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A Comparison of Meta-analytic Approaches to the Analysis of Reliability Estimates 

Denise Corinne Mason 

ABSTRACT 

 

 In the last few years, several studies have attempted to meta-analyze reliability 

estimates.  The initial study, to outline a methodology for meta-analyzing reliability 

coefficients, was published by Vacha-Haase in 1998.  Vacha-Haase used a very basic 

meta-analytic model to find a mean effect size (reliability) across studies.  There are two 

main reasons for meta-analyzing reliability coefficients.  First, recent research has shown 

that many studies fail to report the appropriate reliability for the measure and population 

of the actual study (Vacha-Haase, Ness, Nilsson and Reetz, 1999; Whittington, 1998; Yin 

and Fan, 2000). Second, very little research has been published describing the way 

reliabilities for the same measure vary according to moderators such as time, form length, 

population differences in trait variability and others.  Vacha-Haase (1998) proposed 

meta-analysis, as a method by which the impact of moderators may become better 

understood. 

 Although other researchers have followed the Vacha-Haase example and meta-

analyzed the reliabilities for several measures, little has been written about the best 

methodology to use for such analysis.  Reliabilities are much larger on average than are 

validities, and thus tend to show greater skew in their sampling distributions. 

 vi
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This study took a closer look at the methodology with which reliability can be meta-

analyzed.  Specifically, a Monte Carlo study was run so that population characteristics 

were known. This provided a unique ability to test how well each of three methods 

estimates the true population characteristics.  The three methods studied were the Vacha-

Haase method as outlined in her 1998 article, the well-known Hunter and Schmidt “bare 

bones method” (1990) and the random-effects version of Hedges’s method as described 

by Lipsey and Wilson (2001).  The methods differ both in how they estimate the random-

effects variance component (or in one case, whether the random-effects variance 

component is estimated at all) and in how they treat moderator variables.  Results showed 

which of these methods is best applied to reliability meta-analysis.  A combination of the 

Hunter and Schmidt (1999) method and weighted least squares regression is proposed. 

 

vii 
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Introduction 

 

For years a debate has raged concerning the utility of the social sciences in light 

of an apparent lack of clarity around research findings.  (Hunter and Schmidt 1990; 

Lipsey and Wilson, 2001; Rosenthal, 1987).  This debate seems to be fueled by the habit 

of behavioral and social scientists to consistently call for more research in the discussion 

and concluding remarks of published studies. 

In an effort to quell the criticisms leveled at the social sciences, various methods 

for aggregating data across studies have been developed in the hope that aggregate data 

analysis would provide the social sciences more surety in drawing conclusions.  Many of 

the earliest methods of aggregation were based on literature reviews.  Conclusions were 

drawn based on the reviewers’ overall perceptions of what each study added to the 

current knowledge in the area.  However, such qualitative analyses left many unanswered 

questions because of the potential for bias. 

A Brief History of Meta-Analysis 

In the late 1960’s and early 1970’s one of the major debates within the behavioral 

and social sciences concerned the effectiveness of therapy in clinical psychology.  

Reviews of the literature had left many wondering whether clinical therapy was effective.  

Gene Glass (1976) presented what he called “meta-analysis” as a way to combine the 

results of multiple studies in a quantitative way.  He and a colleague analyzed over 400 

studies designed to assess the effectiveness of psychotherapy.  He was able to show that, 
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on average, across a large number of studies, therapy made a significant difference in the 

client outcomes. 

Glass (1976) provided this example to show how meta-analysis could be used to 

compute an average effect size across studies. Glass also demonstrated that such 

averaged effect sizes could be used to find conclusions among opposing findings.  Prior 

to meta-analysis, most methods for summarizing studies failed to incorporate the effect-

size statistics and instead simply summarized the findings on a categorical basis (i.e., 

significant vs. not).  An effect-size statistic is the index used to represent study findings 

in direction and magnitude (Lipsey and Wilson, 2001).  Meta-analysis is essentially the 

survey research method by which the effect size of the research studies is surveyed, 

weighted and compared. 

Glass’s meta-analytic method caught the eye of many psychologists and remains 

well cited in the social sciences.  Other meta-analytic pioneers include Rosenthal (1987), 

who studied experimenter expectancy effects, and Schmidt and Hunter (1977), who 

studied employment testing.  All such studies have now been labeled “meta-analysis” but 

each method has its own specific idiosyncrasies. 

Within the Industrial and Organizational literature, the Schmidt and Hunter 

(1977) (later Hunter and Schmidt, 1990) method of meta-analysis is probably the most 

well-cited and -used model for analyzing study results.  Of particular interest in this field 

has been the study of the validity of personnel tests.  Schmidt and Hunter (1977) 

introduced the concept of "validity generalization."  They presented the theoretical 

position that in the test validation context, test validity is a constant as long as all the 

following elements are equivalent: (a) job family (b) type of test and (c) criterion of 
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overall job performance.  They then built a step-by-step meta-analytic method based on 

that theoretical assumption.  Their meta-analytic approach became known as validity 

generalization. 

The popularity of the Schmidt and Hunter approach is apparent, as the majority of 

published meta-analyses with Industrial and Organizational psychology have focused on 

validity generalization (Hall, 2000).  However, there is potentially a difficulty in using 

this method for reliability because it was developed specifically for validity.  It is 

apparent that validity is always impacted by reliability, but what subtle difference in 

methodology might there be when looking at the relationship from the reliability 

perspective alone?  Although the Schmidt and Hunter (1977) and Hunter and Schmidt 

(1990) took the reliability of the test into consideration as one of the "artifacts" in the 

study, they treated reliability reporting as a secondary consideration. 

To be fair, Hunter and Schmidt (1990) did include a method to estimate reliability 

using hypothetical distributions in their procedure when reliability is not reported.  

However, neither Schmidt and Hunter (1977) nor Hunter and Schmidt (1990) focused 

directly on the estimation of reliability across studies.  Therefore, the degree to which 

their procedures apply to reliability estimates rather than validity estimates is something 

of an open question. 

Recent reviewers of the meta-analysis of reliability data by Vacha-Haase (1998) 

and others (Vacha-Haase, Ness, Nilsson and Reetz, 1999; Yin and Fan, 2000; 

Whittington, 1998) have shown that published studies rarely incorporate the correct 

reliability estimates.  Vacha-Haase et al. (1999) noted that as many as half of all studies 

fail to report the reliability estimates based on that study’s data.  Such omissions occur 
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despite the American Psychological Association's (APA, 1994) encouragement in the 

publication guidelines to report effect size, reliability and related statistics for each study. 

Because reliability is not reported in many studies and because reliability directly 

impacts validity, validity estimates for individual studies may be erroneous or misleading 

to an unknown degree.  One obvious means of combating the problem is to report the 

reliability for the local study.  Another less obvious means is to estimate the reliability of 

the study results after the fact from data in other studies.  Note that even if the local 

reliability is estimated, the accuracy of the estimate will depend upon the sample size of 

the local study.  Small samples provide estimates with relatively large sampling 

variances.  Vacha-Haase (1998) recognized this and suggested a meta-analytic approach 

to assessing reliability within multiple studies.  Although this approach is creative, the 

application of meta-analytic methods to reliability estimates may prove troublesome.  

The goal of this project was to investigate the application of meta-analysis methods to 

reliability data in order to provide some recommendations about which techniques appear 

best suited to the analysis.  The paper is organized by the following steps: 

1.  Review the basics of reliability,   

2.  Describe how inappropriate reliability estimates can impact the 

current status of the literature,  

3. Review the current status of the meta-analysis of reliability 

estimates, 

4. Compare estimates from current methods analysis to known 

parameters in order to make recommendations about which techniques appear 

best under what conditions. 
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A Review of Reliability 

In the early 1900’s Spearman introduced the Classical Measurement Theory.  In 

his theory he defined reliability as “the consistency with which individuals are rank 

ordered by measurement across parallel test forms, repeated measures or other estimates 

of consistency in measurement” (Spearman, 1910, p. 272). 

Since that time, researchers within the Industrial and Organizational Psychology 

literature have created hundreds of assessments.  Researchers have usually estimated the 

reliability across the studies using the following recognizable measures:  

 Cronbach’s Alpha.  Cronbach’s Alpha is based on a single administration of the 

test.  Cronbach’s Alpha estimates the correlation between ‘randomly parallel’ tests or 

hypothetical sets of items ‘just like these’ (Nunnally and Berstein, 1994).  Cronbach’s 

Alpha is the most frequently reported reliability statistic, but it is difficult to meta-

analyze because its sampling distribution is unknown. 

 Kuder-Richardson’s Formula.  Kuder-Richardson’s formula is based on a single 

administration of the test and is used specifically with dichotomously scored data. 

 Split-half reliability eoefficient.  Split-half reliability coefficient is based on a 

single administration of the test.  The Split-half reliability coefficient is the single-

administration analog to alternate forms reliability estimates.  According to the split-half 

method, reliability is estimated by computing the correlation between two subsets of the 

overall measure. 

 Test-retest.  Test-retest is the comparison of scores reusing the same measure. 

 Alternate Forms method.  Alternate Forms method is the comparison of the scores 

based on equivalent measures (Nunnally, 1978). Of course, two different forms can also 
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be given at two different times and compared this type of correlation is sometimes 

referred to as a coefficient of stability and equivalence (Cronbach and Gleser, 1964). 

Although all of these forms of reliability have been used in the literature for over 

30 years, reliability still remains an elusive concept to many.  This may be due in part to 

the multiple ways in which it is calculated.  However, a lack of understanding of 

reliability may be part of the reason why it is under- or mis-reported. 

The Debate Over the Meaning of Reliability 

Although the estimation of reliability may take on many forms, the underlying 

assumption in all of these formulas is that reliability is based on the scores obtained from 

the measures and not on the measures themselves (Thompson and Vacha-Haase, 2000).  

Despite the statistical assumption however, the psychometric translation of the concept of 

reliability seems to have undergone an interesting shift in meaning.  As Sawilowsky 

(2000) noted, “reliability has become associated with the measure or test itself and its 

basis in the sample scores seems to have become less clear”.  This lack of clarity has led 

authors of the current literature to debate the meaning and subsequently the reporting of 

reliability in the literature. 

Thompson and Vacha-Haase (2000) argued that endemic confusion surrounding 

the meaning of reliability has created false confidence in reports of a measure's 

reliability.  As an example, they cite the number of times authors directly report 

reliability coefficients from the test manual as if they were a number that traveled with 

the test despite the population.  Thompson and Vacha-Haase (2000) concluded that many 

authors misunderstand the impact that the lack of sample-based reliability reports has on 

other results like validity. 
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Low reliabilities lessen statistical power, increase error and attenuate effect sizes.  

This can lead to less correct interpretations of the validity estimates.  When misreported 

reliabilities are translated to the multitude of meta-analytic studies that combine the 

validity estimates across studies, this impact is compounded (Thompson and Vacha-

Haase, 2000).  As previously mentioned, much of the meta-analytic work within the 

Industrial and Organizational Psychology literature has focused on validity 

generalization.  It is possible to conclude that some of the interpretations made from 

these meta-analyses are not completely accurate due to issues surrounding reliability.  

Some meta-analytic methods attempt to address this issue by creating a hypothetical 

distribution of estimated reliabilities (Hunter and Schmidt, 1990) however even these 

distributions are not as perfectly correct as the actual reliability statistic would be.  

Incorrect assumptions of validity may also lead to the use of tests and measures in 

populations where they may not be appropriate or where additional factors may warrant 

consideration. 

The discovery of this confusion over the meaning and reporting of reliability 

could be a huge wake-up call for the research community.  If reliability estimates are 

largely missing or falsely reported in the literature due to a basic misunderstanding of the 

relationship between reliability and the actual test scores, what can be done to correct the 

misunderstanding and to correct assumptions based on erroneous reliability reports? 

A Meta-Analytic Approach to Analyzing Reliability 

Vacha-Haase et. al. (2000) have coined the term “reliability induction” to refer to 

the practice of explicitly referencing the reliability coefficients from prior reports as the 

sole warrant for presuming the score integrity of entirely new data.  They argue that this 
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is what most researchers seem to presume and why they fail to calculate and report 

subsequent sample-based reliability. 

The most ideal solution to this issue would be to have every study report the 

estimated reliability based on the actual sample.  However, since researchers cannot 

recalculate reliability for all the studies in the literature on any particular test or measure, 

they must find another solution.  Vacha-Haase (1998) has proposed a meta-analytic 

procedure that helps to estimate the reliability across samples and to evaluate the 

additional factors that may contribute to the variability in the reliability estimate. 

Vacha-Haase (1998) called this approach “reliability generalization”.  Using this 

method, she attempts to (a) examine how score reliability varies across studies (b) 

estimate the typical reliability of scores for a given test across studies, (c) examine the 

amount of variability in reliability coefficients for specific measures, and (d) identify 

some of the sources of variability.  The reliability score’s variability across studies is 

equivalent to the estimated population variance.  The typical reliability score is analogous 

to the mean effect size from a meta-analysis of reliabilities.  To look for the amount of 

variability in the actual reliability coefficients that would be attributed to a random effect 

variance (ie. not sampling error or moderator variance) there would need to be an 

estimate of a random effects component.  This is something that is discussed in more 

detail later in this paper in the description of the Lipsey and Wilson method.  Finally, to 

identify sources of variability, one would need to identify and analyze for moderators. It 

can be thus inferred, that the ideal meta-analytic technique according to Vacha-Haase 

would be able to provide a mean effect size estimate, provide an estimate of the variance 

around that mean, account for the expected variation within the mean do to random 
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effects related to true score error and provide a reasonable way to deal with moderator 

analysis. 

As a brief side note, although Vacha-Haase used the phrase “reliability 

generalization,” the introduction of new jargon seems unnecessary; therefore this author 

will instead refer to this procedure as the meta-analysis of reliability.  

As previously mentioned, reliability estimates are often under-reported, or even 

mis-reported as the reliability from testing manuals.  In the absence of local reliability 

estimates, researchers need a way to determine a range of reliability for a measure across 

studies and they need some identification of the factors that moderate the change in 

reliability estimates across different studies.  The more that reliability can be understood 

as a function of local conditions (such as the variability of the true scores, the type of 

reliability estimate, and so forth), the better researchers can estimate the true reliability 

within a study. 

This same line of thinking may also have a profound effect on the way in which 

researchers understand reliability and its meaning.  If, for example, test manuals could 

show a range of reliabilities across various situations and contexts for a test and discuss 

why an accurate estimate must be based on the actual population that the researcher is 

using (rather than the typical reliability estimate based on the validation study alone), 

maybe the importance of the reliability estimate would be more clear.  Perhaps seeing the 

ranges and understanding -- in a more visible way -- that reliability changes across 

studies, may help to alleviate some of the misunderstanding around reliability as outlined 

by Thompson and Vacha-Haase (2000). 
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For all these reasons, the concept of meta-analyzing reliabilities clearly makes 

sense.  However, the I/O Psychology literature has been largely devoid of such meta-

analyses until the late 1990s.  This may explain why the Vacha-Haase (1998) article has 

been quickly followed by several similar analyses of various tests and measures (Yin and 

Fan, 2000; Viswesvaran and Ones, 2000; Caruso et. al., 2001).  

The meta-analysis of reliability is a whole new field for meta-analytic techniques.  

Vacha-Haase (1998) stated that she was modeling her technique after the Hunter and 

Schmidt (1990) meta-analysis method.  However, on closer investigation, her method 

does not exactly match that of Hunter and Schmidt (1990).  In essence, she has created a 

revised method and other researchers have followed her lead.  Yet the method is still 

somewhat underdeveloped. 

A logical next step for the literature when addressing the meta-analysis of 

reliability should be to concentrate on the methodology that can produce the best 

estimates of population values, as well as moderators.  In an effort to highlight the 

current state of the literature, an explanation and comparison of the Hunter and Schmidt 

method and the Vacha-Haase revision are considered next. 

Differences Between Vacha-Haase and Schmidt and Hunter  

Vacha-Haase (1998) recommended a method to combine reliabilities based on the 

Schmidt and Hunter validity generalization model (Schmidt and Hunter 1977, Hunter and 

Schmidt 1990).  The studies that have followed repeated this example (Caruso et. al., 

2001; Yin and Fan, 2000). 

Vacha-Haase most likely used this method as a model because the Schmidt and 

Hunter method is one of the most frequently cited meta-analysis methods in the Industrial 
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and Organizational Psychology literature (Hall and Brannick, 2002).  However, the 

Hunter and Schmidt (1990) method and the Vacha-Haase (1998) method for analyzing 

reliabilities contain some critical differences.  These differences are so great as to suggest 

two different techniques and possibly significantly different outcomes.  To highlight 

these differences, a brief review of the revised Hunter and Schmidt (1990) method 

followed by a description of, and comparison, to the Vacha-Haase (1998) method is 

outlined next. 

Schmidt and Hunter method of meta-analysis.  Schmidt and Hunter (1977) 

proposed a meta-analysis method developed specifically to support their theory that in 

personnel selection testing there is “one true validity” per any specific job family.  They 

proposed that any variance in validity estimates across studies within a job family was 

due to sampling error and other ‘artifacts’  (Hunter & Schmidt, 1990; Schmidt & Hunter, 

1977).  They provided an example showing that error variance in a small sample size is 

enough to draw erroneous conclusions about moderator effects and about outcomes in 

general.  As alternatives to significance testing, they recommended using confidence 

intervals in single studies and meta-analytic procedures where multiple studies are 

available (Hunter and Schmidt, 1990).  

As does any method, the Schmidt and Hunter method has gathered some 

criticisms.  For example, some researchers have disagreed with the criteria used to 

determine which studies are included in a validity generalization meta-analysis.  In any 

meta-analysis, analysts decide which studies are included according to how well the 

studies fit certain inclusion limits.  Some researchers believe that the Schmidt and Hunter 

method makes too many assumptions about how similar the predictor-criterion 
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relationships are in personnel testing (Algera, Jansen, Roe, and Vijn, 1984).  Despite 

criticisms, the Schmidt and Hunter method seems to be the most frequently occurring 

method used in the Industrial and Organizational Psychology literature (Hall and 

Brannick, 2002) and has been used in repeated meta-analytic studies.  In the most basic 

outline of the Hunter and Schmidt (1990) method there are five basic steps involved in 

the meta-analytic process: 

1. Calculate the desired descriptive statistic for each 

study available, and average the statistic across studies. 

2. Calculate the variance of the statistic across 

studies. 

3. Correct the variance by subtracting the amount 

attributed to sampling error. This is done by estimating the 

amount of variance due to sampling error (σe
2) with the 

formula: 

 ( ) ( )22 2
e 1 /r Nσ = − −1  

  where the 2r  is a weighted mean of observed correlation values  

    and N is the mean number of participants per study. 

4. Correct the mean and variance for study 

artifacts other than sampling error. 

5. Compare the corrected standard deviation to the 

mean to assess the size of the potential variation in results 

across studies.   
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6. Consider Moderator Variables. The moderator 

analysis proposed by Hunter and Schmidt (1990) includes a 

series of meta-analytic procedures, where validities are divided 

into groups based on moderators and then each group is 

individually meta-analyzed. 

Vacha-Haase, in her 1998 article, used observably different steps to conduct a 

meta-analysis of reliabilities for the Bem Sex Role Inventory (BSRI). 

The Vacha-Haase method.  Vacha-Haase (1999) employed more of a three-step 

model of meta-Characterize typical reliability and variability of score analysis.  A 

basic outline of these steps is as follows: 

1. Reliability coefficients expressed in squared metrics.  She used 

a box-and-whisker plot to represent these results. 

2. Develop a coding system to code features of the study that are 

predicted to impact reliability.  Vacha-Haase used type of reliability 

coefficient, long vs. short forms, gender of participant, article type, language 

the test was conducted in and sample type (e.g. student vs. non-student) and 

finally response format. 

3. Perform ordinary least squares regression analysis to explore 

how well the coded study features predict variations in the reliability 

coefficients.  She uses this analysis to identify the differential influences of 

various sources of measurement error in order to better predict what the 

reliability coefficient would look like in a new sample.  Vacha-Haase 
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presented these results in a table with the R2’s and beta weights for each 

predictor variable. 

Next, the step-by-step differences between the two methods will be explored and 

an explanation will be offered as to how these discrepancies may produce incongruous 

outcomes. 

Highlighting the differences.  In each of the following steps, the Hunter and 

Schmidt method is outlined first and then compared with the Vacha-Haase approach. 

Step 1: Desired descriptive statistic and average of that statistic across studies.  

With the Hunter and Schmidt (1990)  meta-analytic approach to validity, the 

effect-size statistic is the validity coefficient.  The validity coefficients across research 

studies are the unit of interest and the average is displayed as a mean validity coefficient.  

This mean is important because it represents, in the Hunter and Schmidt theory (1990), 

the true validity of the test regardless of the situation in which the test is given. 

When meta-analyzing reliability, as in the Vacha-Haase method, the reliability 

coefficient (rxx) is the effect-size statistic used to average across studies.  The reliability 

coefficient is represented as a correlation coefficient, which has a range from –1 to +1.  

As with validity coefficients, mean reliability can be calculated.  Vacha-Haase computed 

a unit-weighted average rather than a sample-size-weighted average.  By choosing not to 

weight by sample size, Vacha-Haase is departing from a practice that most meta-analytic 

techniques incorporate (Hunter & Schmidt, 1990; Lipsey and Wilson, 2001; Rosenthal, 

1984). 

If studies are randomly drawn from a population, weighting them by a function of 

their precision will result in an estimate of the mean that has a smaller sampling variance 
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than what is obtained by unit weights (e.g., Hedges, 1985; Raju & Drasgow, in press).  

Because the precision weighted mean should have a smaller standard error than the unit 

weighted mean, the precision weighted mean is generally preferred (Lipsey & Wilson, 

2001).  However, if the sample size is correlated with the effect size, the use of the 

precision-weighted mean can result in a biased estimate of the meta-analytic mean 

(Overton, 1998).  Vacha-Haase (1998) found that sample size was correlated with effect 

size in a meta-analysis of the Bem Sex Role Inventory, at least for the Female scale.   

Hunter and Schmidt (1990) used the sample size as the weight.  However, 

because they use r rather than z in the analysis, the weight is not equal to the inverse of 

the sampling variance (Lipsey & Wilson, 2001; Raju & Drasgow, in press).  (For z, the 

inverse variance weight is N-3; for r, the inverse variance weight is 22 )1(
1

r
N
−
− ).  Raju and 

Drasgow (in press) described the Hunter and Schmidt (1990) method, as based on the 

method of moments, and the inverse variance weights (Lipsey & Wilson, 2001) as based 

on the method of maximum likelihood.  The inverse variance weights have the desirable 

property of having the minimum sampling variance of any estimator of the mean 

(Hedges, 1985; Lipsey & Wilson, 2001; Raju & Drasgow, in press). 

Step 2: Calculate the variance of the statistic across studies.  

Hunter and Schmidt (1990) pointed out that if the population correlation is 

assumed to be constant over studies, then the best estimate of that correlation is a 

weighted average in which each correlation is weighted by the number of people in the 

study (the sample size, N).  The corresponding variance computed across studies is not 
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the usual sample variance, but a sample-size-weighted average squared error 

( )2

2 i i

r
i

N r r
S

N

 − =
∑

∑
. 

Again the reliability meta-analytic method proposed by Vacha-Haase (1998) 

departs from the Hunter and Schmidt (1990) method.  Vacha-Haase (1998) does not 

weight the reported reliabilities by sample size, but instead includes sample size as one of 

the variables in a regression analysis.  Like the mean, the Vacha-Haase variance is 

computed using unit weights. 

Step 3: Correct the variance by subtracting the amount attributed to sampling 

error.  

Hunter and Schmidt (1990) outlined steps to estimate the amount of variance due 

to sampling error and then addressed how to subtract variance attributed to sampling 

error from the overall variance. Vacha-Haase (1998) did not address any method for 

partialing-out sampling error from the overall variance.   

The Hunter and Schmidt method is a type of random-effects method of meta-

analysis.  Random-effects methods estimate the variance expected to be observed if the 

studies were all computed on samples of infinite size.  The variance of the distribution of 

infinite-sample studies is called the random-effects variance component (REVC).  In the 

Hunter and Schmidt method, the REVC is denoted .  The square root of this quantity 

is the standard deviation of infinite-sample effect sizes, denoted .  The Vacha-Haase 

method is a fixed-effects method that is closely related to Rosenthal’s (1987) method of 

2

ρσ

ρσ
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meta-analysis.  In the fixed-effects methods, variability in the infinite sample effect sizes 

is not estimated.  Rather, it is assumed to be zero after accounting for moderators. 

Step 4: Correct the mean and variance for study artifacts other than sampling 

error.  

Hunter and Schmidt (1990) corrected the mean and the variance of the study for 

artifacts that included reliability.  The reasoning behind the Hunter and Schmidt method 

was to cancel-out what they considered to be distracters from the true validity estimate.  

They used equations based on psychometrics to estimate the correlation between true 

scores. For test validation (validity generalization), Hunter and Schmidt (1990) advocate 

correcting for criterion unreliability and direct range restriction in the predictor to 

estimate a disattenuated mean correlation ( XYρ̂ ). 

Vacha-Haase (1998) did not address corrections for artifacts; instead she moved 

on to a moderator analysis. Vacha-Haase's moderator analysis will be discussed in further 

detail after Step 5 of the Hunter and Schmidt (1990) method is covered. 

Obviously Hunter and Schmidt's artifactual correction for reliability cannot be 

used when meta-analyzing reliability.  Perhaps what is less obvious is whether reliability 

has its own artifacts, and whether reliability artifacts should be uniquely considered and 

addressed when computing a meta-analysis.   

Step 5: Compare the remaining standard deviation to the mean to assess the 

size of the potential variation in results across studies.   

In this step of their meta-analytic method, Hunter and Schmidt (1990) examine 

the ‘generalizability’ of the results by computing what they called the lower bound of the 
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credibility interval.  It is computed (approximately) by: ρσρ ˆ96.1ˆ −= XYLB .  The lower 

bound indicates a threshold below which it is expected that infinite-sample correlations 

will rarely be found.   

Because this step depends upon the random-effects variance component, it is 

irrelevant to a fixed-effects method such as that used by Vacha-Haase (1998).  Therefore, 

there is no step in Vacha-Haase that corresponds this step five.  

Step 6: The Moderator Analysis  

Unless the estimate of , once sampling error is subtracted, is sufficiently large, 

Hunter and Schmidt (1990) advocate abandoning the search for moderators.  They note 

that not all artifactual sources of error can be corrected (e.g., typographical and 

computational errors), so that  may be positive even though there is only a single true 

(infinite sample) value of 

2
ρσ

2ˆ ρσ

ρ .  If  is sufficiently large, however, tests for moderators 

may begin.  The moderator analysis proposed by Hunter and Schmidt (1990) is to split 

the data into categories based on the levels of the moderator variable, and then to meta-

analyze each category separately.  Hunter and Schmidt (1990) do not recommend dealing 

with the issue of analyzing continuous independent moderator any differently then with 

dichotomous or multi-level moderators.  They point out the using multiple regression to 

analyze for moderator variables includes too many issues with low statistical power and 

capitalization on chance, and thus don’t recommend using it (Hunter and Schmidt 1990, 

pg. 408) 

2
ρσ̂

A philosophical difference.  Both the Hunter and Schmidt (1990) and Vacha-

Haase (1998) methods attempt to account for the observed variance in effect sizes across 
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studies.  The two methods look to explain the observed variance in very different ways, 

however.  The Hunter and Schmidt method involves a great deal of attention to artifactual 

corrections that they expect to explain any differences among observed validity 

estimates.  In other words, the Schmidt and Hunter theoretical position is that the 

observed variance in validity effect sizes is due entirely to artifacts.   

The Vacha-Haase theoretical position, however, is that the variance in observed 

reliability effect sizes is due to substantive reasons.  The main point of the analysis 

according to Vacha-Haase (1998) is to discover and name those things that cause 

reliability to differ across situations.  While this may not omit the Hunter and Schmidt 

method from consideration, it does give weight to the thought that other methods may 

prove to be more suited to the meta-analysis of reliability. 

Vacha-Haase (1998) and the studies that followed (Caruso et. al., 2001; 

Viswesvaran and Ones, 2000; Yin and Fan, 2000) started with the expectation that 

reliability would vary due to factors other than sampling error.  In fact, two of their major 

goals for meta-analyzing reliability were to “(c) look at the amount of variability in 

reliability coefficients for given measures and (d) identify some of the sources of 

variability”. 

In the analysis that Vacha-Haase (1998) developed, features of the studies that 

were suspected to add to the variability of the reliability estimate (i.e., moderators) were 

dummy-coded (i.e. type of reliability coefficient, gender, long vs. short form of the test, 

language) and then an ordinary least squares (OLS) regression analysis was conducted to 

explore how the study features predicted variations in the reliability coefficients.  Vacha-

Haase did not directly address any issues around artifacts and reliability generalization. 
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Which particular method may be the best approach to reliability meta-analysis 

becomes even cloudier when the subject of normal versus non-normal distributions is 

introduced.  The Vacha-Haase (1998) and the Hunter and Schmidt (1990) methods shared 

the assumption that the underlying distribution of the effect size mean estimate is normal 

or close enough to normal that ‘normalizing’ the data is not necessary.  There are those 

who disagreed. 

Fisher’s r to z: Should it Be Part of the Meta-Analytic Method? 

Reliabilities are represented as correlations of one test across two times in test-

retest methodology. The theoretical sampling distribution of observed correlational 

values is non-normal in any sample where N is not larger than 500 (James, Demaree and 

Mulaik, 1986, pg. 446). The distribution is negatively skewed for a positive population 

mean (rho) and the degree of skew, as well as the kurtosis, increases as the value of rho 

increases (Fisher, 1954). When rho becomes especially large, as is the case in reliability 

where rho tends to fall between .60 and .90 (Hogan et. al, 2000), the distribution will 

remain non-normal even in samples over 500 (James et. al, 1986). Figure one is a graph 

which depicts the skew in the observed distribution of a large set of reliability estimates 

based on Hogan et. al, (200). 

The sampling distribution of r’s is not the only skewed distribution, for example, 

when rho is considered to be a random variable (as it is in the random-effects case), then 

the underlying distribution of rho may also reach a ceiling at 1 and thus become truncated 

and partially skewed.  For both reasons, the observed distributions tend to be skewed, 

probably much more so than validities, which tend to accumulate in the range of .2 to .5  

(Brannick & Hall, 2000). 
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Sawiloswsky (2000), in fact, mentioned these issues as part of his criticisms of the 

Vacha-Haase (1998) analysis.  He noted that, just as previously explained, a reliability 

coefficient is a correlation coefficient, and as such, may mean a non-normal distribution.  

He suggested that the Fisher’s r to z transformation should be applied prior to the meta-

analysis to ensure a normal distribution. Others have agreed with this observation. 

Silver and Dunlop (1987) concurred, when they explained that with the exception 

of Cronbach’s Alpha, reliability coefficients are reported as correlations (i.e. the 

relationship between test and retest, test and similar test, or split-halves of the same test). 

They further explained that correlations have some difficult statistical properties that may 

be better handled by using the Fisher’s r to z transformation.  

The above examples show that there is currently a debate in the literature as to the 

correct use of the Fisher’s r to z transformation within the meta-analytic models (Erez, 

Bloom and Wells, 1996; Hunter and Schmidt, 1990; Silver and Dunlop, 1987).  However, 

Vacha-Haase (1998) clearly did not use this transformation.  So again, the question 

arises: which meta-analytic method is the most appropriate for reliability analysis? 

A brief outline of the Fisher’s r to z argument is thus outlined next. On the pro-

transformation side with Silver and Dunlop (1987) and Sawiloswsky (2000) are Hedges 

and Olkin (1985) who argued for using the transformation because product-moment 

correlation coefficients have some undesirable statistical properties, such as a 

problematic standard error formulation, and an often times skewed distribution. The 

application of the Fisher’s r to z transformation helps to alleviate those problems by 

normalizing the distribution and providing for an easier standard error statistic. 
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On the anti-transformation side of the argument, Thompson and Vacha-Haase 

(2000) rebutted Sawiloswsky (2000) by explaining that a reliability coefficient is really a 

“population (or domain) variance-accounted-for statistic” (p. 186), which is estimated by 

computing the unsquared correlation between scores on observed parallel tests or on a 

single-test administered twice.  They further suggested that because reliability is 

computed with unsquared r-values, the resultant reliability coefficient is also a variance-

accounted-for statistic and thus reliability coefficients are usable, as they are, in 

averaging across studies.  Thompson and Vacha-Haase (2000) however, did make a small 

concession at the end of their explanation, saying that it would be reasonable to the take 

the square root of the reliability coefficients and apply Fisher’s r to z transformation.   

Hunter and Schmidt (2000) also argued against using Fisher’s r to z 

transformation.  They asserted that the Fisher’s r to z transformation produces an estimate 

of the mean correlation that is upwardly biased and less accurate than an analysis using 

untransformed correlations.  They concluded that the transformation gives larger weights 

to large correlations than to small ones, resulting in the positive bias.  They pointed-out 

that Fisher’s purpose was to create a transformation of the correlation for which the 

standard error (and subsequent confidence intervals) would depend solely on sample size 

and not on the size of the parameter.   

Silver and Dunlap (1987) refuted Hunter and Schmidt’s (1990) position with a 

Monte Carlo study using the Fisher’s r to z transformation when averaging correlation 

coefficients.  Their results indicated that regardless of sample size, backtransformed 

averaged z was always less biased than a non-transformed r.  They recommended the use 
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of the z transformation when averaging correlation coefficients and particularly when 

there is a small sample size. 

Hall and Brannick (2002) compared the Hedges and Vevea (1998) random-effects 

model and the Schmidt and Hunter (1990) model, specifically looking at the impact of 

Fisher’s r to z transformation, in the context of validity meta-analysis.  They used a 

Monte Carlo method to check both the Schmidt and Hunter and Hedges and Vevea 

credibility intervals against the population credibility intervals.  They found that there 

was a slight difference in means, and some more noticeable differences in credibility 

intervals.  The difference in credibility intervals generally favored the Schmidt and 

Hunter method.  Although the r to z transformation was not the only difference between 

Hedges and Vevea and Schmidt and Hunter methods in their analysis, it did contribute to 

those differences.  Brannick and Hall (2000) estimated that if the validity estimates they 

were analyzing had been even more congregated on the upper-end of the distribution, as 

they would be in reliability distributions, the differences between the Schmidt and Hunter 

and the Hedges and Vevea model results might have been even larger. 

What remains unclear is if the skewed distribution will create more error in the 

Vacha-Haase and the Hunter and Schmidt methods where the Fisher’s r to z is not used.  

It seems likely that it will create more error if the transformation is not used, but this has 

not been examined empirically yet. 

Lipsey and Wilson (2001) developed a random-effects meta-analytic method, 

which incorporated the Fisher’s z transformation. It is possible that the results from this 

type of approach would be different from either the Vacha-Haase (1998) or the Hunter 
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and Schmidt (1990) methods.  How the results would differ and to what extent they 

would differ needs further investigation. 

The Lipsey and Wilson (2001) method also contributes some additional unique 

analysis of the between-study variance that neither the Vacha-Haase nor the Hunter and 

Schmidt methods evaluate (Erez et al., 1996; Hedges and Vevea, 1998; Lipsey and 

Wilson, 2001).  Hedges and Vevea (1998) made the argument for methods that 

incorporate estimates of the random-effects variance components (REVC’s).  They stated 

that the modeling of random effects type variability, when that variability exists, would 

produce a more accurate estimate of the average effect size and the credibility of the 

interval around the effect-size statistic. 

Given the evidence, it is possible that a meta-analytic procedure such as the one 

used by Lipsey and Wilson (2001), which incorporates the Fisher’s z transformation, may 

enhance reliability analysis.  The random-effects method, as described by Lipsey and 

Wilson (2001), has not yet been applied to reliability meta-analysis in any published 

studies; therefore, the impact of its use remains unknown and worthy of investigation.  

Lipsey and Wilson Method of Meta-Analysis 

Lipsey and Wilson (2001) employed six basic steps in their meta-analytic method. 

1. Assemble statistically independent effect sizes. In reliability 

meta-analysis, all effect sizes are represented as correlations. 

2. Transform r to z.  Because reliability is represented as a 

correlation, there are difficulties with the statistical computations; this is 

especially true of the standard error formula (Rosenthal, 1994).  Lipsey and 
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Wilson recommend applying the Fisher’s r to z transformation to help correct 

these issues. 

3. Compute appropriate weights for that effect size.  In the case of 

reliability meta-analysis the inverse variance weight would be applied. 

Neither the Vacha-Haase (1998) nor the Hunter and Schmidt (1990) method 

applied this weighting.  Lipsey and Wilson argue that because different 

sample sizes are being compared in a meta-analysis, large sample sizes more 

closely approximate true population characteristics.  Thus, it seems reasonable 

to weight those sample sizes more heavily in the meta-analysis. A 

straightforward approach to this would be to just weight by the sample size, as 

in the Hunter and Schmidt (1990) method.  However, Hedges and Olkin 

(1985) have demonstrated that optimal weights are based on the standard error 

of the effect size (the standard deviation of the sampling distribution).  

Because larger standard error equates to a less precise value, the inverse of the 

squared standard error values are used as the weights.  This is called the 

inverse variance weight.  For the z distribution, the inverse variance weight is 

(N-3). 

4. Estimate the mean and random-effects variance component.   

5. Assess the adequacy of mean effect size for representing the 

entire distribution of effects.  Homogeneity testing is done at this time. 

6. If homogeneity is rejected; then the analyst must choose 

between three models.  The Random Effects Model would calculate the 
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REVC (V ) and then incorporate it into the inverse variance weights and 

recalculate the mean.  However, if the analyst believes that there may be error 

also due to moderators, then either the fixed effects model or the mixed 

effects model should be considered.  In the Fixed Effects Model, similar to 

the Vacha-Haase analysis, a weighted regression analysis is done to identify 

significant moderators.  The idea is that the moderators will account for all of 

the variance in V .  If however, there is good reason to believe that 

moderators may only account for a proportion of the random variance and that 

there may well be a random effects component left after all moderators are 

accounted for, than the Mixed Effects approach is the most appropriate. In the 

mixed effects model, the REVC (V ) is derived and incorporated into the 

recalculation of the weighted mean.  However, as opposed to the pure random 

effects model, the presence of the moderator requires matrix algebra to 

estimate the random error variance term. This can be calculated using a SAS 

macro devised by Lipsey and Wilson (2001). 

θ

θ

θ

7.  For Random Effects and Mixed Effects Models, moderators 

are examined using weighted least squares regression with the corrected 

inverse variance weights.   

Lipsey and Wilson include both the inverse variance weighting procedure and the 

Fisher’s r to z transformation in their models.  This sets their approach apart from both 

the Vacha-Haase and the Hunter and Schmidt methods, which were previously described. 
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What remains unclear is exactly how each of these methods differs in estimating 

parameters of reliability within the meta-analytic model.  A brief overview of each 

method is presented in table 1. 

Finally, one should note that effect sizes are usually reported as a range, or 

interval, along with the mean. Two different intervals have been used in the literature: 

confidence intervals and credibility intervals (see Whitener, 1990). Confidence intervals 

represent the bounds within which, with a pre-defined certainty (usually 95%), the true 

population mean is expected to reside. This suggests that a true value of rho exists and 

that the variance observed is due to sampling error.  

Credibility intervals, on the other hand, are expected to contain a specified 

percentage of the distribution of rho, when rho is considered to be a random variable.  

Credibility intervals therefore represent the range with which rho would fall even if 

sampling error were not present. Credibility intervals imply that there is not one true 

population rho, but a range of values differing according to context. Computationally, 

this difference is represented in the error term used to calculate the interval. Confidence 

intervals are calculated using the standard error of the mean, usually the square root of 

variance divided by the square root of the total sample size (or formulations designed to 

approximate this term). Credibility intervals are calculated using the square root of 

corrected variance (after sampling error is accounted for) without a denominator. 

Credibility intervals are usually larger than confidence intervals, and can be calculated 

only when a random- or mixed-effects model is assumed. 
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A Closer Look at Each Method Using a Small Data Set 

The following example is based on numbers that are fictional but plausible in 

reliability literature. 

The N’s represent the number of participants per study.  The ri’s represent the 

reported test-retest reliability for each study. In addition, there is included for each study, 

a time interval between test and retest, derived using a logarithmic function that simulates 

the decay of reliability over time. 

This example is intended to provide the reader with a better understanding of the 

computations and expected differences between methods.  Although the original methods 

were presented in the steps given by each author, the following examples will share a 

similar format to provide for better comparison between methods. 

We will now illustrate the three main meta-analytical methods described in the 

preceding section with a set of test-retest reliability data for the Mason-Brannick Non-

Existent Personality Test. The data are fictional and designed to illustrate the techniques 

and in general, we do not always expect to see an association between N and the size of r. 

Table 2 shows the sample test data. 

Vacha -Haase method.  For step one, each method computes effect size statistics 

(i.e. reliabilities) and finds the average effect-size across studies. 

In Vacha-Haase this mean-effect-size is computed as a unit-weighted average by 

the formula: =r  
K

ri∑ . Using the sample data, Vacha-Haase calculates r  = 0.76, which is 

a straightforward calculated mean. In Vacha-Haase, the next step is to construct a box 

and whisker plot to represent the distribution of effect sizes which is shown in figure 2. 
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Variance is then computed with the standard variance formulation, the mean 

squared deviations from the mean, 
( )

1
ˆ

2
2

−

−
= ∑

n
rriσ  = 0.05. 

Although Vacha-Haase didn’t report confidence intervals, they have been 

computed here for the sake of comparison with the other methods. The confidence 

intervals are shown below calculated as )(96.1 SEMr ±ϖ where SEM is the previously 

mentioned standard error of the mean, calculated as 
n
σ̂ . 

Hence the interval is 0.7633 ±  
6

2160.0  

Confidence Intervals for Vacha-Haase method using sample data are outlined in 

table 3. 

The final step in the Vacha-Haase method is to compute an ordinary least squares 

regression to check for moderator effects. In this case, the unweighted ri is regressed on 

interval in days, and N (number of subjects per study). The results of this regression are 

displayed in table 4. 

The analysis would indicate that the interval between test-retest is a significant 

moderator as shown by the t  of –5.8, but that sample size is not, because that t was not 

significant. Here the Vacha-Haase method would end (although there are well-known 

problems with regression analysis such as collinearity, their discussion is omitted from 

the illustration for brevity and clarity).  The analysis would show that time-interval 

moderates the value of the test-retest reliability coefficient. Because the analysis is fixed-
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effects, there is no estimate of the random-effects variance component (REVC) or any 

additional variance that is not accounted for by the moderator(s) in the analysis. 

 The Hunter and Schmidt method.   Table 5 represents the data with the necessary 

calculations for the Hunter and Schmidt method.  The r, N and Time-Intervals are the 

same as the previous Vacha-Haase example. 

The weighted mean in the Hunter and Schmidt is equivalent to r , and is 

calculated as ( )
i

ii

N
rNr

∑
∑

= , read as average reliability weighted by N.  For this sample 

data, r  is equal to 305  372 = 0.819892 or .82. This mean is then used to calculate the 

observed variance. 

÷

Observed variance is calculated using the formula ( )[ ]
i

ii
r N

rrN
∑

−∑
=

2
2s , which for this 

example is equal to 10.0468÷372 = 0.027008 or .03. 

The next step for Hunter and Schmidt is to estimate sampling-error variance. The 

formula, as previously stated, is in the form: ( ) ( )22 2
e 1 /r Nσ 1= − − . Substituting the 

previously obtained weighted average gives a value for sampling-error of 0.001761. 

Estimated variance around the population mean (rho) is then computed by 

subtracting the estimated sampling-error from the observed variance, = 

0.027008-0.001761= 0.025247 or .03. This number is the estimate of the random-effects 

variance component.  (Note that Hunter and Schmidt use the symbol  to refer to the 

random-effects variance component (REVC), but Lipsey and Wilson refer to the same 

quantity as V .)  Hence the standard deviation is 

222ˆ er ss −=ρσ

2
ρσ

θ ρσ̂ 025247.= = 0.158893 or .16. 
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Credibility intervals are now constructed using the weighted mean and ρσ̂  with the 

appropriate z-value (1.96 for 95% confidence interval) using r  ± 1.96 ( ρσ̂ ) = 0.819812 

± 1.96*(0.158893).  This represents a credibility interval since it is the expected range of 

theoretical values, not the interval expected to contain the mean and it is calculated after 

sampling error has been accounted for.  Table 6 shows the credibility interval for the S-H 

results. 

This illustrates that there is sometimes a problem with the estimate of the upper 

limit of the distribution with the Hunter and Schmidt method.  The maximum admissible 

or theoretically possible value of the correlation is 1.0.  The best upper estimate in such a 

case is arguably 1.0 rather than 1.13.  Such a result also suggests that the normal 

distribution may not be the best approximation for reliability distributions. 

To approximate the confidence intervals for the Hunter and Schmidt method, the 

standard deviation could be divided by the square root of k (the number of studies).  

Because this is in the random effects scenario, the resulting confidence interval is 

expected to contain the mean of the random variable rather than the single value of the 

population mean.  In symbols, we expect the confidence interval shown below to contain 

ρ  rather than ρ .  In the random-effects case, standard error of the mean would be 

k
159.0  or 

6
159.0 = 0.065. The confidence intervals are computed as r  ± 1.96 (0.065). 

Table 7 shows these approximate confidence intervals. 

Because this data set has only one moderator (interval between test and retest), 

Hunter and Schmidt would probably separate the studies based on the level of the 

moderator, such as over 1 month, 2 weeks and less then 2 weeks (high, medium, low).  
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Then each set of studies would be meta-analyzed independently.  The Hunter and 

Schmidt process would continue to divide studies into categories based on moderators 

until there was no (or small) remaining variance left unaccounted for. 

 The Lipsey and Wilson method.  Table 8 contains the same sample data and 

calculations as before. However, the first step in the Lipsey and Wilson method is to 

transform the study effect sizes using Fisher’s r to z. The transformation results are in the 

column labeled z, derived for each r using the transformation formula: 

( )
( ) ( )r

r
rz atanh

1
1ln5. =
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
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= . 

The next step in the Lipsey and Wilson is the same as the first steps in the Vacha-

Haase and Hunter and Schmidt methods, which is averaging the effect sizes.  Similar to 

Hunter and Schmidt, Lipsey and Wilson calculate a weighted mean.  However, in 

addition to using the z-values, they use the inverse variance weight (N-3), calculated and 

labeled w in the table above. Thus 
z

w

zw
r k

i
i

k

i
ii

z ==

∑

∑

=

=

1

1
 = 

354
80.467  = 1.32147 or 1.32. 

As an example of the standard error of the mean computed in the Lipsey and 

Wilson methodology, s =
∑w

1  =
354
1 = 0.053149.  This is interesting because it 

involves the summation of the inverse variance weights.  This might be recalculated 

depending on the outcome of the Q statistic, to be explained next.  If the Q statistic were 

not significant, the above result would be used to calculate the confidence intervals. 

For the random-effects method, Lipsey and Wilson consider the variability of the 

effect sizes.  They both test for the homogeneity of effect sizes in the population and 
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estimate the variance of the infinite-sample effect sizes in the population.  The estimate 

of the variance of infinite-sample effect sizes may or may not be conditional on a 

significant test of homogeneity of effect sizes, depending on the researcher’s choice. The 

homogeneity test, Q, is used in the calculation of the variance estimate for the infinite-

sample effect sizes. 

The homogeneity test involves computing Q, which is distributed as chi-square 

when the null hypothesis is true. The null hypothesis is that all of the population effect 

sizes are equal, that is, .  Q is calculated as a weighted sum of squares, 

thus: Q = 

kρρρ === ...21

∑
∑

i

ii

w
zw 2)

∑ −ii zw 2 (
)(  = (in our example) 681.22 -

354
)8.467( 2

 = 63.04. 

If Q exceeds the chi-squared value within the appropriate degrees of freedom 

(number of studies less one), then the null hypothesis of homogeneity is rejected.  If it’s 

rejected, then there is variance over and above sampling-error that may be accounted for 

by moderators.  In our example, there are 6 studies, and therefore 5 degrees of freedom 

for the Q statistic.  The critical value of chi-square (α =.05) with 5 df is 11.07, so we can 

reject the null in our example. The conclusion, there is variance unaccounted for by 

sampling-error alone. 

The analyst now has three models from which to choose to evaluate the variance. 

These are, as previously described, a pure random effects model, a pure fixed effects 

model and a mixed model. The fixed effects model would assume that the unaccounted 

for variance in r is due to systematic variables, (i.e., moderators). In this model there is 

no random error term computed, since it is assumed to be zero. Therefore, similar to the 

Vacha-Haase method, a regression is run. However, in this case it is weighted by the 
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inverse variance weight and is performed by regressing the weighted, transformed z-

values on the postulated moderator. Of note is that fixed effects models are less favored 

in the current literature due to the high type I error rates, if in fact there is a random 

variance component (Lipsey and Wilson, 2001). Therefore, the focus in this paper will be 

on the remaining two models, random effects and mixed, which account for the random 

error variance component (REVC). 

In both of these models, a calculation is made for the REVC, now denoted as v . 

This random error variance term is then added to the initial observed variances, new 

inverse variance weights computed, and, finally the weighted mean is recomputed using 

the new inverse weights. 

θ

The calculation of the random-effects variance, denoted , is as follows in the 

pure random effects model: 

θv

θv   = 
∑ ∑ ∑−

−−
)/(

)1(
2

iii www
kQ , which in our example, means that  

θv = 
)354/23188(354

)16(03.64
−

−− = 0.201187 

The rounded value (.20) is the random-effects variance component for the Lipsey-

Wilson method.  This value is analogous to the value of .03 obtained using the Hunter-

Schmidt method.  Note, however, that the two numbers are not directly comparable.  The 

Hunter-Schmidt estimate is a variance of a distribution in r, but the Lipsey-Wilson 

estimate is a variance of a distribution in z.  There is no simple transformation of the 

variance in z that will make it directly comparable to the estimate in r.  
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In the random-effects case, variance (uncertainty) comes from two different 

sources, (a) finite sample size from individual studies, that is, sampling error, and (b) 

variability in the true or infinite-sample effect sizes.  Proper weighting of studies to best 

estimate the mean in such cases must consider both sources.  Therefore, the inverse 

variance weight, which was previously calculated as ni-3, is now recalculated with  

added to the variance term. Thus, . As an example, for the first study, number 

1, v

θv

*
1v

ii vvv += θ
*

1 initially was 1/(n-3)= 1/82= 0.012195. The new variance, , becomes v*
1v 1 + vθ  = 

0.012195 + 0.201187 = 0.213382. Thus, the new inverse variance weight will be 1/( ), 

or 1/0.213382= 4.6864. New (revised) weights are calculated for each study. The revised 

inverse variance weights are then used to calculate a revised meta-analytic weighted 

effect size mean. 

When using the pure random effects model, all of the unaccounted for variance is 

assumed to be random.  Thus, all of the observed variance other than sampling error is 

incorporated in the  computation.  This assumption is problematic when moderators are 

present and unaccounted for.  The question becomes how the analyst tests for moderators 

and still allows for a reasonable random error component.  

θv

The mixed effects model allows for both moderators and remaining random-

effects variance. In the mixed effects model, the analyst assumes that there is some 

variance in r’s due to moderators and some due to a random error component (over and 

above sampling error).  In the mixed effects model the computation of v  is based on 

complicated matrix algebra formulations since the estimate is based on residual 

variability rather than total variability. The explanation of the matrix procedures used is 

θ
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beyond the scope of the present study.  However, macros have been developed in both 

SPSS and SAS to handle the matrix calculation and the recalculated mean effect size 

(Lipsey and Wilson, 2001). 

Finally, as opposed to the pure random effects model, but similar to the fixed 

effects model, the final step would involve a weighted regression analysis using the new 

inverse variance weights. The output for the data presented in the table above using the 

mixed effects model macro for SPSS and a method of moments estimate for  will be 

outlined next.  In the mixed-effects model, a random-effects variance component (REVC) 

is computed after taking the moderator into account.  For the current data, the estimate is 

 = .0294. Using this  to recalculate the inverse variance weights will result in a new 

mean with confidence intervals between 1.07 and 1.41, as shown in table 9. 

θv

θv θv

Of course these numbers in those confidence intervals are still in Fisher’s z and 

need to be back transformed into r to make them comparable with the previous methods’ 

results.  Table 10 shows what the confidence intervals would be once they are 

backtransformed. 

A regression analysis using the inverse variance weighted z’s, known as a 

weighted least squares regression is also run in the mixed model.  In this case the z’s 

would be regressed on “time interval between tests” variable, weighted by the inverse 

variance weights (wi). 

Using the sample data, the SPSS weighted least squares regression output is 

presented in table 11. 
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These results indicate that the moderator, “interval of time between tests”, is a 

significant contributor to the variance.  

Lipsey and Wilson do not provide an exact formula for calculating credibility 

intervals. Standard deviation of the population, which is used to construct credibility 

intervals, can however be approximated by multiplying the revised standard error of the 

mean term by the square root of k (number of studies).  This looks like 6089. ∗0 = .218. 

This is actually only a rough approximation for these results because with the continuous 

moderator influencing the variables, credibility intervals can be constructed around any 

point that falls on the regression line.  However, this is an approximation of the average 

point on that line and the credibility around it. In reality credibility probably wouldn’t be 

calculated at all, but for purposes of comparison, we will use this estimate.  A credibility 

interval can now be calculated for the range of z scores, back transformed into r scores as 

displayed in table 12. 

Comparison of methods.  The results from the Vacha-Haase, Hunter and Schmidt 

and the Lipsey and Wilson mixed effects model are presented in the table 13 to provide 

for an easy comparison of the results across methods. This table shows the confidence 

intervals for each method. 

In table 14 the credibility intervals for the Hunter and Schmidt and the Lipsey and 

Wilson mixed effects outcomes are displayed. 

Even with this limited data, it becomes clear that there are differences in the 

estimated population parameters between the methods.  Which one is most correct is 

difficult to determine however, because the true population values are unknown. 
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What model should be used for Reliability Meta-Analysis?  The three models of 

meta-analysis summarized under common steps in the above tables share some common 

features, but also contain unique features.  Vacha-Haase’s method seemed to most 

closely resemble that of Rosenthal (1987) in his explanation of how to combine 

correlations and compute resulting variance in a fixed-effects model.  However, even 

Rosenthal incorporates the Fisher’s r to z transformation as a necessary part of the 

method, making his method an imperfect match as well. 

Perhaps what is most important is not what Vacha-Haase (1998) and others have 

done so far, but the improvement of the methodology around the concept of meta-

analyzing reliabilities of tests and measures for future research.  This study is an attempt 

to examine the existing methods of meta-analysis of reliability estimates with an eye to 

informing future methodological choices. 

The goal of this research was to determine which method is the better statistical 

approach for the meta-analysis of reliability data.  The study compared the Vacha-Haase 

(1998) method, the Hunter-Schmidt (1990) method, and the mixed effects method as 

outlined in Lipsey and Wilson (2001) against one another and against a known standard 

to inform researchers.  This portion of the study also included an analysis of the impact of 

the Fisher’s r to z transformation on reliability coefficient analysis in hopes of answering 

the question of whether the transformation is helpful in reliability meta-analysis.  

The study also examined the influence of the choice of weights, whether 

sample size (as in the Hunter and Schmidt example), inverse variance weights (as in 

the Lipsey and Wilson method) or whether sample size should be treated just like any 

other moderator influence (as in the Vacha-Haase model). Finally, the study 
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compared weighted and unweighted regression procedures to examine impact of the 

choice of procedures on the probable outcome of the meta-analysis.
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Method 

In a “real world” meta-analysis there is no way to know which estimates of 

the population characteristics are closest to their true values.  In an effort to 

distinguish the best method for meta-analyzing reliabilities, a Monte Carlo simulation 

was used.  The advantage to using a Monte Carlo simulation is that it provides a way 

to set the population characteristics a priori and then to compare each method’s 

outcomes to the population values.   

The Monte Carlo simulation was used to compare the results of the different 

meta-analytic methods when the samples are drawn from the typically skewed 

reliability sampling distribution. 

The nature of the reliability distribution, especially as it becomes truncated 

and skewed at the upper limits, and its impact on the estimates of the population 

characteristics is at the heart of the r to z transformation debate.  The results from the 

Monte Carlo simulation shed some light on whether transforming the reliability 

coefficients to the more normal z distribution, provides for better estimates of the 

parameters (mean and variance of infinite-sample reliabilities). 

The results show how well each of the three approaches recovers known 

means and variances under several realistic conditions. 

Also included in the simulation was a moderator variable that functions 

similarly to the moderator of time between test and retest intervals in the previous 
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example.  This provided insight into the relative merits of Vacha-Haase and the 

Lipsey and Wilson methods when a continuous moderator variable is present. 

The bias and standard error of slope estimates for each model were examined, 

as well as Type I and Type II error rates for slope estimates.  The point of these 

analyses was to highlight the advantages and disadvantages of each method and to 

make recommendations on when each approach is most appropriate in meta-

analyzing reliabilities. 

Monte Carlo Study 

 Study overview.  This study incorporated a Monte Carlo simulation where mean 

reliability ( ρ ) and variability ( ρσ ) of infinite-sample studies were manipulated.  The 

number of studies in each meta-analysis (k) varied systematically and the sample size per 

study (N) was generated as a random variable.  Data (simulated studies) were generated 

under each condition.  Simulated studies were then meta-analyzed.  Data generation is 

described in two parts, one for fixed-effects and one for random-effects.  Data analysis is 

also described in two parts. Part one of the analysis examined estimates of the mean and 

variance of infinite sample effect sizes provided by the three different methods of meta-

analysis (Hunter-Schmidt, Lipsey-Wilson and Vacha-Haase).  Part two of the analysis 

examined moderator effects using two of three methods (Vacha-Haase and Lipsey-

Wilson). 

 The choice of parameters.  In part one, the three methods were compared against 

one another for their estimates of the mean reliability and variability of a known set of 

“true population” values.  The advantage of the Monte Carlo study is that a researcher 
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can chose what the population parameters are.  In this study, the data emulated real-world 

conditions as much as possible to provide for a useful comparison of the meta-analytic 

methods.  Thus, values were chosen for the population mean and variance that were 

based on a real-world example.  The values chosen were based on a cognitive ability test 

known as K-TEA/NU.  Based on the information from the test-retest data from the K-

TEA/NU, a moderator was also uncovered.  A short discussion about this moderator is 

necessary to describe how the population values were chosen and how they relate to these 

real-world circumstances. 

Decay of Reliability Over Time 

Time between test-retest, measured in days, is known to have a moderating effect 

on test-retest reliability.  Typically, as time between tests increases, the reliability 

estimate decreases because participants change more as time increases (Viswesvaran et. 

al., 1996).  Also, if test-retest rather than alternate forms data are collected, participants 

tend to remember their responses to specific items in the earlier administration.  Such 

memories can inflate the reliability estimate, particularly for short retest intervals, 

causing the reliability to appear much lower over longer time periods (Nunnally & 

Bernstein, 1994).   

Reasonable values used in the simulation were based on the test-retest data 

associated with different time intervals from the cognitive ability test K-TEA/NU (AGS 

Publishing, 2002). The K-TEA/NU test data gave a range of .97 - .80 over an interval of 

3- 35 days. The assumption was made that the decay in reliability, like most time-

dependent decay functions, is represented well by a logarithmic function. Thus, reliability 
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is linearly related to log of time with a negative slope. The chosen form of the function 

was: 

observed reliability = (maximum reliability) -.04ln(time in days),                   (1) 

where ln is the natural logarithm.  Figure 3 illustrates the function.  The upper line 

corresponds approximately to the data for the K-TEA/NU, for the function rxx = .95-

.04ln(t), where t ranges from 1 to 35 days. 

In order to come up with the value to use as the mean of the population, the mean 

and variance of the function was calculated.   The mean reliability for this function is .84, 

and the standard deviation of reliability is .03.   

The second line was introduced to increase the generalizability of the findings to 

measures such as job satisfaction that are somewhat less reliable than professionally 

developed cognitive ability tests and thus would have a lower mean population value.  

The bottom line in Figure 3 is an example of what might be seen in a job satisfaction 

measure. This line starts at .85 rather than at .95; its mean reliability is .74 and its 

standard deviation is also .03.  Figure 3 shows what the decay of reliability over time 

looks like graphically for the two different estimates of reliability. 

As previously mentioned, this moderator was derived from actual data.  It 

appeared to be a reasonable choice for this study because the length of time between test 

and retest is almost certain to influence the magnitude of the reliability estimate and 

because time is a continuous variable.  This is important because the Hunter and Schmidt 

method of breaking moderators down into discrete groupings is obviously much more 

difficult in such a scenario. Because continuous moderators are likely to appear when 

analyzing reliability, they deserve close consideration. 
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Part One: Data Generation for Fixed Effects 

Data were generated based on the means of the two lines in Figure 3 (.84 and .74). 

In this fixed effects case, the only source of variance was sampling error.  The two values 

of that ρ  were .84 and .74, which again are equal to the two means in the conditions 

based on the K-TEA/NU data and in which reliability decays over time. 

 Number of studies (k).  The number of studies (k) included in each meta-analysis 

was set to values of 10, 50 and 100.  These values were selected to show what happens to 

the analysis as the number of studies increases.  Meta-analyses of large numbers of 

studies are rare, so 100 appeared to be a reasonable maximum.  Because reliabilities are 

often under-reported in the literature (Vacha-Haase et al, 2002; Yin and Fan, 2000; 

Whittington, 1998), it is possible to have reliability meta-analyses that are conducted on a 

small number of studies.  This maybe especially true if moderator analyses are conducted 

according to the Hunter and Schmidt (2000) method, where the studies are divided 

according to the moderators and then each new grouping is meta-analyzed.  Thus, a meta-

analysis sample size of 10 studies is also reasonable. 

 Sample Size (N).  The sample size (Ni is the sample size of each study) is directly 

related to the magnitude of sampling error. Hunter and Schmidt and Lipsey and Wilson 

both assume that studies with smaller sample sizes are associated with larger (sampling-

error inclusive) variance terms.  Thus, both methods incorporate a weighted mean as an 

estimate of the parameter.  The weights are proportional to sample size, so that studies 

with larger sample sizes are given more weight.  Vacha-Haase makes no a priori 

assumptions about sample size and instead incorporates sample size as another variable 

in the moderator analysis.  Therefore, sampling error plays a very different role in the 
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method used by Vacha-Haase than by the other two approaches.  Following Hall and 

Brannick (2002), the sample size per study was drawn from a normal distribution with a 

mean of 125 and a standard deviation of 25, subject to the restriction that samples meet a 

minimum of 50.  Such a scheme allows samples to vary, but still be large enough to 

estimate correlations with some accuracy.  Such sample sizes are thought to mirror 

samples taken in current testing programs. 

 Number of repetitions.  Steele et al. (2002) pointed out that some Monte Carlo 

research uses 10,000 to 25,000 repetitions.  However, at that magnitude, millions of 

separate data points are generated. It was unlikely that this comparison of methods 

needed quite that many data points to provide clear data on which method most closely 

approximates the population parameters. Thus, this study incorporated 1,000 repetitions, 

that is, 1,000 simulated meta-analyses per condition. 

 Overview of data generation.  The data for a single study in Part One were 

generated in the following manner. In the fixed condition, the value was either .74 or .84. 

In the fixed condition, there was no variability of infinite-sample effect sizes. Then a 

sample of size Ni was drawn from the infinite-sample reliability, resulting in an observed 

study to be included in a meta-analysis.  Data were generated using this process for 

subsequent studies until the required k studies (10, 50, or 100) had been generated.  Once 

the required k studies were generated, then they were meta-analyzed by each of the three 

methods.  For each condition (value of rho and k), 1000 replications were simulated and 

meta-analyzed. 
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Part Two:  Data Generation in Random-Effects and Mixed-Effects Conditions 

One of the major reasons Vacha-Haase first began to meta-analyze reliability 

estimates was because many researchers were ignoring the possibility of moderators and 

using the same reliability estimate regardless of the testing situation.  Vacha-Haase made 

the argument that when moderators are present, researchers should consider their impact 

on their current study.  For example, the research should not apply a retest estimate based 

on a 3-day interval to a situation in which the retest interval is 35 days.  Obviously the 

initial 3-day estimate would be too large. In the very least, some comment should be 

made regarding the possibility that the test is less reliable over long test-retest periods. 

As previously explained, the moderator chosen was assumed to be time decay 

with a linear relationship between the population rho and ln(t). To make this moderator 

even more true to real-world data, an additional error component was introduced into the 

data generation. 

The new equation incorporated an error component drawn from a normal 

distribution with a mean of zero and a standard deviation of .03.  Thus the revised 

moderator equation is: 

rxx = Maximum -.04 ln(t) +.03e                                                                    (2) 

The result of adding the error term is to make the decay function somewhat 

‘fuzzy.’  Adding the error term also makes the simulation correspond to the mixed-effects 

scenario.  In a mixed effects scenario, a moderator explains some of the infinite-sample 

effect size variance, but a part still remains unexplained.  This is the scenario that the 

Lipsey and Wilson method addresses. 
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Overview of Data Generation 

In part two, the data for a single study was generated in the following manner.  

The time delay between test and retest was sampled from a uniform distribution between 

1 and 35 days.  The value of time was used to generate infinite sample reliability for that 

study. In this mixed condition, the value was [either .85 or .95] -.04ln(time)+.03error.  

Then a sample of size Ni was drawn from the infinite-sample reliability, resulting in an 

observed study to be included in a meta-analysis.  Data were generated using this process 

for subsequent studies until the required k studies (10, 50, or 100) had been generated.  

Once the required k studies were generated, then they were meta-analyzed by all three 

methods.  For each condition (distribution of rho and value of k), 1,000 replications were 

generated and meta-analyzed.   

Summary of Data Generation 

The data were generated in either a fixed-effects (Part One) or mixed-effects (Part 

Two) scenario.  In both scenarios, the mean value of rho was either .84 or .74.  The 

number of studies was 10, 50 or 100.  For each study, N varied essentially randomly.  In 

the fixed-effects scenario, the only source of variability in effect sizes was sampling 

error.  In the mixed effects scenario, the sources of variability included sampling error, a 

moderator, and an additional random-effects variance component.    Table 15 shows a 

summary of the data generation parameters.  For each cell of results (shown in Tables 2 

through 6), 1,000 replications were generated.  For each replication, all three methods of 

meta-analysis were used to produce an estimated mean and random effects variance 

component (all Vacha-Haase random effects variance components are zero). 
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Analyses 

Part One:  Mean and Variance.  Part One compares the three methods (Hunter-

Schmidt, Lipsey-Wilson, and Vacha-Haase) in their estimates of the mean and variance 

of the infinite-sample effect sizes.  For each method (Hunter-Schmidt, Lipsey-Wilson, 

and Vacha-Haase), the mean and standard deviation of the estimates over the 1,000 trials 

are reported.  For methods that produce unbiased means, the method producing the 

smallest standard deviation is preferred.  For each method, a root mean squared error 

(RMSE) was also computed by subtracting the parameter (known in the Monte Carlo 

program) from each estimate, taking the square the result, and then finding the mean and 

finally taking the square root over the 1,000 trials.  In general, methods with smaller 

RMSE are preferred as a small RMSE indicates that the estimates are generally ‘close’ to 

the parameter.  RMSE can be used to evaluate the quality of the estimator even if the 

estimator is biased.  The results were summarized in Table 2. 

Part Two:  Moderator Analysis.  In the context of meta-analysis, a moderator 

variable can be defined as a systematic difference among studies that might explain 

differences in the strength or direction of relationships between the variables of interest 

(Steel and Kammeyer-Mueller, 2002).  Recently, Steel and Kammeyer-Mueller (2002) 

compared meta-analytic moderator estimation techniques using a Monte Carlo study.  

They found that the weighted-least-squares (WLS) multiple regression was the best 

choice because it is largely unaffected by multicollinearity and heteroscedasticity.  

Interestingly, they found that the Hunter and Schmidt suggested hierarchical-subgroup-

analysis provided the least accurate results among all the methods they analyzed. 

Because this method fared so poorly and because it does not deal well with continuous 
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moderator variables, a decision was made not to incorporate the Hunter and Schmidt 

method in the moderator piece of this study’s analysis as the results were not likely to 

provide additional valuable information. 

Vacha-Haase (1999) used an ordinary-least-squares (OLS) regression analysis.  In 

her method, the effect sizes are unit weighted.  This is modeled after a method suggested 

by Glass (1977).  In the present study only one moderator, time-interval was 

incorporated.  However, Vacha-Haase also included sample size as part of the moderator 

analysis. Therefore, following Vacha-Haase’s example, both sample size and time 

interval were analyzed as moderators in this study.  

Lipsey and Wilson advocated the weighted-least-squares (WLS) multiple 

regression.  Given Steele and Kammeyer-Muller’s findings, they seem to have 

incorporated the most robust methodology for meta-analytic moderator analysis, at least 

when multiple moderators are present. Additionally, Lipsey and Wilson estimate the 

impact of both moderator variance and random variance in the mixed effects model.  

However, WLS regression incorporates sample size in the weights, not as a moderator. 

Because of the difference in methods, the Vacha-Haase and Lipsey-Wilson 

methods differ in both the weights and the set of independent variables.  It is therefore of 

interest to separate the issue of weights from the issue of independent variables.  Thus, 

another analysis of the data was added.  In this analysis, unit weighted OLS regression 

was used without sample size as an independent variable. 

Unfortunately for purposes of comparison, the Lipsey-Wilson method uses both 

WLS regression and the r to z transformation.  Therefore, differences between the 

methods could be due to weights, the transformation, or both.  Further complicating 
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matters is that the regression estimates (slope and intercept) for the Lipsey-Wilson 

method are in the units of z, not r.  In other words, the Lipsey-Wilson regression 

estimates apply to transformed data, but the Vacha-Haase estimates apply to the observed 

data.  The two estimates are not directly comparable.  To partially disentangle the 

weights from the transformation, a third method was also added, a weighted regression in 

which the untransformed values of r are weighted by the sample size (Ni).  Thus, unit-

weighted OLS could be compared to WLS in r, and both could be compared to WLS in z. 

Although the metrics of r and z prohibit direct comparisons of the variance of the 

estimators, Type I and Type II error rates for the approaches were directly compared 

across approaches.  For each of the four methods (Vacha-Haase, OLS, WLSr and WLSz) 

the slope relating reliability to time delay was computed and tested for significance.  The 

OLS method is known to have an exact Type I error of .05 at alpha = .05, so this 

provided a check on the accuracy of the program. 

Under the conditions in which time delay has an effect (mixed-effects data), the results 

were used to compute the Type II error rates (or conversely, power) for each of the 

methods.  Methods that actually produce the Type I error rates specified by researchers 

and also show the maximum statistical power are preferred.  Results for both Type I and 

Type II errors for each method are presented in Tables 21 and 22. 

Results of Part Two inform researchers’ decisions about the method of analysis for 

moderators of reliability estimates.  Specifically, the results showed the effect of (a) unit 

weighted OLS versus WLS regression and (b) the effect of the r to z transformation.  Of 

specific interest to the analysis of reliability data, results also showed the effects of the  
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Vacha-Haase choice of N as a predictor on the error rates for the slope of reliability on 

time delay.
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Results 

 

Overview 

In parts 1 and 2 of this study, the three different meta-analytic methods were 

compared to determine how accurately they would estimate the preset population 

parameters.  Table 15 summarizes the population parameters and can be used as a 

reference for the remaining tables. 

Part One 

 Mean and variance.  In Part One of this study, a Monte Carlo procedure was run 

and each of the three different meta-analytic techniques was computed.   A thousand 

repetitions for each combination of the two means and the three levels of k were 

calculated, giving a total of six conditions with 1,000 data points in each condition for 

each of the three methods.  As previously explained in the Method Section, the two mean 

levels were set to approximate the means of the moderator function in Part Two in order 

to facilitate comparisons.  The means were .74 and .84.  For each of these two mean 

levels, the k (number of studies) was set to three different levels, namely 10, 50 and 100.  

Part one is the ‘no moderator’ or ‘fixed’ condition, thus the standard deviation is set to 

.00.  This means that the only error incorporated in the local studies was sampling error. 

The three different results reported for each condition under each method are: the 

grand mean effect size statistic over the 1,000 trials, the standard deviation of that mean, 

and the root-mean-square error.  The root-mean-square errors are calculated as the square 
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root of the mean of the 1,000 squared deviations from the population mean (not from the 

grand mean effect size).  Table 16 lists these results. 

Each of the three methods produced mean effect size estimates that very closely 

resembled the parameter.  However, the Vacha-Haase and Schmidt and Hunter results 

consistently underestimated the mean, while the Lipsey and Wilson method consistently 

overestimated the mean. Such results are consistent with what we know about the 

sampling distribution of the correlation.  Specifically, when ρ  is positive as it is in this 

dissertation, then r is a biased (conservative) estimate of ρ , and z is a biased (liberal) 

estimate of the same quantity. 

The standard deviations around the means give some indication of how much 

variance exists in the estimate of the mean across samples.  Here again the results are 

very close across methods.  However, the Lipsey and Wilson method does have a 

consistently lower standard deviation than either of the other two methods by about .001. 

The standard deviations are larger in the lower k conditions and become smaller as k 

increases.  Although the results in Table 16 appear to favor the Lipsey-Wilson method, it 

is difficult to draw any firm conclusions about the use of one method over another, 

because the differences in the standard deviations are so small.  In fact, the methods are 

seemingly interchangeable in this condition. 

The root-mean-square error result often provides additional information that 

allows a researcher to choose the most appropriate method.  The best method would be 

the one producing the smallest deviation from the population mean as measured by the 

RMSE.  The RMSE’s for these three methods are very close.  However in the conditions 
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where k is equal to 10, the Lipsey and Wilson method produces a consistently smaller 

RMSE, suggesting that when there are only a few studies to meta-analyze, the L-W 

method may be the best approach.  This finding is also consistent with what we know 

about the sampling error of the estimator of the mean.  Hedges (1982) has shown that 

‘inverse variance’ weights produce estimates of the mean that are consistent and also 

have the smallest standard error of any set of weights.  As the number of studies 

increases, all reasonable weighting schemes (including unit weights) tend to produce the 

same estimate of the mean.  With small numbers of studies, however, the choice of 

weights can be important. 

The results for different levels of k are also interesting to note. In both mean 

populations, when k is equal to 10, the standard deviations and RMSE’s are noticeably 

higher across all three meta-analytic methods.  The larger sampling variance is because 

of   sampling error due to finite k; this is what Hunter and Schmidt (1990) called ‘second 

order’ sampling error.  The smaller the k, the less opportunity for discrepant studies to 

cancel one another out; thus the mean from a small number of studies may not be a very 

good estimate of the population value.  It appears that in meta-analytic research with a 

small number of studies, researchers need to be much more aware of the potential 

variance in their results.  This point will be continuously supported throughout this study. 

Part Two 

 Mean and variance with the introduction of a moderator.  In part two of this 

study, the same Monte-Carlo procedure was run for each type of meta-analytic method.  

However, a moderator equation in the form:  

etei +−= )(log04.maxρρ            (2) 
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where iρ  is the local population value of reliability at test-retest time t, maxρ   is the 

theoretical maximum test-retest reliability in which retest is immediate, t is time in days 

to the retest,  and e is a normally distributed error term with mean of zero and standard 

deviation of .03.  The equation provides a form for the decay of test-retest reliability as 

time to retest increases. 

As previously discussed in the method section, this moderator equation is a model 

of a ‘real-world’ time decay in test-retest reliability estimations and is used to provide a 

realistic approximation of what happens when moderators impact the magnitude of the 

effect size (in this case, time delay affects the size of obtained reliability estimate).  

The .03 error term in the moderator equation is additional error that is added to 

the local parameter.  This is intended to model random error due to unknown sources or 

context effects unanalyzed in the meta-analysis.  In this case, the amount of the random 

error is almost exactly of the same magnitude as the standard deviation of the moderator, 

which has a mean of approximately either .84 or .74 and a standard deviation of .03.  

Because of the operation of the moderator, the distribution of ri is only approximately 

normal (see Figure 5).  Even without sampling error (see Figure 6) the distributions are 

positively skewed.  The impact of the two independent sources of variance in iρ  will be 

discussed further when looking at the regression results. 

In Table 17 the results of each of the three methods are presented exactly as 

before with the mean, the standard deviation around the mean and the root-mean-square 

error. However, the pattern in the results is not the same due to the impact of the 

moderator and error term. 
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In looking at these results it is first important to remember that when a moderator 

is present, there is more than one true population.  In fact, there are many populations, 

each with a unique mean value.  This is one of the reasons why it is important to discover 

the possible moderators of reliability.  As indicated in the review of the literature by 

Vacha-Hasse, Ness, Nilsson and Reetz in 1999, many researchers are reporting reliability 

estimates that are not based on the actual sample in question.  When such is the case, and 

a moderator is present, then the reliability estimate used by the researcher will not 

correspond properly to the reliability of the data in the local study and the conclusions 

reached in the local study may be erroneous. 

In the case of Table 17, a known moderator is present that would produce a 

different mean for every possible unit of time for test-retest interval (days between 1-35).  

In order to present a comparable view of the data, the mean value for the moderator 

function was computed.  The two mean values for each of the moderator conditions are 

.74 and .84.  All of the root-mean-square errors are therefore computed based on these 

hypothetical mean values. 

 The r to z transformation.  The evaluation of the meta-analytic results becomes 

even more difficult when the r to z transformation is applied, as it is in the Lipsey and 

Wilson method.  This is because the mean of the z values backtransformed into r’s is not 

the same mean value as averaging the r’s without transformation, because the r to z 

transformation is nonlinear and increasingly steep as r increases.   If iρ has a distribution 

such that the mean and nearly all values in the distribution are positive (as it does in this 

case), then the distribution of will be positively skewed, particularly if the mean of the iz
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distribution is large (as it is in this case).  The positive skew will tend to pull the mean of 

the distribution upward and result in an overestimate when the value is back transformed 

to r.  In Figure 5 the same distribution is shown as both iρ  and  to illustrate this point.  

Note that in Figure 4, the r to z transformation appears to be working well; the 

distributions in z appear approximately normal.  In Figure 5, however, the distributions of 

z are markedly skewed, particularly in the graph in the lower right of the figure.  

iz

When looking at the results in Table 17, the impact of the r to z transformation on 

the RMSE’s becomes clear.  First, the L-W method overestimates the mean value.  

However, the standard deviations of the L-W means are similar to both those in the V-H 

method and the S-H method, indicating that the average variance of the estimate is not 

much different.  It is the root-mean-square errors that are so much larger. This is not 

surprising because the back-transformed average of the theoretical L-W mean function is 

higher than the true rho means that are used for the RMSE calculation. 

Despite all of these potential issues, all three methods provide similar estimates of 

the population values on average. This gives some clue as to how each method would 

work if a researcher were unaware of an existing moderator and just ran a meta-analysis.  

Each of the methods produces a fairly reasonable estimate of the average population 

mean. However, those conditions with small numbers of studies (k) still have the highest 

amount of variance. As is true generally in parameter estimation, researchers should 

always try to use large numbers of data points, in this case, numbers of studies. This is 

especially crucial if any type of moderator may be present. 

 REVCs.  Another type of error was also added into these part two results.  This 

was the random error component as derived from a normal distribution with a mean of 
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zero and a standard deviation of .03.  The Vacha-Haase method makes no attempt to 

estimate or correct for random error at the population level or the level of the infinite-

sample effect sizes.  However, both the Schmidt and Hunter and the Lipsey and Wilson 

methods compute an estimate of the random effects variance component (REVC).  Each 

method uses a different computation of the REVC.  Tables 18 and 19 show the results of 

the S-H and the L-W estimations of the REVC for each method under each condition.  In 

Table 18, the theoretical estimate of the REVC is zero, because no random error, other 

than sampling error, was introduced. As expected, the estimate of the REVC for both 

methods is very close to zero on average. The L-W REVC is slightly higher because it is 

computed in z rather than r and z values are disproportionately higher than their 

corresponding r-values. The higher the number of studies the more closely the REVC’s 

are to the expected zero value because sampling error is always more reduced with larger 

sample sizes. 

When the moderator equation is added, the REVC estimates for the S-H method 

should approximate .032 +.032=.0018.  The first .03 is due to the standard deviation of the 

moderator and the second .03 due to the standard deviation of the random error 

component.  Schmidt and Hunter refer to this as the total variance minus the sampling 

error. The moderator equation was run without incorporating sampling error to find the 

observed reliabilities over 10,000 times.  The resulting distribution of reliabilities had a 

variance equal to .0018, as expected.  Unfortunately, the REVC for the Lipsey and 

Wilson method is not directly comparable to .0018 because it is computed in z. Thus, 

there is no simple transformation of the variance in z that will make it directly 
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comparable to the estimate in r. The L-W method uses the REVC result to recalculate the 

inverse variance weights. 

In Table 18 the S-H and the L-W REVC’s are presented for the random-effects 

(with moderator) condition. The REVC estimates for the S-H method are all 

approximately .0018, as the number of studies (k) grows, the REVC’s also become 

slightly larger but the standard deviations around the estimates become smaller.  The 

REVC for the S-H method can be expected to become larger as k increases because of the 

way in which the weighted variance of study effect sizes is computed.  The method 

results in a biased estimate of the observed variance such that the variance estimate is too 

small with a small number of studies.  As k increases, the variance estimate becomes 

unbiased (see Hall and Brannick, 2002). 

In general, the REVCs for the L-W method are expected to increase with larger 

rhos but not with larger ks.  The increase in REVC with larger rhos is demonstrated in 

Table 19.  As expected in the .74 data the increase in k does not appear to have an effect 

on the REVC. However, there is a noticeable increase in the value of the REVC between 

a k=10 and k=50 in the .84 condition. 

The REVC estimates in the L-W method become noticeably larger in the .84 

conditions in this study.  This is because when k=50 or higher there is a significant 

probability (due to the underlying distribution of z’s) that a very large value of z will be 

included in the analysis. For example, if one sample correlation is equal to .9999 (z =  

6.10), this one z value will increase the estimated REVC substantially.  In Figure 7, a 

graphic representation of this is presented.  Figure 7 was constructed by choosing 1,000 

randomly generated values of rho transformed to z versus the ln(t), where there were 
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1,000 randomly selected number of days between 1-35. The higher values of rs are 

clearly spread out from the lower values of r.  If a high z value also has a large N (sample 

size) associated with it than the impact of the transformation is potentially greater, 

because the high z value is then weighted more heavily. The likelihood of that happening 

increases as the number of studies increases. 

The initial REVC estimation in the S-H and L-W methods assumes that all of the 

variance beyond sampling error is random.  However, if a moderator is influencing the 

variance, then part of the variance is not truly random.  Testing for the presence of 

moderators thus becomes crucial in differentiating indefinable random variance from 

moderator variance. 

It is important to remember however, that random error at the infinite effect size 

level is error that we cannot yet explain but that is important nonetheless.  It is the quest 

of the researcher to try to account for and explain all variance in a true score.  In the 

random effects model, however, there is no effort to explain part of the variability.  

Moderators are used to explain part of the variance; what is left over is said to be random. 

Thus, a mixed-effects approach, like the L-W method, is often favored. 

 Regression models.  The Vacha-Haase and Lipsey and Wilson methods use 

regression models to test for the presence of a moderator.  The Vacha-Haase method 

computes ordinary least squares regression with unit weighting.  However, it also 

incorporates N (sample size) into the regression equation as a potential moderator.   

The Lipsey and Wilson method uses a weighted least squares regression model.  

The L-W method incorporates the recalculated inverse variance weights as the weights in 

the procedure when no moderator is expected. However, when a moderator is suspected, 
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L-W first runs a weighted regression that computes a revised REVC based on the 

residuals.  Then the inverse variance weights are recalculated using this better estimate of 

the REVC and a second weighted regression is run.  The results of this second regression 

are the reported results. 

In order to more directly compare the V-H and L-W results, two additional 

regression models were computed.  The straight OLS regression was run exactly as the 

V-H method, but without incorporating N into the moderator estimation.  By removing N 

as a factor, the results are more similar to the L-W method.  The L-W method however, is 

computed in z and then backtransformed into r and is indicated as WLS(z).  This 

transformation makes the results of the L-W method incomparable to the OLS model.  So 

the r to z transformation was also removed in one of the weighted least squares 

regression models indicated in Table 20 as WLS(r).  

All of the regressions were computed using the natural log of time in days (1-35) 

rather than raw time in days, in order to satisfy the assumptions of linear regression. 

Table 20 shows the results for the OLS, the V-H, WLS(z) and WLS(r) in terms of 

the slope estimates.  In Equation 2, the slope is  -.04.  Therefore, the slope estimates 

should approximately -.04, with the exception of WLS(z) where the slope estimates 

should be larger due to the r to z transformation. 

Table 20 shows that the slope estimates are equivalent in the methods using r-

values; they all result, after rounding, in a slope of -.04.  All three methods provide 

reasonable estimates of the relationship between rho and the log of time on average. 

The OLS, V-H and WLS(r) results do have some slight differences in the standard 

deviations of the slope and the RMSE’s of the slope estimates. In the k=10 conditions, 
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the standard deviations and the RMSE’s are different between the methods by a factor of 

.001.  The OLS model consistently has the lowest SD’s and RMSE’s in the k=10 rows, 

although in the .74 condition the WLS(r) is equivalent. These results are somewhat 

puzzling because typically weighted least square regression would have superior results 

over a unit weighted procedure like OLS.  It is possible that with reliabilities, the 

sampling error is just too small to create these types of differences. In this model in 

particular, having a mean N of 125 with an SD of 25 (and a minimum value of 50) may 

have been too high to bring out significant sampling error differences.  If the average N 

had been lower or had N been more variable, there might have been more impact when 

weighting by N. 

For the WLS(z) method, the slope estimates are computed in z.  This means that 

in z’s the slope of -.04 no longer applies.  Because the zs have a curvilinear relationship 

with ln(t), the slope is dependent on the number of points used in the regression.  Thus, to 

arrive at an estimate of the slopes for each population, a regression was done on the 

transformed z values corresponding to the 35 time intervals of test-retest with no random 

error or sampling error added.  These estimates of the slopes for means of .74 and .84 

were -.10 and -.17.  Because these are just estimates, they are not directly comparable to 

the results in the rest of the table, but they give an idea of how well WLS(z) estimated the 

slope in z.  The RMSE’s for the WLS (z) in Table 20 are computed using those numbers. 

The SDs and the RMSEs in the .84 conditions follow a pattern similar to the in 

the results for the mean r =. 74 conditions.  The k=10 condition again provides the largest 

values of  of SDs and RMSEs.  However something very unique happens in the 

mean=.84 conditions.  The k=10 slope estimate is the one that matches the estimated -.17 
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slope most closely, however the SD and RMSE are very large.  In the k=50 and k=100 

rows, the slope estimates are further away from the -.17, but the standard deviations and 

RMSE’s get smaller.  The slope estimate of -.17 may not be exact because of the 

curvilinear shape of the z vs. ln(t) plot.  In fact, -.19 may more accurately estimate the 

slope as rho becomes larger and more data points are incorporated.  It indicates that as 

rho approaches 1.0, WLS using z estimates becomes less accurate.  This is because as 

more data points are incorporated there will be a higher chance that larger values of z will 

be incorporated and the slope will get steeper. 

 Type I and Type II error rates.  Type I and Type II error estimates are provided 

for all of the regression models.  This is a way to directly compare all of the regression 

models using the same parameters.  Table 21 shows the estimated Type I errors for each 

of the regression methods.  In this study, Type I error represents the number of times that 

a relationship between rho and the moderator is found by chance, when the relationship 

does not exist.  The Type I error estimates were derived as follows; for each mean rho 

(.74, .84) and number of studies (k), k-studies were generated with sampling error and 

matched with a random test-retest interval.  A regression was done with the k studies in 

which the estimate of r was the dependent variable and the test-retest interval (1-35 days) 

was the independent variable.  The regression slope was estimated and tested for 

significance.  This process was repeated ten thousand times and the number of times the 

probability of the slope was less than .05 was counted.  This count divided by ten 

thousand was the reported Type I error rate as a percentage value.  This was done for 

each of the regression methods.  In the case of the V-H regression, a random N was also 
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matched to each of the k-studies, because V-H uses N in the regression model as a 

variable. 

In OLS regression, Type I error is known to have an exact value of .05 at alpha=. 

05.  Using a similar line of reasoning, the other Type I errors should also be around .05. 

Peculiar to this study, in the condition in which k=10 some of the rho’s are very 

large values when converted to z.  If you have a few high values in zs, by chance, it will 

look like a significant relationship is present based on the limited number of data points. 

This may explain why the k=10 conditions in the weighted least squares regression in z 

has a high Type I error rate that becomes reduced with larger numbers of studies. 

The Type I error rates were in the range of the expected .05 value, although in the 

k=10 conditions, the WLS (z) method produced an excessive number of Type I errors.  

The overall conclusion is that all of the methods have the expected Type I error rate of 

about .05 in when k is equal to 50 or more studies. 

Type II errors represent the number of times the regression fails to find the 

moderator.  Type II errors have an inverse relationship to the Type I errors.  The random 

error component that was added to the moderator equation (with a mean of zero and a 

standard deviation of .03) was intended to create some ‘noise’ in the moderator function.  

Table 22 presents the Type II error rates for each method. 

All of the methods have much higher Type II error rates in the lower k conditions.  

As predicted, the added random error component ‘hides’ the moderator almost 50% of 

the time when the number of studies is small.  The WLS(z) method actually proved to 

have the lowest Type II errors even in the low k conditions.  The OLS and WLS(r) results 

are almost directly equivalent.  The Vacha-Haase Type II error rates are consistently 
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higher than all the others. However, once the number of studies is larger than fifty, all of 

the methods found the moderator relationship 100% of the time. 
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Discussion 

 

This study set out to test methods of meta-analysis commonly used in the 

literature today.  These methods have historically been used to analyze validity data.  

However, in 1998, Vacha-Haase published a groundbreaking study that used these 

methods to analyze reliability data.  Vacha-Haase recommended the use of meta-analytic 

techniques to address a common reliability reporting error in the literature.  Research on 

the misreporting of reliability coefficients has shown that as many as one-half of 

researchers do not report the appropriate reliability coefficient for their study (Vacha-

Haase et. al., 1999; Whittington, 1998). Meta-analysis can be used to evaluate how 

reliability will function across conditions, thereby allowing researchers to predict how 

reliability will behave in their local populations.  Thus, for studies in which reliability is 

not reported or is misreported, meta-analysis of reliability might be used as a suitable 

alternative. 

In addition, very little research has been done to discover the impact of 

moderators on reliability coefficients.  Meta-analysis in combination with a regression 

technique is a solid methodological approach to deciding whether moderators explain 

variance in effect sizes.  However, the application of both meta-analytic and regression 

techniques in reference to reliability coefficients has not been well studied. 

This study sought to address the question of which meta-analytic approach is the 

best one to use for reliability coefficients.  The question was investigated in two 
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conditions, one in which moderators were absent (the fixed-effects case), and one in 

which a moderator was present (the mixed- or random-effects case).  The three methods 

of meta-analysis selected for study included the methods outlined by Vacha-Haase 

(1998), the Hunter and Schmidt (1990) “bare-bones” meta-analytic technique and the 

Lipsey and Wilson (2001) version of the ‘random-effects’ meta-analytic model 

developed by Hedges and colleagues.  These methods were selected because they either 

were designed for the analysis of reliability data (Vacha-Haase, 1998) or because they are 

methods that are commonly used and believed to be widely applicable (Hedges & Vevea, 

1998; Hunter & Schmidt, 1990) and therefore likely to be applied to the meta-analysis of 

reliability data. 

A Monte-Carlo technique allowed for the setting of known population parameters 

against which the performance of each of the three models could be judged. Each of the 

models was used to estimate the mean and (except for Vacha-Haase) the random-effects 

variance component in both fixed- and random-effects conditions. 

Time between test and retest was simulated as a moderator of the underlying 

reliability.  Two regression models (V-H and L-W) were fit to meta-analytic data to see 

how they compared in recovering a known parameter.  In addition, new methods of data 

analysis were studied (unit and sample size weighted regression in r) in order to better 

understand the reasons for the differences between the H-V and L-W models.  The new 

methods helped to disentangle the effects of the meta-analytic weights and the effects of 

the r to z transformation. 
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Part One 

Estimates of mean and variance in a no-moderator, fixed effects condition.  In 

Part One of this study, each of the methods was computed for a no-moderator situation in 

which the only source of variance in observed reliability estimates is sampling error.  The 

true population reliability coefficients were set to .74 and .84.  The results of this analysis 

showed that the Lipsey and Wilson method consistently overestimated the true reliability.  

On the other hand, compared to the other two methods, the L-W method had a somewhat 

smaller standard deviation and root-mean square error (RMSE), especially when the 

number of studies used in the meta-analysis was small.  The Vacha-Haase and Hunter 

and Schmidt methods tended to underestimate the true reliability values, and the standard 

deviation estimates were about .001 larger in magnitude than the L-W results. 

Overall, the results suggest that the L-W method was somewhat better at 

estimating the population reliability when no moderator was present.  The advantage for 

the L-W method was most evident when the number of studies used in the meta-analysis 

was small (ten).  Once the number of studies used was fifty or more, the differences 

among the methods were negligible. 

The L-W method had the best performance under the fixed-effects condition.  The 

V-H and the S-H methods sometimes estimated the mean equally as well at the L-W, but 

the L-W method never did worse and most of the time did better at correctly estimating 

the mean effect size.  However, as Hunter and Schmidt (1990) have argued, fixed effects 

scenarios are rarely plausible in actual data because of measurement error and other 

artifacts that produce variance in addition to that produced by sampling error. 
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The underestimation of the true rho values by V-H and S-H methods is explained 

by the skewness of the sampling distribution of the reliability coefficient. The negative 

skewness of the distribution causes the arithmetic mean to underestimate the true mean. 

This is because random individual study values lower than the true population mean are 

likely to be farther away from that mean than those study values that are higher than the 

true population mean due to the negative skew.  This explains why the estimates of the ρ  

in V-H and S-H results are underestimates of the true mean. As for the L-W results, the 

overestimation of ρ  is primarily due to the r to z transformation that normalizes the 

distribution but creates larger values of rho when backtransformed. 

 Random Effects Variance Components (REVCs).  The random-effects variance 

components were calculated for both the S-H and L-W models, although the 

computations are different.  The S-H REVC is based on the total variance minus the 

estimated sampling error variance.  The L-W variance is based on the chi-square 

distribution, and compares the observed sum of squared deviations to the expected sum 

of squares.  In part one, the S-H REVC is close to zero because only sampling error is 

included in the estimates of rho.  The L-W REVCs are higher for part one, but this is 

mostly due to fact that the REVC is calculated using z in the L-W method.  In both 

methods, estimates of the REVC that are less than zero are set to zero.  This results in the 

positive bias of the estimated REVC shown in Table 4. 

Part Two: Analysis with the Introduction of the Moderator 

Mean and variance.  In part two, a moderator function was used to simulate effect 

sizes that vary across conditions.   The moderator used was a ‘real-world’ function 
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modeling time decay in test-retest reliabilities.  Two means were used with the same 

function: the higher mean ( 84.=ρ ) simulating the cognitive ability tests and the smaller 

mean ( 74.=ρ ) simulating job satisfaction measures.  When the moderator was added, 

the previously negatively skewed sampling distribution of reliability (in the no moderator 

situation) now became positively skewed (see Figures 5 and 6). A random error 

component was also added at the population level so that even after the moderator was 

accounted for, there was still a positive REVC.  Samples were drawn from the 

populations, so the observed distributions of reliability coefficient showed variability due 

to the combined effects of the moderator, the sampling error and the random error term. 

Because the moderator introduced another type of variance, standard deviations 

and RMSEs were larger than in part one.  This was expected. However, the pattern of 

results in Part Two is very different from that in part one. 

For the V-H and S-H methods, the estimated means, SDs and RMSEs were very 

similar.  The two methods estimated the grand mean reliability ( ρ ) within .005 in every 

condition.  As was expected, due to sampling error and random error, the methods had 

much higher SDs and RMSEs when k (number of studies) was equal to 10. 

The Lipsey and Wilson method lost its advantage in estimating the reliability 

coefficients once the moderator was added.  The L-W method continued to overestimate 

the population mean; however in this condition it had higher SDs and RMSEs than either 

of the other two methods.  This pattern was especially apparent in the k=10 conditions 

and more so in the ρ =.84 condition.  This is due primarily to the inclusion of the r to z 

transformation.  Many researchers have argued for the inclusion of the r to z 
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transformation (James et. al, 1986), and it seems that in the no-moderator condition, the 

transformation enhances the outcome.  However, once the moderator was added, the 

underlying distribution of rhos was positively skewed by the transformation. 

 The impact of the r to z transformation in a moderator condition.  The positive 

skew in the with-moderator distribution is magnified when the r to z transformation is 

applied in the L-W method.  This is due to the fact that as rs get larger, the corresponding 

zs are disproportionately larger (that is, r to z is a nonlinear transformation). As an 

example, when rho is. 99, the corresponding z is 2.65, however when rho is .9999, the 

corresponding z is 6.10. This shows that when r is large, large changes in z occur in 

response to very small changes in r.  The net effect in the rho-moderator relationship is 

evident in Figure 7. Figure 7 is a graphic representation of 1,000 randomly generated 

values using the modeled moderator function, transformed to z with the Fisher r to z, then 

plotted against the corresponding ln(t).  The rapidly increasing z values transform a linear 

relationship into a nonlinear one.  As mentioned previously, most meta-analytic 

techniques have been developed and used for the study of validity, where effect sizes 

tend to be small. Reliability estimates, however, tend to represent rather large effect sizes 

(many are greater than .90).  Thus, the r to z transformation can be expected to introduce 

more variance to the distribution of reliability estimates than to a distribution of validity 

estimates.  This may serve as a cautionary flag for researchers.  When estimating 

reliability coefficients, particularly when expected reliability values are in the upper 

range, researchers should be aware of those conditions where a moderator might be 

present.  If confronted with such a situation, use of the r to z transformation should be 
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weighed against the changes that may occur both in the distribution and in the underlying 

moderator relationships.  

REVC.  In part two, the REVCs for the S-H and L-W methods were calculated.  

The REVCs for both methods increased in value as expected in the presence of a 

moderator and random error.  The S-H method slightly overestimated the REVC on 

average. 

In general, the REVC for the L-W method was expected to increase with larger 

ρ , but not with larger k.  Results consistent with this expectation can be seen in Table 5. 

Such a result can be explained by the r to z transformation.  As mean z becomes larger, 

the distribution also becomes more variable.  Note, however, that whereas in the .74 

condition as k increases the REVC remains essentially unaffected, in the .84 condition an 

increase in the value of the REVC is observed between the k of 10 and the k of 50.  This 

result appears due to the probability that a very large z-value will be included in the 

analysis.  Recall that there were only 35 accepted population time values (t= 1 to 35), and 

they were uniformly distributed.  Thus the likelihood of a value =.95 (maximum) is equal 

to that of any other value and will have a 1 in 35 chance of occurring in the sample of 

studies.  When random error and sampling error are added, this value could approach 

.9999, which was the cutoff for this study.  This corresponds to a z value of 6.10. Hence, 

though not specifically tested in this study, one can predict that at a k of 35 or greater, on 

average at least one large z-value is being used in the analysis.  This outcome also 

indicates that if a researcher is using the r to z transformation with a moderator present, 
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then REVC estimates may be adversely impacted by the transformation, especially as k 

(number of studies) increases. 

Moderator analysis.  A second purpose for meta-analyzing reliability coefficients, 

according to Vacha-Haase (1998), is to identify moderators of reliability.  Reliability is 

defined as “the consistency with which individuals are rank ordered by measurement 

across parallel forms, repeated measures or other estimates of consistency in 

measurement” (Spearman, 1910, p. 272). Thus, a moderator can be any factor that would 

impact the consistency of measurement.  In the case of test-retest reliability, the amount 

of time delay between the first test and the second can create significant changes in the 

scores.  This is a fairly obvious moderator, but other factors such as gender, race, 

education level, amount of sleep the night before the test, personality, and many others 

can influence the consistency of scores. 

Regression is commonly used to seek out the presence of moderators.  The 

Vacha-Haase and the Lipsey and Wilson methods both outline regression methods for the 

detection of moderators.  The V-H regression is based on the ordinary least squares 

method, and can include multiple moderators.  In this study, the method was used to 

estimate the impact of the logarithm of time between test-retest and the impact of sample 

size (N).  V-H does not use any study or effect-size weights in the regression analysis 

because N is included as a potential moderator. Lipsey and Wilson on the other hand 

used inverse variance weights in a weighted least squares regression model.  In the L-W 

method, when the effect size estimates are correlations, the r to z transformation is 

applied, then the effect-size weights become Ni-3 (three less than the sample size).  This 

is because the expected sampling variance of a z-transformed correlation is (1/(N-3)).  To 
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better understand any differences in results for the V-H and L-W methods, two other 

regressions were computed.  The OLS (unit weights) showed the effect of computing a 

regression without sample size as an independent variable.  The difference between OLS 

and V-H is solely that V-H includes N as an independent variable.  The WLS regressions 

in r used Ni-3 as the study weight.  The difference between this model and the L-W 

model is solely the r to z transformation. 

Slope estimates.  The first set of results from the regressions was the slope 

estimates.  The parameter was =β  -.04 and the slope estimates from each of the 

regression models computed on r (OLS, V-H and WLS(r)) should have accurately 

estimated this slope.  SDs and RMSEs were computed for each slope estimator as well.  

All three of the methods computed in r estimated the slope to be -.04 on average.  The 

WLS(r) and the unit weighted OLS had SDs and RMSEs that were almost equivalent (see 

Table 6).  This is a little puzzling because a WLS procedure should have better estimates 

due to the correction for sampling error.  However, it appears that reliability estimates are 

in the range where sampling error is very small. The sampling error estimate in the 

Schmidt and Hunter model supports this idea.  In that equation, as the effect size statistic 

approaches one, the sampling error variance approaches zero. Thus, weighted regression 

may not have much of a unique predictive value over and above a unit-weighted 

procedure when reliability is the effect size of interest. 

The r to z transformation is presented in the WLS (z) results.  The slope estimate 

is different because when the rs are converted to zs, the values become much higher.  The 

slope estimates are therefore reported as they relate to the z values.  The best linear 

estimates of the slope in the .74 conditions would be around -.10 and in the .84 
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conditions would be around -.17.  However, as has been previously discussed, the r to z 

transformation creates a curvilinear relationship between z values and ln(time).  This 

means that the slope estimates will change depending on the number of z values that are 

in the highest ranges.  This effect appears to be the reason that the reported slope 

estimates in the .84 conditions change as k (number of studies) becomes larger.   

 Type I and Type II error rates.  For OLS, the Type I error rate at alpha=.05 is 

known to be an exact value of .05. Thus, the Type I error estimates are in general 

expected to be approximately .05 or 5% across methods.  For all of the methods, with the 

exception of the Lipsey and Wilson WLS(z) method, the empirical estimates of Type I 

errors were close to .05. 

The WLS(z) method, however, produced values that are much greater than the 

expected 5% in the k=10 conditions.  This is most likely due to the chance presence of 

very high values of z that will result in large slope estimates that are mistakenly judged 

significant.  This is yet another concern for the r to z transformation that has been 

exposed by this study, in the case where a moderator is present. 

A Type II error occurs when a moderator is present, but the regression slope is not 

significant and thus there is a failure to detect a real moderator. Type II error is related to 

the power to detect the moderator.  Those methods that can identify the real or true 

moderator most often (lower Type II error) are said to have higher power. 

In this study all of the methods have much higher Type II error rates in the k=10 

conditions.  This is not surprising because with a small number of studies, the random 

error and sampling error are more likely to mask the moderator variance. 
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Type II error rates are only directly comparable when the Type I error rates are 

equal.  If all Type I error rates are .05, then we should prefer the method that produced 

the fewest Type II errors.  The Lipsey and Wilson WLS(z) method had the lowest Type II 

error rates when the number of studies was low (k=10).  In isolation, this result would be 

encouraging for the r to z transformation.   Unfortunately, the power to detect the 

moderator comes at the cost of having a higher Type I error rate, and thus the comparison 

and choice among the methods is not a clear as one would like. 

The power of the regression slope estimate appears to pass .90 somewhere 

between 10 and 50 studies for the simulated reliability data considered in this paper.  

Thus, the power for detecting moderators in reliability data may be surprisingly good.   

 The choice of r versus z.  There is something of a debate in the literature 

regarding whether to analyze the correlation effect size in r or z (Erez, Bloom and Wells, 

1996; Hunter and Schmidt, 1990; Silver and Dunlop, 1987; Hedges and Olkin, 1985).  

According to the current results, when the population has a single value (the fixed- 

effects case), the transformation appears to normalize the sampling distribution and 

results in better estimates of the population value than does the untransformed r.  

Therefore, z appears preferable to r for a meta-analysis in the fixed-effects case. 

When the population rho is a random variable (the random-effects case), the 

advantage of the transformation disappears.  The effect of the transformation is to skew 

the distribution of rho so that the estimate of the mean becomes biased.  The random-

effects variance component is expressed in z, which is a problem because it cannot be 

directly converted to r, the original unit.  Rather, the REVC must be used in an equation 

to make a prediction of some sort, and the predicted value of z must be back transformed 
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to r for interpretation.  Therefore, r appears to be a better choice than z for a random-

effects meta-analysis in which the main goal is to estimate the mean and REVC for a set 

of studies. 

The choice of r or z becomes more complicated when moderators are considered.  

Unlike ordinary regression, in meta-analysis there is heteroscedasticity inherent in the 

data because the studies have different sample sizes, and thus different amounts of 

sampling error associated with them.  If the studies can be considered a random sample 

(if sample size is not correlated with effect size) then heteroscedasticity may not be a 

large problem in interpreting the results of the moderator analysis.  Weighted regression 

seems to be an appropriate way to incorporate the impact of sampling error into the 

analysis, and this can be done in either r or z. 

The current study showed additional problems in using z for moderator analysis 

as well as an advantage of doing so.  First, if the moderator is linearly related to the size 

of r, then it will be nonlinearly related to the size of z, and vice versa.  A potential 

solution to this problem might be polynomial regression.  Second, if there is an additional 

error term beyond the moderator at the infinite-sample effect size level, and this term is 

homogeneous in r, it will be heterogeneous in z.  Figure 7 shows both problems.  The 

implication is that it would be difficult to position confidence intervals around the 

regression line computed in z.  A third difficulty is that the slope in z changes as the mean 

z changes because of the nonlinear transformation.  Thus it will be difficult to interpret 

the slope of a moderator computed in z.  Finally, we have the inflated Type I error rate 

when the number of studies is small.  All these problems argue for the analysis in r and 

against the analysis in z. 
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The advantage to using z according to the current study is the greater power of the 

test for the presence of the moderator.  When the number of studies is small, the 

advantage is somewhat mitigated by the inflated Type I error rate.     

Study limits.  The purpose of this study was to look at only three different meta-

analytic techniques and their application to reliability coefficients in a very controlled 

context.  Thus, the study shares some of the limitations inherent in the use of the Vacha-

Haase, Schmidt and Hunter and Lipsey and Wilson methods.  There are many other types 

of meta-analysis that could be evaluated, however the current three methods were chosen 

based on their popularity of usage and because they had some interesting differences 

from one another. 

Two types of regression techniques, OLS and WLS were evaluated.  However, 

the regressions were run in such a fashion as to disentangle the effects due to both 

weighting and the r to z transformation.  In an effort to focus on those factors and provide 

for a direct comparison of results, the weighted least squares regression in r was done 

using the same weights as the WLS in z. It is a limitation of this study that the inverse 

variance weights normally applied to WLS when using rs were not calculated.  This may 

be part of the reason (in addition to small sampling variance of reliability coefficients) 

that the WLS results did not outperform the OLS results, as they would normally be 

expected to (Steel and Kammeyer-Muller, 2002). 

In this study, the impact of the number of days between test and retest was used as 

a moderator.  Although this moderator was taken directly from a real world test in the .84 

conditions, it only served as an estimate of what might happen in a job satisfaction or 

similar measure in the .74 conditions.  Furthermore, this (log transformed) moderator had 
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a linear relationship with the reliability estimates.  In reality, the moderator may not have 

a perfectly linear relationship with the effect size statistic. 

Three levels of k (number of studies), 10, 50 and 100, were used in this study.  

This provided only a limited view of how the meta-analytic methods were functioning 

when there were smaller numbers of studies.  Based on the current results, gathering 

additional data between 10 studies and 50 studies is warranted to better understand the 

Type I and Type II error rates of the regression techniques. 

As expected based on previous research (James et. al, 1986, p. 446), the 

distribution of r was negatively skewed in the fixed effects condition.  However, the 

distribution became positively skewed with the addition of the moderator and random 

error in this study.  This may be a unique feature of moderator used.  The degree and 

direction of the skewness in other r distributions may be very different with other 

moderator variables. 

 Future research.  This study brought to light some interesting ramifications of 

using the r to z transformation when moderators are present. Research should be 

conducted to determine whether polynomial regression or some other analysis might 

prove to be a better estimator when using z for moderator analysis. This research could 

help clarify why the analysis in z had better power than the analyses in r when using the 

WLS method of regression. 

In this study there were no additional levels between k=10 and k=50 studies. Overall, 

the larger standard deviations for all three methods in the k=10 conditions highlight the 

need for caution when there are smaller numbers of studies being studied.  In these 

conditions the mean effect sizes were off by as much as .002 from the true mean. 
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Additional research is suggested to determine what happens to the SD’s when the number 

of studies is increased to some number between 10 and 50. 

It appears that because reliabilities are generally fairly large (> .70), more 

attention should be paid to the size of sampling error estimates as reliability estimates 

become larger.  This is especially valid information when using regression methods to 

search out moderators.  If the sampling error is very small at larger values of reliability, 

the differences between methods that weight for sampling error and those that don’t are 

reduced.   The sampling variance of the correlation is approximately: 

Ne

22
2 )1( ρσ −
=  

Using this formula, when reliability is .64, sampling variance is estimated to be 

.003 with an N of 125.  When reliability is .74, that figure is reduced to .002, at .84 it 

becomes .001, and at .94 it becomes .0001. Further research is necessary to determine 

exactly how small the sampling error typically is within the range of common 

reliabilities. 

Conclusions 

This study aimed to find the best meta-analysis method for reliability coefficients.  

The results have provided several conclusions and contributions to the literature. 

First, when no moderator is present (fixed condition), the three meta-analytic 

methods were almost equally good at estimating the true population iρ .  However, the 

Lipsey and Wilson method had a consistent advantage over the other methods, which was 

more pronounced when the number of studies was small. Thus the L-W method is 

recommended for use when the required meta-analysis is for fixed effects. 
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Second, once a moderator produces variance in reliability coefficients, the Lipsey 

and Wilson method becomes significantly less accurate due to the r to z transformation 

and the method begins to consistently overestimate the true population mean effect size 

value.  In the presence of a moderator like the one in this study, the Vacha-Haase and the 

Schmidt and Hunter methods appear equally good at estimating the population effect size 

and are better estimators of the mean than is the L-W method.  The Schmidt and Hunter 

method is more highly recommended because it estimates the random effects variance 

component in addition to the mean and thus provides more information to the researcher. 

Third, when using regression to evaluate a moderator, weighted least squares 

regression is usually more powerful than using a unit weighted ordinary least squares 

method (Steel and Kammeyer-Muller, 2002). This is because the weighted least squares 

methods use an estimate of sample size to weight the regression and to reduce the impact 

of sampling error in the prediction.  Even though the sampling error associated with 

reliability may be small, correcting for it within the regression still produces a better 

estimate of the slope.  Thus, based on current information, computing WLS regression in 

r appears the best method to test for moderators in reliability studies. 

In conclusion, a new and somewhat unique combination of methods is 

recommended.  Because most real world situations do include moderators, researchers 

should apply the Schmidt and Hunter technique for meta-analysisto obtain the best 

estimates of the overall mean and random-effects variance component. Researchers who 

are also interested in evaluating continuous moderators of reliability should compute a 

weighted least squares regression in r, to obtain the best estimate of the slope. 
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Table 1 

Overview of the three meta-analytic methods 

Table 1: 
Comparison 
of Methods 

Vacha-Haase Hunter and 

Schmidt 

Lipsey and Wilson 

1.Weight 
effect size 
statistics  to 
find the 
average effect 
size across 
studies. 

Vacha-Haase uses a unit 
weighted average of the 
reliability. 
 

Hunter and Schmidt weight each 
reliability statistic by it’s sample 
size (N). Then they find the average 
weighted reliability. 

Lipsey and Wilson suggest 
using an inverse variance 
weight.  Because they use the 
Fisher’s r to z transformation, 
they calculate the inverse 
variance weight to be (N-3) 
for each reliability. Next they 
average the inverse variance 
weighted statistics. 

2. Compute 
the Variance 
of the 
observed 
effect sizes. 

Vacha-Haase computes a 
unit-weighted variance.  
She describes the 
distribution using  Box and 
Whisker plots. 

Calculate the weighted  (N) 
variance of the statistic across 
studies. 

 

Calculate the weighted (N-3) 
variance. 

3. Correct for 
sampling 
error. 

Vacha-Haase includes 
sample size in the 
moderator analysis, but 
does not suggest any 
corrections when the 
sample size does account 
for significant variance.  
Vacha-Haase proposes a 
fixed-effects model. 

Correct the variance by subtracting 
the amount attributed to sampling 
error. 

Using 

( ) ( )22 2
e 1 /r Nσ 1= − − to 

estimate variance due to sampling 
error and subtract from amount of 
variance observed across all studies. 
 

Estimate the random-effects 
variance component through a 
procedure analogous (but not 
identical) to the Hunter and 
Schmidt method.  If the 
random effects variance 
component is greater than 
zero, re-estimate the value of 
the mean with new weights. 

4. Corrections 
for other 
artifacts [take 
out this row.  
No other 
corrections in 
this study.] 

Vacha-Haase does not 
address artifact corrections. 

Hunter and Schmidt have a long list 
of artifacts for  meta-analysis of 
test validation studies.  There are 
no specific descriptions of how 
these corrections would apply to a 
meta-analysis of reliability. 

Lipsey and Wilson describe 
corrections for single artifacts, 
but do not describe how such 
corrections would apply to the 
meta-analysis of reliability. 

4. Decide 
whether 
moderators 
are present. 

Vacha-Haase suggests 
thinking of all conceivable 
moderators, then 
developing a coding system 
to code each moderator into 
a variable.  Assume 
moderators are present. 

Hunter and Schmidt suspect 

moderators only when V  is large.  θ

Test for the homogeneity of 
effect sizes. 
 

5. Estimate 
moderator 
effects. 

 Perform unweighted least 
squares regression analyses 
to explore how well the 
coded study features predict 
variations in the reliability 
coefficients. 

The moderator analysis proposed by 
Hunter and Schmidt (1990) 
suggested a series of meta-analyses, 
where effect sizes were divided into 
groups based on moderators and 
then each group was meta-analyzed 
independently. 
 

If homogeneity is rejected, 
then a test for moderators is 
performed. Lipsey and Wilson 
suggest a weighted regression 
analysis.  
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Table 2 

Sample data used for the examples of how each method works 

Study ri N Test-Retest Interval in Days

1 0.88 85 14 

2 0.95 84 3 

3 0.85 56 21 

4 0.9 70 14 

5 0.6 45 90 

6 0.4 32 180 
 
 
 
 
Table 3 
 
Confidence intervals for Vacha-Haase sample data 
LOWER MEAN UPPPER LIMIT 

0.59 0.76 0.94 
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Table 4 
 
Regression output of the V-H Ordinary Least Squares regression analysis of sample data 

SUMMARY OUTPUT 
 

   
      

Regression Statistics      
Multiple R 0.99     
R Square 0.98     

Adjusted R Square 0.97     
Standard Error 0.03     
Observations 6     

      
ANOVA      

 df SS MS F Significance F 
Regression 2 0.23 0.11 103.13 0.0017 
Residual 3 0.00 0.00   

Total 5 0.23    
      

 
Standardized 
Coefficients 

Standard 
Error t Stat P-value  

Intercept 0 0.11 7.06 0.01  
Interval days -.849 0.00 -5.81 0.01  

N .16 0.00 1.09 0.35  
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Table 5 
 
Data calculations for the Schmidt and Hunter method using sample data 

Study r N Time Interval N*r r- r  (r- r )  2 N*(r- r )  2

1 0.88 85 14 12.32 0.06011 0.003613 0.307098 

2 0.95 84 3 2.85 0.13011 0.016928 1.421949 

3 0.85 56 21 17.85 0.03011 0.000906 0.050762 

4 0.9 70 14 12.6 0.08011 0.006417 0.449205 

5 0.6 45 90 54 -0.21989 0.048353 2.175871 

6 0.4 32 180 72 -0.41989 0.17631 5.64191 

∑   372  305   10.0468 

Weighted r 0.81989             
 
 
 
Table 6 
 
Credibility interval for the S-H example data  
LOWER LIMIT UPPER LIMIT 

0.50846 1.13132 
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Table 7 
 
Approximate confidence intervals for the S-H example data 
 

LOWER LIMIT MEAN UPPER LIMIT 

0.69 0.82 0.95 

 
 
Table 8 
 
Lipsey and Wilson sample data and calculations 

Lipsey Wilson Data 

Study r N 
Time 

Interval Fisher z w w*z z2 w*z2 

1 0.88 85 14 1.38 82 112.8129 1.892737 155.2044

2 0.95 84 3 1.83 81 148.3742 3.355421 271.7891

3 0.85 56 21 1.26 53 66.5761 1.57792 83.62975

4 0.9 70 14 1.47 67 98.63871 2.16743 145.2178

5 0.6 45 90 0.69 42 29.11218 0.480453 20.17903

6 0.4 32 180 0.42 29 12.28582 0.179478 5.204874

    

 Σ   372     354 467.8 9.653439 681.225 
 
 
Table 9 
 
Confidence intervals for L-W in zs using the example data 
LOWER LIMIT MEAN UPPER LIMIT 

1.07 1.24 1.41 
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Table 10 
 
Confidence intervals for the L-W method backtransformed into rs 

LOWER LIMIT MEAN UPPER LIMIT 

0.79 0.85 0.89 

 
 
Table 11 
 
WLS regression results using the example data and L-W method 

SUMMARY OUTPUT  

 Mean ES     R-Square       N    

  1.2397        .8463       6.0000    

        

ANOVA 

                    Q                 df                  p    

Model         22.0943       1.0000        .0000    

Residual       4.0121       4.0000        .4044    

Total          26.1064        5.0000        .0001    

        

REGRESSION RESULTS 

                       B        SE   -95% CI     +95% CI       Z             P         Beta 

CONSTANT   1.5658    .1130   1.3443   1.7872   13.8571   .0000    .0000 

INTERVAL    -.0072     .0015    -.0102    -.0042   -4.7005    .0000     -.9200 
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Table 12 
 
Approximate credibility intervals for the L-W estimates in the example data 
LOWER LIMIT 

CREDIBILITY  

UPPER LIMIT 

CREDIBILITY 

0.67 0.93 

 
 
Table 13 
 
Comparison of confidence interval results across methods for the example data 

VACHA-HAASE METHOD 

Lower Limit Mean Upper Limit 

0.59 0.76 0.94 

HUNTER AND SCHMIDT METHOD 

Lower Limit Mean Upper Limit 

0.69 0.82 0.95 

LIPSEY AND WILSON MIXED EFFECTS METHOD 

Lower Limit Mean Upper Limit 

0.79 0.85 0.89 
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Table 14 
 
Approximate credibility intervals between the S-H and L-W methods using the example 

data 

LOWER CREDIBILITY LIMIT UPPER CREDIBILITY LIMIT 

HUNTER AND SCHMIDT 

0.51 1.13 

LIPSEY AND WILSON 

0.67 0.93 

 
 
Table 15 
 
Data Summary 

Population Parameters  

Part 1: Means: .84, .74 

 Standard Deviations: .00, .00 

Part 2:   

 Average of the 
Means: 

.84, .74 

 Standard Deviations 
(due to presence of 
moderator): 

.03, .03 

 Random Error Distribution with a mean of 0 
and a standard deviation of .03 

 Slope -.04 

 REVC (Schmidt and 
Hunter estimate) 

.0018 
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Table 16 
 
Estimates of the Mean for Fixed-Effects Conditions 

  Vacha-Haase Schmidt and Hunter Lipsey and Wilson 

Mean 
ρ  

Studie
s (k) 

M SD  RMSE M SD RMSE M SD RMSE 

.74 10 .7378 .0140 .0141 .7378 .0136 .0138 .7404 .0135 .0135 

.74 50 .7386 .0058 .0060 .7386 .0057 .0058 .7412 .0056 .0058 

.74 100 .7384 .0041 .0044 .7385 .0040 .0042 .7412 .0039 .0041 

.84 10 .8390 .0087 .0088 .8391 .0085 .0086 .8410 .0084 .0085 

.84 50 .8390 .0038 .0039 .8390 .0037 .0038 .8409 .0036 .0038 

.84 100 .8389 .0028 .0030 .8390 .0027 .0029 .8410 .0027 .0029 

 
 
Table 17 
 
Estimates of the Mean for Mixed (Random)-Effects Conditions 

  Vacha-Haase Schmidt and Hunter Lipsey-Wilson 

Mean 
ρ  

Studies 
(k) 

M SD  RMSE M SD RMSE M SD RMSE 
 

.74 10 .7432 .0195 .0195 .7432 .0193 .0193 .7491 .0198 .0206 

.74 50 .7435 .0086 .0086 .7435 .0087 .0087 .7500 .0088 .0109 

.74 100 .7430 .0064 .0064 .7431 .0064 .0064 .7500 .0066 .0089 

.84 10 .8424 .0170 .0170 .8424 .0171 .0171 .8522 .0205 .0222 

.84 50 .8436 .0074 .0074 .8436 .0075 .0075 .8544 .0095 .0144 

.84 100 .8438 .0054 .0054 .8438 .0054 .0054 .8546 .0068 .0131 

Note.  For this table, the moderator is operating to produce variance in the effect sizes, but the moderator is 
not analyzed in the meta-analysis.  For the Lipsey-Wilson method, results were analyzed in z, but the 
reported mean, SD and RMSE values were based on z transformed back to r at the end of each of the 1,000 
meta-analyses. 
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Table 18 
 
Estimates of the Variance (REVC) for Part I Fixed-Effects Conditions 

  Hunter-Schmidt 
(Total Variance -Sampling 

Error Estimate) 

Lipsey-Wilson 
(V theta for Z’s) 

Mean ρ  Studies (k) M SD  M SD 

.74 10 .0002 .0005 .0016 .0027 

.74 50 .0001 .0002 .0007 .0011 

.74 100 .0001 .0002 .0004 .0007 

.84 10 .0001 .0002 .0016 .0026 

.84 50 .0001 .0001 .0006 .0010 

.84 100 .0000 .0001 .0005 .0007 

 
 
Table 19 
 
Estimates of the Variance (REVC) for Mixed (Random)-Effects Conditions 

  Hunter-Schmidt 
(Total Variance -Sampling 

Error Estimate) 
** REVC=.0018 

Lipsey-Wilson 
(V theta for Z’s) 

Mean ρ  Studies (k) M SD  M SD 

.74 10 .0018 .0016 .0054 .0060 

.74 50 .0020 .0007 .0049 .0027 

.74 100 .0021 .0005 .0049 .0019 

.84 10 .0019 .0013 .0195 .0404 

.84 50 .0021 .0006 .0252 .0367 

.84 100 .0021 .0004 .0254 .0192 
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Table 20 
 
Estimates of the Slope (coefficient of ln (t))  

  Unit Weighted OLS Vacha-Haase 

Mean ρ  Studies (k) M SD  RMSE M SD RMSE 

.74 10 -.04 .025 .025 -.04 .028 .028 

.74 50 -.04 .008 .008 -.04 .008 .008 

.74 100 -.04 .006 .006 -.04 .006 .006 

.84 10 -.04 .020 .020 -.04 .022 .022 

.84 50 -.04 .007 .007 -.04 .006 .006 

.84 100 -.04 .004 .004 -.04 .004 .004 

  WLS (z) WLS (r) 

Mean ρ  Studies (k) M SD  RMsE M SD RMSE 

.74 10 -.10 .060 .060 -.04 .025 .025 

.74 50 -.10 .022 .022 -.04 .008 .008 

.74 100 -.10 .015 .015 -.04 .006 .006 

.84 10 -.18 .113 .113 -.04 .021 .021 

.84 50 -.19 .060 .063 -.04 .007 .007 

.84 100 -.19 .041 .047 -.04 .004 .004 
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Table 21 
 
Percentages of Type I Errors 

Mean ρ  Studies (k) % Type 1 
OLS 

% Type 1 
Vacha-
Haase 

% Type 1 
LW (z) 

% Type 1 
LW (r) 

.74 10 5.06% 4.85% 7.18% 5.04% 

.74 50 4.8% 4.9% 5.72% 5.11% 

.74 100 4.84% 4.87% 5.07% 4.92% 

.84 10 4.88% 4.78% 8.11% 4.84% 

.84 50 4.99% 5.29% 5% 4.52% 

.84 100 4.63% 5.21% 5.29% 4.49% 

 
 
Table 22 
 
Percentages of the Type II Errors in the Four Different Regressions 

  OLS VH LW (z) LW (r) 

Mean ρ  Studies (k) Total Percentage Type II Errors 

.74 10 57.8% 61.2% 44.5% 57.3% 

.74 50 0.9% 0.8% 0.3% 0.5% 

.74 100 0% 0% 0% 0% 

.84 10 43.8% 49.1% 29.8% 44.1% 

.84 50 0% 0% 0% 0% 

.84 100 0% 0% 0% 0% 
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Figure 1. Observed distribution of reliability estimates based on Hogan et. al 
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Figure 2. Box and Whisker plot of Vacha-Haase method 
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Figure 3. Representation of the moderator relationship between reliability and time 
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Figure 4. Sampling distributions of r’s and z’s no moderator conditions 

 

1,000 estimates of rho=.74 1,000 estimates of rho=.74, converted to 

z’s 

 

1,000 estimates of rho=.84 1,000 estimates of rho=.84, converted to 

z’s 
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Figure 5. Sampling distributions of r’s and z’s with the moderator and random error 

 

1,000 estimates of rho=.74 1,000 estimates of rho=.74, converted to 

z’s 

 

1,000 estimates of rho=.84 1,000 estimates of rho=.84, converted to 

z’s 
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Figure 6. Sampling distributions of r’s and z’s with moderator and error but no sampling  

 

1,000 estimates of rho=.74 1,000 estimates of rho=.74, converted to z’s 

 

1,000 estimates of rho=.84 1,000 estimates of rho=.84, converted to z’s 
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Figure 7. Curvilinear relationship between z’s and ln(days) 
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