
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

11-14-2002

System Integration and Testing using Object Oriented System Integration and Testing using Object Oriented

Programming based Control Programming based Control

Prashant P. Datar
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Datar, Prashant P., "System Integration and Testing using Object Oriented Programming based Control"
(2002). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/1518

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F1518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F1518&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

SYSTEM INTEGRATION AND TESTING USING OBJECT ORIENTED
PROGRAMMING BASED CONTROL

by

PRASHANT P. DATAR

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Wilfrido A. Moreno, Ph.D.
James T. Leffew, Ph.D.

Grisselle Centeno, Ph.D.

Date of Approval:
November 14, 2002

Keywords: device communication, environment control, modular programming,
software instrument control, visual c++

© Copyright 2003, Prashant P. Datar

 i

Table Of Contents

List Of Tables v

List Of Figures vi

List Of Acronyms viii

Abstract x

1 Introduction 1

1.1 Wafer Polishing 1

1.2 System Requirements 3

2 Programming Concepts 4

2.1 Unstructured Programming 4

2.2 Procedural Programming 4

2.3 Modular Programming 5

2.4 Object Oriented Programming (OOP) 6

2.4.1 Objects 6

2.4.2 Messages 7

2.4.3 Class 8

2.4.4 Inheritance 8

2.5 Object Oriented Languages (OOPLs) 9

2.6 Reasons For Choosing VC++ 10

3 Communication Interfaces 12

3.1 Serial Communication 13

 ii

3.1.1 Data Bits 13

3.1.2 Stop Bits 14

3.1.3 Parity Bits 14

3.1.4 DTE And DCE Devices 15

3.1.5 Baud Rate 15

3.1.6 RS-232 Protocol 15

3.2 GPIB IEEE-488 Bus 18

3.2.1 Data Lines 20

3.2.2 Handshake Lines 20

3.2.3 Interface Management Lines 21

4 System Integration 24

4.1 Instruments Used 26

4.1.1 VP-9000 Motor Controller 26

4.1.2 PS2520G Power Supply 27

4.1.3 Lock-In Amplifier 7260 28

4.1.4 Data Acquisition Card (DAQ) 30

4.1.5 Temperature Controller And Sensor 31

4.1.6 Humidity Sensor 32

4.2 Hardware Integration 33

4.2.1 GPIB IEEE-488 Bus 33

4.2.2 RS-232 Serial Bus 35

4.3 Software Integration 35

4.3.1 Login Dialog 36

 iii

4.3.2 Main 36

4.3.3 Motion 38

4.3.4 Lock-In 39

4.3.5 Automation 40

4.3.6 Automation Graph 41

4.3.7 Statistical Analysis Tool 43

4.3.7.1 Testing Algorithm 43

4.3.8 Temperature Control 45

4.3.9 Humidity Control 46

4.3.10 Class Interaction 47

5 System Processes 49

5.1 Testing Procedure 49

5.1.1 Contact Point 50

5.1.2 The Automation Thread 50

5.1.3 The New-Automation Thread 51

5.1.4 The Temperature Control Thread 54

5.1.5 The Humidity Control Thread 56

6 Results And Further Work 59

6.1 Surface Uniformity Testing 59

6.2 Effects Of Ambient Conditions 61

6.3 Future Work 63

References 65

Bibliography 66

 iv

Appendices 67

Appendix A: The RS-232 Standard 68

Appendix B: Programming For DAQ 69

Appendix C: Programming For Instruments 70

Appendix D: Software Documentation 71

D.1: Login 71

D.2: Main 71

D.3: Lock-In 71

D.4: Motion 72

D.5: Contact Point 72

D.6: Automation 73

D.7: Graph Data 75

D.8: Temperature And Humidity Control 75

D.9: Statistical Analysis 76

 v

List Of Tables

Table 4.1: Instruments Integrated Into The System 26

Table 4.2: GPIB Device Addresses 34

Table 4.3: Step Sizes For Axes Controlled By The VP 9000 38

Table 6.1: Surface Uniformity Test Results 61

Table 6.2: Test Parameters 61

Table 6.3: Multifactor Analysis Results 62

Table A.1: RS-232 Signal Levels 68

 vi

List Of Figures

Figure 1.1: Integrated Circuit Wafer Polishing 2

Figure 3.1: 25-pin Connector On A DTE Device (PC Connection) 16

Figure 3.2: 9-pin Connector On A DTE Device (PC Connection) 16

Figure 3.3: Block Diagram Of The GPIB IEEE-488 Bus 19

Figure 3.4: The GPIB IEEE-488 Connectors 22

Figure 3.5: GPIB IEEE-488 Connector Pin Diagram 23

Figure 4.1: CMP Pad Test Setup 25

Figure 4.2: VP 9000 VELMEX Motor Controller 27

Figure 4.3: PS2520G Programmable Power Supply 28

Figure 4.4: DSP Lock-In Amplifier 7260 30

Figure 4.5: The ISeries CNi16D Temperature Controller 32

Figure 4.6: HIH-3610-001 Humidity Sensor 32

Figure 4.7: GPIB Bus Configurations 34

Figure 4.8: Login Window 36

Figure 4.9: Main Window 37

Figure 4.10: Motion Window 39

Figure 4.11: Lock-In Window 39

Figure 4.12: The Automation Window 40

Figure 4.13: 3-D Graph Window With Axes Projections 42

Figure 4.14: Flowchart For Pad Uniformity Testing 44

 vii

Figure 4.15: The Statistical Analysis Tool 45

Figure 4.16: Setup For Temperature And Humidity Control 47

Figure 4.17: Class Interaction Diagram 48

Figure 5.1: Find Contact Point Function 50

Figure 5.2: Flowchart For Automthread 52

Figure 5.3: Flowchart For Newautomthread 53

Figure 5.4: Flowchart For Temperature Control Thread 55

Figure 5.5: Function To Convert A Decimal Value To A Hexadecimal String 56

Figure 5.6: Flowchart For Humidity Control 58

Figure 6.1: 60° Sectors On Pad 62

Figure A.1: RS-232 Data Format 68

Figure B.1: DAQ Programming Flow 69

Figure C.1: Instrument Programming Flow 70

 viii

List Of Acronyms

IC Integrated Circuit

CMP Chemical Mechanical Planarization

OOP Object Oriented Programming

OOPL Object Oriented Programming Language

USB Universal Serial Bus

NIC Network Interface Card

GPIB General Purpose Interface Bus

IEEE Institute of Electrical and Electronic Engineers

PC Personal Computer

ASCII American Standard Code for Information Interchange

DTE Data Terminal Equipment

DCE Data Communication Equipment

TD Transmit Data

RD Receive Data

RTS Request To Send

CTS Clear To Send

DSR Data Set Ready

DTR Data Terminal Ready

CD Carrier Detect

RI Ring Indicator

 ix

HPIB Hewlett Packard Interface Bus

TTL Transistor Transistor Logic

DIO Data Input Output

DAV Data Available

NFRD Not Ready For Data

NDAC Not Data Accepted

ATN Attention

EOI End Or Identify

IFC Interface Clear

REN Remote Enable

SRQ Service Request

RAM Random Access Memory

DAQ Data Acquisition Card

PI Proportional-Integral

PD Proportional-Derivative

PID Proportional-Integral-Derivative

MFC Microsoft Foundation Classes

OCX Object Control

COM Component Object Model

MSE Mean Square Error

DOF Degree Of Freedom

 x

System Integration And Testing Using Object Oriented Programming

Based Control

Prashant P. Datar

ABSTRACT

Various techniques are used in the process of software development.

The requirements of the system being designed and the constraints dictate

the selection of a particular method to be used. This thesis attempts to

explain the various types of development techniques available to software

designers and programmers. It places specific emphasis on the Object

Oriented style of design that is presently widely used in all areas of industry.

Object Oriented Programming (OOP) involves a number of new

concepts that make software design and development more modular. The

actual problem is broken down into a number of smaller components and the

functionality of each component is coded separately. These pieces of code

are then integrated to form the final application. All the concepts that make

this type of programming possible are explained.

 xi

The thesis presents a detailed account of the development process of

a system used to make measurements on polyurethane pads that are used in

the Chemical Mechanical Planarization (CMP) process. The setup uses a

combination of a number of instruments to provide excitation to the pad and

measure its response. A computer controls all these instruments using a

single application. Microsoft Visual C++ was used to develop this application.

It makes extensive use of a Graphic User Interface (GUI), Microsoft

Foundation Classes (MFC) and driver libraries from instrument manufacturers

in order to present a user-friendly interface to the operator.

System Integration, which is the technique used to make the

instruments involved interact with the software is explained. The application

involves the use of a number of C++ classes and dialog boxes. Each of these

is explained along with the underlying algorithms.

 1

1 Introduction

The objective of this work was to explain the various stages involved in the

development of software that interactively manages an industrial or research

based system. This type of application software is significantly different from

programs that are written to speed up computation or manage a large inventory.

In these types of applications, the data is presented to the computer and the

software either manipulates or organizes the information in a manner required to

provide the desired results.

This thesis deals with software development techniques that provide

automation for applications that control and operate equipment so as to minimize

the level of supervision required. The development starts with a clear

understanding of the problem, evaluating the various method of programming,

choosing a means of implementation and finally carrying out extensive testing. A

system built to study the characteristics of polyurethane pads that are used in

Chemical Mechanical Planarization (CMP) explains the entire process. [1]

1.1 Wafer Polishing

Pads made of polyurethane material are used in the Integrated Circuit (IC)

industry to polish wafers between successive manufacturing steps. An

integrated circuit is manufactured using a series of steps. Each step adds or

prepares the wafer for a future step to add an element or group of elements that

 2

form the actual circuit from the wafer design. Some of the steps in the process

deposits material on top of the devices already laid on the wafer (deposition) or

increase the thickness of some, but not all, of the materials already deposited

(growth), while other steps cut or perforate some areas in order to create a

communication path between layers (etching).

Figure 1.1: Integrated Circuit Wafer Polishing

The problem arises when one of the processes does not result in a planar

surface. When that happens the next steps in the process can result in a badly

laid area, a deformation that results in a bad connection in the circuit or an

unwanted connection. In order to correct a problem, there must be a way to

ensure that all the layers created in the wafer are free of deformations, which will

ensure a high yield and reliability in the production of the IC.

CMP is the process whereby most of the deformations in a wafer surface

are eliminated. CMP results in a planar surface layer over which any other layer

 3

can be laid, which results in a wafer surface with a very low possibility of

deformation.

Changes in physical factors such as temperature and humidity produce

physical effects on the CMP pads. When this happens the surface-uniformity of

wafers polished using these pads cannot be guaranteed. Therefore, it is

necessary to determine how the pads respond to ambient changes and control

the polishing process in such a way as to maintain wafer quality. [1]

1.2 System Requirements

A large number of instruments were used to carry out experiments on the

pads. A single program was to control all the instruments through a host

computer. The software was to be designed in such a way that experiments

required minimal user intervention. The operator only had to specify the area

under study and the required temperature and humidity for the run. The

equipment had to be controlled so the experiment was carried out under constant

conditions. The program required the ability to store readings to a file and

manipulate the readings statistically in order to produce results. The algorithms

and concepts used to develop the software are explained in the following

chapters. Results of testing and conclusions are presented in chapter six.

 4

2 Programming Concepts

Programming techniques can be classified depending upon their efficiency

and level of complexity.

• Unstructured programming

• Procedural programming

• Modular programming

• Object Oriented programming

2.1 Unstructured Programming

Programming starts with the construction of small and simple programs.

Such programs usually consist of a single main-program, which contains a

sequence of statements that modify data that is global to the program. This type

of programming presents a considerable disadvantage once the physical size of

the program starts getting larger. For example, consider a certain sequence of

statements that is to be repeated at different locations in a program. This

sequence will have to be copied at the different locations. This requirement has

lead to the idea of extracting such sequences, naming them and providing a

method to call and return from these procedures. [2]

2.2 Procedural Programming

Procedural programming places recurring sequences of statements in a

single place. A procedure-call, hereafter referred to simply as a call, is used to

 5

invoke the procedure. After the sequence is processed, flow of control proceeds

to the position immediately after the position where the call was made.

Procedural programming allows programs to be written in a more

structured and error free format. Each procedure executes a particular part of

the program. Therefore, debugging of the program is simplified and it is easier to

locate and correct any errors. Therefore, a program can be viewed as a

sequence of procedural calls. The main program is responsible for passing data

to the individual calls. The data is processed by the procedures and the results

are presented once the program has finished.

The procedural approach results in a single program that is divided into

small pieces called procedures. To enable the use of general procedures or

groups of procedures in other programs, they must be individually available. For

that reason, modular programming allows grouping of procedures into modules.

[2]

2.3 Modular Programming

In modular programming, procedures of a common functionality are

grouped together into separate modules. Therefore, a program no longer

consists of a single part. With modules it is divided into several smaller parts that

interact through procedure calls in order to form the whole program.

Each module can have its own data. This allows each module to manage

an internal state, which is modified by calls to procedures of the module.

However, there is only one state per module and each module exists at most

once in the whole program. [2]

 6

2.4 Object Oriented Programming (OOP)

Object Oriented Design is a software design method that models the

characteristics of abstract or real objects through the use of classes and objects.

Objects are a key to an understanding of OOP. An object is a software bundle of

related variables and methods. Software objects are often used to model real-

world objects found in everyday life. Important terms and concepts used in

OOPS require special attention.

2.4.1 Objects

All real world objects have two characteristics, state and behavior. If a car

is considered as an object it will have a current state, which could be indicated by

parameters such as gear, engine speed, number of wheels and number of gears.

Additionally, the car will exhibit a behavior, which could be described by actions

such as change of gear, brake application or change in engine speed. Software

objects are modeled after real world objects. Software objects also possess

states and exhibit behavior. A software object describes its state through the use

of one or more variables. A variable is an item of data named by an identifier. A

software object implements its behavior with methods. A method is a function

(subroutine) associated with an object.

Variables describe the state of an object while methods describe its

behavior. Changing the values of the associated variables changes the state of

an object. The variables of an object are not directly accessible to the outside

world. They can only be accessed through the object’s methods. Therefore, the

methods form a kind of protective casing for the variables. This packaging of

 7

variables is referred to as encapsulation. Encapsulation is a simple, yet

powerful, idea that provides two advantages to software programmers.

• Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Therefore, an object

can be easily accessed by various parts of the system.

• Information Hiding: An object has a public interface that other objects can

use to communicate with it. However the object can maintain private

information and methods that can be changed at any time without

affecting the other objects that depend on it. [3]

2.4.2 Messages

Software objects interact and communicate with each other through the

use of messages. In a program, objects usually appear as components of a

larger application that contains many objects. Interactions between these objects

achieve complex behavior and higher order functionality. Objects communicate

with each other by using messages. Along with the message the receiving object

needs information that tells it what to do. There are three components that

comprise a message.

• Object to which the message is addressed

• Method to be executed

• Parameters required by the method

Messages provide two important benefits. Since an object's behavior is

expressed through its methods, message passing supports all possible

interactions between objects. Additionally, objects are not required to be in the

 8

same process or even on the same machine in order to send and receive

messages. [3]

2.4.3 Class

A class is a blueprint or prototype, which defines the variables and the

methods that are common to all objects of a certain kind. A class defines the

variables and methods that determine the state and behavior of objects.

However, different objects belonging to a class will not have the same state

simultaneously. For example, a carmaker’s particular car model can be

considered as a class with each car of that model an object. Although all the

cars will look similar, their states will be different at a given time. In OOPS

terminology an object is said to be an instance of a class.

Classes can also define class variables. These are variables whose value

remains the same for all objects of the class. If one object changes this value all

objects receive the new value. This saves memory since all the objects of one

class share the variable and hence only one copy of that variable needs to be

created. For example, if there is a variable that stores the number of gears in a

car, the value will be the same for all objects of that car class. Hence, only one

class variable needs to be declared for this purpose. Similarly a class method

can also be defined. Class methods can be invoked directly from a class instead

of having to be invoked in each individual instance of the class. [3]

2.4.4 Inheritance

A class inherits its state and behavior from its super-class. Inheritance

provides a powerful and natural mechanism for organizing and structuring

 9

software programs. Objects are defined in terms of classes. If automobiles is

considered as a class, then cars, trucks and busses can be considered as

derived classes from the automobiles class. Automobiles is a super-class cars,

trucks and busses become sub-classes of the automobile class. Each sub-class

inherits variables and methods from its super-class. Sub-classes can override

inherited qualities and provide specialized implementations.

The number of inheritances is not limited to one. The inheritance tree or

class hierarchy can be as tall as the programmer wishes. Inheritance offers

various advantages.

Sub-classes provide specialized behaviors from the basis of common

elements provided by the super-class. Through the use of inheritance,

programmers can reuse the code in the super-class many times.

Programmers can implement super-classes, which are called abstract classes, in

order to define generic behaviors. The abstract super-class defines and may

partially implement the behavior. However, much of the class is undefined and

unimplemented. Other programmers fill in the details with specialized sub-

classes. [3]

2.5 Object Oriented Languages (OOPLs)

The industry offers programmers a wide choice of OOPLs such as C++,

Java, Smalltalk, Delphi, Eiffel and Python. Each of these languages support the

aforementioned concepts used in Object Oriented Programming (OOP).

However, the most widely used, of these programming languages, are C++ and

Java. The C++ language was first designed and implemented by Bjarne

 10

Stroustrup. Java is an OOPL introduced by Sun Microsystems.

Alan Kay invented Smalltalk in the 1970s at Xerox’s Palo Alto Research

Center. It is unique in that it uses nouns from the English language for objects

and verbs for messages. This language was also the inspiration and technical

basis for the Macintosh and subsequent windowing based systems.

Delphi is another true object oriented and compiled language. However, it only

allows Single Inheritance. It is a form-based language with distributable

components with syntax similar to BASIC.

2.6 Reasons For Choosing VC++

Object Oriented Programming concepts were developed in the late 1980s.

At that time C did not support the technology and hence could not garner any of

its benefits. C++ was developed in order to overcome this shortcoming of C. As

the technology grew new graphical interfaces were developed. An object

oriented as well as a visual programming language was needed to keep pace

with the new standard. Therefore, Visual C++ was born. Visual C++ is C++ with

capabilities that support the graphical user interface technology required for OLE,

OCX, ActiveX and Database programming. Microsoft offers VC++ as part of its

Visual Studio. Additionally, Ms-VC++ programmers can also make good use of

Microsoft Foundation Classes (MFCs) in applications. [4]

The nature of this project was such that it needed to make use of

hardware to monitor and control the testing. VC++ was chosen since it is a high-

level language that allows the hardware to be accessed in a powerful and

efficient manner. Additionally, it offers standard libraries to enable serial and

 11

parallel communication, which proved to be a great convenience. VC++ also

possesses the capability to create low-level code that is associated with such

things as Operating Systems, Device drivers, Dynamic Link Libraries (DLLs),

Internet Servers, Objects and Database Systems. VC++ uses MFCs effectively,

which makes the creation and customization of dialog boxes very easy and

straightforward. Dialog boxes allow the application interface to be made user

friendly.

 12

3 Communication Interfaces

Various interfaces exist for facilitating communication between a host

computer and its peripheral devices. These range from the serial and parallel

interfaces developed over time to the ones more recently evolved such as

Universal Serial Bus (USB), Network Interface Cards (NIC), Optical and Wireless

interfaces. Factors such as the required speed of data transfer, distance from

the host computer and cost decide which interface is best suited for a particular

application. The Serial interface, where the data is transferred bit by bit from one

machine to another, is typically the slowest. In the case of parallel transmission,

the data is transferred in Bytes (8-bits simultaneously). Almost every PC has

these interfaces as residents. Ports such as optical and USB are available on

higher end machines where the time taken for data transfer is critical. Optical

interfaces are typically used for accessing storage arrays and connecting high-

speed networking equipment. NIC cards and wireless NIC cards are used to

build scalable and reliable networks of computers.

This research required extensive use of RS-232 protocols to control

instruments. Additionally, the General Purpose Interface Bus (GPIB), a parallel

communication interface from the Institute of Electrical and Electronic Engineers,

was implemented to interface those devices that offered a parallel interface

capability. A proper understanding of both these protocols was required. The

 13

following sections explain these two widely used techniques in device

communication.

3.1 Serial Communication

All IBM Personal Computers (PC) and compatible computers are typically

equipped with two serial ports. A Serial port sends and receives data one bit at a

time over two wires. Two-way (Full Duplex) communications is possible with only

three wires; one to send, one to receive and a common signal ground. The serial

port on a PC is usually full duplex, which is capable of both transmission and

reception. There are a large number of serial communication protocols available

such as RS-232, RS-485, RS-422, and RS-449. These protocols differ on the

basis of control signals and signal levels (voltages) employed. This chapter

concentrates on the most widely used, RS-232C, protocol. The following

subsections explain the terminology commonly used in serial communication.

3.1.1 Data Bits

The measurement of the actual data processed in a transmission is given

in terms of the number of data bits transferred. When the computer sends a

packet of information, the amount of actual data may not be 8 bits. Standard

values for the data packets are 5, 7 and 8 bits. The setting chosen depends

upon the type of information being transferred. For example, standard ASCII

uses values from 0 to 127, which requires 7 bits. Extended ASCII uses values

from 0 to 255, which requires 8 bits. If the data being transferred is simple text

(standard ASCII), then 7 bits of data per packet is sufficient for communication.

A packet refers to a single byte transfer, including start/stop bits, data bits and a

 14

parity bit. Since the number of actual bits depends on the protocol selected, the

term packet is used to cover all instances.

3.1 2 Stop Bits

Stop bits are used to signal the end of communication for a single packet.

Typical values are 1, 1.5 and 2 bits. Since the data is clocked across the lines

and each device has its own clock, it is possible for the two devices to become

slightly unsynchronized. Therefore, the stop bits not only indicate the end of

transmission they also give the computers some room for error in the clock

speeds. The more bits that are used for stop bits the greater the lenience in

synchronizing the different clocks.

3.1.3 Parity Bits

These bits are used as a simple form of error checking. There are four

types of parity: even, odd, marked, and spaced. The option of using no parity is

also available. For even and odd parity, the serial port sets the parity bit, which

is the last bit after the data bits, to a value to ensure that the transmission has an

even or odd number of logic high bits. For example, when even parity is chosen,

the parity bit is transmitted with a value of zero if the number of preceding one’s

is an even number. For the binary value of 01100011 the parity bit would be

zero. If even parity were in effect and the binary number 11010110 were sent,

then the parity bit would be one. Odd parity is just the opposite. The parity bit is

zero when the number of one bits in the preceding word is an odd number.

Parity error checking is very rudimentary. Parity can detect single bit errors but it

cannot actually locate the bit that is in error. Also, if an even number of bits were

 15

in error then the parity bit would not reflect any error at all. Marked and spaced

parity does not actually check the data bits. They simply set the parity bit high for

marked parity or low for spaced parity. This allows the receiving device to know

the state of a bit, which enables it to determine if noise is corrupting the data or if

the clocks of the transmitting and receiving devices are out of synchronization.

3.1.4 DTE And DCE Devices

DTE stands for Data Terminal Equipment and DCE stands for Data

Communication Equipment. The PC is a DTE device while the Modem is

typically a DCE device. DTE devices use a male connector while DCE devices

use a female connector.

3.1.5 Baud Rate

Baud rate is a measure of the number of times per second a signal in a

communications channel varies or makes a transition between states. States are

defined in terms of frequencies, voltage levels, or phase angles. One baud is

one such change. If the signal on a line changes three hundred times per

second, the baud rate is 300 baud. Baud-rate differs from bit-rate. Baud rate

gives the rate of transmission of symbols unlike bit-rate. The number of bits in a

symbol depends upon the modulation scheme used.

3.1.6 RS-232 Protocol

The signals that control data transfer for the RS-232 protocol are

presented in Figures 3.1 and 3.2 on page 16.

The TD (Transmit Data) wire is the one through which data from a DTE

device is transmitted to a DCE device. The TD line is kept in a mark condition by

 16

the DTE device when it is idle. The RD (Receive Data) wire is the one on which

data is received by a DTE device. The DCE device keeps this line in a mark

condition when idle.

1 Protective Ground

2 Transmitted Data (TD) Outgoing Data (from a DTE to a DCE)

3 Received Data (RD) Incoming Data (from a DCE to a DTE)

4 Request To Send (RTS) Outgoing flow control signal controlled by the DTE

5 Clear To Send (CTS) Incoming flow control signal controlled by the DCE

6 Data Set Ready (DSR) Incoming handshaking signal controlled by the DCE

7 Signal Ground Common reference voltage

8 Carrier Detect (CD) Incoming signal from a modem

20 Data Terminal Ready (DTR) Outgoing handshaking signal controlled by the DTE

22 Ring Indicator (RI) Incoming signal from a modem

Figure 3.1: 25-pin Connector On A DTE Device (PC Connection) [5]

Pin Number Direction of signal:
1 Carrier Detect (CD) (from DCE) Incoming signal from a modem
2 Received Data (RD) Incoming Data from a DCE
3 Transmitted Data (TD) Outgoing Data to a DCE
4 Data Terminal Ready (DTR) Outgoing handshaking signal
5 Signal Ground Common reference voltage
6 Data Set Ready (DSR) Incoming handshaking signal
7 Request To Send (RTS) Outgoing flow control signal
8 Clear To Send (CTS) Incoming flow control signal

9 Ring Indicator (RI) (from DCE) Incoming signal from a modem

Figure 3.2: 9-pin Connector On A DTE Device (PC Connection) [5]

 17

The RTS (Ready to Send) line and the CTS (Clear to Send) line are used

when "hardware flow control" is enabled in both the DTE and DCE devices. The

DTE device puts this line in a mark condition to tell the remote device that it is

ready to receive data. If the DTE device is not able to receive data, possibly

because of it’s buffer being full, it will put this line in the space condition as a

signal to the DCE to stop sending data. When the DTE device is ready to

receive more data, after data has been removed from its receive buffer, it will

place this line back in the mark condition. The complement of the RTS wire is

CTS. The DCE device puts the CTS line in a mark condition to tell the DTE

device that it is ready to receive data. Likewise, if the DCE device is unable to

receive data, it will place this line in the space condition. Together, these two

lines make up what is called RTS/CTS or hardware flow control. The RS-232

protocol offers this type of flow control, as well as Xon/Xoff or software flow

control. Software flow control uses special control characters, which are

transmitted from one device to another to tell the device to stop or start sending

data. With software flow control the RTS and CTS lines are not used.

The intended function of the DTR (Data Transfer Ready) line is very

similar to the RTS line. DSR (Data Set Ready) is the companion to DTR in the

same way that CTS is to RTS. Some serial devices use DTR and DSR as

signals to simply confirm that a device is connected and turned on. DTR is set to

the mark state when the serial port is opened and is left in the mark state until the

port is closed. The DTR and DSR lines were originally designed to provide an

alternate method of hardware handshaking. It is pointless to use both RTS/CTS

 18

and DTR/DSR for flow control signals at the same time. Therefore, DTR and

DSR are rarely used for flow control.

Carrier Detect (CD) is used by a modem to signal that it has a made a

connection with another modem or has detected a carrier tone. The Ring

Indicator (RI) line is toggled by a modem when an incoming call rings the

receivers phone. The Carrier Detect (CD) and the Ring Indicator (RI) lines are

only available with connections to a modem since modems transmit status

information to a PC when either a carrier signal is detected or when the line is

ringing.

Signal voltage levels and the data format for the RS-232 protocol are

presented in Appendix A.

3.2 GPIB IEEE-488 Bus

The GPIB IEEE-488 bus was developed to connect and control

programmable instruments and to provide a standard parallel interface for

communication between instruments from different sources. This versatile

interface was originally developed by Hewlett Packard (HP) and was referred to

as the HP Interface Bus (HPIB). The IEEE renamed it as GPIB. The GPIB uses

standard TTL negative logic.

A generalized block diagram of the GPIB IEEE-488 bus is presented in

Figure 3.3. At power-up, the GPIB IEEE-488 interface that is programmed to be

the System Controller becomes the Active Controller in charge. The System

Controller may optionally Pass Control to another controller, which would then

become the Active Controller.

 19

Bus

Device 1

Device 2

System
Controller

Device 14

Figure 3.3: Block Diagram Of The GPIB IEEE-488 Bus

There are three types of devices that can be connected to the GPIB IEEE-

488 bus. These devices are termed Listeners, Talkers or Controllers depending

on their function. Some devices include more than one of these functions. The

standard allows a maximum of thirtyone devices to be connected to the same

bus.

It is possible to have several Controllers on the bus but only one may be

active at any given time. The Active Controller may pass control to another

controller, which in turn can pass it back or on to another controller. A Listener is

a device that can receive data from the bus when instructed by the controller and

a Talker transmits data on to the bus when instructed. The Controller can set up

a talker and a group of listeners so that it is possible to send data to groups of

devices.

 20

The GPIB IEEE-488 interface system consists of 16 signal lines and 8

ground lines. The 16 signal lines are divided into 3 groups.

3.2.1 Data Lines

The lines DIO1 through DIO8 are used to transfer addresses, control

information and data. The IEEE 488 standard defines the formats for addresses

and control bytes. Data formats are undefined and may be ASCII (with or without

parity) or binary. DIO1 is the Least Significant Bit, which will correspond to bit 0

on most computers.

3.2.2 Handshake Lines

The handshaking process is outlined as follows. When the Controller or a

Talker wishes to transmit data on the bus, it sets the DAV (Data Not Valid) line

high and checks to see that the Not Ready For Data (NRFD) and Not Data

Accepted (NDAC) lines are both low. If the check is successful it puts the data

on the data lines. When all the devices that can receive the data are ready, each

releases its NRFD line. When the last receiver releases NRFD the Controller or

Talker takes DAV low, which indicates that valid data is on the bus. In response

each receiver takes NRFD low again to indicate it is busy and releases NDAC

when it has received the data. When the last receiver has accepted the data,

NDAC will go high and the Controller or Talker can set DAV high again to

transmit the next byte of data. If after setting the DAV line high the Controller or

Talker senses that both NRFD and NDAC are high, then an error will occur.

Additionally, if any device fails to perform its part of the handshake and releases

either NDAC or NRFD, data cannot be transmitted over the bus. Eventually a

 21

time-out error will be generated. The speed of the data transfer is controlled by

the response of the slowest device on the bus. Therefore, it is difficult to

estimate data transfer rates on the GPIB IEEE-488 bus since they are always

device dependent.

3.2.3 Interface Management Lines

The five interface management lines (ATN, EOI, IFC, REN, SRQ) manage

the flow of control and data bytes across the interface. The Attention (ATN)

signal is asserted by the Controller to indicate that it is placing an address or

control byte on the data bus. ATN is released to allow the assigned Talker to

place status or data on the data bus. The Controller regains control by

reasserting ATN. This process is normally performed synchronously with the

handshake to avoid confusion between control and data bytes. The End Or

Identify (EOI) signal has two uses. A Talker may assert EOI simultaneously with

the last byte of data to indicate end-of-data. The Controller may assert EOI

along with ATN to initiate a parallel poll. Although many devices do not use

parallel poll, all devices should use EOI to end transfers. The Interface Clear

(IFC) signal is asserted only by the System Controller in order to initialize all

device interfaces to a known state. After releasing IFC, the System Controller is

the Active Controller. Only the System Controller asserts the Remote Enable

(REN) line. Its assertion does not place devices into remote control mode.

Assertion of REN simply enables a device to go into remote mode when

addressed to listen. When in remote mode a device should ignore its local front

panel controls. The Service Request (SRQ) line functions like an interrupt. It

 22

may be asserted by any device to request the Controller to perform some action.

The Controller must determine which device is asserting SRQ by conducting a

serial poll. The requesting device releases SRQ when it is polled.

The GPIB IEEE-488 standard allows up to thirty-one devices to be

interconnected on one bus. Each device is assigned a unique primary address,

which ranges from 0-31 by setting the address switches on the device. A

secondary address may also be specified, which also ranges from 0-31. The

GPIB IEEE-488 standard greatly simplifies the interconnection of programmable

instruments by clearly defining mechanical, hardware and electrical protocol

specifications.

The cables used to connect devices to the GPIB IEEE488 Bus are

pictured in Figure 3.4.

Figure 3.4: The GPIB IEEE-488 Connectors

 23

 The connector pin diagram for a GPIB IEEE 488 Bus connector is

presented in Figure 3.5.

Figure 3.5: GPIB IEEE-488 Connector Pin Diagram

 24

4 System Integration

System Integration for this project involved the task of integrating all the

hardware and instruments together and bringing them under the control of a

single software program. The following is an enumeration of tasks involved with

the project, for which the use of hardware became necessary.

• Controlling the position of the sensor above the pad

• Controlling the pad position relative to the sensor

• Generating an excitation signal for the pad

• Measuring the response produced by the pad

• Controlling and tracking the humidity and temperature levels during the

experiment

The entire system was comprised of a total of seven instruments and

some additional components. The system required integration at two different

levels; physical and logical. Physically the instruments were connected on two

different buses, which depended on the type of communication interface they

required. The two bus systems used were the RS-232 Serial interface and the

GPIB IEEE-488 interface. On top of this physical layer was the logical layer that

provided interaction control between the instruments. The various objects and

classes created through the use of Microsoft Visual C++ implemented the logical

interaction of the instruments.

 25

A model of the setup used to carry out experiments on the pads is

presented in Figure 4.1. In addition to the pad shape depicted in the Figure 4.1,

pads can be semi-circular as well as circular without the gap in the center.

Figure 4.1: CMP Pad Test Setup

The assembly shown was mounted on a finely polished steel table. The

supports for the table could be adjusted so that the pad was always perfectly

horizontal.

Temperature and the humidity control was required in the vicinity of the

pads in order to study the effects of these physical factors on the pads.

Therefore, the test setup depicted in Figure 4.1 was enclosed inside a wooden

insulating chamber.

 26

4.1 Instruments Used

This sub-section provides information about the hardware used in the

system. Table 4.1 provides basic information on all devices utilized during the

testing.

Table 4.1: Instruments Integrated Into The System

Instrument Manufacturer Function Interface
VP 9000 Motor

Controller
Velmex, Inc. Control of motors

used to move
sensor

Serial RS-232C

PS2520G
Programmable
Power Supply

Tektronix Provide power to
hold pad while

measurement is
being carried out

GPIB IEEE – 488

Lock-In Amplifier
7260

EG&G (AMETEK) Generate
excitation signal.

Measure response

GPIB IEEE – 488

Data Acquisition
Card 6035E

National
Instruments

Control of
switches used for
tracking humidity

PCI

Temperature
Controller and

Sensor

Newport
Instruments

Temperature
control and

measurement

Serial RS-232C

SERVO – 260
Studio Amplifier

Samson Amplify Oscillator
Output

-

Humidity Sensor Honeywell Measure humidity Analog I/O

4.1.1 VP-9000 Motor Controller

The VP 9000 is a programmable stepper motor controller, which is

capable of running up to four motors alternately. The controller uses a powerful

microprocessor, support circuitry and has 64 Kilobytes of nonvolatile Random

Access Memory (RAM) for storing setup parameters and programs. Commands

and data can either be entered using the RS-232 Serial Interface or by using the

front panel menu. An alphanumeric display displays the motor positions and

 27

setup parameters. A host computer can send commands to the controller

through its RS-232 serial interface.

Commands can specify motion in absolute as well as relative indices. An

absolute index is a move relative to the absolute zero position. A relative index is

a move in a certain direction and for a certain distance from the present position.

The instrument manual provides tables to estimate the number of steps required

to cover a given distance. Of the four available lines on the VP 9000 only three

were used. The instrument controlled the position of the sensor relative to the

center of the pad (X-axis), the height of the sensor above the pad surface (Z-

axis) and the angle of the pad with respect to the sensor position (Radial axis).

Detailed information about how this control was implemented using the class

CMotion is provided in later sections [6]. The VP 9000 VELMEX Motor Controller

is pictured in Figure 4.2.

Figure 4.2: VP 9000 VELMEX Motor Controller

4.1.2 PS2520G Power Supply

The PS2520G is a Programmable Power Supply from Tektronix. It offers

three power outputs. Two of these supply voltage from 0 to 36 V and current

from 0 to 1.5 A. The third one has a higher current capability of 0 to 3 A and

 28

supplies voltages from 0 to 6 V. The instrument has a Light Emitting Diode

(LED) display to indicate the voltage and current levels.

The PS2520G has a GPIB IEEE-488 interface that enables a host

computer to control it through the use of Standard Commands for Programmable

Instruments (SCPI). This device was used to provide a 12 V output to open a

Vacuum Valve. This enabled the vacuum pump to create enough suction for the

pad under test to be grabbed and held in place while a measurement was being

performed on it [7]. The PS2520G Programmable Power Supply is pictured in

Figure 4.3.

Figure 4.3: PS2520G Programmable Power Supply

4.1.3 Lock-In Amplifier 7260

A lock-in amplifier can be used for two basic purposes. To recover a

signal in the presence of overwhelming background noise or to provide high

resolution measurements of relatively clean signals over several orders of

 29

magnitude and frequency. Modern instruments like the 7260 offer many

additional features. These instruments are used in varied fields of research such

as Optics, Electrical Engineering, Fundamental Physics and Material Sciences.

The Lock-In 7260 provides the following functions:

• Precision Oscillator

• Vector Voltmeter

• Phase Meter

• AC Signal Recovery

• Frequency Meter

• Transient Recorder

• Spectrum Analyzer

• Noise Meter

The Lock-In amplifier was central to the proper functioning of the system.

This project used its Oscillator and Voltmeter sections. The Oscillator generated

a precise 26 KHz signal with amplitude of 0.5 V (peak to peak) that was amplified

and used to excite the pad under test. The response from the pad was detected

by an ultrasonic transducer probe and applied to a channel on the Lock-In

amplifier. The amplifier was set to display and transmit this reading to the host

computer, see Figure 4.3.

This Lock-In amplifier has a GPIB IEEE-488 interface for communication

purposes. There are specific commands to control the instrument remotely. The

CLockin class in the software was used to communicate with this device. [8]

 30

Figure 4.4: DSP Lock-In Amplifier 7260 [9]

4.1.4 Data Acquisition Card (DAQ)

The National Instruments 6035E Data Acquisition Card features sixteen

channels (eight differential) of 16-bit analog input, two channels of 12-bit analog

output, a 68-pin connector and eight lines of digital I/O.

This card was primarily used by the system to implement humidity control.

A humidity sensor generated a signal, which is mathematically related to the

actual humidity. The signal was read by the analog input of the DAQ. The

digitized signal value was sent to the program, which mathematically converted it

to the actual humidity value. Based on whether the humidity level was to be

increased or decreased, the program instructed the DAQ to output an electrical

voltage on its corresponding analog outputs. The DAQ output voltage activated

relays in order to enable the required system. [10]

The DAQ functioned in conjunction with the National Instruments SC-2050

I/0 Board and the SC-2062 Relay Board. National Instruments provides driver

software for the DAQ. Library routines from the DAQ software were used in the

VC++ program to implement humidity control. [11]

 31

4.1.5 Temperature Controller And Sensor

The iSeries CNi16D temperature controller fully controlled the temperature

during the experiments. The temperature controller provides an RS-232

interface, which enabled remote control by the use of commands specified in its

configuration manual.

The instrument has analog inputs and outputs. A thermocouple is

connected to the analog input to sense the temperature. The analog output

operates a relay that supplies power to the heater. Depending upon the current

temperature, once the setpoint is specified, the instrument enables/disables the

relay. A temperature dead-band can be specified in which the controller

maintains the state of the relay.

The optional analog output can be programmed within a range of 0-10 Vdc

or 0-20 mA. It is selectable as either a control output or as a calibrated

retransmission of the process value, which is a unique feature among controllers.

The type of control is also selectable. On/Off, Proportional-Integral (PI),

Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) can be

selected [12]. The iSeries CNi16D Temperature Controller is pictured in Figure

4.5.

 32

Figure 4.5: The ISeries CNi16D Temperature Controller

4.1.6 Humidity Sensor

The HIH-3610 monolithic Integrated Circuit (IC) humidity sensor is

designed specifically for high volume Original Equipment Manufacturer (OEM)

users. Direct input to a controller or other device is made possible by this

sensor's linear voltage output. With a typical current draw of only 200 µA, the

HIH-3610 is ideally suited for low drain, battery powered systems. The sensor

requires a supply voltage of 4.0 to 5.8 V and operates over a temperature range

of -40° F to 185° F. The HIH-3610-001 Humidity Sensor is pictured in Figure 4.6.

Figure 4.6: HIH-3610-001 Humidity Sensor

The Relative Humidity (RH) is derived from the mathematical relation

 33

RH = (((Voltage/5.0)-0.016)/0.0062),

here Voltage is the voltage value obtained from the output of the sensor. The

voltage output of the sensor is picked up by the DAQ analog input, which is read

by the program. [13]

4.2 Hardware Integration

Device manufacturers outfit their instruments with communication

capabilities in order to enable operators to control the instruments remotely.

Ethernet, USB, Serial and Parallel interfaces are examples of communication

connection capabilities that are routinely provided. Many instruments that use

the GPIB IEEE-488 interface have the capability to decode the SCPI instruction

set. Others have very specific command formats, which are specified by their

manufacturers. In order to control such devices from a host computer, the

communication link has to be established. Once the communication link is

established the software is simply required to send instructions to the instrument

in the form of strings. Manufacturers provide libraries that include commands

specifically designed to make the instrument perform specific tasks. These

library files were linked into the project so that the commands offered could be

used freely anywhere within the program.

4.2.1 GPIB IEEE-488 Bus

The Lock-In amplifier and the Tektronix Power Supply were two devices

connected to this bus. Table 4.2 specifies the GPIB address that was used for

each device on the bus.

 34

Table 4.2: GPIB Device Addresses

Device GPIB Address

Computer (GPIB Card) Controller 21

EG&G Lock-In amplifier 7260 12

Tektronix PS2520G Power Supply 6

The devices on a GPIB bus could be arranged in two configurations; linear

and star. The linear configuration configured the devices in a daisy chain. The

connector from the controller is attached to one device. The second device is

connected to the first and the chain continues. In a star configuration all the

devices are connected to the controller using dual-ended stackable connectors.

The two configurations are depicted in Figure 4.6. This project used the star

configuration. The Controller card was directly connected to the Lock-In amplifier

and the Power Supply.

Figure 4.7: GPIB Bus Configurations

 35

4.2.2 RS-232 Serial Bus

Unlike the GPIB, the RS-232 interface does not specify a designated

controller. Communication between devices consists of passing serial data with

start and stop bits.

The Temperature Controller and the VP 9000 Motor Controller used the

RS-232 protocol. These devices were connected to ports COM1 and COM5

respectively. In order to provide additional COM ports the National Instruments

PCI-232/8 port extender was used. This PCI card and its cables provide eight

serial ports that can be used simultaneously.

The VP 9000 was connected to the serial port on the host using a 9-pin

RS-232 connector. A simple three-wire connection (Transmit, Receive and

Ground) was used between the Temperature Controller and the host. Newport

provides software, which allows the Temperature Controller to be configured

from the computer through the RS-232 bus.

4.3 Software Integration

Software Integration achieved the logical interconnection of the

instruments used in the project. A single program was required to control all the

devices and processes involved. A modular, object oriented approach, was used

to develop the software that made full use of the advantages provided by Visual

C++. Visual C++ classes uniquely represented every device involved in the

system.

The software was designed through the use of modules, which constituted

variables and methods that defined the behavior of individual instruments. Each

 36

of the modules could be invoked and controlled by the main program. The

program presents a user-friendly interface to the operator. The level of

automation provided was such that it was possible to conduct experiments over a

range of values of the process parameters without the need for user intervention.

The following sections provide a detailed explanation of each interface in

the program in the same order as they would be presented to the operator while

running the application.

4.3.1 Login Dialog

The login window is a part of the CLoginDlg class. This class is derived

from the CDialog class, which is a part of the Microsoft Foundation Classes

(MFC). Therefore, it inherits all the functionality of the CDialog class. The user

is required to enter a valid identification and password in this box in order to gain

access to the system. It provides a simple way of protecting the application and

its hardware from unauthorized use. The login window is presented in Figure

4.8.

Figure 4.8: Login Window

4.3.2 Main

The main dialog box is a part of the CMain class, which is also derived

from the Cdialog class. The Main window is presented after the user gains

 37

access to the system from the login window. The CMain class is a fundamental

component of the software. This class contains procedures to initialize all of the

hardware in the system. Upon initialization of this class, communication between

the host and the serial devices (CNi16D and VP 9000) is initiated by defining the

required parameters. Main also controls access to the processes that the system

offers. The control box is opened, for all hardware to be used, from the menu on

the main window. The main window is presented in Figure 4.9.

Figure 4.9: Main Window

The Main Dialog displays the settings of all instruments. It also prevents

contention between the dialog boxes and mediates where control exists at every

point in the program. If at any time one class has control over another class then

a second object of that class is prevented from being created by the Main class.

This action prevents interference between objects.

 38

4.3.3 Motion

The Motion dialog box is a front end that was used to control the position

of the three axes through the use of the VP 9000 motor controller. The CMotion

class contains functions to direct, control and display the position of each axis.

The position of the actuator on the axis is displayed in terms of distance. The VP

9000 keeps track of the position in terms of steps. The distance per step, for

each axis, is presented in Table 4.3.

Table 4.3: Step Sizes For Axes Controlled By The VP 9000

Axis Step size

Radial (X) 6.5 microns

Vertical (Z) 2.5 microns

Angular 0.5 degrees

When the Motion dialog box is opened from the main window the class is

provided a link to the corresponding serial port from the main window. This link

is used to enable communication with the host through the RS-232 protocol.

Upon initialization, the motors controlling the X and Z-axes are reset to the zero

position.

This window offers the operator multiple options for moving the axes. The

speed of motion of the axes can be controlled. It is also possible to make coarse

and fine adjustments to the axes position by using the big and little boxes. The

software allows both coarse and fine adjustment of the axis position. The Motion

window with these controls is presented in Figure 4.10.

 39

Figure 4.10: Motion Window

4.3.4 Lock-In

The dialog box for the CLockin class enables the operator to adjust the

frequency and amplitude of the signal generated by the oscillator section of the

Lock-In amplifier. This window is opened using the main window’s menu. The

Lock-In window is presented in Figure 4.11.

Figure 4.11: Lock-In Window

At initialization the amplitude and frequency, of the signal generated, are

set to 0.5 V (Root Mean Square) and 26KHz respectively. The device is set in

the voltage mode and input A is monitored.

 40

4.3.5 Automation

The Automation Dialog box is called from the Main window. This is one of

the principal windows in the software that controls the different types of

experiments that could be carried out. The parameters for a set of experiments

can be specified in the window itself or can be read from a file. Upon initialization

all the devices in the system are initialized and their windows are created but

kept hidden. The CAutomation class uses objects of all the device classes to

control the run. The resulting readings are stored in a file. This class can also

spawn a window in which a three dimensional graph of the readings is plotted.

The Automation window is presented in Figure 4.12.

Figure 4.12: The Automation Window

This class includes various VC++ threads for carrying out different kinds of

experiments. Threads are also spawned to control physical factors such as

temperature and humidity. The humidity value is updated periodically during

 41

every run. The temperature can be read from the CNi16D instrument.

4.3.6 Automation Graph

The CAutomationGraph class includes functions that are used to plot data

in three dimensions. It incorporates a special tool, the 3-D Graph Object, which

was developed by National Instruments.

This tool provides the capability to present and spatially format the data

gathered using the ultrasound signal on the PAD. The tool provides an

enhanced type of OCX (object control). An OCX control exchanges data

between two applications or between an application and an operating system. It

incorporates a concept called Component Object Model (COM), which is a

specification that defines a standard binary interface between objects.

COM defines the interface modules and standard structures to pass data

and also some additional function calls used by the application. The use of COM

allows bypassing the language barriers between applications. Objects based in

COM can be placed inside any application in any graphical language and will

work in the same way in all of them.

The 3-D graph can present multiple plots simultaneously while allowing

the characteristics of each one to be changed separately. This tool uses special

structures that provide information about the position of each point in each of the

graphs.

A 3-D graph is used off-line to present data already collected and saved.

It is also used on-line in real time while the data is read from the Lock-In.The

latter uses more resources from the system, which slows the process slightly.

 42

The use of a faster computer or the use of more time between updates provides

a solution to this problem.

The block in which this object is embedded also complies with the premise

of reusability. This means that any other system can use this block separately,

with no changes to the code, and maintain the same capabilities and interfaces.

Using three dimensions for the presentation of data enables the user to obtain

more information from different angles. The transfer of data to a graphic object is

through special types of variables called variants, which allow the same data to

have different data types. The 3-D Graph window is presented in Figure 4.13.

Figure 4.13: 3-D Graph Window With Axes Projections

 43

4.3.7 Statistical Analysis Tool

 Measurements obtained from the pads yield results in terms of millivolts.

The readings from each run are stored in separate files. The Statistical Analysis

Tool uses these data files to check the uniformity of the pad surface. Voltage

readings obtained at each point depend on the thickness of the pad at that point.

If the readings are approximately the same in value the pad has a uniformly thick

surface with very few perturbations.

This program uses the F-test to analyze the pad’s uniformity. In statistics,

an F-test is usually used to test for the equality in the standard deviations of two

populations.

4.3.7.1 Testing Algorithm

The F-value for the test is calculated by taking the ratio of the Mean

Square Error (MSE) of each line and the total MSE. This value is compared with

the value obtained form the F-table. If the calculated value is larger than the one

obtained from the table the pad surface is non-uniform.

In statistical terminology the Degree of Freedom (DOF) is a measure of

variability that expresses the number of options available within a variable or

space. In a sy0stem with N states the degree of freedom is N. In this case, if “a”

is the number of lines and “n” is the number of points on each line on which

measurements are made and

N=n*a

then the DOFnumerator is (a-1) and DOFdenominator is (N-a).

 44

This tool is a dialog box in which the file containing the readings

corresponding to the required experiment is selected. The program reads the

measured values from the file, performs the F-test and displays the results. The

calculated and observed F-values are displayed along with a comment about the

pad’s uniformity. The flowchart in Figure 4.14 depicts the procedure used.

Figure 4.14: Flowchart For Pad Uniformity Testing

Start

Read val[i]

sum_mean=sum_
mean+value

End of File
reached?

mean=sum_mean/
N

No A

A

Yes

sstot=(val[i]-
mean)*(val[i]-

mean)

i=0
j=n*i

tmp_cnt=tmp_cnt+
val[j]

is j=(n*i)+(n-1) No B

B

C

treat_mean[i]=tmp
_cnt/n

i=0
j=n*i

is j=(n*i)+(n-1)

sser_tmp[i]=sqr
(val[j]-treat_mean(i)

E

E

i=0

sserr=sserr+sserr_
tmp[i]

is i=(a-1)

sstrt=sstot-serr

mserr=sserr/(N-a)

mstrt=sstrt/(a-1)

fcal=mstrt/mserr

Read ftab from file

Yes

No

C

Yes

No

Yes

Yes

is fcal>=ftab
Pad is uniform

Pad is not uniform

No

Yes

Exit

D

D

 45

Figure 4.15: The Statistical Analysis Tool

4.3.8 Temperature Control

The Tmpcntrl class maintains the variables and methods for setting and

maintaining the temperature at a desired value during a run. Upon initialization,

communication is established with the CNi16D via the RS-232 protocol.

Independent functions cause the transfer of commands to and data from the

instrument.

During a run the control rests with the CAutomation class. This class

communicates with all the instruments by making use of objects of the respective

classes. If any command needs to be sent to an instrument the corresponding

function is called. Temperature control, by its nature, is a process that runs

continuously during the entire course of the experiment. This requires the control

to remain with the class that implements temperature control. However, this is

not possible. Therefore, the CAutomation class spawns a VC++ thread for this

purpose. Threads run parallel to the main program and are controlled by the

 46

process that initiates them. Threads are widely used in this application.

Temperature control is accomplished by comparing the current

temperature with the required temperature in order to develop the proper

correction. Based on the result of this comparison the CNi16D is instructed to

either activate or deactivate the relay that supplies power to the heater element.

Control is implemented only for raising the temperature and maintaining it at a

desired value. There is no capability for cooling. There is a dead-band of 2° F

before the relay is reactivated when the environment starts to cool. The

temperature controller uses the On/Off mode. PI, PD or PID mode can also be

used if required to control temperature.

4.3.9 Humidity Control

Humidity control is similar to temperature control. It needs to be

implemented in such a way that it runs in the background, as a process,

throughout the duration of the experiment. Unlike temperature, the humidity can

be controlled in both directions. The CHumcontrol class provides control for

humidification as well as dehumidification.

Upon initialization of this class the voltage from the HIH-3610 humidity

sensor is read by the DAQ and the corresponding humidity value is displayed on

the screen. Humidity Control is implemented in the form of a thread spawned

from the CAutomation class. The thread compares the current humidity with a

desired value and activates the required apparatus accordingly. The Humidity

Controller has a dead-band of 3 percentage points within which the setup

maintains its state. The environment control setup is presented in Figure 4.16.

 47

Figure 4.16: Setup For Temperature And Humidity Control

4.3.10 Class Interaction

The interaction between all the aforementioned classes can be illustrated

using a class interaction diagram. Each block in the diagram represents a class

in the software. The dialog boxes of the classes under Main are opened using

the menu on the Main dialog box. The Automation dialog box can be used to

open the temperature, humidity and the statistical tool windows. The 3-D graph

object can be updated during a run to reflect the latest data. The Class

Interaction Diagram is presented in Figure 4.17. The process steps used to

collect data will be addressed in Chapter 5.

Workstation

Temp.
Controller

Heater
Element

Temp./
Hum.

Sensor

Relay

Water

Environmental
Chamber

Fan

 48

Figure 4.17: Class Interaction Diagram

Login Main

Lock-In

Motion

Kepco

Automation

Temperature
 Control

Humidity
 Control

Automation
 Graph

 49

5 System Processes

The system can scan the pads under test in a number of different ways in

order to carry out an investigation of their properties. A regular scan with

constant angular and radial increments is most often used. A constant-radius

scan measures pad response at all points at a fixed distance from the center.

These two scans produce the maximum correlation between data taken on the

same test sample at different times due to the low uncertainty in the point

position. A random scan measures data without following a fixed pattern. This

type of scan can be used to examine surface uniformity by comparing the results

of two different tests over the same area. A spiral scan starts from the inside and

moves outward in a spiral. A spiral scan covers the maximum surface area. The

spiral scan requires the radial and angular motors to work simultaneously making

the associated algorithm more intricate.

5.1 Testing Procedure

In order to begin testing on a new pad its size and geometry have to be

known. The depth at which the readings are taken on a pad is a critical

parameter. If the probe is pushed too much into the pad it can create a

permanent stress at that point, which will alter the mechanical properties of the

pad. Hence, it is necessary to know the exact position of the pad’s surface

relative to the position of the probe on the Z-axis.

 50

5.1.1 Contact Point

The Contact Point is the distance of the pad’s surface from the zero

position on the Z-axis. The Contact Point of a pad depends on its thickness.

Prior to beginning experiments, it is necessary to determine the value of the

Contact Point in order to establish confidence in the depth parameter during a

run. An iterative function is used to determine the value of the Contact Point.

The procedure involves taking a set of readings and fitting them to a line. After

the next reading is taken, its deviation from the line’s equation is determined and

a new line is plotted if the reading exceeds a pre-defined threshold. A snapshot

of this function being executed is presented in Figure 5.1.

Figure 5.1: Find Contact Point Function

5.1.2 The Automation Thread

The software required numerous controlling and monitoring techniques in

order to work in tandem. Therefore, the concept of threads was used

 51

extensively. The automthread was used to make regular and repeatable scans

on the pad as explained in section 5.1.1.

The thread was started after the radial and angular positional parameters

were specified in the Automation window. The thread opened a file specified by

the user in order to store the collected data. The X and Z-axes motors were

initialized to their zero positions. The probe was moved to the specified starting

point. After the measurement was completed the VP 9000 moved the probe over

the radial and angular increments specified. Two parameters, runn and pause,

were used to check user intervention. If these variables became zero or one the

thread was stopped. The flowchart presented in Figure 5.2, page 4, illustrates

the steps involved.

5.1.3 The New-Automation Thread

The newautomthread was developed after the automthread. In the

automthread the parameters required for a run were specified in the automation

window. This limited the number of runs to one. If a new set of readings was to

be taken the parameter values had to be changed and the thread started again.

This problem was overcome in the newautomthread. This thread read the

variable values from a file and completed the run. The file was simply a text file

containing the position, angular increment, radial increment, depth, temperature

and humidity. Values for one run were specified without a line break. The

flowchart presented in Figure 5.3, page 5, illustrates the flow for the

newautomthread.

 52

Figure 5.2: Flowchart For Automthread

Start

Read(startpos, stoppos,
startang, stopang, radial-inc,

angular-inc, depth)

Open file to store
data

Set Lock-In
amplitude and

frequency

Is a=10 and
runn=0

Move probe to
Contact Point-800

on Z-axis

Move probe to
start position and
pad to startang

C

Move probe to
contact point

Move probe to
contact point-800

Move probe to
contact point +

depth

Read Magnitude
using Lock-In.
Update data on
screen, Write to

file, Update graph

Is position<stop
position

Is
angle>stopang

No

Yes

B

B

Increase position
by radial-inc

Deactivate Pump

Increment ang by
angular-inc,

position=startpos

Exit

Yes

Yes

ANo

ANo

A

C

 53

Temperature and humidity control were implemented by the

newautomthread. When the thread was started it spawned two processes to

control these physical factors. As long as the temperature and humidity

remained below a required level the thread was paused. The thread was only

restarted when the processes notified the thread that the required levels of

temperature and humidity were reached. The remainder of the thread is similar

to automthread. When a run was completed the motors were re-initialized, the

next set of parameters was read from the parameter file and the process

continued.

No capability existed, in the system, to implement cooling. Therefore, the

parameter file always specified increasing values of temperature.

Figure 5.3: Flowchart For Newautomthread

Start

Open file to store
data

Open control file

Is EOF A

Read(startpos,stoppo
s,stsrtang,stopang,an

g-inc,rad-
inc,depth,temp,hum

Start temp and
hum control

Are temp and
hum at reqd

levels

Update hum value
on screen

Yes

same steps as
automthread

ExitA

Yes

No

No

 54

5.1.4 The Temperature Control Thread

An object of the temperature control class was created when the

Automation class was initialized. The CNi16D was queried and the current

temperature was displayed in the dialog box. However, the dialog box was kept

hidden by the system. There were two situations that required starting

temperature control.

• If the temperature needed to be monitored for chamber characterization

purposes the thread would be started by using a button on the

temperature control dialog box.

• If monitoring was required during a run the automation thread could spawn

a temperature control thread from within itself.

Activating the Temp Control button on the automation window spawned a

thread called tmpctlthread. The only action performed by this thread was to

make the dialog box visible to the operator. The operator could then specify the

required temperature level and actuate the control. There were text boxes that

displayed the current and desired temperatures as the process continued.

The implementation of tmpctlthread was simple. A flowchart illustrating

the implementation of the thread is presented in Figure 5.4. Once a threshold

level was fixed, on the CNi16D, no further decisions about switching the heater

on or off were required. Upon starting, the thread checked to see whether the

required temperature was specified in the dialog box. If the required temperature

was not specified and the automation class had spawned the thread during a run,

the value of the threshold level was read from the automation class. The thread

 55

converted the required temperature value to its equivalent hexadecimal number

and passed the value to the CNi16D. The algorithm is presented in Figure 5.5.

At this point the actual control of the temperature was complete.

However, when the threshold was reached the automation thread had to be

notified so the run could continue. This was accomplished by calling a function

called comptemps. This function read the current temperature level and

compared it to the threshold value once a second. If the two were equal a

variable in the class was set. The automation thread monitored this variable in

order to determine if the experiment could proceed.

Figure 5.4: Flowchart For Temperature Control Thread

Start

Is value valid

Yes

Read
threshold

value from
dialog box

Convert value to
Hexadecimal

No
Read value

from
automation

class

Send threshold to
CNi16D

Call function to
compare

temperature

Exit

 56

Figure 5.5: Function To Convert A Decimal Value To A Hexadecimal String

5.1.5 The Humidity Control Thread

The Humidity Control dialog box was created during the creation of the

Automation class. However, like the temperature control dialog box, it was kept

hidden by the system until its use was required. Pressing of a button on the

Automation window spawned a thread called humctlthread that displayed the

window and exits. The value of the required humidity could be specified in this

window. The Start button on the window activated the humidity control. The

humidity control window could be used during chamber characterization or for

other purposes when neither of the automation threads was running. Another

Start

Get
temperature

value

Convert value to
integer

Convert value to
binary

Append zeros to
make length a
factor of four

Reverse order of
binary digits

Form groups of
four digits and find

hex value

Append hex value
to a string

Return hex string

Exit

 57

way to control humidity was to use the inhumthread. The newautomthread

started this thread, along with the temperature control thread, at the beginning of

a run.

The manner is which humidity control was implemented was markedly

different from the way temperature control was implemented. Temperature

control simply required setting the threshold value on the CNi16D and notifying

the automation class when the desired temperature was reached. This was

possible because the CNi16D was specifically designed to monitor and control

the temperature at a user-defined value. In the case of humidity control, there

was no single instrument that could implement control. Humidity control used a

combination of a DAQ board, a humidity sensor and a relay board.

When execution began, the thread first read the values of the required and

current humidity levels. If the humidity control dialog box was not open the

required humidity value was read directly from the automation thread. The

current value was read from the humidity control dialog box. Although this dialog

box might not be open, it existed, which made it possible for the required value to

be obtained. All the relays were put in the disabled state so that neither the

humidification nor the dehumidification apparatus was active.

The actual part of the thread that implemented the control was in the form

of a while loop. The loop checked the humidity level every second and made

decisions based on the current value. The thread made use of if statements to

make decisions. There was a dead band of 3 percentage points around the

required humidity level. When the actual humidity was in the dead band region

 58

the thread switched off the control apparatus. Specific commands and data

types were used to control the operation of the relays. These commands and

data types were part of the libraries supplied by National Instruments. They were

incorporated into the software. The flowchart presented in Figure 5.6 illustrates

the humidity control technique.

Figure 5.6: Flowchart For Humidity Control

Start

Read
threshold

value from
dialog

Is value valid
Read value

from
automation

class

Read current
humidity value

from screen

Switch off all
relays

Is flag=0

flaglow=0,
flaghigh=0,
flagequal=0

Read
voltage

from sensor

Convert voltage to
humidity value and

update screen

Is reqd
hum<actual

hum

Switch ort 0 ON,
Switch port 5 OFF,

flaglow=1

Is flaglow=0

Is reqd
hum>actual

hum

Is flaghigh=0

Switch port 5 ON,
Switch port 0 OFF,

flaghigh=1

Is flag_hum=1

Is reqd
hum<=actual

hum+3

flag=1, flagow=0,
flaghigh=0, port 0
OFF, port 5 OFF,

humok=1

Is
flag_dehum=1

Is reqd
hum>=actual

hum-3

flag=1, flagow=0,
flaghigh=0, port 0
OFF, port 5 OFF,

humok=1

Wait for 1 second

A

Yes

No

Yes

A

Yes

Yes

Yes

Yes

No Exit

 59

6 Results And Further Work

The previous chapters provide an account of the development process for

an application that integrated several instruments and brought them under the

control of a single software program. This chapter provides some results

obtained by using the various capabilities of the software program.

The main purpose of designing and building this software was to analyze

polyurethane pads and study their response to varying physical conditions. The

results can be used to find ways of making the pads more resistant to such

changes, thereby ensuring a longer working life.

Pads of various dimensions and geometry were tested using the system.

The following sections present results from tests performed on a pad using

statistical analysis.

6.1 Surface Uniformity Testing

There are various types of scans that can be used to collect statistical

data from the pads. The system was designed to enable operators to perform

various scans such as random, linear, full and sector-wise scans. This section

deals with sector scans.

The circular pad under study had a diameter of thirty-two centimeters and

a thickness of four millimeters. For the purpose of analysis the pad was divided

into three 120° sectors. A zero position was marked on the pad as a reference

 60

point for the radial motor. The three sectors ranged from 0°-60°, 120°-180° and

240°-300°. These three sectors were identified as Sectors 0, 1 and 2

respectively.

There were four parameters associated with every run. The values of

these parameters determined the number of observations made and the density

of points in every sector. The four parameters were as follows:

• Position: Each sector on the pad was identified by an integer. The value

of position specified the sector over which the measurements were made.

A value of “1” specified sector 1 (120°-240°).

• Radial Increment: This value specified the separation between

consecutive points on a line of the sector. A value of “8” would leave eight

millimeters between consecutive points.

• Angular Increment: Similar to Radial Increment, Angular Increment was

the angular separation between two neighboring lines on a sector.

• Depth: This parameter determined the depth to which the sensor pushed

into the pad to determine the response at a point.

The results obtained from the runs were stored in text files. These values

were analyzed using the statistical F-test to determine the uniformity of the pad

over a given sector. The tabulated results are presented in Table 6.1.

Sectors 1 and 2 were observed to be uniform as the probe moved along

the sector in a circular fashion. However, for these two sectors the radial

variations were significant. The observed readings varied as the probe was

 61

moved along the pad from the periphery to the center. Sector 3 was non-uniform

along both directions.

Table 6.1: Surface Uniformity Test Results

 Comparison F-test result
Sector 0 (0° to 60°): Line-wise

 Radial

Insignificant

Significant
Sector 1 (120° to 180°): Line-wise

 Radial

Insignificant

Significant

Calculating the correlation between the observed readings in two sectors

provides an idea about their physical similarity. A correlation close to 100%

signifies that the sectors have a similar surface whereas a low value of

correlation is an indication of non-uniformity between sectors. The particular pad

tested proved to have significant variations between sectors.

6.2 Effects Of Ambient Conditions

The pad response to changing conditions of temperature and humidity

was the focus of this testing. As in the previous tests the pad was divided into

three sectors of equal size, see Figure 6.1. Two more parameters, temperature

and humidity, were introduced. The parameter values are presented in Table 6.2

Table 6.2: Test Parameters

Position Radial
Increment

(millimeters)

Angular
Increment

(degrees)

Temperature

(° Fahrenheit)

Humidity

(%)

0 18 12 80, 90, 100 50, 60, 70
1 18 12 80, 90, 100 50, 60, 70
2 18 12 80, 90, 100 50, 60, 70

 62

Experiments using the parameter values in Table 6.2 yielded nine sets of

readings for each sector.

Figure 6.1: 60° Sectors On Pad

The analysis in section 6.1 was carried out using the Single Factor

Analysis method. In this case the only factor that caused variation in the pad’s

response was the location of the point on the pad where the reading was taken.

In order to check for the effects of temperature and humidity on the pad’s

response a Multifactor Analysis was used. The results from this test are

presented in Table 6.3.

Table 6.3: Multifactor Analysis Results

Factor F-test
Significance

Sector 0

F-test
Significance

Sector 1

F-test
Significance

Sector 2
Temperature Yes Yes Yes

Humidity Yes Yes Yes
Temperature*Humidity Yes Yes Yes

The results presented in Table 6.3 show that Temperature and Humidity

affected the pad’s response in every sector. The third column signifies that these

two factors acting together also have an effect on the pad. Therefore, if these

 63

two factors change together the pad’s response would be different than the

response obtained when one factor remains constant and the value of the other

factor is allowed to change.

6.3 Future Work

The statistical experiments conducted demonstrated that the system is

capable of testing the pads for their surface uniformity. A high value of uniformity

is desired in pads since this would lead to better polished IC wafers. The

experiments also demonstrated that the data acquired from the system can be

used to analyze the behavior of the pads under changing ambient conditions.

This analysis is very important since it helps in studying and improving pad

properties, which will ultimately lead to better yields in IC manufacturing.

Further statistical tests that use regression analysis are to be carried out

on the data taken by this system. These tests will determine the way in which

the changes in temperature and humidity affect the pad’s response. These tests

can determine whether the pad’s response will increase or decrease with a rise

or fall in the values temperature and humidity. These results are invaluable in

characterizing the pad’s behavior.

This system was designed to enable researchers to test pads using

ultrasound testing. This system can be modified to run tests on pads using laser

beams. In laser testing the response of the pad at a point is measured in terms

of the extent to which a laser-beam aimed at that point is scattered. The modular

nature of the software makes it very easy to integrate this type of testing into the

system. All that will be required is the inclusion of the device drivers for the laser

 64

interferometer and the development of a new class that controls the laser.

Coding for the laser experiments should follow the same philosophy as that for

ultrasound testing. A thread spawned by the main program can move the laser

over the pad and record readings as required.

 65

References

[1] Test Automation and Design of Experiments for Microelectronics CMP Pads,
Franklyn A. Diaz, December 2000

[2] Introduction to Object-Oriented Programming Using C++, Peter Müller,
Globewide Network Academy

[3] Learning the Java Language, 1995-2000 Sun Microsystems, Inc.

[4] J.P. Mueller, (1998) “Visual C++ 6 from the ground up”, Osborne/McGraw-

Hill

[5] http://www.taltech.com

[6] http://www.signalrecovery.com

[7] VELMEX, INC., VP 9000 Motor Controller, Command Manual

[8] Tektronix PS2520G Programmer Manual

[9] EG&G instruments, Inc. (1997), Model 7260 DSP Lock-In amplifier instruction

manual, Princeton Applied Research

[10] SC-205X Series User Manual

[11] SC-206X Series User Manual

[12] OMEGA, iSeries Controller Manual

[13] HIH-3610-001 Data Sheet, http://www.honeywell.com

 66

Bibliography

[1] OMEGA, iSeries Communication Manual

[2] Visual C++6: The Complete Reference, Chris H. Pappas, William H. Murray,

III, Osborne/McGraw-Hill

[3] C++: Effective Object-Oriented Construction: concepts, principles, industrial
strategies, and practices, Kayshav Dattatri, Prentice Hall PTR, c1999

 67

Appendices

 68

Appendix A: The RS-232 Standard

RS-232 Cables are commonly available with 4, 9 or 25-pin wiring. The 25-

pin cable connects every pin. The 9-pin cables do not include many of the

uncommonly used connections. The 4-pin cables provide the bare minimum of

connections and have jumpers to provide handshaking for those devices that

require it. These jumpers connect pins 4, 5 and 8 and also pins 6 and 20.

In the IBM PC AT and many new expansion boards a 9-pin serial port

replaces the 25-pin connector. A 9-pin to 25-pin adapter cable can be used to

connect this port to a standard 25-pin port.

Table A.1 and Figure A.1 present the transmitted and received signal

voltage levels and the protocol data format respectively.

Table A.1: RS-232 Signal Levels

Voltage Levels Transmitted Signal Received Signal

Binary 0 +5 to +15 Vdc +3 to +13 Vdc

Binary 1 -5 to -15Vdc -3 to -13 Vdc

Figure A.1: RS-232 Data Format

Start bit
(Binary0) Data Bits (5, 6, 7 or 8)

Parity
(Even, Odd

or None)

Stop bits
(1, 1.5 or 2)

 69

Appendix B: Programming For DAQ

Figure B.1: DAQ Programming Flow

The programming flow for data-acquisition devices is presented in Figure

B.1. These devices are programmed through register access to the various

chips and components on the hardware and by low-level calls to the operating

system to control the bus, map hardware and allocate PC memory. Nearly all

data-acquisition devices include high-level driver software, which isolates users

from any low-level programming. The driver software allows users to configure

the hardware so that the operating system recognizes it and provides a basic

programming interface.

The user selects channels, input ranges and buffer sizes during the

configuration step. During the start step the user instructs the device to start

acquiring data when it receives a trigger. In the read step the user directs the

program to transfer data across the bus to the PC memory. Once in memory, the

data is available for analysis and manipulation. The device can present the

results in a numeric, graphical or tabular format.

CONFIGURE START READ ANALYZE PRESENT

 70

Appendix C: Programming For Instruments

Figure C.1: Instrument Programming Flow

The programming flow for instruments is presented in Figure C-1.

Instruments are programmed via text commands or messages sent via I/O

interfaces. Interfaces have an associated driver that allows the user the send

commands to the device over the bus. Such drivers are incorporated into

industry standard libraries that hide details from the users of the specific bus.

Therefore, the programs written are indifferent to the type of interface being

used.

Instrument programming also follows a standard progression of calls as shown in

the Figure C.1. Upon initialization the instrument is prepared to receive

commands. Then the instrument is configured to make a specific measurement.

After the measurement is completed communication with the instrument is closed

in order to provide access to other applications.

INITIALIZE
INSTRUMENT

CONFIGURE
INSTRUMENT

MEASURE
PARAMETER

CLOSE
SESSION

 71

Appendix D: Software Documentation

This document is intended to serve as a manual for operating the system

by using the software program interface. Interfaces presented to the user during

execution of the program are explained in the same order as they appear.

D.1: Login

The Login screen is a security feature that prevents unauthorized use of

the system. Legitimate users can gain access to the system by providing their

login ID and password in the textboxes provided. The login-password

combination is validated from a database in the software.

D.2: Main

Prior to displaying the Main screen the system initializes all the required

hardware and communication channels. The text boxes in this screen were used

to control axes positions and signal parameters but are now redundant. These

variables are now controlled by other interfaces, which are explained later.

The Device menu-tab on this interface displays the screens to control

various instruments used by the system. The Settings menu is used to open the

automation window. The automation window controls various types of

experiments offered by the system.

D.3: Lock-In

The Lock-In screen is used to find the optimum oscillator frequency at

which the pad yields the maximum response. The required amplitude and the

 72

Appendix D: (Continued)

initial frequency are specified. The frequency sweep is started and the graphs

are updated as readings are taken at the specified amplitude. The optimum

amplitude and frequency were found to be 0.5 Vrms and 26 KHz respectively.

D.4: Motion

The Motion screen can be opened from the main as well as automation

screens. It is used to control and display the position as well as the speed of

motion of the sensor. The text boxes titled Big are used to specify the distance

through which the sensors are to be moved. The value in millimeters is

multiplied by a factor of 10 and written into these boxes. There are two boxes,

one for linear and the other for angular motion. The speed of motion is varied by

checking the small or fast radio buttons. Small provides a speed range of 1500

to 2500 steps/second and fast provides a range of 2500 to 3000 steps/second.

The home buttons for the respective axes move the sensor to the home or

zero position of that axis. The movement is started by pressing the arrow

buttons once for moving the axes through one step.

D.5: Contact Point

Altering the depth parameter significantly changes the value of the

measured signal. It is therefore necessary to accurately determine the depth at

which the measurement is made. The zero position of the Z-axis is fixed and

therefore the distance from this position to the surface of the pad is required to

specify the depth.

 73

Appendix D: (Continued)

The Find Contact Point function is invoked from the automation screen to

measure this distance. This module does not require any input from the user.

However, before starting this program it is necessary to use the motion menu

and move the sensor to a point over the pad. The function uses an algorithm

that differentiates between successive readings to detect contact between the

sensor and the pad. The jump in the response signal is used to determine the

location of the contact point. The contact point and the intermediate readings are

displayed on the screen.

In order to get an average value for this parameter the function can be run

at various points on the pad and the readings can be averaged.

D.6: Automation

The automation window specifies parameters for runs and starts and

monitors experiments. Every run has four basic parameters associated with it;

sector, radial increment, angular increment and depth. Temperature and

humidity levels are specified if the effect of these factors on the pad is under

study.

The four parameters, sector, radial increment, angular increment and

depth, can be specified on the screen in the dialog boxes provided. The start

position, end position and increment are specified for the X and Radial axes.

Pressing the linear start button starts the experiment.

 74

Appendix D: (Continued)

The file to which the readings are to be saved is specified in the File

settings area. This file can later be used to provide a graphical representation of

the pad’s surface based on the observed readings.

It is also possible to use the system in such a way that successive

experiments are carried out with various combinations of the parameters. The

parameters for every run are written line-by-line in a text file.

The parameters are specified in sequence of sector, angular increment,

radial increment, depth, temperature and humidity. At the end of every run the

system resets itself and begins a new run with the new parameters on the next

line in the control file. In this mode the start and stop angle and radius are not

specified since these are fixed at 0°, 60°, 250 mm and 154 mm respectively. The

radial values depend on the pad’s size and have to be changed in the software to

values that depend on the pad’s radius.

The automatic mode is activated from the Choose file area by selecting

the Run from file checkbox. The Automation control area starts and stops runs

as well as displays the readings as they are taken. The Data Graph button

opens the Graphical screen. The Find C.P. button is used to view the Contact

Point window.

 75

Appendix D: (Continued)

D.7: Graph Data

This screen allows the user to view a 3-D graph of the readings. The color

displayed at a point on the graph depends on the value of the reading at that

point. The user can also view x-y, x-z, and y-z axes projections of the graph by

selecting the corresponding checkboxes on the right side of the image. The

graph and color style is selected by checking the required radio button. The

program offers nine graph styles and three color styles to facilitate analysis.

In order to graph a particular data set the Graph Data button is pressed.

The required file is selected from the file browser that opens.

D.8: Temperature And Humidity Control

The programs to control these parameters can be started in two ways.

During chamber characterization, pressing the Temp. Control or Humidity Control

buttons on the automation screen displays the respective screen. The required

value for the parameters can be specified in these screens. Upon activating the

Start button the temperature and humidity control starts and the changing values

of the parameters are updated on the screen.

In the second mode the automation class activates these programs at the

start of each run. The user has to specify the value of the required temperature

first and then humidity in the control file after the other parameters. In this mode

the dialog boxes for the programs that control these two factors are not

displayed. The value of the current temperature can be read from the front panel

of the CNi16D and the humidity is displayed on the automation screen as it

 76

Appendix D: (Continued)

changes. The experiment does not start till these parameters reach their

required values.

D.9: Statistical Analysis

The statistical F-test is used to determine the uniformity of the pad. The

statistical analysis toolbox does this test on a set of readings and determines

whether the pad is uniform or not. The user has to browse and select the file in

which the readings for a run are stored. Upon activating the Go button the

program compares the calculated and tabulated F-values and provides the result

in the textbox provided.

	System Integration and Testing using Object Oriented Programming based Control
	Scholar Commons Citation

	Microsoft Word - Thesis_Prashant.doc

