


Figure 10. Data (the white polygon shows the outline of grid sampling mask for higher resolution of near field), model
(uniform slip model 1 in Table 3), and residual of line of sight displacement field from Envisat satellite interferograms of
(top) descending tracks 270 (21 March 2009 to 12 September 2009) and (middle) 499 (06 April 2009 to 28 September 2009)
and (bottom) ascending track 034 (02 September 2004 to 27 August 2009). Observed and modeled horizontal GPS
displacement vectors are shown in black and red. The green line shows the near-vertical model fault surface. The yellow
dots in the model column show the location of the main shock and the major foreshock and aftershock [Castro et al., 2011].
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uncertainties. On the 95% confidence interval (2 sigma uncertainties) the rupture width is between 12 and
14 km, strike slip between 1.4 and 1.5m.

Different weighting assumptions influence parameters of the best fittingmodel parameters. The sensitivity of
each model parameter to the relative weighting can be estimated by comparing the solutions obtained from
modeling only one data set at a time (Figure S1). In general, it can be said that model fault length varies
between 50 and 75 km, the strike between 129° and 138°. The dip and the location of the fault center
location vary insignificantly. The parameter that is most sensitive to the data weighting assumptions is the
fault depth, which can vary between 7 and 18 km. Difference in fault width implies a change in the slip
(1.1 and 2m). In all models, the resulting fault width was close or equal (<1 km difference) to the fault
depth, implying that (near-) surface rupture provides the best fit to the data. However, lack of observations
within a few kilometers from the fault means that we cannot confirm surface rupture. The overall
deformation pattern of models with different weighting assumptions does not differ greatly from the
results shown in Figure 10.

Figure 11. Probability density functions obtained from Gibbs sampling using 50,000 sweeps at a temperature of �1. The
dotted lines show the best fit solution. Best fit fault center solution is at �113.48°E, 29.22°N.

Table 4. Fault Location, Geometry, and Slip From Coseismic Deformation Modeling (This Study) and Rupture Surface Parameters From Seismic Data Analysis

RMS (mm) l (km) d (km) h (km) δ (deg) s (deg) Longitude (°E) Latitude (°N) ss (m) ds (m) Mw Mo (Nm)

Inversion boundaries (min, max)
40 100 520 0–5 85°, 95° 120°, 140° �113.6°, -113.4° 29.2°, 29.3° <0.5

(1) Uniform slip model
22.8 65 13 0 90 130 �113.48 29.22 1.4 - 7.0 3.38 × 1019

(2) Uniform slip model with dip slip
21.9 65 11 0 86 130 �113.48 29.22 1.6 0.1 7.0 3.29 × 1019

(3) Uniform slip model without correcting ascending interferogram for interseimic signal
21.3 65 11 0 86 134 �113.48 29.22 1.5 - 7.0 3.11 × 1019

Global CMT
12.2a 87 311 �113.53 29.22 1.78 6.9 2.55 × 1019

Castro et al. [2011]
43 to 100 10 to 14 13.7a �113.42 29.21 1.3 2.59 × 1019

aHypocenter depth/focal depth.
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We also tested models with a dip-slip component (Table 4, model 2) and a model for which the ascending
interferogram was not corrected for interseismic strain accumulation (Table 4, model 3). For both, we find
that the inversion results are similar to model presented above. The residuals for a model in which the
ascending interferogram was not corrected for interseismic strain accumulation show that the model
underestimated westward motion of Baja California and eastward motion of Angel de la Guarda Island
(best seen for comparison of modeled and observed GPS vectors).

Based on the well-constrained model parameters fault center location, strike, and dip (Table 4), we calculate
the best fitting slip distribution on the fault plane. We extend the fault plane to be 120 km long in order to
account for aftershocks in the Lower Delfin Basin. In depth we allow slip down to 14 km (approximating
the coseismic rupture width). The fault surface is divided into patches of dimension 2× 2 km. At each fault
patch we solve for the strike-slip magnitude only, because the small component of dip slip inferred in
model 1 did not improve the model misfit heavily. We test different degrees of surface roughness, with
increasing slip variation reducing the misfit (Figure S2). Our preferred solution is picked for a smoothing at
which the misfit decrease has just converged as described in Jonsson et al. [2002] and has a mean
roughness of 8.8 cm/km. As expected, the RMS is for this model smaller than for the uniform dislocation
model (Table 4). The slip distribution pattern (Figure 12) shows that most slip occurs above 10 km depth,
with the fault slip maximum of 2m between 2 and 6 km depth, about 10 km northwest of the fault center

Figure 12. Predicted strike-slip distribution along the 120 km long and 14 kmwide fault plane with a slip maximum of 1.9m. Fault center location at 60 km as shown
in Figures 2 and 3 (�113.48°E, 29.22°N).

Figure 13. Coseismic ΔCFS resulting from right-lateral offset along the Ballenas Fault (white line) with slip distribution as
shown in Figure 12 calculated on (a) the orientation of the Gulf of California transform faults (312°) at depth of 10 km and
(b) the orientation of the basins (perpendicular to transforms) at depth of 10 km. Red color indicates increased probability for
failure, blue indicates decrease. The black dots are aftershocks from Castro et al. [2010]. The white star shows the location of
the 2009 earthquake, and the green star shows the location of the 2012 Mw 6.9 earthquake.
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(Table 4). While in the northwest there is only little displacement beyond 30 km from the fault center, in the
southeast we find>1.0m slip to extend beyond the Ballenas Basin (extent of the 120 km fault plane is shown
in Figure 12). The geodetic moment is 3.96 × 1019.

5.3. Coulomb Stress Change

We use the distributed slip model to calculate the Coulomb stress changes produced by the main event and
the nearby aftershocks using the software Coulomb 3.3 [Toda et al., 2011]. The change in Coulomb failure
stress (ΔCFS) is defined as ΔCFS = Δτ�μ′Δσn [King et al., 1994], where Δτ is the change in shear stress, μ′ is
the coefficient of effective friction, and Δσn is the change in normal stress. A positive ΔCFS indicates that
the receiver fault has been brought closer to failure, while a negative ΔCFS means that the next rupture
has been delayed. We carried out coseismic ΔCFS calculations on the geometry and expected kinematics
of nearby transform faults (Figure 13a) and normal faults bordering the basins perpendicular to the
transform faults (Figure 13b). The earthquake did slightly (~0.2 bar) increase the stress on the transform
fault south of the Ballenas (Figure 13a) and may have triggered the April 2012 Mw 6.9 event at the
northern end of the Guaymas Fault segment (Figure 1). A larger Coulomb stress increase (~0.5 bar) is
registered on the normal faults bounding the Ballenas Basin to the south and the Lower Delfin basin to
the north (Figure 13b). The latter in particular is characterized by several aftershocks that, according to our
modeling, may have been triggered by the stress changes produced by the 2009 main shock.

Table 5. Estimates of Relaxation Time Derived From Postseismic GPS Measurements

Site Best Relaxation Time (Days) Reduced Chi-Square WRMS (mm)

IAG1 120 0.64 1.1
BGUA 178 0.79 1.7
YUBA 194 0.81 1.3
VLSE 186 0.75 1.3
LSEC 195 1.1 1.9

Figure 14. Reduced chi-square for the fit of the time series of BGUA (blue) and IAG1 (red) as a function of the relaxation
time. The best fit relaxation time for the two sites is 178 and 120 days, respectively. The blue and red arrows at the top
represent the values of relaxation times that are statistically compatible with the fit of the time series within a 95% confi-
dence interval.
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6. Postseismic Relaxation

The sites LSEC, VLSE, YUBA, BGUA, and
IAG1 present a very strong postseismic
signal (e.g., Figure 6). Assuming an
exponential decay of the signal, we can
invert the time series for the three
components (north-south, east-west,
and up-down) of each station for a
single best fit relaxation time following
Malservisi et al. [2015]. The best fit
relaxation time for the sites within the
Baja peninsula varies from 178 to
195 days (Table 5). For IAG1 (located on
Isla Angel de la Garda) the best fit
relaxation time is 120 days. However,
the length of the time series and the
presence of a second earthquake in
2012 limit our ability to constrain the

upper bounds of the relaxation time. The lower bounds are well constrained (Figure 14). Although
statistically all the best values are equal within uncertainties, the analysis shows the possibility that the
relaxation time for the sites close to (or within) the Gulf of California have lower relaxation times. This
would imply some rheological asymmetry across the Ballenas Fault.

7. Discussion

The Gulf of California has long been the focus of measurements of relative motion between the Pacific and
North American plates because the width of plate boundary zone here is small compared to the continental
San Andreas system to the north [Vacquier and Whiteman, 1973; Dixon et al., 1991]. While the initial optical
parallax measurements of Vacquier and Whiteman [1973] were not able to obtain a satisfactory result due
in part to atmospheric effects, and the geodetic measurements presented here are nearly 2 orders of
magnitude more precise than those early measurements, it is interesting to note that uncertainties
associated with atmospheric propagation still represent a significant fraction of the error budget for
modern space geodetic techniques.

Detailed studies of the well-exposed San Andreas system have led to an understanding of how relative
motion is partitioned across various fault segments of this continental transform system and to some
extent how this deformation evolves through time [e.g., Minster and Jordan, 1978; Argus and Gordon, 2001;
Dixon et al., 1995, 2000b; Faulds et al., 2005a; Schmalzle et al., 2006; Plattner et al., 2010]. One of the
conclusions from these studies is that the San Andreas Fault (in a strict sense) accommodates
approximately 75 ± 5% of total relative plate motion. In contrast, the Ballenas Transform accommodates at
least 90% of Pacific-North America plate motion. We suspect that the difference is at least in part related
to the setting of the latter within young oceanic crust, and locally high heat flow, which weakens the crust.
The relatively shallow interseismic locking depth obtained in our study is consistent with this picture. The
sections below present some additional implications of our findings.

7.1. Interseismic

The interseismic strain accumulation models fit the geodetic data well, and the low reduced χ2 misfit
indicates that GPS uncertainties may be overestimated, as already observed by Hackl et al. [2011, 2013].
Data and models confirm that most of the Baja California-North America motion is accommodated at the
Ballenas Fault, making it one of the fastest-slipping strike-slip segments between the Pacific and North
American plates. Given its Pliocene age and total offset of 130 km, deformation must have localized rapidly
within the Ballenas Channel.

Our model slip rate has implications for the activity and deformation rate on faults east of Angel de la Guarda
Island that formed during Proto-Gulf extension (Figure 15). The total deformation in the Gulf of California and

Figure 15. Comparison of Ballenas Fault slip rates (highest and lowest
rate estimates) with Baja California-North America (BC-NoAM) [Plattner
et al., 2007] and Pacific-North America (PAC-NoAM) [DeMets et al., 2010]
plate relative motion and implications for deformation rates east of Angel
de la Guarda Island (AGI) (dark grey shaded areas) and west of Baja
California (BC) peninsula (indicated by vertical bars).
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coastal Sonora can be estimated from rigid plate motion between Baja California microplate and stable North
America. At the fault location, this rate amounts to 44.9± 2.4mm/yr [Plattner et al., 2007]. We subtract our model
slip rate for the Ballenas Fault from the plate relative motion to estimate remaining deformation that must be
accommodated east of Angel de la Guarda Island. Using our highest Ballenas Fault slip rate estimate of 47.5
± 0.8mm/yr (model 1), the fault rate agrees with the relative plate motion rate within uncertainty. This
implies that faults east of Angel de la Guarda Island are either inactive or deform at rates that in total do not
exceed the overlap in slip rate considering uncertainties, i.e., 0.6mm/yr. Using the lowest slip rate estimate of
V=46.0 ± 0.9mm/yr allows a higher deformation rate of 2.2mm/yr and requires a minimum of 0.4mm/yr to
be accommodated on faults east of Angel de la Guarda Island. These generally low rates agree with studies
that documented the westward migration of motion in the Gulf of California, inactivity of faults in the
Tiburon Basin and on the coast of Sonora, and low deformation rates (<1mm/yr) for faults on Tiburon Island
[Gastil et al., 1975; Gastil and Krummenacher, 1977; Aragon-Arreola and Martin-Barajas, 2007; Martin-Barajas
et al., 2013; Bennett et al., 2013]. Additional GPS data in central Baja California between site VIEJ and
the Vizcaino peninsula, and on the islands east of the Ballenas Channel and in coastal Sonora, would provide
better constraints on the slip rate of the Ballenas Fault, but our data clearly point to this fault
accommodating the great majority of plate motion at this fault location.

Given the slip rate estimate for the Ballenas Transform we can also derive a better estimate for the maximum
allowable deformation west of Baja California (Pacific-Baja California plate relative motion, e.g., Tosco-
Abreojos Fault [Dixon et al., 2000a]). To do so, we first calculate the full Pacific-North America plate motion
from MORVEL (51.0 ± 0.8mm/yr [DeMets et al., 2010]) for the latitude of the Ballenas Fault. Then we
subtract the maximum and minimum rates for Baja California-North America (based on the slip rate of the
Ballenas Fault) to obtain the minimum and maximum slip rates of the Tosco-Abreojos Fault, giving
2.9mm/yr and 5.3mm/yr (model 1) and 6.9mm/yr (model 2) (Figure 15). For comparison, the Pacific-Baja
California plate relative motion calculated at GPS site BTAP near the Tosco-Abreojos Fault, using a new
Pacific-Baja California Euler pole that was calculated according to Plattner et al. [2007], augmented by our
new data, is of 3.6 ± 0.5mm/yr (Table S2). Additional measurements in and near the Vizcaino peninsula
would also allow study of the interseismic strain accumulation from the Tosco-Abreojos Fault.

Our best fitting fault locking depth (between 11.7 ± 1.0 km in model 1 and 10.4 ± 1.5 km in model 2) is
compatible with the base of seismicity at 10–15 km along transform faults in the northern and central Gulf
of California [Goff et al., 1987; Castro et al., 2010, 2011; Sumy et al., 2013]. Our model result only defines
fault location at our GPS transection. We suspect along-strike gradients in the locking depth along the
Ballenas Faults (with lower locking depth in vicinity of the Ballenas Basin) due to variation in heat flow
resulting from mantle upwelling beneath the basins [Wang et al., 2009]. Our limited data and simple elastic
half-space models with homogenous rheology cannot resolve possible variations in the locking depth
across the Ballenas due to variation in crustal thickness resulting from extension history [Lopez-Pineda
et al., 2007; González-Fernández et al., 2005; Lizzeralde et al., 2007].

While our data are well fit by a single fault model, data uncertainties and lack ofmeasurements close to the fault
mean that we cannot preclude two or more closely spaced faults within the channel, separated by up to 10km.
Within that distance, the number of faults does not affect our estimate of either fault locking depth or total slip
rate, the latter being mainly constrained by the velocity of stations in the far field (BTAP, PCLY, and HER2).

7.2. Coseismic

Our best fit model confirms a right-lateral strike-slip event within the Ballenas Channel, and the fault location
agrees with the bathymetric fault trace and the seismic centroid location within the joint uncertainty of the
geodetic and seismic data sets. The fault strike agrees with the bathymetry data and with the direction of
Baja California-North America rigid block motion at this latitude (311°). The fault length and orientation is
in agreement with the locations of the major foreshock (Mw 5.5, south of the epicenter) and aftershock
(Mw 6.2, north of the epicenter).

Our coseismic fault models have a rupture depth of 13 km, equivalent within uncertainties to the seismic
estimates of 10–15 km for the base of earthquake nucleation along transforms in the Gulf of California
[Munguia et al., 1977; Goff et al., 1987; Castro et al., 2010, 2011; Sumy et al., 2013] but deeper than our
estimates for the interseismic fault locking depth. Agreement between both parameters is not expected,
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because the two approaches estimate the depth of the brittle-ductile transition zone over different time
scales. The comparison implies either that the rupture has propagated into the ductile zone or that our
geodetic model includes afterslip or viscous deformation accommodated in or near the ductile zone
during the early postseismic period following the earthquake. The latter is supported by the presence of a
(later) postseismic relaxation signal in the GPS time series (Figure 6).

The geodetic moment of our uniform slip model is 3.38 × 1019 Nm. This is 33% larger than the seismic
moment of the main shock (2.55 × 1019 Nm reported by Global CMT catalog or 2.59 × 1019 Nm reported by
Castro et al. [2011]) and 16% greater than the sum of the main shock, foreshock, and major aftershock
(2.90 × 1019 Nm derived from Global CMT catalog) (and greater if the moment of the distributed slip model
of 3.96 × 1019 Nm would be used for comparison). This difference most likely reflects early postseismic
deformation observed by the geodetic data that may be associated with aseismic transient deformation as
afterslip, viscous, or poro-elastic deformation. As mentioned above, the presence of a later postseismic
relaxation signal in the GPS time series supports this hypothesis (Figure 6). Unfortunately, lack of data in
the period immediately after the earthquake do not allow a quantitative estimation of the early aseismic
deformation, making it difficult to separate this signal from the coseismic deformation in our modeling.
Data uncertainties and sensitivity of the inversion of both the geodetic and seismic data due to factors like
unmodeled structural heterogeneity could also explain some of the difference. For example, it has been
shown that the scalar moments of earthquakes in oceanic crust obtained by centroid moment tensor
inversion have a standard deviation of 15% [Hjörleifsdottir and Ekström, 2010].

It has been argued that the stress drop of 2.2MPa derived from seismic analysis for this earthquake [Castro
et al., 2011] was low in comparison to average stress drop for strike-slip earthquakes (6.0MPa) [Allmann
and Shearer, 2009]. Furthermore, it has been suggested that the discrepancy may be explained by slow
rupture processes, not well recorded in the seismic data [Castro et al., 2011]. In this case, the geodetic slip
model should show a greater moment because the deformation measurements are independent of the
rupture speed causing them. Using our geodetic moment and the rupture length and width from our
homogenous strike-slip model (Table 3), however, we calculate a stress drop of only 1.6MPa [Lay and
Wallace, 1995]. Thus, we argue that slow rupture processes cannot explain the discrepancy.

Sumy et al. [2013] showed that most large earthquakes within the Gulf of California are strike-slip events that
occur along transforms and cluster at ridge-transform intersections. Basin extension may occur by aseismic
processes, with some exceptions as observed in the Salsipuedes/Ballenas Basin in 2003 [Lopez-Pineda et al.,
2014] (Figure 1). Our preferred model does have a dip-slip component; however, this component is very
small, and good fit to the data is obtained with a pure strike-slip event (Table 4, model 2). Our model fault
propagates into the Salsipuedes/Ballenas Basin, striking along the basin’s eastern margin, and does not
terminate at the ridge-transform intersection. Clustering of several smaller aftershocks was found north of
the Ballenas Transform, at and beyond the Lower Delfin Basin (Figure 13), while the rupture process
started by a moderate size foreshock south of the Salsipuedes/Ballenas Basin [Castro et al., 2011] (Figure 10).

8. Conclusion

We presented space-geodetic data fromGPS and InSAR showing the surface deformation from interseismic strain
accumulation and coseismic stress release from the 3 August 2009Mw 6.9 earthquake at the Ballenas Transform,
Gulf of California. Themodel results suggest that the Ballenas Transform accommodates basically the entire Baja
California-North America plate relative motion, with a slip rate of 47.3± 0.8mm/yr, far exceeding the rate of
individual intracontinental strike-slip faults in the north, i.e., the San Andreas Fault. Our interseismic and
coseismic deformation modeling have provided information on the interseismic locking depth (11.4± 1.1 km)
and geodetic fault rupture width and depth (14 km). We explain the different depth estimates by postseismic
deformation, as later measurements from GPS show evidence for postseismic relaxation. Associated
relaxation time estimates are consistent with but do not prove rheological contrast across the plate boundary.
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