1.1.2, we have

S. —K),0}, call
V(S,t) = E®[e " IC, | F.], where C, = {zzig_ . ;Oi " (6.2.16)
AWAASE)

Illustration 6.2.2: In the following, we illustrate the usefulness of the above presented result.

There is no a simple formula to compute the value of V (S,t) . To compute the numerical value of
V(S,t), we use equations (6.2.15) to simulate the value of S; and then compute the expected

value in (6.2.16). Suppose the yearly interest rate I = 6.5% , by applying (6.2.16), the call and
put option price of three data sets are computed and recorded in Tables 6.2.5 and 6.2.6 for Hybrid

nonlinear models 3.3.1 and 3.3.2, respectively.
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Table 6.2.5 Call and Put Option Price of Hybrid Nonlinear Model 3.3.1

T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 420.52 0 35.75 0 56.62 0
60 298.64 0 32.59 0 55.61 0
100 279.83 0 30.44 0 54.63 0
200 291.04 0 31.85 0 53.65 0
Table 6.2.6 Call and Put Option Price of Hybrid Nonlinear Model 3.3.2
T Stock X Stock Y S&P 500 Index
S,=691.48 S,=84.84 S,=903.25
K=700 K=90 K=910
call put call put call put
20 353.42 0 45.34 0 79.12 0
60 295.16 0 50.79 0 78.17 0
100 338.64 0 53.46 0 77.24 0
200 315.10 0 54.45 0 76.21 0
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Chapter 7
Future Research Plan

The nonlinear stochastic modeling approach initiated in this work for solving forecasting and
option pricing problems generates several interesting research problems in the financial

engineering.
7.1 Data Smoothing Transformation

We note that a stochastic differential equation describes the continuous stock price process. The
data sets we apply in our study are daily stock prices. In our future research, we want to explore

the smoothing functions approach for better prediction and forecasting results.
7.1.1 Nonlinear Stochastic Model 1

In the following, a preliminary study with regard to nonlinear stochastic model 1 is presented.

j+n-1
Here, we apply the smoothing function Z; = — Z Si,J=12,..,T —n+1. Table 7.1.1 contains
n i=j

the result of AIC when we use value N = 3, and then apply to the Nonlinear Stochastic Model 1
using overall data set (Section 4.1). The basic statistics of the residual errors of fitted model are

recorded in Table 7.1.2.

Table 7.1.1 AIC of Time Varying Coefficients Nonlinear Model 1 (n=3)
of Different Models of Three Datasets: Stock X, Stock Y and S&P 500 Index

Stock X Stock Y S&P500 Index
(3,1,2) -5925.74 -34022.21 -128409.7
(3,1,1) -5667.26 -32847.02 -123984.7
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(3,1,0) -5600.38 -32401.51 -122989.2
2,1,3) -5925.82 -34016.82 -128410.7
2,1,2) -5927.59 -34019.93 -128409.8
2,1,1 -5575.21 -32161.64 -122653.9
2,1,0) -5566.89 -32090.21 -122485.6
1,1,3) -5927.38 -34019.00 -128404.0
(1,1,2) -5929.58 -34019.86 -128373.8
1,1, 1 -5549.04 -31995.15 -121906.5
(1,1,0) -5528.05 -31892.23 -121206.7
0,1,3) -5929.52 -34019.89 -128377.2
0,1,2) -5926.42 -34021.24 -128345.8
0,1, 1) -5335.44 -30982.72 -118845.7

Table 7.1.2 Basic Statistics of Time Varying Coefficients Nonlinear
Model 1 (n=3) of Three Data Sets: Stock X, Stock Y and S&P500 Index

Model mean variance Standard

deviation

Stock X (1,1,2) 0.590782 59.550900 7.716923
Stock Y (3,1,2) 0.012320 0.387723 0.622674
S&P 500 Index 2,1,3) 0.045248 47.82333 6.915441

7.1.2 Nonlinear Stochastic Model 2

We repeat the smoothing transformation approach with regard to nonlinear stochastic model 2.
The Stochastic Model Identification Procedure 4.2.1 is applied to obtain the time series model
corresponding to the nonlinear stochastic model 2. Table 7.1.3 exhibits the basic statistics of the

residual errors of nonlinear model 2 with n = 3.
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Table 7.1.3 Basic Statistics of Time Varying Coefficients Nonlinear
Model 2 (n=3) of Three Data Sets: Stock X, Stock Y and S&P500 Index

Model N mean variance Standard

deviation

Stock X (1,1,2) 0.04 0.632399 57.25794 7.566898
Stock Y (2,1,3) 0 0.014074 0.341886 0.58471
S&P 500 Index 2,1,2) 0.02 0.067176 46.31976 6.805862

From this preliminary study, comparing the results in Tables 7.1.2, 7.1.3, 4.3.1, 4.3.2 and 4.3.3,

+N

S;,J=12,..,T —n+1, and also other

S| =

we propose to utilize the smoothing function Z i =

smoothing linear and nonlinear functions to investigate forecasting problem.

7.2 Forecasting Problem

We recall that, in Section 4.3, we studied prediction problem and comparison about the
performance of presented and existing models. This was based on three overall data sets. We
simply attempted to use the formulations of stochastic nonlinear Models 4.1.1 and 4.2.1 with time
varying coefficient for the data fitting problem. We further note that the performance of these
models in the framework of data fitting is superior than the existing time series models and
nonlinear stochastic models 1 and 2. The forecasting in the frame work of these models is open

research problem. This problem will be also addressed in the future.

7.3 Option Pricing Problem

We observe that the parameters in our option pricing illustrations in Chapter 5 and 6 are estimated
from stock price data sets. In practice, these implied parameters are computed from the historical

option pricing data set. In our future research, we attempt to find the historical option pricing data

(if available) and then apply to develop modified option pricing models.
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Appendix Al: The Estimated Parameters of Stock X Applying Monthly GBM Model

2004 2005

7 G F G
January 0.001161554 0.02942549
February -0.001702899 0.02796643
March -0.001766466 0.01257827
April 0.009640864 0.02096884
May 0.01115012 0.01629551
June 0.002920542 0.02164556
July -0.0009630533 0.01643769
August 0.003216502 0.03775822 -0.0001724213 0.01373443
September 0.01146937 0.02181682 0.00493249 0.01504678
October 0.01924003 0.04152636 0.008160907 0.02977017
November -0.001520906 0.03722648 0.004194011 0.01871986
December 0.002805678 0.01911732 0.001242512 0.01315277
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Appendix Al: (Continued)

2006 2007
R G R G

January 0.002671674 0.03379703 0.004406722 0.01673394
February -0.008647245 0.03598111 -0.005636942 0.01614764
March 0.003500880 0.02592455 0.0009669722 0.01374949
April 0.003836704 0.01975170 0.001483809 0.01109096
May -0.005141313 0.01863313 0.002560355 0.01195841
June 0.005608799 0.01690952 0.002363476 0.009974502
July -0.003991524 0.0119881 -0.001067062 0.01443759
August -0.0008110875 0.01456686 0.0005236452 0.01251902
September 0.003111817 0.01525902 0.005110094 0.009779767

October 0.007971126 0.02201493 0.009694167 0.0155215

November 0.0009373092 0.01435362 -0.0005707263 0.0276292
December -0.002497903 0.01236763 2.591382¢e-06 0.01499199

154




Appendix A2: The Estimated Parameters of Stock X Applying Unequal Interval GBM Model

Index i G Index % o

1 0.006621 0.024521 20 0.010446 0.022202
2 0.013391 0.028731 21 -0.00389 0.02337
3 0.009891 0.055846 22 -0.0026 0.019065
4 0.001149 0.030116 23 0.002168 0.015421
5 0.009663 0.019472 24 -0.00417 0.014351
6 -0.00134 0.026352 25 0.003034 0.012816
7 0.005189 0.038095 26 0.003202 0.014617
8 -0.00261 0.015574 27 0.007015 0.020763
9 0.008553 0.017281 28 -0.00327 0.012388
10 0.00884 0.022777 29 1.37E-05 0.015938
11 -0.00053 0.014418 30 -0.00115 0.017478
12 7.88E-05 0.015385 31 -0.00045 0.014767
13 0.000596 0.015815 32 2.02E-05 0.01084
14 0.016518 0.033196 33 0.007892 0.011226
15 0.009311 0.013909 34 0.0025 0.008967
16 -0.00076 0.016247 35 -0.00407 0.016643
17 0.004541 0.025039 36 0.003471 0.010888
18 -0.01211 0.036582 37 0.008705 0.015797
19 0.000358 0.028831 38 0.010025 0.015063

39 -0.00136 0.022851
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Appendix A3: The Estimated Jump Coefficient of Stock X Applying Monthly GBM Model

2004 2005 2006 2007
Jan to Feb N/A 0.9333078 0.8899062 0.9496149
Feb to N/A 1.0128700 1.0826370 1.0392360
Mar
Mar to N/A 1.0101639 0.9906786 1.0042266
Apr
Apr to N/A 1.0139198 0.9524189 0.9933268
May
May to N/A 1.0276019 1.0794418 1.0103405
June
June to N/A 0.9493318 0.9786493 1.0100002
July
July to N/A 1.0248249 0.9630886 0.9895443
Aug
Aug to 0.9751628 0.9868456 1.0288616 1.0153643
Sep
Sep to 1.0456927 1.0070887 0.9986621 1.0084123
Oct
Oct to 1.0101994 1.0134436 0.9816198 0.9663877
Nov
Nov to 0.9644825 1.0051667 1.0108246 0.9845458
Dec
Dec to 1.0668690 1.0269237 1.0249850 N/A
next Jan
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Appendix A4: The Estimated Jump Coefficient of Stock X Applying Unequal Interval GBM

Index Jump Coefficient
1 N/A
2 0.938119
3 0.929323
4 1.058691
5 1.040035
6 0.99704
7 1.09544
8 0.995219
9 0.937131
10 0.973401
11 1.090801
12 0.936869
13 0.999014
14 0.92379
15 1.086789
16 1.082488
17 0.908315
18 1.146248
19 0.855107
20 1.000371

Model with Jumps
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Index Jump Coefficient
21 1.015838
22 1.017131
23 0.994225
24 1.073491
25 0.940836
26 0.994028
27 0.961578
28 1.123955
29 0.996198
30 0.924911
31 1.079305
32 0.936505
33 0.998823
34 1.008491
35 1.07922
36 0.96916
37 0.952614
38 0.988914
39 1.096968
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