Continuous Monitoring of High-Temperature Fumaroles on an Active Lava Dome, Volcán Colima, Mexico: Evidence of Mass Flow Variation in Response to Atmospheric Forcing

Charles B. Connor
Florida International University, cbconnor@usf.edu

Bradford M. Clement
Florida International University

XiaoDan Song
Florida International University

Sammantha B. Lane
Florida International University

Jennifer West-Thomas
Florida International University

Follow this and additional works at: https://digitalcommons.usf.edu/geo_facpub

Part of the [Earth Sciences Commons](https://digitalcommons.usf.edu/geo_facpub)

Scholar Commons Citation

Connor, Charles B.; Clement, Bradford M.; Song, XiaoDan; Lane, Sammantha B.; and West-Thomas, Jennifer, "Continuous Monitoring of High-Temperature Fumaroles on an Active Lava Dome, Volcán Colima, Mexico: Evidence of Mass Flow Variation in Response to Atmospheric Forcing" (1993). *School of Geosciences Faculty and Staff Publications*. 1659.
https://digitalcommons.usf.edu/geo_facpub/1659

This Article is brought to you for free and open access by the School of Geosciences at Digital Commons @ University of South Florida. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact digitalcommons@usf.edu.
Continuous Monitoring of High-Temperature Fumaroles on an Active Lava Dome, Volcán Colima, Mexico: Evidence of Mass Flow Variation in Response to Atmospheric Forcing

CHARLES B. CONNOR, 1 BRADFORD M. CLEMENT, XIAODAN SONG, SAMMANTHA B. LINE, AND JENNIFER WEST-THOMAS

INTRODUCTION

Fumaroles are among the most obvious manifestations of volcanic activity. Fumarole temperatures often rise prior to volcanic eruptions [e.g., Zettwood and Tosieff, 1973; Barquero, 1988; Tedesco et al., 1991] and therefore may provide information critical to the evaluation of the state of activity of the volcano. Often, increases in fumarole temperature are rapid. For instance, fumarole temperatures in the crater of Volcán Poás rose by over 700øC in 1 month in 1980, precursory to phreatic eruptions which began several weeks later [Barquero, 1983]. Similar rapid changes have been observed in ground temperature on Mount Etna [McClelland et al., 1989] and in hot spring temperatures at Usu volcano [Abiko, 1984, 1988] prior to volcanic eruptions. Conversely, decreases in fumarole temperatures over periods of months or years are often the most apparent sign of waning volcanic activity [e.g., Allen and Zies, 1923; Stoiber et al., 1975; Barquero, 1988; Keith, 1991].

Fumarole temperature data, however, have been of limited use in volcanic monitoring and in the mitigation of volcanic hazards for two reasons. First, fumaroles, the loci of convective heat loss at the volcano, are usually local manifestations. It is difficult to relate temperatures at these fumaroles directly to the movement of magma or related changes in the thermal structure of the volcano. This difficulty is compounded by the numerous factors that can influence fumarole temperature. These factors include variation in mass flow through the fumarole conduit; conduit geometry; mixing with meteoric water vapor or air; variation in the temperature of the gas at its source due to, for example, cooling and crystallization; and variation in the depth to the magma. Second, fumarole temperatures have, in the past, been monitored at infrequent intervals because of the hazards and logistical difficulties inherent in the collection of these data. Particularly in times of volcanic crisis, fumarole temperature data usually cannot be collected using traditional sampling methods. Sampling at these times, however, is most relevant to hazard mitigation efforts. These problems have prevented quantitative interpretation of fumarole temperature variation. In contrast, the continuous collection and correlation of other geophysical variables has greatly aided monitoring activities and the understanding of volcanic structure and dynamics [Swanson et al., 1983; Wright and Swanson, 1987]. For example, seismic energy release has been monitored remotely and continuously and has proven to be of importance in volcano monitoring [e.g., Minikami, 1974; Malone et al., 1983]. Closely spaced electronic tiltmeters, also monitored continuously, have been of considerable utility in forecasting dome eruptions from Mount St. Helens [e.g., Chadwick et al., 1988].

In this study, temperatures in five fumaroles were monitored continuously on the summit dome of Volcán Colima, an active composite volcano in western Mexico (Figure 1), during May 1991 through May 1992. The goal of this monitoring was to collect sufficient data to help differentiate between factors controlling temperature in these fumaroles. A data logger was used to collect and telemeter these data to the Universidad de Colima observatory, located approximately 25 km from the volcano. Fumarole temperatures varied...
Prior to this activity, gas temperatures in the hottest fumaroles on the summit dome decreased from 895°C in December 1985 to 571°C in December 1990 [Smithsonian Scientific Event Alert Network, 1985, 1987; GVN, 1990; Connor, 1990]. This long-term decrease in fumarole temperatures ceased when fumarole activity became widespread on the dome at the outset of the March 1991 eruption. Unfortunately, fumarole temperatures were not monitored between December 1990 and March 1991. During the initial stages of this eruption, radial fractures formed on the summit dome, and fumaroles became highly concentrated along these fractures (Figure 1). Because of effusion of new dome lavas, deformation, and widespread and intense degassing, much of the summit dome, including areas previously monitored, was inaccessible during the period of this study.

METHODS AND RESULTS

Automated Fumarole-Monitoring Method

Traditionally, fumarole temperature data have been collected manually, using digital thermocouples. Given the hostility of the volcanic environment, fumaroles are generally monitored for a few minutes at a time at most, and measurements are rarely repeated at less than daily intervals. In this study an automated fumarole-monitoring system was installed on the eastern rim of the summit dome on May 13, and was made fully operational on May 16, 1991. This area is located on the 1975-1976 block lava flow near the rim of an explosion pit crater formed in 1987 (Figures 1 and 2) and about 75 m from the site of active lava extrusion during 1991 activity. Fumaroles are widely distributed in the area, particularly near the rim of the explosion pit. Several fracture sets, most with azimuths of approximately 070° to 090° (Figure 2), transect the fumarole field, and fumaroles are concentrated along these fractures. Degassing has occurred from this area since at least March 1990, but as elsewhere on the summit dome, activity was observed to increase fol-
following renewed seismic activity and extrusion of lavas in March 1991 [GVN, 1991a]. Most fumaroles in this area have temperatures of between 200°C and 250°C, but fumaroles located within fractures are much hotter, generally having temperatures between 350°C and 600°C. The number of fumaroles, and fumarole temperatures, drop off quickly downslope from the crater rim. No fumaroles were found more than 50 m downslope from the explosion crater rim. Five fumaroles were monitored during the sampling period (thermocouples T1-T5 in Figure 2), located along a single fracture (named the Arreola fracture). Air temperature at the data logger was monitored simultaneously, and atmospheric pressure was monitored during April and May 1992.

The fumarole-monitoring system consists of a programmable Campbell Scientific data logger (model 21s), thermocouples, and peripheral equipment to power the system, radiotelemeter, and store the data. Atmospheric barometric pressure was recorded by the data logger using a Visala mountain barometer with a precision of 0.1 mbar. The data logger and peripheral equipment are widely used in meteorological and similar applications and are specifically designed for use in a wide range of atmospheric conditions. Chromel/Alumel thermocouple leads were run from the data logger to the fumaroles. Teflon-coated, shielded thermocouple wire was used in relatively cool areas (<200°C) between the data logger and the fumarole field. Ceramic overbraided probes (3 m in length) were inserted into the fumaroles. Total lead length varied from approximately 20 to 30 m. Experimentation indicates that thermocouple leads up to 100 m in length can be used without affecting the quality of the data. Laboratory testing with a 1-atm furnace and field comparison with a standard digital thermocouple indicate that the monitoring system is accurate to +/- 3°C between 200°C and 850°C. Temperature and barometric pressure data were recorded digitally by the data logger and radiotelemetered periodically to the volcano observatory at the Universidad de Colima, a distance of approximately 25 km. There the data were automatically downloaded to a floppy disk.

Fumarole Temperature Measurements

Representative data collected during 1991 and 1992 are shown in Figures 3-6. In general, there is a decrease in fumarole temperature from the crater rim to the east, and there is a high degree of correlation between temperatures in some fumaroles. Daily variation in fumarole temperature is significant and accounts for most of the observed variance in temperature. Commonly, temperatures vary by as much as 25°C in a single day in the hotter fumaroles and by as much as 50°C in the lower-temperature fumaroles. The dependence of amplitude of temperature variation on mean fumarole temperature is apparent in Figure 3. Fumaroles with low mean temperatures generally have greater daily variation than fumaroles with higher mean temperatures.

Fumarole temperature variations are well correlated with barometric pressure variation. Daily and semidiurnal variations in fumarole temperature correspond to changes in barometric pressure of as little as a few millibars (Figures 4a and 4b). Longer-wavelength variation in atmospheric pressure, related to changing weather conditions, also produce long-wavelength temperature variations in some fumaroles along the Arreola fracture. For example, a low-pressure system in April 1992 correlates with an increase in fumarole temperature during the same period (Figure 5).

Long-term changes in fumarole temperature were minimal. Temperature data from two fumaroles representative of variation are given in Figure 6. The greatest change in mean temperature along the fracture was observed in spring and summer 1991. During this time, high-temperature fumaroles cooled gradually. Low-temperature fumaroles heated during the same period. Subsequently, all fumaroles cooled very gradually (Figure 6). This trend would have been difficult or impossible to recognize without the continuous collection of data because daily variations are large by comparison. Although abrupt changes in mean daily temperature occurred in some fumaroles, such as in T3 around day 190 (Figure 6), this type of rapid change did not occur in other fumaroles and was not associated with any known change in volcanic activity. Overall, mean daily temperatures in individual fumaroles varied by 40°C to 100°C during the study period.

Seasonal rainfall variations near Volcán Colima are dramatic. A normal rainy season occurred between June and September 1991, and anomalous rainfall occurred in January 1992, during which period approximately 0.5 m of rain fell on the volcano [I. Galindo, personal communication, 1992]. Fumarole temperatures, however, were not greatly affected by rainfall during the normal rainy season,
Fig. 4b. Fourier transforms of barometric pressure and fumarole temperature, indicating a high degree of correlation between these data, collected at 20-min intervals between March and May 1992. Large-amplitude spectra and frequencies of 23.5 and 11.9 h/cycle occur. Atmospheric pressure develops this cyclicity due to tidal forcing (long-wavelength, nontidal correlation between pressure and temperature is illustrated in Figure 5).

except during actual precipitation when rain water cooled the thermocouple probes themselves. Data were not collected during two periods (Figure 6). A lightning strike disabled the instrument in late August 1991, and a battery failure occurred in late January 1992. Repairs were hampered at these times because rainfall made the volcano extremely difficult to access. Because of the failure of the system in January, it is not possible to determine if the January rains had a substantial impact on fumarole temperature. After the resumption of recording in early March 1992, temperature remained low, but this decrease is interpreted to result from gradual cooling rather than from January rainfall.

STeady State Numerical Model

Method

Analysis of fumarole temperature data suggests that significant variation in fumarole temperature occurs on relatively short timescales in response to atmospheric pressure variation. Periodic variations in geochemical variables, such as CO₂ and ²²²Rn gas flux, have been observed along fault lines [Reimer, 1980; Sato et al., 1986] and at some volcanoes [Tedesco et al., 1991; Baubron et al.,...
One model for periodic change in gas flux is that variation in atmospheric pressure results in variation in mass flow of gas along a fault line, or through soil. At Volcán Colima the observed relationship between fumarole temperature and atmospheric pressure suggests that fumaroles are behaving as forced convection systems and that small changes in barometric pressure result in changes in mass flow through the fumarole conduit, which in turn results in changes in fumarole temperature. Recently, theoretical models for the dependence of fumarole temperature on various physical parameters have been described in detail [Stevenson, 1992]. Stevenson's [1992] analytical models for pipelike fumaroles and fumarole zones demonstrate that various parameters, such as mass flow, conduit geometry, and depth to magmatic heat source, can influence fumarole temperature. We have applied a simple, steady state numerical heat and mass transfer model [White, 1988] to describe heuristically the relationship between fumarole temperature and mass flow in a fracture geometry. Although the model does not reflect the inherent complexity of flow through time in fumaroles, it does account for basic patterns in temperature variation observed in the Colima data set. Transient aspects of heat and mass transfer in fumarole conduits, such as observed diurnal temperature variations, are considered qualitatively following development of this steady state model.

Fumarole temperature depends on mass flow because the gas loses heat to wall rock as it rises from depth. The amount of heat lost from the gas depends on the temperature of the wall rock, the length and geometry of the fumarole conduit, and the velocity with which gas is flowing [White, 1988; Stevenson, 1992]. In a steady state, gas will lose heat at a rate high enough to maintain a thermal boundary layer within which rock temperatures will be elevated. As a result, gas temperature decreases in a nonlinear fashion as gas rises from depth. Numerical models for temperature distribution in hot spring conduits have been discussed in detail by Sorey [1978] and Nathenson et al. [1979], and models for temperature distribution in pipelike fumaroles have been discussed by Stevenson [1992]. Boundary conditions and the theoretical basis for the numerical methods used here are amply described elsewhere [White, 1988; Minkowycz et al., 1988].

Our model is based on a fracture geometry because high-temperature fumaroles are fracture controlled at Volcán Colima. To describe the effect of mass flow variation, it is assumed that the initial gas temperature at the base of the fracture is constant. Rock surface temperature is also taken to be constant. Far from the fracture a constant geothermal gradient is maintained and, except in the fumarole itself, heat is transferred through the rock by conduction. The fracture is approximated as a parallel-sided conduit of constant width. The hydraulic diameter \(D_h \) is used to calculate the Nusselt number and related variables.

\[
D_h = \frac{2ab}{a+b} \quad (1)
\]

where \(a \) is the fracture width and \(b \) is fracture length (Figure 7a).

For a long fracture (one with a length more than 10 times the width) it is appropriate to let \(b \) equal infinity:

\[
\lim_{b \to \infty} D_h = 2a . \quad (2)
\]

The fumarole gas is assumed to have the thermodynamic properties of steam. Density, thermal conductivity, viscosity, heat capacity, and the Prandtl number are varied as a function of temperature as the gas ascends the fracture [American Society of Mechanical Engineers, 1978; Kestin, 1978]. Our model does not account for variation in the thermodynamic properties of the gas that may result from compositional changes.

Gas flow in the fracture will be laminar at low mass flows and is fully turbulent at high mass flows. The diameter Reynolds number \(Re \) is used to determine the character of the flow

\[
Re = \frac{\rho v D_h}{\mu} \quad (3)
\]

where \(\rho \) and \(\mu \) are the gas density and viscosity, respectively, and \(v \) is the mean velocity of gas in the fracture. In the laminar flow regime the Nusselt number, \(Nu \), is held constant (\(Nu = 8.66 \)) [Chapman, 1984] for a long parallel-sided fracture. In the turbulent flow regime (\(Re > 2200 \)), \(Nu \) is approximated using the Dittus-Boelter equation [e.g., Chapman, 1984].
Using equations (1)-(10), the gas temperature can be estimated along the conduit, provided the wall rock temperature is known. However, the wall rock temperature changes because the gas loses heat to the wall rock, and wall rock temperatures must be recalculated taking into account heat lost from the gas. In the steady state, the wall rock temperature profile is calculated by a finite difference approximation of Laplace's equation [e.g., White, 1988]. As boundary conditions, surface temperature, and the temperature at the base of the fracture are assumed to be constant and far from the fumarole, $\partial T/\partial x$ is assumed to be constant, where x is distance from the fracture. The temperature on the fumarole wall is approximated by

$$T_w = \frac{1}{2} + Bi \left(T_1 + \frac{T_2 + T_3}{2} + T_{gas} Bi \right),$$

where

$$Bi = \frac{hAx}{k}$$

where k is the thermal conductivity of the rock, Ax is the mesh size, h is the heat transfer coefficient, Bi is the Biot mesh size number, T_{gas} is the average gas temperature in the fracture adjacent to the wall rock where T_w is determined, and $T_1, T_2,$ and T_3 are rock temperatures along and adjacent to the fracture. The geometric relationship between $T_w, T_1, T_2,$ and T_3 used in the finite difference model is illustrated in Figure 7b. Sorey [1978] noted that a special condition exists where the fumarole reaches the surface. High-temperature gradients exist at this point because the wall is in contact with hot gas and ambient air. Accounting for these variations is important because fumarole temperatures are measured in this location. The corner temperature T_c is the rock temperature at the surface adjacent to the fumarole and is approximated as

$$T_c = \frac{1}{1 + Bi} \left(T_1 + \frac{T_2 + T_3}{2} + T_{gas} Bi \right)$$

where T_1 is the surface rock temperature and is constant, and other variables are as in equation (6). Diurnal atmospheric temperature variations are not considered here, although observation indicates they have little effect on fumarole temperature (<15°C).

Once the new steady state geothermal gradient is calculated, gas temperatures are recalculated using the new set of T_w and T_c. This iterative process continues until a steady state solution is reached: gas temperatures along the conduit remain constant between successive iterations.

Solutions to the Steady State Model

Numerous solutions to the model were calculated using a variety of boundary conditions and fracture geometries. The dependence of fumarole temperature on mass flow for constant source temperature is graphed in Figure 8a as a function of fracture width and in Figure 8b as a function of fracture depth. Because the fumaroles along the Arreola fracture likely have a common source at some depth, Figure 8a probably illustrates temperature variation as a function of mass flow within that system. The most important aspect of the numerical results is that fumarole temperature is nonlinearly dependent on mass flow. The sensitivity of temperature to mass flow is amplified in fumaroles with relatively low mass flows. This relationship persists in varying degrees for great variation in fracture width (Figure 8a), fracture depth (Figure 8b), and other boundary conditions, such as change in temperature at the source and change in the "background" geothermal gradient, far from the fumarole. Therefore the numerical solutions presented here suggest that, theoretically, similar changes in mass flow can affect fumarole temperature differently, depending on the absolute mass flow from the fumarole. By
The model results indicate that the same change in mass flow in all parameters, such as fracture width or depth to the magmatic heat source, three fumaroles will produce the greatest temperature change in the system. T2 is the hottest of the three and has the smallest daily fluctuation. Of these, T1 has the lowest mean temperatures (Figures 2 and 3). Of these, T1 has the lowest mean temperatures (Figures 2 and 3). Of these, T1 has the lowest mean temperatures (Figures 2 and 3). Of these, T1 has the lowest mean temperatures (Figures 2 and 3).

Contrast, temperature is not as strongly dependent on geometric parameters, such as fracture width or depth to the magmatic heat source.

Comparing the model results and observed daily variation in fumarole temperature (Figure 3) indicates that differences in mass flow can readily account for much of the temperature variation along the Arreola fracture. Although closely spaced along the same fracture, fumaroles T1, T2, and T3 have significantly different mean temperatures (Figures 2 and 3). Of these, T1 has the lowest mean temperature and the greatest daily fluctuation in temperature. T2 is the hottest of the three and has the smallest daily fluctuation. The model results indicate that the same change in mass flow in all three fumaroles will produce the greatest temperature change in the coolest of the three. Although mass flow must be higher at T2 than at the other two fumaroles, the magnitude of daily fluctuation in mass flow in the three fumaroles may be similar. The model suggests that mass flow may be greater in T4 and T5 than in fumaroles further downslope and that these fumaroles may have larger daily fluctuations in mass flow than the other fumaroles. Alternatively, mixing of hot gas with cooler gas or meteoric vapor may vary along the length of the fracture, cooling fumaroles T1-T3 with respect to fumaroles located further upslope (T4 and T5). Differences in mixing of magmatic gases with meteoric vapor may account for the differences in behavior of hotter fumaroles (T4 and T5) and cooler fumaroles (T1-T3), but mixing is not necessary to produce the observed daily change in individual fumaroles or systematic changes between fumaroles (i.e., between fumaroles T1, T2, and T3). Geometric factors, such as fracture depth and width, play a secondary role.

The numerical model developed here does not effectively quantify the response of fumarole temperature to rapid changes in mass flow. The thermal diffusivity of rock, κ, is slow, of the order of $1 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$ [Turcotte and Schubert, 1982], so it takes time for the system to reach a steady state. The thickness of the thermal boundary layer about the fracture can be defined as the distance from the fracture at which $(T-T_0)/(T_w-T_0) = 0.1$, where T is rock temperature at the outer limit of the thermal boundary layer, T_0 is the initial wall temperature, and T_w is the wall temperature in the steady state. If, for example, a fracture is 25 m deep and 0.15 m wide and has a mass flow of about 0.01 kg s$^{-1}$ m$^{-1}$, the thickness of the thermal boundary layer is approximately 6.5 m at a depth of 12.5 m. The time required for the temperature profile to change from a uniform geothermal gradient to one with a steady state thermal boundary layer is given by

$$x = 2\text{erfc}^{-1}(0.1)\sqrt{\kappa t}$$

where x is the thickness of the thermal boundary layer. It takes about 90 days for the rock temperature to reach a steady state. An increase in mass flow from 0.01 to 0.0125 kg m$^{-1}$ s$^{-1}$ increases the thickness of the thermal boundary layer to 7.1 m. It will take an additional 17 days for the system to reach equilibrium. Daily variation, however, is much too rapid for the system to reach equilibrium. For example, rearranging equation (13), in 1 hour the rock temperature increases by 10% at a distance of only 14 cm from the fracture wall. Due to the low thermal diffusivity of rocks, rock very close to the fracture will heat in response to an increase in gas temperature much faster than this heat can be conducted away. The converse is also true; in response to a decrease in gas temperature, rock near the fracture will cool faster than heat can be conducted into the region from the surrounding rock. This has the net effect of making fumarole temperatures more sensitive to rapid, transient changes in mass flow than implied by the steady state model because the volume of rock heated, or cooled, is much smaller. Rapid changes in mass flow will induce larger changes in fumarole temperature than predicted by the steady state model. Nonetheless, because the heat transfer coefficient does not depend on the conductivity of the wall rock (equation (5)), the response of fumarole temperature is accurately portrayed in a relative way for various fracture geometries and mass flow conditions (Figures 8a and 8b).

Discussion

Continuous recording has revealed substantial daily variation in fumarole temperature in fractures near the SE rim of the 1987 explosion crater. Similar variations have been identified in shorter data sets collected in different, now inaccessible, fumarole areas of the summit dome using the sampling techniques similar to those described here [Connor, 1990; GVW, 1990]. Daily variations in fumarole...
marole temperature of this magnitude have not been identified at Volcán Colima, or other volcanoes, when traditional sampling methods are employed. The daily change in fumarole temperature along the Arreola fracture is large and illustrates the inadequacy of traditional methods, involving nonautomated systems. Fumarole temperatures must be sampled with a high frequency (≤ 1 hour), and several fumaroles must be monitored simultaneously in order to fully characterize temperature variation. Traditional sampling methods would probably miss subtle trends in temperature because daily variation introduces a significant aliasing problem. Even if a fumarole were sampled at the same time daily, an extremely difficult task at Volcán Colima, the limited number of data points collected in 1 month would render statistical and time series analysis useless. In comparison, automatic sampling provides the resolution required to reveal these trends quickly and with comparatively little effort. Although dramatic variation in fumarole temperatures, such as those preceding volcanic activity [e.g., Barquero, 1983], have been identified using handheld digital thermometers, additional details about the timing and character of these rapid changes may be revealed through automated, multichannel collection of temperature data.

Long-term variation in temperatures in the Arreola fracture were slight (≤ 100°C) during the sampling period. There is, however, a broad correlation between volcanic activity and fumarole temperatures. Effusive activity on the dome occurred between March and May 1991 and continued at a much lower rate through June [Rodriguez-Elizarraras et al., 1991]. Following this period, no eruptive activity occurred on the dome. During the waning stages of the eruptions, and immediately following effusive activity, between May and August 1991, fumaroles along the Arreola fracture were not in equilibrium, and heating or cooling trends were inconsistent along the length of the fracture. For example, abrupt changes in temperature occurred in some fumaroles during this period, such as a 70°C increase in mean temperature in T3 during a 3.5-day period near day 190 (Figure 6), that were not observed in other fumaroles. These changes in temperature indicate that rapid changes in mass flow or mixing were occurring along the length of the fracture. Gradual cooling was observed in all fumaroles between November 1991 and May 1992. This gradual cooling may have been in response to a decrease in mean mass flow, a cooling of the magmatic source region, or both and is consistent with the waning of magmatic activity. Variance in mean daily temperatures was much reduced by May 1992, and patterns in mean temperature variation were more consistent between fumaroles, suggesting that flow along the fracture was more nearly equilibrated at that time.

Diurnal Variation and Mass Flow

All of the fumaroles have a statistically significant diurnal temperature variation. Periodic variation in geothermal phenomena has been known for a long time. For instance, geysers and hot springs owe their periodic activity to the complexities of conduit geometry, recharge rates, and, to a lesser extent, external forcing [Rinehart, 1976; Sorey and Lewis, 1976]. Fortnightly periodicity in volcano degassing has been attributed to the Earth tide [Connor et al., 1988], and longer-term variation in fumarole temperature has been attributed to seasonal effects [Steiber et al., 1975]. The latter two examples indicate that external forcing is of some consequence in actively degassing volcanos. Recently, continuous monitoring of CO2, He, and Rn gases for brief periods at Mount Etna and Vulcano, Italy, has revealed similar diurnal variation in gas flux [Allard et al., 1990; Baubron et al., 1991; Tedesco et al., 1991]. Diurnal variation has long been identified in gas flux along active faults [e.g., Reimer, 1980; Talwani et al., 1980; Teng and Sun, 1986; Sato et al., 1986]. Reimer [1980] correlated gas flux from soils with numerous atmospheric variables, including air and soil temperature, wind velocity, and, to a lesser extent, barometric pressure. McCarthy and Reimer [1986] suggested that atmospheric pumping causes changes in gas flux along fault lines and that gas flux best correlates with rate of change in atmospheric pressure. Sato et al. [1986] noted that natural variation in H2 flux along the Calaveras fault, California, is diurnal, but phase changes occur from site to site. The nearly continuous diurnal variation in fumarole temperature in five fumaroles and the inverse correlation between temperature and atmospheric pressure indicate that small changes in pressure result in changes in mass flow through the conduit. Stevenson [1992] has pointed out that nearly all gas expansion should take place immediately above the magma and that very little expansion of gas will take place in the fumarole conduit as the gas rises. This theoretical result is supported by observations at Colima. A pressure change of a few millibars at the surface can only substantially affect flow if the total change in pressure along the length of the conduit is small. This makes sense in a high-temperature, low-viscosity, low-mass-flow, forced convection system.

The numerical model developed here does not account for several factors which, at least in some circumstances, likely affect temperature. Convection of fluids in the surrounding rock [e.g., Sorey, 1978] and nearby fumaroles [Stevenson, 1992] likely affects the local geothermal gradient considerably, with a corresponding effect on fumarole temperature. This factor has only been considered indirectly, by altering the local geothermal gradient. Mixing with slowly circulating meteoric vapor and air has not been considered either. However, the lack of seasonal variation in temperature, or substantial change during periods of unusually high rainfall (Figure 6), indicate that direct near-surface mixing has little impact on temperature in these fumaroles. Either the meteoric component in the gas is small, or, more likely, the meteoric component is deeply circulating and, as a result, is unaffected by seasonal changes in rainfall or air temperature. Other factors, including fracture roughness and interconnectedness, have not been considered even though they likely influence the properties of flow in fumaroles. Clearly, without accounting for these factors, the model does not absolutely quantify the behavior of the system; it merely illustrates the dependence of fumarole temperature on mass flow. The fact that factors such as fracture roughness remained constant during the sampling period, but fumarole temperatures varied significantly, supports the conclusion that mass flow exerts a strong influence on fumarole temperature.

Fumarole Temperature Monitoring

Certainly, the sampling methods introduced here alleviate many of the problems associated with the interpretation of fumarole temperature measurements. In practice, the method provides a direct measure of thermal activity on Volcán Colima, while minimizing the hazards associated with the collection of such data. Whether multichannel, rapid sampling of fumarole temperatures can overcome the localized nature of the method in practice is not yet clear. However, two points should be noted. First, the timescales of variation introduced by local and atmospheric factors should be quite different from those associated with magma movement or related changes in the thermal structure of the volcano. For example, automated collection of data makes it relatively easy to identify the effects of atmospheric forcing. As the timescales of these variations become better understood, variations associated with magma degassing should become more readily apparent. Second, observations of temperature variation along the Arreola fracture, coupled with numerical experimentation, provide evidence of the fundamental, nonlinear relationship between fumarole temperature and mass flow. Mass flow, or gas velocity, in fumaroles is difficult to
measure directly and has never been done successfully on a con-
tinuing basis, largely due to the high temperatures and corrosive
nature of the gases. Although thermocouples provide an indirect
measure of mass flow, they are, in comparison, inexpensive and in-
credibly resilient. Direct mass flow measurements made peri-
odically, such as those made at low-temperature fumaroles in Long
Valley [Sorey et al., 1993], may prove to be an excellent method for
better quantifying the relationship between mass flow and tempera-
ture, provided adequate measurements can be made at high tem-
peratures and low mass flows.

Temperature measurements, made continuously, may be useful
for the detection of mass flow changes prior to explosive volcanic
eruptions. Considerable energy has been devoted to the measure-
ment of mass flow from volcanoes, using correlation spectroscopy
[Stoiber et al., 1983] and similar approaches [Sato and McGee,
1982; Hirabayashi et al., 1986]. In many instances significant changes
in gas flux occur prior to explosive eruptions [e.g., Malin-
conico, 1979; Stoiber et al., 1980]. Absolute changes in the gas flux
of certain gas species, such as SO2 and Rn, are known to correlate
well with long-term changes in activity and noneruptive events
[Greenland et al., 1985; Stoiber et al., 1986; Connor et al., 1988].
Automated fumarole temperature monitoring may provide a reli-
able means of assessing mass flow from fumaroles on a nearly con-
tinuous basis. At Volcán Colima this approach has revealed details
in temperature variation not previously evident. In light of these re-

c results, it is clear that the utility of fumarole temperature measure-
ments in the monitoring of active volcanoes has yet to be fully
explored.

CONCLUSIONS

1. Collection of fumarole temperature data using a programma-
ble data logger, and telemetry of these data, provides an effective
means of monitoring temperature variation in much greater detail
than is possible using traditional methods. As a result, subtle
changes and rapid fluctuations in temperature are easily identified.

2. Fumarole temperatures are nonlinearly dependent on mass
flow. Geometric factors, such as fracture width, play a secondary
role. For a given fumarole, changes in mass flow alone can produce
substantial changes in temperature. Observed temperature changes
at Volcán Colima are best accounted for by changes in mass flow.

3. At Volcán Colima fumarole temperatures vary in response to
small changes in atmospheric pressure. The nature of this variation
is enhanced in low-temperature fumaroles. Changes in degassing
occurred from fumaroles along the Arreola fracture between May
1991 and May 1992. During and immediately following effusive
activity, changes in degassing were abrupt and inconsistent along
the length of the fracture. Following this period, temperatures de-
creased gradually, and there was a higher degree of correlation be-
tween fumaroles, indicating that degassing was more uniform along
the length of the fracture.

Acknowledgments. Numerous individuals and organizations assisted
in the installation of the fumarole-monitoring network on Volcán Colima. In
particular, we thank Carlos Navarro, Laura Connor, Mitchell Ventura, Gil-
berto Omaña, Jill Garfield, Cameron and Tepexa Ellis, John Magisno, and
EarthWatch volunteers for their assistance in carrying equipment, debug-
ging the network, and working cheerfully and diligently under nasty condi-
tions. Helpful discussions with Grenville Draper, Ignacio Galindo, and Jorge
Piza are gratefully acknowledged. The Centro Internacional de Ciencia-
bicas Basicas, the Mexican Military (Militaria Zona 20a), Protección Civil, and
the Universidad de Colima provided logistic and technical support without
which this project could not have succeeded. This manuscript was reviewed
by Michael Sorey and Robert Symonds. Their comments are appreciated.
This work was supported by grants from the National Science Foundation
(EAR-9017845) and EarthWatch.

REFERENCES

Abiko, T., Temporal variation in chemical compositions of hot-springs
Toyako- and Sobetsu-Osen on the 1977 to 1978 eruption of Usu vol-
cano, in Fundamental Research for Predicting Volcanic Eruptions
Grant-in-Aid Nat. Disaster Sci. A-59-4, p. 141, National Research Insti-

tute for Earth Science and Disaster Prevention, Tsukuba, Japan, 1984.

Abiko, T., Hot spring temperatures at Usu volcano, Japan, in Historical Un-
rest at Large Calderas of the World, vol. 2, edited by C.G. Newhall and D.

Allard, F. J. Carbonnelle, D. Dajlevic, J. Le Bronec, P. Morel, M.-C. Robe,
F. Paire-Picret, J.-C. Sabroux, and P. Zettwood, Eruptive and diffuse
emissions of carbon dioxide from Etna volcano, Sicily, Nature, 344, 51-

Allen, E.T., and E.G. Zies, A chemical study of fumaroles of the Katmai

American Society of Mechanical Engineers, ASME Steam Tables, 3rd ed.,

Barquero, J., Termometria de la fumara de Volcán Poás, Bol. Volcano, 13,1-
12, 1983.

Barquero, J., Changes in fumarole temperatures at Volcán Poás, in Historical Un-
rest at Large Calderas of the World, vol. 2, edited by C.G. Newhall and D.

Baubron, J.-C., F. Allard, J.-C. Sabroux, D. Tedesco, and J.-P. Toutain, Soil
gas emissions as precursory indicators of volcanic eruptions, J. Geol.

Chadwick, W.R., R.J. Archuleta, and D.A. Swanson, The mechanics of
ground deformation precursory to dome-building eruptions at Mount St.

1984.

Connor, C.B., Continuous monitoring of fumarole temperatures, Colima

Connor, C.B., E. Stoiber, and L.L. Malinconico, Jr., Variation in sulfur
dioxide emissions related to Earth tides, Halemaumau Crater, Kiluaea

Connor, C.B., S.B. Lane, and B.M. Clement, Structure and thermal charac-
teristics of the summit dome, March 1990-March 1991: Volcan Colima,
Mexico, paper presented at Tercera Reunion Nacional y Segunda Re-
union Internacional de Volcanologia, Volcan Colima, Restunenes, Uni-

Global Volcanism Network (GVN), Activity at Colima, Mexico, Bull.

Global Volcanism Network (GVN), Activity at Colima, Mexico, Bull.

Global Volcanism Network (GVN), Activity at Colima, Mexico, Bull.

and magmatic gas content from Kiluaea volcano, Geochim. Cosmoch.

Hirabayashi, J., J. OSSAKA, and T. Ozawa, Geochemical study of volcanic
gases at Sakurajima volcano, Japan, J. Geophys. Res., 91, 12,167-12,176,
1986.

Keith, T.E.C., Fossil and active fumaroles in the 1912 eruptive deposits, Val-
ley of Ten Thousand Smokes, Alaska, J. Volcanol. Geotherm. Res., 45,

Lühr, J.F., Colima: History and cyclicity of eruptions, Volcan News, 7, 1-3,
1981.

Lühr, J.F., and I.S.E. Carmichael, The Colima volcanic complex, I, Post-cal-
deran andesites from Volcan Colima, Contrib. Mineral. Petrol., 71, 343-

Malinconico, L.L., Fluctuations in SO2 emissions during recent eruptions of

Malone, S.D., C. Boyko, and C.S. Weaver, Seismic precursors to the Mount

McCarthy, H.J., and G.M. Reimer, Advances in soil gas geochemical explo-
rations for natural resources: Some current examples and practices, J.

1986.

Medina Martinez, F., Analysis of the eruptive history of Volcán de Colima,

Minikami, T., Prediction of volcanic eruptions, in Developments in Solid
Earth Geophysics (Physical Volcanology), vol. 6, edited by L. Cvetcet,

B.M. Clement, S.B. Lane, X. Song, and J. West-Thomas, Department of Geology, Florida International University, Miami, FL 33199.

C.B. Connor, Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166.

(Received March 8, 1993; revised July 22, 1993; accepted July 30, 1993.)