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Late Holocene Climate Variability From Northern Gulf of Mexico Sediments: 
Merging Inorganic and Molecular Organic Geochemical Proxies 

 
Julie N. Richey 

 
ABSTRACT 

 
 Accurate reconstruction of natural climate variability over the past millennium is 

critical for predicting responses to future climate change. In order to improve on current 

understanding of climate variability in the sub-tropical North Atlantic region over the 

past millennium, a rigorous study of Gulf of Mexico (GOM) sea surface temperature 

(SST) variability was conducted using both inorganic (foraminiferal Mg/Ca) and 

molecular organic (TEX86) geochemical proxies. In addition to generating multiple high-

resolution climate records, the uncertainties of the SST proxies are rigorously assessed.  

 There are 3 major research questions addressed: (1) What was the magnitude of 

GOM SST variability during the past 1,000 years, particularly during large-scale climate 

events such as the Little Ice Age (LIA) and the Medieval Warm Period (MWP).  (2) Is 

the SST signal reproducible within the same sediment core, among different northern 

GOM basins, and using different geochemical SST proxies? (3) What are the ecological 

controls on the paleothermometers used to reconstruct SST variability in the GOM?  Can 

differences in the ecology (i.e. seasonal distribution, depth habitat, etc.) of distinct 

paleothermometers be exploited to gain insight into changes in upper water column 

structure or seasonality in the GOM during the LIA and MWP? 
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 The major findings include: (1) The magnitude of temperature variability in the 

GOM over the past millennium is much larger than that estimated from Northern 

Hemisphere temperature reconstructions. The MWP (1400-900 yrs BP) was characterized 

by SSTs in the GOM that were similar to the modern SST, while the LIA (400-150 yrs 

BP) was marked by a series of multidecadal intervals that were 2-2.5ºC cooler than 

modern.  (2) This LIA cooling was replicated in the Mg/Ca-SST records from three 

different well-dated northern GOM basins (Pigmy, Garrison and Fisk Basins), as well as 

in two different geochemical proxies.  (3) It is determined that foraminiferal test size has 

a significant effect on shell geochemistry.  Using core-top calibration, discrepancies in 

the seasonal/depth habitats between different planktonic Foraminifera, and between 

Foraminifera and Crenarchaeota are inferred.  Downcore differences are used to make 

inferences about changes in GOM mixed layer depth and seasonality over the past 

millennium.  
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Chapter 1 

   

Introduction 

 

1.1. Introductory Remarks 

 Global Climate Change is one of the most important problems that we face as a 

society today.  The warming of the planet due to the increased anthropogenic input of 

greenhouse gasses may have large implications for the global hydrologic cycle, ocean 

circulation, global food production, disease and biodiversity.  The Intergovernmental 

Panel on Climate Change (IPCC) states that global temperature increased by 0.6ºC over 

the course of the 20th century, and models of 21st century warming predict from 0.6ºC to 

4.0ºC warming over the next century, depending on greenhouse gas emissions scenarios 

(IPCC, 2001).  In order for the scientific community to more accurately predict the future 

response of Earth’s climate system to anthropogenic forcing, we must improve our 

understanding of natural (pre-industrial) climate variability.  

 A reliable instrumental record of climate variability only extends back to 1850A.D. 

(Jones et al., 1999), and thus proxy-based reconstructions must be relied upon to 

investigate climate variability further into the past.  Studying the past 1,000 years of 

climate variability allows paleoclimatologists to explore natural modes of variability 

without having to account for major changes in background state (i.e. global ice volume, 

orbital-scale insolation changes, or tectonic-scale changes).  There were also significant 
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hemispheric-to-global scale events such as the Little Ice Age (LIA) and the Medieval 

Warm Period (MWP) that occurred during the past millennium.  These events act as 

benchmarks for determining the magnitude of natural climatic shifts during the late 

Holocene.  A number of global and hemispheric surface temperature reconstructions 

covering the past millennium have been generated by merging proxy records from tree-

rings, boreholes, ice cores, corals, speleothems, and sediment cores (e.g. Mann et al., 

1999; Mann and Jones, 2003; Esper et al., 2002; Moberg et al., 2005), however there is 

still a large degree of uncertainty in these reconstructions.   

 

 

Figure 1.1. Multiproxy reconstruction of Northern Hemisphere surface temperature variations over 
the past millennium. Temperature reconstruction (blue), along with 50-year average (black), a measure of 
the statistical uncertainty associated with the reconstruction (gray), and instrumental surface temperature 
data for the last 150 years (red), based on the work by Mann et al. (1999).  
 

 One major source of uncertainty in large-scale climate reconstructions is sparse 

spatial and temporal coverage.  The further back in time you go, the fewer records there 
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are.  Many of the climate proxy records, especially ones based on archives such as corals 

and tree-rings, involve splicing together a succession of shorter (<200-years) time-series.  

The further back in time you go, the more difficult it is to find fossil archives.  A second 

source of uncertainty is the dearth in spatial coverage.  The existing large-scale climate 

reconstructions are primarily based on extra-tropical terrestrial records, with very few 

records representing the low latitudes and/or the marine environment.   

 The third source of uncertainty in global climate reconstructions stems from the 

uncertainties in the individual proxy records.   Many of the climate archives are based on 

geochemical or biometric measurements on living and/or fossil organisms (e.g. trees, 

corals, Foraminifera, etc.), and the assumption is made that these organisms are passive 

records of their environmental conditions.  The interpretation of an environmental signal 

in biogenic proxies can be complicated by “vital effects”, which are often species-

specific, and affect the geochemistry in a way that is unrelated to the climate signal 

contained within the geochemistry.  Also, biogenic proxies may be changing their 

ecologies in response to changing environmental conditions, which can lead to large 

uncertainties in the interpretation of their climate records. 

 In this dissertation I addressed each of these sources of uncertainty in our 

collective understanding of global climate change over the past 1,000 years.  First, I 

generated decadal-resolution sea surface temperature (SST) records from three different 

sites in the Gulf of Mexico.  Globally, there are very few (<10) published continuous, 

decadal-resolution records of SST variability covering the past millennium (Figure 1.2).  

Improving the spatial coverage of records of ocean surface conditions during this 
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important time interval is essential to improving our understanding of both regional and 

global patterns of climate variability.   

 
 
Figure 1.2. Map of sites for which there are currently published, decadal-resolution SST proxy 
records covering at least the past 1,000 years.  Pink and green markers indicate planktonic foraminiferal 
Mg/Ca-SST records from the Makassar Straits (Newton et al., 2006; Oppo et al., 2009).  Yellow marker 
indicates a Cariaco Basin planktonic foraminiferal Mg/Ca-SST record from Black et al. (2007).  The blue 
markers indicate planktonic foraminiferal Mg/Ca-SST records from the Great Bahamas Bank and the Dry 
Tortugas (Lund and Curry, 2006).  The red markers indicate the 3 planktonic foraminiferal Mg/Ca-SST and 
the TEX86-SST records from the Gulf of Mexico that were generated as part of this dissertation, and 
published in Richey et al. (2007 and 2009) 
  

 The issue of uncertainty in SST proxy records is addressed in this dissertation in a 

number of ways.  First, I test the reproducibility of the foraminiferal Mg/Ca-SST proxy 

by replicating Mg/Ca-SST records in multiple species of planktonic Foraminifera within 

the same sediment core.  Second, I compare Mg/Ca-SST records generated from three 

different sites within the same region.  Third, I use a multi-proxy approach, comparing 

SST reconstructions based on an inorganic geochemical proxy (elemental ratios in 

planktonic Foraminifera) and molecular organic geochemical proxy (TEX86 index).  

Finally, I rigorously assess the ecological controls on the different paleothermometers 
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(e.g. different species of planktonic Foraminifera and marine Crenarchaeota), thus 

improving our ability to interpret depth range and seasonality of the SST signal derived 

from each individual record. 

  

1.2.  The Little Ice Age 

 The Little Ice Age was a cool interval beginning roughly 1500A.D. and lasting until 

1850A.D. that has been well documented in historical records from northern Europe and 

eastern North America.  Anecdotal evidence, including a centuries-long theme of winter 

paintings in Europe, unprecedented advances of mountain glaciers upon alpine villages, 

and sharp increases in the price of grains due to crop failure, were all indications of 

extraordinarily cold winters during the 17th and 18th centuries.  Although the most 

dramatic impacts of the LIA seem to be confined to the Northern Hemisphere, the LIA 

has been identified as a significant event in a number of tropical and Southern 

Hemisphere climate records.  Evidence is beginning to support the idea that the LIA was 

a nearly global phenomenon, however the timing and magnitude of cooling varied 

significantly among difference regions.   

 In many cases, solar variability has been invoked to explain the cooling 

experienced during the LIA.  The changes in incoming solar radiation due to changes in 

orbital parameters (i.e. precession of the equinoxes, eccentricity of the Earth’s orbit, and 

tilt of the Earth’s axis) were minimal over the past millennium, and thus cannot be 

invoked to explain the LIA cooling.  The amount of solar radiation emitted by the sun 

does vary on shorter timescales, and has to do with the occurrence of sunspots, bright 

faculae, and other solar phenomena.  Measurements of solar variability over the last two 
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11-year sunspot cycles estimate that the total solar irradiance varied by only 0.1% 

(Fröhlich and Lean, 2004).  

 The production of cosmogenic nuclides (e.g. 14C and 10Be) varies primarily as a 

function of solar activity, and thus the 14C and 10Be records can be used as proxies for 

solar variability in the late Holocene (Bard et al., 1997) (Figure 1.3).  From the 14C and 

10Be records (as well and historical sunspot counts), quasi-periodic cycles have been 

identified in the record of solar irradiance.  For example, there is an 11-year sunspot 

cycle, and a 200-year cycle called the Suess Cycle.  Recent minima in the Suess Cycle of 

solar variability: the Oort (ca. 1100 A.D.), Wolf (ca. 1300A.D.), Spörer (ca. 1500A.D.), and 

Maunder (ca. 1700A.D.) minima, have been correlated with episodes of glacial advance 

and cooling associated with the LIA. 

 

Figure 1.3.  Solar Activity Record for the last 1,600 years. A decadally-averaged plot of the Δ14C record 
is plotted for the past 1,600 years (Stuiver et al., 1998).  Note that the y-axis is inverted, and increasing 14C 
production indicated decreased solar activity. 
 

 The correlation of these strong solar minima with cooling events during the LIA 

is highly suggestive of a solar forcing for the LIA.  However, the total reduction in solar 

irradiance during the Maunder Minimum was <0.6%, which is equivalent to a forcing of 



 7 

~0.7 watts per square meter (W/m2) (Bard et al., 2000).  This forcing is two orders of 

magnitude smaller than the solar forcing associated with changes in orbital parameters 

and glacial-interglacial climate variability.  Thus it is not likely that solar forcing alone 

caused the dramatic climate response during the LIA. 

 It has been proposed that volcanic forcing may have been an important factor in 

LIA cooling (Crowley, 2008). Volcanic eruptions add large amounts of ash and sulfur 

gasses to the atmosphere, diminishing the amount of solar radiation reaching the surface, 

thus causing the Earth to cool.  The degree of radiative forcing from a volcanic eruption 

depends on the magnitude and location, as well as the composition of the ejecta (Robock, 

2000).   

 

Figure 1.4. Ice core estimates of global stratospheric sulfate loading from volcanoes (A.D. 500–
2000). (from Gao et al., 2008)  

 

For example, sulfate aerosols from tropical volcanic eruptions are transported globally by 

high-altitude winds, thus causing widespread cooling.  High latitude eruptions tend to be 

more spatially restricted, and have less effect on global temperature.  Ejecta composed of 

large volcanic ash particles settles quickly, and only causes regional cooling that lasts 

from a few days to a few weeks.  Explosive eruptions release sulfur gasses, which 
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combine with water vapor to form sulfate aerosols.  In large eruptions, these sulfate 

aerosols are injected high into the atmosphere, where they can remain for years, having a 

longer-term cooling effect.  Figure 1.4 illustrates a proxy record of sulfate loading from 

volcanic eruptions, reconstructed from ice cores.  It appears that there were 3 pulses of 

unusually high volcanic activity between the 14th and 19th centuries, which may have 

contributed to observed LIA cooling.  

 

Figure 1.5. Northern Hemisphere Mean Radiative Forcing.  Hegerl et al. (2006) estimate radiative 
forcing due to greenhouse gasses (Ghg), tropospheric aerosols, solar variability and volcanism over the past 
1,000 years. 

 

 

 Although solar variability is often cited as the primary forcing mechanism for LIA 

cooling, volcanism must also be considered as a potential agent for the LIA.  Hegerl et al. 

(2003) did a comprehensive test of this issue and found volcanism to be substantially 

more important than solar variability, explaining 40% of the cooling during the LIA. 

There has been some suggestion that the LIA and MWP were not forced by external 
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factors like solar variability or volcanism, but by a millennial-scale internal oscillation.  

Broecker (2001) hypothesized that the MWP to LIA transition was the penultimate cycle 

in a series of quasi-periodic oscillations called “Bond Cycles”, with a periodicity of 

roughly 1500 years (Bond, 1997).  Another potential mechanism for LIA cooling may 

have been a slow-down in the thermohaline circulation.  Lund et al. (2006) found proxy 

evidence for a substantial decrease in the flow through the Florida Straits from 1200-

1850AD, suggesting a reduction in Gulf Stream transport during that time.  A reduction in 

reduction in heat transport to northern Europe via the Gulf Stream may have contributed 

to observed LIA cooling. 

 

1.3. The Medieval Warm Period 

 The so-called Medieval Warm Period (MWP) was much more heterogeneous than 

the LIA, but is generally described as a warm interval preceding the LIA (ca. 1000-

1300AD) in which global temperatures were similar to the 20th century (Crowley and 

Lowery, 2000). A network of borehole temperature estimates suggests that global 

temperatures from 500-1000AD were warmer than 20th century temperatures (Huang et al., 

1997), while large-scale climate reconstructions vary significantly in their portrayal of the 

MWP (e.g. Mann et al., 1999 versus Esper et al., 2002).  The MWP is often used as a 

benchmark for pre-industrial warming, and is compared to the 20th century to make 

arguments for whether today’s warming is caused by natural climate variability, or 

anthropogenic input of greenhouse gasses.  For this reason it is important to improve 

upon our understanding of the spatial and temporal patterns of climate variability during 

this time interval.   
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 Evidence for the MWP is found throughout the globe, but it doesn’t manifest 

exclusively as a warming event (for this reason, many studies now refer to this time 

interval as the “Medieval Climate Anomaly”).  In the tropics and sub-tropics there seems 

to be a large hydrologic response during the MWP. Droughts in the Yucatan associated 

with the MWP have been connected to the termination of the Classical Mayan 

Civilization (Hodell et al., 2005), while unprecedented warmth allowed the Vikings to 

sustain successful agricultural-based settlements in Greenland.  The North American 

Monsoon was weakened during the MWP (900-1300AD) causing widespread drought 

conditions in western North America (Cook et al., 2004) (Figure 1.6).  A reconstruction 

of Atlantic tropical cyclone activity suggests that the MWP was a time of more frequent 

tropical cyclones, with tropical cyclone counts similar to the 20th century (Mann et al., 

2009).  

 
Figure 1.6. Long-term aridity changes in the Western United States. The figure shows the Drought 
Area Index (DAI) for the Western U.S. as reconstructed by tree rings, both annual in pale brown and 60-
year low-pass filtered in black. The red and blue lines are mean DAI for the MWP (ca. 900–1300AD) and 
the 20th century out to 2003, respectively. This record shows that the MWP was much more arid on 
average than the 20th century. Figure from Cook et al. (2010). 
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1.4. Reconstructing SST over the past 2,000 years 
 

 Understanding how ocean surface temperatures have varied over the past 2,000 

years is critical for data-model comparisons, and accurate prediction of future climate 

change.  Nevertheless, paleoceanographers have traditionally neglected this important 

time interval.  There are a number of factors that make obtaining high-resolution SST 

records from the late Holocene difficult.  Sedimentation rates are much too low in most 

marine depositional environments to resolve the past 2,000 years of climate variability.  

Marine environments with sedimentation rates high enough to resolve decadal-to-

centennial scale variability (i.e. >40cm/kyr) are limited to coastal margins near major 

river systems, drift sites, etc.  Secondly, temperature variability during the late Holocene 

is subtle relative to the glacial-interglacial shifts that paleoceanographers generally 

reconstruct.  Attempting to resolve the small (<2ºC) temperature shifts of the most recent 

millennia is pushing the limits of existing SST proxies.  In this section I will outline the 

advantages and limitations of existing geochemical proxies for reconstructing SST in the 

late Holocene. 

 

1.4.1. Molecular Organic Proxies 

 With the development of new HPLC-MS (High Performance Liquid 

Chromatography-Mass Spectrometry) techniques (Hopmans et al., 2000) as well as 

techniques for compound-specific radiocarbon dating (see Eglinton and Eglinton, 2008 

for a review), the field of molecular organic geochemistry is rapidly expanding in the 

realm of paleo-SST reconstruction.  The HPLC-MS allows geochemists to easily identify, 

quantify and isolate large polar compounds, which cannot be effectively analyzed via 
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traditional gas chromatographic (GC) techniques.  This has led to the recent development 

of a new paleothermometer, the TEX86 index, which is based on relative abundances of 

large 86-carbon polar lipids derived from marine Crenarchaeota.  Compound-specific 

radiocarbon dating has allowed for the independent dating of molecular components of 

sediments, thus enabling paleoceanographers to identify discrepancies in source region as 

well as age offsets between organic geochemical and foraminiferal-based 

paleoceanographic records.   

 Presently there are two widely accepted molecular organic SST proxies: the 

TEX86 index and the Uk’
37 index. The TEX86 index is a paleothermometer based on the 

composition of membrane lipids called glycerol dialkyl glycerol tetraethers (GDGTs) 

found in marine Crenarchaeota.  Schouten et al. (2002) discovered that the number of 

cyclopentane moieties on these GDGTs in sedimentary membrane lipids varies as a 

function of local mean annual SST.  It is thought that Crenarchaeota adjust the number of 

cyclopentane moieties in these GDGT lipids with temperature to regulate membrane 

fluidity.  The latest calibration of Kim et al. (2008), which uses a much more extensive 

network of core-top samples, confirms that TEX86 correlates with mean annual SST, 

globally (Figure 1.7). The Uk’
37 index is based on the ratio of di- to tri-unsaturated 

alkenones (Brassell et al., 1986; Prahl and Wakeham, 1987), which are 37-carbon 

compounds produced as membrane lipids by haptophyte algae (coccolithophorids).  The 

index varies between 0 and 1, which corresponds to a temperature range of 0-26ºC, and is 

generally considered to represent mean annual SST.   

 Both the GDGT and alkenone lipids are contained within the fine fraction of 

sediments, and thus are subject to lateral transport, sometimes over large distances.  The 
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development of compound specific radiocarbon dating has allowed for the investigation 

of the origin of specific molecular components of sediment.  The techniques for this 

involve isolating individual compounds using bench chemistry, preparative capillary gas 

chromatography (PCGC), or preparative HPLC.  Alkenones can be isolated for 

radiocarbon dating using a series of Si-gel columns, according to the techniques outlined 

in Ohkouchi et al. (2005).  GDGTs have been isolated for radiocarbon dating using 

preparative HPLC  (Shah et al., 2008).  Results of radiocarbon dating of these two 

compound classes suggest that they have different labilities.  In other words, alkenones 

are relatively refractory, and can survive lateral transport over long distances 

(Englebrecht and Sachs, 2005).  GDGTs, on the other hand, are relatively labile, and do 

not effectively survive transport (Mollenhauer et al., 2007; Shah et al., 2008).  The 

implications are that in some locations, the Uk’
37 signal may be neither local, nor 

contemporaneous with the foraminiferal record.  The TEX86 signal, on the other hand, is 

much more likely to contain the signal of overlying waters, and have minimal age offset 

from the foraminiferal record.    

 The TEX86 proxy has both advantages and disadvantages over the Uk’
37 and 

foraminiferal Mg/Ca proxies.  Culture studies suggest that unlike alkenones, the 

composition of GDGTs does not seem to be effected by crenarchaeal growth rate 

(Wuchter et al., 2004).  The same study tests the effect of salinity on TEX86, and 

concludes that salinity has no influence on GDGT composition, while recent studies 

suggest a considerable salinity effect on Mg/Ca (e.g. Ferguson et al., 2008).  TEX86 is 

calibrated over a larger range of SSTs, and has been found to be an effective SST proxy 

in both the arctic (Sluijs et al., 2009) and the tropics (Tierney et al., 2008).  TEX86 has 
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even been used to make estimates of SST as far back as the Cretaceous (Jenkyns et al., 

2004).  Alkenones, on the other hand are not an effective SST proxy at SSTs greater than 

27ºC (Pelejero and Calvo, 2003), as concentrations of tri-unsaturated alkenone drop 

below detection levels.   

 

Figure 1.7. Global Core-top calibration of TEX86 to SST. The TEX86 index from 223 core-top samples, 
distributed globally, is calibrated to corresponding mean annual SST. Open circles represent Pacific and 
Indian Ocean sites, while crosses represent Atlantic Ocean sites. This results in the following equation: 
SST(ºC)=-10.78 + 56.2*TEX86 from (Kim et al., 2008). 
  

 Investigating the limitations of the TEX86 proxy is currently an area of active 

research in the organic geochemistry community.  One issue is the ubiquitous nature of 

Crenarchaeota in the marine environment.  Although the TEX86 signal consistently 

reflects mean annual SSTs, live crenarchaeal communities are living and producing 

GDGTs throughout the water column (Karner et al., 2001), and within sub-surface 
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sediments (Lipp et al., 2008).  There is also the issue of terrestrial GDGTs.  Branched 

GDGTs are produced by soil bacteria, and are abundant in terrestrial organic matter 

(TOM).  In marine depositional basins proximal to major sources of terrestrial input, the 

TEX86 could be biased by terrestrially derived GDGTs.  The BIT index (branched to 

isoprenoid tetraether index) was developed by Hopmans et al. (2004), and is used as a 

proxy for TOM input.  Samples with BIT values greater than 0.3 are considered suspect 

for bias in the TEX86 record (Weijers et al., 2006). 

 

1.4.2. Foraminiferal-based proxies 

 The use of the stable oxygen isotope composition of planktonic Foraminifera to 

reconstruct paleotemperatures was pioneered in the mid-20th century by Urey (1947) and 

Emiliani (1954, 1955).  Now the δ18O of planktonic foraminifera is one of the most 

commonly used paleoceanographic tools (see Lea, 2003 for a review).  However, the 

δ18O of foraminiferal calcite is controlled not only by calcification temperature, but also 

by the oxygen isotopic composition of ambient seawater.  Beginning in the mid-1990’s, 

paleoceanographers began to use the Mg/Ca ratio of foraminiferal calcite as an SST 

proxy (e.g.  Nürnberg et al., 1996; Rosenthal et al., 1997; Hastings et al., 1998; Lea et al., 

1999; Elderfield and Ganssen, 2000).  The use of Mg/Ca as an SST proxy is based on the 

fact that Mg2+ substitutes for Ca2+ in the calcite lattice, with an exponential temperature 

dependence.  The exact Mg/Ca-SST calibration varies slightly among different species of 

Foraminifera, but general equates to a ~9% increase in Mg/Ca per 1ºC in water 

temperature (Anand et al., 2003).   
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 Paired Mg/Ca and δ18O measurements can be used to derive records of both 

temperature and the oxygen isotopic composition of seawater  (Figure 1.8) if the 

assumption is made that the Mg/Ca of foraminiferal calcite is controlled exclusively by 

temperature (see discussion of caveats below).  Then, changes in δ18O of seawater can 

then be interpreted in terms of salinity variability. Thus a major advantage of paired 

Mg/Ca and δ18O measurements on Foraminifera is the ability to generate a record of SST 

and salinity variability from a single archive.  A number of studies over the past decade 

have suggested that there are additional physical parameters that can affect foraminiferal 

Mg/Ca, thus complicating interpretation of Mg/Ca records strictly in terms of SST.  

Additionally, it has been shown that post-depositional diagenetic processes can have a 

large impact on the elemental composition of foraminiferal calcite. 

 

 

Figure 1.8.  Flow Chart of Paired Mg/Ca and δ18O for estimating SST and δ18O of seawater.  The 
equation for converting Mg/Ca to SST is the equation for white G. ruber (Anand et al., 2003).  The δ18O 
paleotemperature equation is from Bemis et al. (1998). 
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 The Mg/Ca ratio in seawater is spatially constant and unlikely to change on 

timescales of less than 1 million years due to the very long residence times of both Mg 

and Ca in the oceans (Broecker and Peng, 1982). There are a few factors that complicate 

the use of Mg/Ca as a paleotemperature proxy, however.  The post-mortem addition of 

diagenetic phases to foraminiferal calcite was recognized by Boyle (1983).  Specifically, 

the addition of Mn-rich carbonate overgrowths (as well and Mn- and Fe-rich 

oxyhydroxides) has been a problem for trace metal analysis (Cd/Ca, Ba/Ca, etc.), because 

these phases also contain other elements that alter the original shell chemistry.  One of 

these phases that has been demonstrated to dramatically effect shell Mg/Ca is the 

carbonate mineral kutnahorite.  Pena et al. (2005) showed that the presence of this phase 

biased foraminiferal Mg/Ca to 7-36% higher values (equivalent to a 0.9-6.2ºC 

temperature bias).  In order to remove these potentially problematic diagenetic carbonate 

phases, a reductive cleaning step is used (Barker et al., 2003).  The reductive cleaning 

step can also preferentially remove Mg from the primary calcite, thus reducing shell 

Mg/Ca by up to 15% (Rosenthal et al., 2004).  Precautions need to be taken to monitor 

elements associated with diagenetic alteration (i.e. Mn and Fe) when performing Mg/Ca 

analyses.  Also, care must be taken when comparing Mg/Ca records in which different 

cleaning methods were used, as there may be systematic offsets in the temperature 

estimates due to cleaning.   

 Selective dissolution of high-Mg carbonate, as the foraminifera are affected by 

calcite-undersaturated deep waters and porewaters during sedimentation, can lead to 

alteration of the original Mg/Ca signal (e.g. Dekens et al., 2002).   It has been noted in a 

number of studies that dissolution can lower foraminiferal Mg/Ca in sediments 
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(Rosenthal et al., 1993; Russell et al., 1994; Brown and Elderfield, 1996; Hastings 

et al., 1998).  Waters are caustic to carbonates when the in situ concentration of carbonate 

ion is less than the saturation concentration of carbonate ion. 

i.e.  ΔCO3
2-  = [ΔCO3

2-]in situ – [ΔCO3
2-  ]saturation    (Berger et al., 1982) 

Calcite that is more enriched in Mg is more susceptible to dissolution, and high-Mg 

calcite can be susceptible to dissolution well above the lysocline (Brown and Elderfield, 

1996).   Factors that can affect the degree of dissolution include the water depth, the age 

of the deep waters, and the concentration of organic matter in sediments.  Dekens et al. 

(2002) have provided a depth correction for the Mg/Ca paleotemperature calibration in 

the foraminifer, Globigerinoides ruber in order to correct for the dissolution effect on 

Mg/Ca. 

 Laboratory culture studies have shown additional physical parameters (e.g. pH, 

carbonate ion concentration and salinity of seawater) act as controls on Mg/Ca ratios in 

Foraminifera, but suggest that their influence is small in comparison with temperature 

(Lea et al., 1999; Nürnberg et al., 1996; Russell et al., 2004;  Elderfield et al., 2006). In a 

laboratory culture study, Lea et al. (1999) looked at the effect of salinity on entire test 

Mg/Ca ratios, and found a small increase with salinity of 4±3% per psu in Orbulina 

universa.  Another study of the final chambers of Globigerinoides sacculifer grown over 

a range of salinities (26-44 psu) showed increases of Mg/Ca of over 100% at higher 

salinity, or approximately 11% per psu (Nürnberg et al.,1996).  A field study in the 

Mediterannean found a significant relationship between Mg/Ca and calcification salinity, 

in which Mg/Ca increased by 15-59% per psu (Ferguson et al., 2008).  This study was 

conducted over a salinity range of 36-40 psu, which is significantly higher than most 
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open ocean settings, and may not be applicable at lower salinities.   

 Each of the caveats discussed in this section, for both molecular organic and 

foraminiferal geochemistry, are addressed in the dissertation as they are specifically 

related to my study sites in the Gulf of Mexico. 

 

1.5. Dissertation Organization 

 This main body of this dissertation is organized into three chapters, which are 

written in the format of separate manuscripts for peer-reviewed journals.  Figures are, for 

the most part, identical to those used in the publication manuscripts.  Therefore there may 

be some redundancy with respect to certain data sets being plotted more than once.  

References from all 3 manuscripts are combined at the end of this dissertation.  

 
In Chapter 2: Regionally Coherent Little Ice Age Cooling in the Atlantic Warm Pool  

 In this chapter I present two new Mg/Ca-SST records from the Fisk and Garrison 

Basins in the northern Gulf of Mexico.  The aim of this study was to test the regional 

reproducibility of a Mg/Ca-SST record from the Pigmy Basin (GOM) that was published 

as part of my masters thesis (Richey et al., 2007).  A large (~2ºC) cooling during the LIA 

was present in all three SST records, and comparison with other records within the 

Atlantic Warm Pool (AWP) suggest that this timing and magnitude of LIA cooling was 

consistent throughout the sub-tropical and tropical western Atlantic Ocean.  Potential 

mechanisms for this regional cooling are proposed. This study was published in the 

journal, Geophysical Research Letters, in 2009: 
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 Richey, J. N., R. Z. Poore, B. P. Flower, and T. M. Quinn, and D. J. Hollander 

 (2009), Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool, 

 Geophys. Res.Lett., 36, L21703, doi:10.1029/2009GL040445. 

  

In Chapter 3: Merging late Holocene molecular Organic and Foraminiferal- Based 

Geochemical 2 Records of SST in the Gulf of Mexico 

 In this chapter I used a molecular organic geochemical approach (TEX86) to 

generate an additional SST record from the Pigmy Basin, Gulf of Mexico.  The TEX86-

SST record is remarkably similar to the Mg/Ca-SST from the same core, despite the fact 

that the two proxies are subject to separate diagenetic processes and are contained within 

different sediment fractions.  The relative seasonal and depth distributions of the 

Globigerinoides ruber and marine Crenarchaeota are rigorously assessed for the northern 

Gulf of Mexico, and those relative differences are exploited to make inferences about 

changing mixed-layer depth and seasonality over the past 1,000 years.  This study is 

currently under review at the journal, Paleoceanography: 

 Richey, J. N., D. J. Hollander, B. P. Flower and T. I. Eglinton (2010), Merging 

 late Holocene molecular Organic and Foraminiferal- Based Geochemical 2 

 Records of SST in the Gulf of Mexico, Paleoceanography, in review. 

  

In Chapter 4:  Ecological controls on the shell geochemistry of pink and white 

Globigerinoides ruber in the northern Gulf of Mexico:  Implications for 

paleoceanographic reconstruction 

 In this chapter I examine the relationship between foraminiferal test size and shell 
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geochemistry (δ13C, δ18O and Mg/Ca) for the pink and white sub-species of 

Globigerinoides ruber.  These data provide insights into ecological and metabolic 

controls on shell geochemistry, allowing for better constraints on paleoceanographic data.  

We conclude that there is a significant positive relationship between size and δ13C, which 

is most likely related to growth rate.  A significant decrease in δ18O and increase in 

Mg/Ca with size, suggests that larger individuals have higher calcification temperatures 

than smaller individuals.  High-resolution down-core comparisons of Mg/Ca and δ18O 

data for pink and white G. ruber are made in order to assess whether the two planktonic 

species have distinct seasonal distributions in the Gulf of Mexico.  I conclude that the 

pink G. ruber signal is summer-weighted, while the white G. ruber signal represents 

mean annual surface conditions.  The results of this study are being prepared for 

submission to the journal, Marine Micropaleontology. 

 Richey, J. N., R. Z. Poore, D. J. Hollander, and B. P. Flower, (2010), Ecological 

 controls on the shell geochemistry of pink and white Globigerinoides ruber in the 

 northern Gulf of Mexico:  Implications for paleoceanographic reconstruction, 

 Marine Micropaleontology, in preparation. 
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Chapter 2 
 
 

 Regionally Coherent Little Ice Age Cooling in the Atlantic Warm pool  
 

 
2.1.  Abstract 
 
 We present 2 new decadal-resolution foraminiferal Mg/Ca-SST records covering 

the past 6-8 centuries from the northern Gulf of Mexico (GOM).  These records provide 

evidence for a Little Ice Age (LIA) cooling of 2-3ºC, consistent with a published Mg/Ca 

record from Pigmy Basin.  Each of the GOM basins exhibits SST minima within the 

Dalton, Maunder and Spörer sunspot minima, with a general warming trend over the past 

150 years. Comparison of these 3 records with existing SST proxy records from the 

GOM-Caribbean region show that the magnitude of LIA cooling in the Atlantic Warm 

Pool (AWP) was significantly larger than the mean hemispheric cooling of <1ºC.  We 

propose that a reduction in the intensity and spatial extent of the AWP during the LIA, 

combined with associated changes in atmospheric circulation may account for the 

regional SST patterns observed in the GOM-Caribbean region during the LIA. 
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2.2.  Introduction  

 Accurate reconstruction of high-resolution sea surface temperature (SST) records 

during time intervals of societal importance, such as the Little Ice Age (LIA), and 

through the 20th century, is important in determining the magnitude of pre-industrial 

climate variability.  Given the uncertainties inherent to most SST proxies, as well as the 

influence of local climatology, replication of SST records is critical to understanding 

regional responses to climate forcings. The LIA generally spans the time interval from 

1400-1850 AD, although the timing and magnitude of cooling varies widely throughout 

the Northern Hemisphere.  Temperature reconstructions (primarily based on extratropical 

terrestrial proxy records) suggest that the Northern Hemisphere experienced modest 

cooling of 0.6-0.8ºC during the 15th-19th centuries (Mann et al., 1998, 1999; Esper et al., 

2002, Moberg et al., 2005.  Here we show that SST proxy records from the low-latitude 

North Atlantic Ocean experienced significantly larger cooling than the hemispheric 

average, and may be have been particularly sensitive to climate perturbations on multi-

decadal to centennial timescales during the LIA. 

 The Atlantic Warm Pool (AWP), defined by the >28.5ºC SST isotherm, develops 

annually in the northern Caribbean during early summer (June) and expands into the 

GOM and western tropical North Atlantic through the late summer (July-October) (cf. 

Wang et al., 2008a).  Multidecadal variability in the size of the AWP is correlated with 

rainfall anomalies in the Caribbean region, formation and intensification of North 

Atlantic hurricanes, and variability in moisture transport to the North American continent 

via interactions with atmospheric circulation (Wang et al., 2008a).  The geographic area 

covered by an anomalously large AWP can be 3 times larger than an anomalously small 
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AWP (Wang et al., 2006), thereby altering the SST and atmospheric circulation patterns 

in the GOM, Caribbean and western tropical North Atlantic.  A number of geochemical 

proxy records from corals, sclerosponges and foraminifera in the region encompassed by 

the AWP show a 1-3ºC cooling during the LIA (Winter et al., 2000; Watanabe et al., 

2001; Nyberg et al., 2002; Haase-Schramm et al., 2003, 2005; Lund and Curry, 2006; 

Richey et al., 2007; Black et al., 2008; Kilbourne et al., 2008) (Figure 2.1), implying that 

the AWP may have been particularly sensitive to climate forcing during the LIA. 

 

Figure 2.1. Map of proxy records in the GOM-Caribbean region exhibiting 1-3ºC cooling during the 
LIA. The Fisk (open square) and Garrison (closed square) basins are the 2 new Mg/Ca-SST records 
presented in this study. The September (maximum seasonal geographic extent) AWP (28.5ºC isotherm) is 
plotted using the Reynolds and Smith OISST V2.0 dataset (1ºx1º grid, averaged from 1981-2009). Mean 
LIA cooling is indicated in parentheses for each region. 
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 Assessing the fidelity of these SST proxy records is especially critical for the 

interpretation of decadal to sub-decadal resolution, low-latitude records covering critical 

time intervals such as the LIA-20th century. The uncertainties inherent to foraminiferal 

Mg/Ca-based SST estimates can exceed the environmental signal in some cases.  Factors 

that lead to these uncertainties include, but are not limited to, diagenetic overgrowths 

(e.g. Boyle 1983; Barker et al., 2003; Pena et al., 2005), salinity (e.g. Nürnberg et al., 

1996; Ferguson et al., 2008), and dissolution (e.g. Dekens et al., 2003).  Each of these 

factors has the potential to overprint the Mg/Ca signal of the downcore record, and the 

influence of these factors is variable, and often basin-specific.  Thus, replication among a 

grouping of regional cores is essential to developing a coherent regional record of climate 

variability.  In this paper we present 2 new foraminiferal Mg/Ca-SST records spanning 

the past 600-800 years from the northern Gulf of Mexico.  These new records replicate 

the magnitude and pattern of SST variability recorded in a published Mg/Ca record from 

the Pigmy Basin (Richey et al., 2007), and further corroborate a large magnitude (1-3ºC) 

cooling in the GOM-Caribbean region during the LIA.  We highlight the regional 

coherence among all published Caribbean-Gulf of Mexico SST proxy records during this 

time interval, and discuss potential mechanisms for this large low-latitude Atlantic 

cooling overprinted on the modest hemispheric cooling during the LIA. 

      

2.3.  Materials and Methods 

 The Fisk Basin (PE07-5I; 817 m depth; 27º33.0’ N, 92º10.1’ W) and Garrison 

Basin (PE07-2; 1570 m depth; 26º40.5’ N, 93º55.5’ W) box cores were collected onboard 

the R/V Pelican in 2007.  Pigmy Basin box core (PBBC-1; 2259 m depth; 27º11.61’N, 
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91º24.54’W) was collected in 2002 onboard the R/V Longhorn.  All of these basins are 

located on the continental slope in the northern Gulf of Mexico, and have a relatively 

high sediment accumulation rate (20-40 cm/kyr) due to large inputs of terrigenous 

material via the Mississippi River.  For each of the box cores the sediment-water 

interface was recovered, and AMS 14C dates with bomb radiocarbon confirm that the 

core-top samples include the most recently deposited sediments.  We set the core-top age 

to 2000 AD for each of these GOM records for ease of comparison with other regional, 

absolutely dated records.   

 Radiocarbon ages (Table 2.1) were calibrated using the Calib 5.0 program with a 

400-year reservoir correction. Radiocarbon AMS dates were determined using 6-8mg of 

mixed planktic foramnifers.  The Fisk Basin age model (Figure 2.1a) was constructed by 

fitting a least-squares regression line through the 4 radiocarbon AMS dates and setting 

the intercept to 0. Radiocarbon dates below 20 cm core depth indicate much lower 

sediment accumulation rates prior to 800 yrs BP.  Due to the uncertainties in the age 

model below 20 cm, we do not plot the Mg/Ca data in this paper.  The linear 

sedimentation rate was determined to be [Cal Age (years BP)=3.7602*core-depth (mm)].  

The Garrison Basin age model (Figure 2.1b) was constructed by fitting a third order 

polynomial through the 8 radiocarbon AMS dates [Cal Age (Yrs BP)= -2e-05x3 + 0.022x2 

+ 2.26x; x= core-depth (mm)].  An 18% decrease in the foraminiferal weights below 13 

cm in the Garrison Basin core indicates a potential problem with calcite dissolution, and 

thus we exclude Mg/Ca data below this core depth. 
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Core Depth 

(mm) 

14C age 
(yrs) error (yrs) Cal Yrs BP 

Fisk Basin 0-5 -215 30 0 

 150-155 925 35 523 

 160-165 1090 30 652 

 200-205 1210 30 743 

Garrison Basin 0-5 140 35 0 

 10-15 455 25 41 

 70-75 935 35 186 

 120-125 1435 45 604 

 200-205 2080 20 1248 

 270-275 2495 35 1666 

 340-345 3300 35 2695 

 390-395 3640 30 3064 

 
Table 2.1. Radiocarbon dates.  6 AMS radiocarbon dates are shown for Fisk Basin and 4 dates for 
Garrison Basin.  The error column indicates the analytical error on the 14C age.  The radiocarbon ages were 
converted to calendar ears using the CALIB 5.0 program, with a 400-year reservoir correction. 

 

Figure 2.1. Age models. a) Fisk Basin age model and b) Garrison Basin age model.  For the Fisk Basin, a 
least squares regression is fit through the 4 AMS radiocarbon dates.  For the Garrison Basin a second order 
polynomial is fit through the 7 AMS radiocarbon dates. 
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 For all down-core elemental analyses ≥60 foraminifera were picked from the 250-

300mm size fraction of Globigerinoides ruber (white).  Foraminifera were lightly 

crushed and underwent a cleaning process that includes multiple clay removal steps, an 

oxidative step to remove organic material, and an acid leaching step to remove adsorbed 

metals (Barker et al., 2003).  A reductive cleaning step was not performed on these 

samples.  Elemental analyses were performed on a Perkin Elmer Optima 4300 dual view 

inductively coupled plasma-optical emission spectrometer (ICP-OES) at the College of 

Marine Science, University of South Florida.  In all cases where there are replicate 

Mg/Ca analyses, replicates are based on aliquots of ≥60 foraminifera that have been 

crushed, cleaned and analyzed separately.  

 

2.4.  Gulf of Mexico Mg/Ca records 

 In order to test the reproducibility of the Pigmy Basin Mg/Ca record (Richey et 

al., 2007), we generated Mg/Ca records in 2 additional Gulf of Mexico basins:  Garrison 

Basin (box core PE07-2) and Fisk Basin (box core PE07-5I).  The upper 13 cm of the 

Garrison Basin box core covers the past ~600 yrs (age control provided by 4 AMS 

radiocarbon date, see supplemental materials).  An 18% decrease in the foraminiferal 

weights below 13 cm indicates potential problems with calcite dissolution, and thus we 

exclude Mg/Ca data below this core depth.  The core-top Mg/Ca value is 4.43 mmol/mol 

(±0.16 mmol/mol), based on 2 replicate measurements, and corresponds to an SST of 

25.4ºC (using [Mg/Ca=0.449*exp(0.09*SST)], from Anand et al., 2003), the modern 

annual average for the Gulf of Mexico (Levitus, 2003).   This is equivalent to the core-top 

Mg/Ca value of 4.43 (±0.03 mmol/mol) that was generated from replicate measurements 
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of 3 different sub-cores from the Pigmy Basin box core (Richey et al., 2007).  The mean 

precision for replicate analyses of the Garrison Basin downcore record is ±0.14 

mmol/mol (±0.3ºC), with 60% of the samples run in duplicate.  The major features of this 

record include 3 distinct SST minima (ca. 1450-1550, 1700-1750, and 1900 AD), that are 

~2ºC cooler than the core-top SST.  These minima appear to correspond with the Spörer, 

Maunder, and Dalton sunspot minima, respectively (Figure 2.3).  

 

Figure 2.3. Gulf of Mexico Mg/Ca Records. (a.) Garrison Basin (b.) Fisk Basin and (c.) Pigmy Basin 
(from Richey et al., 2007) are plotted on the same Mg/Ca scale, with age control points indicated by 
arrows. Corresponding SST scale is given on a secondary y-axis, using the relationship 
[Mg/Ca=0.449*exp(0.09*SST], from Anand et al. (2003). Lines are plotted on each curve representing the 
linear warming trend over the past 250 years. 
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 The upper 20 cm of the Fisk Basin box core span the past ~800 years (age control 

provided by 4 AMS radiocarbon dates).  Radiocarbon dates below 20 cm core depth 

indicate much lower sediment accumulation rates prior to 800 yrs BP.  Due to the 

uncertainties in the age model below 20 cm, we focus on the uppermost 20 cm of the box 

core, which has a sedimentation rate of ~26.5cm/kyr (sampling resolution of ~18 yrs per 

0.5 cm sample).  The core-top Mg/Ca value is 4.75 mmol/mol (±0.17 mmol/mol), based 

on 3 measurements, which corresponds to an SST of 26.2ºC (±0.4ºC), and is slightly 

higher (by 0.8±0.4ºC) than the core-top Mg/Ca-SST for Pigmy and Garrison Basins.  The 

Fisk Basin Mg/Ca record shows a similar pattern of variability to the other 2 Gulf of 

Mexico records over the past 6 centuries, with SST minima ca. 1550 and 1750-1850 AD 

that are ~3ºC cooler than the core-top SST (Figure 2.3).   

 LIA cooling in all 3 GOM Mg/Ca records is preceded by an interval of warmth in 

which Mg/Ca is as high or higher than the mean core-top value of 4.4 mmol/mol.   The 

timing of the warm interval in the Pigmy and Fisk basins is similar (ca. 1500 and 1450 

AD, respectively), while it is slightly later in Garrison Basin (~1600 AD).  All 3 basins 

reach maximum cooling ca. 1750 AD.  The linear warming trend from maximum LIA 

cooling (1750 AD) to the core-top is similar in the Pigmy and Garrison basins 

(~0.007ºC/yr), while the slope of the warming trend is slightly steeper in Fisk Basin 

(Figure 2.3).  In actuality however, given the uncertainty of the age models and Mg/Ca-

SST estimates, the timing of the onset as well as the magnitude of LIA cooling is 

consistent among these 3 GOM sites.  
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2.5.  Regional Comparisons 

 We have generated a 600-year stacked ΔSST record for the northern GOM based 

on the Fisk, Garrison and Pigmy Basin Mg/Ca-SST records (Fig. 2.4d).  In order to 

generate the stacked ΔSST record, the mean was removed from each record for the period 

in which there is overlap between the 3 records (from 2000-1420 AD), (i.e. ΔSST is the 

SST relative to the 580-year mean).  The ΔSST records were re-sampled at a constant ΔT 

of 20 years, and then the mean of the 3 re-sampled ΔSST records was calculated to 

generate the GOM ΔSST stack.  The uncertainty in the stack is ±0.4ºC (indicated by the 

error bar in Figure 2.4d.).  This stack represents the multi-centennial trend that is 

common to the 3 independent GOM SST records, and is used here to draw regional 

comparisons.  

 We compare the GOM ΔSST stack to a 250-year continuous coral Sr/Ca-SST 

record from the species Montastraea faveolata from La Parguera, Puerto Rico (Kilbourne 

et al., 2008). Both records (plotted their own independent timescale, and calibration to 

SST) show that it was ~2ºC cooler ca. 1750 AD than modern, and they also can both be 

described by a linear warming trend of 0.007ºC/yr from the LIA toward the present 

(Figure 2.4, a and d). There are 2 additional coral-based SST records from Puerto Rico 

that compare brief time intervals during the LIA to late 20th century SSTs. Winter et al. 

(2000) infer that LIA SSTs were 2-3ºC cooler than modern, while Watanabe et al. (2001) 

suggest that LIA SSTs were 2ºC cooler than modern (from δ18O and Mg/Ca data in M. 

faveolata, respectively). In summary, these 3 different Puerto Rico coral-based 

geochemical proxies agree that early 18th century SSTs were 2-3ºC cooler than modern. 
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Figure 2.4. AWP Regional SST Comparison. (a) La Parguera, Puerto Rico coral Sr/Ca-SST (Kilbourne et 
al., 2008). The coral Sr/Ca is calibrated to SST using the equation [Sr/Ca= -0.047*T+10.3726], and the plot 
is a 5-year running mean. (b) Montego Bay, Jamaica sclerosponge Sr/Ca-SST (Haase-Schramm et al., 
2003). The sclerosponge Sr/Ca data was calibrated to SST using the equation [Sr/Ca=-0.102*T+12.5] from 
Rosenheim et al. (2004). The record was re-sampled at a constant ΔT of 4 years, and then smoothed using a 
5-point running mean (c) Cariaco Basin G. bulloides Mg/Ca-SST calibrated to SST using the equation 
Mg/Ca=0.0.368exp(0.092*T), (d) Gulf of Mexico ΔSST stack (solid line) and (e) Pigmy Basin, GOM 
foraminiferal Mg/Ca-SST (dashed line)(Richey et al., 2007). Each record is plotted on its own independent 
timescale, and SST is scaled identically in each panel. The error bar in panel (d) indicates the uncertainty in 
the GOM ΔSST stack of ±0.4ºC.   
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 A Sr/Ca-SST record spanning the past 650 years from a Jamaican sclerosponge 

shows mean LIA conditions that were ~3ºC cooler than modern (Haase-Schramm et al., 

2003). Although the magnitude of cooling inferred from this sclerosponge record is 

slightly larger than that observed in other circum-Caribbean SST records, the general 

pattern of variability is very similar to other regional records (Figure 2.4b).   

 A Cariaco Basin foraminiferal Mg/Ca-SST record shows a similar pattern of 

centennial-scale variability to the GOM Mg/Ca-SST records over the past 8 centuries 

(Black et al., 2007). Both show a period of warmth ca. 1500 AD., during which SSTs are 

similar to core-top SSTs, followed by a period of significant cooling during the LIA, and 

a rapid warming over the past 100 years (Figure 2.4c).  The amplitude of SST variability 

reported in Black et al. (2007) is muted relative to GOM SST variability; however, the 

use of an alternate Mg/Ca-SST calibration equation yields an SST record that exhibits a 

~2ºC LIA cooling, and an amplitude of variability that is similar to that of the GOM SST 

records. 

 The similarities between the SST proxy records that span the GOM-Caribbean 

region, in spite of the uncertainties in both the Mg/Ca and Sr/Ca temperature proxies, 

suggests that the trends recorded in the northern GOM over that past 6 centuries are 

representative of a regional climate signal.  

 

2.6.  Discussion 

 There are important implications of a regionally coherent >2ºC cooling in the 

Gulf of Mexico-Caribbean region during the LIA.   Northern Hemisphere temperature 

reconstructions, which are based predominantly on mid- to high-latitude records, show a 
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<1ºC hemispheric cooling (Mann et al., 1998, 1999; Esper et al., 2002; Moberg et al., 

2005).  Model results using both medium and high solar radiative forcing estimate 

Northern Hemisphere LIA cooling of <1ºC (Ammann et al., 2007).  Simulated Northern 

Hemisphere temperature response to volcanic forcing shows cooling of 0.2-0.5ºC, and is 

in good agreement with Northern Hemisphere temperature reconstructions (Gao et al., 

2008).  While model simulations and temperature reconstructions suggest a <1ºC LIA 

cooling for the Northern Hemisphere, proxy records estimate that cooling in the high 

northern latitudes is on the order of 1-3ºC (Overpeck et al., 1997).  Based on the concept 

of polar amplification, one would predict much more subtle temperature changes in the 

subtropical Atlantic Ocean than at the high northern latitudes.  We suggest, based on the 

weight of evidence, that there was a large cooling (1-3ºC) in the GOM-Caribbean region 

during the LIA (ca. 150-400 yrs BP), indicating that this particular region of the sub-

tropical Atlantic Ocean was especially sensitive to climate perturbations during this time 

interval.   

 Timing of local SST minima in existing high-resolution continuous records from 

the GOM-Caribbean correspond roughly to minima in solar insolation associated with 

sunspot minima (The Dalton, Maunder and Spörer Minima).  The reduction in solar 

irradiance (0.25-0.65%) attributed to these sunspot minima indicates a very small change 

in radiative forcing (Bard et al., 2000).  A model simulation by Ammann et al. (2007) 

shows that the low-latitude North Atlantic has a relatively low sensitivity to solar forcing 

(<0.05ºC/watt m-2) compared with the mid to high latitudes.  Modeled surface air 

temperature response to irradiance changes, similar to the decrease in irradiance 

associated with the Maunder Minimum, show a ∆T of ~0.3ºC in the GOM-Caribbean 
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region (Shindell et al., 2006), which is much smaller than the observed SST variability 

from proxy records in this region during these solar minima.  Thus direct solar forcing 

alone is not likely responsible for the large LIA cooling in the low latitude North 

Atlantic, but perhaps positive feedbacks (e.g. intensification of the subtropical high) 

amplified cooling during periods of reduced solar irradiance.   

 The observed LIA cooling in the Caribbean and northern GOM may have been 

driven by changes in the size of the AWP, which can vary by ±50% (Wang et al., 2008b) 

and the SST anomaly within the AWP can vary by ±0.6ºC (Wang et al., 2006) on 

multidecadal timescales.  During the LIA, it is possible that there was a dramatic 

reduction in the geographic extent and intensity of the AWP, thus reducing summer SSTs 

in regions on the periphery of the AWP (e.g. Puerto Rico and the northern GOM) for 

prolonged time intervals.  Model results of Wang et al. (2008a) suggest that an 

anomalously small AWP, coupled with associated changes in atmospheric circulation can 

lead to an increase in the mid-summer drought in the Central America/Yucatan region, 

and an increase in moisture transport from the GOM to the North American continent via 

a strengthening of the Caribbean low-level jet (CLLJ) and the Great Plains low-level jet 

(GPLLJ).  Proxy records of hydrologic variability suggest that this was the likely regional 

climate scenario during the LIA.  A GOM record of terrigenous input (via the Mississippi 

River) suggests wetter conditions in North American during the LIA (Flannery et al., 

2008).  Records from the Yucatan Peninsula suggest drier conditions during the LIA 

(Hodell et al., 2005), while bulk d18O from the Blue Hole in Belize suggest drier and/or 

cooler conditions in Central America (Gischler et al., 2008).  An increase in salinity 

(inferred from an increase in the d18O of seawater) in the GOM (Richey et al., 2007) and 
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Florida Current (Lund and Curry, 2006) during the LIA further supports increased 

evaporation minus precipitation in the GOM-Caribbean. 

 The LIA cooling in the low-latitude North Atlantic is consistent with an increase 

in the north-south sea-level pressure (SLP) gradient associated with the positive phase of 

the North Atlantic Oscillation (NAO).  Increased levels of Na+ and K+ in a 

glaciochemical series from the GISP2 ice core suggest multiple intervals of increased 

north Atlantic storminess during the LIA (Meeker and Mayewski, 2002), which suggests 

an increase in the pressure gradient between the Icelandic Low and the North Atlantic 

subtropical high (Maasch et al., 2005).  This positive NOA-like pattern is characterized 

by an increase in North Atlantic trade wind strength, and a cooling in northern 

hemisphere tropical and subtropical SSTs (Marshall et al., 2001).  A centennial-scale 

strengthening of the trade winds is consistent with evidence for cooler and drier 

conditions observed throughout the Gulf of Mexico-Caribbean region.  Although a recent 

reconstruction of the NAO suggests a shift to weaker NAO conditions during the LIA 

(Trouet et al., 2009), evidence from the subtropical North Atlantic is consistent with a 

persistent, enhanced positive NAO pattern of SLP and SST during the LIA. 

  

2.7.  Conclusions 

 Despite uncertainties in foraminiferal Mg/Ca-SST proxy data and radiocarbon 

dating, the 3 late Holocene Mg/Ca-SST records generated from the northern Gulf of 

Mexico show very similar variability over the past 6 centuries, corroborating 

observations from throughout the Gulf of Mexico-Caribbean region that there was a 

prominent Little Ice Age cooling of 1-3ºC.  This suggests that the tropical-subtropical 
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North Atlantic may be more dynamic than previously thought during the late Holocene.  

A reduction of the AWP, coupled with reorganization of atmospheric circulation patterns 

during the Little Ice Age, may explain the observed cooling in this region.  Additional 

high quality SST proxy records from the subtropical North Atlantic Ocean are needed to 

establish the spatial extent and timing of this Little Ice Age cooling.  Additional 

terrestrial proxy records of regional hydrologic variability will aid in understanding the 

ocean-atmosphere dynamics during this climatically important interval.  Models 

including solar and volcanic forcings during the LIA have not been able produce a >1ºC 

cooling in the GOM-Caribbean region, thus more work needs to be done to better 

understand the regional climate dynamics that could lead the observed cooling. 
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Chapter 3 
 

Merging late Holocene molecular Organic and Foraminiferal-based Geochemical  Records 
of SST in the Gulf of Mexico 

 
 
3.1.  Abstract 

A molecular organic geochemical proxy (TEX86) for sea surface temperature 

(SST) is compared with a Foraminifera-based SST proxy (Mg/Ca) in a decadal-

resolution marine sedimentary record spanning the last 1,000 years from the Gulf of 

Mexico (GOM). We assess the relative strengths of the organic and inorganic 

paleoceanographic techniques for reconstructing high-resolution SST variability during 

recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period 

(MWP).  SST estimates based on the molecular organic proxy TEX86 show a similar 

magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates, but 

with some important differences.  For instance, both proxies show a significant cooling 

(1.5-2.5ºC) of GOM SSTs during the LIA.  During the MWP, however, Mg/Ca-SSTs 

are similar to near-modern SSTs, while TEX86 indicates SSTs that were significantly 

cooler than core-top.  Using the respective SST calibrations for each proxy results in 

TEX86-SST estimates that are 2 to 4°C warmer than Mg/Ca-SST throughout the 1,000-

year record.  We interpret the TEX86-SST as a summer-weighted SST signal from the 

upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST.  

Differences in the SST estimates between the two proxies are interpreted in the context 

of varying seasonality and/or changing water column temperature gradients.  
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3.2.  Introduction 

 Accurate reconstruction of the spatial and temporal patterns of sea surface 

temperature (SST) variability in the low latitude oceans is critical to understanding the 

range of natural climate variability over the past millennium.  While the low latitude 

oceans are a major source of heat and moisture to the mid-and high latitudes, global and 

hemispheric climate reconstructions are predominantly based on extra-tropical terrestrial 

proxy records (c.f. National Research Council, 2006).  There are few locations in the low 

latitude oceans from which continuous decadal resolution SST proxy records covering 

the past 1,000 years have been published (Lund and Curry, 2006; Newton et al., 2006; 

Richey et al., 2007; Black et al., 2008; and Oppo et al., 2009).  These SST 

reconstructions, although widely distributed geographically, all show significant SST 

fluctuations (1-2ºC) over the past 1,000 years. 

 Paleoclimate records from the Atlantic Warm Pool (AWP), which includes much 

of the western tropical/sub-tropical Atlantic Ocean, provide further evidence for 

significant climate fluctuations over the past 6 centuries (c.f. Richey et al., 2009).  The 

AWP is defined by the >28.5ºC SST isotherm, and encompasses the northern Caribbean, 

GOM and western tropical North Atlantic during the summer (cf. Wang et al., 2008). 

Multi-decadal variability in the size/intensity of the AWP is correlated with rainfall 

anomalies in the Caribbean region, formation and intensification of North Atlantic 

hurricanes, and variability in moisture transport to the North American continent via 

interactions with atmospheric circulation (Wang et al., 2008).   

 A number of geochemical proxy records from the region encompassed by the 

AWP provide evidence for a large (2-3ºC) cooling during the LIA (ca. 400-150 yrs BP) 
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(Winter et al., 2000; Watanabe et al., 2001; Nyberg et al., 2002; Haase-Schramm et al., 

2003; Richey et al., 2007; Black et al., 2007; Kilbourne et al., 2008; Richey et al., 2009).  

However, two additional SST proxy records from within the AWP show a subtler LIA 

cooling (~1ºC):  A Mg/Ca-SST record from a sediment core from the Great Bahamas 

Bank (Lund and Curry, 2006), and a coral growth rate-based SST record from the 

Bahamas (Saenger et al., 2009).  Additional multi-proxy studies are needed to determine 

whether the discrepancies observed are real regional differences in the climate response 

during the LIA, or whether there are site- and proxy-specific factors that are influencing 

the SST records. 

 Presently, there are three widely used SST proxies derived from marine 

sedimentary archives: UK’
37, TEX86, and foraminiferal Mg/Ca.  The UK’

37 index, an 

organic geochemical SST proxy based on the ratio of long-chain diunsaturated to 

triunsaturated alkenones (Brassell et al., 1986), is not ideal in low latitude marine settings 

where SSTs exceed 28ºC.  The UK’
37 index approaches 1.0 at temperatures > 28ºC (Prahl 

and Wakeham, 1987) due to insufficient production of the triunsaturated alkenones.  

Although Jasper and Gagosian (1989) generated a low resolution 100 kyr UK’
37 –SST 

record from Pigmy Basin sediments, there are insufficient alkenone concentrations in late 

Holocene sediments to provide an SST record of the past 1,000 years. 

 A novel molecular organic SST proxy, TEX86 (the TetraEther IndeX of tetraethers 

with 86 carbon atoms), is based on the relative abundance of isoprenoid glycerol dialkyl 

glycerol tetraethers (GDGTs) with varying numbers of cyclopentane moieties (Schouten 

et al., 2002). GDGTs are membrane lipids biosynthesized by marine Crenarchaeota, and 

the number of cyclopentane moieties in these crenarchaeotal membrane lipids has been 
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observed to increase with increasing growth temperature (Wuchter et al., 2004). Although 

Crenarchaeota are ubiquitous throughout the water column (Karner et al., 2001) and have 

been found living deep within sub-surface sediments (Lipp et al., 2008), TEX86 has been 

shown to correlate linearly with mean annual SST (Schouten et al., 2002, Kim et al., 

2008) throughout the global oceans. Mesocosm studies suggest that salinity and nutrients 

are not significant factors in TEX86 measurements (Wuchter et al., 2004).   It has been 

shown that terrestrial organic matter often contains isoprenoid GDGTs (Weijers et al., 

2006), and thus TEX86-SST estimates may be biased in marine settings with large 

terrestrial input.  However, the contribution of terrestrial relative to marine GDGTs can 

be monitored downcore via the BIT (Branched to Isoprenoid Tetraether) index (Hopmans 

et al., 2004). 

 Foraminiferal Mg/Ca has been widely accepted as an SST proxy, however factors 

such as diagenetic overgrowths (e.g. Boyle, 1983; Barker et al., 2003; Pena et al., 2005), 

salinity (e.g. Nürnberg et al., 1996; Ferguson et al., 2008) and dissolution (e.g. Dekens et 

al., 2003) have been shown to influence Mg/Ca of foraminiferal calcite.  In this study we 

present the first direct comparison of foraminiferal Mg/Ca with a molecular organic 

(TEX86) SST proxy, from co-occurring sediments in a decadally-resolved 1,000-year long 

sedimentary record from the Gulf of Mexico.  Using a multi-proxy approach we can 

better constrain the effects of the local ecology and other oceanographic factors on each 

paleothermometer.  Coupling of the two SST proxies expands our ability to assess SST 

conditions, and thus will provide a more complete picture of regional ocean climate 

variability (e.g. seasonality, vertical temperature gradients) during the late Holocene.   
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3.3.  Study Location 

The location of our study is the Pigmy Basin, an intraslope basin located in the 

northern Gulf of Mexico (27º11.61 N, 91º24.54 W, water depth 2259 m), ~200 km south 

of the Mississippi River mouth (Figure 3.1). The Mg/Ca and TEX86 records discussed in 

this study are derived from two different sub-cores (PBBC-1E and PBBC-1F, 

respectively) isolated from a single box core recovered from the Pigmy Basin in 2003 

aboard the RV Longhorn.  Sedimentation rates during the late Holocene are relatively 

high (43 cm/kyr) as a result of the large volume of terrigenous material delivered via the 

Mississippi River.  The high sedimentation rate combined with a 0.5 cm sampling 

interval allow for detailed study of multi-decadal to centennial scale climate variability of 

the past millennium.   

 

 

Figure 3.1. Map of the Gulf of Mexico. Location of the Pigmy Basin (27º11.61’N, 91º24.54’W, 2259 
meters water depth) is indicated by marker. 
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An age model was constructed for sub-core PBBC-1E based on 7 accelerator 

mass spectrometer radiocarbon dates on planktonic Foraminifera (Richey et al., 2007).  

Calibrated calendar ages (calibrated using the CALIB 5.0 program with a 400 year 

reservoir correction [Stuiver et al., 1998]) were plotted against core depth, and a least 

squares linear regression (r2=0.995) indicates a sedimentation rate of 43 cm/kyr.   The 

core-top radiocarbon date indicates post-1950 deposition, and therefore we infer a near-

modern core-top.  The age model for PBBC-1E was projected onto sub-core PBBC-1F 

(i.e. the core-top age was set to 0 yrs BP, and a 12.3 yr interval was assigned to each 0.5 

cm sample).  The discrepancy between the lengths of the two sub-cores (PBBC-1E is 59 

cm long and PBBC-1F is 44 cm long) is due to their relative positions within the box 

core.  The shovel of the box core is curved such that cores taken in the center of the box 

core are longer than core taken on the sides of the box core.  

 

3.4.  Methods 

3.4.1.  Extraction and Isolation of GDGT Lipids 

 Core PBBC-1F was sampled at 0.5 cm intervals and freeze-dried.  Samples were 

solvent extracted with a DIONEX Accelerated Solvent Extractor (ASE 200) using a 

solvent mixture of 9:1 dichloromethane (DCM) to methanol (MeOH) at the College of 

Marine Science, University of South Florida.  The resulting total lipid extract (TLE) then 

underwent a base hydrolysis (in 0.5M KOH in MeOH), and was separated into an acid 

and neutral fraction via liquid-liquid extraction under neutral and acidic conditions, 

respectively.  The neutral fraction was then separated into an apolar, ketone and polar 
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fraction via silica pipette column chromatography using hexane, 3:2 (vol:vol) 

hexane/DCM, and 1:1 (vol:vol) DCM/MeOH, respectively. 

 

3.4.1.  TEX86 and BIT Analysis 

 The polar fraction, containing the GDGTs, was dissolved in a 99:1 (vol:vol) 

mixture of hexane:propanol, then filtered through 0.45µm PFTE filters.  Analyses of 

GDGTs for TEX86 and BIT index determination were performed by high pressure liquid 

chromatography-mass spectrometry (HPLC-MS) at the Woods Hole Oceanographic 

Institution. Samples were analyzed on an Agilent 1200 series LC/MSD SL operating in 

positive APCI mode, with an autoinjector and Chemstation software.  A Prevail Cyano 

column (150 x 2.1 mm, 3 µm-from Grace Davison Discovery Sciences) was used with 

99:1 hexane:isopropanol (vol:vol) as an eluent. After the first 5 min, the eluent increased 

by a linear gradient up to 1.8% isopropanol (vol) over the next 45 min at a flow rate of 

0.2 mL/min. Scanning was performed in single ion monitoring (SIM). 

 The TEX86 indices were calculated according to the following equations: 

TEX86 = ([II]+[III]+[IV’])/[I]+[II]+[III]+[IV’]) (from Schouten et al., 2002) 

BIT = ([V]+[VI]+[VII])/([V]+[VI]+[VII]+[IV])  (from Hopmans et al., 2004) 

where the roman numerals refer to the GDGT structures shown in Figure 3.2.  The TEX86 

index was then converted to SST according to the following equation from Kim et al., 

(2008): 

T = -10.78 + 56.2*TEX86   

Each of the 88 GDGT samples in this study was analyzed in triplicate.  The average 

standard deviation for TEX86 among triplicate analyses is ±0.007, which corresponds to 
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±0.4ºC using the calibration equation of Kim et al. (2008).  For the BIT index, the 

average standard deviation among triplicates is ±0.006. 

 

 

Figure 3.2. Molecular structures of GDGTs. A) isoprenoid and B) branched glycerol dialkyl glycerol 
tetraethers (GDGTs) used in the TEX86 (Schouten et al., 2002) and BIT (Hopmans et al., 2004) indices. 

 

3.5.  TEX86-SST record from Pigmy Basin 

 The TEX86 record from the Pigmy Basin indicates significant SST fluctuations 

over the past 1,000 years (Figure 3.3a).  The TEX86 varies between 0.65 and 0.70 (25.8-

28.5ºC) and there is a general warming trend over the length of the record, with the core-

top recording the warmest TEX86-SST (28.5ºC) of the past millennium.  The time interval 

1,100-600 yrs BP is relatively stable with a mean TEX86-SST of 27ºC, with the exception 

of a century-long SST excursion (1,000-900 yrs BP) in which temperatures were 1ºC 

cooler.  This period is followed by a rapid transition to ~1ºC warmer SSTs ca. 600 yrs 

BP.  The LIA (400-150 yrs BP) is marked by a 0.5ºC drop in mean SSTs from the 
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preceding two centuries (600-400 yrs BP), and followed by a rapid 1.5ºC warming into 

the 20th century.   

 

Figure 3.3. GDGT based proxy records for a Pigmy Basin box core (PBBC-1F). A) TEX86 record 
with corresponding temperature scale, calibrated using the equation: T=-10.78 + 56.2*TEX86 from Kim et 
al. (2008). The pooled standard deviation of triplicate TEX86 measurements is indicated (±0.007) which 
corresponds to ±0.4ºC. B) BIT index for PBBC-1F. The pooled standard deviation among triplicate 
analyses is ±0.006. The dashed lined indicates the threshold BIT value of 0.3, above which input of 
terrestrial organic matter may influence TEX86 (Weijers et al., 2006). 
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3.6.  Influence of terrestrial input on Pigmy Basin TEX86 

 In marine marginal settings proximal to major fluvial systems such as the 

Mississippi River, there is concern that the TEX86-SST proxy may be influenced by 

delivery of isoprenoid GDGTs derived from terrestrial sources.  The Branched and 

Isoprenoid Tetraether (BIT) index, based on the relative abundance of terrestrially 

derived branched tetraether lipids (GDGT V, VI, and VII) versus the marine-derived 

crenarchaeol (GDGT IV), can be used to monitor the relative contribution of terrestrial 

organic matter (TOM) to sediments (Hopmans et al., 2004).  Weijers et al. (2006) found 

that in marine sediments with a large contribution of terrestrially derived organic matter, 

TEX86 values tended to be biased toward warmer temperatures.  Using a two end member 

mixing model (GDGT distribution in African soils versus GDGT distribution in marine 

sediments of the Niger deep sea fan), Weijers et al. (2006) predicted a +1ºC temperature 

bias in the TEX86-SST of sediments with BIT values of 0.2-0.3, and the influence of 

TOM on TEX86 temperature estimates was found to increase non-linearly at BIT values > 

0.3.  However, this specific temperature bias depends heavily upon the composition and 

source of TOM, and therefore is not necessarily applicable to other marine basins. 

 In the Pigmy Basin (core PBBC-1F) the BIT index varies between 0.14 and 0.40 

(mean=0.25) over the past 1000 years (Figure 3.3b), which lies between the values 

observed for coastal and open marine environments (Hopmans et al., 2004).  In order to 

quantify the potential bias to the TEX86-SST record introduced by the moderately 

elevated BIT index in Pigmy Basin sediments, the GDGT composition of TOM delivered 

to the GOM via the Mississippi River would have to be characterized.  Although we 

cannot directly assess to what degree, if any, terrestrially derived GDGTs are influencing 
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the TEX86 measurements, we adopt the working hypothesis that downcore variability in 

TOM input does not significantly affect downcore TEX86 variability.  Figure 3.3 shows a 

comparison of the downcore records of both the BIT and TEX86 indices from Pigmy 

Basin, and illustrates that the two indices do not covary (the correlation between the 

TEX86 and BIT indices is r = 0.2, which is small, but significantly different from 0, at the 

90% confidence level).  The lack of correlation is further illustrated in a cross-plot of the 

BIT index versus TEX86-SSTfrom the Pigmy Basin (r2 = 0.04 ) (Figure 3.4). We 

conclude that, while there is a possibility that the absolute SST may be biased, the pattern 

of TEX86 variability over the past 1,000 years in the Pigmy Basin is not systematically 

influenced by changes in terrestrially derived GDGT input. 

 

Figure 3.4. Cross plot between BIT index and TEX86-SST for Pigmy Basin box core (PBBC-
1F).There is no significant correlation between TEX86 and BIT indices (r2=0.04). 
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3.7.  Inferring depth and seasonality for TEX86 signal in the GOM  

 The global core-top calibration of Kim et al. (2008) indicates that TEX86 best 

reflects mean annual SST of the upper mixed layer (0-30 m).  Although Crenarchaeota 

are living and biosynthesizing GDGTs throughout the water column, Wuchter et al. 

(2006) showed that the TEX86 signal recorded in deep sediment trap samples (> 500 m) 

still reflects surface temperatures, rather than water temperatures resulting from deep 

water-column GDGT production.  This is most likely due to the effective packaging and 

export of GDGT-containing crenarchaeal cells from the upper water column in fecal 

pellets via zooplankton grazing.   Due to lack of a packaging process and mechanism of 

transport to sediments, deep-water crenarchaeotal production likely has an insignificant 

effect on TEX86 SST estimates (Wuchter et al., 2005). 

 The core-top TEX86 value of 0.70 (±0.008) in the Pigmy Basin corresponds to an 

SST of 28.5ºC (±0.5ºC), which is ~3ºC warmer than the mean annual SST for the GOM 

(25.4ºC), and equivalent to the mean summer (June-Sept.) SST for the GOM mixed layer 

(Levitus, 2004) (Figure 3.5a).  This suggests that the TEX86 record in the Pigmy Basin is 

a heavily summer-weighted signal, and that crenarchaeotal production and/or export via 

zooplankton grazing must be significantly higher during the summer in the Gulf of 

Mexico.  This is contrary to the observation of Wuchter et al. (2005) that GDGTs 

occurred in higher abundances during the winter and spring in a number of marine 

settings, including the subtropical and tropical Atlantic sites, BATS (Bermuda Atlantic 

Time-series Study) and in the Cariaco Basin.  In contrast, Shah et al. (2008) found in 

Bermuda Rise core-top sediments that TEX86 indicated SSTs ~2ºC warmer than those 

estimated from co-occurring foraminiferal δ18O, a fact consistent with our findings in the 
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Pigmy Basin.  At present there are no data from the GOM on seasonal changes in 

crenarchaeotal production. 

 

 

Figure 3.5. Annual cycle of water temperature variability in the upper 100 meters of the water 
column. Data are monthly averages from the climatic means for the Gulf of Mexico (Levitus, 2004). A) 
The circled region indicates the dominant depth and seasonal range of the TEX86 signal, based on the core-
top TEX86-SST of 28.5ºC. B) The circled regions indicate the two possible distributions of G. ruber in the 
Gulf of Mexico. The modern SST (25.4ºC) recorded by G. ruber indicates that they are living in the upper 
mixed layer (0-30 meters) throughout the year, or they are limited to the summer months (Jun-Sept), but 
living over a greater depth range (0-75 meters). 
 

3.8.  Comparison of Pigmy Basin TEX86-SST to Mg/Ca-SST Record 

 Comparison of two or more different paleotemperature proxy records from co-

occurring sediments often reveals strikingly different climate histories.  This can be 

attributed to a number of physical, biological and chemical factors, including separate 

transport mechanisms to the sediment, different ecologies of the signal carrying 

organisms, and susceptibility to separate diagenetic processes of the different sediment 

components.  It has been well documented that organic compounds, which are attached to 

fine-grained particles, can be laterally transported long distances (e.g. Ohkouchi et al., 

2002; Mollenhauer et al., 2005) causing age and temperature offsets between molecular 
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organic proxies (e.g. UK’
37  and TEX86) and planktonic Foraminifera-based proxies.  

Compound-specific radiocarbon dating suggests that GDGTs may be more labile than 

alkenones, and thus don’t survive transport over long distances under oxic conditions as 

well as alkenones (Mollenhauer et al., 2007; Shah et al., 2008).  Thus GDGTs are more 

likely to contain a local signal that is contemporaneous with the foraminiferal signal. 

 Each paleo-SST proxy is based on the geochemistry of a planktonic organism, 

each of which has a different depth and seasonal distribution.  These depth and seasonal 

distributions for a signal carrier can vary depending on geography and local controls on 

productivity.  For example, Huguet et al. (2006) find a 2.5ºC difference between the 

estimates of LGM to present warming between UK’
37-SST and TEX86-SST in the Arabian 

Sea.  They attribute these discrepancies to differences in seasonality between the 

crenarchaeota and haptophyte algae, which are the planktic source of the TEX86 and UK’
37 

signals, respectively.  Castañeda et al. (2010) found that UK’
37 and TEX86-based SST 

estimates in the eastern Mediterranean were similar during the LGM, but TEX86-SSTs 

were generally 1-2ºC warmer than UK’
37-SSTs during the Holocene.  They also attribute 

this discrepancy to changing seasonality of crenarcaeota and haptophyte blooms during 

the last deglaciation.    

 The TEX86-based SST record generated from the Pigmy Basin (core PBBC-1F) 

shows similar patterns of variability to the Mg/Ca-based SST record (core PBBC-1E) 

previously published by Richey et al. (2007) from the same box core, but with important 

differences.  Due to the potential implications of offsets in absolute SST calibration 

between the two different paleotemperature proxies (TEX86 and Mg/Ca), similarities in 

the decadal to centennial-scale patterns of variability are discussed first.  Figure 3.6 
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shows the down core SST variability in both records plotted as a temperature anomaly 

relative to their respective core-top SSTs.  Both the Mg/Ca and TEX86-based SST records 

indicate that SSTs ca. 500 yrs BP were ~1ºC cooler than core-top SSTs.  The Mg/Ca 

record shows that the mean temperature during the LIA (ca. 400-150 yrs BP) was 2.0ºC 

(±0.6ºC) cooler than today, and the TEX86 record indicates a LIA mean that was 1.2ºC 

(±0.6ºC) cooler than today.  From 850-600 yrs BP both records indicate SSTs that were 

~1.5ºC cooler than their modern core-top SSTs.  The major discrepancies between the 2 

records are 1) The LIA is not the coolest interval during the past millennium as recorded 

by TEX86, and 2) The period prior to 900 yrs BP was similar to the core-top SST as 

recorded by foraminiferal Mg/Ca, but cooler in the TEX86 record. 

 

Figure 3.6. TEX86 and Mg/Ca records plotted as anomalies relative to their respective calibrated 
core-top temperatures. Individual data points are shown with open circles (TEX86) and open triangles 
(Mg/Ca). Both records are derived from separate subcores with in the same Pigmy Basin box core. Sub-
core PBBC-1F (TEX86) is 15 cm shorter than PBBC-1E (Mg/Ca), due to position within the box core. 
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3.9.  Inferring Depth and Seasonality for G. ruber in the GOM 

 The white variety of the planktonic foraminifer, Globigerinoides ruber, is 

abundant throughout the tropical and subtropical oceans, and is constrained to the 

euphotic zone by its photoautotrophic dinoflagellate symbionts.  The seasonal and depth 

distribution of G. ruber (white) has been reported from sediment trap (e.g. Deuser, 1987; 

Tedesco et al., 2003; Tedesco et al., 2009) and plankton tow studies (e.g. Tolderlund and 

Bé, 1971; Fairbanks et al., 1980; Bé, 1982) in a number of different locations proximal to 

the Gulf of Mexico.  The modern depth preference of G. ruber (white) has been 

documented in a number of Sargasso Sea plankton tows studies, but there are limited data 

specific to the Gulf of Mexico.  Fairbanks et al. (1980) found that G. ruber (white) was 

common throughout the upper 100 meters of the water column in a November 1975 

plankton tow study, while a series of monthly plankton tows in the Sargasso Sea 

indicated that G. ruber (white) was most abundant in the uppermost 10 meters of the 

water column (Tolderlund and Bé, 1971).  Bé (1982) confirmed the presence of G. ruber 

(white) throughout the upper 50 meters of the water column in the western Gulf of 

Mexico.   

 The Mg/Ca of G. ruber (white) is typically interpreted as a mean annual mixed 

layer signal in the Gulf of Mexico (e.g. Flower et al., 2004; LoDico et al., 2006; Richey 

et al., 2007).  Flux data from a sediment trap study in the Sargasso Sea indicate that G. 

ruber are present throughout the annual cycle, with peak fluxes in early spring and late 

summer (Deuser, 1987).  A one-year sediment trap study in the northern Gulf of Mexico 

indicates that G. ruber (white) is present throughout the year, with small peaks in flux in 

early spring and late summer (Tedesco et al., 2009).     
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 The Mg/Ca record in the Pigmy Basin was generated from a well-constrained size 

fraction (250-300µm) of the white variety of G. ruber (Richey et al., 2007).  A mean 

Mg/Ca core-top value of 4.43 mmol/mol (±0.03) for the Pigmy Basin was determined 

from replicate analyses of core-top (0–0.5 cm) samples from 7 GOM core-tops.  This 

robust core-top value corresponds to an SST of 25.4ºC (Mg/Ca = 0.449 * exp(0.09 * 

SST) (from Anand et al., 2003), which is the modern mean annual SST for the GOM 

(Levitus et al., 2004).  

 Unlike the TEX86 signal, which is well constrained as a surface summer signal, 

the core-top Mg/Ca-SST of 25.4ºC can be produced by a number of different scenarios 

(Figure 3.5b).  1) The G. ruber (white) depth habitat is limited to the uppermost 30 

meters of the water column and flux to the sediments is equally weighted throughout the 

year.  2) The flux of G. ruber (white) is summer-weighted, but G. ruber (white) has a 

greater range (0-75 meters) in the water column.  In either case, increases (decreases) in 

SST, as recorded by the Mg/Ca of G. ruber, may be influenced by warmer (colder) 

winters or deeper (shallower) mixed layers.  

 

3.10.  Mg/Ca-SST to TEX86-SST gradients 

 Previous studies have interpreted the difference in paleo-temperature records 

between species of Foraminifera with known differences in seasonal and depth 

distribution (Williams et al., 2009).  Using the assumptions we have made about the 

depth and seasonal distribution of GDGTs versus G. ruber (white) in the GOM, we can 

exploit the differences between the two SST records to make inferences about changing 

upper water column structure and/or seasonality over the past millennium.  To do this we 
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take the difference (ΔT) between the TEX86 and Mg/Ca-based SST records using their 

respective paleotemperature calibrations (Figure 3.7).  The results of this exercise are 

plotted in Figure 3.7, and suggest that the greatest difference between the TEX86 and 

Mg/Ca SST occurs between 200 and 300 yrs BP, during the maximum LIA cooling.   

 

Figure 3.7. The ΔT (TEX86-Mg/Ca) for the Pigmy Basin, Gulf of Mexico. A) The SST records 
derived from TEX86 (open circles) and Mg/Ca (closed circles), calibrated to SST using their independent 
paleotemperature equations. B) The ΔT (TEX86-Mg/Ca) for the Pigmy Basin, Gulf of Mexico. The largest 
ΔT (>4ºC) occurs during the LIA, while minimum ΔT (<1ºC) occurs during the MWP. Note that when 
uncertainties associated with respective calibrations to SST and analytical errors associated with both 
proxies are compounded, the error of the ΔT record is ± 2ºC. 
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The maximum is controlled by greater cooling of Mg/Ca-SST.  This implies that the LIA 

cooling observed in the GOM may have been dominated by enhanced winter cooling 

relative to summer cooling, or shoaling of the thermocline (shallow mixed layer).  The 

minimum difference between the TEX86 and Mg/Ca-SST records occurs 1100-900 yrs 

BP, during the MWP.  This implies that during this time there was a significant decrease 

in seasonality and/or increase in mixed layer depth.   

 Without seasonally resolved flux data for Crenarchaeota or G. ruber specific to 

the Gulf of Mexico, we cannot evaluate whether the differences between TEX86 and 

Mg/Ca SST estimates result from differences in seasonal or depth distribution.  Figure 

3.8(a-d) depicts the different scenarios by which the ΔT between the two proxies could 

change over time.  Figures 3.8a and 3.8c depict the theoretical LIA scenarios, in which 

there was an especially shallow mixed layer (causing a steep thermal gradient in the 

upper 100 meters of the water column) or increased seasonality. In either of these 

scenarios we would expect the ΔT between TEX86 and Mg/Ca temperatures to be greater.  

The converse is shown in Figures 3.8b and 3.8d, where the mixed layer is deeper (causing 

a decreased thermal gradient in the upper water column), or decreased seasonality.   In 

these scenarios, a smaller ΔT between TEX86 and Mg/Ca temperatures would be 

expected.  It must also be recognized that the seasonal or depth preferences of either 

signal carrier may be influenced by some other environmental factor over the past 1,000 

years, such as changes in nutrient input or salinity. 
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Figure 3.8. Illustrations of Mixed Layer and Seasonality Hypotheses. An illustration of the working 
hypotheses that A & B) the changes in ΔT (TEX86-Mg/Ca) over time may be indicative of changes in the 
thermal gradient in the upper water column in the Gulf of Mexico and/or C & D) changes in ΔT over time 
may be indicative of changes in the seasonality in the Gulf of Mexico. The “LIA scenario”, in which we 
observe the greatest ΔT, is illustrated by a steeper thermal gradient (or shallow mixed layer) in panel A, or 
by a greater seasonal range of SST in the Gulf of Mexico in panel C. The “MWP scenario”, in which we 
observe the smallest ΔT, is illustrated by a reduced thermal gradient (or deeper mixed layer) in panel B, or 
by a reduced seasonal range in the Gulf of Mexico in panel D. Both scenarios require the assumption that 
the Mg/Ca and TEX86 signals maintain their relative depth and/or seasonal distributions throughout the 
past millennium. 
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3.11.  Potential Implications for the ΔT record 

 The changes in ΔT between the TEX86 and Mg/Ca SST records in the Pigmy 

Basin can be interpreted in terms of changes in the amplitude of the seasonal SST cycle 

and/or changes in mixed layer depth.  Either scenario, 1) a deepening of the mixed layer, 

or 2) a decreased seasonal SST variability with reduced winter cooling, would result in 

increased heat storage in the upper ocean on an annual basis.  The Gulf of Mexico is in 

the path of, or the birthplace for a large number of Atlantic tropical cyclones, and thus it 

follows that a persistent annual build-up of heat in the upper water column may have 

been a factor in enhancing tropical cyclone activity in the past. 

 The MWP (ca. 1100-900 yrs BP) is marked by the minimum ΔT for the past 

1,000 years in the Pigmy Basin, suggesting a centennial scale period in which more heat 

was being stored in the upper ocean.  Greater heat storage in the GOM via a warm mixed 

layer that is thicker and/or more seasonally persistent is consistent with reconstructions of 

greater tropical cyclone frequency in the Atlantic basin during the MWP (Figure 3.9) 

(Mann et al., 2009).  Maximum ΔT in the Pigmy Basin record is observed during the 

LIA, suggesting a period of enhanced seasonality and/or a decreased mixed layer depth. 

This observation is also consistent with a minimum in reconstructed tropical cyclone 

frequency during the LIA by Mann et al. (2009). 
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Figure 3.9. Comparison of Pigmy Basin ΔT (TEX86-Mg/Ca) with a reconstruction of tropical 
cyclone counts. A) Grey curve is a 3-point running mean of the ΔT record from the Pigmy Basin. We 
interpret decreasing ΔT in terms of increasing mixed layer depth and/or decreased seasonality. B) The 
dashed line is a multidecadal-smoothed record of Atlantic tropical cyclone counts over the past 150 years. 
The solid black line is the proxy reconstructed Atlantic tropical cyclone counts based on statistical model 
from Mann et al. [2009]. The LIA is indicated by the shaded bar and highlights a minimum in 
reconstructed tropical cyclone counts, and a maximum ΔT. The MWP, indicated with a shaded bar, can be 
characterized by a maximum in reconstructed tropical cyclone counts and a minimum in ΔT. 
 

3.12.  Conclusions 

 We present the first comparison of a decadal resolution TEX86-based SST record 

with a foraminiferal Mg/Ca-based SST record for the past 1,000 years from marine 

sediments. There are similarities in the magnitude and pattern of SST variability recorded 
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by TEX86 and Mg/Ca in co-occurring sediments of the Pigmy basin box core, especially 

over the past four centuries, including a substantially cooler LIA (by 1.5-2.5ºC).  There 

are however, significant differences in the two SST records that can most likely be 

attributed to changes in the seasonal and/or depth distribution of crenarchaeota versus G. 

ruber (white).  The core-top TEX86-SST indicates that TEX86 in the Gulf of Mexico is a 

summer weighted, upper mixed layer signal, while the Mg/Ca-SST indicates that G. 

ruber are most likely living throughout the year, and/or deeper in the water column.  The 

difference (∆T) between the two proxy records indicates changes in seasonality and/or 

mixed layer depth over the past millennium with the LIA characterized by enhanced 

seasonality and/or a shallow mixed layer whereas the MWP was recognized by a 

decrease in the seasonal temperature gradient and/or a deeper mixed layer.  The increased 

ability to store heat in the GOM surface waters during the MWP may be a link to 

understanding historical changes in past Atlantic tropical cyclone activity. 
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Chapter 4 

Ecological controls on the shell geochemistry of pink and white Globigerinoides ruber in 
the northern Gulf of Mexico:  Implications for paleoceanographic reconstruction 

 

4.1.  Abstract 

 We assess ecological controls on shell geochemistry for two of the most 

commonly used planktonic foraminifers for paleoceanographic reconstruction in the 

subtropical Atlantic Ocean: the pink and white varieties of Globigerinoides ruber.  We 

evaluate the relationship between foraminiferal test size and shell geochemistry (δ13C, 

δ18O and Mg/Ca) using temporally well-constrained core-top samples from the Pigmy 

and Garrison Basins, in the northern Gulf of Mexico.  The core-top samples are from the 

uppermost 0.5cm of the respective box cores, and represent ~10-30 years of sedimentary 

deposition.  For each size fraction, multiple separate analyses (2-10 aliquots) of 60 

foraminifera were analyzed.  Data show a significant positive relationship between 

Mg/Ca and test size, with a range of 1.1 mmol/mol (~2.5ºC) from the smallest (150-

212µm) to largest (>500µm) size fractions of G. ruber (pink), but no significant 

relationship in G. ruber (white).  There is a depletion in δ18O of 0.26‰ per 100µm 

increase in test size for both pink and white G. ruber.  The increase in Mg/Ca and 

decrease in δ18O is consistent with an increase in calcification temperature of 0.66ºC per 

100mm increase in test size.  Overall, these results stress the necessity for using a 

consistent size fraction. In addition, we compare downcore records of δ18O and Mg/Ca 

from both pink and white G. ruber, and make inferences about the relative seasonal 

distribution and depth habitat of the 2 varieties.   
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4.2.  Introduction 

 Improving understanding of the biological, chemical and physical factors that 

contribute to uncertainty in foraminiferal geochemical proxies is critical to the 

interpretation of paleoceanographic records.  The uncertainties inherent to Mg/Ca-based 

SST estimates can exceed the environmental signal in some cases, especially in low 

latitude records covering the past few millennia, when SST variability was likely small 

(<2ºC) relative to glacial-interglacial changes.  Some sources of uncertainty in Mg/Ca-

SST estimates include, but are not limited to diagenesis (e.g. Boyle 1983; Barker et al., 

2003; Pena et al., 2005), salinity (e.g. Nürnberg et al., 1996; Ferguson et al., 2008; 

Kisakürek et al., 2008), shell heterogeneity (e.g. Eggins et al., 2004; Sadekov et al., 2008) 

and dissolution (e.g. Dekens et al., 2003).  Each of these factors has the potential to 

overprint the Mg/Ca signal of the downcore record, and the influence of these factors is 

variable, and often basin-specific.   

 One issue that has been explored to some degree is the effect of foraminiferal test 

size on Mg/Ca (Elderfield et al., 2002; Ni et al., 2007). Elderfield et al. (2002) illustrated 

that there is a positive correlation between Mg/Ca and test size in a number of species of 

planktonic foraminifera; however it is difficult to quantify the relationship in that study 

due to the small number of individuals analyzed for each size fraction (~20), and 

insufficient temporal constraint in their sediment sample (their sample represented ~800 

yrs (Elderfield et al., 2002)).  Ni et al. (2007) found no relationship between test size and 

Mg/Ca in the white variety of Globigerinoides ruber, but their sample also represented 

multiple centuries of deposition, and they had few replicate analyses. 
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 In this study we improve upon previous studies by presenting a temporally well-

constrained data set to investigate the relationship between test size and Mg/Ca in the 

white and pink varieties of G. ruber.  The 0.5cm zero-age dated core-top samples from 

the two high accumulation rate (40cm/kyr) basins (Pigmy and Garrison basins) in the 

Gulf of Mexico (GOM) represent the most recent few decades, and between 2 and 10 

aliquots of 60 individual Foraminifera were analyzed for each size fraction of pink and 

white G. ruber.  We propose an internally consistent explanation of the changes in three 

geochemical parameters with size (δ13C, δ18O and Mg/Ca), as well as for observed offsets 

in the geochemistry of the pink and white varieties of G. ruber.  

 The pink and white varieties of G. ruber are the two most abundant foraminifers 

in modern GOM sediments, and when combined, make up >45% of the total assemblage, 

respectively (Brunner, 1979; Kennett et al., 1985; Dowsett et al., 2003).  The two are 

morphologically very similar, are both hosts to dinoflagellate photosymbionts, and 

accordingly reside within the euphotic zone.  Despite their similarities, we observe 

differences in their shell geochemistry.  We compare downcore geochemical records of 

pink and white G. ruber in a high-resolution, recent sedimentary series in order to assess 

their relative depth and seasonal distributions.  

   

4.3.  Materials and Methods 

 The samples used for the size fraction study are from the core-top (top 0.5 cm) of 

the Pigmy Basin box core (PBBC-1; 27º11.61’N, 91º24.54’W; 2259 meters water depth), 

and the Garrison Basin box core (PE07-2; 26º40.5’ N, 93º55.5’ W; 1570 meters water 

depth).  Each of these basins is an intraslope basin in the northern Gulf of Mexico, and 
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has a relatively high sediment accumulation rate (20-40 cm/kyr) due to the input of 

terrigenous material from the Mississippi River.  For each of the box cores the sediment-

water interface was recovered, and therefore the core-top samples incorporate the most 

recently deposited sediments. Radiocarbon dates from a mixed assemblage of planktonic 

foraminifera, for each of the core-top samples, reflect a modern age (< 0 after reservoir 

correction; Richey et al., 2007, 2009).  Size fractions where separated by sieving, and 

between 2 and 10 different aliquots of ≥60 foraminifera were analyzed for each size 

fraction of both pink and white G. ruber.   

 Downcore analyses were performed on the 250-300µm size fraction of pink and 

white G. ruber from the same subcore of the Pigmy Basin box core, PBBC-1.  The age 

model for PBBC-1, as well as the oxygen isotope and Mg/Ca records from the white 

variety of G. ruber, was previously published by Richey et al. (2007).  Age control is 

based on 7 accelerator mass spectrometer (AMS) radiocarbon dates.  The sampling 

interval of 0.5 cm combined with the linear sedimentation rate of 43 cm/kyr yields a 

sampling resolution of ~12 years. 

 For all elemental analyses ≥60 Foraminifera were picked from each size fraction 

of Globigerinoides ruber (white and pink).  Foraminifera were lightly crushed and 

underwent a cleaning process that includes multiple clay removal steps, an oxidative step 

to remove organic material, and an acid leaching step to remove adsorbed metals (Barker 

et al., 2003).  A reductive cleaning step was not performed on these samples.  Elemental 

analyses were performed on a Perkin Elmer Optima 4300 dual view inductively coupled 

plasma-optical emission spectrometer (ICP-OES) at the College of Marine Science, 

University of South Florida (CMS, USF).  In all cases where there are replicate Mg/Ca 
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analyses, replicates are based on separate aliquots of ≥60 foraminifera that have been 

crushed, cleaned and analyzed separately.  Oxygen and carbon isotope ratios were 

measured on a ThermoFinnigan Delta Plus XL light stable isotope ratio mass 

spectrometer (SIRMS) at the CMS, USF.  The δ18Ocalcite and δ13Ccalcite are reported on the 

VPDB scale.  

 

4.4.  Results  

4.4.1.  Relationship between test size and carbon isotopic composition 

 The positive relationship between the δ13C and foraminiferal test size has been 

well established in number of studies using a variety of different planktonic foraminifera 

species across a range of oceanographic settings (e.g. Berger et al., 1978; Curry and 

Matthews, 1981; Oppo and Fairbanks, 1989; Ravelo and Fairbanks, 1995; Elderfield et 

al., 2002).  Berger et al. (1978) proposed that foraminiferal δ13C increases with test size 

as a function of ontogeny, due to the fact that metabolic rates are highest in the early 

ontogenetic stages (i.e. smallest individuals), and therefore are the most depleted relative 

to equilibrium. 

 
Figure 4.1.  Illustration of the relationship between δ13C and ontogeny in Foraminifera. This 
illustration was redrawn from Berger et al. (1978).  
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As the foraminiferan matures, the metabolic rate slows and the carbon isotopic 

composition of the test becomes less depleted relative to the δ13C of seawater ∑CO2.  The 

formation of a deep calcite crust by mature planktonic Foraminifera accounts for the 

observed depletion in the largest individuals (Figure 4.1).   

 It has also been proposed that the increase in δ13C with increasing size can be 

attributed to symbiont photosynthesis (Oppo and Fairbanks, 1989; Spero and Lea, 1993).  

Symbionts preferentially utilize 12C during photosynthesis, leaving the carbon pool in the 

calcification microenvironment enriched with respect to 13C (Spero and Williams, 1988).  

Photosynthetic activity increases as a function of increasing light level (Spero and Lea, 

1993), and the increase in symbiotic density with advancing ontogeny (Spero and Parker, 

1985).  A culture study in which O. universa and G. sacculifer were grown under variable 

light levels revealed that the δ13C of the Foraminifera was controlled by symbiont 

photosynthesis, rather than ontogeny.  However, the observation of increasing δ13C with 

increasing test size in non-symbiont bearing foraminifera (e.g. Ravelo and Fairbanks, 

1995; Elderfield et al., 2002) suggests that symbiont photosynthesis is not the sole 

contributing factor to the δ13C-size relationship. 

 Our observation of the relationship between δ13C and test size in white and pink 

G. ruber is consistent with previous studies.  For G. ruber (pink) the δ13C ranges from 

0.5‰ in the smallest size class (150-212µm), to 2.0‰ in the largest size class (425-

500µm).  G. ruber (white) ranges from 0.3‰ in the smallest size class (150-212µm) to 

1.3‰ in the largest size class (355-425µm) (Figure 4.2.a).  The rate of change per 

increase in size slows as the forams get larger, which is consistent with a smaller 
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fractionation with decreasing metabolic rate.  The pink variety of G. ruber is consistently 

~0.4‰ more enriched than the white variety.  The overall range in δ13C from the smallest 

to largest individuals exceeds the downcore δ13C variability over the past 1500 years in 

both white and pink G. ruber, thus emphasizing the importance of using a narrow size 

range for all downcore paleoceanographic studies. 

 

Figure 4.2.  Relationship between foraminiferal test size and δ13C and δ18O.  A) The carbon isotopic 
composition is plotted against test size for pink (open circle) and white (square) G. ruber. A 3º order 
polynomial is fit through both data sets.  B) The oxygen isotopic composition is plotted against test size for 
pink (open circle) and white (square) G. ruber.  A linear least squares regression line is fit through both 
data sets, and they both have the same slope.  The mean offset between pink and white G. ruber in δ18O is 
0.27‰.  Error bars represent the standard deviation among all replicate measurements for each size 
fraction. 
 

4.4.2.  Relationship between test size and oxygen isotopic composition 

 A number of studies have investigated the relationship between δ18O and size in 

planktonic foraminifera, however, unlike with δ13C, the relationship does not seem to be 
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systematic.  Elderfield et al. (2002) found that there was a general decrease in δ18O in 

three species of planktonic foraminifera (Orbulina universa, Neogloboquadrina dutertrei, 

and white G. ruber), but 14 other planktonic species analyzed showed either the opposite 

relationship, or no significant relationship at all. Ravelo and Fairbanks (1992, 1995) 

observed a significant decrease in δ18O of G. ruber (white) with increasing test size, but 

no relationship in G. ruber (pink).  Curry and Matthews (1981), however, looked at the 

relationship between δ18O and test size in G. ruber (white), and found no significant 

relationship.  In a culture study, Spero and Lea (1993) concluded that ontogeny did not 

have an effect on the shell δ18O of G. sacculifer, but they observed a significant depletion 

in δ18O with increasing light levels for the symbiont-bearing O. universa and G. 

sacculifer.   

 

Size Fraction 
(µm) n 

δ18O 
(permille) STDEV 

δ13C 
(permille) STDEV 

150-212 4 -1.38 0.06 0.52 0.14 
212-250 7 -1.58 0.12 1.01 0.14 
250-300 9 -1.52 0.14 1.26 0.11 
300-355 7 -1.66 0.09 1.70 0.16 
355-425 8 -1.96 0.08 1.87 0.20 
425-500 6 -2.09 0.11 1.99 0.22 

 
Table 4.1.  Oxygen and Carbon isotopic data for G. ruber (pink).  Data in this table represent the mean 
values for all measurements in each size fraction.  “n” is the total number of measurements for each size 
fraction, and each measurement is based on ≥60 individual Foraminifera.  STDEV represents the standard 
deviation among replicate measurements for each size fraction. 
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Size Fraction 
(µm) n 

δ18O 
(permille) STDEV 

δ13C 
(permille) STDEV 

150-212 5 -1.17 0.20 0.26 0.10 
212-250 7 -1.22 0.18 0.56 0.05 
250-300 8 -1.41 0.18 0.86 0.27 
300-355 7 -1.39 0.15 1.24 0.15 
355-425 3 -1.70 0.16 1.34 0.17 

 
Table 4.2.  Oxygen and Carbon isotopic data for G. ruber (white). Data in this table represent the mean 
values for all measurements in each size fraction.  “n” is the total number of measurements for each size 
fraction, and each measurement is based on ≥60 individual Foraminifera.  STDEV represents the standard 
deviation among replicate measurements for each size fraction. 
 

 Our results indicate that δ18O decreases with increasing test size in both white and 

pink G. ruber (Figure 4.2.b).  In the white variety the δ18O of foraminiferal calcite 

decreases from -1.1‰ from the smallest individuals (150-212µm) to -1.6‰ in the largest 

individuals (355-425µm), while pinks range from -1.4‰ in the smallest size class (150-

212µm) to -2.0‰ in the largest size class (425-500µm). A least-squares linear regression 

through the mean δ18O values for each size fraction indicates a significant negative 

correlation between δ18O and size for both pink and white G. ruber (r2= 0.94 and 0.84, 

respectively).  The slopes of the relationships are nearly identical for pink and white G. 

ruber, and indicate a 0.26‰ decrease in δ18O per 100µm increase in size. There is a 

consistent offset between pink and white G. ruber in which the pink variety is depleted 

by ~0.27‰ relative to the white.   

 

4.4.3.  Relationship between foraminiferal test size and Mg/Ca 

 In G. ruber (pink) there is a significant increase in Mg/Ca with increasing test size 

from 150µm to >500µm (Figure 4.3.a).  The overall range in Mg/Ca from the smallest 

size (150-212µm) to the largest size (>500µm) is 1.1 mmol/mol.  This corresponds to an 
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SST difference of 2.5ºC from the smallest to largest size fraction based on the Mg/Ca 

paleotemperature equation for G. ruber (pink):   

(1) Mg/Ca=0.38exp(0.09*T) from Anand et al. (2003) 

A temperature range of 2.5ºC exceeds the range of SST variability expected for most late 

Holocene records.  The increase in Mg/Ca with test size appears to be linear, with a 

positive slope of 0.27 mmol/mol (0.66ºC) per 100µm increase in test size.  The Mg/Ca 

values for the 250-300µm and 300-355µm size fractions are not significantly different 

from each other, and have Mg/Ca values (mean=4.3±0.02mmol/mol) that correspond to 

the modern summer-weighted (April-October) SST for the Gulf of Mexico (27.0ºC), 

when calibrated using equation (1).   

 This exercise was repeated for a second depth interval (320-325mm, 650 yrs B.P.) 

in the Pigmy Basin box core (PBBC-1) in order to test whether the relationship between 

test size and Mg/Ca is stationary through time.   The interval ca. 650 yrs B.P. was 2ºC 

colder than the modern core-top in the downcore record, as indicated by the Mg/Ca-SST 

from the 250-300µm size fraction of G. ruber (white) (Richey et al., 2007).  Figure 4.3.b 

illustrates a nearly identical slope of the size-Mg/Ca relationship for the both the modern 

core-top sample and for the sample at 650 yrs B.P., indicating that the increase in Mg/Ca 

with test size is a robust relationship, even under different climatic conditions.  The fact 

that each size fraction from the interval 650 yrs B.P. is consistently offset ~2ºC cooler 

than the corresponding size from the modern core-top SST, further corroborates the 2ºC 

cooling observed in the downcore record.  It is also worth noting that there were no G. 

ruber (pink) in the >500µm size fraction for the 650 yrs B.P. sample, while there were 
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more than 60 individuals in the >500µm size fraction in the core-top sample.  This 

supports the hypothesis that Foraminifera grow larger under warmer conditions.      

 

Size Fraction 
(µm) n 

Mg/Ca 
(mmol/mol) STDEV 

SST 
(ºC) 

150-212 5 4.00 0.32 26.1 
212-250 5 4.19 0.19 26.7 
250-300 10 4.35 0.23 27.1 
300-355 7 4.37 0.19 27.1 
355-425 7 4.57 0.30 27.6 
425-500 6 4.83 0.27 28.2 

>500 1 4.92 n/a 28.5 
 
Table 4.3.  Mg/Ca data versus size for G. ruber (pink). The data listed in this table represent the 
midpoint of n measurements made for each size fraction, where n is the number of replicate measurements 
for each size fraction.  STDEV is the standard deviation among the n replicate measurements.  The SSTs 
listed are calibrated using the equation for G. ruber (pink), Mg/Ca=0.38exp(0.09*SST) (Anand et al., 
2003). 
 
 
 

Size Fraction 
(µm) n 

Mg/Ca 
(mmol/mol) STDEV SST (ºC) 

150-212 5 4.36 0.10 25.2 
212-250 6 4.29 0.27 25.1 
250-300 8 4.32 0.16 25.2 
300-355 5 4.30 0.22 25.1 
355-425 2 4.73 0.19 26.2 

 
Table 4.4.  Mg/Ca data versus size for G. ruber (white). The data listed in this table represent the 
midpoint of n measurements made for each size fraction, where n is the number of replicate measurements 
for each size fraction. STDEV is the standard deviation among the n replicate measurements. The SSTs 
listed are calibrated using the equation for G. ruber (white), Mg/Ca=0.449exp(0.09*SST) (Anand et al., 
2003).   
 

 The relationship between test size and Mg/Ca is not as clear in the white variety 

of G. ruber.  In our samples, G. ruber (white) is not abundant enough in the >425µm size 

fractions to make a Mg/Ca measurement.  The four size fractions between 150 µm and 

355 µm (150-212µm, 212-250µm, 250-300µm and 300-355µm) have the same Mg/Ca 

value of 4.32mmol/mol (within the analytical error) (Figure 4.3.a).  The Mg/Ca value of 



 72 

the largest size fraction, 355-425 µm, does increase significantly, by 0.41 mmol/mol, 

consistent with the increase in Mg/Ca for this size fraction in pink G. ruber.  Each of the 

size fractions between 212µm and 425µm in G. ruber (white) falls, within 1σ error, on 

the trend line relating Mg/Ca to test size for G. ruber (pink).  However, looking at the test 

size vs. Mg/Ca data for just the G. ruber (white) data, there is no significant relationship 

between Mg/Ca and size. 

 

4.5.  Discussion of Size Fraction Data 

 Unlike the positive test size-δ13C relationship that has been observed for nearly all 

species of planktonic Foraminifera investigated (e.g. Curry and Williams, 1981; Ravelo 

and Fairbanks, 1995; Elderfield et al., 2002), the relationship between test size and the 

Mg/Ca and δ18O parameters varies between positive, negative and no relationship for a 

variety of planktonic Foraminifera (e.g. Curry and Matthews, 1981, Elderfield et al., 

2002; Ni et al., 2007).  Spero and Lea (1993) concluded from analysis of individual 

chambers that ontogeny has no significant effect on shell δ18O in two species of 

symbiont-bearing planktonic Foraminifera (O. universa and G. sacculifer), therefore 

changes in metabolic rate are not likely to be the cause of δ18O-size relationships.  

Likewise, in a study of intra-test Mg/Ca variability in Globigerinoides ruber, Sadekov et 

al. (2008) found no significant differences in the mean Mg/Ca values of the different 

chambers within a single test.  This finding suggests that changing metabolic rates as a 

foraminiferan grows does not have a significant effect on shell Mg/Ca.  
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Figure 4.3.  Relationship between Mg/Ca and test size. A) Mg/Ca is plotted against test size for pink 
(open circles) and white (black squares) G. ruber. Error bars represent standard deviation among replicate 
measurements.  A linear least squares regression is plotted through the data for G. ruber (pink).  There is no 
significant relationship in G. ruber (white), but the values for G. ruber (white) are not significantly 
different from the values for G. ruber (pink).  B) Size versus Mg/Ca for G. ruber (pink) is plotted from two 
different depths in the Pigmy Basin box core.  The slope of the relationship is identical in the two different 
samples, and there is a 2ºC offset, which is consistent with the downcore Mg/Ca that suggests that SST was 
2ºC cooler 650 yrs BP.   
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 We hypothesize that changes in Mg/Ca and δ18O with test size observed for G. 

ruber in this study reflect differences in calcification temperature among the different 

size fractions.   The increase in Mg/Ca and decrease in δ18O with increasing test size is 

consistent with larger individuals calcifying in warmer waters than smaller individuals.  

In a culture experiment Spero and Lea (1993) demonstrated that the two symbiont-

bearing foraminifers, O. universa and G. sacculifer, grow significantly larger under “high 

light” culture conditions than “low light” culture conditions.  They also found that 

foraminiferal δ18O decreased with increasing light-levels, most likely as a result of 

increased symbiont photosynthesis.  In the marine environment, the highest-light 

conditions are found at shallow depths in the water column or during the summer season, 

so it follows that size fractions in G. ruber may vary in their depth/seasonal distribution 

in the GOM. 

 We established that the increase in Mg/Ca with size was equivalent to a 0.66ºC 

increase in calcification temperature per 100µm increase in test size, with a total range of 

2.5ºC among the size fractions of G. ruber (section 4.4.3.).  The vertical temperature 

gradient in the upper 50 meters of the water column in the GOM is ~4ºC, and the 

seasonal range in mixed layer (0-30 meters) temperature is ~7ºC (Figure 4.5).  Therefore, 

if we adopt the working hypothesis that the Mg/Ca change we observe with test size is a 

function of calcification temperature, it is reasonable to assume that the range in 

calcification temperatures observed could result from differences in depth and/or seasonal 

distribution of the different sized Foraminifera.         
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 In order to assess whether the change in Mg/Ca-based calcification temperature 

with size is consistent with δ18O-based calcification temperatures,, we use the following 

paleotemperature equation to convert δ18O to temperature,  

T=16.5-4.80* (δ18Oc- δ18Osw)   (2) 

Where T is temperature (ºC), δ18Oc is the measured δ18O of foraminiferal calcite, and 

δ18Ow is the oxygen isotopic composition of seawater (converted from the VSMOW scale 

to VPDB by subtracting 0.27‰).  Equation (2) is the paleotemperature equation 

developed for Orbulina universa under “high-light” culture conditions by Bemis et al. 

(1998), and has been determined to be appropriate for use in G. ruber (Thunell et al., 

1999).  If we assume a constant δ18Ow of 0.7‰ for the Gulf of Mexico mixed layer, the 

increase in δ18O-calcification temperature with size is equal to a 1.3ºC increase in 

temperature for each 100µm increase in test size for both pink and white G. ruber.  This 

is twice as large as the temperature change with test size predicted from Mg/Ca in this 

study.  However, if we assume a decrease in δ18Ow of 0.06‰ with each larger test size 

(i.e. we assume a δ18Ow of 0.7‰ for the 150-212µm size fraction, decreasing to 0.37‰ 

for the 425-500µm size fraction), then the estimated increase in calcification temperature 

with increasing size is equivalent using both Mg/Ca and δ18O paleotemperature 

equations.   This change in δ18O over the range of sizes is equivalent to the change in 

δ18O expected over the upper 50 meters of the water column, or over the annual cycle in 

the Gulf of Mexico.   
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Figure 4.4.  Conversion of δ18Ocalcite to calcification temperature.  A) δ18Oc data for G. ruber (white) is 
converted to calcification temperature using the paleotemperature equation for Orbulina universa “high-
light” from Bemis et al. (1998): T=16.5-4.80* (d18Oc- d18Osw).  The δ18Oc data are converted to SST using a 
fixed δ18Osw value of 0.7‰ for each size fraction (open squares), and using a variable δ18Osw (solid 
squares).  For the variable δ18Osw, a  value of 0.7‰ is assigned to the smallest size fraction (150-212mm) 
and the δ18Osw is decreased by 0.07‰ for each subsequent size fraction. B) The same calculation is 
performed for G. ruber (pink).  When the δ18Osw is fixed at 0.7‰, the resulting change in calcification 
temperature with size is 1.3ºC increase per 100µm increase in size.  When the variable δ18Osw is used, the 
result is a change in calcification temperature of 0.66ºC per 100µm increase in size.    
  

 Since δ18Oc is a function of both calcification temperature and the oxygen isotopic 

composition of ambient seawater, we convert δ18Oc to calcification temperature again, 

but this time assuming a decrease of 0.07‰ in δ18Ow for each larger size fraction (i.e. the 

150-212µm size fraction calcifies in seawater with a δ18O of 0.7‰, while the 212-250µm 

size fraction calcifies in 0.63‰ seawater, and so on).  With this assumed change in 

δ18Ow, the increase in calcification temperature is equal to 0.66ºC per 100mm increase in 

test size.  This is equivalent to the increase in calcification temperature with size 

estimated by Mg/Ca in this study.        
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Figure 4.5. Vertical profiles and seasonal cycles of temperature and δ18Osw variability in the GOM. 
A) Summer-weighted (April-September) vertical profile of δ18Osw inferred from salinity data in the GOM. 
B) Seasonal cycle of mixed layer (upper 30 meters) δ18Osw inferred from salinity in the GOM. The δ18Osw 
was calculated from salinity data from the Levitus (2004) data set, using the equation: δ18Osw= 
0.557*salinity-19.98. C) Summer-weighted (Apr.-Sep.) vertical temperature profile for the GOM.  D) 
Seasonal cycle of mixed layer (upper 30 meters) temperature for the GOM.  Temperature data are also from 
the Levitus (2004) data set.   
 

4.6. Comparison of downcore geochemical records for pink and white G. ruber 

 Relative offsets in the Mg/Ca and δ18O of pink and white G. ruber have been 

exploited in downcore records to make inferences about changing seasonality in the past 

(e.g. Williams et al., 2009).  This is based on the premise that G. ruber (white) reflects 

mean annual sea-surface conditions, while the geochemical signal from G. ruber (pink) is 

summer-weighted.  We compare near-modern core-top data with Gulf of Mexico 

climatologic data to make inferences about depth/seasonal habitat preferences for pink 
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and white G. ruber.  Comparison of the downcore oxygen isotopic and Mg/Ca records of 

pink and white G. ruber from a high resolution sedimentary record spanning the past 

1500 years provides additional insights into the differences between the two sub-species 

of G. ruber.   

 White and pink G. ruber are the two most abundant species of planktonic 

Foraminifera in the Gulf of Mexico assemblages, comprising >45% of the total 

assemblage in core-top sediments (Kennett, 1985).  Both live in tropical to sub-tropical 

surface waters, and are confined to the euphotic zone by their photoautotropic 

dinoflagellate symbionts.  Sediment trap data from twenty global sites suggest the 

optimum SST range for G. ruber (white) is 22-31°C, while G. ruber (pink) has a more 

limited ideal range of 23-30°C (Žarić et al., 2005).  Plankton tow data from the Sargasso 

Sea reveal that white and pink G. ruber are most commonly found in SSTs ranging from 

18-26°C, with highest concentrations seen at 23-27°C.  The pink variety is found at even 

warmer temperatures up to 28°C (Bé and Hamlin, 1967).   

Modern depth preferences of planktic Foraminifera such as G. ruber have been 

studied extensively in the Sargasso Sea, yet little work has focused on GOM.  Plankton 

tow results taken in November 1975 in the Sargasso Sea suggest that white G. ruber is 

commonly present in the top 100 m while the pink variety is found at low concentrations 

up to 200 meters (Fairbanks et al., 1980).  Monthly plankton tows also from the Sargasso 

Sea showed that white and pink G. ruber were most abundant in the top 10 meters 

(Tolderlund and Bé, 1971).  A single tow in April 1980 in the western GOM revealed that 

the G. ruber (white) is present from 0-50 meters water depth, while the less abundant 

pink G. ruber is found slightly deeper from 25-50 meters (Bé, 1982). 
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 From the limited sediment trap data available for the subtropical Atlantic Ocean, 

white and pink G. ruber appear to have distinct seasonal distributions. Sediment-trap data 

from the Sargasso Sea indicate that G. ruber (white) is present in high abundance 

throughout the year (with fluxes >50 tests m-2 day-1 during all months) (Deuser et al., 

1981; Deuser, 1987; Deuser and Ross, 1989), suggesting that G. ruber (white) is 

representative of mean annual sea-surface conditions in the sediment record. Data 

indicate that G. ruber (pink) exhibits peak abundances from April-October (with fluxes 

of >5 tests m-2 day-1), and fluxes drop to nearly 0 during the winter (December-April).  A 

recent sediment trap study in the GOM (January-December 2008) (Tedesco et al., 2009) 

shows that white G. ruber (white) is present throughout the year (although in much lower 

abundances than in corresponding core-top sediments).  The flux of G. ruber (pink) in the 

GOM sediment trap study is broadly consistent with the Sargasso Sea data, such that 

fluxes are low (near zero) during the coldest months (December-April), while maximum 

fluxes occur during the summer months (July-September).  

 

4.6.1.  Comparison of white and pink Mg/Ca records 

 A Mg/Ca record was generated from the 250-300µm size fraction of G. ruber 

(pink) for comparison with the previously published Mg/Ca record from white G. ruber 

(Richey et al., 2007) from the Pigmy Basin.  The raw downcore Mg/Ca values, as well as 

the overall pattern of variability are nearly identical (±0.23 mmol/mol) for both pink and 

white G. ruber records.  Centennial scale features, such as a 1.1 mmol/mol increase in 

Mg/Ca from ca. 300 yrs B.P. to the 20th century, are present in both records.  

Additionally, the abrupt transition from elevated Mg/Ca values that occurs ca. 950 yrs 
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B.P., as well as the 3 multi-decadal intervals of elevated Mg/Ca that occur between 1000 

and 1400 yrs B.P., are present in both the pink and white G. ruber records.  This indicates 

that the original Mg/Ca record from white G. ruber is highly reproducible from a second 

surface dwelling species from the same box core.   

 Anand et al. (2003) determined that the temperature dependence (i.e. the 

exponential constant of the Mg/Ca paleotemperature equation) was approaching 9% 

increase in Mg/Ca per 1ºC for nearly all planktonic foraminifers in their study.  However 

the pre-exponential constants were determined to be different among species.  Therefore, 

using the respective Mg/Ca paleotemperature equations for pink and white G. ruber 

results in a downcore SST record in which the variability is the same, but the G. ruber 

(pink) is consistently 1.8ºC warmer than the G. ruber (white) record (Figure 4.6.a).  If the 

assumption is made that there is a real difference in the distribution coefficient for Mg/Ca 

between white and pink G. ruber, the results suggest that G. ruber (pink) is consistently 

calcifying at significantly warmer SSTs than G. ruber (white) over the past 1400 years.  

This may be attributed to a seasonal distribution for G. ruber (pink) that is weighted 

toward warmer months of the year, or G. ruber (pink) may be living at a shallower depth 

in the water column than G. ruber (white).    

 In order to test whether a consistent 1.8ºC offset between the white and pink G. 

ruber downcore records can be attributed to differences in seasonal distribution, we 

compared the core-top Mg/Ca-SST of pink and white G. ruber with monthly instrumental 

data for the Gulf of Mexico.  The mean annual SST for the Gulf of Mexico is 25.4ºC, 

while the mean summer SST (April-October) is 27.0ºC (Levitus, 2004).   The downcore 

Mg/Ca records for pink and white G. ruber vary in step, with G. ruber (pink) consistently 
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recording 1.8ºC warmer SSTs when their respective paleotemperature equations are used.  

Therefore, this interpretation of differing seasonal distribution leads to the inference that 

the climatic variations observed in this 1400-year record indicate mean state changes, and 

not changes in seasonality. 

 Alternatively, the 1.8ºC offset between white and pink G. ruber could be 

explained by a difference in mean depth habitat.  The mean temperature gradient across 

the upper 50 meters of the water column from April-October (when the upper 50 meters 

of the water column in the northern Gulf of Mexico are not fully mixed) is ~4ºC (Levitus, 

2003).  Therefore it is plausible that G. ruber (pink) could be consistently calcifying at 

shallower depths than G. ruber (white), thus producing a downcore Mg/Ca-SST record 

that is weighted 1.8ºC warmer.  Our conclusion from this exercise is that it is possible to 

explain a consistent 1.8ºC offset by either differences in preferred season or depth habitat. 



 82 

 

Figure 4.6.  Downcore comparison of Mg/Ca records for white and pink G. ruber.  A) Pink and white  
G. ruber Mg/Ca records are calibrated using their respective paleotemperature equations [Mg/Ca= 
0.38exp(0.09*SST), and Mg/Ca=0.449exp(0.09*SST) from Anand et al., (2003)].  The mean summer (Apr-
Nov) SST and mean annual SST are indicated.  B) Raw Mg/Ca records for pink and white G. ruber are 
plotted. 
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4.6.2.  Comparison of downcore δ18O data 

 The δ18O of foraminiferal calcite is a function of both calcification temperature, 

and the oxygen isotopic composition of ambient seawater.  Unlike the raw Mg/Ca records 

of pink and white G. ruber, the δ18Ocalcite records do not covary.  The major difference 

between the two δ18Ocalcite records occurs when there are excursions to more enriched 

δ18Ocalcite in white G. ruber record.  During these excursions of increased δ18Ocalcite in 

white G. ruber,  (ca.  1000 yrs B.P., 600 yrs BP, etc.) the pink G. ruber δ18Ocalcite record 

actually records a depletion in δ18Ocalcite (Figure 4.7).  When the δ18Ocalcite record of G. 

ruber (white) is converted to a δ18Oseawater record by removing the temperature effect on 

the δ18Ocalcite record (using equation 2) those excursions to more enriched δ18Ocalcite are 

dominated by increases in the δ18Oseawater.  The first δ18Oseawater excursion occurs during a 

warm period (as recorded by the Mg/Ca-SST of both pink and white G. ruber), while the 

second excursion occurs during an SST minimum in the Mg/Ca records.  Interestingly the 

% abundance of both pink and white G. ruber drop to their lowest over the 1500-year 

record (to <5% and <10%, respectively) during these inferred high-salinity excursions. 

This is consistent with other studies in the Gulf of Mexico that show large drops in G. 

ruber abundance during high salinity events (LoDico et al., 2006). 
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Figure 4.7.  Downcore comparison of δ18O data for white and pink G. ruber.  Downcore raw Mg/Ca is 
indicated by dashed lines, and multi-decadal smoothed record is illustrated with solid lines.  Shaded bars 
indicate intervals of high salinity. 
 

 



 85 

 
 
Figure 4.8.  Comparison of G. ruber abundance with GOM salinity.  A) % abundance for G. ruber 
(pink).  B) % abundance for G. ruber (white).  C) δ18O seawater record for Pigmy Basin (Richey et al., 
2007). δ18O seawater record in panel C. was generated using paired Mg/Ca-δ18O measurements on the 250-
300µm size fraction of the G. ruber (white), and using equations (1) and (2). 
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4.7.  Conclusions 

 This study presents a detailed assessment of the relationship between 

foraminiferal test size and geochemical parameters commonly used for 

paleoceanographic reconstruction (i.e. δ13C, δ18O and Mg/Ca) in the pink and white 

varieties of G. ruber. A systematic relationship between foraminiferal test size and either 

δ18O or Mg/Ca has not been demonstrated in previous studies.  However, this study finds 

a significant decrease in δ18O, and a significant increase in Mg/Ca with increasing test 

size for pink and white G. ruber.  We hypothesize that these relationships are the result of 

larger individuals calcifying at higher temperatures then smaller individuals.  An increase 

in calcification temperature of 0.66ºC per 100µm increase in size is found when both 

Mg/Ca and δ18O data are converted to temperature using their respective 

paleotemperature equations, providing an internally consistent explanation for these 

observations.  The proposed increase in calcification temperature with increasing test size 

is likely the result of differences in the seasonal and/or depth distribution of different size 

fractions (i.e. white and pink G. ruber grow larger during the summer and/or at depths 

closest to the surface).  The overall range of calcification temperature (~2.5ºC) over the 

entire range of size fractions is reasonable, given the seasonal range of temperature 

and/or the thermal gradients in the mixed layer for the northern Gulf of Mexico.   

 Although many studies suggest that ontogeny plays a role in the δ13C-size 

relationship, the enrichment in 13C that we observe with increasing size is also consistent 

with a symbiont photosynthesis influence on the increase in δ13C with size.  Larger 

individuals living at shallower depths and/or with a warmer seasonal bias, would lead to 
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enhanced symbiont photosynthesis with increasing size, resulting in increasing 13C 

enrichment with increasing size.    

 This study also presents a downcore comparison of a decadal resolution δ18O and 

Mg/Ca records for white and pink G. ruber from co-occurring sediments in the Pigmy 

Basin.  Results indicate an offset in the raw δ18O of pink and white G. ruber, while the 

raw Mg/Ca of the two records is identical within analytical error.   Using a δ18O-

paleotemperature equation indicates that the average δ18O depletion of 0.27‰ in G. ruber 

(pink) relative to the white variety corresponds to G. ruber (pink) having a calcification 

temperature that is ~1.2±0.4ºC warmer than G. ruber (white).  Although the raw Mg/Ca 

values are the same for both pink and white G. ruber, using their respective Mg/Ca-

paleotemperature equations results in the pink variety being offset by 1.8±0.8ºC warmer 

than the white variety.  This supports the hypothesis that pink G. ruber is consistently 

calcifying in warmer waters than white G. ruber, either due to a more summer-weighted 

seasonal distribution, or a shallower depth habitat.  
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Chapter 5 

Summary 

5.1.  Conclusions 

 The Little Ice Age and Medieval Warm Period are two of the most prominent 

climatic events of the past millennium, recorded in climate proxy records throughout the 

mid-to high latitude Northern Hemisphere.  However, there are still gaps in our 

knowledge of the magnitude and spatial extent of these events, the low latitude oceans 

being an area from which there are very few proxy records.  In this thesis I contribute to 

the understanding of sub-tropical Atlantic Ocean variability by presenting multiproxy 

records of sea surface temperature variability from three different sites in the Gulf of 

Mexico (GOM).  Data from the GOM indicate a significant Little Ice Age cooling of 2ºC.  

This cooling is observed in the foraminiferal Mg/Ca records from three different GOM 

basins, in the Mg/Ca records of two different planktonic foraminifers in the same basin 

(pink and white Globigerinoides ruber), and among the SST signals recorded in an 

inorganic and molecular organic proxy from the same GOM basin (Mg/Ca and TEX86).  

The similarities in the timing and magnitude of the Little Ice Age cooling among the 

three different GOM Basins suggests that the Mg/Ca proxy is recording a robust, 

reproducible regional climate signal in these basins.   

 Comparison of the Mg/Ca-SST record with the TEX86-SST record from Pigmy 

Basin reveals significant similarities between the two proxy records.  For instance, the 

timing and magnitude of  Little Ice Age cooling are similar for the two proxy records.  
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There are also important differences between the two records, which I hypothesize result 

from differences in the seasonal/depth distribution of Foraminifera and marine 

Crenarchaeota.  These offsets are exploited to make inferences about changing 

seasonality/mixed layer depth over the past 1,000 years.  For example, the offset between 

TEX86 and Mg/Ca is minimal during the medieval Warm period, suggesting that there 

was reduced seasonality and/or increased mixed layer depth during that time.  Maximum 

offset between the two records during the Little Ice Age suggests enhanced seasonality 

and/or a shallow mixed layer during that time.   

 In addition to the paleoclimate records presented in this thesis, I present a detailed 

study on the effect of foraminiferal test size on the different geochemical parameters 

commonly used for paleoenvironmental reconstruction.  The change in δ13C, δ18O and 

Mg/Ca over the size range from 150µm to 500µm of the pink and white variety of G. 

ruber is larger than the observed variability in each of these parameters over the past 

1,000 years.  There is an increase in Mg/Ca and decrease in δ18O with increasing size that 

equates to a 0.66ºC increase in calcification temperature with 100µm increase in shell 

size.  These data suggest that larger individuals are calcifying under warmer conditions, 

and may be weighted toward a warmer season or shallower depth habitat than the smaller 

individuals.  This study emphasizes the importance of using a well-constrained size range 

of Foraminifera for paleoenvironmental reconstruction.   

 

5.2.  Future Research Directions 

 The work presented in this dissertation has provided a number of important 

answers regarding climate variability in the subtropical Atlantic Ocean over the past 
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millennium, but has also led to further questions.  These additional questions generate 

new potential research directions that could be pursued in the future.  Below is a brief 

outline of those potential research projects that would further develop or complement the 

research presented in this dissertation.   

 In this dissertation, I make large assumptions about the ecologies of planktonic 

Foraminifera and Crenarchaeota in the Gulf of Mexico.  These assumptions have 

significant implications for the paleoclimatic interpretations, and thus it is important to 

determine the modern depth habitat and seasonal distribution for these proxy recorders in 

the Gulf of Mexico.  Sediment trap and water column filtration studies in the GOM are 

essential to better understanding the ecology of the biogenic proxies used in 

paleoenvironmental reconstruction. 

 Globally, the TEX86 signal corresponds to mean annual sea surface temperatures.  

However, the TEX86 data presented in this dissertation from the Pigmy Basin are 

summer-weighted.  Due to the delivery of large amounts of terrestrial organic matter to 

the Pigmy Basin via the Mississippi River, it is possible that the TEX86 signal is being 

influenced by terrestrially derived isoprenoid GDGTs.  In order to determine whether or 

not the Pigmy Basin TEX86 is being biased toward warmer temperatures by terrestrially 

derived GDGTs, I propose to analyze the GDGT composition of surface sediments across 

a transect of surface sediments from the Mississippi River Delta to the Pigmy Basin on 

the continental slope.   

        The molecular compounds commonly used for paleo-environmental 

reconstruction (e.g. alkenones, GDGTs, fatty acids, n-alkanes, etc.) are contained within 

the fine sediment fraction (<63µm), and can have different transport mechanisms to 
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depositional basins than Foraminifera.  In order to directly compare downcore records of 

sea surface variability derived from both Foraminifera and molecular fossils, it is best to 

have an independent chronology based on compound-specific radiocarbon dating of the 

molecular fraction.  Molecular radiocarbon dating of the isoprenoid GDGTs used for the 

TEX86 index would verify that the TEX86 and Mg/Ca records in the Pigmy Basin are 

contemporaneous.  Isolation and radiocarbon dating of terrestrially derived compounds 

(e.g. long-chain n-alkanes and fatty acids) from Gulf of Mexico sediments can provide 

information about residence times of terrestrial carbon on the North American continent, 

as well as sediment transport to marine depositional basins.  

 There are very few records of terrestrial climate variability from the subtropical 

Atlantic region.  Lake Tulane, located in central Florida (27.5853ºN, 81.5034ºW), is a 

high sedimentation rate lake with a small catchment basin.  It is an ideal setting for 

comparing terrestrial temperature and hydrologic variability in an environment that is 

closely linked to the GOM.  I plan to use the TEX86 proxy to reconstruct lake surface 

temperature.  Additionally, the hydrogen isotopic composition (δD) of terrestrially 

derived fatty acids can be used to reconstruct regional hydrologic variability.   
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Appendix I:  Fisk Basin (PE07-5) Data 
 

AI.1.  Fisk Basin Downcore Mg/Ca Data 
 

Core Depth 
(mm) 

Calendar 
Age (Yrs BP) 

Mg/Ca 
(mmol/mol) SST (ºC) 

0 0.0 4.75 26.2 
5 18.8 4.37 25.3 
10 37.6 4.13 24.7 
15 56.4 4.16 24.7 
20 75.2 4.29 25.1 
25 94.0 4.28 25.0 
30 112.8 3.72 23.5 
35 131.6 3.77 23.6 
40 150.4 3.88 24.0 
45 169.2 3.61 23.1 
50 188.0 3.75 23.6 
55 206.8 3.69 23.4 
60 225.6 3.60 23.1 
65 244.4 3.69 23.4 
70 263.2 3.82 23.8 
75 282.0 3.90 24.0 
80 300.8 3.89 24.0 
85 319.6 3.95 24.1 
90 338.4 3.88 24.0 
95 357.2 3.94 24.1 
100 376.0 3.72 23.5 
105 394.8 4.08 24.5 
110 413.6 3.95 24.2 
115 432.4 4.26 25.0 
120 451.2 3.69 23.4 
125 470.0 4.18 24.8 
130 488.8 4.28 25.0 
135 507.6 3.92 24.1 
140 526.4 4.05 24.4 
145 545.2 4.53 25.7 
150 564.0 4.20 24.9 
155 582.8 4.03 24.4 
160 601.6 4.25 25.0 
165 620.4 4.04 24.4 
170 639.2 4.14 24.7 
175 658.0 4.10 24.6 
180 676.8 4.24 25.0 
185 695.6 4.09 24.5 
190 714.4 4.22 24.9 
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195 733.2 4.48 25.6 
200 752.0 4.63 25.9 
205 not calibrated 4.45 25.5 
210 not calibrated 4.24 25.0 
215 not calibrated 4.37 25.3 
220 not calibrated 4.46 25.5 
225 not calibrated 4.50 25.6 
230 not calibrated 4.34 25.2 
235 not calibrated 4.42 25.4 
240 not calibrated 4.73 26.2 
245 not calibrated 4.52 25.7 
250 not calibrated 4.28 25.1 
255 not calibrated 4.24 24.9 
260 not calibrated 4.37 25.3 

 
AI.1. Fisk Basin Downcore Mg/Ca Data.  Each Mg/Ca measurement is based on 60 G. ruber (white) 
from the 250-300µm size fraction. Shaded rows represent the interval of the core for which there are large 
uncertainties in the age model, and therefore a calibration to calendar age was not made. 

 
 

AI.2. Fisk Basin Radiocarbon Data 
 

Sample 
Depth 
(mm) 

AMS 14C 
Date error 

1 sigma 
(low) 

1 sigma 
(high) 

Cal yrs 
BP STDEV 

0-5 -215 30 0 0 0 0 
150-155 925 35 494 552 523 41 
160-165 1090 30 628 676 652 34 
200-205 1210 30 703 782 743 56 
220-225 1675 35 1201 1276 1239 53 
230-235 1610 35 1135 1230 1183 67 

 
AI.2. Fisk Basin Radiocarbon Data.  Raw radiocarbon dates were made on mixed assemblages of 
planktonic Foraminifera, and measured via Accelerator Mass Spectrometer at Lawrence Livermore 
National Laboratory AMS facility. Raw AMS 14C dates are reported in the second column with 
instrumental 14C error in the third column. Radiocarbon ages were converted to calendar years using the 
CALIB 5.0 program, with an assumed constant 400-year reservoir correction. 1 sigma (high and low) range 
is reported.  
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Appendix II.  Garrison Basin (PE07-2) Data 

 
AII.1.  Garrison Basin Mg/Ca Data 

 
Core Depth 

(mm) 
Calendar Age 

(Yrs BP) 
Mg/Ca 

(mmol/mol) SST (ºC) 
0 0 4.43 25.4 
5 11.8 4.29 25.1 
10 24.7 4.42 25.4 
15 38.6 4.26 25.0 
20 53.6 4.13 24.7 
25 69.6 4.06 24.5 
30 86.6 4.21 24.9 
35 104.5 3.81 23.8 
40 123.5 3.96 24.2 
45 143.3 4.33 25.2 
50 164.2 3.95 24.2 
55 185.9 4.00 24.3 
60 208.6 3.80 23.7 
65 232.1 4.01 24.3 
70 256.6 3.73 23.5 
75 281.9 3.78 23.7 
80 308.0 4.02 24.4 
85 335.0 3.91 24.1 
90 362.8 3.90 24.0 
95 391.4 4.51 25.6 
100 420.8 4.19 24.8 
105 451.0 3.79 23.7 
110 481.9 4.07 24.5 
115 513.6 3.78 23.7 
120 546.0 3.76 23.6 
125 579.2 3.88 23.9 
130 data not used 3.52 22.9 
135 data not used 3.27 22.1 
140 data not used 3.49 22.8 
145 data not used 3.84 23.9 
150 data not used 3.36 22.3 
155 data not used 3.15 21.6 
160 data not used     
165 data not used 3.66 23.33 
170 data not used 3.40 22.48 
175 data not used 4.13 24.64 
180 data not used     
185 data not used 4.32 25.2 
190 data not used 4.11 24.6 
195 data not used 3.49 22.8 
200 data not used 3.80 23.7 
205 data not used 3.51 22.9 
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210 data not used 3.19 21.8 
215 data not used 4.08 24.5 
220 data not used 3.80 23.7 
225 data not used 3.86 23.9 
230 data not used 3.84 23.8 
235 data not used 3.81 23.8 
240 data not used 3.76 23.6 
245 data not used 3.62 23.2 
250 data not used 3.97 24.2 
255 data not used 3.93 24.1 
260 data not used 3.90 24.0 
265 data not used 4.13 24.7 
270 data not used 4.27 25.0 
275 data not used 4.02 24.4 
280 data not used 3.83 23.8 
285 data not used 4.26 25.0 
290 data not used 4.05 24.4 
295 data not used 4.46 25.5 
300 data not used 4.32 25.2 
305 data not used 4.51 25.6 
310 data not used 4.35 25.2 
315 data not used 4.24 25.0 
320 data not used 4.50 25.6 
325 data not used 4.35 25.2 
330 data not used 4.05 24.4 
335 data not used 4.09 24.5 
340 data not used 4.30 25.1 
345 data not used 4.15 24.7 
350 data not used 4.04 24.4 
355 data not used 4.00 24.3 
360 data not used 3.95 24.2 
365 data not used 3.98 24.2 
370 data not used 4.35 25.2 
375 data not used 3.92 24.1 
380 data not used 4.06 24.5 
385 data not used 3.99 24.3 
390 data not used 3.88 24.0 
395 data not used 3.74 23.6 
400 data not used 4.17 24.8 
405 data not used 3.85 23.9 
410 data not used 4.11 24.6 
415 data not used 3.90 24.0 
420 data not used 3.83 23.8 
425 data not used 4.11 24.6 
430 data not used 4.05 24.4 

 
AII.1.  Garrison Basin Mg/Ca Data. Each Mg/Ca measurement is based on 60 G. ruber (white) from the 
250-300µm size fraction. Shaded rows represent data that were not used for climatic interpretation due to 
indications of diagenetic alteration of the foraminiferal calcite (i.e. low weight per foram and visual 
evidence of manganese coatings). 
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AII.2.  Garrison Basin Radiocarbon Data 
 

Core Depth 
(mm) 

AMS 14C 
age error 

1 sigma 
(high) 

1 sigma 
(low) Cal Yr BP 

0-5 140 35 n/a n/a 0 
10-15 455 25 0 81 41 
70-75 935 35 127 244 186 

120-125 1435 45 563 645 604 
200-205 2080 20 1221 1274 1248 
270-275 2495 35 1610 1722 1666 
340-345 3300 35 2655 2735 2695 
390-395 3640 30 3002 3125 3064 

 
AII.2. Garrison Basin Radiocarbon Data. Raw radiocarbon dates were made on mixed assemblages of 
planktonic Foraminifera, and measured via Accelerator Mass Spectrometer at Lawrence Livermore 
National Laboratory AMS facility. Raw AMS 14C dates are reported in the second column with 
instrumental 14C error in the third column. Radiocarbon ages were converted to calendar years using the 
CALIB 5.0 program, with an assumed constant 400-year reservoir correction. 1 sigma (high and low) range 
is reported.  
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Appendix III.  Pigmy Basin GDGT Data 
 

AIII.1.  TEX86 Data for Pigmy Basin (PBBC-1F) 
 

Core Depth 
(mm) 

Calendar 
Yrs BP 

TEX86   

Index 
SST 
(ºC)  

STDEV 
(ºC) 

0 0 0.70 28.6 0.59 
5 12 0.69 28.1 0.26 
10 25 0.70 28.5 0.88 
15 37       
20 49 0.69 28.1 0.28 
25 62 0.68 27.4 0.39 
30 74 0.69 28.0 0.36 
35 86 0.70 28.3 0.75 
40 98 0.69 27.8 0.33 
45 111 0.68 27.7 0.43 
50 123 0.69 27.7 0.36 
55 135 0.67 26.9 0.79 
60 148 0.67 26.9 0.28 
65 160 0.68 26.8 0.50 
70 172 0.69 27.4 0.42 
75 185 0.67 26.7 0.47 
80 197 0.68 27.6 0.18 
85 209 0.68 27.5 0.60 
90 221 0.68 27.3 0.32 
95 234 0.68 27.4 0.19 
100 246 0.68 27.2 0.50 
105 258 0.67 26.8 1.11 
110 271 0.69 27.6 0.43 
115 283 0.68 27.3 0.29 
120 295 0.68 27.2 0.33 
125 308 0.68 27.5 0.66 
130 320 0.67 27.2 0.18 
135 332 0.68 27.4 0.34 
140 344 0.68 27.3 0.38 
145 357 0.67 26.9 0.41 
150 369 0.69 28.0 0.14 
155 381 0.68 27.5 0.69 
160 394 0.69 27.8 0.44 
165 406 0.68 27.5 0.22 
170 418 0.69 27.7 0.56 
175 431 0.67 27.1 1.09 
180 443 0.68 27.5 0.71 
185 455 0.69 28.0 1.43 
190 467 0.68 27.6 0.58 
195 480 0.68 27.4 0.54 
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200 492 0.68 27.7 0.56 
205 504 0.69 27.7 0.47 
210 517 0.68 27.5 0.45 
215 529 0.68 27.7 0.46 
220 541 0.68 27.6 0.26 
225 554 0.68 27.3 0.32 
230 566 0.68 27.2 0.49 
235 578 0.68 27.5 0.34 
240 590       
245 603 0.68 27.4 0.92 
250 615 0.67 27.1 0.14 
255 627 0.66 26.1 0.21 
260 640 0.67 26.8 0.25 
265 652 0.67 27.0 0.37 
270 664 0.66 26.6 0.79 
275 677 0.68 27.6 0.86 
280 689 0.67 26.6 0.48 
285 701 0.68 27.1 0.34 
290 713 0.68 27.3 0.20 
295 726 0.67 27.1 0.53 
300 738 0.68 27.3 0.87 
305 750 0.67 27.0 0.40 
310 763 0.66 26.5 0.12 
315 775 0.68 27.3 0.30 
320 787 0.67 26.7 0.73 
325 800 0.68 27.3 1.19 
330 812 0.68 27.4 0.25 
335 824 0.66 26.5 0.59 
340 836 0.68 27.6 1.17 
345 849 0.67 26.7 0.24 
350 861 0.68 27.2 0.44 
355 873 0.67 27.0 0.22 
360 886 0.66 26.1 0.74 
365 898 0.66 26.5 0.27 
370 910 0.67 26.6 0.46 
375 923 0.65 26.0 0.53 
380 935 0.66 26.2 0.91 
385 947 0.65 25.9 0.15 
390 959 0.65 25.7 0.11 
395 972 0.67 27.0 0.55 
400 984 0.66 26.5 0.38 
405 996 0.67 27.0 0.40 
410 1009 0.67 26.6 0.40 
415 1021 0.68 27.5 0.35 
420 1033 0.67 27.1 0.51 
425 1046 0.67 27.0 0.68 
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430 1058 0.67 26.6 0.26 
435 1070 0.67 26.8 0.15 
440 1082 0.66 26.5 0.02 

 
AII.1. TEX86 Index Data for Pigmy Basin (PBBC-1F). The TetraEther indeX of 86-carbon GDGTs 
(TEX86) was calculated using the equation ([II]+[III]+[IV’])/ ([I]+[II]+[III]+[IV’]) (see Figure 3.2. for 
compound structures).  SST was calculated using T=-1078 + 56.2*TEX86 (from Kim et al., 2008).  STDEV 
listed in the fifth column represents the standard deviation of the SST (ºC) of six replicate injections for 
each sample. 

 
 

AIII.2.  BIT Index Data for Pigmy Basin (PBBC-1F) 
 

Core Depth 
(mm) 

Calendar 
Yrs BP 

BIT 
Index STDEV 

0 0 0.144 0.002 
5 12 0.149 0.003 
10 25 0.181 0.003 
15 37     
20 49 0.206 0.011 
25 62 0.264 0.003 
30 74 0.237 0.006 
35 86 0.147 0.006 
40 98 0.272 0.004 
45 111 0.293 0.005 
50 123 0.276 0.008 
55 135 0.347 0.007 
60 148 0.305 0.003 
65 160 0.268 0.005 
70 172 0.270 0.015 
75 185 0.269 0.004 
80 197 0.257 0.002 
85 209 0.269 0.012 
90 221 0.278 0.006 
95 234 0.295 0.007 
100 246 0.308 0.002 
105 258 0.313 0.005 
110 271 0.313 0.004 
115 283 0.317 0.007 
120 295 0.321 0.005 
125 308 0.329 0.009 
130 320 0.338 0.003 
135 332 0.308 0.002 
140 344 0.265 0.006 
145 357 0.263 0.004 
150 369 0.238 0.013 
155 381 0.194 0.003 
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160 394 0.199 0.003 
165 406 0.202 0.002 
170 418 0.213 0.002 
175 431 0.218 0.001 
180 443 0.220 0.004 
185 455 0.228 0.003 
190 467 0.199 0.008 
195 480 0.208 0.012 
200 492 0.219 0.004 
205 504 0.216 0.001 
210 517 0.226 0.008 
215 529 0.236 0.002 
220 541 0.176 0.005 
225 554 0.230 0.003 
230 566 0.214 0.007 
235 578 0.227 0.015 
240 590     
245 603 0.202 0.004 
250 615 0.217 0.008 
255 627 0.245 0.009 
260 640 0.243 0.002 
265 652 0.227 0.007 
270 664 0.287 0.001 
275 677 0.345 0.008 
280 689 0.298 0.010 
285 701 0.211 0.007 
290 713 0.178 0.003 
295 726 0.155 0.002 
300 738 0.167 0.003 
305 750 0.215 0.004 
310 763 0.251 0.005 
315 775 0.237 0.000 
320 787 0.229 0.020 
325 800 0.212 0.003 
330 812 0.230 0.008 
335 824 0.255 0.011 
340 836 0.255 0.006 
345 849 0.338 0.016 
350 861 0.368 0.029 
355 873 0.266 0.007 
360 886 0.256 0.008 
365 898 0.269 0.011 
370 910 0.262 0.008 
375 923 0.306 0.008 
380 935 0.324 0.010 
385 947 0.288 0.011 
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390 959 0.271 0.006 
395 972 0.239 0.001 
400 984 0.160 0.007 
405 996 0.146 0.004 
410 1009 0.171 0.006 
415 1021 0.196 0.007 
420 1033 0.212 0.008 
425 1046 0.212 0.006 
430 1058 0.215 0.007 
435 1070 0.192 0.006 
440 1082 0.201 0.005 

 
AII.2. BIT Index Data for Pigmy Basin (PBBC-1F). The branched to isoprenoid tetraether (BIT) index 
was calculated using the equation ([V]+[VI]+[VII])/ ([V]+[VI]+[VII]+[IV]) (see Figure 3.2. for compound 
structures).  STDEV listed in the forth column represents the standard deviation of six replicate injections 
for each sample. 
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Appendix IV.  Elemental and Isotopic Size Fraction Data 
 

AIV.1  Size Fraction Isotope Data for G. ruber (white) 
 

Size Fraction 
(µm) 

Sediment 
Core-top 

δ13C 
(permille) 

δ18O 
(permille) 

150-212 PBBC-1 0.32 -1.33 
150-212 PBBC-1 0.39 -1.35 
150-212 PBBC-1 0.26 -1.24 
150-212 PE07-2 0.21 -0.93 
150-212 PE07-2 0.12 -0.99 
212-250 PBBC-1 0.60 -0.92 
212-250 PBBC-1 0.60 -1.09 
212-250 PBBC-1 0.59 -1.25 
212-250 PBBC-1 0.51 -1.39 
212-250 PE07-2 0.47 -1.26 
212-250 PE07-2 0.55 -1.46 
212-250 PE07-2 0.61 -1.15 
250-300 PBBC-1 1.03 -1.30 
250-300 PBBC-1 0.84 -1.53 
250-300 PBBC-1 0.27 -1.42 
250-300 PBBC-1 0.90 -1.62 
250-300 PBBC-1 1.02 -1.05 
250-300 PE07-2 1.11 -1.41 
250-300 PE07-2 1.02 -1.55 
250-300 PE07-2 0.72 -1.41 
300-355 PBBC-1 1.12 -1.29 
300-355 PBBC-1 1.30 -1.38 
300-355 PBBC-1 1.19 -1.31 
300-355 PBBC-1 0.98 -1.54 
300-355 PBBC-1 1.31 -1.64 
300-355 PE07-2 1.39 -1.27 
300-355 PE07-2 1.39 -1.29 
355-425 PBBC-1 1.52 -1.54 
355-425 PBBC-1 1.33 -1.70 
355-425 PE07-2 1.17 -1.87 

 
Appendix III.1.  Size Fraction Isotope Data for G. ruber (white).   Raw carbon and oxygen isotopic data 
for G. ruber (white) represent measurements on separate aliquots of 60 individuals from the respective size 
fractions.  Foraminifera were picked from two different box core core-top samples:  Pigmy Basin (PBBC-
1) and Garrison Basin (PE07-2). 
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AIV.2.  Size Fraction Mg/Ca Data for G. ruber (white) 
 

Size Fraction 
(µm) 

Sediment 
Core-top 

Mg/Ca 
(mmol/mol) 

150-212 PBBC-1 4.30 
150-212 PBBC-1 4.39 
150-212 PE07-2 4.35 
150-212 PE07-2 4.50 
150-212 PE07-2 4.23 
212-250 PBBC-1 4.64 
212-250 PBBC-1 4.36 
212-250 PE07-2 4.41 
212-250 PE07-2 4.38 
212-250 PE07-2 3.86 
212-250 PE07-2 4.10 
250-300 PBBC-1 4.40 
250-300 PBBC-1 4.32 
250-300 PBBC-1 4.56 
250-300 PBBC-1 4.31 
250-300 PE07-2 4.39 
250-300 PE07-2 4.17 
250-300 PE07-2 4.02 
250-300 PE07-2 4.40 
300-355 PBBC-1 4.22 
300-355 PBBC-1 4.66 
300-355 PBBC-1 4.28 
300-355 PE07-2 4.05 
300-355 PE07-2 4.30 
355-425 PBBC-1 4.59 
355-425 PE07-2 4.86 

 
Appendix III.2.  Size Fraction Mg/Ca Data for G. ruber (white).   Raw Mg/Ca data for G. ruber (white) 
represent measurements on separate aliquots of 60 individuals from the respective size fractions.  
Foraminifera were picked from two different box core core-top samples:  Pigmy Basin (PBBC-1) and 
Garrison Basin (PE07-2). 
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AIV.3.  Size Fraction Isotope Data for G. ruber (pink) 
 

Size Fraction 
(µm) 

Sediment 
Core-top 

δ13C 
(permille) 

δ18O 
(permille) 

150-212 PBBC-1 0.68 -1.35 
150-212 PBBC-1 0.52 -1.46 
150-212 PE07-2 0.56 -1.39 
150-212 PE07-2 0.33 -1.32 
212-250 PBBC-1 1.29 -1.46 
212-250 PBBC-1 1.10 -1.62 
212-250 PBBC-1 0.92 -1.76 
212-250 PE07-2 0.97 -1.65 
212-250 PE07-2 0.89 -1.51 
212-250 PE07-2 1.00 -1.44 
212-250 PE07-2 0.93 -1.64 
250-300 PBBC-1 1.24 -1.58 
250-300 PBBC-1 1.38 -1.57 
250-300 PBBC-1 1.26 -1.57 
250-300 PBBC-1 1.26 -1.64 
250-300 PE07-2 1.21 -1.62 
250-300 PE07-2 1.22 -1.40 
250-300 PE07-2 1.05 -1.23 
250-300 PE07-2 1.43 -1.46 
250-300 PE07-2 1.29 -1.65 
300-355 PBBC-1 1.79 -1.67 
300-355 PBBC-1 1.43 -1.60 
300-355 PBBC-1 1.65 -1.69 
300-355 PE07-2 1.92 -1.59 
300-355 PE07-2 1.81 -1.67 
300-355 PE07-2 1.67 -1.82 
300-355 PE07-2 1.61 -1.57 
355-425 PBBC-1 1.79 -1.94 
355-425 PBBC-1 1.60 -1.96 
355-425 PBBC-1 2.23 -1.90 
355-425 PBBC-1 1.92 -2.02 
355-425 PE07-2 1.98 -1.98 
355-425 PE07-2 1.66 -1.81 
355-425 PE07-2 1.92 -1.97 
355-425 PE07-2 1.85 -2.10 
425-500 PBBC-1 1.87 -1.98 
425-500 PBBC-1 1.79 -1.98 
425-500 PBBC-1 1.81 -2.22 
425-500 PE07-2 1.95 -2.00 
425-500 PE07-2 2.36 -2.19 
425-500 PE07-2 2.16 -2.18 

 
Appendix III.3.  Size Fraction Mg/Ca Data for G. ruber (pink).   Raw carbon and oxygen isotopic data 
for G. ruber (pink) represent measurements on separate aliquots of 60 individuals from the respective size 
fractions.  Foraminifera were picked from two different box core core-top samples:  Pigmy Basin (PBBC-
1) and Garrison Basin (PE07-2). 
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AIV.4.  Size Fraction Data for Mg/Ca in G. ruber (pink) 
 

Size Fraction 
(µm) 

Sediment 
Core-top 

Mg/Ca 
(mmol/mol) 

150-212 PBBC-1 3.82 
150-212 PBBC-1 3.77 
150-212 PE07-2 4.01 
150-212 PE07-2 4.54 
150-212 PE07-2 3.85 
212-250 PBBC-1 4.01 
212-250 PBBC-1 4.46 
212-250 PE07-2 4.22 
212-250 PE07-2 4.00 
212-250 PE07-2 4.24 
250-300 PBBC-1 4.47 
250-300 PBBC-1 4.55 
250-300 PBBC-1 4.48 
250-300 PBBC-1 3.96 
250-300 PBBC-1 4.05 
250-300 PE07-2 4.05 
250-300 PE07-2 4.55 
250-300 PE07-2 4.46 
250-300 PE07-2 4.45 
250-300 PE07-2 4.43 
300-355 PBBC-1 4.11 
300-355 PBBC-1 4.33 
300-355 PBBC-1 4.55 
300-355 PE07-2 4.55 
300-355 PE07-2 4.41 
300-355 PE07-2 4.49 
300-355 PE07-2 4.11 
355-425 PBBC-1 4.56 
355-425 PBBC-1 4.50 
355-425 PBBC-1 4.34 
355-425 PE07-2 4.44 
355-425 PE07-2 4.65 
355-425 PE07-2 5.19 
355-425 PE07-2 4.31 
425-500 PBBC-1 5.00 
425-500 PBBC-1 4.48 
425-500 PBBC-1 4.88 
425-500 PE07-2 4.77 
425-500 PE07-2 4.61 
425-500 PE07-2 5.23 

>500 PE07-2 4.92 
Appendix III.2.  Size Fraction Mg/Ca Data for G. ruber (pink).   Raw Mg/Ca data for G. ruber (pink) 
represent measurements on separate aliquots of 60 individuals from the respective size fractions.  
Foraminifera were picked from two different box core core-top samples:  Pigmy Basin (PBBC-1) and 
Garrison Basin (PE07-2). 
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AIV.5.  Summary of Size Fraction Data  
 

AIII.5.a. Summary of Size Fraction Isotopic Data for G. ruber (pink) 
Size Fraction 

(µm) n 
δ18O 

(permille) STDEV 
δ13C 

(permille) STDEV 
150-212 4 -1.38 0.06 0.52 0.14 
212-250 7 -1.58 0.12 1.01 0.14 
250-300 9 -1.52 0.14 1.26 0.11 
300-355 7 -1.66 0.09 1.70 0.16 
355-425 8 -1.96 0.08 1.87 0.20 
425-500 6 -2.09 0.11 1.99 0.22 

 
AIII.5.b. Summary of Size Fraction Isotopic Data for G. ruber (white) 

Size Fraction 
(µm) n 

δ18O 
(permille) STDEV 

δ13C 
(permille) STDEV 

150-212 5 -1.17 0.20 0.26 0.10 
212-250 7 -1.22 0.18 0.56 0.05 
250-300 8 -1.41 0.18 0.86 0.27 
300-355 7 -1.39 0.15 1.24 0.15 
355-425 3 -1.70 0.16 1.34 0.17 

 
AIII.5.c. Summary of Size Fraction Mg/Ca Data for G. ruber (pink) 

Size Fraction 
(µm) n 

Mg/Ca 
(mmol/mol) STDEV SST (ºC) 

150-212 5 4.00 0.32 26.1 
212-250 5 4.19 0.19 26.7 
250-300 10 4.35 0.23 27.1 
300-355 7 4.37 0.19 27.1 
355-425 7 4.57 0.30 27.6 
425-500 6 4.83 0.27 28.2 

>500 1 4.92 n/a 28.5 
 

AIII.5.d. Summary of Size Fraction Isotopic Data for G. ruber (white) 
Size Fraction 

(µm) n 
Mg/Ca 

(mmol/mol) STDEV SST (ºC) 
150-212 5 4.36 0.10 25.2 
212-250 6 4.29 0.27 25.1 
250-300 8 4.32 0.16 25.2 
300-355 5 4.30 0.22 25.1 
355-425 2 4.73 0.19 26.2 

 
AIII.5a-d. Summary of Size Fraction Data.  These tables summarize the data in AIII.1-
AIII.4, by presenting the mean values for all replicate measurements within each size 
fraction for G. ruber (pink) and G. ruber (white), respectively.  n represents the number 
of measurements made in each size fraction, and the STDEV is the standard deviation of 
those n measurements. 
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