
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

Marine Science Faculty Publications College of Marine Science 

6-2020 

Photic Stress on Coral Reefs in the Maldives: The Photic Stress on Coral Reefs in the Maldives: The Amphistegina 

Bleaching Index Bleaching Index 

Stephanie Stainbank 
University of Fribourg 

Silvia Spezzaferri 
University of Fribourg 

Valentina Beccari 
University of Fribourg 

Pamela Hallock 
University of South Florida, pmuller@usf.edu 

Arthur Adams 
University of Bern 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.usf.edu/msc_facpub 

 Part of the Life Sciences Commons 

Scholar Commons Citation Scholar Commons Citation 
Stainbank, Stephanie; Spezzaferri, Silvia; Beccari, Valentina; Hallock, Pamela; Adams, Arthur; Angeloz, 
Auriele; Basso, Daniela; Caragnano, Annalisa; Del Piero, Nicolo; and Dietsche, Patrick, "Photic Stress on 
Coral Reefs in the Maldives: The Amphistegina Bleaching Index" (2020). Marine Science Faculty 
Publications. 1305. 
https://digitalcommons.usf.edu/msc_facpub/1305 

This Article is brought to you for free and open access by the College of Marine Science at Digital Commons @ 
University of South Florida. It has been accepted for inclusion in Marine Science Faculty Publications by an 
authorized administrator of Digital Commons @ University of South Florida. For more information, please contact 
digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/msc_facpub
https://digitalcommons.usf.edu/marine
https://digitalcommons.usf.edu/msc_facpub?utm_source=digitalcommons.usf.edu%2Fmsc_facpub%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.usf.edu%2Fmsc_facpub%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usf.edu/msc_facpub/1305?utm_source=digitalcommons.usf.edu%2Fmsc_facpub%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Authors Authors 
Stephanie Stainbank, Silvia Spezzaferri, Valentina Beccari, Pamela Hallock, Arthur Adams, Auriele 
Angeloz, Daniela Basso, Annalisa Caragnano, Nicolo Del Piero, and Patrick Dietsche 

This article is available at Digital Commons @ University of South Florida: https://digitalcommons.usf.edu/
msc_facpub/1305 

https://digitalcommons.usf.edu/msc_facpub/1305
https://digitalcommons.usf.edu/msc_facpub/1305


Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Photic stress on coral reefs in the Maldives: The Amphistegina bleaching index
Stephanie Stainbanka,⁎, Silvia Spezzaferria, Valentina Beccaria, Pamela Hallockb,
Arthur Adamsc,1, Aurelie Angelozd, Daniela Bassoe, Annalisa Caragnanof, Nicolo Del Pierod,
Patrick Dietschea, Ines Eymardd, Nicholas Farleyd, Marine Faua, Anneleen Fouberta,
Bruno Laupera, Anael Lehmanng, Marine Mailletd, Haileyesus Neggaa, Luis Ordonezd,
Giovan Peyrottyd, Valentin Rimea, Andres Rüggeberga, Iris Schoellhorng, Lucas Vimpered
aUniversity of Fribourg, Department of Geosciences, Chemin du Musée 6, 1700 Fribourg, Switzerland
bUniversity of South Florida, College of Marine Science, St Petersburg, United States
cUniversity of Bern, Institute of Geological Sciences, Baltzerstrasse 1+3, 3012 Bern, Switzerland
dUniversity of Geneva, Department of Earth Sciences, Rue des Maraîchers 13, 1205 Geneva, Switzerland
eUniversità degli Studi di Milano-Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra, Piazza della Scienza 4, 20126 Milano, Italy
fDipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
gUniversity of Lausanne, Faculty of Geosciences and Environment, Géopolis, 1015 Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Amphistegina
Maldives
Coral reefs
Indian Ocean
Biotic indices

A B S T R A C T

The Amphistegina Bleaching Index (ABI) was applied to three Maldivian reefs in the Rasdhoo and North Ari Atolls in
2018, during normal sea surface temperature conditions. This dataset was then compared with a 2015, pre-coral
bleaching study. The results provide a context for the verification and application of the ABI in outlining the photo-
inhibitory stress status of coral reefs outside of the Florida Reef Tract where it was originally developed. The sampling
periods encompass different seasons and temperature regimes. The 2015 field sampling preceeded the El Niño induced,
mass coral-bleaching events of 2015 and 2016. It was carried out in late April and early May, during the dry season,
when temperatures exceeded 31.5 °C and photosynthetically active radiation (PAR) was high. The 2018 sampling took
place near the September equinox, towards the end of the monsoon, when PAR was again high, though water tem-
peratures were ~30 °C. Although there were slightly higher percentages of bleached Amphistegina in 2018, there were
also higher percentages of juveniles, indicating either that (1) the chronic stress was insufficient to impact asexual
reproduction or (2) the onset of stress was within the past few weeks; the latter hypothesis was supported by an
increase in PAR and temperature coinciding with the time of sampling. From the ABI plots it is possible to distinguish
between the 2015 (high data scatter), highly stressed pre-bleaching conditions with elevated photo-oxidative stress
levels, and the near-baseline conditions represented by the 2018 dataset (tight data clustering). Overall, this study thus
shows the potential of Amphistegina populations and the ABI in forecasting bleaching events, and contributing to the
question of the resilience potential of the coral reefs as a whole. It also highlights the usefulness and suitability of the
ABI, within Maldivian coral reefs, as an indicator of photo-inhibition through photo-oxidative stress that can increase
susceptibility to coral bleaching as water temperatures approach or exceed the bleaching threshold.

1. Introduction

Coral reefs are biodiversity hotspots which are under increasing stress
from climate-related pressures. These ecosystems host a wide array of
species, with great biological, economic and recreational significance. Their
survival and health is thus paramount, particularly for the development of
small island states such as the Maldives, Mauritius and Bahamas. The es-
tablishment of long-term monitoring programs is one of the first steps in

coral reef conservation. Through global initiatives by the International
Union for Conservation of Nature (IUCN), National Oceanic and
Atmospheric Administration (NOAA), World Wide Fund for Nature (WWF),
amoung others, monitoring programs have gained traction over the last few
decades, yet their scope and ease of implementation is paramount to their
overall success. With an increase in frequency of climate-induced coral-
bleaching events, from every 25–30 years in the 1980s to approximately
every 6 years in recent years (Hughes et al., 2018), this is particularly
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important now more than ever.
The term “bleaching”, in relation to symbiont-bearing organisms, is

typically denoted as a temporary or permanent loss of the symbiotic
microalgae or pigments (Glynn, 1996). Causes of bleaching can include
a combination of abiotic factors such as drastic changes in seawater
temperatures or salinity (both high or low) (Jokiel and Coles, 1990),
visible or ultraviolet solar irradiance (e.g., Gleason and Wellington,
1993; Glynn, 1996) and heavy metal concentrations or sedimentation
rates (Hoegh-Guldberg and Smith, 1989), as well as biotic factors such
as disease. Yet, the main drivers of coral-bleaching events are thermal,
with the inclusion of its associated photo-inhibitory stresses. Thermal
stress makes endosymbionts more susceptible to photo-inhibition
through photo-oxidative reactions, resulting in a subsequent loss of
symbionts (Coles et al., 1976; Goreau and Hayes, 1994; Glynn, 1996;
Hoegh-Guldberg, 1999; Talge and Hallock, 2003).

Conventional coral-reef monitoring programs are typically oriented to-
wards the assessment of the health and diversity of coral and fish com-
munities, which can include in situ counts as well as photographic or vi-
deographic transects (e.g. Rogers et al., 1994; Hill and Wilkinson, 2004;
Cruz et al., 2008; Ruzicka et al., 2013; Wartenberg and Booth, 2015;
Roberts et al., 2016). In this way, assemblage changes and the visual health
of selected indicator species/groups can be established and monitored.
While we acknowledge the importance of this approach, species-level
identification of corals and fish requires specialist knowledge. Additionally,
the visual reflection of stress in corals (i.e., bleaching) is known to be a
delayed response (e.g. Gardner et al., 2017; Krueger et al., 2015; Stimson,
1997). With this in mind, a low-cost, simple biotic index, the Amphistegina
Bleaching Index (ABI), was proposed by Hallock et al. (2006) and Ramirez
(2008) for assessing coral reef photo-inhibitory stress using symbiont-
bearing, unicellular protists called foraminifera. This index uses the reef-
dwelling larger benthic foraminiferal genus Amphistegina, which hosts
diatom endosymbionts. Amphistegina spp. are sensitive to environmental
stress over days to weeks (Hallock et al., 2006) and, as such, their popu-
lations are able to respond more rapidly, in comparison to corals, to changes
in the environment. In particular, Amphistegina specimens bleach when
exposed to photo-inhibitory stress, the susceptibility to which can be in-
dependently induced by increases in light and/or temperature (Hallock
et al., 2006; Prazeres et al., 2016). Schmidt et al., (2011) demonstrated that
temperatures above 31 °C have a negative effect on Amphistegina, while
temperatures around 30 °C significantly impact the photosynthetic activity
of symbionts (Sinutok et al., 2011; Uthicke et al., 2012).

The ABI was developed on Amphistegina gibbosa populations living

on the Florida Reef Tract (Hallock et al., 2006; Ramirez, 2008) and first
implemented by Spezzaferri et al. (2018) in the Maldivian Archipelago
located in the northern equatorial Indian Ocean. However, the estab-
lishment of this Index within long-term coral-reef monitoring programs
requires testing by comparison with baseline conditions outside of
Florida. Importantly, Spezzaferri et al. (2018) observed bleaching in
Maldivian Amphistegina populations a few weeks before the first ob-
served coral bleaching in June 2015 and, as such, their dataset re-
presents a disturbance period, a deviation from baseline conditions.

Pisapia et al. (2016) demonstrated a decadal recovery time for the
Maldivian reefs following the 1998 mass coral-bleaching event. Their
compilation of data from 1993 to 2016 showed that, while the Mal-
divian reefs had an eventual, yet protracted recovery time, a shift in
coral assemblage cover was noted and the future resilience of these
ecosystems was questioned with the prospect of future bleaching
events. This is particularly true considering the extensive El Niño re-
lated coral-bleaching event in 2015–2016, which, in relation to the
level of thermal stress, was more severe than expected (NOAA Coral
Reef Watch., 2015; Spezzaferri et al., 2018).

Within this context, the purpose of our study was to (1) use our 2018
(post-disturbance, baseline) dataset to verify the use and potential of the
ABI within the Maldives; (2) to use both the Amphistegina populations and
ABI to explore the resilience of three Maldivian island coral reefs in re-
sponse to this 2015–2016 El Niño induced mass-bleaching event and (3) as
human pressures (e.g., local settlements, tourist resorts) are evident in the
Maldives, we utilise the ABI to further facilitate the distinction between
water quality (local) and photo-oxidative (global) stresses. The overall sig-
nificance for the incorporation of this biotic index within long-term coral-
reef monitoring programs was thus assessed.

2. Materials and methods

2.1. Study site

The Maldivian Archipelago is located in the equatorial Indian Ocean
between 7°07′N to 0°40′S and 72°33′E to 73°45′E. It encompasses 16
complex atolls, which include > 1100 islands. In 2018, within the frame-
work of a Training Through Research Cruise sponsored by the “Conférence
Universitaires de Suisse Occidentale” (CUSO), three of these islands from
the Rasdhoo and North Ari Atolls (Rasdhoo, Vihamaafaru and Maayafushi),
were surveyed, each representing an example of different island manage-
ment plans (i.e., uninhabited, resort and community, Fig. 1). All three were

Fig. 1. Location map of the Maldives in the northern equatorial Indian Ocean, showing the three investigated islands, Rasdhoo (R), Vihamaafaru (V) and Maayafushi
(M), (GEBCO Compilation Group, 2019).
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previously sampled in 2015 during the International Union for Conservation
of Nature (IUCN) REGENERATE Cruise and thus the 2018 sampling cam-
paign served as the next step in establishing a time-series to monitor the
recovery and resilience status of these reefs following a mass-bleaching
event (Pisapia et al., 2017a; Beccari et al., 2020; Caragnano et al., sub-
mitted). Whilst the REGENERATE cruise aimed to establish if different is-
landmanagement strategies impacted the health of the reef, this was not the

primary focus of the 2018 sampling campaign. Nevertheless, representatives
from the same island classification groups were included in the 2018
sampling, albeit with a reduced subset, to facilitate a more comprehensive
long-term monitoring regime.

2.2. Sampling strategy

Rasdhoo represents a community-managed island, Vihamaafaru is
an uninhabited island, and Maayafushi is a resort island. At each of
these islands’ reefs, two sites at 10 m water depth were chosen in 2018
to correspond to sites previously sampled in 2015 (Moritz et al., 2017;
Pisapia et al., 2017a,b). At each site, two to three coral rubble pieces
were collected by SCUBA divers at three locations approximately 50 m
apart. Once collected, the rubble was processed immediately on board
according to the protocol outlined in Ramirez (2008) and used in 2015

Fig. 2. Representative specimens for each bleaching class: Normal (N), Partially Bleached (PB) and Bleached (B) for A. lessonii (1–3); A. lobifera (4) and A. radiata
(5–7) with an example of A. lessonii individuals attached to a coral rubble fragment (8). Scale bars = 500 μm.

Table 1
Amphistegina classification categories.

Species Size Degree of bleaching

A. lessonii Juvenile Normal (N)
A. lobifera Adult Partially bleached (BP)
A. radiata Bleached (B)

S. Stainbank, et al. Ecological Indicators 113 (2020) 106257
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by Spezzaferri et al. (2018), ensuring avoidance of exposure to bright
lights and temperature extremes at all times. Briefly, the rubble pieces
were gently scrubbed with a small brush to remove all biogenic mate-
rial and the resultant slurry stored in petri dishes and allowed to settle
for at least two hours. While the temperature was not monitored during
this interval, care was taken to store the samples in an air-conditioned
room out of direct sunlight to ensure the organisms were not subjected
to any further stress.

Subsequently, all living Amphistegina, identified by the presence of
coloured protoplasm together with a visual check for pseudopodial
activity, were classified according to three criteria: species, size and
degree of bleaching (Table 1). While this is not in the original ABI
protocol, three typical Indo-Pacific species, Amphistegina lessonii, Am-
phistegina lobifera and Amphistegina radiata, were distinguished to pro-
vide supplementary data. As previously mentioned, the ABI was ori-
ginally developed on Amphistegina gibbosa, a species which is restricted
to the Atlantic and Caribbean. Similarly, juvenile and adult size classes
were distinguished according to Mateu-Vicens et al. (2009), with the
former being ~ <1 mm in size and the latter ~1–3 mm. The customary
ABI bleaching categories evaluated were: Normal (N) = with no ob-
servable bleaching; partially bleached (PB) = <50% of bleached sur-
face and bleached (B) = >50% of bleached surface. The PB category
includes slightly mottled and mottled individuals whereas the B cate-
gory is defined by individuals which are very mottled, pale or white.
Representative examples for each bleaching class for A. lessonii and A.
radiata, and, when possible for A. lobifera, are displayed in Fig. 2. Each
rubble piece was photographed on a gridded tray to estimate its planar
areal, which was calculated using the Carl Zeiss Axio Vision 4.8 soft-
ware (Supplementary Material 1).

The obtained Amphistegina data (Supplementary Material 2) were
used to generate the ABI graphs. The ABI plots the density rank
(number of living Amphistegina per 100 cm2 rubble area into three ca-
tegories: <10/100 cm2, 100–1000/100 cm2, >1000/100 cm2) against
the bleaching rank (relative abundance of bleached specimens in three
categories: <5%, 5–40% and > 40%). The resultant matrix is divided
into nine quadrants, each accounting for a different ecological status
(for further explanation on the allocation of the ecological statuses
please see the original ABI publications by Hallock et al. (2006) and
Ramirez (2008)).

Seawater samples and photosynthetically active radiation (PAR)
light readings were collected in conjunction with the benthic samples at
the sea surface (0 m) and at 10 m water depth (Note the collection times
at each sampling site varied). Immediately after collection, pH, tem-
perature and salinity of the water samples were measured using a
multiparameter meter OrionTM Star A325. The PAR readings were
measured using a Li-COR LI-193SA Spherical Underwater Quantum
Sensor.

3. Results

3.1. Abiotic water parameters

Some variability in the two main bleaching-related abiotic vari-
ables, PAR and seawater temperature, was noted (Fig. 3). Due to dif-
ferent sampling times (Supplementary Material 3), light readings were
not all taken at the same time of day, furthermore cloud conditions
varied (according to Copernicus Climate Change Service (C3S), 2017
cloud cover varied between 0.25 and 1 over the study period, where
0 = no cloud cover and 1 = full cloud cover). As such, some variability
was seen in the PAR readings (e.g., the high PAR readings at

Maayafushi), however, PAR extinction coefficients were quite con-
sistent, averaging 0.086 (range 0.075–0.097; Supplementary Material
3, Fig. 3). Temperature marginally decreased with depth (mean
Δ = 0.34 °C) while salinity and pH, 35.03 ± 0.09 PSU and
8.18 ± 0.05, respectively, were both consistent between islands and
within normal seawater values for the Indian Ocean (Ramamirtham,
1968; Spezzaferri et al., 2018).

3.2. Changes in Amphistegina spp. populations

The 2015 and 2018 data on bleaching in Amphistegina were mar-
ginally different, with a mean decline in normal, healthy individuals
from 70% to 64% (Fig. 4). The mean proportion of bleached individuals
increased from 7% in 2015 to 10% in 2018 (Fig. 4). The abundance of
Amphistegina (ind/100 cm2) varied somewhat among sample sites
across the three islands in both years. Mean abundances in 2015 were
214 ± 199, 111 ± 43 and 186 ± 116 (ind/100 cm2), whereas mean
abundances in 2018 were 205 ± 72, 217 ± 76 and 139 ± 76 (ind/
100 cm2), for Rasdhoo, Vihamaafaru and Maayafushi, respectively
(Fig. 4). Considering the overall community composition, juvenile
specimens were much less abundant in 2015, with an average of 16%
overall across the islands in comparison to 30% in 2018.

The ABI plot shows more scatter in the combined bleaching and
abundance data from 2015 than in 2018 (Fig. 5). In 2015, the ABI plots
for Rasdhoo were most variable in abundance and in bleaching rank,
with data points scattered among four quadrats: BA, CA, BB and CB. In
2018, the data points also fell in those four quadrats, but were more

Fig. 3. Mean In situ photosynthetic active radiation (PAR) and seawater tem-
perature measurements from 0 m and 10 m water depth for each of the three
investigated islands in 2018 (i.e. Rasdhoo, Vihamaafaru and Maayafushi).
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tightly clustered, with two-thirds falling in the lower left of the BA
quadrate denoting ‘photo-inhibitory stress either chronic and mild or
recent and moderate’.

4. Discussion

Maldivian coral reefs have among the highest diversity in the Indian
Ocean (Naseer and Hatcher, 2004) and their remote location implies
only local anthropogenic stresses and reduced continental influence. As
such, they provide the perfect framework for the ABI to be used in a
time-series study to assess the response of reefs in the context of our
current changing climate. However, as this index has only previously
been applied in a single study in the Maldives in 2015 (Spezzaferri
et al., 2018), which preceeded (by two weeks) a major coral-bleaching
event, prior to its routine implementation in long-term monitoring
programs the verification of the suitability of its application is required.
Baseline conditions are subsequently provided by our 2018 dataset,
however differences and influences of island management regimes,
sampling months (in 2015 versus 2018), as well as reproductive timing
are important considerations.

In 2015, most water parameters measured (salinity, dissolved
oxygen, pH) were within the range typically reported in Indian Ocean

tropical environments and coral reefs during the warm, dry season
(Ramamirtham, 1968; Wild et al., 2010; Zweng et al., 2013; Lauvset
et al., 2015; Spezzaferri et al., 2018). The only deviations from standard
water parameters were the exceptionally high seawater temperatures
recorded at some sites (Spezzaferri et al., 2018). Benthic foraminiferal
assemblages were also typical of tropical coral reefs, with minimal
changes among sites with different management regimes (Pisapia et al.,
2017b).

In 2018, the two main bleaching-related abiotic variables, PAR
reaching the seafloor and seawater temperature, were relatively con-
sistent among the investigated sites (Fig. 3), indicating that manage-
ment regime was not detectably influencing water characteristics such
as turbidity. For example, at Rasdhoo, as it is a community island, there
is the probability of sewage discharge into the sea, yet the PAR ex-
tinction coefficients revealed that water clarity is comparable to clarity
at the resort and uninhabited island sites (Note: while Maayafushi has
slightly higher PAR readings, which can be attributed to the measure-
ments being taken near midday in conjunction with limited cloud cover
at the time of sampling, these readings are still representative as noted
by the comparable PAR extinction coefficients). Even though no PAR
readings were measured in 2015, considering the coherence and nor-
mality of the measured water parameters (salinity, dissolved oxygen,

Fig. 4. Data composition comparison: (1) 2015 and (2) 2018 showing (a) specimen composition, (b) specimen abundance and (c) adult/juvenile proportions for all
sites at each of the three island reefs, Rasdhoo (R), Vihamaafaru (V), Maayafushi (M) (Note: 2015 sites which had < 15 specimens are not shown as they were not
used in the ABI interpretations).
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pH) across all sites, differing management regimes among the in-
vestigated islands was not likely a contributing factor to Amphistegina
densities and bleaching ranks in either 2015 or 2018.

The 2015 and 2018 sampling campaigns were carried out in dif-
ferent months. In 2015, sampling occurred in late April and early May
as temperatures were ~31 °C at the end of the dry season, following the
spring peak in solar irradiance that occurs with the equinoxes at this
latitude. In 2018, sampling occurred in early September, as the au-
tumnal equinox was approaching, the monsoon was waning, and sea-
water temperatures were ~30 °C (Fig. 6). Therefore, seasonal differ-
ences in photo-oxidative stress and consequent reproductive success

were possible influences on Amphistegina bleaching and density rank-
ings in the ABI plots (Fig. 5).

The abundances of juvenile Amphistegina were somewhat different
between the 2015 and 2018 datasets. Temperature has been reported as
a pivotal factor controlling reproduction in this genus (Gruber et al.,
2007; Prazeres et al., 2016). In subtropical regions such as Eilat,
Florida, and Hawaii, bi-annual reproduction has been reported. Gruber
et al. (2007) noted June and January reproduction in A. lobifera in the
Gulf of Aqaba (Red Sea), in contrast to only summer reproduction in the
Mediterranean. This difference was attributed to the winter seawater
temperatures in the Mediterranean being below the reproductive tol-
erance of this species. In Florida, Hallock et al. (1995, 2006) and
Williams et al. (1997) reported predominantly spring-early summer
peaks in juvenile abundances in A. gibbosa, indicating asexual re-
production, with evidence for sexual reproduction in the autumn. Si-
milarly, in A. lobifera in Hawaii, Muller (1977) found peak juvenile
abundances, indicating asexual reproduction, in May–August, with
evidence for sexual reproduction in October–November. She also found
juvenile A. lessonii to be common throughout the year, with strong
peaks in abundance in March and April (Muller, 1977). Based upon
both field and culture studies, she interpreted the typical life span of
asexually-produced A. lobifera to be about 6 months and of A. lessonii to
be 3–4 months.

Although no data are available on the reproductive strategy of A.
lessonii, A. lobifera and A. radiata for the Maldives, the equatorial po-
sition, tropical climate and limited variations in seasonal sea surface
temperature (SST) are more similar to Palau, in the Western Caroline
Islands in the Pacific Ocean (Muller, 1977; Hallock, 1984), than to the
subtropical localities noted above. In Palau, Muller (1977) reported
juvenile size classes present throughout the year in both A. lessonii and
A. lobifera, with small positive deviations from the overall size-fre-
quency distributions at roughly 3–4 month intervals. Thus, in the
Maldives, juvenile A. lessonii and A. lobifera could be expected to be
relatively abundant year-round.

However, the Palau study was carried out long before the discovery
of bleaching in Amphistegina. Hallock et al. (1995) documented the
profound impact of bleaching on reproduction in A. gibbosa in Florida.
Following the onset of acute bleaching in June 1991, >80% of adult
specimens exhibited some degree of bleaching when sampled in Sep-
tember that year. By the following May, the densities of A. gibbosa had
declined by >90%, indicating failure of individuals that had experi-
enced bleaching to succesfully reproduce. The relatively few specimens
found in May were exhibiting some degree of bleaching and juveniles
were uncommon. In subsequent years, Hallock et al. (1995) and
Williams et al. (1997) reported low juvenile abundances in spring and
summer months when bleaching was most acute. However, in years
when higher percentages of normal-appearing specimens were found in
spring and summer, higher densities of A. gibbosa and higher percen-
tages of juveniles were also recorded.

Comparisons of overall densities and juvenile densities, together
with bleaching prevalence from the samples from the Maldives in
April − May 2015 and September 2018, appear somewhat contra-
dictory. Although there were somewhat higher percentages of speci-
mens exhibiting bleaching in 2018, overall densities were sufficient to
place most samples in the BA range, indicating either chronic bleaching
or recent onset of more acute bleaching. The relatively high percentages
of juveniles are consistent with that assessment, that is, either the in-
tensity of bleaching was insufficient to seriously impact reproductive
success or reproduction occurred before the onset of more acute
bleaching. The timing near the end of the monsoon, with elevated PAR
reported in September 2018 (Fig. 7), along with the abundance of ju-
veniles, are consistent with an interpretation of normal reproduction
prior to a more recent, moderate photo-oxidative stress that induced

Fig. 5. Amphistegina Bleaching Index (ABI) plot of 2015 vs 2018. An explana-
tion for the ecological condition of each quadrant is given in the bottom panel
(Samples with < 15 specimens were excluded to avoid misinterpretation as the
distribution of foraminifera is not homogenous and is related to food avail-
ability on the rubble, the relative position of the rubble within the sediments as
well as its exposure to light amongst others).
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bleaching in the near-adult individuals that had not yet reproduced.
In contrast, the sampling in April–May 2015 was during an interval

of rising seawater temperatures that prompted a NOAA coral-bleaching
alert (NOAA Coral Reef Watch., 2015; Fig. 6). Furthermore, the sam-
pling occurred a few weeks before the June onset of an extensive El

Niño-related coral-bleaching event that was unexpectedly severe for
this region. Spezzaferri et al. (2018) suggested that the proportions of
bleached specimens in April–May 2015 were related to photo-in-
hibitory stress resulting from both seawater temperatures exceeding
30 °C, and even reaching up to 32 °C, during the peak of seasonal solar

Fig. 6. Sea surface temperature (SST) time-series (2015–2018) for the Maldives. The 2015 and 2018 sampling campaign months are illustrated together with their
mean maximum SSTs. The Maldives coral bleaching threshold is also shown for comparison (NOAA Coral Reef Watch., 2018).

Fig. 7. Photosynthetic active radiation (PAR) graphs for the 2015 vs 2018 sampling periods (NASA/GSFC/OBPG, accessed 25-02-2019) for the suface ocean: 2015
(April-May) and 2018 (September) sampling periods are indicated (circles) together with the timing of the first coral bleaching observed in June 2015 (black star).
(Note: 1 µmol s−1 m−2 ≡ 1 µE s−1 m−2 ≡ 6.02 × 1017 photons s−1 m−2, LI-COR, 1991).
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irradiance and water transparency (Figs. 6 and 7). Moreover, the data
show lower juvenile counts than in 2018, which was sampled during an
interval of lower (<30 °C) seawater temperatures (Figs. 4 and 6). This
increased stress status is indicative in the scatter on the 2015 ABI plot
(Fig. 5).

Overall, based on the SST data (Fig. 6), 2017 and 2018 appear to be
representative of baseline conditions with mariginal seasonal varia-
tions, as opposed to that observed in 2015 and 2016. The ABI dataset
for September 2018, which is unaffected by differing island manage-
ment regimes, revealed some bleaching in Amphistegina, which was
likely induced by photo-oxidative stress that was either chronic and
mild, or recent and moderate. While this indicates the ecosystem as a
whole is still in a stressed state, following the 2015 and 2016 bleaching
events, the higher abundance of juveniles in 2018 indicates that the
Amphistegina populations are resilient. This conclusion is consistent
with the Maldivian coral and benthic foraminiferal assemblage studies
by Caragnano et al. (submitted) and Beccari et al. (2020), conducted on
the same reefs and sites. They found that, while high proportions of the
reef cover were dominated by sediment and coral rubble (dead coral
skeletons), small (<5 cm) coral colonies were abundant, supporting a
natural resilience and possible recovery for these reefs back to their pre
(2015 and 2016) bleaching state.

5. Conclusions

The Amphistegina Bleaching Index (ABI) can be an effective indicator
of photo-inhibitory stress affecting coral reefs and as shown is applic-
able for use in the Maldives in the Indian Ocean. The sampling protocol
for the ABI is non-destructive and has the potential to be easily included
into preexisting monitoring programs (Hallock et al., 2006). The ABI, if
assessed one to two months prior to peak seasonal temperatures, can
indicate potential for coral bleaching when temperature peaks. That is,
the greater the photo-oxidative stress in the months preceeding peak
temperature, the more stressed the corals will be when peak tempera-
ture occurs. Peak photic stress occurs around the summer solstice at
subtropical latitudes, while it occurs with the equinoxes in equatorial
latitudes such as the Maldives. Other than the similarities in solar ir-
radiance associated with proximity to an equinox, environmental con-
ditions preceding the two sampling events were somewhat different,
which is reflected in the ABI plots. As such, the results highlight the
potential of this biotic index for broader Maldivian coral-reef mon-
itoring applications, especially in the context of current global climate
changes and the prospect of future bleaching events.

Author contributions

SS participated in the cruise, contributed to sample collection,
processed samples, analysed and interpreted the data, wrote the paper.
SS participated in the cruise, processed samples, analysed and inter-
preted the data, wrote the paper. VB participated in the cruise, con-
tributed to sample collection, processed samples, analysed and inter-
preted the data, wrote the paper. PH participated in the cruise,
processed samples, analysed and interpreted the data, wrote the paper.
MF participated in the cruise and contributed to sample collection. AA,
AA, DB, AC, NDP, PD, IE, NF, AF, BL, AL, MM, HN, LO, GP, VR, AR, IS,
LV participated in the cruise and contributed to data collection re-
garding seawater geochemistry.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors thank the financial support given by the “Conférence
Universitaire de Suisse Occidentale” (CUSO) and by the Swiss National
Science Foundation (SNSF) grants 200021_165852 and 200021_175587
that provided funding for the expedition and shore based investiga-
tions, respectively. Thanks to the IUCN Regenerate project for inviting
S. Spezzaferri to participate in the cruise in 2015. All co-authors
warmly thank the crew of the Liveaboard boat Ari Queen for the
technical support and help during the cruise. Figure 1 was drawn using
the free software package GMT (The Generic Mapping Tools: Wessel
and Smith, 1991) and we thank Sandra Borderie, from the University of
Fribourg, for her help with this figure. Finally, we thank the two
anonymous reviewers and the Editor in Chief João Carlos Marques,
whose valuable comments and suggestions helped to improve the
quality of this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ecolind.2020.106257.

References

Beccari, V., Spezzaferri, S., Stainbank, S., Hallock, P., Basso, D., Caragnano, A., Pisapia,
C., Adams, A., Angeloz, A., Del Piero, N., Dietsche, P., Eymard, I., Farley, N., Fau, M.,
Foubert, A., Lauper, B., Lehmann, A., Maillet, M., Negga, H., Ordonez, L., Peyrotty,
G., Rime, V., Rüggeberg, A., Schoellhorn, I., Vimpere, L., 2020. Responses of reef
bioindicators to recent temperature anomalies in distinct areas of the North Ari and
Rasdhoo atolls (Maldives). Ecol. Indic. 112, 106128.

Caragnano, A., Basso, D., Spezzaferri, S., Hallock, P., Adams, A., Angeloz, A., Beccari, V.,
Piero, N. Del, Dietsche, P., Eymard, I., Farley, N., Fau, M., Foubert, A., Lauper, B.,
Lehmann, A., Maillet, M., Negga, H., Ordonez, L., Peyrotty, G., Rime, V., Rüggeberg,
A., Schöllhorn, I., Stainbank, S., Vimpere, L., submitted for publication. North Ari
Atoll (Maldives): Coral decline following the 2016 bleaching event. Mar. Fr. Res.

Coles, S.L., Jokiel, P.L., Lewis, C.R., 1976. Thermal tolerance in tropical versus sub-
tropical Pacific reef corals. Pacific Sci. 30, 159–166.

Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth generation of ECMWF at-
mospheric reanalyses of the global climate. Copernicus Climate Change Service
Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/
cdsapp#!/home.

Cruz, I.C.S., Kikuchi, R.K.P., Leão, Z.M.A.N., 2008. Use of the video transect method for
characterizing the Itacolomis reefs, eastern Brazil. Brazilian J. Oceanogr. 56,
271–280.

Gardner, S.G., Raina, J.B., Nitschke, M.R., Nielsen, D.A., Stat, M., Motti, C.A., Ralph, P.J.,
Petrou, K., 2017. A multi-trait systems approach reveals a response cascade to
bleaching in corals. BMC Biol. 15, 117. https://doi.org/10.1186/s12915-017-0459-2.

GEBCO Compilation Group, 2019. GEBCO 2019 Grid. https://doi:10.5285/836f016a-
33be-6ddc-e053-6c86abc0788e.

Gleason, D.F., Wellington, G.M., 1993. Ultraviolet radiation and coral bleaching. Lett.
Nat. 365, 836–838.

Glynn, P.W., 1996. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang.
Biol. 2, 495–509. https://doi.org/10.1111/j.1365-2486.1996.tb00063.x.

Goreau, T.J., Hayes, R.L., 1994. Coral bleaching and ocean “hot spots” Ambio 23,
176–180.

Gruber, L., Almogi-Labin, A., Sivan, D., Herut, B., 2007. The life cycle of the symbiont-
bearing foraminifera Amphistegina lobifera, a new arrival at the Israeli shelf. Rap.
Comm. int. Mer Médit. 38, 491.

Hallock, P., 1984. Distribution of selected species of living algal symbiont-bearing for-
aminifera on two Pacific coral reefs. J. Foraminifer. Res. 14, 250–261.

Hallock, P., Talge, H.K., Cockey, E.M., Muller, R.G., 1995. A new disease in reef-dwelling
foraminifera: Implications for coastal sedimentation. J. Foraminifer. Res. 25,
280–286.

Hallock, P., Williams, D.E., Fisher, E.M., Toler, S.K., 2006. Bleaching in foraminifera with
algal symbionts: implications for reef monitoring and risk assessment. Anu. do Inst.
Geociencias 29, 108–128.

Hill, J., Wilkinson, C., 2004. Methods for ecological monitoring of coral reefs. Australian
Institute of Marine Science, Townsville doi: 10.1017/CBO9781107415324.004.

Hoegh-Guldberg, O., 1999. Climate change, coral bleaching and the future of the world’s
coral reefs. Mar. Freshw. Res. 50, 839–866. https://doi.org/10.1071/MF99078.

Hoegh-Guldberg, O., Smith, J.G., 1989. The effect of sudden changes in temperature, light
and salinity on the population density and export of zooxanthellae from the reef
corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Bio. Ecol.
129, 279–303. https://doi.org/10.1016/0022-0981(89)90109-3.

Hughes, T.P., Anderson, K.D., Connolly, S.R., Heron, S.F., Kerry, J.T., Lough, J.M., Baird,
A.H., Baum, J.K., Berumen, M.L., Bridge, T.C., Claar, D.C., Eakin, C.M., Gilmour, J.P.,
Graham, N.A.J., Harrison, H., Hobbs, J.-P.A., Hoey, A.S., Hoogenboom, M., Lowe,
R.J., McCulloch, M.T., Pandolfi, J.M., Pratchett, M., Schoepf, V., Torda, G., Wilson,

S. Stainbank, et al. Ecological Indicators 113 (2020) 106257

8

https://doi.org/10.1016/j.ecolind.2020.106257
https://doi.org/10.1016/j.ecolind.2020.106257
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h9000
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0015
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0015
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0025
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0025
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0025
https://doi.org/10.1186/s12915-017-0459-2
https://doi.org/10.1111/j.1365-2486.1996.tb00063.x
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0050
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0050
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0055
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0055
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0055
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0060
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0060
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0065
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0065
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0065
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0070
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0070
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0070
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0075
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0075
https://doi.org/10.1071/MF99078
https://doi.org/10.1016/0022-0981(89)90109-3


S.K., 2018. Spatial and temporal patterns of mass bleaching of corals in the
Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048.

Jokiel, P.L., Coles, S.L., 1990. Response of Hawaiian and other Indo-Pacific reef corals to
elevated temperature. Coral Reefs 8, 155–162.

Krueger, T., Hawkins, T.D., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat,
W., Fisher, P.L., Davy, S.K., 2015. Differential coral bleaching-Contrasting the ac-
tivity and response of enzymatic antioxidants in symbiotic partners under thermal
stress. Comp. Biochem. Physiol. Part A 190, 15–25. https://doi.org/10.1016/j.cbpa.
2015.08.012.

Lauvset, S.K., Gruber, N., Landschützer, P., Olsen, A., Tjiputra, J., 2015. Trends and
drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12,
1285–1298. https://doi.org/10.5194/bg-12-1285-2015.

LI-COR, 1991. LI-COR Radiation Sensors Instruction Manual. https://www.licor.com/
documents/w7yjohknnescn0191hpew4ty53lvcadu.

Mateu-Vicens, G., Hallock, P., Brandano, M., 2009. Test-Shape variability of Amphistegina
d’Orbigny, 1826 as a paleobathymetric proxy: Application to two Miocene examples.
Geol. Probl. Solving with Microfossils A Vol. Honor Garry D. Jones. SEPM Special
Publication, doi: 10.2110/sepmsp.093.067.

Moritz, C., Ducarme, F., Sweet, M.J., Fox, M.D., Zgliczynski, B., Ibrahim, N., Basheer, A.,
Furby, K.A., Caldwell, Z.R., Pisapia, C., Grimsditch, G., Abdulla, A., 2017. The “resort
effect”: can tourist islands act as refuges for coral reef species? Divers. Distrib. 23,
1301–1312. https://doi.org/10.1111/ddi.12627.

Muller, P.H., 1977. Some aspects of the ecology of several large, symbiont-bearing for-
aminifera and their contribution to warm shallow-water biofacies. University of
Hawaii, Ph.D Dissertation.

NASA/GSFC/OBPG, Photosynthetically Available Radiation (PAR), Aqua MODIS -
Monthly, 2002-present. v.2018.0. Accessed: 25-02-2019.

Naseer, A., Hatcher, B.G., 2004. Inventory of the Maldives’ coral reefs using morpho-
metrics generated from Landsat ETM+ imagery. Coral Reefs 23, 161–168. https://
doi.org/10.1007/s00338-003-0366-6.

NOAA Coral Reef Watch., 2015. Bleaching Event Continues, June 2015 Update [WWW
Document]. URL http://coralreefwatch.noaa.gov/satellite/ analyses_guidance/
global_bleaching_update_20150602.php.

NOAA Coral Reef Watch., 2018. Maldives 5-km Bleaching Heat Stress Gauges (Version 3.
1). Data Accessed: 20.05.2019 at https://coralreefwatch.noaa.gov/vs/gauges/mald-
ives.php.

Pisapia, C., Burn, D., Yoosuf, R., Najeeb, A., Anderson, K.D., Pratchett, M.S., 2016. Coral
recovery in the central Maldives archipelago since the last major mass-bleaching, in
1998. Sci. Rep. 6, 34720. https://doi.org/10.1038/srep34720.

Pisapia, C., Abdul Rahman, M., Abdulla, A., Basheer, A., Caldwell, Z., Ducarme, F., El
Kateb, A., Fox, M., Furby, K., Ibrahim, M., Moritz, C., Schmidt, A., Spezzaferri, S.,
Sweet, M., Yoosuf, R., Zgliczynski, B., Grimsditch, G., 2017a. Baseline assessment of
coral reefs of North Ari Atoll. IUCN and Government of Maldives, Maldives, Gland,
Switzerland.

Pisapia, C., El Kateb, A., Hallock, P., Spezzaferri, S., 2017b. Assessing coral reef health in
the North Ari Atoll (Maldives) using the FoRAM Index. Mar. Micropaleontol. 133,
50–57. https://doi.org/10.1016/j.marmicro.2017.06.001.

Prazeres, M., Uthicke, S., Pandolfi, J.M., 2016. Changing light levels induce photo-oxi-
dative stress and alterations in shell density of Amphistegina lobifera (Foraminifera).
Mar. Ecol. Prog. Ser. 549, 69–78. https://doi.org/10.3354/meps11698.

Ramamirtham, C.P., 1968. Vertical distribution of temperature, salinity and dissolved
oxygen in the Maldive region of the Indian Ocean. Indian J. Fish. 15, 27–39.

Ramirez, A., 2008. Patch reefs in Biscayne National Park, FL: Sediments, foraminiferal
distributions and a comparison of three biotic indicators of reef health. Unpublished
Graduate Theses and Dissertations, https://scholarcommons.usf.edu/etd/465/.

Roberts, T.E., Bridge, T.C., Caley, M.J., Baird, A.H., 2016. The point count transect
method for estimates of biodiversity on coral reefs: Improving the sampling of rare
species. PLoS One 11. https://doi.org/10.1371/journal.pone.0152335.

Rogers, C.S., Garrison, G., Grober, R., Hillis, Z.-M., Franke, M.A., 1994. Coral Reef
Monitoring Manual for the Caribbean and Western Atlantic. National Park Service,
Virgin Islands National Park, pp. 114.

Ruzicka, R.R., Colella, M.A., Porter, J.W., Morrison, J.M., Kidney, J.A., Brinkhuis, V.,
Lunz, K.S., MacAulay, K.A., Bartlett, L.A., Meyers, M.K., Colee, J., 2013. Temporal
changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El
Niño. Mar. Ecol. Prog. Ser. 489, 125–141. https://doi.org/10.3354/meps10427.

Schmidt, C., Heinz, P., Kucera, M., Uthicke, S., 2011. Temperature-induced stress leads to
bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol.
Oceanogr. 56, 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587.

Sinutok, S., Hill, R., Doblin, M.A., Wuhrer, R., Ralph, P.J., 2011. Warmer more acidic
conditions cause decreased productivity and calcification in subtropical coral reef
sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212. https://doi.org/10.
4319/lo.2011.56.4.1200.

Spezzaferri, S., El Kateb, A., Pisapia, C., Hallock, P., 2018. In situ observations of for-
aminiferal bleaching in the Maldives, Indian Ocean. J. Foraminifer. Res. 48, 75–84.

Stimson, J., 1997. The annual cycle of density of zooxanthellae in the tissues of field and
laboratory-held Pocillopora damicornis (Linnaeus). J. Exp. Mar. Bio. Ecol. 214, 35–48.
https://doi.org/10.1016/S0022-0981(96)02753-0.

Talge, H.K., Hallock, P., 2003. Ultrastructural responses in field-bleached and experi-
mentally stressed Amphistegina gibbosa (Class Foraminifera). J. Eukaryot. Microbiol.
50, 324–333. https://doi.org/10.1111/j.1550-7408.2003.tb00143.x.

Uthicke, S., Vogel, N., Doyle, J., Schmidt, C., Humphrey, C., 2012. Interactive effects of
climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer
Marginopora vertebralis. Coral Reefs 31, 401–414. https://doi.org/10.1007/s00338-
011-0851-2.

Wartenberg, R., Booth, A.J., 2015. Video transects are the most appropriate underwater
visual census method for surveying high-latitude coral reef fishes in the southwestern
Indian Ocean. Mar. Biodivers. 45, 633–646. https://doi.org/10.1007/s12526-014-
0262-z.

Wessel, P., Smith, W.H., 1991. Free software helps map and display data. Eos. Trans. AGU
72 (41), 441–446.

Wild, C., Niggl, W., Naumann, M.S., Haas, A.F., 2010. Organic matter release by Red Sea
coral reef organisms—Potential effects on microbial activity and in situ O2 avail-
ability. Mar. Ecol. Prog. Ser. 411, 61–71. https://doi.org/10.3354/meps08653.

Williams, D.E., Hallock, P., Talge, H.K., Harney, J.N., McRae, G., 1997. Responses of
Amphistegina gibbosa populations in the Florida Keys (U.S.A) to a multi-year stress
event (1991–1996). J. Foraminifer. Res. 27, 264–269.

Zweng, M.M., Reagan, J.R., Antonov, J.I., Locarnini, R.A., Mishonov, A. V., Boyer, T.P.,
Garcia, H.E., Baranova, O.K., Johnson, D.R., Seidov, D., Biddle, M.M., 2013. World
Ocean Atlas 2013, Volume 2: Salinity, in: Levitus, S. (Ed.), NOAA Atlas NESDIS 74.
pp. 39.

S. Stainbank, et al. Ecological Indicators 113 (2020) 106257

9

https://doi.org/10.1126/science.aan8048
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0095
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0095
https://doi.org/10.1016/j.cbpa.2015.08.012
https://doi.org/10.1016/j.cbpa.2015.08.012
https://doi.org/10.5194/bg-12-1285-2015
https://www.licor.com/documents/w7yjohknnescn0191hpew4ty53lvcadu
https://www.licor.com/documents/w7yjohknnescn0191hpew4ty53lvcadu
https://doi.org/10.1111/ddi.12627
https://doi.org/10.1007/s00338-003-0366-6
https://doi.org/10.1007/s00338-003-0366-6
https://doi.org/10.1038/srep34720
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0155
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0155
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0155
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0155
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0155
https://doi.org/10.1016/j.marmicro.2017.06.001
https://doi.org/10.3354/meps11698
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0170
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0170
https://scholarcommons.usf.edu/etd/465/
https://doi.org/10.1371/journal.pone.0152335
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0185
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0185
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0185
https://doi.org/10.3354/meps10427
https://doi.org/10.4319/lo.2011.56.5.1587
https://doi.org/10.4319/lo.2011.56.4.1200
https://doi.org/10.4319/lo.2011.56.4.1200
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0205
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0205
https://doi.org/10.1016/S0022-0981(96)02753-0
https://doi.org/10.1111/j.1550-7408.2003.tb00143.x
https://doi.org/10.1007/s00338-011-0851-2
https://doi.org/10.1007/s00338-011-0851-2
https://doi.org/10.1007/s12526-014-0262-z
https://doi.org/10.1007/s12526-014-0262-z
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0230
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0230
https://doi.org/10.3354/meps08653
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0240
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0240
http://refhub.elsevier.com/S1470-160X(20)30194-1/h0240

	Photic Stress on Coral Reefs in the Maldives: The Amphistegina Bleaching Index
	Scholar Commons Citation
	Authors

	Photic stress on coral reefs in the Maldives: The Amphistegina bleaching index
	Introduction
	Materials and methods
	Study site
	Sampling strategy

	Results
	Abiotic water parameters
	Changes in Amphistegina spp. populations

	Discussion
	Conclusions
	Author contributions
	mk:H1_11
	Acknowledgements
	Supplementary data
	References


