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Mechanisms of ß-Amyloid Clearance by Anti-Aß Antibody Therapy. 
 

Donna Marie Wilcock 
 

ABSTRACT 
 

 Alzheimer’s disease (AD) is defined as a progressive neurodegenerative disorder 

that gradually destroys a person’s memory and ability to learn. There are three 

pathological hallmarks of the disease which are necessary for diagnosis of AD, these are; 

extracellular amyloid plaques composed of ß-amyloid (Aß) protein, intracellular 

neurofibrillary tangles and neuronal loss. Amyloid plaques exist as both compact deposits 

which stain with Congo red and more numerous diffuse deposits. Active immunization 

against Αβ1-42 or passive immunization with monoclonal anti-Aß antibodies reduces 

amyloid deposition and improves cognition in APP transgenic mice.  

 Over several studies of active immunization in APP+PS1 transgenic mice we 

showed a strong correlation between reduction of compact amyloid deposits and the 

degree of microglial activation suggesting a potential role of microglia in the removal of 

Aß. Injection of anti-Aß antibodies into the frontal cortex and hippocampus of aged APP 

transgenic mice revealed an early phase of Aß removal which was removal of only 

diffuse amyloid deposits with no associated activation of microglia. A later phase was the 

removal of compact amyloid deposits. This was associated with significant activation of 

microglia. Prevention of this microglial activation by anti-Aß F(ab’)2 fragments or its 



 - viii - 

inhibition by dexamethasone also precluded the removal of compact amyloid deposits but 

did not affect the removal of the diffuse deposits.  

 Systemic injection of anti-Aß antibodies weekly over a period of 1, 2, 3 and 5 

months transiently activated microglia associated with the removal of compact amyloid 

deposits and elevated plasma Aß, suggesting a peripheral mechanism contributes to 

removal of brain Aß. This systemic administration also dramatically improved cognitive 

performance in the Y-maze and in the radial-arm water maze. These studies also showed 

a significant increase in vascular amyloid dependent on the number of antibody injections 

the mice received. Associated with this increase in vascular amyloid was a dramatic 

increase in the numbers of microhemorrhages in the brain. Despite this pathology the 

mice showed cognitive improvement with the treatment. These effects could have major 

ramifications in humans and should be further investigated prior to any human clinical 

trials. 
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INTRODUCTION 

Alzheimer’s Disease: 

 Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder 

characterized by a devastating mental decline. There are three pathological characteristics 

of AD. These are amyloid plaques, neurofibrillary tangles and neuron loss characterized 

by dystrophic neurites. The amyloid plaque is a microscopic focus of extracellular 

amyloid deposition. The plaque contains extracellular deposits of amyloid-β protein (Αβ) 

that occurs primarily in filamentous form. Much of the Αβ found in the plaque is the 42 

amino acid species (Αβ1-42) which is slightly more hydrophobic than the shorter, 40 

amino acid, species (Αβ1-40). Αβ1-40 is normally the more abundant form of Αβ produced 

by cells and it does colocalize with Αβ1-42 in the plaque. Αβ can also be deposited as 

diffuse deposits, often thought to be an intermediate step in the formation of a compact 

amyloid plaque. Amyloid plaques are often termed neuritic plaques, due to the presence 

of dystrophic neurites within and immediately surrounding the plaque. The size of the 

deposit can vary greatly, ranging from 10 to more than 120µm (Selkoe, 2001). 

Neurofibrillary tangles are intraneuronal inclusions of nonmembrane bound bundles of 

abnormal fibers consisting of pairs of helical filaments. The filaments consist of 

hyperphosphorylated microtubule-associated protein tau. It is unknown what causes this 

hyperphosphorylation although studies have implicated the cyclin-dependent kinase 5 

(cdk5) (Patrick et al, 1999). Neuron loss is thought to result from toxicity of amyloid 

plaques, the inflammatory response which results in cytokine release and acute phase 
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protein release, oxidative injury which causes disruption of neuronal metabolic and ionic 

homeostasis, and impaired neuronal transport due to the presence of hyperphosphorylated 

tau filaments in the neuron. 

 Despite the many pathological characteristics of AD, the most favored hypothesis 

of the disease process is the amyloid hypothesis. This hypothesis suggests that deposition 

of Αβ as both diffuse and compact plaques can directly, and indirectly via an 

inflammatory cascade, result in progressive synaptic and neuritic injury. This injury is 

then thought to result in altered kinase/phophatase activity which leads to 

hyperphosphorylation of tau and the formation of neurofibrillary tangles. This cascade of 

events is ultimately thought to result in widespread neuron dysfunction and loss which 

will cause the dementia characteristic of AD (Hardy et al, 2002). The problem with this 

hypothesis has been that researchers have been unable to show a strong correlation 

between neuron loss / dysfunction and levels of amyloid deposits, however, recent data 

suggests that it is actually small, soluble Αβ oligomers that cause the neurotoxicity in 

Alzheimer’s disease (Lue et al, 1999, Klein et al, 2001). Αβ is a product of cleavage of 

larger precursor protein, the amyloid precursor protein (APP). APP is a single 

transmembrane polypeptide consisting of between 695 and 770 amino acid residues and 

is cleaved by enzymes named secretases. The three secretases have specific cleavage 

sites, using the 770 numbering α-secretase cleavage occurs at amino acid 687, β-

secretase cleavage occurs at amino acid 671, while γ-secretase cleavage can occur at 

amino acid 711 or 713. If a β-secretase cleavage occurs along with a γ-secretase cleavage 

then Αβ will be produced, the length of the Αβ is dependent on whether the γ-secretase 
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cleaves at residue 711 (Αβ1-40) or 713 (Αβ1-42).  Most mutations which have been found 

to cause early-onset familial AD are in the APP protein at the three secretase sites, 

primarily biasing cleavage to the β secretase site or C-terminal mutations increasing the 

length of Aβ to the more fibrillogenic 42 length. Other mutations were found in the 

presenilin proteins 1 and 2, later it was discovered that these proteins alter APP 

metabolism and have a direct effect on γ-secretase by increasing the length of the Aβ 

produced (Hardy 1997). It has recently been suggested by several studies that the 

presenilin protein is actually the γ-secretase. 

 Researchers continue to investigate genetic links to susceptibility for Alzheimer’s 

disease since only 5% of all AD cases are linked to APP, PS1 or PS2 mutations and all 

are early-onset forms of the disease. Apolipoprotein E (ApoE) genotype has been found 

to be a significant risk factor for the development of AD. ApoE is a plasma protein 

involved in the transport of cholesterol and other lipids. ApoE has been shown to be 

present in amyloid deposits and neurofibrillary tangles and has been implicated in 

neuronal growth and regeneration during development and following injury. All humans 

carry two alleles for ApoE, of which there are three types; 2, 3 and 4. A person can be 

ApoE 4/4, ApoE 4/3, ApoE 3/3, ApoE 2/3 or, rarely, ApoE 2/2 (Soininen and Riekkinen 

Sr, 1996). It has been shown that onset of AD is earliest in those patients carrying both 

ApoE4 alleles while one ApoE4 allele is later but still earlier than other alleles with the 

rare ApoE2 allele possibly inferring protection from the disease. ApoE3 is the most 

common allele. Although only 16% of the population has ApoE4 as an allele 

approximately 40% of sporadic AD cases have been found to carry an ApoE4 allele 

(Strittmatter and Roses, 1995). The role of ApoE in the brain is not fully understood, nor 
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is the role ApoE4 plays in increasing risk of AD. In vitro it has been shown that ApoE2 

and ApoE3 can bind to tau and microtubule associated protein 2c but ApoE4 cannot. This 

could suggest that binding of ApoE may stabilize the tau protein and possibly prevent the 

aggregation into neurofibrillary tangles (Strittmatter et al, 1994). However, this may be 

one of many functions of ApoE as it has been shown to be localized in neurons as well as 

the extracellular space of the brain and has been shown to have many metabolic 

functions. It is also important to note that an ApoE4/4 genotype does not guarantee that 

Alzheimer’s disease will occur, only that the person has an increased risk for developing 

the disease. It is highly likely that many more genes like ApoE will be found in the 

coming years given that there are still many AD cases without an obvious genetic cause. 

Cerebral Amyloid Angiopathy and AD: 

 Cerebral amyloid angiopathy (CAA) is a common term used to define the 

deposition of amyloid in the walls of blood vessels, primarily small and medium sized 

arteries and arterioles, of the brain. In humans, CAA primarily occurs in leptominingeal 

and cortical vessels and is rarely observed in other brain regions such as the hippocampus 

or the striatum (Rensink et al, 2003). The protein accumulating in the vessels causing 

CAA has excessive ß-pleated sheet folding and also has a tendency to form fibrils which 

are highly insoluble. In order to be defined as CAA the deposits must be stained by 

Congo red, a dye which stains fibrils comprised of ß-pleated sheet folding. There are 

approximately seven proteins known to cause CAA, these are Aß, cystatin C, 

transthyretin, Gelsolin, prion protein, Abri (familial British dementia) and ADan (familial 

Danish dementia) (Castellani et al, 2004). In AD the protein causing CAA is the Aß 

protein.  
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 The most severe consequence of CAA is cerebral hemorrhage, known as CAA-

associated hemorrhage (CAAH). There are several types of hemorrhages occurring with 

CAA ranging from microhemorrhages (small leaks in the vessel wall) to aneurysm (a 

blood-filled dilation of the blood vessel) (McCarron and Nicoll, 2004). These 

hemorrhages can result in further cognitive decline or, if severe, even death.  

 CAA can occur alone or in conjunction with parenchymal amyloid deposits and 

neurofibrillary tangles in AD. When CAA occurs alone it can cause extensive dementia. 

There are several forms of hereditary CAA such as the Dutch type (HCHWA-D) (Natte et 

al, 2001) and the Iowa pedigree (D694N) (Grabowski et al, 2001), both mutations 

causing these hereditary CAAs lie in the APP molecule and result in Aß formation. 

Unlike those mutations of APP occurring in some familial AD cases which produce 

excess Aß1-42, mutations causing CAA result in excessive production of Aß1-40 which 

appears to be excessively fibrillogenic in human cerebrovascular smooth muscle (HCSM) 

(Grabowski et al, 2001).  

 The role of CAA in AD is not yet fully known. The reported incidence of CAA in 

Alzheimer’s cases has ranged from 78% to 98% (Kallaria and Ballard, 1999) which 

suggests and important role for CAA in the pathogenesis of AD although not necessary 

for diagnosis of AD. Of those cases, approximately 35-40% are associated with some 

form of hemorrhage (Jellinger et al, 2002). Support for the contribution of CAA to the 

cognitive decline observed in AD arises from observations that CAA produces ischemia 

and hemorrhage that in other disease processes is known to result in cognitive 

dysfunction (Cadavid et al, 2000) and also that the frequency and severity of CAA is 

increased in AD (Yamada, 2002). Howver, there is yet no evidence to suggest that the 
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rate of cognitive decline in AD patients without CAA is any dfferent compared to those 

AD patients with CAA. Also, in non-demented individuals CAA appears to have no 

effect on cognitive ability (Castellani et al, 2004). 

Transgenic mouse models of AD: 

 Transgenic mouse models for AD became an aim for researchers following the 

discovery of many genetic mutations in the APP and PS1 genes thought to cause early-

onset familial AD. An ideal AD animal model would develop all pathological hallmarks 

of AD, as well as the cognitive and memory deficits characteristic of AD. This mouse 

model would then be the closest thing to an AD patient to allow testing of potential 

therapies. A mouse carrying the M146L mutation in the PS1 gene (methionine to leucine 

at 146) showed increased production of Αβ1-42/Αβ1-40 compared to widtype littermates as 

measured by ELISA, however, these mice did not deposit amyloid, either as diffuse or 

compact plaques (Duff et al, 1996). Mice expressing mutations in the APP gene showed 

more promise and as a result several APP transgenic mice were produced. The PDAPP 

mouse carries the V717F mutation under the control of the platelet derived growth factor 

promoter and expresses APP695, APP751 and APP770. This mouse begins amyloid 

deposition between 4 and 6 months of age, accelerates rapidly at 7 to 9 months of age 

with significant numbers of both diffuse and compact amyloid deposits in the frontal 

cortex and hippocampus by 1 year of age. The Tg2576 mouse carries the Swedish 

mutation of KM670/671NL under the control of the hamster prion protein promoter and 

express APP695 (Hsiao et al, 1996). These mice have detectable diffuse and compact 

amyloid deposits by 6 months of age and continue to deposit in an age-dependent manner 

showing an acceleration between 8 and 12 months of age (Kawarabayashi et al, 2001).  
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 Despite the ability to produce transgenic mice that develop amyloid deposits in an 

age-dependent manner, very few of these APP transgenics demonstrated reproducible 

cognitive and memory deficits. Crossing the M146L PS1 mouse with the Tg2576 APP 

mouse not only showed accelerated amyloid deposition (Holcomb et al, 1998, Gordon et 

al, 2002) but also developed cognitive and memory deficits detectable by several 

behavior paradigms which were reproducible at defined ages (Gordon et al, 2001). The 

benefits of this mouse model are that therapies can be tested to show not only their effect 

on amyloid deposition but also whether they may have any clinical benefit by showing 

whether the treatment improves cognitive function. Although this doubly transgenic 

mouse is a good model in which to test therapies, it does still lack two of the three 

pathological hallmarks of AD, those of neurofibrillary tangles and neuronal loss, despite 

the abundance of amyloid deposits.  

 Recently, there have been several tau transgenic mice developed, which provide a 

further step toward the ideal mouse model for AD. The P301L mutation on chromosome 

17 expressed in mice results in development of hyperphosphorylated tau and 

neurofibrillary tangles detectable by Gallyas silver staining. The disadvantage to this 

mouse is that it also develops motor deficits due to expression of mutated tau in the brain 

stem and spinal cord, the animals are completely paralyzed by 12 months of age (Lewis 

et al, 2000). The mice also show differential expression between males and females, with 

females having 3 to 4 times more expression of the mutated tau than males. Despite the 

disadvantages of this mouse model it has been shown that crossing the P301L mouse with 

the Tg2576 mouse enhances forebrain neurofibrillary tangle formation, suggesting that 

the presence of Αβ influences the extent of neurofibrillary pathology (Lewis et al, 2001). 
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Transgenic mice expressing V337M mutant human tau show hyperphosphorylated tau 

and neurofibrillary tangles in the hippocampus resulting in behavioral abnormality 

(Tanemura et al, 2002). 

 The ideal mouse model would have all pathological hallmarks of AD; amyloid 

plaques, neurofibrillary tangles and neuron loss. The closest mouse model to date is a 

triple transgenic developed by Frank LaFerla and colleagues (Oddo et al, 2003). This 

group showed a mouse with the M146L PS1 mutation knock-in as well as mutant tau and 

APP which both have the Th1 promoter and both co-integrate at the same site, this 

produces a closer model of AD than had previously been shown. All three transgenes are 

expressed to homozygocity and are expressed at the same levels. The mice develop 

amyloid plaques and neurofibrillary tangles. Interestingly the mie develop the amyloid 

plaques prior to any tau pathology being observed. The mice also demonstrate age-

dependent LTP impairment although this occurs prior to any AD-like pathology being 

present. At 6 months of age the mice have impaired long-term potentiation (LTP) 

suggesting that the mice may develop cognitive deficits. However, to this date no neuron 

loss has been reported in this transgenic model. 

 A better mouse model for AD may be possible thanks to a new mouse model of 

tau pathology. In a recent report from Peter Davies and colleagues a mouse, known as the 

htau mouse, undergoes age related accumulation of hyperphosphorylated tau like those 

observed in AD and the presence of neurofibrillary tangles (Andorfer et al, 2003). These 

htau mice are a cross of two existing mouse lines. One is a tau transgenic known as the 8c 

mouse which expresses all human tau isoforms but alone does not demonstrate any 

evidence of tau pathology (Duff et al, 2000). The other is a tau knockout mouse which 
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again, alone does not develop any tau pathology (Tucker et al, 2001). When crossed, a 

mouse with all human isoforms but no mouse tau is produced which demonstrates 

extensive and age-related tau pathology. This htau mouse has also importantly been 

shown to develop age related neuron loss in cortical and hippocampal areas. By the age 

of 18 months there is a 50% reduction of neurons in the piriform cortex. There is also an 

apparent shrinkage of the cortex and enlargement of the ventricles (Andorfer et al, 2004). 

Since this mouse appears to show extensive tau pathology and neuron loss, it is hoped 

that crossing this mouse with an APP transgenic mouse may yield a more perfect mouse 

model in whch to test potential treatments for AD. 

Behavioral Analyses of transgenic mice: 

 The major clinical symptom of AD is cognitive decline so therefore any effective 

clinical therapy must act to improve cognitive function of patients so it is critical that 

potential therapies are shown not only to affect the pathological characteristics of AD 

such as amyloid plaques or neurofibrillary tangles but must also affect memory. To test 

memory impairment in mice there have been several behavioral paradigms developed. 

 The Morris water maze was first described in 1982 by Richard Morris and 

colleagues (Morris et al, 1982) where he showed impairment in the task following 

hippocampal lesions. This task is consistently used to assess memory retention. It consists 

of a water pool with a hidden escape platform where the mouse must learn the location of 

the platform using either contextual or local cues. The mouse’s aversion to water and 

swimming force it to look for an escape and therefore search out the platform. This task 

has been shown to be heavily hippocampal dependent, where lesions to the hippocampus 

or its cholinergic input significantly impair performance. Time taken to locate the 
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platform is measured which is known as escape latency. Also measured is the time spent 

in the quadrant where the platform was once removed, these trials are known as probe 

trials. A modification of the Morris water maze is the radial arm water maze (RAWM) 

which is a circular pool with six swim alleys (arms) radiated out from an open central 

area with a submerged escape platform located at the end of one of the arms which the 

animal must find. There are several spatial cues present on the walls and ceiling of the 

testing room. The platform remains in the same arm during testing for each mouse, 

however, the arm in which the mouse starts each time is different requiring the mouse to 

use the visual cues in order to remember where the platform is (Diamond et al, 1999). 

The number of wrong arms entered is measured as errors and also time to find the 

platform is measured. Again, this is a heavily hippocampal dependent task and 

performance has been shown to be impaired in some transgenic mouse models of AD 

(Arendash et al, 2001; Morgan et al, 2000). 

 Another memory task is contextual fear conditioning which uses an aversive 

stimulus coupled to sound. The animal learns to freeze when the sound is heard as it is 

associated with the aversive stimulus which is commonly a small electric shock. The 

amount of freezing is measured and lack of freezing is associated with impaired memory 

of the preceeding events (Gerlai, 2001). This task is highly dependent upon the integrity 

of the amygdale however is also sensitive to disruptions in hippocampal function.  

 The Y-maze is not dependent upon learning a new behavior but depends upon the 

tendancy of a mouse to explore new environments. The Y maze is a three arm maze with 

equal angles between all arms. Mice are initially placed within one arm and the sequence 

and number of arm entries is recorded for each mouse over set period of time (usually 
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between five and ten minutes).  The percentage of triads in which all three arms are 

represented is recorded as an alternation to estimate short-term memory of the last arms 

entered. The total number of possible alternations is the number of arm entries minus 

two. Additionally, the number of arm entries serves as an indicator of activity. 

Inflammation and AD: 

 Along with the three primary characteristics of AD there is also an extensive 

inflammatory response in the brain. Microglia and astrocytes are the two primary 

inflammatory cells in the brain and these respond to damage and foreign material in much 

the same way as do the immune cells of the periphery. Microglial cells are from the 

monocytic lineage and are the resident macrophage in the brain. They have the ability to 

produce complement proteins in vitro, potentially contributing to the complement 

cascade. They can produce and secrete IL-1, a cytokine with many immune functions. 

Microglial cells can also enter into a phagocytic state, at which point they are almost 

indistinguishable from a macrophage (Streit, 2002, Liu et al, 2003). Astrocytes are cells 

native to the CNS and have many normal functions such as inducing the blood brain 

barrier and contributing to the local homeostasis of the synapse by expressing reuptake 

proteins on their membrane. Astrocytes also have the ability to produce inflammatory 

mediators when activated and are thought to communicate with microglial cells through 

these mediators. 

In AD activated microglia cluster at sites of amyloid deposition, surrounding the 

deposit. Activation can be initially detected by an increased expression of the leukocyte 

common antigen CD45 (Aloisi, 2001), a functional transmembrane protein-tyrosine 

phophatase (Justement, 1997). In later stages of activation there is further increase in 
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expression of CD45 along with expression of the major histocompatibility complex class 

II (MHC-II).  

Much of the literature in the past decade has focused on the deleterious 

consequences of microglial activation (Akiyama et al, 2000). Microglia are capable of 

producing many cytokines, reactive oxygen intermediates, excitatory amino acids and 

nitric oxide (NO) (Streit et al, 1999), all of which could significantly contribute to 

neuronal death seen in AD. In vitro, Αβ can stimulate release of IL-1, IL-6, TNF-α and 

superoxide free radicals from microglia (McGeer and McGeer, 2001). IL-1 has an 

autocrine induction in microglia and also enhances microglia proliferation, it causes 

direct neurotoxicity and apoptosis. IL-6 causes astrogliosis but can be both a survival 

factor and a neurotoxic factor depending on its levels. TNF-α can cause nitric oxide 

production  and MHC-II expression in microglia (Wilson et al, 2002). All of this data led 

to the hypothesis that inflammation in the AD brain, particularly the activation of 

microglia, contributes negatively to the disease process, and inhibition of this 

inflammation was the target of AD therapies. It has been shown that the glucocorticoid 

anti-inflammatories are capable of inhibiting microglia activation as detected by nitric 

oxide production (Chang and Liu, 2000) and by measurement of the extent of 

proliferation (Tanaka et al, 1997). Epidemiological studies have shown a beneficial effect 

of NSAIDs in the prevention of AD. It was thought that this beneficial effect was due to 

inhibition of inflammation, however, a report in 2001 showed that the effects of non-

steroidal anti-inflammatory drugs (NSAIDs) in AD may actually be independent of 

cyclooxygenase (COX) activity and may in fact be due to an effect at the γ-secretase 

enzyme. This study showed that in cultured cells following treatment with ibuprofen 
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there is a decrease in Αβ42 production but an increase in Αβ(1-38), which is not 

amyloidogenic, although the concentrations of ibuprofen used in this study are much 

greater than those required for COX inhibition (Weggen et al, 2001). A novel non-

steroidal anti-inflammatory drugs (NSAID) with a nitric oxide donor group and an 

antioxidant group showed an unexpected increase in microglial activation when 

administered to APP+PS1 mice, associated with a significant reduction in diffuse and 

compact amyloid deposits (Jantzen et al, 2002). Recent data suggests that inflammation 

in AD is much more complex than originally thought and that microglia may have a 

beneficial role to play in AD.  

Microglia have been shown to phagocytose Αβ both in vitro and in vivo through 

several different mechanisms involving opsonization through the complement cascade 

(Rogers et al, 2002) or the scavenger receptor (Paresce et al, 1996). Curiously, however, 

3D reconstruction of the microglia by electron microscopy in untreated transgenic mice 

was unable to detect intracellular amyloid despite amyloid fibrils being completely 

engulfed by microglia (Stalder et al, 2001). Interestingly, it has been shown that co-

culture of microglia with astrocytes suppresses microglia phagocytosis of senile plaques 

(DeWitt et al, 1998). Removal of Αβ by microglia has led to the hypothesis that there 

exists a dynamic equilibrium between Αβ deposition and Αβ removal, and that inhibition 

of microglia activation may, in fact, result in greater deposition of Αβ and a more rapid 

progression of the disease. An interesting finding to support the beneficial role of 

microglia is that when APP transgenic mice express soluble complement receptor related 

protein y (sCrry), a complement inhibitor, a 2 to 3-fold increase in Αβ deposition is seen 

as well as a prominent accumulation of degenerating neurons not normally seen in the 
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APP transgenic mouse alone. Microglial activation is reduced significantly in this mouse 

model, suggesting that inhibiting complement, therefore inhibiting opsonization and 

phagocytosis, will have a detrimental effect on the disease process (Wyss-Coray et al, 

2002). Another transgenic model that has supported the beneficial role of microglia is a 

mouse that overproduces transforming growth factor (TGF)-β1 crossed with an APP 

transgenic mouse. In this model, the overexpression of TGF-β1 results in a vigorous 

microglial activation along with a 50% reduction in Αβ deposition (Wyss-Coray et al, 

2001). TGF-β1 has also been shown to result in clearance of Αβ by microglial cells in 

culture. Further support for microglial removal of Αβ was shown when 

lipopolysaccharide (LPS) was intracranially injected into the hippocampus of APP+PS1 

mice. One week following the injection, there was a significant removal of Αβ associated 

with significant microglial activation; however, compact plaques were not removed 

(DiCarlo et al, 2001; Herber et al, 2004).  

Immunotherapy for AD: 

 Using the amyloid hypothesis as the basis for the development of AD therapies, 

Dale Schenk and colleagues at Elan pharmaceuticals reported the use of Αβ1-42, the 

amyloidogenic protein in AD, as an immunogen. They immunized PDAPP transgenic 

mice with Αβ1-42 in an aggregated / fibrillar preparation which is emulsified in Freund’s 

adjuvant to increase the immune response to the antigen. Each mouse received 100µg 

Αβ. This was repeated 2 weeks later and then monthly thereafter. It was shown that 

immunization reduced and/or prevented Αβ accumulation in this mouse model and 

associated with this reduction was an activation of microglia suggesting that part of the 
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mechanism of clearance involved these inflammatory cells. Subsequent work by our 

group demonstrated that not only did Αβ immunization modestly reduce amyloid burden 

but more importantly it prevented cognitive impairment in the doubly transgenic APP + 

PS1 mice (Morgan et al, 2000). This finding was also shown by Janus and colleagues at 

the same time in a different mouse model, the TgCRND8 mouse which is transgenic for 

APP only (Janus et al, 2000). Following this our group conducted several more 

immunization studies which led to the finding that following immunization there is a 

strong correlation between microglial activation and reduction in the congophilic, 

compact amyloid deposits (Wilcock et al, 2001).  

 There has also been data to show that anti-Αβ antibodies can dissolve fibrils in 

vitro (Solomon et al, 1997). More recent data to support this dissolution of plaques 

showed that anti-Αβ F(ab’)2 fragments directly applied to the brains of Tg2576 or PDAPP 

mice results in reduction of Αβ and thioflavine-S comparable with the reduction seen 

when a whole anti-Αβ IgG is applied (Bacskai et al, 2002).  

 The vaccine, now known as AN1792, advanced to human clinical trials, however, 

during phase II trials there were several patients found to be suffering from cerebral 

inflammation and meningoencephalitis (Bowers and Federoff, 2002, Munch et al, 2002). 

It is important to note that the occurance of the meningoencephalitis did not correlate at 

all with antibody titers in those patients (Orgogozo et al, 2003). Interestingly, it was 

shown that the antibodies generated by humans in response to the AN1792 immunization 

recognized both diffuse and compact amyloid deposits in transgenic mouse and human 

brain tissue, however, it did not cross react with full length APP or vascular Αβ (Hock et 

al, 2002).  
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 Since the original report of meningoencephalitis in some participants of the 

AN1792 trial there have been several reports on pathology from some of the participants 

following their death. The first was from James Nicoll and colleagues (2003) who 

reported on a 72 year old female who had been clinically diagnosed with moderate AD 

and had developed meningoencephalitis following the fifth injection. Some features of 

AD were detected such as cortical atrophy, ventricle enlargement and the presence of 

neurofibrillary tangles and amyloid plaques. However, it was observed that this patient 

that amyloid plaques were sparse in comparison with control AD cases throughout most 

of the neocortex. Reactive microglia were also observed and appeared to colocalize with 

immunostaining for Aß. Importantly, it was shown that vascular amyloid deposits 

persisted and appeared not to be reduced by immunization. In a report published a year 

later showing the pathology from another patient the findings were very similar (Ferrrer 

et al, 2004). This report shows the brain pathology from a 76 year old male who 

developed meningoencephalitis following the second immunization. Tau pathology was 

comparable to that found in AD control brain, however, very low numbers of amyloid 

plaques were observed and remaining plaques were associated with high numbers of 

activated microglia. Also observed were severe small blood vessel disease and multiple 

cortical hemorrhages.   

 Hock et al (2003) reported that antibody titers measured by ELISA were not a 

good indicator of cognitive performance following immunization, however a new method 

for measuring antibody reactivity was developed called the tissue amyloid plaque 

immunoreactivity (TAPIR) assay. The TAPIR assay measures the binding capacity of the 

circulating antibodies to amyloid plaques in transgenic mouse tissue and human AD brain 
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tissue. Those patients showing strong TAPIR results also showed stabilization of 

cognitive performance while those patients without TAPIR reactivity results showed a 

normal cognitive decline for AD. Together with the pathology reports from two patients 

in the trial these data suggest that immunotherapy may be a promising approach to the 

treatment of AD if the meningoencephalitis can be avoided.  

 Subsequent to the initial studies of immunization using Αβ1-42 in 1999 and 2000, 

researchers began to look at passive immunization as a potentially safer approach to an 

immunotherapy since it had been shown that active immunization may be less effective 

in people with a significant amyloid burden. A study suggests that the vaccine may be 

much more effective at preventing amyloid deposition as opposed to removal of existing 

deposits (Das et al, 2001). It has also been found by work in our laboratory that the 

ability to produce sufficient antibody titers against Αβ1-42 may decline with age. The first 

report of passive immunization came in 2000 from Elan pharmaceuticals, who 

administered antibodies against Αβ via an intraperitoneal injection in PDAPP mice (Bard 

et al, 2000). The antibodies were administered weekly for a period of six months. This 

resulted in a significant reduction in plaque burden in both the cortex and hippocampus. 

Importantly they showed by immunohistochemical methods that the injected antibody 

does cross the blood-brain barrier and enter the brain. They also estimated the amount of 

IgG entering the brain to be 0.1% as calculated by examining endogenous IgG levels in 

brain parenchyma. The amount of IgG entering the CNS was confirmed by a study 

specifically aimed at detection of peripherally injected anti-Αβ IgG in the CNS of 

SAMP8 mice, which overexpress APP but do not deposit amyloid. The authors found 

that 0.11% of injected IgG enters the brain within 1 hour, IgG was still detectable in the 
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brain 72 hours following injection (Banks et al, 2002). In the Bard et al study (2000) the 

authors demonstrated that although the antibodies they had used for this immunization 

were capable of triggering microglial-mediated phagocytosis of amyloid in culture, F(ab’)2 

fragments were unable to activate microglial removal despite retaining the full ability to 

bind to Αβ. This result suggests that clearance of fibrillar amyloid is via Fc receptor 

mediated phagocytosis. This proposed mechanism was further supported by a study 

involving direct imaging of amyloid deposits in living mice using multiphoton 

microscopy (Bacskai et al, 2001). Three days following direct application of anti-

Αβ antibodies to the brain of PDAPP mice there was significant removal of amyloid 

deposits accompanied by activation of microglia surrounding the remaining deposits. 

Human postmortem microglia have been shown to phagocytose opsonized Αβ, which is 

inhibited in the presence of excess non-specific IgG, suggesting the phagocytosis is Fc 

receptor mediated (Lue et al, 2002). 

 More recently, studies involving passive immunization have suggested that the 

primary mechanism for Αβ clearance is peripheral and is not due to the antibodies 

entering the CNS. It has been shown that following intraperitoneal injection of anti-

Αβ antibodies in the PDAPP mouse there is a rapid 1,000-fold increase in circulating 

plasma Αβ, suggesting that circulating Αβ antibodies bind to plasma Αβ and thus cause a 

disruption in the equilibrium between the brain and plasma removing Αβ from the brain. 

This study importantly used antibodies that have been shown not to bind to plaques in the 

brain, so their effect on brain amyloid burden is not due to binding fibrils (DeMattos et al, 

2001). This same group also demonstrated that administration of this same antibody to 

PDAPP mice is capable of reversing memory deficits in only one day without a reduction 
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in amyloid burden in the brain (Dodart et al, 2002). The authors suggest that this rapid 

reversal of cognitive deficits is due to removal of soluble Αβ from the CNS as opposed to 

reducing brain amyloid plaque burden. Cognitive improvement following passive 

immunization has also been shown in the Tg2576 mouse with an antibody recognizing 

Aß1-12 which did not reduce brain Aß levels but did reverse memory deficits (Kotilinek 

et al, 2002). Application of anti-Aß antibodies to the surface of the brain has been shown 

to not only reduce the size and number of amyloid deposits but also to recover dystrophic 

neuritis from a curvy, distorted appearance to a straighter, more normal appearance 

(Lombardo et al, 2003). 

 It appears that an important issue of passive immunization is the antibody isotype. 

It has been shown that IgG2a antibodies clear Aß from PDAPP brain sections in an ex 

vivo assay much more effectively than either IgG1 or IgG2b antibodies despite all 

antibodies having the same epitope (Bard et al, 2003). This data also supports the 

hypothesis that microglia are responsible for the clearance of Aß by immunotherapy since 

FcγRI and III bind with the greatest affinity to murine IgG2a antibodies (Radaev and Sun, 

2001). The fact that IgG2a anti-Aß antibodies appear to be the most effective indicate 

that Aß clearance may be mediated through microglial Fc receptors. However, conflicting 

data suggests that effective clearance of Aß by anti-Aß antibodies can be obtained in the 

absence of Fc receptors. Das et al (2003) showed that when they actively immunized 

APP transgenic mice crossed with Fc receptor knockout mice they showed the same 

amount of Aß reductions as immunized, age-matched APP transgenic mice. 

 A concerning effect of passive immunization is a report showing an increase in cerebral 

microhemorrhage in very old APP23 mice following passive anti-Αβ immunotherapy 
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(Pfeifer et al, 2002). This effect has not been shown in any other study, but will need to 

be investigated if passive immunization is to enter human trials. 

 To summarize, there are three main proposed mechanisms of action of 

immunotherapy for AD. The first is the binding of antibody to Αβ and resulting in Fc 

receptor mediated phagocytosis. The second is that antibodies binding to Αβ cause a 

disggregation of the plaque and result in a dissolution. The third is that the effects are 

primarily peripheral, with circulating antbodies binding to Αβ in plasma and causing a 

disruption in equilibrium between brain and plasma causing the Αβ to be “drawn out” of 

the brain. It would be naïve to think that only one of these could occur, as the data for all 

three is convincing. However, the main question is which mechanism is going to produce 

the most beneficial effect with the least adverse effects and whether immunotherapy can 

be manipulated to take advantage of this mechanism. 
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Abstract 

Active immunization against Αβ1-42 with vaccines or passive immunization with 

systemic monoclonal anti-Aß antibodies reduces amyloid deposition and improves 

cognition in APP transgenic mice .  In this report, intracranial administration of anti-Αβ 

antibodies into frontal cortex and hippocampus of Tg2576 transgenic APP mice is 

described. The antibody injections initially results in a broad distribution of staining for 

the antibody which diminishes over 7 days. While no loss of immunostaining for 

deposited Aß is apparent at 4 hours, a dramatic reduction in the Αβ load is discernable at  

24 hours and maintained at 3 and 7 days.  A reduction in thioflavine-S positive compact 

plaque load is delayed until 3 days, at which time microglial activation also becomes 

apparent. At one week after the injection, the microglial activation returns to control 

levels, while the Αβ and thioflavine-S staining remains reduced. The results from this 

study suggest a two phase mechanism of anti-Αβ antibody action. The first phase occurs 

between 4 and 24 hours, clears primarily diffuse Αβ deposits and is not associated with 

observable microglial activation. The second phase occurs between 1 and 3 days, is 

responsible for clearance of compact amyloid deposits and is associated with microglial 

activation. The results are discussed in the context of other studies identifying coincident 

microglial activation and amyloid removal in APP transgenic animals. 

 

Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by 

progressive cognitive deficits. There are several pathological characteristics to the disease 

process, including congophilic amyloid plaques containing the beta-amyloid peptide 
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(Αβ), and intracellular inclusions of neurofibrillary tangles consisting of 

hyperphosphorylated tau protein. Another characteristic of AD is the initiation and 

proliferation of a brain-specific inflammatory response consisting of activated microglia 

and astrocytes. Amyloid deposition is thought to be the key step in the pathogenesis of 

AD (Selkoe, 1991; Hardy and Selkoe, 2002); this is the reason why development of 

potential therapies focuses on clearance of amyloid. 

Vaccination using Αβ1-42 was first described by Schenk et al. (1999). This report 

demonstrated that active immunization using Αβ1-42 in the PDAPP transgenic mouse 

dramatically reduced levels of Αβ deposits. This immunization protected APP+PS1 

transgenic mice (Morgan et al., 2000) and TgCRND8 transgenic mice (Janus et al., 2000) 

from memory deficits. More recent studies showed that treatment with a passive 

immunization regimen consisting of anti-Αβ antibodies resulted in a dramatic reduction 

in Αβ (Bard et al., 2000;DeMattos et al., 2001) and reversal of memory deficits (Dodart 

et al., 2002;Kotilinek et al., 2002) in the PDAPP mouse.  

In this experiment, we show that intracranially administered anti-Αβ antibodies 

have both an early, microglia independent, and a later, possibly microglia dependent 

mechanism of action. Αβ levels are dramatically reduced 24 hours following 

administration in the absence of microglial activation. However, 72 hours after antibody 

administration thioflavine-S positive compact plaques are reduced concomitant with a 

striking activation of microglia. 
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Materials and Methods. 

Transgenic Tg2576 APP mice (Hsiao et al., 1996) were obtained following 

breeding of Tg2576 APP mice with line 5.1 PS1 mice (Duff et al., 1996) which yields 

four different genotypes; nontransgenic, transgenic APP, transgenic PS1 and doubly 

transgenic APP+PS1 mice. Animals were provided food and water ad libitum and were 

kept on a 12-hour light/dark cycle; they were housed in groups where possible until prior 

to the surgery when they were all singly housed until kill. We used 2 cohorts of mice in 

this study, the first cohort of 19 mo old APP mice (n=16) and the second cohort of 16 mo 

old APP mice (n=22).  

Mice from the first cohort all received anti-Αβ antibodies (Biosource, Camarillo 

CA, mouse anti-Αβ IgG1, recognizing AA 1-16). Mice from the second group were 

assigned to groups receiving either anti-Αβ antibodies, control antibody (anti-HIV, ID6, 

K. Ugen, Dept. Med. Micro. USF) (N=5), or vehicle (0.02% thimerosal in PBS, Sigma-

Aldrich, St Louis, MO) (N=5). All mice were injected in both the frontal cortex and 

hippocampus of the right hemisphere while the left hemisphere remained untreated as an 

internal control. Those mice receiving anti-Αβ antibodies were assigned survival times of 

4 (N=5), 24 (N=7), 72 (N=8) or 168 (N=6) hr. Mice receiving either control antibody or 

vehicle were examined after a 72 hr survival time. A third group of unreated 17 mo old 

APP mice (N=5) were killed uninjected and unmanipulated to assess differences between 

the right and left sides of the brain. 

On the day of surgery the mice were weighed, anesthetized with isoflurane and 

placed in a stereotaxic apparatus (51603 dual manipulator lab standard, Stoelting, Wood 
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Dale, IL). A midsagittal incision was made to expose the cranium and two burr holes 

were drilled using a dental drill over the right frontal cortex and hippocampus to the 

following coordinates: Cortex: AP +1.5mm, L –2.0mm, hippocampus: AP –2.7mm, L –

2.5mm, all taken from bregma. A 26 gauge needle attached to a 10µl Hamilton (Reno, 

NV) syringe was lowered 3mm ventral to bregma and a 2µl injection was made over a 2 

minute period. The incision was cleaned with saline and closed with surgical staples.  

On the day of kill the mice were overdosed with 100mg/kg of pentobarbital 

(Nembutal sodium solution, Abbott laboratories, North Chicago IL) and perfused 

intracardially with 25ml of 0.9% sodium chloride and 50ml of freshly prepared 4% 

paraformaldehyde (pH=7.4). The brains were collected and post fixed for 24 hours in 4% 

paraformaldehyde. The brains were then incubated for 24 hours in 10, 20 and 30% 

sucrose sequentially to cyroprotect them. Horizontal sections of 25µm thickness were 

then collected using a sliding microtome and stored at 4oC in DPBS buffer with sodium 

azide to prevent microbial growth. Six to eight sections approximately 100µm apart were 

selected spanning the injection site and stained using free-floating immunohistochemistry 

methods for total Αβ (rabbit antiserum primarily reacting with the N-terminal of the Αβ 

peptide 1:10000), CD45 (Serotec, Raleigh NC, 1:3000) and major histocompatibility 

complex class II (MHC-II, BD Pharmingen, Palo Alto CA, 1:3000) as previously 

described (Gordon et al., 2002). For immunostaining, some sections were omitted from 

the primary antibody to assess non-specific immunohistochemical reactions. Also, 

immunohistochemical methods were used to stain for the injected antibody using anti-

mouse IgG conjugated to horseradish peroxidase (Sigma-Aldrich, St Louis MO, 1:1000). 

Adjacent sections were mounted on slides and stained using 4% thioflavine-S (Sigma-



 - 26 - 

Aldrich, St Louis MO) for 10 minutes. Selected sections stained for CD45 were 

counterstained for Congo red (Sigma-Aldrich, St Louis MO) to detect amyloid deposits 

on these sections. 

The immunohistochemical reaction product on all stained sections was measured 

using using a videometric V150 image analysis system (Oncor, San Diego, CA) in the 

injected area of cortex and hippocampus and corresponding regions on the contralateral 

side of the brain. Data are presented as the average ratio of injected side to non-injected 

side for Αβ, thioflavine-S and CD45, while data for MHC-II are expressed as area 

occupied by positive stain since many values on the contralateral side were close to zero. 

To assess possible treatment-related differences, the measurement for either 

cortex or hippocampus of each subject were analyzed by ANOVA using StatView 

software version 5.0.1 (SAS Institute Inc., NC) followed by Fischer’s LSD means 

comparisons.  

 

Results 

Immunohistochemistry against mouse IgG was performed to trace the diffusion of 

anti-Aß antibodies after injection into the hilus of the dentate gyrus.  The injected anti-Αβ 

antibody showed diffuse distribution throughout the entire hippocampus at 4 hours with a 

focal concentration in the outer molecular areas of the dentate and ammons' horn near the 

hippocampal fissure (Fig. 1A). By 24 hours, the diffuse pattern remained broad, but the 

focal concentration began shifting towards the granule cell layers of the dentate (Fig. 1B). 

At 72 hours, staining for the injected antibody was lighter and became concentrated at the 

granule cell layer of the dentate gyrus (Fig. 1C). Interestingly, by the one week time-
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point the injected antibody staining has largely cleared with some residual staining in the 

outer molecular layer of the ventral (ventricular) blade of the dentate gyrus and the glial 

limitans. A similar time course of staining was seen in the frontal cortex (data not 

shown). 

Αβ immunohistochemistry in APP transgenic mice resembled that reported by 

others and ourselves earlier (Hsiao et al., 1996; Gordon et al., 2002). In both cortex (Fig. 

2A) and hippocampus (Fig. 2C) there were a few intensely stained deposits and a number 

of smaller, less intensely stained deposits. In prior work, we found the intensely stained 

Aß deposits were usually also stained with thioflavine-S or Congo red (Holcomb et al., 

1998; Gordon et al., 2001) indicating they were analogous to compact deposits containing 

fibrillar amyloid, while the less intense deposits were analogous to diffuse, nonfibrillar 

deposits commonly observed in AD tissue. While the deposits were fairly uniformly 

distributed within the cortex, in the hippocampus they were concentrated in the outer 

molecular layers of the dentate gyrus and ammon’s horn (Fig. 2C). The subiculum also 

appeared more rich in deposits than other areas.  

The injection of anti-Αβ antibody into brain did not result in a rapid loss of signal 

in postmortem immunohistochemical reactions since we did not observe a change in Αβ 

staining 4 hours post-injection in either cortex (Fig 3A) or hippocampus (Fig 3B). 

However, Αβ staining was reduced at the injection sites in frontal cortex and 

hippocampus 24 hours after administration of anti-Αβ antibody (Fig 2B and D 

respectively) and remained reduced to roughly the same extent through the one week 

time-point (Fig 3). The reduction in the frontal cortex was over 60% as compared to both 

the 4 hour time-points and the two control groups of vehicle and anti-HIV antibody (Fig 
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3A, P<0.001). The reduction in the hippocampus was over 50% as compared to the 4 

hour time-points and the control groups (Fig 3B, P<0.005).  

An interesting phenomena was that the ratio of Aß staining on the right to left 

sides in untreated mice was greater than 1, indicating more Αβ deposition on the right 

side than the left (Figure 3). It appears that this pattern of Αβ deposition is a consistent 

property of the APP mice. The Aß distribution seen in the mice administered control 

injections at 3 days and anti-Αβ antibody at the 4 hour time point is the typical 

distribution found in APP transgenic mice of this age. 

As expected, the number of deposits stained with thioflavine-S were considerably 

fewer than those stained by Αβ immunohistochemistry. Nonetheless, the regional 

distribution of these deposits roughly paralleled that of Αβ positive deposits in the cortex 

and hippocampus (Fig. 4A and C). In contrast to the Αβ, thioflavine-S positive staining at 

the injection site was not reduced until 72 hours after administration of anti-Αβ antibody 

(Fig 4B and D) and remained reduced at the one week time point (Fig. 5). The reduction 

in frontal cortex was over 80% compared to the 4 and 24 hour time points as well as the 

control groups (Fig 5A, P<0.001). The reduction in hippocampus was over 60% 

compared to both the 4 and 24 hour time points and the control groups (Fig 5B, P<0.005). 

In untreated mice, activated microglia stained with CD45 or MHC-II antibodies 

are found only in the immediate periphery of compacted plaques. In the injected control 

groups, some microglial activation was detected at the 72 hour survival time by CD45 

antibodies and this was restricted primarily to the injection site (arrows, Fig 6A, C; 

quantified in Fig 7). It should be noted that very little staining for CD45 was detected on 

the uninjected side of the brain, leading to inflated R/L ratios with relatively small 
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increases in staining.  MHC-II had a lower overall level of expression than that of CD45, 

and was largely unaffected in mice administered control injections  (Fig 8A and C; 

quantified in Fig 9).  

In contrast, 72 hours after the injection of anti-Aß antibodies, the microglial 

activation detected with CD45 antibodies was more widespread, detected not only at the 

injection site but also away from the injection site in the frontal cortex (Fig 6B) and 

throughout the dentate gyrus, with a concentration within the granule cell layer at the 72 

h time point (Fig 6D). MHC-II staining revealed a similar pattern, although not as 

extensive as that found with CD45 staining (Fig 8B, C). 

Quantification of these results indicated that the injection of anti-Αβ antibodies 

significantly increased expression of the microglial marker CD45 only at the 72 hour 

time point as compared to all other time points and control groups in both cortex (Fig 7A; 

P < 0.005) and hippocampus (Fig 7B; P < 0.005). Also, the injection of anti-Αβ 

antibodies increased the expression of the microglial marker MHC-II at the 72 hour time-

point as compared to all other time points and control groups in both cortex (Fig 9A; P < 

0.01) and hippocampus (Fig 9B; P , 0.005). The expression of CD45 and MHC-II in the 

frontal cortex at the anti-Αβ injection site increased more than 8-fold over that of all 

other time points including one week and both of the control groups . The expression of 

CD45 in the hippocampus at the anti-Αβ injection site increased more than 2-fold  while 

the increase in expression of MHC-II is over 8 fold. As in our prior work, there is 

considerable variability among samples with both microglial markers, however, all anti-

Αβ injected animals were higher than the means for the control groups. 
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There are few remaining amyloid deposits near the injection sites in the anti-Αβ 

antibody injected mice at 72 hours (Fig 4 and 5).  These residual deposits are relatively 

faint when stained with Congo red and are can be found contacted by rounded, CD45 

positive microglial cells (Fig 10A). In contrast, the more abundant amyloid deposits on 

the contralateral side and in the control animals are contacted by microglia with long 

processes which are  stained for CD45 while the cell body only stains faintly for this 

marker of microglial activation (Fig 10B). 

 

Discussion 

We report here that intracranial anti-Aß antibody injections substantially reduce 

Αβ load in the vicinity of the injection in both anterior cortex and hippocampus over a 7 

day time frame. By 4 hours after the injection there is a broad distribution of injected 

antibody filling a volume of roughly 0.5 mm3 as estimated from anti-IgG 

immunohistochemistry. In addition to the broad pattern of diffusion, the antibody is 

concentrated in the outer molecular layers of Ammon's horn and the dentate gyrus, a zone 

which largely overlaps with the distribution of Aß staining in transgenic mice of this age 

(see fig 2C). Thus, it appears the injected antibody is binding to in situ Aß at this early 

time point, but is also spread throughout the hippocampus. By 24 hours there is a  

reduction in the Aß immunostaining in the vicinity of the antibody injection in both 

cortex and hippocampus.  This reduction in Αβ load  is unlikely to be an artifact caused 

by the injected antibody masking the epitope of the primary antibody used for 

immunohistochemistry because the reduced load was not detected 4 hours after 

administration, and by 24 hours the injected IgG appears to be concentrated closer to the 
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granule cell region than the outer molecular layer in the hippocampus. Furthermore, the 

stoichiometry of injected antibody (13 pmol) to Αβ in deposits (estimated at 250 pmol in 

0.5 mg, Chapman et al., 1999) is likely too low to interfere substantially with the 

histochemical reaction. This early reduction in Aß load occurs in the absence of the 

expression of microglial activation markers CD45 and MHC-II. Although this does not 

preclude some rapid response of the microglia, it does suggest that the role of microglia is 

qualitatively different at this early post-survival time than when markers of activation are 

being expressed.   

Between 24 and 72 hours after injection of anti-Aß antibodies, there were parallel 

reductions in fibrillar amyloid deposits detected by thioflavine-S and increases in 

microglial activation, evaluated by CD45 and MHC-II staining. Although the control 

injections of anti-HIV antibody and vehicle caused some elevation of the CD45 marker, 

the activation was restricted to the immediate vicinity of the injection site and likely 

caused by mechanical injury associated with the needle insertion and fluid compression 

of the tissue. Occasionally, in the anti-Aß antibody injected mice, some remaining wisps 

of amyloid could be found in the vicinity of the antibody injection at 72 hours and these 

were in contact with rounded CD45 immunopositive cells suggestive of phagocytic 

microglia/macrophages. Also at the 72 hour time point, there is a concentration of 

staining for both the injected antibody and the microglia near the granule cell layer of the 

dentate gyrus. The temporal association of fibrillar amyloid loss with microglial 

activation suggests some causal role for microglial activation in this process. One 

possibility is that between 1 and 3 days activated microglia near the deposits in the outer 

molecular layer phagocytose opsonized amyloid via Fc receptor or complement mediated 
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mechanisms and migrate towards the granule cell layer. CD45 positive microglia can be 

readily detected in the outer molecular layer near the fissure at 3 days, although they are 

most heavily concentrated near the granule cell layer at this time point (Fig 6D). A 

second option is that after dissolution of the Aß deposits, the antibodies diffuse to the 

granule cell region independent of the microglia.  possibly, the fibrillar deposits simply 

require more time to dissolve than the more diffuse material. More detailed time course 

studies of the period between 1 and 3 days coupled with immunoelectron microscopy will 

likely be required to resolve between these options. Remarkably, the microglial activation 

is terminated rapidly, and returns to normal levels by the 1 week time point in parallel 

with a significant reduction in staining for the injected IgG and Aß.  

An accumulating body of evidence finds an association between microglial 

activation and amyloid reductions in transgenic mouse models of amyloid deposition. 

Schenk et al (1999) noted in the first study evaluating Aß vaccines that the clearance of 

amyloid was associated with enhanced microglial activity around the remaining deposits.  

Wilcock et al (2001) largely confirmed this observation in a different transgenic model. 

Nakagawa et al (2000) unexpectedly found that fluid percussion injury activates 

microglia and results in reduced amyloid deposition as mice grow older.  Lim et al (2001) 

noted that transgenic mice treated with curcumin had a reduced amyloid load, but an 

increase in the activation state of microglia surrounding plaques. Similarly, Jantzen et al 

(2002) found a reduced amyloid load in transgenic mice treated with a nitro-NSAID, 

NCX-2216, which was also associated with increased microglial activation.  Wyss-Coray 

(2001) found that crossing APP transgenic mice with mice over-expressing TGF-ß led to 

increased microglial activation and reduced amyloid loads. Conversely, these same 
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authors (Wyss-Coray et al, 2002) found that blocking complement activation with 

sCRRY overexpression diminished the microglial reaction in APP transgenic mice, and 

led to elevated amyloid loads.  DiCarlo et al (2001) attempted to directly activate 

microglia by injecting LPS and found this was associated with clearance of Aß in the 

vicinity of the injection.  However, note that Qiao et al, (2001) injected LPS chronically 

into young transgenic mice prior to normal amyloid deposition and found it could 

stimulate Aß deposition. It is also the case that careful serial section electron microscopy 

failed to detect internalized amyloid in microglia associated with amyloid deposits in 

untreated APP23 transgenic mice (Stalder et al, 2001), although mice treated to provoke 

microglial activation have yet to be examined. Nonetheless, there is a growing literature 

associating the activation of microglia with a reduction in Aß deposition in the transgenic 

mouse models.  

A number of studies have demonstrated that cultured microglial cells are capable 

of internalizing Αβ1-42 aggregates (Paresce et al., 1996;Webster et al., 2001). Aß can 

also be cleared from unfixed brain sections by anti-Aß antibodies in a microglia 

dependent manner (Bard et al., 2000). Direct imaging of amyloid deposits in vivo by 

multiphoton microscopy has shown clearance of plaque following application of an anti-

Αβ antibody in association with an upregulation of activated microglia (Bacskai et al., 

2001). Suggested alternative mechanisms to microglial phagocytosis include a physical 

interaction between antibody and Αβ resulting in disaggregation of deposits, which was 

demonstrated in vitro  using monoclonal anti-Aß antibodies (Solomon, 2001). Consistent 

with this idea, Backsai et al (2002)  recently demonstrated that F(ab’)2 fragments, prepared 

from an anti-Aß antibody reduce amyloid deposits as effectively as the intact antibody 
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when applied topically to the cortex of transgenic mice through a craniotomy. Although 

there is no measurement of microglial activation in this study, it is plausible this occurred 

in the absence of microglial involvement. This antibody mediated dissolution hypothesis 

is consistent with the early phase of Aß reduction described here, and may still be found 

responsible for the second phase of fibrillar deposit reduction.. 

A major unresolved question is how this antibody mediated clearance of Aß might 

apply to the human condition. Alzheimer's disease has increasingly been argued to 

involve inflammation as a component of its pathogenesis (McGeer and McGeer, 2001). 

The early stages of the Aß vaccine trials resulted in a small fraction of patients 

developing adverse reactions consistent with inflammation of the central nervous system, 

presumably including microglial activation (Schenk et al, 2002; Hock et al., 2002). 

Although adverse reactions to immunotherapy have been rare in the transgenic models 

(Pfeifer et al, 2002), it remains the best experimental system in which to understand the 

different components of the immune reactions to vaccines and to identify those 

components causing adverse outcomes.  Certainly identification of immunotherapies 

which avoid the problem of deleterious CNS inflammation will be necessary if this 

treatment approach is to ever find use in the clinic. Better understanding the mechanisms 

of antibody-mediated clearance of Aß in the transgenic models of amyloid deposition 

should benefit this effort. 
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Figure 1: Time course of injected anti-Αβ antibody distribution in the hippocampus from 

4 hours to seven days.  Immunohistochemical staining for the injected antibody in the 

hippocampus at 4 hours (A), 24 hours (B), 72 hours (C) and 168 hours (D). Orientation 

and locations of hippocampal subregions as in figure 2 D. Magnification = 40X. Scale bar 

= 120µm.  
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Figure 2: Reduction in Αβ immunohistochemistry one day after anti-Αβ antibody 

injections. Immunohistochemical staining is shown for Αβ in the frontal cortex (A and B) 

and hippocampus (C and D). A and C are from an animal injected with control antibody 

while B and D received the anti-Αβ antibody. Magnification = 40X. Scale bar = 120µm. 

Panel B: FCX: frontal cortex, STR: striatum. Panel D: CA1: cornu ammonis 1, CA3: 

cornu ammonis 3, DG: dentate gyrus  
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 Figure 3: Quantification of reduced Αβ load after anti-Αβ antibody injections. Data are 

expressed as the ratio of Aß staining in the injected hemisphere: control hemisphere. The 

three bars on the left indicate the Αβ load in the untreated group (none) and the vehicle 

(VEH) and anti-HIV antibody (Cont-Ab) groups at 72 hr. The line shows the ratio of Αβ 

immunohistochemical staining at 4, 24, 72 and 168 hr survival times. Reduced Αβ load 

was observed in the frontal cortex (panel A) and hippocampus (panel B) at 24, 72 and 

168 hours compared with 4 hours and both control groups (** indicates P<0.005).  
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Figure 4: Reduction in thioflavine-S staining three days after anti-Αβ antibody injections. 

Thioflavine-S staining is shown in frontal cortex (A and B) and hippocampus (C and D). 

A and C received control antibody while B and D received anti-Αβ antibody. 

Magnification = 40X. Scale bar = 120µm. Orientation and locations of major subregions 

as in figure 2B and 2D.   
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Figure 5: Anti-Αβ antibody injections results in a reduction of thioflavine-S positive 

plaques. Data are expressed as ratio of thioflavine-S staining in the injected hemisphere: 

control hemisphere. The three bars show the thioflavine-S positive staining in the 

untreated group (none) and the vehicle (VEH) and anti-HIV antibody (Cont-Ab) groups 

at 72hr. The line shows the ratio of thioflavine-S staining at 4, 24, 72 and 168 hour 

survival times. Reduced thioflavine-S staining was observed in the frontal cortex (panel 

A) and hippocampus (panel B) at 72 and 168 hours compared with 4 and 24 hours and 

both control groups (** indicates P<0.005). 
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Figure 6: CD45 immunohistochemistry is increased three days following anti-

Αβ antibody injections. CD45 immunohistochemistryis shown in frontal cortex (A and B) 

and hippocampus (C and D). A and C received control antibody while B and D received 

anti-Αβ antibody. Magnification = 40X. Scale bar = 120µm. Arrows indicate the site of 

injection identified from the needle tract.   
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Figure 7: Anti-Αβ antibody injections results in an increased CD45 

immunohistochemistry three days following injection. Data are expressed as the ratio of 

CD45 staining in the injected hemisphere: control hemisphere. The three bars indicate the 

CD45 expression in the untreated group (none) and the vehicle (VEH) and anti-HIV 

antibody (Cont-Ab) groups at 72hr. The line shows the ratio of CD45 staining at 4, 24, 72 

and 168 hour survival times. Increased CD45 staining was observed in the frontal cortex 

(panel A) and hippocampus (panel B) at 72 hours compared with 4, 24 and 168 hours and 

both control groups (** indicates P<0.005). 
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Figure 8: MHC-II immunhistochemistry is increased three days following anti-Αβ 

antibody injections. MHC-II immunohistochemistry is shown in frontal cortex (A and B) 

and hippocampus (C and D). A and C received control antibody, B and D received anti-

Αβ antibody. Magnification = 40X. Scale bar = 120µm.   
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Figure 9: Anti-Αβ antibody injections results in an increase in MHC-II 

immunohistochemistry three days following injection. Data are expressed as percent area 

occupied by MHC-II positive staining in the injected hemisphere. The three bars indicate 

the MHC-II expression in the untreated (none) group  and the vehicle (VEH) and anti-

HIV antibody (Cont-Ab) groups at 72hr. The line shows the amount of MHC-II staining 

at 4, 24, 72 and 168 hour survival times. Increased MHC-II staining was observed in the 

frontal cortex (panel A) and hippocampus (panel B) at 72 hours compared with 4, 24 and 

168 hours and both control groups (** indicates P<0.01). 
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Figure 10: Anti-Αβ antibody injections results in rounded microglia in association with 

remaining Congophilic amyloid deposits three days after injection. CD45 

immunostaining counterstained with Congo red is shown in the hippocampus at the 72 

hour time-point. Panel A shows a typical intensely stained Congophilic deposit 

surrounded by CD45 immunostained microglial processes, with faintly stained somata 

(arrow). Panel B shows a faintly stained Congophilic deposit in the anti-Αβ antibody 

injected hippocampus. Note the two rounded intensely CD45 positive cells in contact 

with the faintly stained deposit (arrow).  Magnification = 600X. Scale bar = 8.33 µm 
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Abstract 

 The mechanisms by which anti-Aβ antibodies clear amyloid plaques in Aβ 

depositing transgenic mice are unclear. In the current study we demonstrate that 

inhibition of anti-Aβ antibody-induced microglial activation with anti-inflammatory 

drugs, such as dexamethasone, inhibits removal of fibrillar amyloid deposits. We also 

show that anti-Aβ F(ab’)2 fragments fail to activate microglia and are less efficient in 

removing fibrillar amyloid than the corresponding complete IgG. Diffuse Aβ deposits are 

cleared by antibodies under all circumstances. These data suggest that microglial 

activation is necessary for efficient removal of compact amyloid deposits with 

immunotherapy. Inhibition of this activation may result in an impaired clinical response 

to vaccination against Aβ.  

 

Introduction 

 Alzheimer’s disease (AD) is characterized clinically by progressive cognitive 

decline and characterized pathologically by amyloid plaques, neurofibrillary tangles and 

neuron loss (Hardy and Selkoe, 2002). Another pathological event in AD is an 

inflammatory response which involves the activation and proliferation of microglia and 

astrocytes (Akiyama et al, 2000). The amyloid hypothesis has targeted the Aβ peptide as 

the primary focus for therapeutic interventions in AD (Hardy and Selkoe, 2002).  

Amyloid plaques consist of amyloid-β protein fibrils which are positively stained by 

Congo red and thioflavine-S. In addition, diffuse amyloid deposits can be identified using 

immunohistochemistry. 
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 Vaccination using Aβ1-42 was first described by Schenk et al (Schenk et al, 1999). 

That report showed that immunization with Aβ1-42 in the PDAPP transgenic mouse 

dramatically reduced Aβ deposit accumulation, both diffuse and compact. The 

vaccination was later shown to prevent cognitive decline in APP+PS1 (Morgan et al, 

2000) and TgCRND8 (Janus et al, 2000) transgenic mice.  Passive immunization with 

anti-Aβ antibodies was also demonstrated to have benefit pathologically (Bard et al, 

2000) and cognitively (Dodart et al, 2002 and Kotilinek et al, 2002). The Aβ vaccine 

advanced quickly to human clinical trials where, in Phase II, several patients developed 

cerebral inflammation, leading to a halt in further inoculations (Schenk 2002).  

The exact mechanism by which immunotherapy reduces Aβ deposition remains 

unknown; suggested mechanisms include Fc receptor mediated phagocytosis via 

microglia (Schenk et al, 1999, Wilcock et al, 2001 and Wilcock et al, 2003), dissolution 

of amyloid fibrils (Solomon et al, 1997 and Frenkel et al, 1999) and sequestration of 

circulating Aβ resulting in an increased net efflux of Aβ from brain and plasma 

(DeMattos et al, 2001). 

These competing hypotheses have led to disputes regarding the accessibility of 

circulating antibodies to the CNS, the role of systemic Aβ content in this process and the 

degree of requirement for specific Aβ epitopes to be targeted by the antibodies (Bard et 

al, 2003 and Holtzman et al, 2002). Moreover, in AD patients the blood-brain barrier is 

variably leaky (Hock et al, 2002). Bacskai et al (2001) were the first to demonstrate anti-

Aβ antibody removal of amyloid deposits following direct application into the brain, 

therefore bypassing the blood-brain barrier. To identify the potential role of microglia in 
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antibody-mediated removal of Aβ deposits, we have opted to avoid some of the 

complications regarding brain penetration and apply antibodies directly to the CNS by 

intracranial injections. 

 We have recently reported that following intracranial anti-Aβ antibody 

administration there is a biphasic clearance of Aβ deposits (Wilcock et al, 2003). The 

first is a rapid removal of diffuse Aβ deposits occurring between 4 and 24 hours after 

injection. The second is the removal of compact, thioflavine-S positive amyloid deposits 

between 24 and 72 hours following injection. This removal of fibrillar deposits is 

associated with a transient activation of microglia, detectable at 72 hours, but not 7 days 

after the injection. Remarkably, by 7 days both diffuse and compacted Aβ deposits are 

largely cleared, the microglial reaction has resolved, and the injected anti-Aβ antibody is 

almost completely removed. 

In the current study we further investigate the relationship between microglial 

activation and fibrillar amyloid removal. First, we test the capacity of several anti-

inflammatory agents to impair the microglial response and monitor their effect on Aβ 

clearance. We also investigate whether antibody fragments lacking the Fc domain can 

clear the fibrillar deposits, and monitor the effects on microglial activation.  The results 

are consistent with the argument that microglial activation and Fc receptor mediated 

phagocytosis are important steps in the rapid clearance of Aβ deposits by intracranially 

administered anti-Aβ antibodies. 
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Materials and Methods 

Anti-inflammatory drug study 

 Singly transgenic APP Tg 2576 mice were obtained from our breeding  program 

at USF started in 1996 (Holcomb et al, 1998).  In the first experiment, 39 APP transgenic 

mice aged 16 months were assigned to one of 5 experimental groups. Four of these 

groups received intracranial anti-Aβ antibody injections (44-352; Mouse monoclonal 

anti-human Aβ1-16 IgG1; Biosource, Camarillo, CA) into the frontal cortex and 

hippocampus at a concentration of 2µg/2µl in each region. The remaining group received 

intracranial anti-HIV monoclonal antibody directed against gp120 (from Ken Ugen, 

Univ. South Florida) into frontal cortex and hippocampus at a concentration of 2µg/2µl in 

each region (N=7) as a control for potential nonspecific activity associated with injecting 

IgG into the brain. Of the 4 groups receiving anti-Aβ antibody one group received no 

further treatment (N=8), one group received twice daily intraperitoneal injections of 

dexamethasone (Sigma-Aldrich, St Louis MS) at a dose of 5mg/kg (N=9), one group 

received twice daily intraperitoneal injections of minocycline (Sigma-Aldrich, St Louis 

MS) at a dose of 45mg/kg  (N=7) and one group received once daily subcutaneous 

injections of NCX-2216 (nitro-ferulo-flurbiprofen; NiCox, S.A., Sophia-Antipolis, 

France) at a dose of 7.5mg/kg (N=8). All treatments following the intracranial injection 

were commenced immediately following a 30 minute recovery from surgery. All mice 

were killed 72 hours following surgery and treatments were continued through the 

morning of kill. 
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Antibody Fragment Study 

  Twenty Tg2576 APP transgenic mice aged 19.5 months were assigned to one of 

four groups, all groups received intracranial injections into the frontal cortex and 

hippocampus. The first group received anti-Aβ antibody (2286; Mouse monoclonal anti-

human Aβ28-40 IgG1; Rinat Neurosciences, Palo Alto, CA) at a concentration of 2µg /2µl 

in each region. The second group received anti-Aβ F(ab’)2 fragments prepared from the 

anti-Aβ antibody at 2.2 µg /2µl in each region. The third group received IgG directed 

against drosphila amnesiac protein (Rinat neurosciences, Palo Alto, CA) as a control for 

nonspecific aspects of intact IgG injection. The final group received control F(ab’)2 

fragments prepared from the IgG directed against drosophila amnesiac protein to control 

for nonspecific effects of F(ab’)2  injection.  All mice survived for 72 hours after surgery. 

Preparation of F(ab’)2 fragments 

 The Immunopure IgG1 Fab and F(ab’)2 preparation kit (Pierce Biotechnology, 

Rockford, IL) was used to prepare the F(ab’)2 fragments from the anti-Aβ IgG and the 

control IgG against drosophila protein. The instructions provided with the kit were 

followed (http://www.piercenet.com/files/0465jm5.pdf). Briefly, 0.5ml of 1mg/ml IgG 

was added to 0.5ml mouse IgG1 mild elution buffer. This was applied to an equilibrated 

immobilized ficin column, allowed to enter the column and digested at 37oC for 20 hours. 

A 4ml elution was obtained and applied to an equilibrated immobilized protein A column 

for separation of the F(ab’)2 from Fc fragments and undigested IgG. Four 1ml fractions of 

product were obtained. As determined by running a gel electrophoresis only the 2nd and 



 - 64 - 

3rd elutions were found to contain F(ab’)2 fragments and appeared of similar intensities on 

the gel. The two elutions containing F(ab’)2 fragments were pooled and concentrated 

using centricon centrifugal filter devices (Millpore Corp. Bedford, MA) to a volume of 

approximately 200 µl. Preliminary experiments found that injections of the F(ab’)2 

fractions concentrated directly from the column caused seizures when injected into some 

mice. Thus the initial concentrate was diluted in 4 ml of fresh PBS and reconcentrated to 

dilute residual proprietary elution buffer components which may cause seizures. No 

seizures or neurotoxicity were found in the mice included here. The concentrated product 

was run on an SDS-PAGE. A Bradford assay was also performed to establish 

concentrations of the F(ab’)2 fragments using Bradford protein assay reagent concentrate 

(Bio-Rad, Hercules, CA). 

Surgical procedure 

On the day of surgery the mice were weighed, anesthetized with isoflurane and 

placed in a stereotaxic apparatus (51603 dual manipulator lab standard, Stoelting, Wood 

Dale, IL). A midsagittal incision was made to expose the cranium and two burr holes 

were drilled using a dental drill over the right frontal cortex and hippocampus to the 

following coordinates: Cortex: AP +1.5mm, L –2.0mm, hippocampus: AP –2.7mm, L –

2.5mm, all taken from bregma. A 26 gauge needle attached to a 10µl Hamilton (Reno, 

NV) syringe was lowered 3mm ventral to bregma and a 2µl injection was made over a 2 

minute period. The incision was cleaned with saline and closed with surgical staples.  

Tissue Preparation 

 On the day of kill mice were weighed, overdosed with 100mg/kg pentobarbital 

(Nembutal sodium solution, Abbott laboratories, North Chicago IL) and intracardially 
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perfused with 25ml 0.9% sodium chloride followed by 50ml freshly prepared 4%  

paraformaldehyde (pH=7.4). Brains were rapidly removed and immersion fixed for 24 

hours in freshly prepared 4% paraformaldehyde. The brains were then incubated for 24 

hours in 10, 20 and 30% sucrose sequentially to cyroprotect them. Horizontal sections of 

25µm thickness were then collected using a sliding microtome and stored at 4oC in DPBS 

buffer with sodium azide to prevent microbial growth. 

Immunohistochemical methods 

 Six to eight sections approximately 100µm apart were selected spanning the 

injection site and stained using free-floating immunohistochemistry methods for total Αβ 

(rabbit antiserum primarily reacting with the N-terminal of the Αβ peptide 1:10000) and 

CD45 (Serotec, Raleigh NC, 1:3000) as previously described (Gordon et al, 2002). For 

immunostaining, some sections were omitted from the primary antibody to assess non-

specific immunohistochemical reactions. Adjacent sections were mounted on slides and 

stained using 4% thioflavine-S (Sigma-Aldrich, St Louis MO) for 10 minutes. It should 

be noted that there are a limited number of sections that include the injection volume.  

We have opted to measure a few markers reliably rather than a larger number of markers 

with fewer sections each. 

Data analysis 

The immunohistochemical reaction product on all stained sections was measured 

using using a videometric V150 image analysis system (Oncor, San Diego, CA) in the 

injected area of cortex and hippocampus and corresponding regions on the contralateral 

side of the brain. Data are presented as the ratio of injected side to non-injected side for 

Αβ, thioflavine-S and CD45.   Normalizing each injection site to the corresponding 
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contralateral site diminishes the influence of inter-animal variability and permits reliable 

measurements of drug effects with a smaller number of mice. Importantly, there is no 

injected antibody detectable in the contralateral side. To assess possible treatment-related 

differences, the ratio values for each treatment group were analyzed by ANOVA using 

StatView software version 5.0.1 (SAS Institute Inc., NC) followed by Fischer’s LSD 

means comparisons.  

 

Results 

Following intracranial injection of anti-Aβ antibody 44-352 into the hippocampus 

and frontal cortex there was a significant activation of microglia detectable by CD45 

immunohistochemistry. In the hippocampus, the most intense area of activation appeared 

in the granule cell layer of the dentate gyrus close to the site of injection within the 

hilus/CA4 region. However, there was a much more diffuse activation which filled the 

remainder of the dentate gyrus (Fig. 1A). In the frontal cortex, the activation formed a 

gradient surrounding the injection site without a clear laminar profile (not shown). 

Following the intracranial injection of anti-Aβ antibody, treatment with the steroidal anti-

inflammatory agent dexamethasone completely inhibited the microglial activation with 

only several small cells faintly stained for CD45 in hippocampus (Fig 1B; P < 0.05 Fig 

2A) and in frontal cortex (Fig 2A, P < 0.001). The staining pattern and values observed in 

this group matched that of the group administered a control IgG directed against an HIV 

protein in both brain regions (Fig. 1E, Fig. 2A).  

Minocycline, a drug previously shown to inhibit microglial activation in several 

CNS inflammation models, appeared relatively ineffective at inhibiting the microglial 
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activation observed as a result of intracranial anti-Aβ antibody administration. In the 

hippocampus the intense area of activation in the granule cell layer was still present, as 

was the more diffuse activation in the remainder of the dentate gyrus (Fig 1C). In the 

frontal cortex, although there was a significant difference between the minocycline-

treated mice and the untreated mice (P < 0.01), the microglial activation in the 

minocycline treated mice was still significantly greater than in the dexamethasone treated 

mice (p<0.05; Fig 2A).  

NCX-2216 combines a nitric oxide generating moiety with the typical NSAID 

drug flurbiprofen. In the hippocampus, NCX-2216 treatment following the intracranial 

injection of anti-Aβ antibody partially inhibited the activation of microglia (Fig 1D). This 

drug did not inhibit the intense activation observed in the granule cell layer of the dentate 

gyrus but did diminish the more diffuse activation. The quantification from the frontal 

cortex found a significant inhibition of microglial activation (P < 0.01; Fig 2A).  Thus, 

with respect to inhibiting microglial activation following anti-Aß antibody injection, 

dexamethasone was the most effective drug with NCX-2216 having a partial inhibition 

followed by an even weaker inhibition caused by minocycline. 

Total Aβ immunohistochemistry in mice administered the control antibody 

directed against human immunodeficiency virus (HIV) protein gp120 was similar to that 

described previously in the APP transgenic mouse (Hsiao et al, 1996 and Gordon et al, 

2002). The ratio of Aβ in the right: left sides was also the same as that observed 

previously in unmanipulated APP transgenic mice (Wilcock et al, 2003). The Aβ 

immunohistochemistry showed a few large, intensely stained deposits, which are 

normally also stained by Congo red or thioflavine-S, indicating fibrillar compact amyloid 
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deposits. There were also a large number of smaller, less intensely stained deposits 

analogous to diffuse amyloid deposits observed in human AD brain tissue. In the 

hippocampus, Aβ deposition was localized primarily to the molecular layers of the 

dentate gyrus and Ammon’s horn adjacent to the hippocampal fissure, as well as a large 

concentration in the subiculum (Fig. 1J).  

Anti-Aβ antibody administration into frontal cortex and hippocampus resulted in 

a reduction of total Aβ immunohistochemistry 72 hours following injection (Fig 1F). 

This reduction was approximately 80% in frontal cortex and 65% in hippocampus 

compared to APP transgenic mice administered HIV antibody (Fig. 2B). The anti-

inflammatory agents dexamethasone, NCX-2216 and minocycline had no effect on the 

removal of this largely diffuse Aβ staining (Fig. 1G, H and I and Fig 2B).  

Thioflavine-S staining showed a different response to anti-inflammatory drug 

treatment than Aβ immunostaining.  Although fewer in number, the subregional 

distribution of thioflavine-S positive plaques matched that observed with Aβ 

immunohistochemistry in APP transgenic mice administered control IgG (Fig 1O). Anti-

Aβ antibody injected into the frontal cortex and hippocampus resulted in a virtually 

complete removal of thioflavine-S positive plaques 72 hours following injection, 

reaching 90%  in frontal cortex and 85% in the hippocampus (Fig 1K; Fig 2C). 

Administration of dexamethasone resulted in complete arrest of anti-Aβ antibody 

mediated clearance of thioflavine-S compact amyloid deposits in the hippocampus (Fig. 

1L) or the frontal cortex, with values equivalent to those mice given  anti-HIV control 

antibody (Fig. 2C). In contrast, administration of minocycline had no detectable effects 
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on anti-Aβ antibody mediated clearance of thioflavine-S deposits in either frontal cortex 

(Fig. 2C) or hippocampus (Fig. 1M, Fig. 2C). NCX-2216 treatment had a partial effect on 

thioflavine-S reduction following intracranial anti-Aβ antibodies. In the frontal cortex the 

levels of thioflavine-S were almost equivalent to those seen following anti-HIV control 

antibody administration, and were significantly different from the levels observed 

following anti-Aβ antibody administration alone (Fig. 2C). The levels of thioflavine-S in 

the hippocampus were not significantly different from mice administered anti-Aβ 

antibody or mice administered anti-HIV control antibody, and their values were in 

between these two groups (Fig. 2C), suggesting a partial impairment of antibody 

mediated clearance by this drug. 

A second series of studies investigated the potential role of the Fc domain of the 

antibody in microglial activation and amyloid clearance.  F(ab’)2 fragments prepared 

from   anti-Aβ monoclonal antibody 2286, and a control monoclonal antibody directed 

against the drosophila protein amnesiac were analyzed via SDS-polyacrylamide-gel 

electrophoresis (PAGE). The gel showed very pure product, with a single band at 

approximately 105kDa, the molecular weight for F(ab’)2 fragments. The intact IgG 

molecule produced one intense band at approximately 150kDa, the correct molecular 

weight for IgG molecules and a less intense band at approximately 110 kDa. Following 

confirmation of purity via SDS-PAGE we then performed a Bradford assay to assess the 

recovery of F(ab’)2  in the purified fraction. Because we dissolved the anti-Aβ F(ab’)2 

fragments in a smaller volume than was used for the starting material the concentration of  

F(ab’)2 fragments injected intracranially was 1.2µg/µl, while the complete IgG 
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concentration was 1 µg/µl, resulting in an  excess of anti-Aß Fv domains in the  F(ab’)2  

solutions.   

The only antibody which activated microglia 72 hours following intracranial 

injection into frontal cortex and hippocampus was the intact anti-Aβ antibody. The 

frontal cortex shows a greater degree of activation than the hippocampus, however, in 

both regions the activation is significantly greater than that in the groups receiving 

control anti-amnesiac protein IgG,  F(ab’)2 , or anti-Aβ  F(ab’)2  (Fig 3A, C and D, Fig. 

4A; P < 0.01 or greater in all comparisons). The pattern of activation in the hippocampus 

following the anti-Aβ antibody 2286 injection resembled that shown in Fig 1A when 

using the anti-Aβ antibody 44-352. There is a very intense area of activation in the 

granule cell layer of the dentate gyrus, with a much more diffuse activation filling the 

remainder of the dentate gyrus (Fig. 3A). Interestingly, the anti-Aβ F(ab’)2 fragments 

produced no microglial activation in either the frontal cortex and hippocampus (Fig. 3B, 

Fig. 4A).   

Aβ immunohistochemistry in the two anti-amnesiac protein control groups shows 

the typical staining pattern observed in APP transgenic mice at 19.5 months (Fig. 3G and 

H). This pattern was qualitatively the same as observed at 16 months (Fig 1J), although 

quantitatively greater as the mice were 3.5 months older. Both the anti-Aβ antibody and 

the anti-Aβ F(ab’)2 groups significantly reduced total Aβ immunohistochemistry to a 

similar extent 72 hours following injection into frontal cortex and hippocampus. In the 

frontal cortex there was a reduction of approximately 60% (Fig. 4B). In the hippocampus 

the reduction was approximately 65% (Fig. 3E and F, Fig. 4B). 
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Thioflavine-S staining detects only compact fibrillar amyloid deposits. The mice 

receiving intracranial injections of either control anti-amnesiac protein IgG or control 

F(ab’)2 resembled the typical staining observed in the APP transgenic mouse at this age. 

In the hippocampus the majority of thioflavine-S positive plaques were located in the 

outer molecular layer of Ammon’s horn and the dentate gyrus near the hippocampal 

fissure (Fig. 3K and L). Anti-Aβ antibody IgG significantly reduced thioflavine-S 

positive compact plaque by approximately 90% in the frontal cortex and hippocampus 

(Fig. 4C). There were no, or very few, remaining thioflavine-S positive deposits in the 

hippocampus (Fig. 3I).  In contrast, the anti-Aβ F(ab’)2 fragments did not remove 

compact amyloid plaques as effectively as the whole IgG molecule. In the frontal cortex 

there was no significant reduction in thioflavine-S staining when compared to either 

control antibody group (Fig. 4C). In the hippocampus there was a significant difference 

between the anti-Aβ F(ab’)2 group and the control groups (P < 0.05), however, this 

reduction was also significantly less than the reduction observed with the whole IgG 

molecule (Fig. 3J, Fig. 4C; P < 0.02 or greater). 

 

Discussion 

 The data presented here support the argument that activation of microglia in APP 

transgenic mice facilitates the removal of compact amyloid plaques. The first experiment, 

using several anti-inflammatory agents to regulate the microglial response, showed that 

the extent of fibrillar amyloid removal roughly corresponds to the extent of microglial 

activation 3 days after intracranially applied anti-Aβ antibody. The second study 

identified that anti-Aβ F(ab’)2 fragments were less capable of activating microglia 
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(presumably because they lacked the Fc domain) and were significantly less effective 

than the corresponding whole IgG in removing fibrillar Aβ, despite the presence of 

excess anti-Aβ Fv in the F(ab’)2 injections.   

 Our earlier work in this system demonstrated that intracranial administration of 

anti-Aβ antibodies into APP Tg2576 mice resulted in diffusion of the antibody 

throughout most of the hippocampus by 4 hours, however, no specific localization to 

amyloid plaques was noted. This caused a rapid removal of diffuse Aβ deposits between 

4 hours (when no reduction is detected) and 24 hours (when removal of diffuse deposits 

appeared complete; Wilcock et al, 2003). This removal was not associated with any 

apparent activation of microglia using markers such as MHC-II or CD45 at 24 hours, nor 

was there any reduction of the fibrillar amyloid deposits measured with thioflavine-S 

staining. However, by 72 hours following the injection there was a dramatic reduction of 

thioflavine-S positive compact amyloid deposits associated with a florid microglial 

activation as detected by CD45 immunohistochemistry. One week following the anti-Aβ 

antibody injection, the injection site remained devoid of most forms of amyloid, the 

microglial reaction had terminated and the injected antibody had been fully cleared from 

the area. 

 An issue of concern with these studies is whether the Aβ epitope utilized for 

immunohistochemistry is masked by the injected antibody. This issue was addressed in 

our previous work where it was shown that although there is a broad distribution of the 

injected antibody 4 hours following injection, no reduction in Aβ immunohistochemistry 

is apparent (Wilcock et al, 2003). Also, if the reduction observed is simply an artifact of 
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masking the Aβ epitope, a reduction in thioflavine-S staining would not be observed 

since this is a conformation dependent stain and not epitope dependent. Further, the 

stoichiometry of injected antibody (13 pmol) to Αβ in deposits (estimated at 250 pmol in 

0.5 mg, Chapman et al., 1999) is likely too low to interfere substantially with the 

histochemical reaction. Finally, 7 days after injection, the injected antibody is no longer 

detectable, yet the Aβ immunostaining remains absent.  

 The present report further investigated the relationship between activation of 

microglia and the clearance of the fibrillar amyloid plaques associated with anti-Aβ 

antibody injections. We used several distinct pharmacological agents in an attempt to 

inhibit the microglia activation observed 72 hours following intracranial injection of anti-

Aβ antibodies. Dexamethasone is a glucocorticosteroid which inhibits the 

cyclooxygenase and lipoxygenase inflammatory pathways as well as inducing a general 

state of immunosuppression. It has been shown that microglia respond differently to 

mineralocorticoid and glucocorticoid receptor stimulation. Mineralocorticoid receptor 

activation stimulates the microglia while glucocorticoid receptor activation inhibits 

microglia (Tanaka et al, 1997). All pharmacological glucocorticosteroids possess some 

degree of mineralocorticoid action also. For the present study we selected dexamethasone 

as it has the maximum glucocorticoid receptor activity with the minimum 

mineralocorticoid receptor activity detectable among all available pharmacological 

glucocorticosteroids (Schimmer and Parker, 2001). It was found that dexamethasone was 

the most efficacious compound for the inhibition of microglial activation among those 

used in this study. Dexamethasone administered immediately following intracranial anti-

Aβ antibody administration completely inhibited the microglial activation caused by the 
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injection. Associated with this profound arrest of microglial activation was a complete 

inhibition of the antibody's ability to remove compact amyloid deposits detected with 

thioflavine-S staining, strongly suggesting a role for microglial involvement in the 

removal of compact amyloid deposits.  

The novel non-steroidal anti-inflammatory (NSAID) NCX-2216, which is a 

flurbiprofen molecule conjugated to an antioxidant and a nitric oxide releasing group, 

was moderately effective at inhibiting microglial activation. Interestingly, this compound 

has previously been shown to cause the activation of microglia and removal of amyloid 

from the brains of otherwise untreated doubly transgenic APP+PS1 mice (Jantzen et al, 

2002). NCX-2216 has also been shown to inhibit the microglial activation caused by 

intracranial infusion of lipopolysaccharide (LPS), a proinflammatory agent in young rats, 

but to increase microglial activation in old rats (Hauss-Wegrzyniak et al, 1999). In the 

present study, NCX-2216 partially reduced the activation of microglia caused by 

antibody injection.  Associated with this partial inhibition of microglial activation is also 

a partial impairment of the anti-Aβ antibody’s capacity to remove the compact amyloid 

plaques. The discrepancy between the effects observed in the current study and the 

effects previously observed by Jantzen et al (2002) may be explained by the fact that 

NCX-2216 essentially is three drugs. In a situation where there is intense, local 

microglial activation the anti-inflammatory properties of the drug appears to dominate. In 

a situation where there is diffuse microglial activation it appears that maybe the nitric 

oxide release dominates to enhance microglial activation and aid in the clearance of Aβ. 

Although not quantified, the microglial reaction immediately adjacent to amyloid 

deposits appeared more intense in NCX-2216 treated mice in regions distant from the 
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injection (e.g. contralateral anterior cortex). A similar bidirectional effect of this drug was 

found by Hauss-Wegrzyniak et al, 1999, who found reduced microglial activation in 

young rats, but enhanced activation in old rats treated with the NCX-2216 relative, 

nitroflurbiprofen.  

Minocycline is a tetracycline derivative which has been shown to have a novel 

action independent of its antibiotic property. This agent has been shown to inhibit 

microglial activation following excitotoxicity (Tikka et al, 2001), ischemia (Yrjanheikki 

et al, 1998) and 6-hydroxydopamine lesions (He et al, 2001). In the present study we 

demonstrate that minocycline is capable of a modest inhibition of microglial activation 

following antibody injection. Associated with this is no difference in compact plaque 

removal in either the frontal cortex or hippocampus.  

 To further investigate whether the activation of microglia, which appears to be 

specific to the anti-Aβ antibody, is due to Fc receptor activation we administered F(ab’)2 

fragments intracranially into APP transgenic mice as well as the whole IgG, control IgG 

and F(ab’)2 fragments from the control IgG. We found that of the four experimental 

groups only the animals receiving anti-Aβ IgG showed significant activation of 

microglia. The fact that anti-Aβ F(ab’)2 fragments were unable to activate microglia, 

strongly suggests that Fc receptor activation is required for the significant activation of 

microglia following intracranial administration of anti-Aβ antibodies.  

Associated with this inability to activate microglia was a significantly impaired 

capacity to remove fibrillar amyloid deposits. Still, at least in hippocampus, there was 

some residual capacity for fibrillar amyloid removal using the F(ab’)2 fraction. However, 

with respect to diffuse Aβ clearance, the F(ab’)2 are just as effective as the corresponding 
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intact IgG.  These results suggest that there may be an equilibrium between the fibrillar 

deposits and the diffuse deposits, and the F(ab’)2  antibody fragments can whittle away at 

the fibrillar plaques without requiring Fc receptor mediated phagocystosis.  This is also 

the likely explanation why Bacskai et al (2002) found topically applied F(ab’)2 fragments 

equally effective to intact antibodies in the clearance of thioflavine-S labeled material.  It 

is plausible that had we injected a greater amount of F(ab’)2 fragments, or extended the 

post-injection interval, we also might have found complete clearance of fibrillar amyloid 

with the F(ab’)2  material.  However, even though it may be capable of clearing fibrillar 

amyloid, the results presented here demonstrate F(ab’)2  fragments were much less 

efficient than the intact IgG molecule in mediating clearance associated with microglial 

activation. It is plausible that this also explains the recent observations from Bard et al 

(2003) that the ability of different monoclonal anti-Aβ antibodies to clear brain amyloid 

when administered systemically was correlated better with their capacity to bind Fc 

receptors than with their affinity for Aβ.  The amounts of antibody entering the brain are 

roughly 0.1% of the injected amount per hour (Banks et al, 2002). Thus, a 500 µg 

injection of a monoclonal antibody should result in 0.5 µg entering the CNS within 60 

minutes, somewhat less than the amounts injected directly in our system (2 µg).  

Therefore, with systemically injected antibodies, the facilitation of amyloid removal by 

Fc receptor mediated phagocytosis is likely to be even greater than that observed here 

with intracranially administered antibodies.  

Certainly, it will be useful to measure Αβ content by means other than 

histochemistry. Increasingly complex methods of fractionating homogenates are being 

used to identify Αβ pools linked most closely to neuropathology and cognitive disruption 
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(Lue et al, 1999 and Golde et al, 2000) but consensus regarding the specific fractions 

corresponding to the most toxic form of amyloid has not yet been achieved (Walsh et al, 

2002 and Kayed et al, 2003). Additionally, the relatively small portions of the brain 

affected by the intracranial injections and difficulty dissecting these regions consistently 

limits the ability to use solution methods to evaluate Aβ loads in our studies. As 

consensus emerges regarding the relationships between soluble, oligomeric and fibrillary 

forms of Aβ in the solution domain and the histochemical domain, and larger portions of 

the brain become involved with either intraventricular or systemic antibody injections, we 

will investigate the effects of anti-Aβ antibodies on these different Aβ pools in both 

domains. 

It has been shown previously that vaccination using Aβ1-42 results in activation of 

microglia, which is associated with a reduction in Aβ accumulation in PDAPP transgenic 

mice (Schenk et al, 1999) and APP+PS1 transgenic mice (Wilcock et al, 2001). It has 

also been shown that following direct application of anti-Aβ antibodies to the brains of 

PDAPP mice there is an activation of microglia and a reduction in amyloid deposits 

(Bacskai et al, 2001). In vitro studies using F(ab’)2 fragments demonstrated that they were 

unable to activate microglia despite retaining full ability to bind to Aβ (Bard et al, 2000). 

These fragments also failed to remove fibrillar Aβ in an ex vivo assay. Human 

postmortem microglia have been shown to phagocytose opsonized Aβ, which is inhibited 

by excess non-specific IgG, suggesting this phagocytosis is Fc receptor mediated (Lue et 

al, 2002). All of these data suggest that one likely mechanism of antibody action in 

removing amyloid deposits from transgenic mouse brains is via binding to microglial Fc 
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receptors and triggering activation of the microglia, possibly including phagocytosis of 

the opsonized amyloid.  This by no means precludes other possible mechanisms, such as 

catalytic dissolution of amyloid fibrils (Solomon et al, 1997), or sequestration of Aβ in 

the periphery, effectively drawing Aβ out of the brain (DeMattos et al, 2001). 

Recently, the first pathology report from a patient receiving the Aβ1-42 vaccination 

(AN1792) was published (Nicoll et al, 2003). This report showed that the patient had 

considerably fewer amyloid deposits than would have been predicted from other AD 

cases. Interestingly, it is reported that in those regions devoid of amyloid plaques, the 

remaining Aβ-immunoreactivity was associated with activated microglia. This patient did 

develop meningoencephalitis and other symptoms of CNS inflammation, as did several 

others in the trial. The treatment chosen for the CNS inflammation in this case was 

dexamethasone.  

Assuming that the mechanisms of Aβ vaccination in clearing amyloid is similar to 

that demonstrated in the present work, it might be anticipated that dexamethasone would 

counter the amyloid removing effects of the vaccine.  Although the case described by 

Nicoll et al above did show evidence of removal, the patient had received 5 inoculations 

before developing adverse reactions and being administered dexamethasone. It was also 

not indicated what the antibody titer was in the patient, nor how long the dexamethasone 

treatment had continued.  The data presented here suggest that administration of 

glucocorticoids to vaccinated patients may counteract any benefit the vaccine has with 

respect to amyloid clearance and possibly cognitive function.  It is also conceivable that 

removal of only the soluble and diffuse Aβ may provide cognitive improvement and 

inhibition of microglial activation by anti-inflamnmatory drugs or administration of 
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F(ab’)2 fragments may avoid some of the inflammatory adverse effects observed in the 

human clinical trial (Orgogozo et al, 2003). The inhibition of microglial mediated 

amyloid clearance may also have been a factor in the failure of the prednisone clinical 

trial for AD (Aisen et al, 2000).  

The adverse reactions in the human vaccine trial demonstrates a need to more 

fully investigate the mechanisms involved in beneficial and detrimental effects of 

immunotherapy. Encouraging data recently published by Hock et al (2003) showed that 

the a subset of patients administered the Aβ vaccine remained cognitively stable for one 

year after treatment while the control patients declined at a normal rate, some vaccinated 

patients actually improved. While the immunotherapeutic approach may hold promise for 

the treatment of AD, it would appear very important to better understand both the 

mechanisms of vaccine action, and how the tools to effectively modulate the immune 

reaction interact with these mechanisms. The data presented here make some headway 

toward determining what effects modulation of the immunotherapeutic approach 

mechanisms would have pathologically. Future studies will extend these investigations to 

a more clinically relevant, systemically administered, passive immunization regimen to 

determine the importance of the mechanisms discussed in the current study. 
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Figure 1: Anti-inflammatory drugs impaired fibrillar amyloid removal to roughly the 

same extent as they decreased microglial activation following anti-Aß antibody 

injections.  Panels A-E show CD45 immunohistochemistry in the hippocampus. Panels F-

J show Aβ immunohistochemistry in the hippocampus. Panels K-O show thioflavine-S 

staining in hippocampus. Mice were injected intracranially with anti-Aβ antibody 

followed by no treatment (A, F, K), dexamethasone treatment (B, G and L), minocycline 

treatment  (C, H and M) or NCX-2216 treatment  (D, I and N).  Mice shown in panels E, 

J, and O were injected with anti-HIV antibody as a control for nonspecific effects of IgG 

injection. Magnification = 40X. Scale bar =120µm. 
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Figure 2: Quantification of CD45, total Aβ and thioflavine-S following inhibition of 

microglial activation by anti-inflammatory compounds. Panel A shows the ratio of right 

to left sides for CD45 immunohistochemistry. Panel B shows the ratio of right to left 

sides for total Aβ immunohistochemistry. Panel C shows the ratio of right to left sides for 

thioflavine-S staining. The solid bars indicate values for frontal cortex, the open bars 

indicate values for hippocampus. On the x-axis the type of antibody injected (anti-Aβ 

antibody; Abeta, or control antibody; HIV) is shown.  The post-injection treatment the 

mice received is also shown; Dex: dexamethasone , Min: minocycline treatment, NCX: 

NCX-2216 treatment. *** indicates P<0.001, ** indicates P < 0.01, * indicates P<0.05 as 

compared to the anti-Aβ antibody alone. 
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Figure 3: Anti-Aβ F(ab’)2 fragments do not activate microglia, nor do they remove 

compact amyloid deposits as effectively as the complete anti-Aβ IgG. Panels A-D show 

CD45 immunohistochemistry in the hippocampus. Panels E-H show total Aβ 

immunohistochemistry in the hippocampus. Panels I-L show thioflavine-S staining in the 

hippocampus. Mice were injected with intact anti-Aß IgG (A, E and I), anti-Aβ F( ab’)2 

fragments (B, F and J), control (anti-amnesiac) IgG (C, G and K), or control (anti-

amensiac) F(ab’)2 fragments (D, H and L). Magnification = 40X. Scale bar=120µm. 
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Figure 4: Quantification of CD45 and total Aβ immunohistochemistry and thioflavine-S 

staining following intracranial injection of anti-Aβ antibodies and anti-Aβ F(ab’)2 

fragments. Panel A shows the ratio of right to left sides for CD45 immunohistochemistry. 

Panel B shows the ratio of right to left sides for total Aβ immunohistochemistry. Panel C 

shows the ratio of right to left sides for thioflavine-S staining. The solid bars indicate 

values for frontal cortex, the open bars indicate values for hippocampus. On the x-axis 

IgG-Cont= control (anti-amnesiac) intact IgG,; F(ab’)2-Cont = Control (anti-amnesiac) 

F(ab’)2 fragments; IgG-Abeta = anti-Aβ intact IgG;  F(ab’)2-Abeta= anti-Aβ F(ab’)2 

fragments.*** indicates P<0.001, * indicates P<0.05 as compared to both control 

antibody groups. Lines over bars indicates P values for comparisons between the specific 

pair of groups indicated.   
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Abstract 

 The role of microglia in the removal of amyloid deposits following systemically 

administered anti-Aβ antibodies remains unclear. In the current study we injected Tg2576 

APP transgenic mice weekly with anti-Aβ antibody for a period of one, two or three 

months such that all mice were 22 months at the end of the study. In mice immunized for 

three months we found an improvement in alternation performance in the Y maze. 

Histologically, we were able to detect mouse IgG bound to congophilic amyloid deposits 

in those mice treated with anti-Aβ antibody but not in those treated with control antibody. 

We found that Fcγ receptor expression on microglia was increased following one month 

of treatment while CD45 was increased following two months of treatment. Associated 

with these microglial changes was a reduction in both diffuse and compact amyloid 

deposits following two months of treatment.  Interestingly, the microglia markers were 

reduced to control levels following three months of treatment while amyloid levels 

remained reduced.  Serum Aβ levels and anti Aβ antibody levels were elevated to similar 

levels at all three survival times in mice given anti-Aβ injections rather than control 

antibody injections. These data show that antibody is able to enter the brain and bind to 

the amyloid deposits, likely opsonizing the Aβ and resulting in Fcγ receptor mediated 

phagocytosis. Together with our earlier work, our data argue that all proposed 

mechanisms of anti-Aβ antibody mediated amyloid removal can be simultaneously 

active.  
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Introduction 

Reduction of brain amyloid following anti-Aβ immunotherapy was first 

demonstrated by Schenk and colleagues (1999). Their report showed that vaccination 

with Aβ1-42 in the PDAPP transgenic mouse model of Alzheimer’s disease dramatically 

reduced levels of Aβ deposits in the brain. Later it was shown that using the same 

vaccination protocol in APP+PS1 doubly transgenic mice (Morgan et al, 2000) and in 

TgCRND8 transgenic mice (Janus et al, 2000) not only reduced Aβ levels in the brain but 

also protected these mice from memory deficits. More recent studies have demonstrated 

that passive immunization consisting of direct anti-Aβ antibody injections not only 

results in dramatic reduction of Aβ levels (Bard et al, 2000; DeMattos et al, 2001) in the 

brain but also reverses memory deficits in transgenic mouse models of AD (Dodart et al, 

2002; Kotilinek et al, 2002). 

The mechanism(s) by which immunotherapy acts remain unclear. Suggested 

mechanisms include microglial mediated phagocytosis (Schenk et al, 1999, Wilcock et al, 

2001, 2003, 2004), disaggregation of amyloid deposits (Solomon 1997, Wilcock et al, 

2003, 2004), and removal of Aβ from the brain by binding of circulating Aβ in plasma 

with the anti-Aβ antibodies, resulting in a concentration gradient from brain to plasma. 

This latter mechanism is also known as the peripheral sink hypothesis (DeMattos et al, 

2001, Dodart et al, 2002, Lemere et al, 2003, Das et al, 2003).  

We have previously reported that following intracranial anti-Aβ antibody 

injections into APP transgenic mice there is a rapid removal of diffuse amyloid deposits 
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apparently independent of microglial activation and also a later removal of compact 

amyloid deposits which appears to require microglial activation (Wilcock et al, 2003). In 

fact, in a later study using the same model, administration of dexamethasone, which 

suppresses microglial activation, anti-Aβ antibody administration inhibits the removal of 

compact, thioflavine-S positive, amyloid deposits (Wilcock et al, 2004).  

In this report we show that weekly systemic administration of anti-Aβ antibodies 

for a period of one, two or three months results in a dramatic reduction of both diffuse 

and compact amyloid deposits. Associated with this reduction is a behavioral 

improvement using the Y-maze task. Following one month of treatment there is a large 

induction of Fcγ receptor expression on microglia and following two months of 

administration there is an increase in CD45 expression indicative of microglial activation. 

We have detected antibody binding to congophilic plaque in APP transgenic mice treated 

with anti-Aβ antibody. We also observe a dramatic increase in circulating Aβ levels 

following one month of administration. Two months following administration we observe 

a dramatic reduction in compact and diffuse deposits. After three months of 

administration the microglia markers are down to control levels whilst the compact and 

diffuse amyloid deposits remain reduced. These results demonstrate systemically 

administered anti-Aβ antibodies are accessing the brain, binding to amyloid deposits and 

activating microglia. The data also show an increase in circulating Aβ in plasma, 

consistent with the peripheral sink hypothesis.  
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Materials and Methods. 

Experiment design: 

 Singly transgenic APP Tg 2576 mice were obtained from our breeding  program 

at USF started in 1996 (Holcomb et al, 1998). Twenty two APP transgenic mice aged 19 

months were assigned to one of four experimental groups. The first three groups received 

weekly intraperitoneal anti-Aβ antibody injections (antibody 2286; Mouse monoclonal 

anti-human Aβ28-40 IgG1; Rinat Neurosciences, Palo Alto, CA) for 1 month (n=6), 2 

months (n=9) or 3 months (n=4). The fourth group received weekly intraperitoneal anti-

AMN antibody injections (2906; Mouse monoclonal anti-drosophila amnesiac protein 

IgG1; (Rinat Neurosciences, Palo Alto, CA) for 3 months (n=3). Twelve nontransgenic 

mice were assigned to one of two experimental groups. The first group received 

intraperitoneal anti-Aβ antibody injections for 3 months (n=4). The second group 

received no treatment (n=3).  Treatment of 1 month and 2 month groups was delayed to 

insure the mice were killed at the same age (22mo). One week prior to kill and one day 

following the 5th, 9th or 13th injection mice were tested behaviorally using the Y maze 

task.  

Behavioral testing: 

 The Y maze is a three arm maze with equal angles between all arms. Mice were 

initially placed within one arm and the sequence and number of arm entries was recorded 

for each mouse over an 8 minute period.  The percentage of triads in which all three arms 

were represented (ABC, CAB or BCA but not BAB) was recorded as an alternation to 

estimate short-term memory of the last arms entered. The total number of possible 
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alternations is the number of arm entries minus two. Additionally, the number of arm 

entries serves as an indicator of activity. 

Antibody Purification: 

Antibody 2286 (mouse monoclonal anti-human Aβ28-40 IgG1) and the antibody 

2906 (mouse monoclonal anti-drosophila amnesiac protein IgG1) was purified from 

mouse ascites on AKTA instrumentation using protein A beads (MabSelect, Amersham 

Biosciences). Briefly, ascites was filtered in pyrogen-free .22µm filter system (Corning) 

and applied to a 20ml bed volume in a XK16/20 column (Amersham Biosciences) after 

equilibrating the beads with 5 vol of binding buffer (0.6M NaCl, 0.3M glycine, pH 8.0). 

The column was washed with 3 vol of binding buffer and the antibody was eluted in 4 vol 

of elution buffer (0.1M Na Citrate pH 3.0), and held at low pH for 30 min for viral 

inactivation. The resulting eluant was neutralized with 1/10th vol of 1.0M Tris, pH 9.5. 

The antibody was dialyzed into sterile PBS, pH 7.4 and the concentration was determined 

by reading absorbance at 280. All buffers were made in pyrogen-free water. 

Tissue preparation: 

  On the day of kill mice were weighed, overdosed with 100mg/kg pentobarbital 

(Nembutal sodium solution, Abbott laboratories, North Chicago IL). Blood was collected 

and allowed to coagulate at 4oC for at least one hour before being centrifuged and the 

serum removed and stored at -80oC until required. The mice were then intracardially 

perfused with 25ml of 0.9% sodium chloride. Brains were rapidly removed and the right 

half of the brain was dissected and frozen for biochemistry while the left half of the brain 

was immersion fixed for 24 hours in freshly prepared 4% paraformaldehyde in 100mM 

PO4 (pH 7.2) for histopathology. The latter hemibrains were then incubated for 24 hours 
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in 10, 20 and 30% sucrose sequentially to cyroprotect them. Horizontal sections of 25µm 

thickness were collected using a sliding microtome and stored at 4oC in Dulbecco’s 

phosphate buffered saline with sodium azide (pH 7.2) to prevent microbial growth. 

ELISA methods; Aβ and anti-Aβ antibody: 

For the Aβ assay serum was diluted and incubated in 96-well microtiter plates 

(NUNC MaxiSorp, Denmark), which were pre-coated with antibody 6E10 (Signet, 

Dedham, MA) at 5µg/ml in PBS buffer, pH 7.4. The secondary antibody was biotinylated 

4G8 (Signet, Dedham, MA) at 1:5000 dilution. Detection was done using streptavidin 

horseradish peroxidase conjugate (Amersham Biosciences), followed by TMB substrate 

(KPL, Maryland). Standard curves of Aβ-40 (Global Peptide, Ft. Collins, CO) scaling 

from 400 - 6pm were used.  

Anti-Aβ antibody was dissociated from endogenous Aβ in serum as described previously 

(Li et al, 2004). Briefly, serum was diluted in dissociation buffer (0.2M glycine HCl, 

1.5% BSA pH 2.5) and incubated at room temperature for 20 min. The sera were pipetted 

into the sample reservoir of Microcon centrifugal device, YM-10 (10,000 MW cut-off, 

Millipore) and centrifuged at 8,000 x g for 20 min. at RT. The sample reservoir was then 

separated from the flow through, placed inverted into a second tube and centrifuged at 

1000 x g for 3 min. The collected solution containing the antibody dissociated from the 

Aß peptide was neutralized to pH 7.0 with 1M Tris buffer pH 9.5. The dissociated sera 

were assayed by ELISA for antibody titer. Aβ1-40 (Global Peptide, Ft. Collins, CO) coated 

96-well microtiter plates (NUNC MaxiSorp, Denmark) were incubated with dissociated 

serum samples. A biotinylated goat-anti mouse IgG (H+L) (Vector, Burlingame, CA) at 
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1:5000 dilution, followed by peroxidase -conjugated streptavidin (Amersham 

Biosciences) was used to detect serum anti-Aβ binding activity. 

Immunohistochemical methods: 

 A series of eight equally spaced tissue sections 2.4mm apart were randomly 

selected spanning the entire brain and stained using free-floating immunohistochemistry 

methods for total Αβ (rabbit polyclonal anti-pan Aβ Bisource, Camarillo, CA, 1:10000), 

CD45 (rat anti-mouse CD45, Serotec, Raleigh NC, 1:3000), Fcγ receptors II /III (rat anti-

mouse CD16/ CD32, BD Pharmingen, San Diego, CA, 1:3000) as previously described 

(Gordon et al, 2002). Briefly, tissue was incubated in primary antibody overnight at room 

temperature. Sections were then washed and incubated in the appropriate biotinylated 

secondary antibody (for Aβ: goat anti-rabbit 1:3000; for CD45 and FcγR: goat anti-rat 

1:1000. All Vector Laboratories, Berlingame, CA ) for two hours. Following multiple 

washes tissue was incubated in ABC (Vector Laboratories, Berlingame, CA) for a period 

of one hour. Color development was performed using 3,3’-Diaminobenzidine (DAB, 

Sigma-Aldrich, St Louis, MO) enhanced with nickelous ammonium sulfate (J.T. Baker 

Chemical Co., Phillipsburg, NJ) for CD45 and FcγR, or without enhancement for Aβ. For 

immunostaining, some sections were omitted from the primary antibody to assess non-

specific immunohistochemical reactions.  

Additional sections were also stained for mouse IgG using imunohistochemical 

methods similar to that described above. Briefly, sections were incubated overnight in a 

1:3000 concentration of anti-mouse IgG conjugated to horseradish peroxidase (Sigma-

Aldrich, St Louis, MO). The sections were then washed and incubated for 5 minutes in 

100ml TBS (tris-buffered saline) containing 50mg DAB (3,3’-diaminobenzidine, Sigma-
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Aldrich, St Louis, MO), 500mg nickelous ammonium sulfate (J.T. Baker Chemical Co. 

Phillipsburg, NJ) and 100µl 30% hydrogen peroxide to produce a purple/ black color 

reaction product. The sections were then mounted on slides and counterstained with a 

0.2% Congo red solution in 80% ethanol to assess the localization of positive mouse IgG 

stain with compact amyloid deposits.  

A set of sections also mounted and stained using 0.2% Congo red solution in 

NaCl saturated 80% ethanol. Another set of sections was also mounted and stained using 

4% thioflavine-S (Sigma-Aldrich, St Louis MO) for 10 minutes. 

The immunohistochemical reaction product on all sections was measured using 

the Image-Pro Plus version 4.5 software (Media Cybernetics, Silver Spring, MD). One 

region of the frontal cortex for all sections from each animal was analyzed and the 

average of 6-7 sections was taken to give a value for each animal. Three regions of the 

hippocampus were analyzed on approximately 4-5 sections where hippocampus was 

present; the CA1, CA3 and dentate gyrus. These regions were analyzed both individually 

to yield an average per region and also combined to give an overall value for 

hippocampus for each animal. This ensured that there was no regional bias in the 

hippocampal values. These same analysis methods were used to evaluate the Congo red 

stain also. To assess possible treatment-related differences, the values for each treatment 

group were analyzed by one-way ANOVA followed by Fischer’s LSD means 

comparisons. Nontransgenic mice showed no treatment related differences in any 

histological analyses and so these groups were pooled.  
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Data analysis: 

Percent alternation and arm entry numbers from the Y-maze behavior task were 

analyzed using a one-way analysis of variance (ANOVA) followed by Fischer’s LSD 

means comparisons using StatView software version 5.0.1 (SAS Institute Inc., NC). 

Nontransgenic mice showed no treatment related differences in any behavioral analyses 

and so these groups were pooled. ELISA values for serum Aβ levels and circulating 

antibody levels were analyzed using a one- ANOVA followed by Fischer’s LSD means.  

 

Results. 

 Transgenic APP mice given control antibody injections showed significantly 

reduced Y-maze alternation when compared to the nontransgenic mice (Fig. 1A). This 

reduced alternation was reversed in the APP transgenic mice receiving weekly anti-Aβ 

antibody injections for three months. This group of mice was indistinguishable from the 

nontransgenic animals and showed significantly increased alternation compared to the 

APP transgenic mice receiving control antibody (Fig. 1A). The APP transgenic mice 

given weekly anti-Aβ antibody injections for either one or two months were intermediate 

between nontransgenic and transgenic mice given control antibodies and not significantly 

different from either group. Nontransgenic mice also made significantly fewer arm 

entries than the APP transgenic mice receiving control antibody injections indicating 

hyperactivity in the APP transgenic mice. The APP transgenic mice receiving anti-Aβ 

antibody injections for two and three months did not exhibit this hyperactivity and were 

not significantly different from any other treatment groups (Fig 1B).  
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 One day following anti-Aβ antibody administration anti-Aβ antibodies were 

detected in serum at high levels (400nM) following one month of administration. This 

level of antibody in the serum was the same after two or three months of administration 

with no apparent accumulation of antibody (Fig 2A). Associated with high anti-Aβ 

antibody levels in serum at one month was a dramatic increase in circulating Aβ levels in 

serum. APP transgenic mice receiving control antibody had only 1.5nM circulating Aβ in 

plasma compared to APP transgenic mice receiving Aβ antibody for one month which 

had 130nM circulating Aβ in plasma; an almost 100-fold increase (Fig 2B). Despite 

similar levels of anti-Aβ antibody at one, two or three months of administration, 

circulating Aβ levels declined between one and two month. They also showed a slight 

decline between two and three months of administration although with both two and three 

months of administration circulating Aβ levels were still significantly elevated compared 

to APP transgenic mice receiving control antibody (Fig 2B). 

 Following systemic administration of anti-Aβ antibodies weekly for one month 

staining for mouse IgG could be detected on plaques throughout the brains of APP 

transgenic mice (Fig 3B). The staining was the most intense where plaque load is 

greatest; the hippocampus and frontal cortex. This staining was not observed in APP 

transgenic mice receiving control antibody (Fig 3A). It should be noted that staining with 

higher concentrations of anti-mouse IgG-HRP did show staining of plaques in both 

control treated and anti-Aβ treated APP transgenic mice.  Staining for mouse IgG was 

still present, and slightly more intense, around the plaques that remain following two 

(Fig. 3C) and three (Fig. 3D) months of treatment.  
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Total Aβ immunohistochemistry in the APP transgenic mice receiving control 

antibody (Fig. 4A) showed a few intensely stained deposits suggesting compacted 

amyloid deposits along with more numerous diffuse deposits. There was a concentration 

of deposits around the hilus of the hippocampus as well as the molecular layers of 

Ammon’s horn. This was a typical amount and distribution of Aβ for APP transgenic 

mice of this age, as previously described (Hsiao et al, 1996 and Gordon et al, 2002). 

Following one month of weekly anti-Aβ antibody injections there appeared to be a slight 

reduction in Aβ immunohistochemistry in the hippocampus (Fig 4B) although this was 

not statistically significant (Fig 4E). The reduction appeared to be primarily diffuse 

deposits, with most of the compact amyloid deposits remaining (Fig 4B). After two 

months of weekly anti-Aβ antibody injections we observed a dramatic reduction in Aβ 

immunohistochemistry which appeared to be both compact and diffuse amyloid deposits 

from the hilus and dentate gyrus regions of the hippocampus as well as the pyramidal cell 

regions, with only a few deposits remaining, often in the vicinity of the hippocampal 

fissure and outer molecular layers (Fig 4C). This reduction in Aβ load at two months was 

approximately 60% in the hippocampus and approximately 55% in the frontal cortex (Fig 

4E, hippocampus P<0.001, frontal cortex P<0.005). Total Aβ levels remained reduced 

after three months of treatment but did not appear to decrease any further (Fig 4D and E).  

Congo red staining detects only compact amyloid deposits in the beta pleated 

sheet structure. There were far fewer Congo red positive amyloid deposits than Aβ 

deposits detected by total Aβ immunohistochemistry. Congo red positive deposits were 

located primarily along the fissure of the hippocampus as well as the CA1/ subiculum 
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region in APP transgenic mice receiving control antibody (Fig 5A). There was no 

reduction in Congophilic deposits 1 month following treatment in either the hippocampus 

(Fig. 5B and E) or the frontal cortex (Fig 5E). Following two months of treatment there 

was a significant reduction in both number and size of congophilic deposits in both the 

hippocampus (Fig. 5C and E) and frontal cortex (Fig. 5E). This reduction was 

approximately 60% in the frontal cortex and approximately 50% in the hippocampus 

(Fig. 5E, P<0.005 frontal cortex P<0.01 hippocampus,). There was a small further 

reduction between two months and three months which is approximately 30% in 

hippocampus and frontal cortex (Fig. 5E). Thioflavine-S staining was also measured and 

confirmed the Congo red data showing the same reductions in stained area as did Congo 

red (data not shown).  

Immunohistochemical staining for Fcγ receptors II and III in APP transgenic mice 

receiving control antibody treatment for three months showed only very faint staining of 

microglia in close association with amyloid deposits (Fig 6A). Following one month of 

anti-Aβ antibody administration there was a dramatic induction of Fcγ receptors II and III 

on microglia. The microglia expressing the Fcγ receptors after 1 month of treatment were 

not only associated with amyloid deposits but are also diffusely distributed (Fig 6B). This 

induction averaged 100-fold in the hippocampus (Fig. 6B and E, P<0.05) and frontal 

cortex (Fig. 6E, P<0.05). Fcγ receptor expression levels fell only slightly between one 

month and two months of treatment although this expression was once again concentrated 

on microglia around remaining amyloid deposits (Fig. 6D). Induction remained 

approximately 100-fold in hippocampus (Fig. 6E, P<0.05) and frontal cortex (Fig. 6E, 

P<0.05). Following three months of treatment Fcγ receptor expression was reduced to 
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levels observed in APP transgenic mice receiving control antibody (Fig. 6E) although it 

appeared to be increased in microglia around the few remaining amyloid deposits (Fig. 

6D).  

CD45, a protein tyrosine phophatase, is normally moderately expressed on 

microglia around amyloid deposits in aged APP transgenic mice and is a commonly used 

marker for microglial activation. This moderate expression was observed in the APP 

transgenic mice receiving control antibody treatment for three months (Fig 7A and E). 

Following one month of treatment we observed an increase in CD45 expression on 

microglia surrounding amyloid deposits in both the hippocampus (Fig. 7B, F and I) and 

frontal cortex (Fig. 7I). While the expression in hippocampus was approximately 2.5 

times that observed in control treated APP transgenic mice in the hippocampus (Fig. 7I, 

not significant) and twice the values found in the frontal cortex of control animals, the 

elevation was not statistically significant (Fig. 7I, not significant). Following two months 

of anti-Aβ antibody treatment there was a further increase in CD45 expression on 

microglia not only surrounding the amyloid deposits but also diffusely distributed 

throughout the amyloid containing brain regions (Fig. 7C and G). It is possible that this 

more widespread activation is in association with diffuse amyloid deposits although we 

cannot confirm this. The increased expression was approximately 3.5 times that observed 

in control treated mice in the hippocampus (Fig. 7I, P<0.05) and 3 times in the frontal 

cortex (Fig. 7I, P<0.01). After three months of anti-Aβ antibody treatment CD45 

expression remained at the same levels as that observed after one month of treatment (Fig 

7I),however, the microglia were still diffusely distributed with fewer microglia around 

deposits compared to one or two months of treatment (Fig 7D and H).  
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Discussion. 

The data presented here suggest that peripherally administered anti-Aβ antibodies 

entered the brain, bound to congophilic amyloid plaques, and led to removal of deposited 

amyloid.  In support of the argument that anti-Aβ antibodies entered the brain, we found 

mouse IgG decorating the remaining congophilic amyloid plaques of APP transgenic 

mice administered anti-Aβ antibody, but no IgG in APP transgenic mice administered 

control antibody. This difference was best discerned when low titers of the anti-mouse 

IgG-HRP were used. Lemere et al (2004) also reported immunohistochemical labeling of 

amyloid deposits for mouse IgG after passive immunization, but detected signals in both 

immunized and non-immunized mice. It is unclear whether lower anti-mouse IgG 

concentrations might have revealed selective staining in anti-Aβ treated animals.  These 

data confirm in parafomaldehyde fixed tissue the observations of Bard et al (2000), who 

used unfixed cryostat sections.  

Associated with the presence of antibody in the brain after one month of treatment 

was a dramatic activation of Fcγ receptor expression on microglia, further arguing that 

anti-Aβ antibodies entered the brain and opsonized the amyloid deposits. Later, following 

two months of treatment, we observed an increase in CD45 expression on microglia, 

indicating activation of these cells beyond the level normally associated with amyloid 

deposits. It has previously been shown that following active immunization with Aβ1-42 in 

humans that anti-Aβ antibodies are present in cerebrospinal fluid, in some instance equal 

to serum concentration, suggesting some penetration into the brain from the periphery 
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(Hock et al, 2002). It has also been shown that 0.1% of an intravenous injection of 

radiolabeled anti-Aβ antibody crosses the blood-brain barrier of SAMP8 mice (Banks et 

al, 2002).  Thus, accumulating data indicates that circulating antibodies can access the 

brain parenchyma, which has important implications not only for the use of 

immunotherapy in Alzheimer’s disease but also for other diseases in which 

immunotherapy is being pursued such as Creutzfeldt-Jakob disease (Manuelidis, 1998; 

Sigurdsson et al, 2003) and neural infections associated with human immunodeficiency 

virus (McMichael and Hanke, 2003).  

Associated with the changes in microglial markers was a significant reduction in 

both compact and diffuse amyloid deposits following two months of treatment, these 

remained reduced following three months of treatment. Removal of Aβ deposits from the 

brain appeared to be a gradual process. We did not observe significant reductions in 

either diffuse or compact amyloid deposits following one month of weekly anti-Aβ 

antibody treatment. Following two months of treatment there was a dramatic reduction in 

total Aβ immunohistochemistry, Congo red staining and thioflavine-S staining, 

suggesting removal of both diffuse and compact amyloid deposits. There appeared to be 

no accumulation of the injected antibody, since serum anti-Aβ antibody levels were the 

same regardless of duration of treatment. This would suggest that this time-dependent 

removal of amyloid deposits was not occurring because of increasing antibody levels, 

rather, it appears that some mobilization of removal mechanisms must be present for 

some time before significant removal is apparent.  

An early feature we observed was the increase in Fcγ receptors II and III (CD16 / 

CD32) expression on microglia, which was apparent following one and two months of 
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treatment. The murine Fcγ receptors II and III share a high affinity for IgG1 antibodies 

(the isotype used in the current study) as well as IgG2a (Gessner et al, 1998). Following 

this increased Fcγ receptor expression was an increase in CD45 expression on microglia 

following two months of treatment. CD45 is a protein tyrosine phosphatase which is 

elevated with microglial activation. In this study, it appears that the increase in CD45 

expression represents a further activation step from that seen after one month of treatment 

where we observe the increased Fcγ receptor expression. Following three months of 

treatment, both Fcγ receptor and CD45 expression on microglia were reduced to control 

levels, possibly due to the substantial reduction in amyloid deposits. It is important to 

note that if we had looked at only the three month time-point we would not have detected 

the activation of the microglia by CD45 or, likely by other markers such as Mac-1 (Das et 

al, 2003). 

We have previously observed a similar loss of microglia activation following 

intracranial antibody administration (Wilcock et al, 2003) and active immunization 

(Wilcock et al, 2001). Three days following a single injection of anti-Aβ antibody in the 

frontal cortex and hippocampus we observed an increase in CD45 expression, however, 

seven days following injection the CD45 expression was reduced to control levels, in 

parallel with clearance of the Aβ deposits (Wilcock et al, 2003).  This suggests that the 

reduced microglial activation could possibly be due to the clearance of most amyloid 

plaques. It is also conceivable that the microglia could be undergoing apoptosis due to the 

robust activation as has been described previously by Liu et al (2001) when microglia are 

overactivated by LPS. An alternative explanation could be tolerance of the microglia to 

antibody opsonized Aβ. We have previously shown a reduction in microglial reaction in 
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an active immunization model using doubly transgenic APP +PS1 mice. Following five 

monthly inoculations we observed a significant increase in CD45 expression, however, 

following nine monthly inoculations, CD45 levels were comparable to control animals 

despite continued high antibody titer levels (Wilcock et al, 2001).  

Due to the inflammatory adverse effects seen in the human clinical trial of the 

active immunization by Elan pharmaceuticals it could be suggested that the microglial 

activation observed in this study was due to an immune response unrelated to 

opsonization of Aβ by the antibody. To evaluate whether this was the case we examined 

the thalamus and cerebellum, which do not contain any amyloid deposits, for any 

increase in CD45 or Fcγ receptor expression and did not observe any such increase. Thus 

it appears that the microglial activation is specific to amyloid containing brain regions 

and is likely a specific response to opsonized Aβ as opposed to a general non-specific 

inflammatory reaction. 

The data presented here extend our earlier observations of the benefits of active 

anti-Aβ immunization on learning and memory (Morgan et al, 2000). We show that 

passive immunization with anti-Aβ antibodies for a period of three months reduced 

amyloid deposits and improved behavioral performance as indicated by a significant 

increase in alternation in the y-maze as well as a decrease in the number of arm entries. 

The arm entry data suggests that there is not a complete reversal of the increased activity. 

There is a trend towards some improvement in alternation at the 1 month time point 

(although not significant) despite no reduction in total Aβ immunohistochemistry. Such 

improvements may reflect rapid reductions of an Aβ pool (oligomeric?) closely linked to 

memory impairments yet not easily detected by immunohistochemistry. This phenomena 
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was previously described by Dodart et al (2002) and Kotilinek et al (2002) who showed 

rapid reversal of memory deficits in transgenic mice following passive immunization 

without significant reduction in brain Aβ.  

The results described above indicating entry of anti-Aβ antibody into brain and 

activation of microglia suggests that some opsonization of Aβ is likely stimulating 

microglial involvement in the clearance of Aβ deposits.  This is consistent with the 

phagocytosis mechanisms of amyloid removal put forward by the Elan group (Schenk et 

al, 1999; Bard et al, 2000; Bard et al, 2003). Our earlier work with direct injection of 

anti-Aβ antibody into brain suggests two mechanisms; one not requiring an Fc 

component nor activation of microglia which can clear diffuse Aβ, and a second that 

requires the Fc domain and activation of microglia (Wilcock et al, 2003; Wilcock et al, 

2004). It is conceivable that the first non-Fc requiring mechanism is analogous to the 

catalytic dissolution mechanism described by Solomon et al (1996).  The diffuse material, 

whatever its state of oligomerization may be more accessible to this action of anti-Aβ 

antibodies.  Finally, at all durations of antibody exposure we observe a dramatic increase 

in circulating Aβ levels in plasma. This is consistent with a role for the peripheral sink 

mechanism (DeMattos et al, 2001, Dodart et al, 2002; Lemere 2003) in the reduction of 

CNS Aβ after passive immunization.  

 We conclude that our studies using antibody 2286, in aggregate, provide 

support for all three major proposed mechanisms of anti-Aβ antibody action in lowering 

brain amyloid.   It is essential to recognize that these mechanisms are not mutually 

exclusive, and are likely to be synergistic if multiple mechanisms are elicted by a single 
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antibody/serum. It is also important to recognize that not all monoclonal antibodies need 

work via all three mechanisms. Both isotype and epitope selectivity could regulate which 

anti-Aβ action is dominant for a specific antibody. These studies also do not speak 

towards other immune system related actions that might underlie the benefits (or adverse 

effects) of active immunization.  Nonetheless, given the preliminary data that anti-Aβ 

immunotherapy may stabilize cognitive function in Alzheimer patients (Hock et al, 2003) 

and the consistent reversal of the phenotype found in APP transgenic mice by such 

approaches, these results support further development of the optimal strategies for using 

anti-Aβ immunotherapy as a treatment for Alzheimer's dementia. 
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Figure 1: Y-maze behavioral improvement after systemic anti-Aβ antibody 

administration. Panel A shows percent alternation for nontransgenic (NTg) mice 

receiving no treatment (ø), APP transgenic mice (APP) receiving control antibody (Cont) 

for three months and APP transgenic mice (APP) receiving anti-Aβ (Aβ) antibody for 1, 

2 or 3 months. * indicates P<0.05 when compared to nontransgenic untreated mice and 

APP transgenic mice receiving anti-Aβ antibody for 3 months. Panel B shows number of 

arm entries for nontransgenic (NTg) mice receiving no treatment (ø), APP transgenic 

mice (APP) receiving control antibody (Cont) for three months and APP transgenic mice 

(APP) receiving anti-Aβ (Aβ) antibody for 1, 2 or 3 months. * indicates P<0.05 when 

compared to nontransgenic untreated mice. 
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Figure 2: Increased serum levels of anti-Aβ antibody and Aβ after anti-Aβ antibody 

administration. Panel A shows amounts of circulating anti-Aβ antibodies in APP 

transgenic mice (APP) receiving either control antibody (Cont) for 3 months or anti-Aβ 

antibody (Aβ) for 1, 2 or 3 months, nontransgenic (NTg) mice receiving either control 

antibody (Cont) or anti-Aβ antibody (Aβ) for 3 months and nontransgenic mice receiving 

no treatment. ** indicates P<0.001 compared to APP mice given control antibody 

injections. Panel B shows amounts of circulating Aβ in sera in APP transgenic mice 

(APP) receiving either control antibody (Cont) for 3 months or anti-Aβ antibody (Aβ) for 

1, 2 or 3 months, nontransgenic (NTg) mice receiving either control antibody (Cont) or 

anti-Aβ antibody (Aβ) for 3 months and nontransgenic mice receiving no treatment. ** 

indicates P<0.01, * indicates P<0.05.  
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Figure 3: Mouse IgG immunohistochemistry shows antibody binding to congophilic 

plaques in anti-Aβ antibody treated mice but not control antibody treated mice. Panels A-

D show anti-mouse IgG-HRP immunohistochemistry counterstained with Congo red to 

detect compact amyloid deposits. Panel A shows a representative amyloid deposit and 

associated anti-mouse IgG immunostaining (black) in the hippocampus of a mouse 

injected with control antibody for three months. Panels B-D shows a representative 

amyloid deposit (red) associated with anti-mouse IgG immunostaining (black) in the 

hippocampus of a mouse injected with anti-Aβ antibody for one month (B), two months 

(C) or three months (D). Magnification = 200X, scale bar = 25µm. 
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Figure 4: Total Aβ immunohistochemistry is reduced following two months of systemic 

anti-Aβ antibody administration. Panels A-D show total Aβ immunohistochemistry in the 

hippocampus of APP transgenic mice receiving control antibody for three months (Panel 

A. Percent area for this section was 9.12%), anti-Aβ antibody for one month (Panel B. 

Percent area for this section was 6.84%), anti-Aβ antibody for two months (Panel C. 

Percent area for this section was 3.23%) or anti-Aβ antibody for three months (Panel D. 

Percent area for this section was 2.49%). Magnification = 40X, scale bar = 120µm. In 

panel D, CA1 indicates cornu ammonis 1, CA3 indicates cornu ammonis 3, F indicates 

the hippocampal fissure and DG indicates the dentate gyrus. Panel E shows quantification 

of the percent area occupied by Aβ positive stain in the frontal cortex and hippocampus. 

The single bar shows the value for APP transgenic mice receiving control antibody for 

three months. The line shows the values for APP transgenic mice receiving anti-Aβ 

antibody for a period of one, two and three months. ** indicates P<0.01. 



 
 - 120 -  - 120 - 



 - 121 - 



 - 122 - 

Figure 5: Congophilic compact amyloid plaques are reduced following two months of 

anti-Aβ antibody administration. Panels A-D show Congo red staining in the 

hippocampus of APP transgenic mice receiving control antibody for three months (Panel 

A), anti-Aβ antibody for one month (Panel B), anti-Aβ antibody for two months (Panel 

C) or anti-Aβ antibody for three months (Panel D). Magnification = 40X, scale bar = 

120µm. In panel D, CA1 indicates cornu ammonis 1, CA3 indicates cornu ammonis 3, F 

indicates the hippocampal fissure and DG indicates the dentate gyrus. Panel E shows 

quantification of the percent area occupied by Congo red positive stain in the frontal 

cortex and hippocampus. The single bar shows the value for APP transgenic mice 

receiving control antibody for three months. The line shows the values for APP 

transgenic mice receiving anti-Aβ antibody for a period of one, two and three months. ** 

indicates P<0.01. 
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Figure 6: Fcγ receptor expression on microglia is increased following one month of anti-

Aβ antibody treatment and remains increased following two months of treatment. Panels 

A-D show Fcγ receptor immunohistochemistry in the hippocampus of APP transgenic 

mice receiving control antibody for three months (Panel A), anti-Aβ antibody for one 

month (Panel B), anti-Aβ antibody for two months (Panel C) or anti-Aβ antibody for 

three months (Panel D). In panel A, F indicates the hippocampal fissure, DG indicates the 

dentate gyrus. Magnification = 100X, scale bar = 50µm. Panel E shows quantification of 

the percent area occupied by Fcγ receptor positive stain in the frontal cortex and 

hippocampus. The single bar shows the value for APP transgenic mice receiving control 

antibody for three months. The line shows the values for APP transgenic mice receiving 

anti-Aβ antibody for a period of one, two and three months. * indicates P<0.05. 
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Figure 7: CD45 expression on microglia is increased following two months of anti-Aβ 

antibody treatment. Panels A-D show CD45 immunohistochemistry in the hippocampus 

of APP transgenic mice receiving control antibody for three months (Panel A), anti-Aβ 

antibody for one month (Panel B), anti-Aβ antibody for two months (Panel C) or anti-Aβ 

antibody for three months (Panel D). In panel A, F indicates the hippocampal fissure, DG 

indicates the dentate gyrus. Magnification = 100X, scale bar = 50µm. Panels E-H are 

magnified images of non-amyloid containing areas from panels A-D. Panels E-H show 

CD45 immunohistochemistry in the hippocampus of APP transgenic mice receiving 

control antibody for three months (Panel E), anti-Aβ antibody for one month (Panel F), 

anti-Aβ antibody for two months (Panel G) or anti-Aβ antibody for three months (Panel 

H).  Panel I shows quantification of the percent area occupied by CD45 positive stain in 

the frontal cortex and hippocampus. The single bar shows the value for APP transgenic 

mice receiving control antibody for three months. The line shows the values for APP 

transgenic mice receiving anti-Aβ antibody for a period of one, two and three months. * 

indicates P<0.05. 
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Abstract 

Background: 

 Anti-Aß immunotherapy in transgenic mice reduces both diffuse and compact 

amyloid deposits, improves memory function and clears early-stage phospho-tau 

aggregates. As most AD cases occur well past midlife, the current study examined 

adoptive transfer of anti-Aβ antibodies to 19 and 23 month old APP transgenic mice.  

Results: 

After three months of weekly injections, this passive immunization protocol 

completely reversed learning and memory deficits in these mice, a benefit which was 

undiminished after 5 months of treatment. Dramatic reductions of diffuse Aß 

immunostaining and parenchymal Congophilic amyloid deposits were observed after 5 

months, indicating even well established amyloid deposits are susceptible to 

immunotherapy. However, cerebral amyloid angiopathy increased substantially with 

immunotherapy and some deposits were associated with microhemorrhage. Reanalysis of 

results collected from an earlier time course study demonstrated that these increases in 

vascular deposits were dependent on the duration of immunotherapy.  

Conclusions: 

The cognitive benefits of passive immunotherapy persist in spite of the presence 

of vascular amyloid and small hemorrhages. These data suggest that clinical trials 

evaluating such treatments will require precautions to minimize potential adverse events 

associated with microhemorrhage. 
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Introduction 

Alzheimer’s disease (AD) is characterized not only by the presence of 

parenchymal amyloid deposits and intracellular tangles but also by the presence of 

amyloid deposits in the vasculature, a condition referred to as cerebral amyloid 

angiopathy (CAA). The CAA observed in both Alzheimer’s disease patients (Iwatsubo et 

al, 1994) and some of the transgenic mouse models (Gordon et al, 2002) is primarily 

composed of the shorter form of amyloid beta (Aβ), Aβ 1-40, while the majority of 

amyloid deposits in the parenchyma are composed of Aβ1-42, although the compact 

amyloid deposits also contain Aβ1-40. 

Anti-Aβ immunotherapy has been considered as a potential treatment for 

AD for some time (Solomon et al, 1996; Schenk et al, 1999). Active immunization with a 

vaccine including Aβ1-42 fibrils progressed to human clinical trials where its 

administration was suspended due to meningoencephalitits in a subset of patients 

(Orgogozo et al, 2003). To date there have been pathology reports on two patients who 

participated in the trial and subsequently died (Nicoll et al, 2003, Ferrer et al, 2004). Both 

reports note that while the numbers of parenchymal amyloid deposits appeared lower 

than expected in these cases, the CAA in these patients did not appear outside the normal 

range  In addition, one report mentioned multiple cortical hemorrhages and the presence 

of hemosiderin around the CAA vessels (Ferrer et al, 2004).  

Given the adverse reactions to the active immunization, the irreversibility of such 

procedures and the variable antibody response to vaccines in older individuals (Weksler 

et al, 1997), passive immunization against the Aß peptide emerged as an alternative 

immunotherapeutic strategy.  Studies in young and middle aged APP transgenic mice 
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have reported significant amyloid reductions with passive immunization (DeMattos et al, 

2001, Bard et al, 2000, Wilcock et al, 2003). Such treatments also demonstrate rapid 

improvements of memory function in APP mice, sometimes without detectable 

reductions in amyloid (Dodart et al, 2002, Kotilinek et al, 2002, Wilcock et al, 2004b). 

Most recently, intracranial administration of anti-Aβ antibodies has been shown to not 

only remove Aβ but also clear early-stage hyperphosphorylated tau aggregates (Oddo et 

al, 2004). Importantly, in the only prior study evaluating adoptive antibody transfer in 

older APP mice, Pfeifer et al (2002) reported a doubling of cerebral microhemorrhages 

associated with significant reductions in amyloid burden after administration of an N-

terminal specific anti-Aß antibody.  

Materials and Methods: 

Experiment design: 

Mice derived from APP Tg2576 mice were obtained from our breeding  program 

at USF started in 1996 (Holcomb et al, 1998). For the five month treatment study thirteen 

APP transgenic mice aged 23 months were assigned to one of two groups. The first group 

received weekly intraperitoneal anti-Aβ antibody injections (antibody 2286; Mouse 

monoclonal anti-human Aβ28-40 IgG1; Rinat Neurosciences, Palo Alto, CA)  for a period 

of five months (n=6). The second group received weekly intraperitoneal anti-AMN 

antibody (2906; Mouse monoclonal anti-drosophila amnesiac protein IgG1; (Rinat 

Neurosciences, Palo Alto, CA) injections for a period of five months (n=7). Seven 

nontransgenic mice were also assigned to one of two groups.  The first group received 

weekly intraperitoneal anti-Aβ antibody injections for a period of five months (n=4). The 
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second group received weekly intraperitoneal anti-AMN antibody injections for a period 

of five months (n=3). 

For the time course study of 1, 2 or 3 mo treatment, twenty two APP transgenic 

mice aged 19 months were assigned to one of four experimental groups, as described 

previously (Wilcock et al, 2004b). The first three groups received weekly intraperitoneal 

anti-Aβ antibody injections for 3 months, 2 months or 1 month, ending when all mice 

were 22 mo of age. The fourth group received weekly intraperitoneal anti-AMN antibody 

injections for 3 months.  

 

Behavioral analysis: 

 Following three and five months of treatment the mice from the 5 month study 

were subjected to a two day radial-arm water maze paradigm. The apparatus was a 6 arm 

maze as described previously (Morgan et al, 2000). On day 1, 15 trials were run in 3 

blocks of five. A cohort of 4 mice were run sequentially for each block (i.e. each of 4 

mice get trial one, then the same mice get trial two, etc). After each 5 trial block, a second 

cohort of mice were run permitting an extended rest period before mice were exposed to 

the second block of 5 trials. The goal arm was different for each mouse in a cohort to 

minimize odor cues. The start arm was varied for each trial, with the goal arm remaining 

constant for both days. For the first 11 trials, the platform was alternately visible then 

hidden (hidden for the last 4 trials). On day two, the mice were run in exactly the same 

manner as day 1 except that the platform was hidden for all trials. The number of errors 

(incorrect arm entries) were measured in a one minute time frame. As in prior studies, 

mice failing to make an arm choice in 20 seconds were assigned 1 error (no mice in this 
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study had to be assigned an error in this manner). The same individual administered the 

antibody treatments and placed mice in the radial arm water maze. Due to the numbers of 

mice in the study the researcher was unaware of treatment group identity of each mouse. 

Also, the dependent measures in the radial-arm water maze task are quantitative, not 

evaluative, so the potential for tester bias is reduced. In order to minimize the influence 

of individual trial variability, each mouse's errors for three consecutive trials were 

averaged producing 5 data points for each day which were analyzed statistically by 

ANOVA using StatView (SAS Institute Inc., NC).  

Tissue preparation and histology: 

 On the day of kill mice were weighed, overdosed with 100mg/kg Nembutal 

sodium solution (Abbott laboratories, North Chicago IL). The mice were then 

intracardially perfused with 25ml of 0.9% sodium chloride. Brains were rapidly removed 

and the left half of the brain was immersion fixed for 24 hours in freshly prepared 4% 

paraformaldehyde in 100mM KPO4 (pH 7.2) for histopathology. The hemibrains were 

then incubated for 24 hours in 10, 20 and 30% sucrose sequentially to cyroprotect them. 

Horizontal sections of 25µm thickness were collected using a sliding microtome and 

stored at 4oC in Dulbecco’s phosphate-buffered saline with sodium azide (pH 7.2) to 

prevent microbial growth. A series of eight equally spaced tissue sections 0600µm apart 

were randomly selected spanning the entire brain and stained using free-floating 

immunohistochemistry for total Αβ (rabbit polyclonal anti-pan Aβ Bisource, Camarillo, 

CA, 1:10000) as previously described (Gordon et al, 2002, Wilcock et al, 2004b). A 

second series of tissue sections 0.6mm apart were stained using 0.2% Congo red solution 

in NaCl saturated 80% ethanol. Another set of sections were also mounted and stained for 
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hemosiderin using 2% potassium ferrocyanide in 2% hydrochloric acid for 15 minutes 

followed by a counterstain in a 1% neutral red solution for 10 minutes. Quantification of 

Congo red staining and Aβ immunohistochemistry was performed using the Image-Pro 

Plus (Media Cybernetics, Silver Spring, MD) to analyze the percent area occupied by 

positive stain. One region of the frontal cortex and three regions of the hippocampus were 

analyzed (to ensure that there was no regional bias in the hippocampal values). The initial 

analysis of Congo red was performed to give a total value. A second analysis was 

performed after manually editing out all of the parenchymal amyloid deposits to yield a 

percent area restriced to vascular Congo red staining. To estimate the parenchymal area 

of Congo red we subtracted the vascular amyloid values from the total percentage. For 

the hemosiderin stain the number of Prussian blue positive sites were counted on all 

sections and the average number of sites per section calculated. Looking at the sections at 

a low magnification we were able to observe a qualitative difference between animals, 

however, the percent area was so low that many fields contained no positive stain. Eight 

equally spaced sections were examined and number of positive profiles were counted and 

averaged to a per section value. To assess possible treatment-related differences, the 

values for each treatment group were analyzed by one-way ANOVA followed by 

Fischer’s LSD means comparisons.  

Results 

Reversal of cognitive deficits by passive amyloid immunotherapy: 

 The radial-arm water maze task detects spatial learning and memory deficits in 

transgenic mouse models (Morgan et al, 2000; Gordon et al, 2001). We treated 23 mo old 

mice for 5 mo with anti-Aß antibody 2286 or control antibody 2906 (against a 
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drospohila-specific protein) and tested them for spatial navigation learning in a 2 day 

version of the radial arm water maze after 3 mo of treatment and, using a new platform 

location, again after 5 mo of treatment. At both testing times we found that APP mice 

treated with the control antibody failed to learn platform location over two days of testing 

and were significantly impaired compared to the nontransgenic mice treated with either 

antibody (Fig 1). However, APP mice administered the anti-Aß antibodies demonstrated 

a complete reversal of the impairment observed in the control APP transgenic mice, 

ending day 2 with performance near 0.5 errors per trial  (Fig. 1). Although learning at the 

later time point, when the mice were 28 mo of age, may have been slightly slower for all 

groups, there was no impairment of the anti-Aß antibody treated APP. 

Passive amyloid immunotherapy clears parenchymal Aß deposits, but increases vascular 

amyloid: 

 In a prior experiment examining the effects of passive anti-Aß immunotherapy for 

1, 2 or 3 mo in APP mice killed at 21 mo of age (Wilcock et al, 2004b), we found a time 

dependent reduction of both Aß immunostaining of diffuse and fibrillar deposits and 

Congo red staining of fibrillar amyloid deposits. In the current study we found a similar 

reduction in both Aß immunostaining (Table 1) and total Congo red staining (Fig 2A, left 

panel; P<0.001 frontal cortex and P<0.01 hippocampus) after 5 months of 

immunotherapy. We noted that the bulk of what remained was vascular amyloid. We then 

separately analyzed vascular and parenchymal deposits which revealed a near 90% 

reduction in parenchymal deposits (P<0.001), but a 3-4 fold elevation of vascular Congo 

red staining (P<0.0001; Fig 2A, center and right panels resepectively). We also separately 

analyzed vascular and parenchymal Congo red staining on mice from our earlier study 
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(14) treated passively for 1, 2 or 3 months with anti-Aß or control antibody, and found a 

similar result. There was a graded reduction in overall Congo red staining nearing 75% as 

duration of antibody exposure increased (as reported previously; Fig 2B). However, when 

separated into vascular Congo red deposits and parenchymal deposits, there was an 

antibody exposure time dependent increase in vascular deposition in both hippocampus 

and frontal cortex (Fig 2C; P<0.05 frontal cortex and hippocampus) and a corresponding 

near 90% decrease in parenchymal deposits (Fig 2D; P<0.001 in frontal cortex and 

hippocampus).   

These differences were readily observed examining micrographs of sections from 

these mice. Mice treated with control antibodies revealed occasional cortical vascular 

amyloid deposits (22 mo Fig 3A, 28 mo Fig 3C), while mice administered anti-Aß 

antibodies had increased amounts of vascular amyloid staining (3 mo treatment Fig 3B; 5 

mo treatment Fig 3D). Those vessels containing amyloid following treatment with anti-

Aβ antibody also exhibited apparent increases in microglial activation as measured by 

CD45 expression (Fig 3F) compared to mice treated with control antibody (Fig 3E). 

Unfortunately, the shifting numbers and sizes of vascular and parenchymal deposits 

caused by the antibody therapy greatly complicated measurement of microglial activation 

per vascular deposit area. This apparent increase in staining intensity could not be 

quantified accurately.  

Passive amyloid immunotherapy causes increased microhemorrhage: 

 We used the Prussian blue histological stain to label hemosiderin, a ferric oxide 

material produced in the breakdown of hemoglobin. Extravenous blood in the brain leads 

to microglial phagocytosis of the erythrocytes and breakdown of hemoglobin within 
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them. These ferric oxide containing microglia are thus markers of past hemorrhage. In 

untreated, aged APP transgenic mice we observed very few profiles positive for Prussian 

blue staining in the frontal cortex (section counterstained with neutral red; Fig. 4A). 

However, following anti-Aβ antibody treatment for five months we observed an increase 

in the number of Prussian blue profiles in the frontal cortex which were readily detectable 

at a low power in the microscope (Fig 4B). In the absence of anti-Aß treatment, or even 

when treated with antbody for 1 month, most vessels did not stain with Prussian blue, and 

could be identified only using the red counterstain (Fig 4C). However, even with 3 

months of anti-Aß antibody treatment we observed frequent vessels with associated 

Prussian blue staining (Fig 4D) Using adjacent sections stained for Congo red, we 

confirmed that all vessels showing microhemorrhage contained amyloid (Fig 4E and 4F;  

we were unable to double-label Prussian blue with either Congo red or thioflavine-S). 

However, only a minority of vessels containing amyloid demonstrated hemorrhage. 

When we counted the number of Prussian blue positive profiles in those animals 

receiving control antibody there was an average of one profile per every 2 sections (Fig 

5) and this number remained the same in both control groups (aged 22 or 28 mo). 

Following treatment with anti-Aβ antibody for a period of two months we observed a 

striking increase in Prussian blue staining, approximately five times that observed in 

either the control group or the mice immunized for one month (Fig 5, P<0.001). 

Following this initial increase in Prussian blue staining we observed a linear increase in 

staining associated with increasing duration of anti-Aß antibody treatment (Fig 5). Five 

months of anti-Aβ antibody treatment demonstrated a 6-fold increase in Prussian blue 

staining when compared the control groups (Fig 5).  
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Discussion 

 Earlier studies with vaccines against the Aß peptide demonstrated protection from 

the learning and memory deficits associated with amyloid accumulation in APP 

transgenic mice (Morgan et al, 2000, Janus et al, 2000). Passive immunization protocols 

with anti-Aß antibodies also produced cognitive benefits, in some cases even in the 

absence of significant reduction in amyloid burden (Dodart et al, 2002, Kotilinek et al, 

2002). Our recent work found that 3 months of anti-Aß treatment of 18 mo old APP mice 

improved spontaneous alternation performance on the Y-maze (Wilcock et al, 2004b). In 

the present work we confirmed that passive anti-amyloid immunotherapy can reverse 

spatial learning deficits in APP transgenic mice and that this benefit of immunotherapy is 

retained even in aged mice (26 and 28 mo at testing) with long established amyloid 

pathology.  

Additionally, we describe a more rapid means of testing spatial reference memory 

to reveal learning and memory deficits in APP transgenic mice.  This 2 day version of the 

radial arm water maze included greater spacing of individual trials (mice spent time in 

their home cage after every trial), combined with less spacing of aggregate trials (15 trials 

per day rather than 4 or 5) to facilitate learning of platform location in the nontransgenic 

mice with a clear absence of learning in the age-matched transgenic mice. 

 A substantial reduction in total Congophilic amyloid deposits was observed in old 

APP mice treated with anti-Aß antibodies for 2 or more months. This measurement of 

total Congo red staining included both parenchymal and vascular amyloid staining. When 

we analyzed the sections for only CAA we found that this measure was significantly 

increased following two, three and five months of anti-Aβ antibody treatment. The 
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remaining parenchymal amyloid load was almost completely eliminated with this 

antibody approach. Clearly, since total amyloid load is significantly reduced not all 

amyloid was shifted into the vessels but it appears that at least some of the Congophilic 

material was redistributed to the vasculature. At the present time the mechanism for this 

redistribution is unclear.  However, one possibility is that the microglia associated with 

the antibody-opsonized amyloid, either by phagocytosis or surface binding, and 

transported the material to the vasculature, possibly in an attempt to expel it. We and 

others have shown evidence for microglial involvement in the removal of amyloid using 

both intracranial anti-Aβ antibody injections (Wilcock et al, 2003, 2004a) and 

systemically administered anti-Aβ antibody treatment (Wilcock et al, 2004b) as well as 

ex vivo studies (Bard et al, 2000, 2003). Here we also report our impression that 

microglia surrounding CAA vessels in immunized mice expressed more CD45 than 

control transgenic mice. This increased expression could be due to either increased 

expression in the same number of microglial cells or an increased number of microglial 

cells in these animals. It is feasible that this microglial activation was simply in reaction 

to the presence of increased amyloid in the blood vessels. However, it is equally likely 

that microglia activated by the opsonized material migrated to the vessels for disposal of 

the amyloid. 

 CAA is defined as the deposition of congophilic material in meningeal and 

cerebral arteries and arterioles (capillaries and veins can also show CAA but less 

frequently) and it occurs to some extent in nearly all Alzheimer’s disease patients 

(Jellinger, 2002). Severe CAA affecting about 15% of cases, can be associated with both 

infarction and hemorrhagic injury (Olichney et al, 1997, Maurino et al, 2001). It has also 
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been shown that the severity of CAA can be directly linked to the severity of dementia in 

Alzheimer’s disease patients (Thal et al, 2003).  

In the current study we show a significantly increased number of 

microhemorrhages in the brain as detected by Prussian blue staining associated with the 

increase in CAA following passive immunization. Another transgenic mouse model of 

amyloid deposition, the APP23 mice,  have been shown to deposit amyloid in both brain 

parenchyma and blood vessels and show a CAA associated increase in spontaneous 

cerebral hemorrhages (Winkler et al, 2001). Moreover, Pfeifer et al (2002) showed that 

these spontaneous hemorrhages were significantly increased following 5 months of 

passive immunization of 21 mo old APP23 mice using an anti-Aβ antibody with an N-

terminal epitope, similar to those typically developed against active immunization with 

vaccines (Schenk et al, 1999, Dickey et al, 2001, McLaurin et al, 2002) When young 

mice (6 mo) were immunized following the same protocol no hemorrhages were 

observed. More recently DeMattos et al (9th International Conference on Alzheimer’s 

disease and related disorders, 2004) showed that passive immunization with an N-

terminal antibody (3D6: directed against aa 1-5 of Aβ) of PDAPP transgenic mice also 

resulted in significantly increased microhemorrhage. They were unable to detect 

increased microhemorrhage with a mid-domain antibody (266: directed against aa 13-28 

of Aβ). Notably, antibody 266 fails to bind Aß deposited in CAA vessels or amyloid 

plaques (9th International Conference on Alzheimer’s disease and related disorders, 

2004). Importantly, Ferrer et al (2004) noted the presence of CAA and microhemorrhage 

in the brain of one patient that participated in the Aß vaccine trial, even though the 

parenchymal amyloid appeared lower than expected. Also, Nicoll et al [6] noted that 
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CAA appeared unaffected in the brain of another patient that participated in the Aß 

vaccine trial. 

 It remains to be determined whether these observations regarding increased CAA 

and microhemorrhage in transgenic mice are relevant to trials of passive immunotherapy 

in humans.  It should be noted that in spite of extending the period of immunotherapy to 5 

months, there was no discernable loss of the cognitive benefits of immunotherapy in the 

transgenic mice, all of whom showed increased microhemorrhage. While the observation 

that antibody 266 does not result in vascular leakage encourages testing of this idiotype, 

data from the Zurich cohort of the Aß vaccine trial argue that brain reactive antibodies 

may be important for cognitive benefits (Hock et al, 2003).  Our opinion is that these 

results suggest that passive immunotherapy against Aß should proceed with appropriate 

precautions taken to minimize the risk of hemorrhage (e.g. by excluding patients taking 

anticoagulants), and instituting measures to detect such hemorrhages if they do occur 

irrespective of the antibody specificity or proclivity for microhemorrhage in aged APP 

transgenic mice.  
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Figure 1: Spatial learning deficits in APP transgenic mice were reversed following three 

and five months of immunization. Mice were tested in a 2 day version of the radial arm 

water maze. Solid lines represent APP transgenic mice while dashed lines represent 

nontransgenic mice. Open symbols indicate anti-AMN control antibody treatment ( : 

APP control antibody, : Nontransgenic control antibody) while closed symbols indicate 

anti-Aβ antibody treatment ( : APP Aβ antibody, : Nontransgenic Aβ antibody). 

Panel A shows mean number of errors made over the two day trial period following three 

months of immunization. Each datapoint is the average of three trials. Panel B shows the 

mean number of errors made over the two day trial period following five months of 

immunization. For both graphs * indicates P<0.05, ** indicates P<0.001 when the APP 

mice receiving control antibody are compared with the remaining groups. 
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Figure 2: Passive immunization with anti-Aß antibodies decreases total and parenchymal 

amyloid loads while increasing vascular amyloid in frontal cortex and hippocampus of 

APP transgenic mice. Panel A shows total amyloid load measured with Congo red, 

vascular amyloid load and parenchymal amyloid load from APP transgenic mice 

administered control IgG (C) or anti-Aβ IgG (Aβ) for a period of five months. Panels B-

D show total amyloid load (Panel B), vascular amyloid load (Panel C) and parenchymal 

amyloid load (Panel D) from APP transgenic mice administered control IgG for 3 months 

(Cont IgG) or anti-Aβ IgG for a period of one, two or three months (Anti-Aβ IgG). For 

all panels, the solid bar and solid line represent values from the frontal cortex while the 

open bar and dashed line represent values from the hippocampus. ** P<0.01. 
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Figure 3: Increased Congo red staining of blood vessels following anti-Aβ antibody 

administration is associated with activated microglia. Panels A and B are from the frontal 

cortex of 22 month old APP transgenic mice immunized for 3 months with either control 

antibody (3A) or anti-Aβ antibody (3B). Panels C and D are from the frontal cortex of 28 

month old APP transgenic mice immunized for five months with either control antibody 

(3C) or anti-Aβ antibody (3D). Panels E and F show a high magnification image of CD45 

immunohistochemistry (black) counterstained with Congo red (red) from 28 month old 

APP transgenic mice immunized for five months with either control antibody (Panel E) 

or anti-Aβ antibody (Panel F). Panels A-D magnification = 100X. Scale bar in Panel B = 

50µm for panels A-D. Panels E-F magnification = 200X. Scale bar in Panel E = 25µm for 

panels E-F. 
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Figure 4: Microhemorrhage associated with CAA following systemic administration of 

anti-Aβ antibodies. Panels A and B are low magnification images of the frontal cortex of 

APP transgenic mice receiving either control antibodies (Panel A) or anti-Aβ antibodies 

(Panel B) for a period of five months. Panels C and D show representative images of 

amyloid containing vessels stained for Prussian blue (blue) counterstained with neutral 

red (red) from APP transgenic mice receiving either control antibodies (Panel C) or anti-

Aβ antibodies (Panel D) for a period of three months. Panel E shows a blood vessel in the 

frontal cortex stained for Prussian blue (blue) counterstained with neutral red from an 

APP transgenic mouse administered anti-Aβ antibodies for five months. Panel F shows 

the same blood vessel on an adjacent section stained for Congo red indicating that the 

blood vessel does in fact contain amyloid. Scale bar panel A = 120µm for panels A-B. 

Scale bar panel C = 25µm for panels C-D. Scale bar in panel F = 25µm for panels E-F. 
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Figure 5: Number of Prussian blue positive profiles increases with duration of anti-Aβ 

antibody exposure. The graph shows quantification of the average number of Prussian 

blue positive profiles per section from mice administered control IgG for 3 or 5 months 

(Control) or anti-Aβ IgG for 1, 2, 3 or 5 months (anti-Aβ). ** P<0.01.
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Table 1. Aß Loads after 5 months of Immunotherapy 

Region % area control 
antibody treated 

% area anti-Aβ 
antibody treated 

% reduction 
following anti-Aβ 
antibody treatment 

Frontal Cortex 34.855±2.265 9.681±0.754 72 
Hippocampus 23.994±0.985 8.212±0.596 66 
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CONCLUSIONS 

 Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that slowly 

robs sufferers of their ability to remember, reason, make judgements and carry out daily 

activities; it is the most common cause of dementia with a duration of anywhere from 3 to 

20 years. It is estimated that in 2004 there are currently 4.5 million Americans have the 

disease, with a projected number of 11.6 to 16 million sufferers by the year 2050 (Hebert 

et al, 2003). Several genes have been found to cause AD in humans; these are the 

amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). Mutations in 

these genes result in a rare, aggressive form of the disease known as familial early onset 

Alzheimer’s disease (FAD) with the disease commonly occurring by age 60 and 

sometimes in the 30s and 40s. The discovery of these mutations led to the development of 

transgenic mouse models, the first of which carried normal beta-APP751 with no 

mutations and demonstrated some extracellular Aß deposits (Quon D et al, 1991).  

 The first mouse overexpressing mutated human APP which developed extensive 

amyloid pathology but no tau pathology or neuron loss was the PDAPP transgenic mouse 

(Games et al, 1995). The Tg2576 APP transgenic mouse was the first transgenic model to 

show learning and memory deficits associated with the amyloid pathology (Hsiao et al, 

1996). Mice overexpressing human PS1 mutations were less successful models on their 

own, not developing any amyloid deposits (Duff et al, 1996). However, it was shown that 

crossing an APP transgenic mouse with a PS1 transgenic mouse (APP+PS1) results in an 

accelerated model of amyloid deposition (Borchelt et al, 1997; Citron et al, 1998; 
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Holcomb et al, 1998). It was also later shown that an APP+PS1 transgenic mouse model 

developed reliable cognitive dysfunction which correlated with the extent of amyloid 

pathology (Gordon et al, 2001). These transgenic mouse models of amyloid pathology 

also develop another pathological characteristic of AD which is activation of 

inflammatory cells in the brain; namely microglia and astrocytes, which has been shown 

to be associated with the extent of amyloid deposition (Gordon et al, 2002).  

 The amyloid hypothesis for AD is currently the most favored hypothesis for the 

cause of the disease which states that the precipitating event in the development of AD is 

the over-production and deposition of Aß in the form of diffuse and compact amyloid 

deposits which in turn results in hyperphosphorylation of tau and neuronal death (Hardy 

et al, 1992). This hypothesis has been the focus of therapeutic intervention in AD 

including the development of immunotherapy as a potential treatment for AD. 

Immunotherapy was first shown in 1999 by Schenk et al (1999) of Elan pharmaceuticals. 

In this report the authors showed that immunization of young PDAPP transgenic mice 

with Aß1-42 fibrils in Freund’s adjuvant over a period of 11 months prevented amyloid 

deposition while immunization of older PDAPP mice for 4 and 7 months resulted in 

significant reductions in amyloid burden. Following this initial report it was later shown 

that immunization not only ameliorated amyloid pathology but also in resulted in 

improved cognition in both APP+PS1 transgenic mice (Morgan et al, 2000) and 

TgCRND8 APP transgenic mice (Janus et al, 2000). We later reported that over a series 

of several immunization studies in APP+PS1 mice that the degree of microglial 

activation strongly correlated with the reduction in compact, Congophilic amyloid 

deposits (Appendix A) suggesting a critical role of microglia in the removal of amyloid 
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by this active immunization approach. Since the original report in 1999 there has been a 

plethora of data published regarding the use of both active and passive immunization for 

the treatment of AD. Following the failure of active immunization in phase II clinical 

trials we decided that discovery of the mechanism(s) by which immunotherapy acts to 

reduce amyloid pathology would be critical if immunotherapy was to be successful in 

humans.  

 Here we show evidence for three mechanisms for Aß removal by immunotherapy 

as well as some potentially unwanted effects of passive immunization which will likely 

need to be overcome if immunotherapy is to be successful in humans. By 2001 there had 

been three suggested mechanisms of action. The first was microglial phagocytosis via the 

Fcγ receptor which was first suggested by Schenk et al (1999) in their active 

immunization report and later by Bard et al (2000) in a report showing the benefits of 

passive immunization in the PDAPP mouse. We also show evidence for this mechanism 

in Appendix A where we observed a correlation between microglial activation and 

amyloid reduction. Another mechanism was shown before immunotherapy for AD was 

suggested; this showed that anti-Aß antibodies are capable of inhibiting amyloid fibril 

formation (Solomon et al, 1996). The same group also showed that anti-Aß antibodies 

could disaggregate already formed amyloid fibrils (Solomon et al, 1997). A third 

suggested mechanism stated that anti-Aß antibodies need not enter the CNS but act 

peripherally by binding to circulating Aß in the plasma and therefore resulting in a shift 

in the concentration gradient between CNS and plasma causing Aß to exit the brain and 

enter the serum where it would be bound by antibodies and removed. This was evidenced 

by a rapid and dramatic increase in circulating Aß levels hours following anti-Aß 
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antibody administration. Importantly, this study used an anti-Aß antibody shown not to 

bind to amyloid deposits in the brain (DeMattos et al, 2001).  

 To approach the question of which mechanism was important for Aß removal by 

immunotherapy we decided to bypass the issue of blood-brain barrier penetration and 

work on finding out what happens when antibody is in the brain. To answer this question 

we injected anti-Aß antibodies (anti-Aß1-16) into the right frontal cortex and hippocampus 

of aged Tg2576 APP transgenic mice with significant amyloid burdens, leaving the left 

side of the brain untreated as an internal control for each mouse. We then examined what 

effects the antibody had after 4, 24, 72 and 168 hours. We found that diffuse amyloid 

deposits, stained immunohistochemically for Aß but not stained by thioflavine-S, were 

significantly reduced following 24 hours of treatment (Paper 1; Figures 2 and 3) but there 

was no associated microglial reaction or any reduction in compact, thioflavine-S positive, 

amyloid deposits. These compact deposits were found to be significantly reduced 72 

hours following injection of anti-Aß antibodies (Paper 1; Figures 4 and 5) and this was 

associated with a significant activation of microglia as detected by CD45 (Paper 1; 

Figures 6 and 7) and MHC-II (Paper 1; Figures 8 and 9) immunohistochemistry. 168 

hours following injection we found that both diffuse and compact amyloid deposits 

remained reduced with no further reduction and microglial activation had returned to 

control levels. These data suggest two phases of removal of Aß by anti-Aß antibodies 

which may be occurring through two different mechanisms. The first phase is the 

removal of diffuse amyloid deposits by a mechanism independent of microglial activation, 

possibly via a direct dissolution of the deposits. The second phase is the removal of 

compact amyloid deposits associated with activation of microglia.  
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 Since the time-course data was performed using an anti-Aß antibody recognizing 

the 1-16 portion of the Aß peptide we decided to examine the differences in anti-Aß 

epitopes on removal of Aß from the brains of APP transgenic mice seven days following 

intrahippocampal and intracortical injections. We injected antibodies recognizing 1-16, 

12-28 and 28-40 portions of the Aß peptide as well as a control antibody directed against 

drosophila amnesiac protein. We found that both total Aß and compact amyloid deposits 

were removed equally as effectively by all three antibodies directed against Aß 

(Appendix B; Figures 1 and 2). We also found that anti-Aß28-40 was slightly more 

efficacious in microglial activation than either anti-Aß1-16 or anti-Aß 12-28 (Appendix B; 

Figure 3) although no microglial activation would have been expected given that the mice 

were killed seven days following injection and the time-course data indicated that 

microglial activation peaks at three days and is over by seven days.   

Additional evidence for for microglial involvement in removal of compact 

amyloid deposits was found when we injected anti-Aß1-16 antibodies into the frontal 

cortex and hippocampus of aged Tg2576 APP transgenic mice again but this time some 

mice were treated with anti-inflammatory drugs for the three days post-injection while 

others remained untreated. We treated mice with NCX-2216, minocycline or 

dexamethasone immediately following surgery and continued treatment until the morning 

of killing. NCX-2216 is the non-steroidal anti-inflammatory drug (NSAID) flurbiprofen 

with a nitric oxide donor group and a ferulic acid group attached. In APP+PS1 transgenic 

mice this drug has been shown to cause an activation of microglia and reduction of 

amyloid burden (Jantzen et al, 2002) but has also been shown to inhibit microglial 

activation following lipopolysaccharide (LPS) injection (Hauss-Wegrzyniak et al, 1999). 
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Minocycline, a tetracycline derivative, was chosen as it had been shown to suppress 

microglial activation following global brain ischemia (Tikka et al, 2001), 6-

hydroxydopamine administration (He et al, 2001) and excitotoxicity (Yrjanheikki et al, 

1998). Dexamethasone was used as it is a potent glucocorticosteroid which is known to 

inhibit the cyclooxygenase and lipoxygenase inflammatory pathways as well as induce a 

general state of immunosuppression (Schimmer and Parker, 2001).  

 Dexamethasone was found to be the most efficacious anti-inflammatory for 

inhibition of microglial activation due to anti-Aß antibodies; NCX-2216 had a moderate 

effect while minocycline appeared to have very little effect on the activation of microglia 

(Paper 2; Figure 1 and Figure 2A). Interestingly, inhibition of microglial activation had 

no effect on removal of diffuse amyloid deposits, in all cases where anti-Aß antibodies 

were injected diffuse deposits were reduced to the same extent (Paper 2; Figure 1 and 

Figure 2B). In dexamethasone treated mice, however, there was no apparent reduction in 

compact, thioflaine-S positive, amyloid deposits demonstrating that the inhibition of 

microglial activation had also inhibited the removal of compact amyloid deposits. Mice 

treated with NCX-2216, which had a moderate effect on microglial activation showed 

modest reductions in compact amyloid deposits while those mice treated with 

minocycline which failed to affect microglial activation showed reductions in compact 

amyloid deposits comparable to those observed in mice receiving no anti-inflammatory 

treatment (Paper 2; Figure 1 and Figure 2C). These data strongly suggest that microglial 

activation is necessary for the removal of compact amyloid deposits by anti-Aß 

antibodies but is not necessary for removal of diffuse amyloid deposits. 
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 To determine whether the microglial activation by anti-Aß antibodies occurred via 

the Fcγ receptor and to also determine whether it was this receptor responsible for 

removal of compact amyloid deposits we made F(ab’)2 fragemnts from an anti-Aß28-40 

IgG. These F(ab’)2 fragments lack the Fc portion of IgG, therefore rendering them unable 

to interact with Fcγ receptors on effector cells like microglia yet fully capabale of binding 

to Aß in the same way as the complete IgG. We injected these anti-Aß F(ab’)2 fragments 

into the frontal cortex and hippocampus of aged Tg2576 APP transgenic mice and killed 

them 72 hours following injection. We found that the F(ab’)2 fragments were unable to 

activate microglia as effectively as the complete IgG is and the activation levels were 

comparable to that observed in the mice receiving either control IgG or control F(ab’)2 

fragments (Paper 2; Figure 3 and Figure 4A). We also found that anti-Aß F(ab’)2 

fragments were capable of reducing diffuse amyloid deposits as effectively as the 

complete IgG (Paper 2; Figure 3 and Figure 4B). However, anti-Aß F(ab’)2 fragments 

were significantly worse in removing compact amyloid deposits than the complete IgG 

although there was small reductions observed in the hippocampus (Paper 2; Figure 3 and 

Figure 4C). These data suggest that although some removal of compact amyloid deposits 

may be possible with anti-Aß F(ab’)2 fragments, removal is much more efficient when 

the Fc portion of IgG is present. This further demonstrates that not only is microglial 

activation necessary for compact amyloid reeduction by anti-Aß antibody treatment but 

also it appears that the Fc receptor is the component of microglia mediating this effect.  

 Knowing that once anti-Aß antibodies enter the brain parenchyma they remove 

Aß by mechanisms independent of microglial activation and also dependent upon 

microglial activation via the Fc receptor we systemically injected anti-Aß antibodies as a 
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form of passive immunization since this is more clinically relevant. We injected anti-

Aß28-40 antibodies weekly for 1, 2 or 3 months such that all the mice were 22 months of 

age at killing. Mice received Y-maze testing during the week prior to killing to test for 

any cognitive benefit. We found significant improvement in Y-maze performance 

following three months of treatment by both an increase in alternations and a decrease in 

the number of arm entries (Paper 3; Figure 1) suggesting that the antibody treatment had 

improved cognitive function. We had previously demonstrated cognitive improvement 

following active immunization (Morgan et al, 2000) but this is the first time we had 

shown improvement following passive immunization. We also found evidence for 

peripheral action of anti-Aß antibodies. Following intraperitoneal anti-Aß antibody 

injection we found that circulating Aß levels in the serum were increased 100-fold 

following 1 month of treatment and remained significantly elevated following 2 and 3 

months of treatment despite a slight decline compared to 1 month (Paper 3; Figure 2B). 

Importantly, we showed that when we stained brain tissue for mouse IgG and 

counterstained with Congo red to detect amyloid deposits we found that plaques were 

decorated with mouse IgG following anti-Aß antibody treatment but no staining was 

observed in those mice receiving control IgG (Paper 3; Figure 3). This suggests that anti-

Aß antibodies administered systemically are able to cross the blood-brain barrier and bind 

to Aß in amyloid plaques in the brain parenchyma. We also found that Aß was 

significantly reduced following two months of anti-Aß antibody treatment with a further 

slight reduction following three months of treatment (Paper 3; Figure 4) as were compact 

amyloid deposits as detected by Congo red staining (Paper 3; Figure 5).   
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 It was apparent in this passive immunization study that there is an associated 

complex microglial response. The first microglial marker to be increased was the Fcg 

receptors II and III, which were dramatically increased following one month of anti-Aß 

antibody treatment by approximately 100-fold. The expression of these receptors fell only 

slightly between one and two months but were reduced to control levels following three 

months of treatment (Paper 3; Figure 6). CD45 expression was not significantly increased 

until two months of anti-Aß antibody treatment and was reduced to control levels 

following three months of treatment (Paper 3; Figure 7). We later examined expression of 

phospho-p38 MAPK and phospho-p44/42 MAPK (also known as ERK1/2), which have 

been shown to be increased in microglia during activation. Phospho-p38 MAPK was high 

in APP transgenic mice receiving control antibody for three months indicating activation 

of microglia due to the presence of amyloid plaques. However, following treatment with 

anti-Aß antibodies for two and three months we observed a decrease in expression in 

microglia despite observing increases in other microglial activation markers at these 

time-points (Appendix C Figures 3 and 4). The phospho-p44/42 MAPK showed an 

opposite effect from the phospho-p38 MAPK which was that it was low in APP 

transgenic mice receiving control antibody for 3 months but was increased significantly 

following two and three months of anti-Aß antibody treatment, in fact it was the only 

microglial marker which was still significantly increased following three months of anti-

Aß antibody treatment (Appendix C; Figures 1 and 2).  

 This complex microglial reaction observed following systemic administration of 

anti-Aß antibodies suggests that activation of microglia may not be a simple on-off 

phenomena but rather there may exist multiple states of activation dependent upon the 
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stimulus and these states may result in different functional consequences. One potential 

hypothesis for different activation states is that microglia may exist in two states; antigen 

presenting and phagocytic, as exists in peripheral macrophages. In peripheral 

macrophages it has been shown that phosphorylation of p38 MAPK results in production 

of IL-1β (Baldassare et al, 1999), IL-6 (Vanden Berghe et al, 1998) and IL-8 (Hobbie et 

al, 1999) and cuases upregulation of other proinflammatory molecules such as COX-2, 

iNOS and TNF-α by upregulating NF-κB driven gene expression (Carter et al, 1999; 

Kostinaho and Kostinaho, 2002). All of these processes associated with phospho-p38 

MAPK are proinflammatory in nature and are associated with an antigen-presentation 

phenotype. Phagocytosis of apoptotic cells by peripheral macrophages results in an anti-

inflammatory phenotype with down regulation of pro-inflammatory chemokines, possibly 

via phosphorylation of p44/42-MAPK which has been shown to inhibit phosphorylation 

of p38-MAPK and therefore contribute to the anti-inflammatory characteristics of this 

state (Xiao et al, 2002). Using human polymorphonuclear neutrophils it has been shown 

that phagocytosis of microbes is inhibited when phosphorylation of p44/42 MAPK is 

inhibited (Zhong et al, 2003). Since microglia are known to be derived from peripheral 

macrophages it is feasible that this same scenario is occurring in microglial cells. Little is 

currently known about the function of p38 and p44/42 MAPKs in microglia. In human 

AD postmortem tissue it has been shown that phopsho-p38 MAPK is highly expressed in 

microglia aound amyloid plaques (Hensley et al, 1999). This upregulation of phopsho-

p38 MAPK has also been shown in the transgenic mouse model of amyloid deposition 

APP751 (Koistinaho et al, 2002). In microglia it has been shown that Fcγ receptor 

mediated phagocytosis is inhibited by PP2, a Src inhibitor and piceatannol, a Syk 
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inhibitor which both ultimately inhibit phosphorylation of p44/42, further suggesting that 

phosphorylation of p44/42 is necessary for phagocytosis (Song et al, 2004). 

 The inflammation hypothesis of AD proposed that inflammation via activation of 

microglia and astrocytes in response to amyloid deposits in the brain actually contributes 

to the disease process. Activated microglia are capable of producing numerous cytokines, 

chemokines, complement components and other inflammatory mediators. Activated 

astrocytes are also capable of producing similar molecules. All of these inflammatory 

molecules are capable of eliciting numerous effects in the brain such as neuronal 

dysfunction and death as well as casuing further inflammation via activation of additional 

microglia and astrocytes. Despite all of the detrimental effects of inflammation in AD it 

has been shown that microglia are capable of eliciting beneficial effects in the AD brain 

as well. In APP transgenic mice crossed with TGF-β1 overexpressing mice there was 

significant activation of microglia and also a reduced amyloid burden when compared to 

the APP transgenic mice alone, however, vascular amyloid levels were increased (Wyss-

Coray et al, 2001). The same group also showed that mice expressing soluble 

complement receptor-related protein y (sCrry), a complement inhibitor, crossed with APP 

transgenic mice showed reduced microglial activation, increased amyloid plaque load and 

neurodegeneration (Wyss-Coray et al, 2002). Lipopolysaccharide (LPS) injection into the 

hippocampus of aged APP transgenic mice has been shown to result in significant 

microglial activation and dramatic reductions in Aß (DiCarlo et al, 2001; Herber et al, 

2004). Finally there is the evidence from papers 1-3 here that microglia are necessary for 

effective removal of compact amyloid deposits by microglia and also are activated in 

response to systemic anti-Aß injection.  
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 Following the three month time-course study in which we observed an 

improvement in Y-maze performance following three months of anti-Aß antibody 

treatment we took an older cohort of APP transgenic mice and treated them weekly for a 

period of five months and examined their cognitive function using the much more robust 

method of the radial-arm water maze. Following three months of treatment mice were 

tested in a rapid two-day radial-arm water maze task and number of errors was measured. 

A significant impairment was observed in the APP transgenic mice receiving control 

antibody while the APP transgenic mice receiving anti-Aß antibody performed as well as 

the nontransgenic mice and were significantly better than the control antibody treated 

group (Paper 4; Figure 1A). Mice were tested two months later having received a total of 

five months of treatment and the benefit of the anti-Aß antibody treatment was still 

present to the same degree (Paper 4; Figure 1B). This data suggests that complete 

reversal of cognitive deficits in APP transgenic mice is possible following systemic anti-

Aß antibody treatment.  

 Histopathological analysis of Congo red and Aß showed the same result as had 

been observed in the previous time course study; dramatic reductions in both compact 

and diffuse deposits were observed following anti-Aß antibody treatment (Paper 4; 

Figure 2A and Table 1). During image analysis of the Congo red and Aß it was observed 

that some of the animals appeared to have high levels of amyloid in the vasculature. To 

quantify this we took the images used for quantification of total Congo red and ran the 

analysis again manually deselecting the parenchymal amyloid deposits and therefore 

quantifying only the amyloid in the vasculature. There was a dramatic increase in 

vascular amyloid load following five months of anti-Aß antibody treatment. When these 
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values were subtracted from the total amyloid load the result was parenchymal amyloid 

load which now showed an even more dramatic decrease due to anti-Aß antibody 

treatment (Paper 4; Figure 2A). Once we obtained this data we decided to perform the 

same analyses on the three month time-course tissue. The same observation was made; 

vascular amyloid load increased in concert with the decreases in parenchymal amyloid. 

Following two months of anti-Aß antibody treatment vascular amyloid burden showed a 

significant increase with a slight further increase following three months of treatment. 

Parenchymal amyloid burden showed a significant decrease following two months of 

treatment with a further slight decrease following three months of treatment (Paper 4; 

Figure 2 B, C and D). Despite this increase in cerebral amyloid angiopathy (CAA) due to 

anti-Aß antibody treatment the mice showed tremendous cognitive benefit and so at this 

point the CAA is not compromising their cognitive ability, however, if the increase in 

CAA were to continue it may be predicted that at some point this would cause a decline 

in cognition as it does in the human condition. It is important to note that not all amyloid 

is redistributed to the vessel, as there is still a significant decrease in total Congo red 

staining, although some of the amyloid is clearly redistributed into the vasculature.  

 Due to the increase in CAA in our passive immunization studies and the 

observation by Pfeifer and colleagues (Pfeifer et al, 2002) that anti-Aß antibody treatment 

in hemorrhage prone APP transgenic mice resulted in a significant increase in the number 

of microhemorrhages present we decided that we should stain the tissue for hemosiderin 

using a Prussian blue stain to examine for microhemorrhages. We found that there was a 

significant increase in the number of Prussian blue positive profiles following two, three 

and five months of anti-Aß antibody treatment. There was a dramatic increase between 
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one and two months of anti-Aß antibody treatment after which the number of profiles 

increased linearly with increasing duration of antibody treatment (Paper 4; Figures 4 and 

5). Importantly, all vessels showing microhemorrhage were also positive for CAA, 

although not all CAA positive vessels showed microhemorrhage.  

 The mechanism by which anti-Aß antibody therapy results in increased CAA 

remains unclear. One hypothesis is that the microglia are capable of phagocytosing the 

amyloid plaques but are unable to degrade it so transport the amyloid to the vessels where 

they dispose of it into the vessel wall. Support for this hypothesis comes from CD45 

immunohistochemistry which showed that despite overall microglial activation being 

reduced to control levels following three months of anti-Aß antibody treatment there 

appeared to be high levels of microglial activation around those vessels containing 

amyloid (Paper 4; Figure 3E and F). We were unable to quantify this observation due to 

the diffuse nature of the microglial staining; we could not manually deselect all non-

vessel associated staining. It is also plausible that anti-Aß immunotherapy is removing 

more Aß1-42, since this is the more prevelant species in both human AD and APP 

transgenic mice, and therefore shifting the ratio towards more Aß1-40, thus resulting in 

amyloid deposition in the vasculature. It has previously been shown that APPDutch 

transgenic mice and human hereditary cerebral hemorrhage with amyloidosis-Dutch type 

(HCHWA-D) have a significantly higher ratio of Aß40 to Aß42 than that observed in 

APP transgenic mice or human AD brain. Aß1-40 predominates in vascular amyloid in AD 

and APP transgenic mice and thus both the APPDutch transgenic mice and the human 

HCHWA-D have high levels of CAA, microhemorrhage and a perivascular microglial 

reaction. When APPDutch transgenic mice were crossed with PS1 transgenic mice 
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known to increase Aß1-42 production it was observed that now the mice developed 

parenchymal amyloid deposits with much less prominent CAA (Herzig et al, 2004). 

These data suggest that a shift in the ratio of Aß40:Aß42 may influence the location of 

deposition.  

Table 1 summarizes the evidence we found for each mechanism of ß-amyloid 

removal by anti-Aß antibody therapy. We have demonstrated here by intracranial 

injection that anti-Aß antibodies in the brains of aged APP transgenic mice removes Aß 

by two distinct mechanisms. Diffuse amyloid deposits are removed rapidly, within 24 

hours, and this removal is independent of microglial activation. Compact amyloid 

deposits are removed between 24 and 72 hours, this removal is dependent upon 

microglial activation and Fcγ receptor activation. When anti-Aß antibodies were 

administered systemically as a passive immunization the antibodies crossed the blood 

brain barrier and bound to amyloid plaques in the parenchyma. Aß removal was 

associated with microglial activation, Fcγ receptor upregulation and increased Aß in the 

serum. Also, systemically administered anti-Aß antibodies provided complete reversal of 

cognitive deficits following just three months of treatment. It was also observed that there 

were increased levels of vascular amyloid and multiple microhemorrhages in the brains 

of APP transgenic mice administered anti-Aß antibodies for two or more months. Overall, 

we have shown evidence for three distinct mechanisms of Aß removal by immunotherapy 

which appear to occur in concert to produce robust pathological effects. These 

mechanisms are direct dissolution of amyloid fibrils, microglial phagocytosis via the Fcγ 

receptor and a peripheral sink mechanism which results from a shift in the concentration 

gradient of Aß between brain and plasma.  
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There are many more questions to be answered if anti-Aß antibody therapy is to 

be successful in the clinic given the pathological effects observed in the current studies. 

The main issue that needs to be overcome is the increased vascular amyloid and 

associated microhemorrhage. The first question is whether dose of antibody and 

frequency of dosing would alter the pathological consequences of anti-Aß antibody 

therapy. It is plausible that a lower dose may not produce such a robust microglial 

response and as such, if indeed the microglia are responsible for the increase in vascular 

amyloid, the increased microhemorrhage and CAA may be avoided. The first way to 

approach this would be to establish a detailed dose response with doses ranging from 1 

to10 mg/kg for a period of three months with radial-arm water maze testing at the end. 

An optimal dose would provide cognitive benefit as well as reductions in parenchymal 

amyloid loads without an increase in CAA or microhemorrhage. In the current studies 

mice were injected weekly with 10mg/kg anti-Aß antibody. It is conceivable that dosing 

as little as once every four weeks may be sufficient for amyloid reductions and cognitive 

benefit if the study were to be extended to six and nine months as opposed to three 

months. A study to address this would use a 10mg/kg dose and inject at intervals ranging 

from two to four weeks with radial-arm water maze testing at six and nine months. 

Ideally, there would be an interval which produces significant cognitive benefit and 

amyloid reductions with minimal increases in CAA and microhemorrhage. 

What contribution each of the three mechanisms make to the improved cognition, 

amyloid reductions and increases in CAA and microhemorrhage is currently unknown. 

Conjugating a large, polar molecule to anti-Aß antibodies would prevent blood-brain 

barrier passage but would still permit binding of Aß in the plasma and therefore only the 
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peripheral sink mechanism would be functioning. Treating the mice in exactly the same 

way as with the standard antibody would permit comparisons of efficacy to be made. If 

the peripheral sink mechanism alone is sufficient to provide cognitive benefit and 

amyloid reductions it is likely that this would be a safe alternative if microglial 

phagocytosis is responsible for the increased CAA and microhemorrhage.   

If the peripheral sink mechanism alone is found not to be sufficient to obtain 

optimal effects another approach would be to modify antibodies so that they still cross the 

blood-brain barrier, can still act peripherally but are unable to effectively activate 

microglia. One such antibody is a deglycosylated anti-Aß antibody. IgG molecules have 

carbohydrates attached and these are critical to the recognition of IgGs by the Fcγ 

receptor (Radaev and Sun, 2001). If these carbohydrates are removed the IgG molecule 

would maintain its pharmacokinetics as the carbohydrates contribute very little to the 

overall molecular weight and would also not interact with the Fcγ receptor. Another 

option would be to systemically administer anti-Aß F(ab’)2 fragments similar to those 

used in paper 2. These, again would not interact with the Fcγ receptor however, due to 

their reduced molecular weight, their half-life in serum would be much lower as they now 

would be filtered out by the kidney. This means that they would need to be administered 

more frequently. It has been shown that attachment of polyethylene-glycol groups to 

F(ab’)2 fragments, a process called PEGylation, results in comparable half-lives to the 

whole IgG molecule (Weir et al, 2002). It has been shown that PEGylation of an anti-

interleukin-8 F(ab’)2 results in longer serum half-life and retention of comparable 

bioactivity (Koumenis et al, 2000). It is unclear whether pegylated F(ab’)2 fragments will 
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cross the blood-brain barrier however, if they do not, this would be an alternative way to 

test the peripheral sink mechanism.  

It is possible that microglial phagocytosis via the Fcγ receptor is necessary for 

effective amyloid removal and cognitive improvement and that only targeting the 

peripheral sink and the direct dissolution mechanisms is insufficient for clinically 

relevant benefits. If this is the case, attenuating the microglial resonse using anti-

inflammatory drugs may minimize redistribution of amyloid to the vasculature and 

therefore reduce the incidence of microhemorrhage. We showed in paper 2 that an 

NSAID such as NCX-2216 partially inhibits microglial activation and yet significant 

reductions in compact amyloid deposits were observed. Co-administration of an NSAID 

with the anti-Aß antibody therapy may attenuate the microglial response sufficiently to 

prevent increases in CAA and microhemorrhage while providing sufficient removal of 

compact amyloid deposits to demonstrate cognitive benefit. Since the addition of a nitric-

oxide donor group to flurbiprofen in the NCX-2216 compound provides gastrointestinal 

protection this drug would be safe for long-term daily administration to elderly AD 

patients receiving the immunotherapy. NCX-2216 has also been shown to inhibit 

microglial reaction to intracranial infusion of lipopolysaccharide (Hauss-Wegrzniak et al, 

1999). Administration of glucocorticosteroids such as dexamethasone would likely not be 

effective for this approach as we showed in paper 2 that these completely inhibit 

microglial reaction and also completely inhibit the ability of anti-Aß antibodies to remove 

compact amyloid deposits.  

The isotype of the antibody may be critical in determining clinical efficacy and 

prevelance of increased CAA and microhemorrhage. In papers 3 and 4 we used an IgG1 



 - 180 - 

antibody with an epitope recognizing amino acids 28-40 of the Aß molecule. Microglia 

express three different classes of Fcγ receptors; FcγRI is a high affinity receptor while 

FcγRII and FcγRIII are low affinity receptors (Ravetch and Kinet, 1991). It is known that 

in mice IgG2a binds FcgRI and III with the highest affinity while IgG1 and IgG2b bind 

with a lower affinity (Radaev and Sun, 2001). In fact, in a study using both in vivo and ex 

vivo methods, it was shown that IgG2a anti-Aß antibodies are more effective in removing 

amyloid than are IgG1 or IgG2b antibodies of the same epitope (Bard et al, 2003). In the 

ex vivo study the authors examined the effects of isotype on plaque removal from 

PDAPP brain sections by primary cultured microglial cells. In this study IgG2a 

antibodies were much more effective than IgG1 or IgG2b antibodies of the same epitope. 

If microglial phagocytosis via the Fcγ receptor is responsible for not only removal of 

parenchymal amyloid but is also responsible for the increased CAA and 

microhemorrhage then it is possible that an IgG2a isotype antibody may in fact cause 

more CAA and microhemorrhage as this has a much higher affinity for the Fcγ receptors 

than the IgG1 antibody used in paper 4.  

The epitope may be another important issue to be addressed in determining 

efficacy. In a study using in vivo and ex vivo methods it was shown that antibodies 

directed against the N-terminal of Aß are most effective in Aß removal (Bard et al, 2003). 

However, we show in papers 3 and 4 that C-terminal antibodies are highly effective in the 

removal of Aß. Also, a mid-domain antibody has been shown to significantly reduce 

brain amyloid (DeMattos et al, 2001) and reverse cognitive deficits (Dodart et al, 2002). 

Since mid-domain antibodies are able to bind soluble Aß but are unable to bind Aß in 

amyloid plaques these antibodies are highly effective for the peripheral sink mechanism 
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but would be unable to trigger effective microglial phagocytosis. It was recently shown 

that mid-domain antibodies do not cause microhemorrhage while N-terminal antibodies 

do (DeMattos et al, 2004). 

Overall, we have shown evidence that three different mechanisms are acting in 

concert to reduce amyloid burden in transgenic mice following anti-Aß antibody therapy. 

We have also shown that one undesirable consequence of anti-Aß antibody therapy is 

increased CAA and microhemorrhage. This will need to be overcome if anti-Aß 

immunotherapy is to be successful clinically. 
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Table 1: Summary of the evidence found for the different mechanisms of ß-amyloid 
removal. 
 

Mechanism Paper 1 Paper 2 Paper 3 Paper 4 
Microglial 
phagocytosis 
via Fcγ 
receptors 

Microglial 
activation peaks at 
the same time-
point as reductions 
in compact 
amyloid deposits 
are observed. 

Inhibition of microglial 
activation inhibits 
removal of compact 
amyloid deposits. 
F(ab’)2 fragments are 
unable to produce 
effective reductions in 
compact amyloid 
deposits. 

Microglial 
expression of Fcγ 
receptors and 
CD45 is increased 
following systemic 
antibody 
administration. 
Phospho-p44/42 
expression is also 
increased. 

Microglia are 
activated around 
vascular amyloid 
deposits. 

Direct 
dissolution 

Diffuse amyloid 
deposits are 
reduced early with 
no associated 
microglial 
activation. 

Diffuse amyloid 
deposits are removed 
regardless of microglial 
inhibition or F(ab’)2 
fragments. 

  

Peripheral 
sink 

  100-fold increase 
in circulating Aß 
levels following 
systemic anti-Aß 
antibody 
administration. 

Increased vascular 
amyloid could 
potentially be a 
result of the 
peripheral sink 
mechanism. 
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Abstract 

There have been several reports on the use of beta-amyloid (Aβ) vaccination in 

different mouse models of Alzheimer’s disease (AD) and its effects on pathology and 

cognitive function. In this report histopathology of the APP+PS1 doubly transgenic mice 

is compared after 3, 5 or 9 Aβ inoculations. The number of inoculations influenced the 

effects of vaccination on Congo red levels, microglia activation and anti-Aβ antibody 

titers. After 3 inoculations, the antibody titer of transgenic mice was substantially lower 

than that found in nontransgenic animals. However, after 9 inoculations, the levels were 

considerably higher in both genotypes, and no longer discriminable statistically. The 

number of inoculations influenced CD45 expression, an indicator of microglial 

activation. There was an initial up-regulation, which was significant after 5 inoculations, 

but by 9 inoculations, microglial activation was equivalent to mice given control 

vaccinations. Along with this increased CD45 expression there was a correlative 

reduction in Congo red staining, which stains compact plaques.  When mice from all 

groups were combined, there was a significant correlation between activation of 

microglia and Congo red levels, suggesting that microglia play a role in clearance of 

compact plaque. 

Introduction  

Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder 

characterized by accumulation of senile plaques consisting of beta-amyloid (Aβ) protein 

of which there are 2 forms, Aβ1-40 and Aβ1-42. This is thought to be the key step in the 

pathogenesis of Alzheimer’s disease (Selkoe, 1991). The disorder is also characterized by  
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the formation of neurofibrillary tangles consisting of tau protein, and by the initiation and 

proliferation of a brain-specific inflammatory response (Akiyama et al, 2000). Transgenic 

mouse models of Alzheimer’s disease have been an invaluable source of information 

regarding the pathological progression of AD and a vehicle in which to test possible 

therapeutic interventions. Here we use a transgenic mouse model of AD carrying two 

transgenes; amyloid precursor protein (APP) and presenilin-1 (PS1) previously described 

(Duff et al, 1996, Hsiao et al, 1996, Holcomb et al, 1998, 1999, Gordon et al, 2001a, 

Gordon et al, 2001b).  

Schenk et al initially described the effects of Aβ1-42 immunization in the PDAPP 

mouse. In a report published in 1999 they demonstrated the ability of their vaccination 

regimen to reduce Aβ deposits in the brain. More recently, Aβ vaccination has also been 

shown to prevent the cognitive decline in some transgenic mice (including the APP+PS1) 

in addition to reducing Aβ load (Morgan et al, 2000, Janus et al, 2000).  The data 

presented in this report examines the effect of increasing numbers of Aβ1-42 

immunizations on the pathology of the APP+PS1 mouse, specifically, anti-Aβ antibody 

titers, the reduction in congophilic plaque load and the activation of microglia. 

  Of particular note in this study was the observed activation of microglial cells, 

which are central to the inflammatory process in AD, along with a concomitant reduction 

in congophilic plaque. 
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Materials and Methods 

Vaccination Protocol. 

Tg2576 APP mice (Hsiao et al, 1996) were bred with PS1 line 5.1 mice (Duff et 

al 1996) to obtain the double transgenic mice. These mice were then randomly assigned 

to groups receiving vaccination with either human Aβ1-42 peptide (Bachem) or with 

keyhole limpet hemocyanin (KLH) as described previously (Morgan et al, 2000). Briefly, 

100µg of Aβ1-42 or KLH were dissolved in water at 2.2 mg/ml, mixed with PBS and 

incubated overnight. One day later this suspension was mixed with Freund’s adjuvant 

(complete for the primary inoculation, incomplete for the next 4 inoculations, and mineral 

oil for the remaining inoculations). Three vaccination groups were used. The first group 

was administered 3 inoculations starting at an average age of 13 months.  These mice 

were killed at an average of 16 months of age, 13 days after the final inoculation. A 

second group of mice were given 5 inoculations starting at an average age 14.5 months. 

These mice were killed at an average of 19.75 months of age, 10 days after the last 

inoculation. A third group given 9 inoculations started at an average age of 7.5 months. 

They were killed at an average of 16.25 months of age, 6 weeks after the last inoculation.  

In addition, nontransgenic mice were vaccinated with Aβ peptide in the 3 and 9 

inoculation groups. Antibody titers were measured by ELISA as described previously 

(Morgan et al, 2000, Dickey et al, 2001). The KLH immunized mice are herein referred 

to as control mice for these experiments. 
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Histopathology. 

Mice were overdosed with pentobarbital, perfused with 0.9% saline and the brain 

removed. The right side of the brain was rapidly dissected over ice and the left side fixed 

for 24 hours in freshly prepared, buffered 4% paraformaldehyde. Following 

cryoprotection through increasing concentrations of sucrose solutions at 24-hour 

intervals, frozen sections were taken on a sliding microtome at a 25µm thickness and 

stored in DPBS (Dulbecco’s phosphate buffered saline) with sodium azide to prevent 

microbial growth. Sections were stained using floating immunohistochemistry for total 

Aβ (rabbit antiserum primarily reacting with the N terminal of the Aβ peptide, 1:10000) 

and CD45 (Serotec, 1:10,000) as described previously (Holcomb et al, 1999, Gordon et 

al, 1997). Sections were also mounted on slides and stained for Congo red (Sigma-

Aldrich) (Gordon et al, 2001a). The area of hippocampus and frontal cortex occupied by 

positive stain was measured with a Videometric V150 image analysis system (Oncor) on 

a Nikon Microphot FX microscope as described in detail previously (Gordon et al, 

2001a). Percentage area was measured and analyzed. Data were collected from 8-16 

equally spaced horizontal sections. The values for all sections from one mouse were 

averaged to represent a single sample for statistical analysis. 

Statistical Analysis. 

Data were first analyzed by comparing Aβ vaccinated and control mice within 

each group by one-way ANOVA using the Statview software program (SAS). Because of 

differences in the age of kill, the results from each Aβ vaccinated mouse were normalized 

to the mean value of their respective control vaccinated group (percent of control) to  
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correct for differences in age at kill and overall staining intensity for each inoculation 

group. These were then analyzed by performing a simple regression analysis on the 

Statview program. 

 

Results 

Antibody titers increase with increasing numbers of inoculations in both 

transgenic and nontransgenic mice (Fig 1). Initially, doubly transgenic mice have lower 

anti-Aβ titers than similarly treated nontransgenic mice. However, after the ninth 

vaccination the transgenic mice produced antibody titers that were similar to non-

transgenic mice.  

In general, the Congo red staining in hippocampus was reduced as a result of Aβ 

vaccination (Fig 2A,B). In the group receiving five inoculations this reduction was almost 

50% and was significantly reduced in relation to control mice (p < 0.002; Figure 3). In 

the groups receiving three or nine inoculations, the reduction in Congo red was not 

statistically significant. The results from frontal cortex also follow these trends although 

no significance is found at any time-points (Table 1). 

  CD45 expression in hippocampus was increased almost 2 fold in the hippocampus 

of mice given 5 inoculations (Figure 2C,D; Figure 4; p < 0.001). There was a similar 

trend for CD45 up-regulation in the group receiving three inoculations although not 

statistically significant. However, the vaccinated mice were equivalent to the control 

mice in the group receiving nine inoculations. The same trend was seen in frontal cortex 

although not to the same degree (Table 1). 
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  When data from all three groups are combined, there is a correlation between CD45 

expression and Congo red staining in the hippocampus as illustrated in Figure 5. This 

relationship shows that mice with elevated CD45 expression had less Congo red staining 

(r=0.691, p=0.002). This result did not occur because of a biased positioning of one of the 

inoculation groups. By plotting the data from each group with a different symbol one can 

see that in each inoculation group there are mice with high CD45 staining and other mice 

with little, which was less than the control average. This bimodal distribution of CD45 

staining has been observed in most groups of mice we have examined including the 

control mice in the present study. 

Discussion 

CD45 expression is indicative of microglial activation. Here, we have shown that 

CD45 expression in transgenic mice administered Aβ vaccination is up-regulated, after 5 

inoculations. However, on average, the expression was no longer elevated after a 9th 

inoculation.  This suggests that the microglial activation resulting from Aβ vaccination is 

transient. This likely represents a desensitization to the circulating antibodies because; 

even though the interval between the last inoculation and kill after 9 inoculations was 6 

weeks the antibody titers were still high at necropsy. Perhaps the most interesting data is 

the high correlation between Congo red staining levels in hippocampi of transgenic mice 

and activation of microglia. These data add to a growing body of literature suggesting 

that in transgenic mice activation of microglia leads to clearance of Aβ deposits. Ongoing 

work from our group shows reduction in amyloid deposits in association with microglial  
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activation in several circumstances using the transgenic mouse model of amyloid 

deposition.  Administration of a flurbiprofen derivative which slowly releases nitric oxide 

(NCX-2216) causes dramatic activation of microglia and substantial reduction in Congo 

red staining (Jantzen et al, 2001). In another study, intrahippocampal injections of 

lipopolysaccharide, a pro-inflammatory agent, simultaneously reduced Aβ load and 

activated microglia (Di Carlo et al, 2001). Even in the normal time course of amyloid 

accumulation there is a stabilization of the congophilic deposits in doubly transgenic 

mice between 12 and 15 months, the age at which microglial activation becomes most 

pronounced (Gordon et al, 2001b).  

It has been well demonstrated that microglia in culture are readily capable of 

internalizing Aβ1-42 aggregates (Paresce et al, 1996; Webster et al, 2001).  The data 

reported here are consistent with several other reports regarding Aβ vaccination and 

microglial activation. In the original Aβ vaccination report, the vaccine was found to 

result in activated microglia around the few deposits that did remain (Schenk et al, 1999). 

Bard et al, 2000, also demonstrated that microglia can be activated to clear tissue amyloid 

deposits by Fc receptor mediated phagocytosis in vitro. In a very direct experiment, 

Bacskai et al, (2001), demonstrated that injection of anti-Aβ antibodies into transgenic 

mouse brain induced a rapid disappearance of Aβ associated with a florid microglial 

reaction.  These results together with those from our research group indicate that 

activation of microglia can have benefit in clearing Aβ deposits from the brains of 

transgenic mice. It is unclear whether excessive activation of microglia can ultimately 

cause autotoxic inflammatory reactions in this model or whether the mouse brain is  
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somehow resistant to the development of such a reaction.  It is intriguing that the 

microglial activation in mice with 9 inoculations had largely subsided.  This suggests that 

under these circumstances the microglia can develop tolerance to the activating stimuli.  

If so, vaccination may be one mechanism to, perhaps paradoxically, reduce an autotoxic 

reaction in the AD brain. 

The observation that the doubly transgenic mice are slower to mount an immune 

response after Aβ vaccination than their non-transgenic counterparts is a significant one. 

There are several plausible explanations for this impaired antibody response. One 

explanation is that Aβ is a “self-antigen” in the transgenic mice (expressing human APP), 

and thus, they do not mount as significant a humoral response to the injected human Aβ1-

42. The murine Aβ sequence is slightly different than the human sequence, thus 

nontransgenic mice would not identify the human Aβ peptide as an autoantigen. Another 

possibility that the transgenic mice are by some means “immune compromised” as is seen 

in older humans; thus, they are slower to mount a significant immune response. A third 

explanation is absorption of the serum antibodies by circulating Aβ, which interferes with 

antibody binding to the ELISA plate. This might be most evident when the antibody titers 

are low and antibody concentrations are stoichiometrically similar to that of Aβ.  In any 

event, repeated vaccinations ultimately overcome this restriction of antibody generation 

in the transgenic mice. This may have significance for treatment of human populations, 

with multiple vaccinations required to activate a vigorous antibody response. 
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In conclusion, the data here are consistent with the argument that the Aβ 

vaccination results in plaque clearance primarily through activation of microglial cells.  

Still, we continue to entertain the possibility of antibodies dissolving plaques directly 

(Solomon, this volume), or antibodies binding circulating Aβ, reducing the effective 

plasma Aβ concentration, and increasing the concentration gradient between brain and 

blood leading to more rapid Aβ removal from the CNS. Finally, we believe that multiple 

inoculations are likely to be required if Aβ vaccination demonstrates efficacy in the 

treatment or prevention of AD. 
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Figure 1: Antibody titer averages as a function of number of inoculations in transgenic 

and non-transgenic mice. Figure legends: : Non-transgenic, : Transgenic. There is a 

highly significant difference between transgenic and non-transgenic (p=0.0002) after 3 

inoculations, indicated by **, but not by 9 inoculations.  
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Figure 2: A, B: Congo red stain e mice receiving 5 Aβ 

 red in 

ing in the hippocampus of th

inoculations (40X magnification). C, D: CD45 staining, counterstained with Congo

the hippocampus of the mice receiving 5 Aβ inoculations (200X magnification). A and C: 

Control immunized mice. B and D: Aβ immunized mice. A and B; scale bar: 250µm. C 

and D; scale bar: 50µm. 
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Figure 3: Congo red levels in hippocampus relative to number of inoculations for 

vaccinated and control mice. All mice for each group were averaged and are shown here 

and are all APP+PS1 transgenic mice. ** Indicates high significance (p<0.002). 
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Figure 4: CD45 expression in hippocampus relative to number of inoculations for 

vaccinated and control mice. All mice for each group were averaged and are shown here 

and are all double transgenic. ** Indicates high significance (p<0.001). 
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Figure 5: Correlation of Congo red levels and CD45 expression both shown as percent 

control in hippocampus. R=0.69 and p=0.002. Figure legends: : 3 inoculations, : 5 

inoculations, : 9 inoculations. 
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Table 1: Effect of number of inoculations on Congo red and CD45 staining in the frontal 

cortex. Data are percent of area occupied by reaction product, shown as mean ± SEM. 

 Congo red CD45 

Number of 
inoculations 

Aβ 
vaccinated Control Aβ  

vaccinated Control 

3 2.56+/- 0.22 2.3+/- 0.18 1.94+/- 0.33 1.84+/- 0.45

5 2.44+/- 0.28 2.99+/- 0.20 7.0+/- 0.81 5.56+/- 0.96

9 1.32+/- 0.08 1.66+/- 0.12 4.63+/- 0.67 4.96+/- 0.74
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Figure 1: Total Aß is significantly reduced by anti-Aß antibodies regardless of their 

epitope. The graph shows the ratio of right injected side: left uninjected side. Mice were 

injected with one of anti-drosophila amnesiac antibodies (AMN), anti-Aß1-16 antibodies 

(Aß1-16), anti-Aß12-28 antibodies (Aß12-28) or anti-Aß28-40 antibodies (Aß28-40). Solid 

bars indicate values for the frontal cortex while open bars indicate values for the 

hippocampus. *indicates P<0.05, **indicates P<0.01 when compared to both uninjected 

and AMN groups. 
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Figure 2:Thioflavine-S staining is significantly reduced by anti-Aß antibodies regardless 

of their epitope. The graph shows the ratio of right injected side: left uninjected side. 

Mice were injected with one of anti-drosophila amnesiac antibodies (AMN), anti-Aß1-16 

antibodies (Aß1-16), anti-Aß12-28 antibodies (Aß12-28) or anti-Aß28-40 antibodies (Aß28-

40). Solid bars indicate values for the frontal cortex while open bars indicate values for 

the hippocampus. *indicates P<0.05, **indicates P<0.01 when compared to both 

uninjected and AMN groups. 
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Figure 3: CD45 immunohistochemistry is increased by anti-Aß28-40 antibodies. The graph 

shows the ratio of right injected side: left uninjected side. Mice were injected with one of 

anti-drosophila amnesiac antibodies (AMN), anti-Aß1-16 antibodies (Aß1-16), anti-Aß12-28 

antibodies (Aß12-28) or anti-Aß28-40 antibodies (Aß28-40). Solid bars indicate values for 

the frontal cortex while open bars indicate values for the hippocampus. **indicates 

P<0.01 when compared to both uninjected and AMN groups. 
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APPENDIX C 

 

Figure 1: Phospho-p38 MAPK exression is decreased in microglia with increasing 

duration of anti-Aß antibody treatment. The upper graph shows data for frontal cortex 

while the lower graph shows data for the hippocampus. All data are shown as percent 

area occupied by positive stain. The bar indicates values for APP transgenic mice treated 

with control antibody anti-AMN for three months. The line indicates values for APP 

transgenic mice receiving anti-Aß28-40 antibodies for 1, 2 and 3 months. *indicates 

P<0.05. 
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APPENDIX C (continued) 

Figure 2: Phospho-p38 MAPK immunohistochemistry shows microglial expression 

around amyloid plaques which is decreased with increasing duration of anti-Aß antibody 

treatment. Panels A-D show phospho-p38 MAPK immunohsitochemical staining around 

the hippocampal fissure (F in panel D) and in the dentate gyrus (DG in panel D). APP 

transgenic mice were treated for 3 months with control IgG (A) or with anti-Aß28-40 IgG 

for one (B), two (C) or three (D) months. Magnification = 100X. Scale bar panel D = 

50µm.
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                                                  APPENDIX C (continued) 

Figure 3: Phospho-p44/42 MAPK exression is increased in microglia with increasing 

duration of anti-Aß antibody treatment. The upper graph shows data for frontal cortex 

while the lower graph shows data for the hippocampus. All data are shown as percent 

area occupied by positive stain. The bar indicates values for APP transgenic mice treated 

with control antibody anti-AMN for three months. The line indicates values for APP 

transgenic mice receiving anti-Aß28-40 antibodies for 1, 2 and 3 months. *indicates P<0.05 

when compared to control IgG treated animals. 
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APPENDIX C (continued) 

Figure 4: Phospho-p44/42 MAPK immunohistochemistry shows microglial expression 

around amyloid plaques which is increased with increasing duration of anti-Aß antibody 

treatment. Panels A-D show phospho-p44/42 MAPK immunohsitochemical staining 

around the hippocampal fissure (F in panel A) and in the dentate gyrus (DG in panel A). 

APP transgenic mice were treated for 3 months with control IgG (A) or with anti-Aß28-40 

IgG for one (B), two (C) or three (D) months. Magnification = 100X. Scale bar panel A = 

50µm.
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