Bacteria, guano and soot: Source assessment of organic matter preserved in black laminae in stalagmites from caves of the Sierra de Atapuerca (N Spain)

Joeri Kaal 1*, Virginia Martínez-Pillado 2, Antonio Martínez Cortizas 3, Jorge Sanjurjo-Sánchez 4, Arantzka Aranburu 5, Juan L. Arsuaga 2,6, and Eneko Iriarte 7

1Pyrolyscience, Calle Vallehermoso 15, 28015 Madrid, Spain
2Centro Mixto UCM-ISCIII sobre Evolución y Comportamiento Humanos, Av. Monforte de Lemos, 5, Pabellón 14. 28029, Madrid, Spain
3EcoPast (GI-1553), Facultade de Bioxícia, Rua Lope Gómez de Marzúa s/n, 15782 Santiago de Compostela, Spain
4Instituto Universitario de Xeoloxía, Universidade da Coruña. ESCI, Campus de Elviña, 15071 A Coruña, Spain
5Dpto Geología, Facultad de Ciencia y Tecnología, UPV/EHU. Barrio Sarriena s/n. 48940, Leioa, Bizkaia, Spain
6Dpto Paleontología, Facultad de Geología, Universidad Complutense de Madrid. C/José Antonio Novais, 12, 28040 Madrid, Spain
7Laboratorio de Evolución Humana, Dpto. Historia, Geografía y Comunicación, Universidad de Burgos, P. Misael Bañuelos, Edificio I+D+i, 09001 Burgos, Spain

Abstract: Speleothems are a recognized source of palaeoclimatic information, but their value as a source of signals from human activities in caves with an archaeological record has rarely been explored. Previous studies of speleothems in the Sierra de Atapuerca karst system (Burgos, northern Spain) revealed an important human fossil record, provided information about human activities in and around these caves, and the impacts on their natural environment. The present study reports the results of molecular characterization of dark-coloured laminae from the stalagmites Ilargi (Galería de las Estatuas) and GS1, GS2, and GS3 (Galería del Silo), by pyrolysis-GC-MS (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS). The features of the organic matter demonstrate the presence of 1) a dominant aliphatic fraction probably from in situ bacterial and ex situ plant-derived lipids, 2) black carbon (from soot and/or charcoal), 3) polysaccharides and N-rich moieties (probably from bat guano and microbial sources), and 4) a signal of terpenoid derivatives that may originate from the overlying limestone (kerogen) and extant gymnosperm resin (soils) or cyanobacteria (cave). Some plant-derived lignin may be present as well but was not identified unambiguously. It is concluded that this approach allows identifying multiple general sources of organic matter which can help understand speleothem formation processes, and evidence of soot deposition could be clearly linked to human activities.

Keywords: speleothem, black laminae, organic geochemistry, molecular composition, analytical pyrolysis

Received 19 February 2021; Revised 26 March 2021; Accepted 26 March 2021

https://doi.org/10.5038/1827-806X.50.2.2382

INTRODUCTION

The Sierra de Atapuerca karst system in the Iberian Peninsula is a treasure of information on early hominin evolution. Its archaeological and paleontological sites contain some of the most exceptional human fossil accumulations and stone artifacts from the Pleistocene (Carbonell et al., 1995; Arsuaga et al., 1997; Bermúdez de Castro et al., 1997) to the Middle Ages (Falguères et al., 2001; Carbonell et al., 2008; Carretero et al., 2008). The most famous sites correspond to chronologies of the Lower and Middle Pleistocene (e.g., Gran Dolina, Sima del Elefante), containing the oldest hominin remains in Europe (Carbonell et al., 2008). However, research is not limited to Pleistocene events, as some of the galleries of the karst system harbor information on Upper Pleistocene and Holocene paleoenvironments and more recent human activities (Ortega Martínez, 2009; Vergès et al., 2016). The El Portalon de Cueva Mayor archaeological site at the cave entrance, the Galería de las Estatuas and the Galería del Silo are examples of such cavities. In these galleries, detrital deposits as well as stalagmites have been studied (Carretero...
et al., 2008; Ortega-Martinez, 2009; Aranburu et al., 2012; Martinez-Pillado et al., 2014; Arsuaga et al., 2017).

Speleothems have complex development/erosion histories and the study of the growth dynamics can provide a vast body of information about the environmental conditions during their formation. This is reflected by the stalagmites in the Galeria de las Estatuas and the Galeria del Silo, showing numerous differences in colour, crystallography and composition (Martinez-Pillado et al., 2014; Fig. 1). The stalagmite *Ilargi* from Galeria de las Estatuas has been extensively studied (Martinez-Pillado et al., 2014) and its formation chronology, developed from U-Th series, shows its growth during the last ca. 14,000 yrs, with exception of a hiatus around 12,000–8,000 cal BP. Several techniques, such as the petrographic analysis and scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS), showed black-colored laminae containing guano remains (hydroxylapatite), others containing soot, and at one level a large charcoal fragment was encountered (\(^{14}C\) dated to ca. 7,800 cal BP). The chronology of the *Ilargi* formation was successfully coupled to results from palynological studies from El Portalón archaeological site and a reconstruction of climatic conditions and human activities was based on the comparison of both records: the pollen in detrital sequence and the petrographic analysis of the stalagmite (Martinez-Pillado et al., 2014).

Fig. 1. Cross-sections of the speleothems studied in the present study, from Galeria de las Estatuas (*Ilargi* and *Clon*) and Galeria del Silo (GS1, GS2, GS3). Alphabetic denominators correspond to black laminae (Martinez-Pillado et al., 2014). Red squares indicate samples studied here. In *Ilargi*, a chronology for each black laminae (Fig. 1a-g) has been calculated with the StalAge program (Scholz & Hoffmann, 2011) based on the ages published by Martinez-Pillado et al. (2014).
Several methods can be used to obtain paleoenvironmental information from organic matter (OM) in speleothems (review by Blyth et al., 2008). Molecular-scale OM analysis in speleothems has focused on total lipid extracts using gas or liquid chromatography (GC, LC, etc.) in combination with mass spectrometry (MS) (e.g., Rousseau et al., 1995; Blyth & Frisia, 2008; Huang et al., 2008; Rushdie et al., 2011; Yang et al., 2011; Fairchild & Baker, 2012; Blyth & Schouten, 2013). Most studies were concerned with speleothem formation processes and paleoenvironmental reconstructions on the basis of information on markers of vegetation change and temperature records (Blyth et al., 2015). To study macromolecular OM, spectroscopic techniques such as FTIR spectroscopy (Wynn & Brocks, 2014; and references therein) or techniques that involve the chemical and/or thermal degradation of large molecules to GC-amenable building blocks, can be employed. The latter family include conventional analytical pyrolysis (pyrolysis-GC-MS; Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS, sometimes referred to as thermochemolysis). Using THM-GC-MS, it was shown that a stalagmite from NW Scotland was prolific of lignin phenols (Blyth & Watson, 2009). A wide range of methoxybenzenes, 1,2-dimethoxybenzenes and 1,2,3-trimethoxybenzenes were detected, indicative of plant-derived lignin in a good preservation state. In such examples, speleothem OM can contain all the macromolecular constituents present in plant tissues and the soil microbial community, such as polysaccharides, lignin, proteins, chitin, or tannin. Abundance of lignin derivatives was also reported for speleothems in several Chinese caves using Py-GC-MS (Hou et al., 2004) and by Heidke et al. (2018) using a microwave-assisted alkaline cupric oxide (CuO) oxidation method applied to a stalagmite and drip water from a cave in Germany. Hou et al. (2004) also distinguished lignin from C3- and C4-plants by means of Py-GC-isotope ratio-MS (Py-GC-IRMS). Blyth et al. (2010) found traces of plant-derived lignin in 3 million yrs old Australian stalagmites using THM-GC-MS, even though these samples did not provide extractable lipid signatures. Using laser-Py-GC-MS, Blyth et al. (2015) studied OM in dissolved OM (DOM) from the calcite crystal matrix, detrital inclusions and lithified guano (from birds and bats), and described the features of their pyrolyzates, including alkane chain length patterns, presence of polysaccharides products (furans) and protein markers such as pyrroles (yet not chitin markers; suggesting that the guano was possibly not from an insectivore). Miller et al. (2016) applied conventional Py-GC-MS, THM-GC-MS and Py-GC-IRMS of coralloid speleothems from Easter Island (Chile). They found alkanes, alkenes, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) and N-compounds using Py-GC-MS, and mainly fatty acid methyl esters (FAMES) using THM-GC-MS. Organic matter sources identified were plant remains and microorganisms. Regarding non-calcitic speleothems, Miller et al. (2020) found evidence of pyrogenic OM in siliceous speleothems from volcanic caves (Hawaii, Azores, Canary Island), and Gonzalez-Pimentel et al. (2018) in yellow colored mats developing on coralloid speleothems in a lava tube from La Palma Island. Sanjurjo-Sánchez et al. (2021) found diverse sources in Al-rich speleothems developed in a granitic rock cave in NW Spain, including microbial chitin and polysaccharides, pyrogenic OM, plant-derived polysaccharides and lignin, and diterpenoids of unidentified source. There is a clear potential for these techniques to identify sources of OM and couple that information to biogeochemical processes within cave systems. This is relevant information, as there is considerable uncertainty on the importance of the major OM sources (air, water, faunal transport, and autochthonous production) in speleothems in different environments (Blyth et al., 2008).

The present study explores the potential of molecular characterization of OM present in various stalagmites from karst sites in the Sierra de Atapuerca. For this purpose, Py-GC-MS and THM-GC-MS were employed on samples from the Galería de las Estatuas and the Galería del Silo, focusing on black-colored laminae.

MATERIALS AND METHODS

Geological setting and speleothem descriptions

The Sierra de Atapuerca is located in the north centre of the Iberian Peninsula, 15 km east of the city of Burgos (see map in Martínez-Pillado et al., 2014). This low-altitude ridge (1,078 m), in the Arlanzón River Valley, contains a large number of karstic cavities formed in Upper Cretaceous limestone that encompasses the multi-level Cueva Mayor–Cueva del Silo karst system comprised by 3,700 m of different-sized galleries and chambers (Ortega Martínez, 2009). These cavities have distinct terrigenous, chemical and anthropic sedimentary infillings covering from the Lower Pleistocene (1.4 Ma) to the Middle Ages (Falguères et al., 2001; Carbonell et al., 2008).

Speleothems from two galleries of the karst system were sampled, i.e., Galería de las Estatuas and Galería del Silo. In both galleries, the presence of abundant storage pits and cave paintings, including numerous Neolithic to Bronze Age archaeological remains (e.g., charcoal, pottery and bone fragments), are evidence of human activity during the recent Prehistory (Ortega Martínez, 2009). Speleothems are widespread in the endokarstic sedimentary sequence that fills these galleries. The most modern and superficial speleothem phase postdates the detrital filling, forming a centimetric flowstone distributed throughout the room, on which abundant stalagmites were formed during the late Pleistocene and Holocene (Martínez-Pillado et al., 2014). Four of these speleothems were selected for the present study (selection of 11 samples): Ilargi, GS1, GS2, and GS3 (Fig. 1), corresponding to the last speleothem precipitation phase in the Cueva Mayor karst. The Ilargi stalagmite was collected from the north end of the Galería de las Estatuas, and its chronology covers from 14 to 3.1 ka BP (Martinez-Pillado et al., 2014). The speleothems GS1, GS2, and GS3 were collected from Galería del Silo. Finally, the Clon section is actually a lateral cut...
of the Ilargi stalagmite, taken near a large charcoal fragment dated to 7,800 yr cal BP (Martínez-Pillado et al., 2014).

Light-cream colors predominate in the studied speleothems, with dark bands formed by alternating black laminae (Fig. 1) that are more abundant and thicker in the upper half of all the stalagmites. Based on the different petrological and compositional features, two types of black layers have been identified; those with erosive surfaces that show the presence of hydroxylapatite precipitate, and those characterized by the absence of erosional features and formed by the accumulation of soot particles that cover the calcite crystals (photographs in Martínez-Pillado et al., 2014). Erosive black layers correspond to levels Ilargi-h and GS3-h stalagmites, and GS1-b (Fig. 1). Non-erosive black layers correspond to all the other samples except GS2-r, which belongs to a clear mechanical fracture of anthropic origin with soot evidence (Fig. 1).

Sample preparation

After cutting the speleothems longitudinally, their surfaces were polished and at the selected sampling points, an abrasion was performed with a tungsten carbide dentist’s drill to remove the first millimeters and avoid possible contamination.

Carbonates were eliminated by addition of aliquots of 5% HCl (aq) until the reaction was complete. Next, 40 ml of 1 M HF/HCl solution, equilibrated for 3 hr in an orbital shaker, were used to eliminate reactive minerals that may interfere during pyrolysis (Miltner & Zech, 1997). The supernatant was discarded and the residue washed by repeated (four times) additions of 40 ml of distilled water followed by centrifugation and decantation. Finally, the residue was dried for 24 h at 50°C.

Analytical pyrolysis

For conventional pyrolysis (Py-GC-MS), the dried residues were inserted into quartz tubes with quartz wool at both ends and pyrolyzed using a CDS Pyroprobe 5250 for 10 s at 750°C (10°C ms⁻¹ heating rate) with both the valve oven and the transfer line held isothermal at 325°C. This high pyrolysis temperature was used to promote the release of products from thermally relatively stable OM such as soot and charcoal (Kaal et al., 2009). Pyrolysis products were separated on a 6890N gas chromatograph (Agilent Technologies) operating in splitless mode to maximize signal intensity, using helium carrier gas (1 ml min⁻¹) and a HP-SMS polysiloxane-based (phenyl, 95% dimethylpolysiloxane column) column (30 m length, 0.25 mm i.d., film thickness 0.25 µm). The oven program started at 50°C (1 minute) and finished, after heating 20°C min⁻¹, at 325°C (4 min). The detector (Agilent 5975) operated at 70 eV electron impact (m/z 50–500). Quantification of pyrolysis products was based on the peak area of dominant fragment ions. The relative proportions of each pyrolysis product were calculated as the percentage of the sum of all peak areas (total quantified peak area, TQPA). Several samples produced chromatograms of which the signal-to-noise ratio was too low for a reliable assessment of the pyrolysis fingerprint (Ilargi-a, Clon-a), mainly because of the virtually complete digestion during the HF/HCl treatment (indicating scarce and/or labile organic constituents).

Two samples with relatively high yield of residue after the HCl/ HF treatment (Ilargi-h and GS3-h), and sample GS2-b, were analysed with THM-GC-MS by addition of droplets of 25% aqueous tetrasmethylammonium hydroxide (TMAH, 25%), followed by analysis under the same conditions as for Py-GC-MS. The TMAH was added twice, with an evaporation step at 35°C in between. The THM-GC-MS data was evaluated qualitatively (no quantification based on peak areas).

RESULTS AND DISCUSSION

Pyrolysis-GC-MS

Products based on a polymethylene chain (methylene chain compounds; MCC) are the most abundant in all samples (54 ± 11%; Fig. 2). Within this group, homologous series of n-alkane/n-alkene pairs (Table 1) prevail (53 ± 11% of TQPA). Among the n-alkenes, there is a gradual decrease in the relative proportion with chain length, with a minor maximum at C₁₄ and C₁₆ alkene, with the exception of the Clon-b sample, which has another maximum in the C₂₅-C₂₇ range. The average chain length of the n-alkanes is 18 ± 2, and that of the n-alkenes is 14 ± 2 (Fig. 3). n-alkenes are unusually dominant over n-alkanes (alkane/alkene ratio of 0.3 to 0.7), except for Clon-b (ratio of 1.8; Fig. 3). Minor proportions of branched alkanes, alkadienes and C₁₆ and C₁₈ alkylamines were detected as well – the latter of which only in samples Ilargi-b and Ilargi-h (Fig. 3). The MCC are least abundant in the sample Ilargi-h. The potential sources of these products are diverse, such as insect cuticles, plant leaf epicuticular waxes (especially long-chain alkanes), and all sorts of arrangements of free/esterified and macromolecular fatty acids (pyrolytically decarboxylated) in for instance algaenan, cutin, suberin, cutan, and suberan (e.g., Nip et al., 1986; Tegelaar et al., 1989; Quénéa et al., 2006). Some information on the sources of the MCC was obtained by THM-GC-MS (see below), which preserves carboxylic functionalities (Challinor, 1991).

The second most abundant class are the monocyclic aromatic hydrocarbons (MAHs; 21 ± 5.4%; Fig. 2), composed of alkylbenzenes with one (toluene) to seven C atoms in side-chain(s). Identifying the origin of the MAHs is difficult as they are potential products of many sources. Considering the abundance of MCC, for the MAHs with ≥4 C atoms in alkyl side-chains, the most likely source is cyclization of MCC structures during analytical pyrolysis (Sáiz-Jiménez, 1994). The MAHs with 1-3 C atoms in side chains can be products of degraded lignin, but a mixed source of microbial OM (especially in case of toluene) and cyclization products is more likely in this case as lignin is scarce (see below). For toluene, another potential source is pyrogenic OM (Kaal et al., 2009). Benzene, another major MAH product of pyrogenic OM, was not quantified due to poor peak resolution in the earliest section of the chromatograms.
Table 1. List of pyrolysis-GC-MS products and relative abundance (as percentage of total quantified peak area; % TQPA), identified in the black laminae of the speleothems from the Sierra de Atapuerca (RT: retention time; m/z: mass-charge of ions used for semi-quantitation; BF: benzofurans; CARB: carbohydrate products; CONT: contamination; MAH: monocyclic aromatic hydrocarbon; MCC: methylene chain compounds; NCOMP: nitrogen-containing compounds; PAH: polycyclic aromatic hydrocarbons; PHEN: phenols).

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Pyrolysis product</th>
<th>m/z</th>
<th>Group</th>
<th>Ilargi-b</th>
<th>Ilargi-h</th>
<th>GS1-a</th>
<th>GS2-b</th>
<th>GS2-r</th>
<th>GS2-e</th>
<th>GS3d</th>
<th>GS3-h</th>
<th>Clon-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.561</td>
<td>benzofuran</td>
<td>118+89</td>
<td>BF</td>
<td>0.83</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.73</td>
<td>0.73</td>
<td>0.53</td>
<td>0.67</td>
<td>1.00</td>
</tr>
<tr>
<td>6.243</td>
<td>C2-benzofuran</td>
<td>145+146</td>
<td>BF</td>
<td>0.10</td>
<td>0.15</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>6.306</td>
<td>C2-benzofuran</td>
<td>145+146</td>
<td>BF</td>
<td>0.16</td>
<td>0.36</td>
<td>0.03</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.29</td>
</tr>
<tr>
<td>3.308</td>
<td>2-cyclopenten-1-one</td>
<td>82+53</td>
<td>CARB</td>
<td>1.15</td>
<td>2.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.36</td>
<td>1.13</td>
<td>2.76</td>
</tr>
<tr>
<td>3.331</td>
<td>3/2-furaldehyde</td>
<td>95+96</td>
<td>CARB</td>
<td>1.46</td>
<td>2.88</td>
<td>0.77</td>
<td>0.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0.65</td>
<td>1.03</td>
<td>2.51</td>
</tr>
<tr>
<td>3.869</td>
<td>C1-cyclopentenone</td>
<td>67+96</td>
<td>CARB</td>
<td>0.80</td>
<td>1.71</td>
<td>2.55</td>
<td>1.72</td>
<td>2.33</td>
<td>1.54</td>
<td>1.66</td>
<td>2.43</td>
<td>0.27</td>
</tr>
<tr>
<td>8.268</td>
<td>di-tert-butylphenol</td>
<td>191+206</td>
<td>CONT</td>
<td>0.28</td>
<td>0.19</td>
<td>0.20</td>
<td>2.01</td>
<td>1.02</td>
<td>0.14</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>2.839</td>
<td>toluene</td>
<td>91+92</td>
<td>MAH</td>
<td>13.16</td>
<td>17.73</td>
<td>8.19</td>
<td>10.13</td>
<td>20.19</td>
<td>12.08</td>
<td>10.96</td>
<td>14.24</td>
<td>6.60</td>
</tr>
<tr>
<td>3.536</td>
<td>C2-benzene</td>
<td>91+106</td>
<td>MAH</td>
<td>3.01</td>
<td>4.46</td>
<td>2.43</td>
<td>4.10</td>
<td>6.00</td>
<td>3.71</td>
<td>3.04</td>
<td>3.85</td>
<td>3.95</td>
</tr>
<tr>
<td>3.593</td>
<td>C2-benzene</td>
<td>91+106</td>
<td>MAH</td>
<td>1.29</td>
<td>1.76</td>
<td>0.85</td>
<td>1.59</td>
<td>2.64</td>
<td>1.28</td>
<td>1.46</td>
<td>1.51</td>
<td>1.18</td>
</tr>
<tr>
<td>4.245</td>
<td>C2-benzene</td>
<td>91+120</td>
<td>MAH</td>
<td>0.49</td>
<td>0.37</td>
<td>0.26</td>
<td>0.76</td>
<td>0.14</td>
<td>0.60</td>
<td>0.34</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>4.429</td>
<td>C2-benzene</td>
<td>105+120</td>
<td>MAH</td>
<td>0.57</td>
<td>0.04</td>
<td>0.29</td>
<td>0.47</td>
<td>0.28</td>
<td>0.55</td>
<td>0.56</td>
<td>0.48</td>
<td>0.41</td>
</tr>
<tr>
<td>4.550</td>
<td>C2-benzene</td>
<td>105+120</td>
<td>MAH</td>
<td>0.51</td>
<td>0.96</td>
<td>0.96</td>
<td>1.19</td>
<td>0.89</td>
<td>1.09</td>
<td>1.07</td>
<td>0.81</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Fig. 2. Relative proportions of the main Py-GC-MS compound groups, in percentage of total quantified peak area (% TQPA). MCC=methylene chain compounds, N-compounds = nitrogen-containing compounds, MAH/PAH= monocyclic/polycyclic aromatic hydrocarbons. Colors represent stalagmites (Ilargi in green, GS1 in pink, GS2 in red, GS3 in garnet and Clon in blue).
<table>
<thead>
<tr>
<th>C12-benzene</th>
<th>C12-alkylbenzene</th>
<th>C12-alkene</th>
<th>C13-alkene</th>
<th>C14-alkene</th>
<th>C19-alkene</th>
<th>C19-alkylbenzene</th>
<th>C19-alkylnitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.28</td>
<td>0.71</td>
<td>0.80</td>
<td>0.88</td>
<td>0.97</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>0.26</td>
<td>0.29</td>
<td>0.74</td>
<td>0.87</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.36</td>
<td>0.36</td>
<td>0.88</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.22</td>
<td>0.71</td>
<td>0.83</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.26</td>
<td>0.27</td>
<td>0.79</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.15</td>
<td>0.17</td>
<td>0.73</td>
<td>0.88</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1.01</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>0.24</td>
<td>0.29</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.21</td>
<td>0.75</td>
<td>0.87</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.24</td>
<td>0.29</td>
<td>0.79</td>
<td>0.88</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

International Journal of Speleology, 50 (2), 121-135. Tampa, FL (USA) May 2021
Polycyclic aromatic hydrocarbons (PAHs; 5.6 ± 2.9%; Fig. 2) include series of indenes (C_{n}-C_{3}) and naphthalenes (C_{2}-C_{4}), in addition to fluorene, biphenyl and phenanthrene/anthracene (co-eluted isomers). Again, several sources can be highlighted, depending on the substitution (alkylation) patterns. Firstly, the (poly)alkyl-PAHs originate primarily from a terpenoid-like material (e.g., resins and essential oils), while the unsubstituted PAHs originate mainly, but not exclusively, from pyrogenic OM (Hatcher & Clifford, 1997; González-Vila et al., 2001; Kaal et al., 2016). For the C_{2}-alkynaphthalene with iso-C_{2}-configuration (probably 1,6-dimethyl-4-isopropynaphthalene, i.e., cadalene), a non-terpenoid source of pyrogenic OM is impossible as charring does not create isopropyl groups. This compound is most abundant in the sample Clon-b (Fig. 3). It is a pyrolysis dehydration product of cadinenes (Van Aarssen et al., 1994; Hatcher & Clifford, 1997) in higher plants, i.e., from resins from local vegetation, or a leaking component of the dolomite rock (kerogen), either way entering the cave through dripping water. However, a bacterial source cannot be discarded (Romero-Sarmiento et al., 2010). The residues of incomplete combustion (charcoal and soot) are known to produce C_{2}-alkyl-PAHs (methyl-naphthalenes), minor proportions of C_{2}- and sometimes C_{3}-alkyl-PAHs, usually in decreasing proportions as the number of alkyl C atoms increases (opposite trend for terpenoid products).

Following this rationale, pyrogenic OM (charcoal/soot) would account for the majority of the naphthalene, fluorene, biphenyl and phenanthrene/anthracene, a smaller proportion of the methylnaphthalenes and negligible amount of higher substitution levels, and vice versa for the terpenoid-like precursors. Figure 3 shows the sum of unsubstituted PAHs (excluding indene) and the ratio of unsubstituted PAHs to alkyl-PAHs, which provide an indication of the abundance of pyrogenic OM and the balance between pyrogenic and terpenoid-derived OM, respectively.

Other classes of compounds are carbohydrate products (3.8 ± 2.3%; Fig. 2), consisting of cyclopentenones and 3/2-furaldehyde; N-containing compounds (6.4 ± 3.9%) such as pyrrole, C_{2}-pyrrole, acetamide and benzonitrile; phenols (7.4 ± 2.4%); benzo[ghi]perylene and benzofurans (0.9 ± 0.4%) and a di-tert-butylylphenol contamination (0.5 ± 0.6%). The carbohydrates probably originate from a combination of plant-derived and microbial polysaccharides. The N-compound acetamide is a product of chitin and/or peptidoglycan in cell wall materials in fungi and bacteria, or exoskeletons of arthropods (Stankiewicz et al., 1996; Gupta & Cody, 2011). It was only detected in sample Ilargi-h (Fig. 3), but this may reflect that the chitin/peptidoglycan in that sample is relatively well-preserved rather than absent in the other samples. This compound can be related to disintegration of guano from insectivorous animals (Stankiewicz et al., 1996; Gupta & Cody, 2011).
1996) and their presence in this layer is compatible with the phosphatic minerals detected under SEM-EDS (Martínez-Pillado et al., 2014). The benzofurans are not specific of any source, but in the light of the pyrolyzate composition, a source in carbohydrates and pyrogenic OM (including charred carbohydrates) seems likely (Boon et al., 1994; Pastorova et al., 1994). The absence of significant peaks of lignin products (e.g., methoxyphenols) in pyrolyzates (Sáiz-Jiménez & de Leeuw, 1986), suggests that the phenols should be ascribed to microbial OM (e.g., proteins), but THM-GC-MS showed several peaks of possible lignin products, and it is known that Py-GC-MS fingerprints of lignin-derived DOM are less easily recognized by Py-GC-MS than lignin from particulate OM (Kaal et al., 2020), which implies that the phenols may also originate from dissolved lignin-derived moieties.

THM-GC-MS

Of the three samples analysed by THM-GC-MS, the chromatogram with the highest signal intensity was sample Ilargi-h (Fig. 4). Most of the peaks can be ascribed to compounds with a fatty acid structure, detected as fatty acid methyl esters (FAMEs). The C_{16} and C_{18} FAMEs have the highest peak intensity. Their source, i.e., free or esterified C_{16} and C_{18} fatty acids, are omnipresent in nature and a specific origin cannot be determined, but some minor FAME products provide clues on the composition and source of the dominant polymethylene aliphatic OM. For instance, C_{15} FAMEs included not only $n-C_{15}$ FAME but also branched-chain ($iso/anteiso$) C_{15} FAMEs, which is indicative of (bacterial) membrane lipids (Ratledge & Wilkinson, 1988; Kaneda, 1991; Spaccini et al., 2013), for instance in cave bacterial communities (Blyth & Frisia, 2008), among which cyanobacteria (Cox et al., 1989a) and lipids in bat guano (Queffelec et al., 2018). Furthermore, a series of even-numbered long-chain FAMEs ($C_{20}-C_{28}$) probably indicate fungal or bacterial wax esters, or (geopolymerized) epicuticular plant waxes (Ratledge, 1997; De Leeuw et al., 2006). Absence of unequivocal lignin products, as is the
Molecular composition of organic matter in Atapuerca speleothems

International Journal of Speleology, 50 (2), 121-135. Tampa, FL (USA) May 2021

case for this sample, was interpreted by Queffelec et al. (2018) as a prevailing source of microbial OM to the long-chain even-numbered FAME in bat guano. Some diacids (DAMEs) were detected, but mainly C\textsubscript{16} and C\textsubscript{18}, suggesting that suberin (which would reflect root/bark sources) is not a major source of the FAMEs (Kolattukudy, 2001; Nierop & Verstraten, 2004). This is also the main reason why the long-chain FAMEs were not ascribed to suberin, in addition to the lack of evidence of particulate plant-derived OM. Other detected FAMEs were unsaturated (C\textsubscript{16,18}) FAME and short-chain DAMEs (≤C\textsubscript{9}), the latter of which probably result from degradation of the former. It is concluded that the polymethylene OM originates at least in part from bacterial lipids, whereas the contribution of plant-derived OM remains unknown.

Multiple N-containing products were identified in the chromatogram of Ilargi-h, including tentatively identified N,N-dimethylalanine methyl ester (ME; m/z 72 and 131), N-methyl-2,5-pyrrolidinedione (m/z 56 and 113), 3-phenylpropenoic acid ME (m/z 131 and 162), several proline and hydroxyproline products including 2-methyl-5-oxo-proline ME, and several other unidentified N-heteroaromatic products (m/z 108 and 139; m/z 108 and 138) (Knicker et al., 2001; Lejay et al., 2019). The N-compounds detected are not the typical products of aged microbial OM in soils, which is prolific of alkylindoles and alkylpyrroles after THM. Instead, they originate from a well-preserved N-rich source of local production, such as bat guano proteins (insectivorous, i.e., chitin-containing) and bacteria (peptidoglycan). Note that bats have abundant connective tissues in their wings and tail membranes (Wimsatt, 1970), consisting of the proline rich polymer collagen, so that other remains of bats also form a potential source of the N-products. This might seem far-fetched, but the aforementioned N-heteroaromatic products (m/z 108 and 139; m/z 108 and 138) are abundant in the THM-GC-MS chromatograms of collagen (Lejay et al., 2019). Regarding the bacterial source, Actinobacteria, Proteobacteria, and other Gram-negative phyla such as Nitrospirae include genera that are N-fixing chemolithotrophs (Willey, 2008) and are frequently found in cave speleothems (Riquelme et al., 2015; Lavoie et al., 2017; Gonzalez-Pimentel et al., 2018). Further research would be needed to characterize the relative contributions of these sources of N.

Many carbohydrate products such as methylated C\textsubscript{5} and C\textsubscript{6}-metasaccharinic acids were detected (Fabbri & Helleur, 1999). These compounds formed from polysaccharides in plant-, microbial-, or guano-derived OM. The compounds 4-methoxybenzoic acid ME (P6) and 3,4-dimethoxybenzoic acid ME (G6) may reflect lignin, tannin or another source of phenolic OM (e.g., Nierop & Filley, 2007). Dominance of these acid moieties has been reported for THM-GC-MS chromatograms of DOM (Kaal et al., 2017), so that the absence of more specific markers of lignin does not imply that DOM in soil leachates is not a significant source of these compounds. Some benzoic acid methyl ester (ME) and benzenecarboxylic acid dimethyl esters (B2CA) were detected, possibly from lignin (Hatcher & Minard, 1995).

Dehydroabietic acid ME (DHA) and other abietic acid derivatives are well-known constituents of conifer resins (Keeling & Bohlmann, 2006). However, the presence of abietane derivatives in samples from the Devonian suggested that abietic acid synthesis
might not be restricted to terrestrial conifers (Romero-Sarmiento et al., 2010) and, more recently, Costa et al. (2016) demonstrated that several genera of cyanobacteria metabolise dehydroabiotic and abiatic acid as well. This implies that the DHA in this sample may reflect diterpenoids from gymnosperms (soil leachate) or bacterial sources (produced in situ). It is important to note that Romero-Sarmiento et al. (2010) also found cadalenes in the same samples, suggesting that perhaps the detected cadalene (THM-GC-MS and Py-GC-MS) may be a product of bacterial biomass as well (see above). The Ilargi-h sample corresponds to an accumulation of guano (forming hydroxylapatite; Audra et al., 2019) after an erosion event. Note that this event could be due to biogenic corrosion caused by the guano itself (Audra et al., 2019; Dandurand et al., 2019). Cyanobacterial activity in the guano and rapid movement of water from the soil environment (known to support conifer vegetation around that time; Martinez-Pillado et al., 2014) are both plausible hypotheses.

Sample GS2-b gave benzenetricarboxylic acid trimethyl ester (B3CA) as the largest peak, followed by C16 FAME, isomers of B3CA and B2CA and some minor peaks of other FAMEs and unidentified N-compounds (Fig. 4). The partial ion chromatogram of m/z 279 also shows three isomers of B4CA. These benzene polycarboxylic acid (BPMA) patterns, and in particular the presence of B4CA and the dominance of B3CA over B2CA and B1CA, are indications of oxidized pyrogenic OM in this sample (Kaal et al., 2008). In this case, the three isomers of methoxy-B2CA can probably be ascribed to the same source of pyrogenic OM (Kaal & Filley, 2016). This is in agreement with the abundance of unsubstituted PAHs and the high ratio of unsubstituted PAHs-to-alkyl-PAHs observed with Py-GC-MS (Fig. 3). Hence, whereas the benzencarboxylic acid patterns of sample Ilargi-h did not indicate pyrogenic OM, it seems very likely that charred OM is the main type of OM in GS2-b. The presence of N-containing products and C15 FAMEs probably indicate that the non-pyrogenic OM is mainly microbial in origin (suggesting that C16 and C18 FAMEs are also of microbial origin in this case; cf. Miller et al., 2016).

The THM-GC-MS chromatogram of sample GS3-h was dominated by a series of FAMEs, with similar change length patterns as Ilargi-h, but with reduced intensity of the >C20 FAMEs. Signal intensity is much lower, and presence of large peaks for alkenes suggests that the methylation was incomplete.

Synthesis and conclusions

The detectable OM in all samples is composed mainly of polymethylene chain aliphatic structures, recognized as MCC using Py-GC-MS and as FAMEs using THM-GC-MS. The origin of these compounds cannot be established easily. The alkadienes (Py-GC-MS), in combination with the presence of iso/anteiso C15 FAMEs (THM-GC-MS) with peaks that are larger than that of C14 FAME, suggest the presence of a considerable proportion of bacterial lipids. Even though part of this signal may correspond to old soil OM from the overlying soils, cave bacteria are more likely sources (Cox et al., 1989b; Cacciolo et al., 2004; Blyth et al., 2008) and bat guano can produce MCC as well (Queffelec et al., 2018). Jex et al. (2014) showed a principal in situ (microbial) source of tetraether membrane lipids in diverse speleothems from glycerol dialkylglycerol tetraetheral (GDGT) patterns. On the other hand, the detection of long-chain FAMEs with strong even-over-odd chain length predominance, ω-methoxy-FAMEs and some DAMEs might indicate some plant-derived aliphatic macromolecular and/or geopolymerized waxes. The presence of some plant-derived MCC is in accordance with Xie et al. (2003) and Blyth et al. (2007), which could use them to reconstruction vegetation communities. In the OM from the speleothems studied here, however, this aliphatic OM, which is the “matrix OM” in all analyzed samples, is probably of mixed sources (ex situ vegetation and in situ cave microorganisms and guano) with only a minor plant contribution.

The molecular fingerprint of the N-rich OM constituents indicates the presence of chitin/peptidoglycan in Ilargi-h, which is the sample with the highest molecular diversity. Here, apart from chitin (acetamide from Py-GC-MS), well-preserved protein is abundant (THM-GC-MS), and a source in soil OM is deemed very unlikely as other signals of relatively “fresh” soil OM, such as lignin and plant polysaccharide products, are negligible. They should probably be ascribed to the proteins in insectivorous guano (this is a hydroxylapatite layer), but contributions of animal protein (for instance bat collagen) and cave bacterial communities growing in guano (Wurster et al., 2015), cannot be excluded. For Ilargi-h, these results probably indicate dominance of lipids from the cave rather than from percolating water from the overlying soil. Whether this can be extrapolated for the much less diagnostic MCC and N-compound fingerprints of the other samples remains unknown. Note that speleothem excreta records such as that of bat guano are a valuable source of paleoenvironmental information when studied by means of stable isotope analysis (δ13C, δ15N; e.g., Wurster et al., 2010, Cleary & Onac, 2020), or even DNA sequencing by metabarcoding that allows the identification of bat species (Walker et al., 2019), plant remains (Willerslev et al., 2003) and bacteria responsible of guano transformation (De Leon et al., 2018; Newman et al., 2018), opening possible lines of data cross-comparison to enhance the understanding of the mechanisms behind both stable isotope signals and variations in OM molecular composition.

The sample GS3-h is the sample with the second-highest contribution of polysaccharide derivatives (after Ilargi-h), and the second-lowest proportion of MCC. It seems that the samples from old erosion surfaces are enriched in guano remains, which is in line with the petrographic and SEM-EDS analyses of Martinez-Pillado et al. (2014) and also have OM that from the overlying soils, cave bacteria are more likely sources (Cox et al., 1989b; Cacciolo et al., 2004; Blyth et al., 2008) and bat guano can produce MCC as well (Queffelec et al., 2018). Jex et al. (2014) showed a principal in situ (microbial) source of tetraether membrane lipids in diverse speleothems from glycerol dialkylglycerol tetraetheral (GDGT) patterns. On the other hand, the detection of long-chain FAMEs with strong even-over-odd chain length predominance, ω-methoxy-FAMEs and some DAMEs might indicate some plant-derived aliphatic macromolecular and/or geopolymerized waxes. The presence of some plant-derived MCC is in accordance with Xie et al. (2003) and Blyth et al. (2007), which could use them to reconstruction vegetation communities. In the OM from the speleothems studied here, however, this aliphatic OM, which is the “matrix OM” in all analyzed samples, is probably of mixed sources (ex situ vegetation and in situ cave microorganisms and guano) with only a minor plant contribution.

The molecular fingerprint of the N-rich OM constituents indicates the presence of chitin/peptidoglycan in Ilargi-h, which is the sample with the highest molecular diversity. Here, apart from chitin (acetamide from Py-GC-MS), well-preserved protein is abundant (THM-GC-MS), and a source in soil OM is deemed very unlikely as other signals of relatively “fresh” soil OM, such as lignin and plant polysaccharide products, are negligible. They should probably be ascribed to the proteins in insectivorous guano (this is a hydroxylapatite layer), but contributions of animal protein (for instance bat collagen) and cave bacterial communities growing in guano (Wurster et al., 2015), cannot be excluded. For Ilargi-h, these results probably indicate dominance of lipids from the cave rather than from percolating water from the overlying soil. Whether this can be extrapolated for the much less diagnostic MCC and N-compound fingerprints of the other samples remains unknown. Note that speleothem excreta records such as that of bat guano are a valuable source of paleoenvironmental information when studied by means of stable isotope analysis (δ13C, δ15N; e.g., Wurster et al., 2010, Cleary & Onac, 2020), or even DNA sequencing by metabarcoding that allows the identification of bat species (Walker et al., 2019), plant remains (Willerslev et al., 2003) and bacteria responsible of guano transformation (De Leon et al., 2018; Newman et al., 2018), opening possible lines of data cross-comparison to enhance the understanding of the mechanisms behind both stable isotope signals and variations in OM molecular composition.

The sample GS3-h is the sample with the second-highest contribution of polysaccharide derivatives (after Ilargi-h), and the second-lowest proportion of MCC. It seems that the samples from old erosion surfaces are enriched in guano remains, which is in line with the petrographic and SEM-EDS analyses of Martinez-Pillado et al. (2014) and also have OM that from the overlying soils, cave bacteria are more likely sources (Cox et al., 1989b; Cacciolo et al., 2004; Blyth et al., 2008) and bat guano can produce MCC as well (Queffelec et al., 2018). Jex et al. (2014) showed a principal in situ (microbial) source of tetraether membrane lipids in diverse speleothems from glycerol dialkylglycerol tetraetheral (GDGT) patterns. On the other hand, the detection of long-chain FAMEs with strong even-over-odd chain length predominance, ω-methoxy-FAMEs and some DAMEs might indicate some plant-derived aliphatic macromolecular and/or geopolymerized waxes. The presence of some plant-derived MCC is in accordance with Xie et al. (2003) and Blyth et al. (2007), which could use them to reconstruction vegetation communities. In the OM from the speleothems studied here, however, this aliphatic OM, which is the “matrix OM” in all analyzed samples, is probably of mixed sources (ex situ vegetation and in situ cave microorganisms and guano) with only a minor plant contribution.
the quality of the chromatogram in combination with the polar nature of acetamide may have deteriorated a possible chitin/peptidoglycan signal.

The samples with the strongest signals (Py-GC-MS, THM-GC-MS) of pyrogenic OM are GS2-b, GS2-e, and GS2-r. It may be coincidence that these samples originate from the same stalagmite, or that the position of GS2 stimulated the accumulation of soot/smoke from anthropogenic fires in cave. The absence of fire evidence in the detritic sequence in the Galería del Silo and the Galería de las Estatuas, points to an accumulation of soot in the stalagmites mainly from the abundant fireplaces and fumiers present in the nearby El Portalón de Cueva Mayor archaeological site at the cave entrance (250 m away). Nevertheless, the use of torches instead of local hearths should be also considered as a possible source of soot. The chronology of the pyrogenic OM-rich black layers coincides with the most intense occupation periods of the El Portalón de Cueva Mayor archaeological site (Carretero et al., 2008; Pérez-Romero et al., 2017). Figure 1 shows the calculated ages of those samples with pyrogenic OM in the Ilargi stalagmite (Ilargi-a to Ilargi-g) (Martínez-Pillado et al., 2014), indicating that the first human activities within the karst using wood combustion began ca. 7,700 years ago, during the Neolithic period. The highest concentration of soot laminae occurs between 5,000 and 3,000 years ago, from the Chalcolithic to the Bronze Age period. All evidence is in agreement with the archaeo-sedimentary sequence of the El Portalón site (Carretero et al., 2008), where main archaeological units, Units 9 (Neolithic) to 3 (Bronze Age), overlap the chronologies of the black laminae.

In the case of Ilargi-h layer, the erosion surface related to this sample coincides with a hiatus of about 5,000 years, involving the boundary between the Pleistocene and the Holocene. The presence of chitin/peptidoglycan and proteins indicating a possible bat-guano layer can be correlated with Unit 9a of El Portalón sequence, formed by a guano layer between 5 and 8 cm thick and dated at ca. 8,500 yr cal BP (Carretero et al., 2008). It also represents the transition from the Pleistocene (Unit 10) to the Holocene (Unit 9) and is characterized by the absence of human presence and activity at the site and the karst system (Carretero et al., 2008).

Interestingly, Clon-b has the largest proportion of cadalene and long-chain alkanes, possibly indicating terrestrial resins and plant lipids. The OM in this sample is strongly depleted in N-containing moieties and polysaccharides, suggesting that guano/microbial OM is a minor source. Alternatively, this lamina corresponds to material that was subjected to relatively strong diagenetic processes, and in fact the resin signature may partially correspond to kerogen in source rock. The other samples (Ilargi-b, GS1-a, and GS3-d) have pyrolyzed compositions with unexceptional proportions of aliphatic, pyrogenic and guano/microbial OM.

In conclusion, we have shown some interesting features of the OM in black laminae in speleothems from the Sierra de Atapuerca karst system that can lead to a better understanding of OM dynamics in cave environments. The OM types detected in black laminae include a long-chain aliphatic component (probably mixed microbial-/plant-derived), a nitrogen-rich component (from micro-organisms, guano and/or insect residues), and a pyrogenic component (probably anthropogenic). Exploring the complementarities with other methods seems to be a logical step in developing the precursor-product rationale of Py-GC-MS and THM-GC-MS and further assess their potential. The methods are useful screening tools to select samples for other (more time-consuming and/or more expensive) methods such as DNA sequencing. Once the sources can be established more reliably, these rapid and cost-efficient techniques may provide a useful tool for reconstructions based on speleothem composition.

ACKNOWLEDGMENTS

We are grateful to William Meredith, and an anonymous reviewer for their insightful comments.

Author statement: JK, AMC, and EI designed the study. JK and VMP performed the measurements and created the figures. VMP coordinated bridging environmental (JK, EI, AMC, and JSS) with archaeological proxies (AA, EI, and JLA). JK wrote the draft and all authors contributed to the final version.

REFERENCES

https://doi.org/10.1006/jhev.1997.0132

ancestor to Neanderthals and modern humans. Science, 276, 1392-1395.
https://doi.org/10.1126/science.276.5317.1392

https://doi.org/10.1080/014904508010103938

https://doi.org/10.1016/j.gca.2013.02.009

https://doi.org/10.1016/j.orggeochem.2009.06.007

https://doi.org/10.1016/j.quascirev.2008.02.002

https://doi.org/10.1016/j.chemgeo.2010.10.006

https://doi.org/10.1016/j.jaap.2015.03.009

https://doi.org/10.1016/0961-9534(94)00044-T

https://doi.org/10.1080/01490450490888109

https://doi.org/10.1126/science.269.5238.826

https://doi.org/10.1038/nature06815

https://doi.org/10.1016/0165-2370(91)80059-H

https://doi.org/10.1144/SPS507-2020-13

https://doi.org/10.1038/srep23436

https://doi.org/10.1080/01490458909377870

https://doi.org/10.1016/j.geomorph.2018.10.027

https://doi.org/10.1017/S1125805005-9027-x

https://doi.org/10.1371/journal.pone.0200095

https://doi.org/10.1016/S0165-2370(98)00085-0

https://doi.org/10.1002/9781444361094

https://doi.org/10.1016/S0003-5521(01)80006-6

https://doi.org/10.1016/j.jaap.2015.03.009

https://doi.org/10.1021/jf0006325
Molecular composition of organic matter in Atapuerca speleothems

