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A Survey of the Development of Daubechies Scaling Functions

Amber E. Age

ABSTRACT

Wavelets are functions used to approximate data and can be traced back to several different areas, in-

cluding seismic geology and quantum mechanics. Wavelets are applicable in many areas, including

fingerprint and data compression, earthquake prediction, speech discrimination, and human vision.

In this paper, we first give a brief history on the origins of wavelet theory. We will then discuss

the work of Daubechies, whose construction of continuous, compactly supported scaling functions

resulted in an explosion in the study of wavelets in the 1990’s. These scaling functions allow for the

construction of Daubechies’ wavelets. Next, we shall use the algorithm to construct the Daubechies

D4 scaling filters associated with the D4 scaling function. We then explore the Cascade Algorithm,

which is a process that uses approximations to get possible representations for the D2N scaling

function of Daubechies. Lastly, we will use the Cascade Algorithm to get a visual representation of

the D4 scaling function.
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Chapter 1

Wavelets: A Brief History and Basic Definitions

The study of wavelets can be traced back to several different fields, including mathematics, quantum

physics, and electrical engineering. While several areas are responsible for independently develop-

ing wavelets, perhaps the most important contribution came from seismic geology and the work

of Jean Morlet. Morlet needed a way to analyze seismic signals which carried information about

geological layers. Building off the work of Dennis Gabor, Morlet, along with Alex Grossman, ex-

plicitly defined and began using the word wavelet. Stéphane Mallat and Yves Meyer then used

these Grossman-Morlet wavelets as building blocks for multiresolution analysis, a notion built off

previous work done by Burt and Adelson [1] and that uses the concept of orthonormal wavelet

bases. The orthonormal wavelet bases, as first defined by Meyer in [7], were not perfected for use

in applications until the work of Ingrid Daubechies in 1988. It was at this time that Daubechies

presented a construction that resulted in a set of orthonormal wavelet bases that were of compact

support and continuously differentiable [2]. This development resulted in an explosion in the study

of wavelets and their applications. Currently, wavelets are used in a variety of areas, including

human vision, speech discrimination, fingerprint compression, earthquake prediction, and nuclear

engineering. For further information, the reader should see [3] or [6].

Wavelets are functions that can be used to approximate data. While other types of functions,

such as the Fourier transform, can also be used to approximate data, the wavelet transform has the

additional ability to analyze data at different resolutions. Data analyzed at a larger resolution gives a

rough approximation while data analyzed at smaller resolutions provides more detailed information.

It is this ability of the wavelet transform to zoom in and out of the data that makes it superior to the

Fourier transform for certain applications. As stated in [3], wavelet algorithms allow us to see “both

the forest and the trees.”

While several different approaches were taken in the development of the analysis of wavelets, for

the purposes of this paper, we shall focus on the work done by Haar and the idea of a multiresolution
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analysis presented by Mallat [4] and Meyer [7]. We will then briefly mention the Shannon multires-

olution analysis and its shortcomings in terms of applications. These shortcomings will be corrected

by Daubechies’ construction of continuous, compactly supported scaling functions. These scaling

functions are the essential tools needed to build orthonormal wavelet bases. In this paper, we will

focus on the development of these scaling functions. Much of the following discussion is motivated

by the works of [6] and [8].

While the study of wavelets started in the 1930’s, the roots of wavelets go back to 1807 and the

ideas of Fourier regarding the convergence of functions. Fourier claimed that every 2π− periodic

function f(ω) could be expressed as a sum of its Fourier Series. For the purposes of this paper, we

shall only be considering functions f(ω) in the space L2(R).

Definition 1.1 We define the space L2(R) as the set of all Lebesgue measurable, complex-valued

functions f such that ||f ||22 :=
∫
R |f(ω)|2dω < ∞. We define the space L2([−π,π]) in an analogous

way.

Definition 1.2 We define the Fourier Series for a function for f(ω) ∈ L2([−π,π]), by

∞∑

k=−∞
cke

ikω,

where the coefficient ck is given by

1

2π

∫ π

−π
f(ω)e−ikω dω.

Note that if f ∈ L2([−π,π]), the above-mentioned series exists a.e. and converges to f in the L2

norm, and so we often write

f(ω) =
∞∑

k=−∞
cke

ikω.

However, it must be pointed out that given a continuous function f, it is not always the case that

its Fourier series will converge to f pointwise. In fact, problems with convergence of Fourier series

came in the form of an example constructed by P. Du Bois-Reymond. In his example, Du Bois-

Reymond found a 2π−periodic function whose Fourier series diverged at a given point. It was then

concluded that certain restrictions would need to be met in order for Fourier’s original theory to

hold.
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Mathematicians began trying to justify Fourier’s theory in one of three ways. The first way was

to attempt to re-evaluate the definition of a function and try to modify it in such a way that it would

coincide with the idea of Fourier series. The second idea was to re-evaluate the notion of conver-

gence for Fourier series. It was thought that by putting certain conditions on f(x), convergence of

the Fourier series would follow. For example, it can be shown that if f(x) is a twice-differentiable

function on the circle, then the Fourier Series of f converges absolutely and uniformly to f (see

[10]). The third idea was to use orthogonal systems in the place of trigonometric polynomials. In

other words, using orthogonal systems, could one achieve convergence of the Fourier series to a

function? The first significant result was given by Haar in 1801 [6].

Recall that the inner product of two functions f(t), g(t) ∈ L2(R), is defined as

〈f(t), g(t)〉 =
∫

R
f(t)g(t)dt.

For a set of functions {φk(t)}k∈Z ∈ W, where W is a subspace of L2(R), we say that {φk(t)}k∈Z
is a basis for W if every function f ∈ W can be expressed as a limit of finite linear combinations of

{φk(t)}k∈Z and if {φk(t)}k∈Z is linearly independent. A basis {φk(t)}k∈Z is an orthonormal basis

for W if

〈φk(t),φj(t)〉 =





1 j = k

0 otherwise.

Haar began by looking for an orthonormal system of functions {φj(t)} ∈ R such that for a

continuous function f(t) ∈ L2(R), the series given by

∑

j∈Z
〈f(t),φj(t)〉φj(t),

would converge uniformly to f(t).

Haar created a vector space that contained all step-functions that had breakpoints at the integers.

He defined an initial function as

φ(t) =





1 0 ≤ t < 1

0 otherwise

This function is known as the Haar function. It should be noted that the Haar function is sometimes

referred to as the box function. The Haar function and its integer translates were used to define the
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space V0, where

V0 = span{φ(t− k)}k∈Z ∩ L2(R).

This means that every function f ∈ V0 can be expressed as an L2 limit of finite linear combinations

of {φ(t− k)}k∈Z. V0 is known as the Haar Space. Note that the functions {φ(t− k)}k∈Z form an

orthonormal basis for V0. Haar projected functions f ∈ L2(R) onto V0 in the standard way:

P0
(
f(t)

)
=

∑

k∈Z
〈f(t),φ(t− k)〉φ(t− k).

This projection of f(t) ∈ L2(R) into V0 gives a rough approximation of f. To alter the approxima-

tion, for better or worse, Haar simply changed where the breakpoints of the function occurred. Haar

defined these spaces Vj as

Vj = span{φ(2jt− k)}k∈Z ∩ L2(R).

As before, for j ∈ Z, by defining the function φj,k(t) as

φj,k(t) = 2
j
2φ(2jt− k),

one can show that {φj,k(t)} is an orthonormal basis for the space Vj . Once again, we can project

functions f ∈ L2(R) onto Vj by defining our projection Pj
(
f(t)

)
as

Pj
(
f(t)

)
=

∑

k∈Z
〈φj,k(t), f(t)〉φj,k(t)

= 2j
∑

k∈Z
〈φ(2jt− k), f(t)〉φ(2jt− k).

The Haar Spaces Vj obey some nice properties that will be needed later, so we shall present them

here. First, the Vj spaces are nested spaces. That is, they satisfy

... ⊆ V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2....

We can also move from one space to another with relative ease:

f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1.

The reason we can “zoom” between spaces is because our function φ(t) satisfies what is called a

dilation equation given by

φ(t) =

√
2

2
φ1,0(t) +

√
2

2
φ1,1(t) = φ(2t) + φ(2t− 1).

4



Because φ(t) satisfies such an equation, φ(t) is usually called a scaling function. By considering

the union and intersection of the Haar spaces, we obtain two more useful properties, namely that

these spaces satisfy a separation condition and are dense (see [8]):

⋂

j∈Z
Vj = {0}

and
⋃

j∈Z
Vj = L2(R).

We shall later see that these properties are essential in our definition of a multiresolution analysis.

Haar’s approach has its limitations, as its scaling function φ(t) is not continuous and its first deriva-

tive is zero a.e.. For purposes of application, we desire a scaling function that is both continuous

and has a number of derivatives. Daubechies was able to build off of Haar’s original construction to

obtain a scaling function that has both of these properties. Before we can discuss how Daubechies

built such scaling functions, we must describe the idea of multiresolution analysis, a result of the

work of Meyer [7] and Mallat [4] built upon the earlier work of Burt and Adelson [1].

Definition 1.3 Let {Vj}j∈Z be a sequence of subspaces of L2(R). We say that {Vj}j∈Z is a multi-

resolution analysis of L2(R) if

1. Vj ⊆ Vj+1,

2.
⋃

j∈Z Vj = L2(R).

3.
⋂

j∈Z Vj = {0}

4. f(t) ∈ V0 ⇔ f(2jt) ∈ Vj

and there exists a function φ(t) ∈ V0, called a scaling function, with
∫
R φ(t)dt ,= 0, such that the

set {φ(t− k)}k∈Z is an orthonormal basis for V0.

Note that since we are requiring that
∫
R φ(t)dt ,= 0, we can normalize the scaling function so

that ∫

R
φ(t)dt = 1.
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We shall assume that the scaling function satisfies this property for the remainder of this paper. It is

also important to note that while Definition 1.3 holds for complex-valued scaling functions, for the

purposes of this paper, we shall assume that all scaling functions are real-valued functions.

One should notice immediately that the previously discussed Haar spaces Vj satisfy the require-

ments of a multiresolution analysis. In fact, the strength of a multiresolution analysis is that it gives

us a way to decompose the space L2(R) into nested subspaces that we can use to approximate func-

tions, much like the Haar spaces. Several of the properties that hold for the Haar spaces will also

hold for a more general set of subspaces Vj satisfying the properties of a multiresolution analysis.

Using the scaling function φ(t) of a multiresolution analysis Vj ∈ L2(R), along with its integer

translates, we define the function φj,k(t) as

φj,k(t) = 2
j
2φ(2jt− k).

One should first observe that φj,k(t) ∈ Vj due to the nested property. It can also be shown that

||φj,k(t)||2 = 1. These two facts can be used to show that, just as in the case of the Haar Spaces,

{φj,k(t)}k∈Z forms an orthonormal basis for the space Vj . As a direct result, we can represent any

function f ∈ Vj as

f(t) =
∑

k∈Z
〈f(t),φj,k(t)〉φj,k(t).

The scaling function φ(t) of a multiresolution analysis Vj satisfies a general dilation equation

given by

φ(t) =
√
2
∑

k∈Z
hkφ(2t− k)

where

hk = 〈φ(t),φ1,k(t)〉.

The coeffcients hk, k ∈ Z form what is called the scaling filter.

In many applications, it is easier to consider the scaling function φ(t) in the transform domain,

as first developed by Fourier. This should come as no surprise when one considers that the roots of

wavelet analysis lie in Harmonic Analysis! Before we can describe the process, it is necessary to

define the Fourier transform.

Definition 1.4 We define the Fourier Transform, f̂(ω) of f(t) as

f̂(ω) =
1√
2π

∫

R
f(t)e−itωdt.
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One can show that if f ∈ L2(R) and satisfies some additional conditions (see [8] or [10]), then

f(t) =
1√
2π

∫

R
f̂(ω)eiωtdω.

This integral is known as the Inverse Fourier Transform. For the remainder of this paper, we shall

refer to the domain of functions f(t) ∈ L2(R) as the time domain, while the Fourier transforms

of these functions, denoted by f̂(ω) shall be considered to lie in the transform domain. One of the

reasons the Fourier transform is useful in solving problems is that convolution in the time domain

becomes multiplication in the Fourier domain:

Definition 1.5 For f, g ∈ L2(R), we define the convolution of f(t) and g(t) as

(f ∗ g)(t) =
∫

R
f(u)g(t− u)du.

Note that f ∗ g ∈ L1(R). Using this definition, we have the following theorem, as stated in [10]:

Theorem 1.1 For f, g ∈ L2(R),

(̂f ∗ g) = f̂ · ĝ.

We can translate the dilation equation

φ(t) =
√
2
∑

k∈Z
hkφ(2t− k)

into the transform domain by first observing that if we let g(t) = φ(2t − k), the Fourier transform

of g is

ĝ(ω) =
1

2
e−

ikω
2 φ̂

(
ω

2

)
.

Using Theorem 1.1 and basic properties of the Fourier transform (see [10]), we see that the dilation

equation satisfied by φ(t) ∈ L2(R) becomes, in the transform domain:

φ̂(ω) =
1√
2

∑

k∈Z
hke

− ikω
2 φ̂

(
ω

2

)
. (1.1)

This gives us a very important property of the scaling function φ(t), as it states that φ(t) ∈ L2(R)

satisfies the dilation equation in the time domain if and only if its Fourier transform, φ̂(ω), satisfies

(1.1). Let H(ω) be the trigonometric series H(ω) = 1√
2

∑
k∈Z hke

−ikω where hk are the scaling

filter coefficients. We shall refer to H(ω) as the symbol of φ(t) and we can use it to re-write (1.1)

as

φ̂(ω) = H

(
ω

2

)
φ̂

(
ω

2

)
.

7



We shall refer to this equation as the dilation equation in the transform domain.

If we think of our symbol being of the form H(z) = 1√
2

∑
k∈Z hkz

k, which can be obtained

from our original definition of H(ω) by letting z = e−iω, we can make additional remarks about

the support of our scaling function φ(t). For our purposes, we shall define the support of f, denoted

by supp(f), as the set of all values t ∈ R such that f(t) ,= 0. We say f is compactly supported

if supp(f ) is contained in a closed interval of finite length. In this case, we say that the compact

support of f is the smallest closed interval [a, b] such that supp(f) ⊆ [a, b]. This interval is denoted

by supp(f). It should be noted that is a different notion of compact support, and more details can

be found in [8].

It can be shown that for φ(t) generating a multiresolution analysis Vj ∈ L2(R), if φ(t) has com-

pact support, then supp(φ) = [0, N ], provided that the symbol H(z) is a polynomial of the form

H(z) = 1√
2

∑N
k=0 hkz

k for N ∈ Z. It can also be shown that H(0) = 1 and that H(ω) is 2π−

periodic. These two properties are in fact necessary for the results obtained using the Cascade Algo-

rithm, which will be discussed in more detail in Chapter 3. Perhaps the most important property of

the symbol H(ω) is that is satisfies what we shall hereafter refer to as the orthonormality condition:

|H(ω)|2 + |H(ω + π)|2 = 1. (1.2)

If the symbol H(ω) satisfies this condition, the result is that the scaling function φ(t), and its

translates, are orthonormal in the time domain. Conversely, if H(ω) satisfies certain conditions, we

can guarantee the existence of a scaling function φ(t) that will generate a multitresolution analysis:

In other words, if H(ω) has finite degree and satisfies the orthonormality condition, and if H(0) = 1

and H(z) is of the form

H(z) =

(
1 + z

2

)N

S(z),

where S(z) satisfies

max
|z|=1

|S(z)| ≤ 2N−1,

with z = e−iω, then there exists a scaling function φ(t) that generates a multiresolution analysis.

As we shall see, this idea is crucial in the construction of Daubechies’ scaling functions.

In order for a multiresolution analysis to be useful in applications, we would like for it to satisfy

three properties. We would like the scaling function to have compact support, in order to simplify

computations. We would also like our scaling function φ(t) to be sufficiently smooth. That is, we
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would like φ(t) to have a finite number of continuous derivatives. Finally, we would also like our

scaling function φ(t) to have orthogonal translates. That is, we would like our scaling function to

satisfy the orthonormality condition given by (1.2). While there are several examples of multires-

olution analyses, up until the work of Daubechies’, there was not a single multiresolution analysis

that satisfied all three of the above properties. The Shannon multiresolution analysis is such an

example. The Shannon multiresolution analysis has a scaling function, namely sin(t)
t := sinc(t),

whose Fourier transform is the characteristic function of an interval, and can therefore be thought

of as the Haar multiresolution analysis in the transform domain. The scaling function of the Shan-

non multiresolution analysis does not have compact support, thus making it hard to use in many

applications. In the next chapter, we shall discuss the Daubechies construction of a set of orthonor-

mal scaling functions that were both compactly supported and possessed a sufficient number of

continuous derivatives.
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Chapter 2

An Algorithm for the Construction of Daubechies Scaling Functions

2.1 The Daubechies Algorithm

We will now explore an algorithm presented by Ingrid Daubechies in 1988 to obtain a multireso-

lution analysis. The following construction follows from an outline which can be found in [8]. As

mentioned in the previous chapter, we would like to work with a scaling function that has compact

support and has orthogonal translates. From our discussion in the previous chapter, we know that

this is equivalent to saying that we desire to have the dilation equation be of the form

φ̂(ω) = H(
ω

2
)φ̂(

ω

2
) (2.1)

where H(ω) = 1√
2

∑N
k=0 hke

−ikω and satisfies the orthonormality equation given by

|H(ω)|2 + |H(ω + π)|2 = 1 ∀ω ∈ R. (2.2)

Finally, we would like our scaling functions to be sufficiently smooth. In other words, we would

like our scaling function to have continuous N−1 derivatives. Daubechies’ approach was to require

the symbol H(ω) to be of the form

H(ω) =

(
1 + e−iω

2

)N

S(ω), (2.3)

where

S(ω) =
A∑

k=0

ake
−ikω,

with real coeffcients ak. By requiring our symbol H(ω) to satisfy these conditions, we can guarantee

the existence of a scaling function φ(t) that will generate a multiresolution analysis {Vj}j∈Z of L2R

that will have H(ω) as its symbol.

We begin by re-writing the orthonormality condition:

10



Lemma 2.1 If

H(ω) =

(
1 + e−iω

2

)N

S(ω),

with

S(ω) =
A∑

k=0

ake
−ikω,

then the orthonormality condition

|H(ω)|2 + |H(ω + π)|2 = 1

can be re-written as

(
cos2

(ω
2

))N
|S(ω)|2 +

(
sin2

(ω
2

))N
|S(ω + π)|2 = 1 (2.4)

Proof. By first considering the symbol

H(ω) =

(
1 + e−iω

2

)N

S(ω)

for a fixed N and substituting it into (2.2) we obtain

∣∣∣∣

(
1 + e−iω

2

)N

S(ω)

∣∣∣∣
2

+

∣∣∣∣

(
1 + e−i(ω+π)

2

)N

S(ω + π)

∣∣∣∣
2

= 1.

By observing that ∣∣∣∣
1 + e−iω

2

∣∣∣∣
2

= cos2
(ω
2

)

and that ∣∣∣∣
1 + e−i(ω+π)

2

∣∣∣∣
2

= sin2
(ω
2

)
,

we obtain
(
cos2

(ω
2

))N
|S(ω)|2 +

(
sin2

(ω
2

))N
|S(ω + π)|2 = 1. (2.5)

!

We now want to find S(ω). We begin by letting L(ω) = |S(ω)|2. We would like to transform L(ω)

into a polynomial P (y), which will be easier to work with.

Lemma 2.2 If S(ω) =
∑A

k=0 ake
−ikω, where the ak are real, then by defining y = sin2

(
ω
2

)
, there

exists a polynomial P (y) such that |S(ω)|2 = P (y).
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Proof. By first observing that

L(ω) = |S(ω)|2 = S(ω)S(ω)

and by noting that the coefficients of S(ω) are real we obtain

L(ω) = S(ω)S(−ω),

which then makes L(ω) a product of trigonometric polynomials. We can rewrite L(ω) as

L(ω) = S(ω)S(−ω) =

( A∑

k=0

ake
−ikω

)( A∑

k=0

ake
ikω

)
=

A∑

j=−A

cje
−ijω

where cj = c−j , which can then be written as

L(ω) = c0 + 2
A∑

j=1

cj cos(jω). (2.6)

since eijω + e−ijω = 2 cos(jω). We can re-write cos(jω) as

cos(jω) =
j∑

k=0

tkcos
k(ω),

by first noting that

(eiω)j =
(
cos(ω) + i sin(ω)

)j

=
j∑

k=0



 j

k



 (cos(ω))k(i sin(ω))j−k (2.7)

= cos(jω) + i sin(jω).

Note that the contribution to the real part of (2.7) occurs when j − k = 2n is even, and then we can

write

(i sin(ω))(j−k) = (−1)n(1− cos2(ω))n.

Thus, the real part of (2.7) can be written as linear combinations of powers of cos(ω) of degree at

most j :

cos(jω) =
j∑

k=0

tk cos
k(ω).

Thus,we can re-write L(ω) as

L(ω) =
A∑

k=0

dk cos
k(ω).
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Now because

cos(ω) = 1− 2 sin2
(ω
2

)
,

we have

L(ω) =
A∑

k=0

dk
(
1− 2 sin2

(ω
2

))k
.

Let y = sin2(ω2 ) Then

|S(ω)|2 = L(ω) = P (y) =
A∑

k=0

dk (1− 2y)k . (2.8)

!

So now
(
cos2

(ω
2

))N
|S(ω)|2 +

(
sin2

(ω
2

))N
|S(ω + π)|2 = 1

has been translated into

(1− y)NP (y) + yNL(ω + π) = 1

with

L(ω + π) =
A∑

k=0

dk
(
1− 2 sin2

(ω
2
+

π

2

))k

=
A∑

k=0

dk
(
1− 2(1− sin2

(ω
2

))k

=
A∑

k=0

dk (1− 2 (1− y))k

= P (1− y).

Thus we want to find a polynomial P(y) satisfying

(1− y)NP (y) + yNP (1− y) = 1. (2.9)

To find the explicit form of P (y), we shall follow [11]. Note that for a fixed N ∈ N, we can write

1 =
(
(1− y) + y

)2N−1

=
2N−1∑

k=0

(
2N − 1

k

)
(1− y)ky2N−1−k

=
N−1∑

k=0

(
2N − 1

k

)
(1− y)ky2N−1−k +

2N−1∑

k=N

(
2N − 1

k

)
(1− y)ky2N−1−k.

13



Observe that 

 2N − 1

k



 =
(2N − 1)!

k! (2N − 1− k)!
=



 2N − 1

2N − 1− k



 .

Letting m = 2N − 1− k, we can re-write the second sum as

N−1∑

m=0

(
2N − 1

m

)
(1− y)2N−1−mym,

giving

1 =
N−1∑

k=0

(
2N − 1

k

)
(1− y)ky2N−1−k +

N−1∑

m=0

(
2N − 1

m

)
(1− y)2N−1−mym

= yN
N−1∑

k=0

(
2N − 1

k

)
(1− y)kyN−1−k + (1− y)N

N−1∑

m=0

(
2N − 1

m

)
(1− y)N−1−mym

= yNP (1− y) + (1− y)NP (y)

where

P (y) =
N−1∑

k=0

(
2N − 1

k

)
yk(1− y)N−1−k. (2.10)

Clearly, P (y) ≥ 0 for 0 ≤ y ≤ 1. Also, since y = sin2(ω2 ), all values of y fall in the interval [0,1].

We shall state the above results as a Theorem:

Theorem 2.1 There exist a polynomial P(y), of degree N-1, such that

(1− y)NP (y) + yNP (1− y) = 1

where the polynomial

P (y) =
N−1∑

k=0

(
2N − 1

k

)
yk(1− y)N−1−k. (2.11)

To summarize, we have accomplished the following: In order to create a sufficiently smooth

scaling function of compact support whose integer translates are orthogonal, the associated symbol

H(ω) can be written in terms of a trigonometric polynomial S(ω) that satisfies Lemma 2.1. We can

express |S(ω)|2 as a polynomial P (y) that satisfies (2.9). Theorem 2.1 guarantees the existence of

this polynomial.
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Having now found polynomial P (y), we wish to work backwards to find the explicit form of

L(ω). We can do this by simply substituting y = sin2(ω2 ) =
1−cos2(ω)

2 into (2.11), we obtain

P (y) =
N−1∑

k=0

(
2N − 1

k

)(
1− cos(ω)

2

)k(
1−

(
1− cos(ω)

2

))N−1−k

=
N=1∑

k=0

(
2N − 1

k

)(
1− cosω

2

)k(1 + cos(ω)

2

)N−1−k

Thus we have found L(ω) using P (y).

We now wish to find an explicit formula for S(ω) using L(ω). To do this, we need to factor L(ω)

in such a way that by building S(ω) using half of the factors from L(ω), we obtain |S(ω)|2 = L(ω).

Since P (y) = L(ω) ≥ 0, ∀ω ∈ [−π,π], and since L(ω) is a trigonometric polynomial of degree

N − 1, we can apply a well-known result from harmonic analysis in order to factor L(ω).

Theorem 2.2 (Fejér-Riesz Theorem, [9]) A trigonometric polynomial L(ω) =
∑A

j=−A cje−ijω,

that satisfies L(ω) ≥ 0 for all ω ∈ [−π,π] is expressible in the form

L(ω) = |F (z)|2

for some polynomial F (z), with z = e−iω, which takes the form

F (z) = c
A∏

j=1

(z − αj),

where αj satisfy |αj | ≤ 1.

A direct application of this theorem allows us to factor L(ω) as

L(ω) = |F (z)|2,

where

F (z) = c
N−1∏

j=1

(z − αj).

We can obtain S(ω) by simply substituting z = e−iω into F (z) :

S(ω) = F (e−iω) =
N−1∑

k=0

ake
−ikω.
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Note that this is the desired form for S(ω). To obtain our symbol H(ω), we substitute S(ω) into

(2.3):

H(ω) =

(
1 + e−iω

2

)N

S(ω) =

(
1 + e−iω

2

)N

·
N−1∑

k=0

ake
−ikω.

Expanging H(ω) gives a trigonometric polynomial of degree 2N − 1 of the form

H(ω) =
1√
2

2N−1∑

k=0

hke
−ikω,

where the coefficients hk are real. By construction, H(ω) satisfies the desired orthonormality con-

dition (2.2). Therefore we know that there is a scaling function φ(t) that generates a multiresolution

analysis {Vj}j∈Z of L2(R). A Daubechies scaling function φ(t) whose symbol H(ω) for a given

N obtained through this construction is called the D2N scaling function. The corresponding filter

hk has 2N nonzero components, and is referred to as the D2N Daubechies scaling filter. We shall

later use Daubechies’ algorithm to construct the D4 scaling filters corresponding to the D4 scaling

function. First we would like to give a more detailed description of the roots of the polynomial

F (z).

2.2 The Roots of F (z)

In her 1988 paper, Daubechies presented an alternative proof of the Fejér-Reisz theorem [2]. Her

proof was based on the structure of the roots of the polynomial F (z). In this section, we discuss her

construction of the polynomial F (z) based on the classification of these roots. We shall follow her

construction as described in [8].

Recall that

P (y) =
N−1∑

k=0

(
2N − 1

k

)
yk(1− y)N−1−k (2.12)

and L(ω) = P (y) where y = sin2
(
ω
2

)
.

We first begin by writing L(ω) as T (z). Writing L(ω) in this form allows us to re-group the roots

based on their location in terms of the unit circle. Classifying the roots in this way will lead us to

the construction of F (z).

By letting z = e−iω and by noting that we can write

1 + cosω

2
=

(
1 + z

2

)(
1 + 1

z

2

)
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and
1− cosω

2
=

(
1− z

2

)(
1− 1

z

2

)
,

we can re-write L(ω) as:

L(ω) =
N−1∑

k=0

(
2N − 1

k

)(
1− cosω

2

)k(1 + cos(ω)

2

)N−1−k

=
N−1∑

k=0

((
1− z

2

)(
1− 1

z

2

))k((1 + z

2

)(
1 + 1

z

2

))N−1−k

=: T (z).

From this form, it is easily seen that T (z) = T (1z ) and that z = 1 and z = −1 are not roots of T(z).

By expanding
((

1−z
2

)(
1− 1

z
2

))
and

((
1+z
2

)(
1+ 1

z
2

))
, we obtain

T (z) =
N−1∑

k=0

(
2N − 1

k

)
(z + 2− z−1)k

4k
(z + 2 + z−1)N−1−k

4N−1−k

=
1

4N−1

N−1∑

k=0

(
2N − 1

k

)
(z + 2− z−1)k(z + 2 + z−1)N−1−k

= αz−(N−1)
2N−2∏

k=1

(z − zk)

where α is the leading coefficient and zk are the roots of T (z).

In order to find a polynomial F (z) such that

T (z) = |F (z)|2 = F (z) · F (z),

it would be ideal to group the roots of T (z) using conjugate pairs. Note that the Fejér-Riesz theorem

guarantees the existence of the polynomial F (z).The roots of T (z) can be real, on the unit circle,

or not real and not on the unit circle. Let us consider each of these cases in turn.

For zk ∈ R, we have that zk = zk. From earlier, we noted that T (z) = T (1z ). Thus, if zk ,= 0 is

a root of T (z), then so is 1
zk
. Note that since we know that ±1 are not roots of T (z), this puts each

real root either inside or outside of the unit circle, i.e., |zk| < 1 or |zk| > 1. We shall denote the

number of pairs of such roots by K and we shall denote the roots inside the unit circle by rk.

For zk ∈ C \ R, either zk lies on the unit circle or zk lies off the unit circle. Let us denote roots

on the unit circle by zuj and denote roots off the unit circle by zci .
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For each root zuj on the unit circle, zuj = 1
zuj

is also a root. It can be shown that the multiplicity of

these roots is even (see [9]), so we will group the roots in pairs of two. We shall denote the number

of these pairs by J .

For each root zci off the unit circle, then because T (z) = T (1z ), we have that 1
zci

is also a root.

Since T (z) has real coeffcients, if zci is a root, then so is zci . In other words, if zci is root, then so are
1
zci
, zci , and 1

zci
. Now again, since roots of this type are either inside or outside of the unit circle,we

have that either |zci | < 1 or | 1zci | < 1 which results in either |zci | > 1 or | 1zci | > 1 respectively. We

shall create groups of 4 and denote the number of such groups by L.

Lemma 2.3 Let z = e−iω. If

T (z) =
1

4N−1

N−1∑

k=0

(
2N − 1

k

)
(z + 2− z−1)k(z + 2 + z−1)N−1−k,

then there exists a polynomial F (z) such that |F (z)|2 = T (z) and F (z) is of the form

F (z) =
√
|α|

[ L∏

i=1

|zci |−1
K∏

k=1

|rk|−
1
2

] L∏

i=1

(z − zci )(z − zci ) ·
J∏

j=1

(z − zuj )(z − 1/zuj ) ·
K∏

k=1

(z − rk),

where rk are real with |rk| < 1, zci are in C \ R, with |zci | < 1, and |zcu| = 1.

Proof. We shall first write T (z) as a product of its factors, where each of its factors is grouped

according to the location of the roots:

T (z) = αz−(N−1)
2N−2∏

k=1

(z − zk)

= αz−N−1
L∏

i=1

(z − zci )(z − 1/zci )(z − zci )(z − 1/zc1)

·
J∏

j=1

(z − zui )
2(z − 1/zui )

2 ·
K∏

k=1

(z − rk)(z − 1/rk).

By observing that because L(ω) = |L(ω)| we have that T (z) = |T (z)|, and by regrouping

complex roots on and off the unit circle, we obtain

|T (z)| = |α|
L∏

i=1

|(z−zci )(z−1/zci )|·|(z−zci )(z−1/zci )|·
J∏

j=1

|(z−zuj )(z−1/zuj )|2·
K∏

k=1

|(z−rk)(z−1/rk)|.

Now since |z| = 1, we can write

|(z − zci )(z − 1/zci )| = |zci |−1|z − zci |2.
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Similarly,

|(z − zci )(z − 1/zci )| = |zci |
−1|z − zci |

2

and

|(z − rk)(z − 1/rk)| = |rk|−1|z − rk|2.

Making the above substitutions gives

|T (z)| = |α|
L∏

i=1

|zci |−1|z − zci |2|zci |
−1|z − zci |

2 ·
J∏

j=1

|(z − zuj )(z − 1/zuj )|2 ·
K∏

k=1

|rk|−1|z − rk|2

= |α|
L∏

i=1

|zci |−2|z − zci |2|z − zci |
2 ·

J∏

j=1

|(z − zuj )(z − 1/zuj )|2 ·
K∏

k=1

|rk|−1|z − rk|2.

Create the square root of T(z), denoted F(z), by choosing all factors with roots inside the unit circle

and one factor from each double root zuj on the unit circle. Thus F (z) is defined as

F (z) =
√
|α|

[ L∏

i=1

|zCi |−1
K∏

k=1

|rk|−
1
2

] L∏

i=1

(z − zci )(z − zCi ) ·
J∏

j=1

(z − zuj )(z − 1/zuj ) ·
K∏

k=1

(z − rk).

Note that |F (z)|2 = |T (z)| = T (z), as desired, and that the degree of F (z) is N − 1 since

the degree of T(z) is 2N − 2. Note also that F(z) has real coefficients. Thus we have the desired

polynomial F (z). !

2.3 The Construction of the D4 scaling filter

In this section, we will construct the D4 scaling filter associated with the D4 scaling function using

the algorithm of Daubechies. For clarity, we will make use of the construction presented in the

previous section. We shall begin by finding the polynomial P (y). Recall that P (y) has the form

P (y) =
N−1∑

k=0

(
2N − 1

k

)
yk(1− y)N−1−k. (2.13)

Since we know that N = 2, we obtain

P (y) =
1∑

k=0

(
3

k

)
yk(1− y)1−k = 1 + 2y. (2.14)
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We now need to re-write P (y) as L(ω). Substituting y = 1−cos(ω)
2 gives

P (y) = 1 + 2y

= 1 + 2

(
1− cos(ω)

2

)

= L(ω)

By using the identity
1− cos(ω

2
=

(
1− z

2

)
·
(
1− 1

z

2

)
,

we can convert L(ω) into T (z) :

L(ω) = 1 + 2

((1− z

2

)(1− 1
z

2

))

=
1

2

(
4− z − 1

z

)

= −1

2
· 1
z

(
z2 − 4z + 1

)

= T (z)

Direct calculation gives that the roots of T (z) are z = 2+
√
3 and z = 2−

√
3. We shall choose the

root inside the unit circle to build the polynomial F (z). Using the formula for F (z) as described in

the previous section, we have

F (z) =

√
1

2(2−
√
3)

·
(
z − (2−

√
3)
)
.

Substituting z = e−iω into F (z), we obtain S(ω) :

F (e−iω) =

√
1

2(2−
√
3)

·
(
e−iω − (2−

√
3)
)

= S(ω).

We can find our symbol H(ω) by first recalling that we wanted our symbol to be of the form

H(ω) =
(1 + e−iω

2

)N · S(ω).

Substitution of S(ω) gives:

H(ω) =

(
1 + e−iω

2

)2(√1

2

)(
1√

2−
√
3

)(
e−iω − (2−

√
3)
)
. (2.15)
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Further simplification of H(ω) gives

H(ω) =
1−

√
3

4
√
2

+
3−

√
3

4
√
2

e−iω +
3 + 3

√
3

4
√
2

e−2iω +
1 +

√
3

4
√
2

e−3iω. (2.16)

Thus, the D4 scaling filter coefficients are

h0 =
1 +

√
3

4
√
2

,

h1 =
3 + 3

√
3

4
√
2

,

h2 =
3−

√
3

4
√
2

,

and

h3 =
1−

√
3

4
√
2

.
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Chapter 3

The Cascade Algorithm

It turns out that for N ≥ 3, it is not possible to come up with a closed-form for the Daubechies

2N scaling functions. The Cascade Algorithm was developed by Daubechies and Lagarias in an

attempt to obtain good approximations of these scaling functions. It was proposed that by taking

sequences of approximations given by iterates based on a first guess, say φ0(t), where φ0(t) is the

characteristic function on the interval [0, 1), and with each successive approximation given by:

φn+1 =
√
2

M∑

k=0

hkφn(2t− k) (3.1)

that we would ultimately have convergence of the approximations to the actual scaling function φ(t)

associated with the symbol H(ω) described in the previous section. In fact, this algorithm produces

the scaling function given a number of other first guesses, but for the purposes of this paper, we

shall only consider the first guess of φ0(t).

In this chapter, we shall show that we have convergence of the iterates in the time domain, given

φ0(t). By first showing that, for each ω ∈ R, we have convergence of the iterates in the transform

domain to a continuous function g(ω) and then showing that this g(ω) satisfies the transform domain

dilation equation, we shall be able to show pointwise convergence of the iterates {φn(t)} to the

scaling function φ(t). The following argument is based on the outline as presented in [8].

Proposition 3.1 [see [8], p. 258] Suppose the symbol given by

H(ω) =
1√
2

M∑

k=0

hke
−ikω (3.2)

satisfies H(0) = 1. Then the cascade algorithm iterates {φ̂n(ω)} defined by

φ̂n(ω) =
n∏

k=1

H

(
ω

2k

)
· 1√

2π
e

−iω
2n+1 sinc

(
ω

2n+1

)
(3.3)

converges for each ω ∈ R in the transform domain to a continuous function g(ω).
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Before proving the above proposition, recall that sinc(t) = sin(t)
t and note that the function appearing

on the right hand side of (3.3) is a natural choice, since the Fourier transform for φ0(ω) is

φ̂0(ω) =
1

2π
e

−iω
2 sinc

(ω
2
).

Proof. We shall prove the proposition via a series of two claims. The result of the first claim is

needed to give an explicit form for g(ω). Once we have our g(ω), our second claim will show that

we have convergence of the cascade algorithm iterates to this g(ω) in the transform domain.

Claim 3.1

∞∑

k=1

∣∣∣∣H
(

ω

2k

)
− 1

∣∣∣∣

converges to a finite value.

Proof. Let H(ω) = 1√
2

∑M
k=0 hke

−ikω. We shall re-write H(ω) as

H(ω) =
1√
2

M∑

k=0

hke
−ikω − 1√

2

M∑

k=0

hk +
1√
2

M∑

k=0

hk

=
1√
2

M∑

k=0

(
hke

−ikω − hk
)
+

1√
2

M∑

k=0

hk

=
1√
2

M∑

k=0

hk(e
−ikω − 1) +

1√
2

M∑

k=0

hk

Now, since H(0) = 1√
2

∑M
k=0 hk = 1, by our hypothesis, we have

H(ω) =
1√
2

M∑

k=0

hk(e
−ikω − 1) +H(0)

=
1√
2

M∑

k=0

hk(e
−ikω − 1) + 1
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We know that 1− e−iω = 2ie
−iω
2 sin(ω2 ). This gives us that

∣∣∣∣
1√
2

M∑

k=0

hk(e
−ikω − 1)

∣∣∣∣ =

∣∣∣∣
1√
2

M∑

k=0

hk2ie
−ikω

2 sin(
−kω

2
)

∣∣∣∣

=

∣∣∣∣
2i√
2

M∑

k=0

hke
−ikω

2 sin(
−kω

2
)

∣∣∣∣

≤
√
2

M∑

k=0

|hk| · |e−ikω| · | sin(−kω

2
)|

=
√
2

M∑

k=0

|hk| · | sin(
−kω

2
)|

From the above, we now have that

∣∣∣∣H(ω)− 1

∣∣∣∣ =

∣∣∣∣
1√
2

M∑

k=0

hk(e
−ikω − 1)

∣∣∣∣

≤
√
2

M∑

k=0

|hk| ·
∣∣∣∣ sin(

−kω

2
)

∣∣∣∣

≤
√
2

M∑

k=0

|hk| ·
∣∣∣∣
kω

2

∣∣∣∣

=

√
2

2

M∑

k=0

|hk| · |kω|

=

√
2

2

M∑

k=0

|hk| · k|ω|

= |ω|
√
2

2

M∑

k=0

|hk| · k

Let β =
√
2
2

∑M
k=0 |hk| · k. Then the above gives

∣∣∣∣H(ω)− 1

∣∣∣∣ ≤ β|ω|

By relabeling and using geometric series, we obtain

∞∑

k=1

∣∣∣∣H(
ω

2k
)− 1

∣∣∣∣ ≤
∞∑

k=1

β

∣∣∣∣
ω

2k

∣∣∣∣

=
∞∑

k=1

β|ω| ·
∣∣∣∣
1

2k

∣∣∣∣

= β|ω|

24



Therefore, we have that
∑∞

k=1 |H( ω
2k
) − 1| converges for each ω in R, and, in fact, converges

uniformly on compact subsets of R. !

Now since
∑∞

k=1 |H( ω
2k
)− 1| converges absolutely, by a theorem in complex analysis (see [11],

Theorem 8.33, p. 238), the product given by
∏∞

k=1H( ω
2k
) converges absolutely, and therefore, there

exists a g(ω) such that

g(ω) =
1√
2

∞∏

k=1

H
( ω

2k

)
.

Now that we have given an explicit formula for g(ω), we can now show that we have convergence

of the cascade algorithm iterates to g(ω).

Claim 3.2 The sequence of cascade algorithm iterates φ̂n(ω) converges to g(ω).

Proof. Define

φ̂n(ω) =

( n∏

k=1

H
( ω

2k

))
· 1√

2π
e

−iω
2n+1 sinc

( ω

2n+1

)
.

Then

lim
n→∞

φ̂n(ω) = lim
n→∞

(( n∏

k=1

H
( ω

2k

) )
· 1√

2π
e

−iω
2n+1 sinc(

ω

2n+1
)

)

=
1√
2π

lim
n→∞

( n∏

k=1

H(
ω

2k
)

)

= g(ω)

since e
−iω
2n+1 sinc( ω

2n+1 ) → 1 as n → ∞. !

It remains to show that g(ω) is continuous. Note that each φ̂n(ω) is continuous by construction.

since, from claims, φ̂n(ω) → g(ω) uniformly on compact sets, we have that g(ω) is continuous.

This completes the proof of Proposition 3.1. !

Next we shall show that g(ω), as found above, satisfies the transform domain dilation equation

when the symbol H(z), is obtained from a Daubechies scaling function.

Proposition 3.2 [see [8], p. 258] Suppose the symbol

H(z) =
1√
2

M∑

k=0

hke
−ikω,
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where z = e−iω, can be factored as

H(z) =

(
1 + z

2

)N

S(z)

where S(z) satisfies S(1) = 1 and max|z|=1 |S(z)| ≤ 2N−1. Then g(ω) satisfies the transform

domain dilation equation

g(ω) = H(
ω

2
)g(

ω

2
) (3.4)

and

|g(ω)| ≤ C

1 + |ω|

for some constant C.

Proof. First, note that g(ω) satisfies the transform domain dilation equation

g(ω) = H(
ω

2
)g(

ω

2
)

since by Proposition 3.1, we have

g(ω) =
1√
2π

lim
n→∞

n∏

k=1

H(
ω

2k
),

and therefore we can re-write the right hand side of (3.4) as

H(
ω

2
)g(

ω

2
) = H(

ω

2
) · 1√

2π
lim
n→∞

n∏

k=2

H(
ω

2k
)

=
1√
2π

lim
n→∞

n∏

k=1

H
( ω

2k

)

= g(ω).

Thus g(ω) satisfies the dilation equation in the transform domain. It remains to show that

g(ω) ≤ C

1 + |ω| .

Claim 3.3
∞∏

k=1

(
1 + e

−iω
2k

2

)N

=

(
1− e−iω

iω

)N
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Proof. Observe that
∞∏

k=1

(
1 + e

−iω
2k

2

)N

= lim
n→∞

n∏

k=1

(
1 + e

−iω
2k

2

)N

.

Now

lim
n→∞

n∏

k=1

(
1 + e

−iω
2k

2

)N

= lim
n→∞

n∏

k=1

(
1 + e

−iω
2k

2
· 1− e

−iω
2k

1− e
−iω
2k

)N

= lim
n→∞

n∏

k=1

(
1− e

−iω
2k−1

2(1− e
−iω
2k )

)N

= lim
n→∞

(
1

2n
· 1− e−iω

1− e
−iω
2n

)N

Now 1− e
−iω
2n = 2ie

−iω
2n+1 · sin( ω

2n+1 ), so we have that

lim
n→∞

(
1

2n
· 1− e−iω

1− e
−iω
2n

)N

= lim
n→∞

(
1

2n
· 1− e−iω

2ie
−iω
2n+1 sin( ω

2n+1 )

)N

= lim
n→∞

(
1

2n
· 1− e−iω

2ie
−iω
2n+1 sin( ω

2n+1 )

)N

·
( ω

2n+1

ω
2n+1

)N

= lim
n→∞

( ω
2n+1 )N (1− e−iω)N

(sin( ω
2n+1 ))N (iωe

−iω
2n+1 )N

Now we know that

lim
n→∞

(
( ω
2n+1 )

sin( ω
2n+1 )

)N

= 1,

since limx→0
x

sinx = 1. So we are left with

lim
n→∞

(1− e−iω)N

(iωe
−iω
2n+1 )N

=

(
1− e−iω

iω

)N

,

since e
−iω
2n+1 → 1 as n → ∞. Thus we have

∞∏

k=1

(
1 + e

−iω
2k

2

)N

=

(
1− e−iω

iω

)N

,

and Claim 3.3 is shown, as required. !

Now

g(ω) =
1√
2π

∞∏

k=1

H

(
ω

2k

)
=

1√
2π

∞∏

k=1

(
1 + e

−iω
2k

2

)N

· S
(

ω

2k

)
,
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by the factorization of H(z) from our hypothesis and from our previous claim, so we have that

g(ω) =
1√
2π

∞∏

k=1

(
1 + e

−iω
2k

2

)N

· S
(

ω

2k

)
=

1√
2π

(
1− e−iω

iω

)N

·
∞∏

k=1

S

(
ω

2k

)
.

Thus in order to show that |g(ω)| ≤ C
1+|ω| , we need to obtain estimates for both |1−e−iω

iω |N and∣∣∣∣
∏∞

k=1 S(
ω
2k
)

∣∣∣∣.

Claim 3.4 |1−e−iω

iω |N ≤ 2N min (1, |ω|−N )

Proof. Note that we really need to show that
∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N

and ∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N

|ω|N .

By the triangle inequality, we have that

|1 + e−iω| ≤ 1 + |e−iω| = 2.

Thus,
|1− e−iω|

|iω| =
|1− e−iω|

|ω| ≤ 2

|ω| .

Therefore ∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N

|ω|N .

So if 1
|ω|N ≤ 1, then min (1, 1

|ω|N ) = 1
|ω|N , and from the argument above, we have

∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N

|ω|N = 2N min (1, |ω|−N ).

If 1
|ω|N ≥ 1, then |ω|N ≤ 1, which implies |ω| ≤ 1. So min (1, |ω|−N ) = 1.

Note that |1− e−iω| = |2ie
−iω
2 sin(ω2 )| = 2| sin(ω2 )|. So
∣∣∣∣
1− e−iω

iω

∣∣∣∣ =
2| sin(ω2 )|

|ω| = 2

∣∣∣∣
sin(ω2 )

ω

∣∣∣∣.

Note that
∣∣∣∣
sin(ω2 )

ω

∣∣∣∣ ≤ 1 ∀ω ∈ R. Thus we have that

∣∣∣∣
1− e−iω

iω

∣∣∣∣ = 2

∣∣∣∣
sin(ω2 )

ω

∣∣∣∣ ≤ 2.

28



Therefore ∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N

and we have that ∣∣∣∣
1− e−iω

iω

∣∣∣∣
N

≤ 2N min (1,
1

|ω|N )

as required for Claim 3.5. !

Now let us give an estimate for
∏∞

k=1 S(
ω
2k
). For simplicity, let T (ω) =

∏∞
k=1 S(

ω
2k
). Fix M and ω

such that

2M−1 ≤ |ω| ≤ 2M .

Then

T (ω) =
∞∏

k=1

S(
ω

2k
) =

M∏

k=1

S(
ω

2k
) ·

∞∏

M+1

S(
ω

2k
).

Let l = k −M. This gives

T (ω) =
M∏

k=1

S

(
ω

2k

)
·

∞∏

M+1

S

(
ω

2k

)

=
M∏

k=1

S

(
ω

2k

)
·

∞∏

l=1

S

(
ω

2l+M

)

=
M∏

k=1

S

(
ω

2k

)
·

∞∏

l=1

S

(
2−Mω

2l

)

=
M∏

k=1

S

(
ω

2k

)
· T (2−Mω).

Let U = max|ω|≤1 |T (ω)| and note that since |ω|
2M

≤ 1, we have that

|T (2−Mω)| ≤ U.

So we have, by our hypothesis on S(z),

|T (ω)| =

∣∣∣∣
M∏

k=1

S

(
ω

2

)∣∣∣∣ · |T (2
−Mω)|

≤ (2N−1)M · |T (2−Mω)|

= (2M )N−1 · |T (2−Mω)|

= (2 · 2M−1)N−1 · |T (2−Mω)|

≤ (2 · 2M−1)N−1 · U.
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Because we fixed ω and M, we know that 2M−1 ≤ |ω|. Then the above gives that

|T (ω)| ≤ 2N−1 · |ω|N−1 · U = (2|ω|)N−1 · U.

This results holds independent of our choice of M and thus will hold for all ω. Therefore
∣∣∣∣

∞∏

k=1

S(
ω

2k
)

∣∣∣∣ ≤ (2|ω|)N−1 · U

We have now shown that

|g(ω)| =
1√
2π

∣∣∣∣

(
1− e−iω

iω

)∣∣∣∣
N

·
∣∣∣∣

∞∏

k=1

S

(
ω

2k

)∣∣∣∣

≤ 1√
2π

· 2N min (1, |ω|−N ) · 2N−1|ω|N−1 · U.

Claim 3.5

1√
2π

· 2N min (1, |ω|−N ) · 2N−1|ω|N−1 · U ≤ 22N−1 · U√
2π

· 2

1 + |ω| .

Proof. Note that we really only need to show that min (1, |ω|−N )|ω|N−1 ≤ 2
1+|ω| , since the rest of

the inequality comes from rearranging terms. First assume |ω| ≤ 1. Then min (1, |ω|−N ) = 1 and

|ω|N−1 + |ω|N ≤ 2 ⇒ |ω|N−1 + |ω|N−1|ω| ≤ 2

⇒ |ω|N−1(1 + |ω|) ≤ 2

⇒ |ω|N−1 ≤ 2

(1 + |ω|)

⇒ min (1, |ω|−N )|ω|N−1 ≤ 2

(1 + |ω|) .

Next assume |ω| > 1. Then min (1, |ω|−N ) = |ω|−N and

|ω|−1 ≤ 2 ⇒ |ω|−1 + |ω|0 ≤ 2

⇒ |ω|−1(1 + |ω|) ≤ 2

⇒ |ω|−1 ≤ 2

(1 + |ω|)

⇒ |ω|−N · |ω|N−1 ≤ 2

(1 + |ω|)

⇒ min (1, |ω|−N ) · |ω|N−1 ≤ 2

(1 + |ω|) .

Claim 3.6 is thus shown. !
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Now from our series of claims, we have that

|g(ω)| =
1√
2π

∣∣∣∣

(
1− e−iω

iω

)∣∣∣∣
N

·
∣∣∣∣

∞∏

k=1

S

(
ω

2k

)∣∣∣∣

≤ 1√
2π

· 2N min (1, |ω|−N ) · 2N−1|ω|N−1 · U

≤ 22N−1 · U√
2π

· 2

1 + |ω| .

Let C = 22N−1·U√
2π

· 2. Then

|g(ω)| ≤ C

1 + |ω| .

!

To summarize, we have now shown that by putting the conditions on our symbol H(z), as listed

in Proposition 3.2, we have convergence of the cascade algorithm iterates {φ̂n(ω)} to a continuous

function g(ω) for each ω ∈ R and that this g(ω) satisfies the dilation equation in the transform

domain. Next we shall show convergence of the iterates {φn(t)} to a function {φ(t)} in the time

domain.

Theorem 3.1 [see [8], p. 261] Suppose the symbol

H(z) =
1√
2

M∑

k=0

hke
−ikω

can be factored as

H(z) =

(
1 + z

2

)N

S(z)

where S(z) satisfies S(1) = 1 and max|z|=1 |S(z)| ≤ 2N−1. Then the sequence of functions

{φn(t)} defined by

φn+1 =
√
2

M∑

k=0

hkφn(2t− k)

with φ0(t) as our initial guess, converges in L2(R) to a function φ(t) that satisfies the dilation

equation given by

φ(t) =
√
2

M∑

k=0

hkφ(2t− k).

Moreover, supp(φn) = [0,M − 2−n(M − 1)] for n ≥ 1 and supp(φ) = [0,M ].
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Proof. In order to translate g(ω) into the time domain, we first need to show that g(ω) ∈ L2(R).

This can be seen easily, since by Proposition 3.2, we know
∫

R
|g(ω)|2dω ≤

∫

R

(
C

1 + |ω|

)2

dω

and it is clear that ∫

R

(
C

1 + |ω|

)2

dω < ∞.

Thus we have that g(ω) ∈ L2(R). We can now define

ĝ(ω) =
̂̂
φ(ω)

as the Fourier transform of g(ω). By Proposition 3.2, we know that g(ω) satisfies the transform

domain dilation equation given by

g(ω) = H(
ω

2
)g(

ω

2
) =

1√
2

M∑

k=0

hke
−ik ω

2 g(
ω

2
).

So from an earlier result from Chapter 1(see (1.1)), we have that φ(t) satisfies the dilation equation,

given by

φ(t) =
√
2
∑

k∈Z
hkφ(2t− k)

in the time domain. Now in Proposition 3.1, we showed that φ̂n(ω) → φ̂(ω) = g(ω). Using this

fact, one can show (see [11], Theorem 8.36, p.243), that φn(t) → φ(t) in L2(R).

It remains to show that supp(φn) = [0,M−2−n(M−1)] for n ≥ 1 and hence supp(φ) = [0,M ].

Recall that supp(φ) is the compact support of φ(t), as previously defined in Chapter 1. We shall

show that supp(φn) = [0,M − 2−n(M − 1)] using induction. First observe that

φ1(t) =
√
2

M∑

k=0

hkφ0(2t− k) =
√
2

M∑

k=0

hkB0(2t− k),

since, by our hypothesis, φ0(t) is our initial guess. Recall that φ0(t) is defined as

φ0(t) =





1 0 ≤ t < 1

0 otherwise

We know that φ0(t) has a support of [0, 1), by the definition of the function. Thus, we know that

the support of φ0(2t− k) has a support of [k2 ,
k+1
2 ). Now, these support intervals do not overlap, so
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we have that

supp(φ1(t)) =
M⋃

k=0

[
k

2
,
k + 1

2

]
=

[
0,

M + 1

2

]
= [0,M − 2−1(M − 1)].

Now assume that for φn(t), supp(φn(t)) = [0,M − 2−n(M − 1)] = [0, A] and consider

φn+1(t) =
√
2

M∑

k=0

hkφn(2t− k).

By our induction hypothesis, φn(t) has compact support [0, A] so the compact support of φn(2t−k)

is [k2 ,
A+k
2 ]. Taking k = 0 on the left side of the interval gives 0. Taking k = M on the right side of

the interval, we have that

A+ k

2
=

M − 2−n(M − 1) +M

2

=
2M − 2−n(M − 1)

2

= M − (M − 1)

2n+1

= M − 2−(n+1)(M − 1).

Thus we have shown that supp(φn+1) = [0,M − 2−(n+1)(M − 1)].

Therefore, supp(φn) = [0,M − 2−n(M − 1)] for n ≥ 1

To show that supp(φ) = [0,M ], we simply need to take the limits of the supports of the iterates,

lim
n→∞

supp(φn(t)) = lim
n→∞

[0,M − 2−n(M − 1)] = [0,M ].

The proof of Theorem 3.1 is now complete. !

The above results hold for Daubechies scaling functions, as described in the previous section. In

fact, as a direct result of Theorem 2.9, we have the following corollary:

Corollary 3.1 Suppose φ(t) is the Daubechies D2N scaling function where N is a positive integer.

Then

suppφ(t) = [0, 2N − 1].

Let φ(t) be the Daubechies D4 scaling function. We know that the D4 scaling filter coeffcients

are

h0 =
1 +

√
3

4
√
2

,
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h1 =
3 + 3

√
3

4
√
2

,

h2 =
3−

√
3

4
√
2

,

and

h3 =
1−

√
3

4
√
2

.

From Theorem 3.1, we know that the scaling function iterates are represented by

φn+1(t) =
√
2
2N−1∑

k=0

hkφn(2t− k). (3.5)

We know that the support of B0(t) = φ0(t) = [0, 1]. Using (3.5), one can show that the compact

support of φ1(t) is [0, 2]. Furthermore, the compact support of φ2(t) is [0, 2.5], the compact support

of φ3(t) is [0, 2.75], and the compact support of φ4(t) is [0, 2.875]. Taking further iterates shows

that

suppφ(t) = [0, 3],

verifying the above corollary for N = 2.

Plotted on the following pages are the first eight iterates of the cascade algorithm for the Daubechies

D4 scaling function, with an initial guess of φ0(t) = B0(t). One can see from the graphs that the

support for the scaling function is [0, 3], and that within a very few number of iterations, the Cascade

Algorithm gives a good estimate of the scaling function.

In conclusion, we have explored Daubechies’ construction of scaling functions that are both com-

pactly supported and smooth, which are desired properties for many applications. These scaling

functions are associated with a multiresolution analysis, {Vj}j∈Z, which is a sequence of subspaces

of L2(R) that satisfies a number of different properties. While no closed-form formula for a scaling

function exists for values of N ≥ 3, we can approximate the scaling functions using the Cascade

Algorithm, as first presented by Daubechies and Lagarias. Daubechies results led to an explosion

in the study of wavelets in the 1990’s and resulted in many modern-day applications of wavelet

theory, including speech discrimination and earthquake prediction, as well as fingerprint and data

compression.
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Figure 1.: Iterates of the Cascade Algorithm for D4 scaling function with n=1,2,3,4
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Figure 2.: Iterates of the Cascade Algorithm for D4 scaling function with n=5,6,7,8
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