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Distribution, Metabolism and Trophic Ecology of the Antarctic Cydippid Ctenophore, 
Callianira antarctica, West of the Antarctic Peninsula 

 
Kerri M. Scolardi 

ABSTRACT 
 

The distribution, abundance, chemical composition, metabolism, and feeding ecology 

of the tentaculate ctenophore, Callianira antarctica (Chun 1897), were investigated 

during austral winter 2001and autumn & winter 2002, in the vicinity of Marguerite Bay 

west of the Antarctic Peninsula.  Callianira antarctica had a widespread distribution 

during autumn and winter, and variable abundance (0.02 to 2.6 ind. m-2) during winter 

2001 associated with specific circulation features.  Size frequency distributions for 

autumn and winter suggest that more than half of the C. antarctica population may have 

experienced ‘degrowth’ during winter due to low food availability.  Callianira antarctica 

is a fairly robust ctenophore with geometric mean (geomean) carbon (C) and nitrogen (N) 

values of 8.41 and 1.83% dry weight (DW), respectively.  Winter oxygen consumption 

and ammonium excretion rates ranged from 0.059 to 0.410 µl O2 [mg DW]-1 h-1 and 0.60 

to 31.1 µg-at N [g DW]-1 h-1, respectively, at 0oC.  Daily minimum maintenance rations 

based on respiration experiments were 2.7% to 3.6% of the total body carbon (TBC) for 

small ctenophores, and 1.4% to 1.9% TBC for larger ctenophores.  Calanoid copepods 

and larval and juvenile Antarctic krill were offered to ctenophores in incubation 

experiments.  Digestion times were variable, lasting 8 to 20 h, and were independent of 

ctenophore size and dependent on number and type of prey.  Gut content analysis from 
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one autumn and two winter seasons indicated C. antarctica preyed on both copepods and 

krill in situ, with an increased dependence on larval krill during winter.  Lipid biomarker 

analysis on C. antarctica and their potential prey confirmed these results.  Divers 

observed aggregations of C. antarctica passively drifting with tentacles extended near 

dense concentrations of larval Euphausia superba during winter.  These observations 

along with gut content and lipid biomarker analysis suggest that larval krill is an 

important prey item for C. antarctica during winter.  
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CHAPTER ONE 

INTRODUCTION 

The first scientific accounts of ctenophores in Antarctic waters were recorded in the 

late 1800’s and early 1900’s (Chun 1897, Moser 1909: as referenced in O’Sullivan 1986).  

More than a century later, our knowledge of Antarctic ctenophores and their role in the 

Southern Ocean ecosystem has only marginally improved.  The lack of information on 

ctenophores is in part due to the fact that their delicate, gelatinous bodies are easily 

destroyed by most collection and preservation techniques (Harbison et al. 1978, Purcell 

1988).  The episodic nature of ctenophore populations, owing to their rapid growth rates 

and high fecundity (Reeve & Walter 1976, 1978, Harbison et al.1978, Swanberg & 

Båmstedt 1991a), has also made it difficult to quantify the abundance of these organisms. 

More recent studies indicate that ctenophore densities in Antarctic seas display 

substantial seasonal and interannual variability (Lancraft et al. 1989, 1991), and at times 

may dominate total zooplankton biomass regionally (Williams et al. 1986, Pakhomov 

1989, Pagès et al. 1996, 1997).  For example, Voronina et al. (1994) reported that 

ctenophore biomass in the 0-200 m layer of oceanic stations in the Atlantic sector of the 

Antarctic increased from 1.7 to more than 40% of the total zooplankton biomass between 

summer and autumn.  In addition, Kaufmann et al. (2003) reported that Callianira spp. 

was one of three dominant macrozooplankton species, making up 30 - 35% of the 

zooplankton biomass on a dry weight basis, during early winter and spring 2000 in a 

small embayment of Deception Island, just west of the Antarctic Peninsula.   
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Despite these recent developments, investigations concerning the role of ctenophores 

in the Antarctic ecosystem are lagging behind those done for most other geographic 

regions.  The Black Sea has received considerable attention over the last decade due to 

the adverse ecological changes that have taken place as a result of a number of 

anthropogenic factors combined with invasions of non-endemic species of ctenophore 

into the region (see review in Kideys et al. 2000).  Research related to the Black Sea has 

been published on everything from estimates of ctenophore abundance, distribution, 

growth and feeding rates, reproduction, and chemical composition to associations with 

physical features and prey abundances.  Similar research has been done with ctenophores 

from the tropics (Kremer 1982, Kremer et al. 1986a&b, Reeve et al. 1989), temperate 

regions (Hirota 1974, Ikeda 1974, Kremer 1977, Larson 1987a, Larson 1987b, Larson 

1987c, Youngbluth et al. 1988, Bailey et al. 1994, Purcell et al. 1994) and the arctic 

(Percy & Fife 1981, Hoeger 1983, Percy 1988, Percy 1989, Swanberg & Båmstedt 1991a, 

Swanberg & Båmstedt 1991b).   

Because ctenophores are voracious predators and exhibit rapid population growth, 

their trophic impact on an ecosystem is of particular interest.  Ctenophores in many 

regions of the ocean have been shown to have a marked predatory impact on copepods, 

euphausiids, and fish eggs and larvae (Reeve &Walter 1978, Greene et al.1986, Suthers 

& Frank 1990, Mills 1995, Purcell 1997, Shiganovoa & Bulgakova 2002, Shiganovoa et 

al. 2003).  For instance, Larson (1987a) estimated that the tentaculate ctenophore 

Pleurobrachia bachei, and two species of medusae from the Saanich Inlet, BC,  

consumed 10 to 40% of Euphausia pacifica eggs and nauplii stock a day.  The cydippid 

ctenophore Mertensia ovum, which is the dominant biomass macrozooplankter in regions 
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of the Canadian Arctic (Percy 1988, Swanberg & Båmstedt 1991a,1991b, Siferd & 

Conover 1992), is considered to be an important predator on crustacean zooplankton.  

Elsewhere, field and laboratory studies on the widely distributed cydippid ctenophore 

Pleurobrachia pileus, indicate that this species has the potential to seriously impact 

zooplankton populations where it exists (Reeve et al. 1978, Frank 1986, Chandy & 

Greene 1995, Båmstedt 1998).  

 In situ observations of Antarctic ctenophores under sea ice suggest that ctenophores 

may play a larger trophic role in the Antarctic ecosystem than previously believed.  

Euphausia superba is a keystone species in the Southern Ocean, thus a number of top 

predators, such as seals, penguins and whales, depend entirely or to a large extent on it as 

a food source (Fraser & Trivelpiece 1996, Costa & Crocker 1996).  Numerous studies 

have been conducted on the impact of these top predators on adult krill, however little is 

known about predation on larval krill.  Substantial numbers of larval and juvenile krill are 

associated with the under sea ice habitat during autumn and winter (Daly 1990).  Daly 

and Macaulay (1991) suggested that ctenophores may be important predators on 

overwintering larval Antarctic krill, E. superba, based on diver observations of 

ctenophores feeding on larvae under sea ice during autumn and winter in the Scotia-

Weddell seas.  Hamner et al. (1989) and Hamner & Hamner (2000) also reported diver 

observations of the cydippid ctenophore, Callianira antarctica, under ice floes preying 

on larval krill during early autumn west of the Antarctic Peninsula.  The presence of these 

predators in close proximity to the under-ice habitat and associated aggregations of larval 

krill could have a significant influence on the annual recruitment of larval krill. 
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Before the trophic impact of ctenophores on zooplankton populations in the Antarctic 

region can be reliably estimated, a better understanding of their ecology must first be 

achieved.  The opportunity to do the latter arose during a series of Southern Ocean Global 

Ecosystem Dynamics Program (SO GLOBEC) research cruises in austral autumn and 

winter of 2001 and 2002 to the Marguerite Bay region, west of the Antarctic Peninsula, 

where divers once again observed large numbers of the ctenophore, C. antarctica, in the 

water column just below ice-associated aggregations of larval krill.  SO GLOBEC is a 

collaborative research effort designed to examine the physical, chemical, and biological 

processes that contribute to the abundance and success of the Antarctic krill.  Marguerite 

Bay, west of the Antarctic Peninsula (WAP), is a physically dynamic environment 

marked by unusually high Antarctic krill production and an important habitat for krill 

predators, making this an ideal study site for the program.  For my Master’s thesis, I 

investigated the distribution, abundance and trophic ecology of C. antarctica in vicinity 

of Marguerite Bay during autumn and winter.  The seasonal size-frequency and broad-

scale distribution of these ctenophores, as well as their vertical distribution and 

abundance in the water column during the winter 2002 season, are described.  The 

elemental composition of ctenophores over autumn and winter are reported and applied to 

metabolic rates measured for one winter season to estimate daily maintenance rations.  

Lastly, the trophic relationship between C. antarctia and potential prey is investigated 

using winter digestion rates, seasonal measurements of ctenophore lipid composition and 

identification of biomarkers in their potential prey, and in-situ diet analyses in autumn 

and winter.   

 



   

 5 

 

 

CHAPTER TWO 

MATERIALS AND METHODS 

 Sampling platforms and study area.  Data were collected during three cruises to the 

Antarctic during austral autumn and winter as part of the U.S. Southern Ocean GLOBEC 

Program in the vicinity of Marguerite Bay, west of the Antarctic Peninsula (Fig. 1).  Two 

research vessels operated jointly in the study area during austral autumn and winter 

expeditions in 2001 and 2002.  The RV Lawrence M. Gould concentrated on a small 

number of selected sites for extended durations (Fig. 2A), while the RVIB Nathaniel B. 

Palmer conducted a broad-scale grid survey of the study area (Fig. 2B).  Data for this 

project were obtained aboard the RV Lawrence M. Gould during an autumn process 

cruise (7 April to 20 May 2002) and aboard the RVIB Nathaniel B. Palmer during two 

winter survey cruises (24 July to 31 August 2001 and 31 July to18 September 2002).   

 The study area, roughly located between 65o to 72o S and 72o to 64o W, is bound to 

the north by Adelaide Island and to the south by Alexander Island, with Marguerite Bay 

in the middle (Fig. 1).  During winter, nearly the entire survey area was covered with 

pack-ice that was particularly thick in the southeastern portions of the survey grid.  Sea 

ice cover was considerably less in the autumn, generally limited to waters deep within 

Marguerite Bay and along the coastline.  Although most of the sampling was 

concentrated over shelf waters generally <500m in depth, certain bathymetric features, 

such as the cross-shelf Marguerite trench located in the center of the study area, and deep 
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water canyons in the northeast portions of the grid, as well as a number of stations at the 

shelf break (>3000m) provided sampling over deeper water.  

 

 

Figure 1. Location of study area near Marguerite Bay (MB), west of the Antarctic Peninsula. From: Howd 
et al. (2001).   

 

A simplified description of the water mass structure over the study area during 

autumn and winter is as follows:  During the autumn 2002 cruise, Antarctic Surface 

Water (AASW) was present in the upper 100 to 120 m with temperatures ranging from 0 

to -0.5oC, and in some areas a subsurface minimum water mass (-0.5 to -1.8oC), known as 

Winter Water (WW), resided below it.  Below the permanent pycnocline, typically from 

120 to 150 m, a cooled form of Upper Circumpolar Deep Water (UCDW) occurred over 

the shelf (150 to 400m).  This modified CDW results from intrusions of UCDW onto the 

shelf which subsequently mixes with the cooler surface waters.  These water masses are 

characterized by warmer temperatures (1.0 – 2.0ºC), higher salinity (34.70 to 34.72), and 
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are thought to provide an upward diffusive flux of heat, salt, and nutrients (US SO 

GLOBEC 2002).  The on-shelf intrusions of CDW occurred just west of Adelaide Island 

and in the central region of the study area, overlying the Marguerite Trough.  Extreme 

surface cooling and ice freezing in winter 2001 & 2002 led to the erosion of the AASW 

and formation of the colder (-1.8ºC) and saltier (>34 ppt) WW at the surface. 

A general clockwise circulation pattern persisted over the study area, starting with a 

strong northeastward flow associated with the Antarctic Circumpolar Current (ACC) 

along the shelf break, a strong southwestward flow along the coast of Adelaide Island and 

into Marguerite Bay, and a flow similar in magnitude out the southern portion of 

Marguerite Bay, around Alexander Island (Klinck et al. in press).  Lastly, a mesoscale 

gyre, characterized by a weak clockwise flow, was located over the shelf in the northern 

portion of the study area during each cruise (Klinck et al. in press).  

 

 

Figure 2. Station locations for the autumn 2002 process cruise (A) and approximate station locations for 
winter 2001 & 2002 survey cruises (B).  The dark grey bathymetry lines running from northeast to 
southwest represent the shelf break. 
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 Sampling.  On board the Gould and Palmer the following equipment and methods 

were used to sample ctenophores and their prey: a 1.5-m2 Tucker trawl having a 6.4 mm 

mesh graded down to a 707 µm mesh with a protected cod end, typically towed obliquely 

within the upper 200 m of the water column, and 1-m2 and 10-m2 MOCNESS (Multiple 

Opening/Closing Net and Environmental Sensing System)  equipped with 335 µm and 3 

mm mesh nets, respectively, towed obliquely from the surface to near bottom, sampling 

the entire water column with the first net on the down cast and on the up cast sampling 

discrete depth intervals with the remaining nets (Ashjian et al. in press).  Nets were towed 

at a speed of 1.5 to 3 kts behind the ship, ice permitting.  During winter 2002, 

ctenophores and their prey were also collected using a 1-m diameter Reeve Net (333 µm 

mesh net) with a 20 L protected cod end kept afloat with syntactic foam, and a 1-m 

diameter ring net (333 µm mesh).  The Reeve Net and ring net were deployed in tandem 

to about 10 and 15 m depth, respectively, while the propellers were run at 15 - 25% to 

keep water circulating into the nets, but with little forward ship movement or ice sweep-

down into nets.  This method retrieved animals in exceptionally good condition.  

Ctenophores collected by net tows were immediately separated from the catch once on 

board, and gently placed in a bucket of 0.1 or 0.2 µm filtered seawater at or near sea 

surface temperature (-1.8 to 0oC).   

 Ctenophores were also hand-collected by SCUBA divers under sea ice during winter 

2001 and 2002.  SCUBA dives were operated out of zodiacs and utilized a standard blue 

water diving rig, with a few modifications to accommodate the shallow nature of under-

ice specimen collection.  Divers collected ctenophores from the upper 10 m of the water 

column by gently rotating a pre-filled 20oz plastic Quarpac jar over the ctenophore and 
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slowly screwing on the lid, as described by Heine (1986).  Once at the surface, the jars 

were placed in buckets of seawater to prevent the containers of water from freezing and 

injuring the ctenophores.  SCUBA dives were generally conducted during mid-afternoon 

hours.   

Ctenophores for live experiments were collected primarily with relatively short, near 

surface net tows or by divers.  A list of analyses performed and tow/dive information is 

given in Table 1.  

 
Table 1. Collection information and analysis performed on Callianira antarctica  for each field season.  
CS=Crystal Sound, RI=Renault Island, LF=Laubeuf Fjord, Sb=Shelf break, TT=Tucker Trawl, 
MOC=MOCNESS 
 

 Analysis Season Collection Method Stations  
 
 Gut Content Winter 2001 TT, SCUBA 15, 19, 22, 71  
   Analysis 
  Fall 2002 TT George VI, LF  
 
  Winter 2002 TT, 1-m and 10-m MOC 4, To 4, 5, 11, 13, 14, 16,  
  Drift Net, SCUBA 17, 23, 26, 40 to 28, 44, 45,  
    62 to 48, 65, 66/67, 72, 75,  
    To 81, RI2  
 
   Chemical  Fall 2002 TT Sb, George VI, LF  
 Composition 
  Winter 2002 TT, 1-m MOC, 4, To 4, 5, 9, 13, 16, 17,   
   Drift Net, SCUBA 23, 26, 28, 34, 49, RI 2 
 
 Lipids Fall 2002 TT  LF   
 
  Winter 2002 TT, 1-m MOC, 4, 16, 26, 40 to 28, 49, 65  
   Drift Net 
 
 Respiration Winter 2002 TT, 1-m MOC, 4, To 4, 14, 16, 17, 23, 26,   
   Drift Net, SCUBA 28, 34, RI 2 
 
 Digestion Winter 2002 TT, 1-m MOC;  4, 17, 62 to 48, 65, 66/67  
   Time  Drift Net, SCUBA 
 
 Vertical Winter 2002 1-m and 10-m MOC CS, 9, 11, 13, 16, 22, 26, 
 Distribution   42, 44, 65, 72, 75 
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Distribution and abundance.  To determine the distribution of C. antarctica 

throughout the study area, presence/absence data was recorded from net collections 

conducted during the three field seasons.  In addition, in situ distribution observations of 

ctenophores and larval krill under- ice were made from WHOI SeaRover ROV 

deployments on both winter cruises.  ROV deployments most often occurred during late 

evening/early morning hours, however a few deployments were done during afternoon or 

early evening hours.  

Vertical distribution and depth integrated abundance of ctenophores during winter 

2002 was determined using discrete tow data from both the 1-m2 and 10-m2 MOCNESS 

nets.  Both net systems were equipped with flow meters so that total volume water 

filtered could be recorded and ctenophore abundance calculated for each depth interval.  

The poor condition of ctenophores in preserved samples from the first two cruises 

precluded obtaining accurate counts of ctenophores caught in the nets, therefore on the 

last cruise a concerted effort was made to record ctenophore counts on board. 

Under- ice vertical distribution and densities of C. antarctica were obtained during 

SCUBA dives at two stations during the 2002 winter cruise.  This was accomplished with 

a primary diver swimming 10 meter horizontal transects at 0, 2, 4, 6, 8 and 10 meters 

below the ice.  Depth was measured using a depth gauge attached to a square meter 

sampler.  A safety diver attached a visible chain 10 meters in length to the undersurface 

of the ice for the primary diver with the square-meter sampler to swim beneath.  A 

second diver swam beside the primary diver recording the number of ctenophores that 

passed through the square meter on a dive slate.  One horizontal swim was done for each 

depth interval. 
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Chemical composition.  Only ctenophores in good condition were analyzed for 

chemical analysis.  Total length (distance from the mouth to the tip of the aboral keels), 

oral-aboral length (distance from the mouth to the anal pore), and width were measured 

to the nearest mm while the ctenophore was suspended in a large petri-dish filled with 

filtered sea water.  After draining the seawater from the petri-dish, the ctenophore was 

gently blotted with a kimwipe to remove excess water and frozen at –80oC.  After 

returning to the laboratory, individua l ctenophores were placed in pre-weighed aluminum 

boats and weighed to the nearest 0.1 mg.  Specimens were then dried at 60oC until a 

constant dry weight (DW) was achieved.  Dried ctenophores were homogenized, sub-

sampled, and then analyzed for Carbon (C) and Nitrogen (N) content by the University of 

California Santa Barbara (UCSB), Marine Science Institute Analytical Laboratory. 

Metabolic rates.  Active and undamaged ctenophores collected during winter 2002 

were used for respiration and excretion experiments.  Animals were primarily collected 

from the upper 10 m of the water column either by divers or drift nets.  In situ 

temperatures in the northern half of the study area, where collection for respiration 

experiments was concentrated, ranged vertically from -1.8oC just below the ice to ca 2oC 

in deeper water (typically >200 m).  

Oxygen (O2) consumption rates were measured on individual ctenophores using 

sealed vessel respirometry (Ikeda et al. 2000).  O2 concentrations were monitored 

continuously for about 24 h using a 30-channel oxygen electrode system as the animals 

reduced the oxygen in sealed, water-jacketed chambers to intermediate (~ 30 mm Hg) 

partial pressures.  Electrodes were calibrated using air and nitrogen saturated seawater at 

experimental temperature.  Ctenophores were kept in the dark and water temperature was 
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maintained at 0.5oC (± 0.1oC) using a refrigerated water-bath.  Once respiration 

experiments were completed, all but two of the ctenophores, which were subsequently 

used for digestion time experiments, were frozen at –80oC.  O2 consumption rates were 

calculated over thirty minute intervals following the initial excitatory period, which was 

usually one to two hours, and above the critical oxygen partial pressure (30mm Hg) for 

the animal.  The values for each interval were then summed and averaged over the entire 

time period to give a mean respiration rate for each individual.  Water from the 

respiration chambers was subsampled and analyzed immediately for ammonium 

excretion, or frozen at -20ºC and analyzed within a week of collection.  Ammonium 

samples were analyzed following methods described in Gordon et al. (1993).  Individual 

ctenophores were placed in preweighed aluminum boats, weighed to the nearest 0.1 mg, 

and then dried at 60oC.  The dried remains of the individuals were homogenized and 

analyzed for C/N and ash content as described above. 

Estimation of digestion time.  Active and undamaged ctenophores were placed in 

individual polypropylene jars containing 0.1 µm filtered seawater and incubated in the 

dark in a large flow-through aquarium at in situ sea surface temperature (-0.59 to -1.82º 

C).  Small ctenophores were kept in 500 ml containers and medium to large ctenophores 

in 960 ml containers.  After a 24-hour starvation period, individual ctenophores were 

placed into a 500 ml polypropylene jar containing prey in 0.1µm filtered seawater and 

returned to the flow-through aquarium.  Juvenile and larval euphausiids (E. superba or 

Thysanoessa macrura) and small calanoid copepods were used as prey.  Experimental 

containers were checked hourly until the ctenophore ingested prey (To).  After ingestion, 

the ctenophore was placed in a 500 or 960 ml container (depending on its size) of filtered 
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seawater, and once again incubated in the flow-through aquarium.  The digestion process 

was observed hourly for the first two to three hours of the experiment.  Progress of 

digestion determined the frequency of subsequent observations in order to minimize 

disturbance.  During each inspection, the ctenophore was gently scooped out of the jar 

using a medium-sized petri-dish and viewed under a dissecting microscope under dim 

light.  The condition of the prey was noted.  The ctenophore was placed into a fresh 

container of filtered seawater after each inspection.  The old water from the container was 

filtered through a 20 µm mesh sieve and any remaining material was back-washed into a 

small petri-dish and examined under a dissecting microscope for egested matter.  The 

experiment continued until there were no recognizable prey remains in the stomodeum 

and infundibulum, and no further material was egested.  Six out of seven of the animals 

were used in multiple experiments, with each one preceded by a 24 h starvation period.  

Animals that refused to feed and had not ingested anything within 48 hours of the 

termination of the previous experiment were measured and frozen at –80oC.  

Digestion time was defined as the time elapsed between ingestion of prey and 

clearing of the gastrovascular cavity, estimated to the nearest hour.  In order to express 

digestion time in terms of ingested prey C, N, or DW, prey species of the same stage 

and/or size as those used in the digestion experiments were sorted, measured for length, 

and frozen at -80oC.  In the laboratory, individual euphausiids and grouped copepods (3 

small or 2 large), were placed onto preweighed, combusted filters, and wet weights 

(WW) determined to the nearest 0.001 mg.  Specimens were then placed in combusted 

glass vials and dried at 60oC to a constant weight.  Two of the Thysanoessa macrura 

samples were ground and sub-sampled, while the remainder of the euphausiid samples 
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were cut in half and analyzed separately.  For these samples, the %C and %N values for 

each individual were estimated as an average of the two halved values. The copepods and 

their filters were analyzed whole.  Prey samples were analyzed for C/N at UCSB. 

Lipid composition.  Ctenophores collected in nets were measured for total length to 

the nearest mm and their guts removed to reduce bias.  Potential prey specimens were 

also collected, measured and/or staged.  Ctenophore and prey samples were immediately 

frozen and stored at –80°C until analysis could be performed at shore based facilities.  

Before lipid analysis, wet weights of ctenophore and prey samples were measured by 

thawing and briefly rinsing with Nano-pure water.  A subset of ctenophore and prey 

samples were then dried at 60°C for 48 hrs for measurements of water content, which 

were then used to convert wet weight of the animals to dry weight values.  Lipids were 

extracted and analyzed by the Chesapeake Biological Laboratory, University of Maryland 

Center for Environmental Science.  A detailed description of lipid extraction methods and 

analysis is given in Ju et al. (submitted)       

Gut contents.  Ctenophores in good condition were analyzed for gut contents within 

two hours after collection.  Individual ctenophores were measured for total length to the 

nearest mm, and gut contents examined either by dissection of the gastrovascular cavity 

or by suction-removal of the gut contents by a pipette inserted into the gastrovascular 

cavity.  Prey items were identified to the lowest possible taxonomic category.  In order to 

reduce biased results due to possible net- feeding, prey that were newly ingested and had 

not reached the proximate half of the stomach were eliminated from the final count.  

Statistical analysis.  Much of the data reported here were not normally distributed, 

therefore the median and range were used to describe the central trend of those data.  For 



   

 15 

percentage and rate measurements, the geometric mean (Laws & Archie 1981, Zar 1990), 

labeled as geomean throughout the text and tables, was reported if the value was different 

from the calculated arithmetic mean.  Correlation and regression analyses were calculated 

at the 5% significance level. 
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CHAPTER THREE 

LENGTH FREQUENCY AND VERTICAL DISTRIBUTION 

 RESULTS 

Length frequency.  The oral-aboral lengths of 45 and 86 ctenophores from autumn 

and winter 2002, respectively, were measured to determine size distribution.  There was a 

similar wide range in lengths of C. antarctica collected in both autumn (11 mm to 90 

mm) and winter (7 to 92 mm), and no apparent relationship between length and 

geographic location (i.e. north, central or southern portions; Fig. 3).   

 

0

20

40

60

80

100

7 5 5 5 5 5 2 4 4 4 4 4 4 4

Avia
n I

sla
ndCS Laubeuf Shelf 

break
George VI Sta.6

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90North Central South

S
iz

e 
(m

m
)

S
iz

e 
(m

m
)

0

20

40

60

80

100

7 5 5 5 5 5 2 4 4 4 4 4 4 4

Avia
n I

sla
ndCS Laubeuf Shelf 

break
George VI Sta.6

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90North Central South

S
iz

e 
(m

m
)

S
iz

e 
(m

m
)

 

Figure 3. Callianira antarctica.  Aboral lengths of ctenophores measured for each station in (A) autumn  
and (B) winter.  CS=Crystal Sound. 
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Although the size ranges were similar between seasons, the dominant length classes 

were distinctively different (Fig. 4).  A majority of the animals collected during autumn 

were medium-sized adults, with 48.9% of the individuals in the 40-50 mm length range 

and < 2% smaller than 20 mm.  The mean length for autumn ctenophores was 45.4 mm.  

A greater number of small animals were collected during winter (> 20% smaller than 20 

mm in length); however, the frequency distribution for this season indicates that there 

were two length classes, with modes centralized around 20 mm and 60 mm (Fig. 4).   

 

 

Figure 4. Callianira antarctica .  Length frequency for (A) autumn and (B) winter 2002. 

 

Horizontal distribution.  The presence/absence of ctenophores over the study area 

during the three sampling periods is shown in Fig. 5.  For both winter seasons, there was 

a broad distribution of C. antarctica, extending over large portions of the study area.  

Ctenophores were found in the north, south and central regions of the study area, on the 

shelf and at the shelf break, and near the coasts of Adelaide and Alexander Islands.  The 

lack of observations inside Marguerite Bay in Fig. 5C is due to thick pack ice prohibiting 

the ship from reaching stations in this area, and therefore does not indicate an absence of 
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ctenophores in this region.  This wide-ranging distribution of ctenophores suggested 

ctenophore occurrence was not governed by physical features of the study area, such as 

bathymetry, hydrography, or ice-edge.  During winter 2002, 31 of the 94 net tows/ROV 

deployments did not catch/observe a single ctenophore, however none of the 41 stations 

sampled were absent of ctenophores.  In other words, ctenophores were present at all of 

the stations sampled, but were not sampled by all of the net tows/ROV deployments done 

at that station; indicating small scale spatial and temporal variability (Fig. 5C).  The same 

assessment cannot be made for winter 2001 because only those stations where 

ctenophores were collected/observed were recorded.  The autumn cruise occupied a much 

smaller number of stations for longer periods of time (Fig. 2B), thus, the area covered 

was greatly reduced compared to the winter surveys.  However, the decreased extent of 

the pack ice allowed for sampling deeper within Marguerite Bay, as well as in the smaller 

fjords and sounds located behind and in the vicinity of Adelaide Island.  Similar to winter 

2002, ctenophores were found at all stations sampled in autumn: on and off the shelf, in 

Marguerite Bay, and along the coasts of Adelaide and Alexander Islands (Fig. 2B).  Once 

again, ctenophores had a heterogeneous temporal distribution, as 21 of the 54 net tows 

recorded did not collect ctenophores, although ctenophores were present at every station 

sampled.   

Vertical distribution and abundance.  Discrete depth tows during winter 2002 

indicated a broad range in vertical distribution (0-500 m) for C. antarctica, though most 

of the ctenophores occurred within and around the pycnocline (120-150 m; Fig. 6).  

Nearly the entire water column was sampled, with all but two of the tows over relatively 

shallow shelf waters (ca 500-800 m).  The two net tows conducted in waters depths 
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greater than 1000 m did not catch any ctenophores deeper than the deepest depth interval 

sampled on the shelf.  There were a similar number of net tows conducted during the day 

(n=5) and night (n=6), allowing for discernment of the diurnal distribution of C. 

antarctica.  During the day, ctenophores were concentrated within the upper 200 m of the 

water column, with peak abundance at 150-200 m (3.8 ind m-3 x103).  Ctenophore 

distribution reached deeper depths at night, though most of the ctenophores were still 

concentrated in the upper 250 m of the water column, with two depth maxima at 0-50 m 

(1.7 ind m-3 x103) and 100-200 m (2.7 ind m-3 x103).  

 

 

Figure 5. Callianira antartica.  Presence/absence of ctenophores over the study area during (A) winter 
2001, (B) autumn 2002,  and (C) winter 2002.  The filled circles indicate locations where ctenophores were 
observed/collected and hollow triangles indicate absence. 
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Integrated abundances were generally low, < 3.0 m2 but variable between stations 

(Fig. 7).  The lowest abundances (< 0.10 ind m-2) were found in deeper water at the shelf 

break, and the highest (> 1.0 ind m-2) were located at two stations further on-shelf, at the 

north and south ends of the study area.  Circulation patterns over the shelf, as illustrated 

by the dynamic topography calculated at the surface relative to 400 m, reveals a large 

closed gyre located over northern section of the study area (Fig. 7).  The station with 

greatest abundance (2.6 ind m-2) of ctenophores, Station 16, was located within this large 

clockwise-flowing gyre located off of Adelaide Island.  The other station of notable 

abundance was located offshore from Alexander Island, in the southern area of the study 

region.  High numbers of ctenophores may have been entrained in the southwestward 

flow that was evident over the shelf during autumn and winter of 2001 & 2002 (Klinck et 

al. in press) and advected to this region from the north; hence leading to the elevated 

abundance relative to those stations located closer to the shelf-break.   

Under- ice vertical distribution and abundance was only sampled at two dive locations 

in winter 2002.  I had anticipated sampling at a number of dive stations in both autumn 

and winter, but due to the high number of tasks needing to be carried out in a limited 

amount of dive time, combined with the number of complicating issues involved with 

diving in the Antarctic, there were limited opportunities to complete the under-ice 

sampling.  Also, ctenophores were absent from the upper 10 meters of the water column 

at dive stations during autumn.  Of the two stations completed, a ctenophore was counted 

in one 10 m transect at 5-10 m depth.  General observations were noted for each dive 

during both winter and autumn seasons.  Based on these observations, higher abundance 

of ctenophores (ca. 0.5-2 m-3) and aggregations of larval krill under the ice were present 
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over most of the study area during winter 2001.  There was a complete absence of 

ctenophores and a paucity of larval krill under the sea ice during autumn 2002.  During 

winter 2002, relatively high numbers of ctenophores and krill were once again seen, 

although much reduced in comparison with the first winter.  In addition, juvenile krill 

seemed to be as abundant under the sea- ice as larval krill during winter 2002, which was 

not the case in winter 2001.  These observations are similar to ones made from ROV 

deployments during both winter seasons. 
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Figure 6. Callianira antarctica.  Diel vertical distribution during winter 2002 measured for 13 stations total 
(5 day and 6 night).  The pycnocline is indicated by the shaded area located between 150-200m. 
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DISCUSSION 

Length frequency.  The wide range in ctenophore lengths found over autumn and 

winter for C. antarctica is not uncommon for polar species of ctenophore, and may 

represent the presence of multi-year classes.  Oral-aboral lengths of less than 10 to 

greater than 50 mm have been reported for M. ovum from the Arctic (Percy 1989, 

Swanberg & Båmstedt 1991b, Siferd & Conover 1992) for summer, autumn and winter.  

Their persistent presence and length distribution over many seasons suggests that M. 

ovum is a long lived species, possibly two or more years (Percy 1989).  The same could 

be true for C. antarctica, however sampling during spring and summer months would be 

needed to confirm this.  Ctenophore lengths did not appear to be related spatially with the 

different regions or physical features (i.e. ice edge) of the study area.  In the Arctic, 

Swanberg and Båmstedt  (1991b) found larger M. ovum at the ice edge and smaller 

animals in open water.  The less turbulent waters within the pack- ice would provide a 

more favorable environment for larger gelatinous organisms, therefore we would expect 

to see a difference in the sizes of organisms inhabiting ice-covered versus open water.  In 

this study, the abundance of ctenophores off-shore was reduced and fewer animals were 

measured; consequently the small sample sizes for each station did not permit estimation 

of mean lengths for these different regions, which could have indicated such a 

relationship.   

Ctenophore lengths changed seasonally from a unimodal distribution in autumn to a 

bimodal distribution in winter.  The mean ctenophore length during autumn, 45.4 mm, 

fell directly between the smaller (10-40 mm) and larger (50-70 mm) size cohorts for 

winter.  This type of bimodal size distribution, usually suggestive of a recent reproductive 
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event, is uncommon for winter populations of ctenophores, although Pleurobrachei 

pileus from the Black Sea was shown to have two reproductive events a year, including 

one in winter (Mutlu & Bingel 1999).  Spawning in ctenophores can be prolonged, as in 

the case of M. ovum, where ctenophore eggs in Resolute Passage can be found over most 

of the year; however, large numbers of these eggs are only found between spring and 

summer (Siferd & Conover 1992).  Egg production in ctenophores is highly dependant on 

food supply (Reeve et. al 1989) and temperature (Kremer 1994, Sullivan et al. 2001, 

Weisse et al. 2002), both of which are reduced in the upper water column in the Antarctic 

during autumn and winter (Siegel 1988, Lancraft et al. 1991, Ashjiaan et al. in press).  

Therefore it is unlikely, although not impossible, that the two size cohorts are due to a 

reproductive event occurring in late autumn/early winter.  The bimodal length frequency 

for winter may have also been the result of a portion of the ctenophore population 

experiencing ‘degrowth’.  During times of low food availability ctenophores are known 

to metabolize their own body tissue, causing them to shrink in size (Reeve & Walter 

1978).  Ashjian et al. (in press) reported a significant reduction in zooplankton biomass in 

the Marguerite Bay region from autumn to winter 2001; thus it is possible that C. 

antarctica were suffering from decreased prey availability and utilizing internal reserves.  

However, a portion of the population may have experienced growth, as indicated by the 

larger size cohort.  The circumstances causing the success of some of ctenophores and the 

starvation of others is not clear, however the patchy food environment may be one such 

variable.  One last and very possible explanation for the bimodal length frequency is tha t 

the population sampled during autumn may not have been the same one sampled during 

winter.  Although this is always a possibility when sampling marine populations, the 
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different sampling strategies used between autumn and winter further complicates 

matters.  Autumn collections were intensified at stations closer to the coastline of 

Adelaide and Alexander Islands, with not as much coverage provided mid-shelf and in 

southern portions of the study area, whereas winter sampling close to shore and in the 

fjord regions was hindered by heavy pack ice.  Despite the fact ctenophore lengths did 

not appear to be related to region in either season, it is possible that different length 

frequency distributions for autumn and winter 2002 resulted from sampling different 

populations.   

 

 

Figure 7. Callianira antarctica.  Depth integrated abundance (m-2) over the study area during winter 2002.  
The circles specify stations where abundance was measured with net tows, and are colored according to 
their relative abundance.  The station of highest abundance, designated by the red star, is  associated with 
the large clockwise gyre, as illustrated by the dynamic topography calculated at the surface relative to 400 
m.  The dominant circulation features shown with the dynamic topography in this figure for autumn 2002 
were similar to those occurring in winter (Klink pers comm.). 
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Distribution and abundance.  Callianira antarctica occurred mostly within the 

upper 200 meters of the water column during both day and night hours, though diurnal 

differences in depth maxima were observed.  During the day, ctenophore abundance 

gradually increased down to about 150 to 200 m, where the maximum abundance 

occurred.  In contrast, ctenophore abundance at night decreased from a sub-maximum 

concentration at 0-50 m down to about 100 to 200 m, where the largest abundances were 

found.  Lancraft et al. (submitted) observed a similar depth distribution pattern during 

autumn for C. antarctica in Croker Passage : a shallow and deep depth maxima during the 

night, and during the day a single depth maxima near that of the deeper night-time depth 

maxima.   

Both day and night depth maxima for C. antarctica in this study were located within 

and just below the pycnocline, where greater concentrations of prey may accumulate.  

Vertical distributions described for Callianira spp. in the Antarctic have shown increased 

ctenophore concentrations at depths where zooplankton prey are found in abundance.  In 

Port Foster, Deception Island, Callianira spp. remained in the 100-150 m depth range 

coincident with Euphausia crystallorphias and E. superba during early winter, and with 

Metridia  gerlachei during early summer (Kaufmann et al. 2003).  In Croker Passage, C. 

antarctica, Thermisto gaudichaudi and E. superba were the only zooplankton species, in 

addition to salps, to occur in surface waters at night during autumn.  Callianira antarctica 

in the Marguerite Bay region during winter may concentrate at shallower depths during 

the night to increase their predation effort on larval krill associated with the under- ice 

surface, as was observed during nighttime ROV deployments.  However, this behavior 

was also observed during SCUBA dives conducted during daytime hours.  Larval krill 
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and copepods in the Antarctic are not known to under-go diel vertical migration (DVM), 

thus it is unlikely that ctenophores were following a DVM pattern of their prey.   Hence, 

the increased concentration of ctenophores in the surface waters may have been due to 

other unknown factors.  The volume of water sampled for all six night tows was twice the 

volume sampled during daytime tows.  Therefore, diurnal differences in ctenophore 

distribution may have been an artifact of sampling.  

The depth- integrated abundances of C. antarctica were variable but low, with the 

largest abundance (2.6 ind m-2) two orders of magnitude greater than the smallest (0.02 

ind. m-2).  The horizontal distribution of these abundances over the study area indicated 

that higher numbers of ctenophores were associated with the large clockwise gyre 

occupying the northern portion of the shelf, and lower numbers occurring over the shelf 

break, where the strong northeast flow associated with the ACC may disperse 

ctenophores in this region.  Local hydrology and topography interact to produce retentive 

features, such as gyres, that support entrapment of gelatinous zooplankton into large 

aggregations (Graham et al. 2001).  For example, in the summer of 1979, Pagès et al. 

(1994) found high abundances of gelatinous zooplankton in the eastern part of the 

Weddell Gyre.  The spatio-temporal horizontal distribution of P. pileus over a number of 

seasons was found to be related to the general circulation of the Black Sea, where high 

concentrations of ctenophores were found at the northern peripheries of anti-cyclonic 

eddies (Mutlu & Bingel 1999).  Higher densities of C. antarctica were also found in the 

southern shelf region of the shelf, where the southwestward flow from Marguerite Bay 

may advect large numbers of C. antarctica to this region.  Ashjian et al. (in press) 

reported elevated abundances of zooplankton over the southern shelf region located in the 
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southwestward current during autumn and winter of 2001.  Large aggregations of C. 

antarctica coinciding with elevated abundances of krill and copepods occurring in the 

southern shelf region, or within the northern shelf meso-scale gyre, may have a distinct 

predatory impact on these populations. 

The mean abundance for C. antarctica (0.45 ind m-2) during winter was much lower 

than values reported for other ctenophores from temperate and tropical regions during 

different seasons.  For instance, abundance of P. pileus in the Black Sea during winter 

was as high as 696 ind m-2 (Mutlu & Bingel 1999).  In the Norwegian Sea, P. pileus 

sampled during summer had a mean abundance of 12.4 ind m-2, and a maximum 

abundance of 111 ind m-2 (Båmstedt 1998).  Pleurobrachia pileus off Southwestern Nova 

Scotia was found in similar abundance, although there were extreme inter-annual 

variations (Frank 1986).  Callianira antarctica’s mean abundance was also an order of 

magnitude lower than that of the Arctic ctenophore M. ovum.  Percy (1989) found that the 

Arctic ctenophore M. ovum from Frobisher Bay had a stable population structure, with 

similar mean abundances in summer and winter, 4.2 and 3.4 ind m-2, respectively.  

Mertensia ovum in Resolute Passage was also shown to have a low winter and summer 

abundance, although maximum abundance during spring was as high as 911 ind m-2 

(Siferd & Conover 1992).  However, the mean abundance for this species in the Barents 

Sea during spring was low, 0.95 ind m-2 (Swanberg & Bamstedt 1991b).  These 

observations demonstrate the large variability in M. ovum abundance over the Arctic.  

The same may be true for Callianira sp., as Lancraft et al. (1991, submitted) reported a 

much lower mean winter (0.016 ind m-2) and autumn abundance (0.034 ind m-2) for the 

Scotia Sea and Crocker Passage than was seen in the WAP region during this study.   
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In this study, C. antarctica was the dominant ctenophore found in autumn and winter 

for both years.  Their predators, Beroe sp., were uncommon during these sampling 

periods.  The lack of abundance data from other seasons prohibits making an accurate 

evaluation of the population structure of C. antarctica in the Marguerite Bay region.  

Nevertheless, C. antarctica’s widespread distribution during both autumn and winter, 

combined with fact that this species, along with Beroe sp., is the predominant ctenophore 

mentioned in reports concerning zooplankton ecology in this and nearby regions, indicate 

that this species, like M. ovum in the Arctic, is a persistent member of the zooplankton 

community in waters west of the Antarctic Peninsula.   
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CHAPTER FOUR 

CHEMICAL COMPOSITION, METABOLISM AND FEEDING ECOLOGY 

RESULTS 
 

Chemical composition.  A total of 32 C. antarctica, 8 from autumn and 24 from 

winter 2002, were measured for total length, WW, DW, and C/N content.  The seasonal 

relationship between length and dry weight for C. antarctica is shown in Fig. 8A.  

Autumn ctenophores ranged in length from 35.0 to 83.6 mm, with a median length of 

46.5 mm (Table 2).  Dry weights ranged from 149.9 to 757.6 mg and averaged 3.9% (± 

0.8 SD) WW.  Water accounted for 96 to 98% WW during autumn.  Winter ctenophores 

ranged from 8.5 to 98.0 mm in length, and had a median length of 25.5 mm (Table 2).  

Dry weights ranged from 2.8 mg to 1.4 g, and averaged 4.4% (± 0.5 SD) WW.  Water 

comprised 94 to 97% WW for winter ctenophores.  The average ash content of 

ctenophores (n = 9) during winter was 78.9% (± 0.03 SD) DW.   
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Figure 8. Callianira antarctica .  The seasonal relationship between total length and (A) dry weight and (B) 
carbon concentration for autumn (filled symbols) and winter (open symbols) 2002.  Autumn : 
DW=(0.58)TL1.5855 , %C=(4.8983)TL0.1435  ; Winter: DW=(0.0179)TL2.4861 , %C=(1.0683)TL0.6194  
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Table 2. Callianira antarctica.  Total length, dry weight (DW), and water content as percent of the DW for 
autumn and winter 2002 
 

 Total Length       Dry Weight             Water Carbon  Nitrogen     
  (mm) (mg) (%WW) (% DW) (% DW)   
 Season Median   Range Median   Range Mean   Range Mean   Range Mean   Range n        
          
 Autumn 46.5 35.0 - 83.6  276 150 - 758 96.1 95.7 - 97.9 8.60 7.00 - 12.0 1.92 1.55 - 2.38  8 
  
 Winter 25.5 8.5 - 98.0 76.6 2.8 - 1366 95.5 94.2  -97.0 8.35 1.41 - 24.9 1.80 0.30 - 4.43 24 
  
 Combined 34.5 8.5 - 98.0 132.6 2.8 - 1366 95.7 94.2 - 97.9 8.41 1.41 - 24.9 1.83 0.30 - 4.43 32  

 

There was a weak positive correlation (r = 0.31, p = 0.05) between total length and 

carbon concentration (%DW) during autumn, which may be attributed to the small 

sample size, and a higher positive correlation (r = 0.69, p = 0.05) during winter (Fig. 8B).  

Body carbon and nitrogen content for autumn animals ranged from 7.0 to 12.0% DW and 

1.6 to 2.4% DW, respectively.  The range for winter carbon (1.4 to 24.9% DW) and 

nitrogen (0.3 to 4.4% DW) values was much broader, possibly due to the larger sample 

size.  Geomean carbon and nitrogen (%DW) values of C. antarctica are given in Table 2.  

The total body carbon and nitrogen content increased with ctenophore size for both 

seasons (Fig. 9A-B).  The similarity between the autumn and winter slopes of these data 

suggests that there was little seasonal change in body carbon and nitrogen content. 
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Figure 9. Callianira antarctica .  The seasonal relationship between dry weight and (A) total carbon and (B) 
total nitrogen for autumn (filled symbols) and winter (open symbols) 2002. Autumn: C=(0.034)DW1.17, 
N=(0.016)DW1.03 ; Winter: C =(0.029)DW1.25, N=(0.006)DW1.26 
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Metabolic Rates.  During winter 2002 ammonium excretion rates were measured for 

15 ctenophores ranging in total length from 8.5 to 85.0 mm, with a median length of 28.0 

mm.  Oxygen consumption is reported for a subset of these ctenophores (n = 10), having 

the same range in total length but a median length of 31.0 mm (Table 3).  Both oxygen 

consumption and nitrogen excretion rate per individuals increased with increasing 

ctenophore body size (Fig. 10).  The regression of oxygen consumption versus DW for C. 

antarctica yielded a value of b = 0.92 for the allometric equation:  

Y = aWb, 

where Y is metabolic rate, a is the intercept, W is dry weight (mg), and b is the exponent 

reflecting the effect of size (Fig. 10).  This b value is near unity, indicating that the 

oxygen consumption per unit mass decreased only slightly with increasing ctenophore 

size.  The geometric (GM) regression model (linear regression of log- log transformed 

data) for oxygen consumption as a function of DW indicated a larger decrease in 

respiration per unit mass with increasing ctenophore size (b = 0.80).  Both the geometric 

and conventional regressions for oxygen consumption as a function of body carbon 

showed a weight-dependent relationship (b = 0.85 and 0.71, respectively) between 

respiration and carbon content.  The weight-specific oxygen consumption and ammonium 

excretion rates decreased with increasing size, indicating greater relative metabolic 

requirements for smaller ctenophores.  Dry weight-specific and carbon-specific oxygen 

consumption rates calculated for individual C. antarctica ranged from 0.059 to 0.411 µl 

O2 [mg DW]-1 h-1 and 0.471 to 7.15 µl O2 [mg C]-1 h-1, respectively.  Dry weight-specific 

nitrogen excretion rates ranged from 0.60 to 31.1 µg-at N [g DW]-1 h-1.  Geomean oxygen 

consumption and nitrogen excretion rates are provided in Table 3.   
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Table 3.  Oxygen consumption and ammonium excretion rates for Callianira antarctica and 7 other species of 
ctenophore 
 

 
 Species Oxygen consumption Ammonia excretion  Temperature  n 
  µl O2 ind -1 hr-1 µl O2 [mg DW]-1 h-1 µl O2 [mg C]-1 h-1 µg-at N [g DW]-1 h-1 oC  
  
Callianira antarctica 14.9 0.163 2.11 9.39 0 10,16 
aMertensia ovum nd 0.074 (+ 0.028) nd 0.24 0 59 
bMertensiidae sp. 12.1 (+ 6.30) 0.129 nd 8.11 -1.6  8* 
bBeroe sp. 15.6 (+ 3.40) 0.025 nd 2.64 -1.5  7* 
cPleurobrachia pileus    1.08 - 1.17 0.140 - 0.280 nd nd  7 - 7.5 4  
dBolinopsis infundibulum nd  0.054 3.05 nd   5 - 6 10 
eBathocyroe fosteri nd 0.042 (+ 0.021) nd   0.01 - 0.14   9 - 12 49 
fMnemiopsis leidyi   30.4 0.070 - 0.231 4.12 - 13.6  0.483 - 1.53  10 - 24 40 
aPercy (1988), bIkeda & Bruce (1986), cIkeda (1974), dBaily et al. (1994), eYoungbluth et al. (1988), fKremer (1977)  
*Number of experiments performed; 2 to 5 animals each. 
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Figure 10. Callianira antarctica.  The relationship between oxygen consumption (circles), ammonium 
excretion (squares) and dry weight.  T = 0.5o  C.  The equations for respiration and excretion are, 
respectively: Oxygen consumption = 0.237 DW0.92 (r2 = 0.91), and ammonium excretion = 0.051 DW0.58 (r2 
= 0.76). 

 

The ratio of oxygen uptake to nitrogen-excretion rate (atomic O:N ratio) varied from 

6.37 to 138, with no relationship to ctenophore size.  The geomean O:N ratio was 28.8, 

indicating protein-oriented metabolism (Mayzaud & Conover 1988).  Other studies on 

ctenophore respiration and excretion have determined that ctenophores metabolize both 

protein and lipids (Kremer 1977), therefore many authors assume an intermediate RQ 
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value of 0.8 when determining carbon respiration.  The proportion of each component 

metabolized, however, may vary significantly with season and food availability (Hoeger 

1983, Kremer 1982, Percy 1988) and is further complicated by different biochemical 

pathways for nitrogen metabolism (Mayzaud & Conover 1988).  For this reason, both 

lipid and protein RQ values were used to determine the amount of carbon that C. 

antarctica potentially needed to consume each day to support metabolism.  The range in 

minimum daily carbon requirements was estimated by converting the mean oxygen 

consumption rate per individual to carbon respired using Gnaiger’s (1983) respiratory 

quotient (RQ) values of 0.97 for protein and 0.72 for lipid catabolism.  According to 

Gnaiger (1983), the excretory end-product determines the RQ value in protein 

catabolism: 0.97 for ammonia and 0.84 for urea.  Since gelatinous zooplankton are 

ammonotelic, 0.97 is the appropriate RQ value for protein for this study.  Based on the 

oxygen consumption rates for C. antarctica, daily carbon requirements for small 

ctenophores (= 30 mm TL) ranged from 3.6 to 190.3 µg, and for larger ctenophores (> 30 

mm TL) 150.5 µg to 1.13 mg.  The daily carbon requirement varied between 2.7% and 

3.6% of the body total carbon for small ctenophores, and between 1.4% and 1.9% of the 

total body carbon for larger ctenophores. 

Feeding behavior.  During winter 2001 and 2002, SCUBA divers observed high 

numbers of Callianira sp. (> 1 ctenophore m3) just under the pack ice where larval krill 

aggregated.  The ctenophores were passively drifting, mouth oriented upwards, with their 

tentacles extended outward approximately ten times their body length or greater, 

characteristic of an ambush entangling predator (Greene 1985).  Ctenophores imaged 

under ice during late night hours by an ROV showed similar behavior.  Our combined 
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observations of ctenophore predatory behavior under sea ice, and the presence of prey in 

the guts of ctenophores collected during late afternoon and evening tows, suggest that 

these ctenophores search for food continuously over a 24 h period. 

Callianira antarctica feeding behavior also was observed during experiments in 

winter 2002.  After ctenophores were placed in 500 ml polypropylene jars containing 

prey, they typically proceeded to set out their tentacles by swimming in a circular pattern 

around the jar.  Due to jar volume constraints, ctenophores were not able to release their 

tentacles to the extensive lengths observed in situ by divers and the ROV.  ROV images 

also indicated that once ctenophores had extended their tentacles, they drifted passively 

with currents.  In jars, after one or more prey were caught in a tentacle, the ctenophores 

typically stopped swimming and began retracting their tentacles, drawing the prey close 

to their body.  The actual ingestion of prey into the mouth was observed on only two 

occasions.  In both instances, once the ctenophore had drawn the prey closer to its body, 

it rotated several times in the tentacular plane, effectively landing the prey held by the 

tentacle into its mouth.  The prey, along with the portion of tentacle surrounding it, was 

moved fairly quickly from the mouth down into the stomodeum (pharynx). 

Digestion time.  During winter 2002, 21 digestion time experiments were performed 

with ctenophores ranging in size from 20 to 55 mm total length.  Temperature was nearly 

constant (-1.0 to -1.8oC), however type and number of prey varied with each experiment.  

Prey offered in experiments were the same species and sizes that were observed in 

ctenophore gut contents from in situ feeding, including larval and juvenile euphausiids, 

Euphausia superba and Thysanoessa macrura, and the calanoid copepods, Calanoides 

acutus, Calanus propinquus, and Metridia gerlachii.  Nearly half of the experiments 
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(48%) involved digestion of one prey item and 14% involved 2 prey items.  The largest 

meal digested was 6 prey (n=1).  In order to compare digestion rates among experiments 

involving different prey types, digestion times were normalized by prey DW, body 

carbon or body nitrogen. The DW, carbon and nitrogen values for the prey are listed in 

Table 4.   

 

Table 4.  Average dry weight (DW), body carbon (C) and body nitrogen (N) values for each stage of prey 
used in digestion time experiments 
 

 
Prey  Stage/Sex DW (µg) C (µg) N (µg) n  
 
Euphausia superba F4 514 +  27.4   160† 43.6† 8 
    
Euphausia superba F5 809 + 41.6  221† 60.1† 10 
    
Euphausia superba F6 1,080 + 51.0  277† 75.2† 26 
    
Euphausia superba Juv/20 mm 10,309‡ 4,264‡ 879‡ 33  
 
Thysanoessa macrura  Juv/11–15mm 6,478 3,279 565 5  
  
Thysanoessa macrura Juv/15-20 mm 14,530 7,369 1039 4  
 
Metridia gerlachi Fe 313  103 20.1 6  
 
Calanus propinquus   Fe & Ma 1,173 571 88.6 19 
 
† C = 406*DW-37.2, N =83.3*DW-1.10 (Daly submitted) 
‡ C = 0.06*L3.73, N = 0.02*L3.57, DW = 0.7*L3.20 (Daly unpublished)   

 

The digestion process may be described in terms of five stages based on observations 

from 18 of the winter experiments (Table 4, Fig. 11).  The time intervals for each 

digestion stage are shown for each experiment in Fig. 12.  Three digestion time 

experiments were omitted from the assessment of average stage duration, because small, 

lingering portions of prey tissue or an excessive amount of food ingested resulted in 

exceptionally long digestion times.  The digestion process began with the ingestion of 

prey (Stage I), and ended when most (<0.5 mm digested matter remaining) or all of the 

digested matter was cleared from the gut (Stage V).  Callianira antarctica typically 
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digested the soft tissue first, and egested the exoskeletal remains through its mouth last.  

There were a few occasions, however, when soft tissue remained after all of the 

exoskeletal parts were egested.  For all eighteen experiments analysed, Stage II occurred 

within 5 h after ingestion of prey, and Stage III took place within 9 h.  The duration of 

Stages IV and V were much more variable, ranging from 3 to 18 h and 5 to 21 h, 

respectively, and appeared to be highly influenced by prey type and/or carbon content 

(Fig. 12).  

Digestion times for all experiments (n = 21) ranged from 5 to 46 h, although in 86% 

of the experiments digestion was completed within 8 to 20 h, with a median time of 11.5 

h.  Neither total digestion time nor the hourly digestion rate as a function of ingested prey 

dry weight (digestion [mg prey DW]-1 h-1) were correlated (p = 0.5) with ctenophore size 

(Fig. 13).  Total digestion time was positively correlated with ingested prey dry weight, 

carbon content, and nitrogen content (Fig. 14); the strongest correlation being with 

ingested carbon (r = 0.95, P < 0.05).  The influence of prey type on digestion time was 

directly related to the elemental composition of the prey, i.e. species rich in carbon and 

nitrogen usually took longer to digest than species lower in elemental composition.  

Based on two trials, T. macrura typically took 1.4 times longer to digest than a E. 

superba of similar or larger size, probably because T. macrura had on average 1.7 times 

higher carbon content (E. superba: 4.26 mg C; T. macrura: 7.37 mg C).   However, when 

multiple E. superba furcilia 6 were ingested, the meal, totalling less than 2.0 mg of 

carbon content, took almost a half hour longer to digest than the E. superba juvenile 

mentioned previously.  In this case, the size of the food bolus or refractory body 

components may have retarded the digestion process.  Even though digestion time 
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increased with the ingestion of more than one individual of the same prey type, a 

doubling or tripling of prey ingested did not usually correspond with a doubling or 

tripling in digestion time (Fig. 15). 

 
Table 5. Callianira antarctica.  Digestion stage categories defined from winter 2002 digestion t ime 
experiments 
 

Stage Hours Description 
 I  -- Newly ingested prey, perfectly intact. Can usually see small 

amount of tentacle mass in bottom of pharynx. 
 
 II 1 to 5 Losing distinguishable shape due to soft tissue digestion. 
 
 III 2 to 9 Soft tissue completely separated from carapace, and usually 

sequestered at the bottom of the pharynx as one mass. 
 

 IV 3 to 18 Only small amount (equal to or less than 1.0 mm2) of digestive 
tissue remaining in stomodeum. Pieces of exoskeleton may or 
may not be completely egested. 

 
 V 5 to 21 Most or all soft tissue and/or exoskeletal pieces digested or 

egested.  

 

 

Figure 11. Callianira antarctica.  Images of Euphausia superba in the ctenophore stomodeum during 
digestion Stage (from top left to bottom right) I, II,III/IV and V of digestion.  Es=Euphausia superba, 
S=stomodeum, T=tentacle, If= infundibulum, Ex=exoskeleton, Dm=digested matter, M=mouth, Pc= 
pharyngeal canal.  
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Figure 12. Callianira antarctica.  Digestion stage intervals (h) for each experiment in relation to 
ctenophore length.  The type, as identified in the legend, and number of prey digested are displayed for 
selected experiments.  
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Figure 13. Callianira antarctica.  Ctenophore length versus (A) digestion time and (B) weight-specific 
digestion rate. 
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Figure 14. Callianira antarctica.  The relationship between total digestion time and (A) ingested prey dry 
weight, (B) total carbon, and (C) total nitrogen content. 
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Figure 15. Callianira antarctica.  Number of prey ingested versus total digestion time.  Prey types are 
represented by different symb ols as indicated by the figure legend. 
 
  

Lipid storage.  Callianira antarctica does not have oil sacs like those found in M. 

ovum, instead lipids from prey accumulate in the stomodeum (Larson & Harbison 1989).  

The presence or absence, and accumulation of lipid reserves found in the stomodeum of 

C. antarctica collected during this study was recorded before, during and after winter 

digestion experiments (Fig. 16).  Lipid was not present in the ctenophore stomodeum at 

the beginning of 29% of the experiments, half of which involved digestion of larval E. 

superba, and the other half involved digestion of M. gerlachii and C. propinquus.  None 

of the experiments with larval E. superba as prey resulted in the presence of lipid after 

digestion, but all of the experiments with copepods did result in the presence of lipid.  Of 

the experiments that began with lipid present in the ctenophore stomodeum (53%), in all 

cases, including those with krill larvae, the lipid “droplet” increased in volume with each 

meal, the amount of increase varying with prey number and type.  Digestion of C. 
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propinquus resulted in the largest percent increases (>100%) in lipid volume (Fig. 16).  

The percent increase from M. gerlachii and euphausiid juveniles was consistently low, 

whereas larval E. superba was highly variable, but lower than that of C. propinquus.  
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Figure 16. Callianira antarctica.  Percent increase in lipid volume measured in guts of C. antarctica after 
digestion of prey.  Length of the ctenophore, and the number (in parentheses) and type of prey digested are 
shown for each experiment.  Es  F=Euphausia superba, Tm=Thysanoessa macrura , Cp=Calanus 
propinquus, Mg=Metridia gerlachii, J=juvenile. 
 

 

Lipid biomarker analysis.  A composite sample of 7 ctenophores collected in 

autumn (2002) and 2 ctenophores collected in winter (2002) were analyzed for total lipid 

content and lipid class composition.  Total lipid content in C. antarctica was slightly 

higher in winter (4.76 ± 0.57 % DW) than in autumn (3.51%DW), with phospholipids 

(PL) accounting for more than 50 % of the total lipid content (Fig. 17).  Free fatty 

alcohols (FALC), which are products of hydrolysis of dietary wax esters, were also 

detected at levels > 10% of total lipid content.  The lipid class composition differed 
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seasonally in that significant amounts of wax esters (WE) and triacylglycerols (TG) were 

only detected in animals from autumn.  Both euphausiids and copepods contained 

relatively large quantities of lipid, =10% of dry weight, with the exception of larval krill 

from winter, which had comparatively smaller quantities (Fig. 17).  WE were by far the 

dominant lipid class for copepods during both seasons, while TG and PL were observed 

in equal amounts in the adult E. superba.  Larval E. superba from winter contained 

mostly PL, and smaller amounts of cholesterol and TG.   
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Figure 17. Total lipid content and lipid class compositions (PL=Polar lipids, CS=Cholesterol, FFA=Free 
fatty acids, TG =Triacylglycerols, WE=Wax esters, FALC=Free fatty alcohols) of ctenophores and their 
potential prey sampled during autumn (A) and winter (B). CT= Callianira antarctica , ES=Euphausia 
superba, EC=Euphausia crystallorophias, PA=Paraeuchaeta antarctica , CA=Calanoides acutus, 
AO=Antarctomysis ohlini, MG=Metridia gerlachei, CP=Calanus propinquus.  Data without error bars 
represent the composite samples.  From: Ju et al. submitted. 
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Table 6. Callianira antarctica.  Fatty acid and alcohol composition (% of total fatty acid and alcohol) of 
ctenophores sampled during autumn and winter, 2002. From: Ju et al. submitted 
 

 Fall*  (n=5) Winter (n=2) 

 Acid Alcohol Acid Alcohol 
n-Saturates     

12:0 Tr - 1.3±0.6 - 
14:0 6.6 2.8 5.6±0.8 - 
16:0 15.5 2.2 16.3±1.0 - 
18:0 1.5 0.1 1.4±0.1 - 
20:0 0.1 Tr 0.1±0.1 0.1±0.1 
22:0 - - - 0.2±0.0 

     
Monounsaturates     

14:1(n-3) Tr - Tr - 
16:1(n-9) Tr - Tr - 
16:1(n-7) 7.6 0.4 6.4±0.6 - 
16:1(n-5) 0.2 - 0.2±0.0 - 
16:1(n-3) Tr - Tr - 
18:1(n-9) 14.4 0.9 10.2±0.9 - 
18:1(n-7) 5.1 - 5.9±1.2 - 
18:1(n-5) 0.4 - 0.5±0.1 - 

20:1+ 11.6 24.7 3.5±0.6 38.6±0.2 
22:1+ 1.2 68.1 0.7±0.1 59.1±0.6 

24:1(n-9) - - - 0.5±0.1 
     
Polyunsaturates     

16:2(n-6) 0.6 - 0.9±0.0 - 
16:3(n-4) 0.2 - Tr - 
16:4(n-1) 0.4 - Tr - 
18:3(n-3) 0.1 - 0.2±0.1 - 
18:4(n-3) 1.0 - 1.8±0.8 - 

18:2+ 1.1 - 2.4±0.4 - 
20:2(n-6) 0.2 - 0.7±0.1 - 
20:4(n-3) 0.3 - 0.6±0.2 - 
20:4(n-6) 0.5 - 0.7±0.1 - 
20:5(n-3) 21.4 - 26.0±1.3 - 
22:4(n-3) Tr - - - 
22:5(n-6) Tr - 0.5±0.2 - 
22:6(n-3) 9.3 - 12.1±0.9 - 

     
Branched & odd chain 0.5 Tr 1.6±0.3 1.5±0.5 

     
Total concentration 

(mg g-1 dry wt.) 
 

19.3 
 

3.8 
 

34.3±2.5 
 

6.9±0.5 
 

 
*Composite samples were used for analysis 
+Indicate all isomers combined 
-Not detected, Tr = trace amount (<0.1% of total concentration) 
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Table 7. Fatty acid (FA) and alcohol (ALC) compositions (% of total fatty acid and alcohol) of Callianira 
antarctica and there potential prey.  ES=Euphausia superba, EC=Euphausia crystallorophias, 
PA=Pareuchaeta antarctica, CA=Calanoides acutus, AO=Anarctomysis ohlini, MG = Metridia gerlachei, 
CP=Calanus propinquus.  From: Ju et al. (submitted) 
 

a) Fall 2002 
 ES -adult (n=4) EC-adult (n=3)  PA* (n=20) CA* (n=50) AO* (n=2)  

Species  Acid ALC Acid ALC Acid ALC  Acid ALC Acid ALC 
n-Saturates           

12:0 - -  1.3±0.1 - - - - - 1.3 - 
14:0 11.6±0.7 11.0±9.7 1.7±0.3 66.5±1.8 1.1 39.0 4.5 14.8 5.1 18.5 
16:0 24.4±1.1 5.9±8.1 17.9±0.7 5.9±8.1 2.9 25.1 10.1 20.0 17.0 24.3 
18:0 1.4±0.2 -  1.1±0.1 - 0.1 0.7 0.6 0.9 1.1 0.9 
20:0 Tr  -  - - Tr 0.2 0.2 0.4 0.1 0.6 
22:0 - -  - - - Tr - - -  0.2 

           
Monounsaturates           

14:1(n-3) 0.1±0.0 -  Tr - 0.4 0.4 Tr 0.1 0.1 0.1 
16:1(n-9) 0.1±0.0 -  0.1±0.0 - Tr - Tr - 0.1 - 
16:1(n-7) 7.2±0.7 -  6.0±0.7 1.7±0.2 27.0 4.9 9.3 3.7 9.1 3.1 
16:1(n-5) 0.2±0.0 -  0.1±0.0 - 0.2 - 0.3 - 0.2 - 
16:1(n-3) 0.1±0.0 -  0.1±0.0 - - - Tr - Tr - 
18:1(n-9) 13.2±1.4 76.5±20.

5 
38.6±2.0 Tr 27.0 7.3 6.2 5.3 16.9 10.5 

18:1(n-7) 7.6±0.4 -  13.4±1.5 - 2.5 Tr 4.6 Tr 6.4 Tr  
18:1(n-5) 0.1±0.0 -  0.1±0.0 - 0.7 - 1.1 - 0.7 - 

20:1+ 1.5±0.1 -  - - 8.4 12.9 10.3 44.3 6.7 24.3 
22:1+ 0.8±0.1 2.5±4.9 - - 1.2 6.1 9.2 9.7 -  13.7 

24:1(n-9) - -  - - - 0.6 - - -  2.3 
           
Polyunsaturates            

16:2(n-6) 0.9±0.1 -  1.0±0.1 - 0.5 - 0.9 - 0.6 - 
16:3(n-4) 0.2±0.0 -  0.1±0.0 - 0.6 - 1.1 - 0.1 - 
16:4(n-1) 0.7±0.0 -  0.1±0.0 - 1.7 - 4.5 - 0.3 - 
18:3(n-3) 0.1±0.0 -  0.1±0.0 - 0.1 - 0.1 - 0.1 - 
18:4(n-3) 1.2±0.3 -  0.9±0.1 - 1.9 - 2.7 - 0.6 - 

18:2+ 0.7±0.0 -  1.6±0.2 - 1.0 - 1.3 - 0.9 - 
20:2(n-6) - -  - - Tr - Tr - 0.2 - 
20:4(n-3) 0.2±0.1 -  0.1±0.0 - 0.2 - 0.7 - 1.3 - 
20:4(n-6) - -  - - 1.1 - 0.2 - 0.2 - 
20:5(n-3) 21.3±1.2 -  13.2±1.2 - 13.6 - 20.0 - 15.1 - 
22:4(n-3) - -  - - 0.5 - 1.4 - 0.4 - 
22:5(n-6) - -  - - Tr - - - 0.3 - 
22:6(n-3) 3.9±0.5 -  0.9±0.2 - 6.2 - 7.3 - 11.4 - 

           
Branched & odd 

chain 
2.4±0.1 -  1.7±1.1 1.5±0.3 1.9 3.0 2.6 1.0 1.7 1.5 

Total 
concentration 

(mg g- 1 dry wt.) 

 
236.2±32

.8 

 
0.2±0.1 

 
217.7±12

.5 

 
79.5±8.6 

 
222.9 

 
118.4 

 
190.7 

 
148.0 

 
56.9 

 
8.0 

  

Continued on the next page 

 

 

 

 

 
 
 



    

 45 

Table 7. (continued) 

b) Winter 2002 
 
 

ES -adult 
(n=6) 

ES -juvenile 
(n=4)  

ES -furciliae* 
(n=4) 

PA* 
(n=10) 

MG* 
(n=20)  

CP-female* 
(n=10)  

Species  Acid Acid Acid ALC Acid ALC Acid ALC Acid 
n-Saturates          

12:0 - 1.9±1.3 3.2 - 2.2 1.3 0.9 - 0.9 
14:0 13.4±1.9 11.6±1.8 3.2 37.6 1.4 32.3 0.5 37.5 2.6 
16:0 24.5±1.9 25.1±1.4 19.3 35.4 2.8 33.2 5.6 34.1 13.1 
18:0 1.3±0.2 1.7±0.3 1.0 2.5 0.3 1.6 0.4 2.8 1.0 
20:0 Tr  Tr Tr 0.3 Tr Tr Tr Tr 0.5 
22:0 - - 0.1 - - Tr - Tr 0.2 

          
Monounsaturates           

14:1(n-3) 0.2±0.0 Tr Tr - - 0.4 Tr 0.2 Tr 
16:1(n-9) Tr  Tr Tr - 0.1 - Tr - Tr 
16:1(n-7) 9.5±1.2 9.4±1.2 4.3 0.7 26.4 3.1 9.4 3.7 4.5 
16:1(n-5) 0.3±0.2 0.3±0.1 0.1 0.5 0.2 1.0 0.1 0.9 0.2 

   16:1(n-3) Tr  0.1±0.0 0.1 0.4 Tr 1.0 Tr 0.9 Tr 
18:1(n-9) 13.2±0.8 12.1±0.7 10.5 1.4 33.9 6.4 25.4 8.9 1.6 
18:1(n-7) 7.7±1.2 6.8±0.6 8.5 - 2.7 1.9 3.1 1.2 1.4 
18:1(n-5) 0.1±0.1 0.2±0.0 0.3 - 0.7 - 0.4 0.2 2.0 

20:1+ 1.3±0.5 0.9±0.0 1.2 3.8 3.3 5.7 12.0 0.8 4.6 
22:1+ 0.6±0.4 - - 11.8 0.2 4.2 - 0.3 45.6 

24:1(n-9) - - - - - 1.6 - 1.7 2.3 
           
Polyunsaturates           

16:2(n-6) 1.0±0.2 1.4±0.1 0.8 - 0.6 - 0.8 - 0.5 
16:3(n-4) 0.2±0.0 0.3±0.1 0.2 - 0.2 - 0.3 - 0.1 
16:4(n-1) 0.7±0.1 1.3±0.3 0.5 - 0.4 - 0.7 - Tr 
18:3(n-3) 0.3±0.0 0.3±0.1 0.2 - 0.2 - 0.2 - Tr 
18:4(n-3) 1.7±0.4 2.7±0.6 1.6 - 3.0 - 2.7 - 0.4 

18:2+ 1.8±0.7 1.7±0.6 1.9 0.7 2.0 0.4 3.2 0.4 0.7 
20:2(n-6) Tr  - 0.1 - Tr 0.2 Tr - Tr 
20:4(n-3) 0.3±0.2 Tr 0.2 - 0.3 - 0.6 - 0.9 
20:4(n-6) 0.3±0.3 0.2±0.1 1.0 - 0.2 - 0.3 - Tr 
20:5(n-3) 13.6±1.1 14.5±2.3 24.4 - 9.4 - 18.4 - 5.7 
22:4(n-3) - - - - - - - - 0.2 
22:5(n-6) 0.2±0.1 - Tr - 0.7 - 1.2 - 4.9 
22:6(n-3) 4.0±1.2 2.6±0.6 12.6 - 7.6 - 12.6 - 0.6 

          
Branched & odd 
chain 

3.8±0.8 8±0.1 4.7 5.1 1.3 5.8 1.1 6.4 2.3 

Total 
concentration 
(mg g-1  dry wt.) 

 
223.4±61

.0 

 
210.0±17.0  

 
59.5 

 
2.5 

 
188.4 

 
93.7 

 
108.1 

 
55.6 

 
194.5 

  

None or only trace amounts (<0.1 mg g-1 dry wt.) of fatty alcohols (20:1+) were found in ES-adult, ES-juvenile, and CP.   
*Composite samples were used for analysis. 
+Indicate all isomers combined. 
 -Not detected. 
 Tr = trace amount (<0.1% of total concentration). 
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The individual lipid compositions (i.e., FA, alcohols and sterols) of C. antarctica 

were relatively constant between seasons.  Fatty acid (FA) and alcohol composition of 

ctenophores sampled in autumn and winter are shown in Table 6, and results for their 

prey shown in Table 7.  The total FA concentration in winter (34.3 mg [g DW]-1) was 

substantially higher than the autumn concentration (19.3 mg [g DW]-1).  Callianira 

antarctica contained a wide range of FA, ranging from C12 to C24, however the 20:5(n-3), 

16:0, and 18:1(n-9) species were the primary FA observed in ctenophores.  These fatty 

acids were also dominant in both copepods and krill for both sampling seasons.  Small 

amounts of monounsaturated fatty alcohols, particularly 20:1 and 22:1, were also found 

in both autumn and winter ctenophores.  Euphausia superba furcilia and the copepod, 

Paraeuchaeta antarctica, were the only prey items to contain these alcohols at noticeable 

levels.  The sterol concentration in ctenophores also increased between autumn and 

winter, from 0.3 to 1.2 ± 0.2% DW, respectively, though low sterol levels were observed 

overall (Table 8). The sterol distributions of ctenophores were similar to those for krill, 

particularly E. superba furcilia.  The two dominant sterols found in ctenophores, 

cholesterol and choleta-5, 24-dienol (C27∆5,24), were found in similar concentrations in all 

prey species. 

Gut contents.  The gut contents of C. antarctica during winter 2001 (n = 20), 

autumn 2002 (n = 43) and winter 2002 (n = 82) were examined to determine in situ 

feeding.  For all seasons, 40% or more of ctenophore guts did contain prey remains 

(excluding lipids), and of those with digested matter, very few contained recognizable 

prey in Stages I or II of digestion.  A majority of the digested matter found in gut 

contents from all three sampling periods consisted of small portions of small “clumps” of 
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light-colored gummy material typical of Stage IV digestion.  Diet items in varying stages 

of digestion indicated that ctenophores ingested multiple overlapping meals. 

During winter 2001, 20% of the guts were completely empty, 30% had lipid only, and 

50% of the ctenophores had digested matter in their guts (Fig. 18). Thirty-five percent of 

the digested matter was recognizable prey.  Euphausiid furcilia made up the majority of 

recognizable prey (82.6%), and copepods and amphipods (e.g., Primno macropa) both 

contributed 8.7%.  Calanus propinquus, which was the only identified species of 

copepod, made up 4% of the copepods (Fig. 19).  During autumn 2002, 20.5% of the guts 

were completely empty, 20.5% of the ctenophores had lipid only, and 59.1% had digested 

matter of some form in their guts (Fig. 18). Only 16% of the digested matter was 

recognizable prey, consisting mostly of copepods (39% C. acutus, 28% C. propinquus, 

and 22% unidentified remains of copepods), and few euphausiid furcilia (11% of 

recognizable prey; Fig. 19).  Although a larger number of ctenophores were examined for 

gut content analysis during winter 2002, the results were similar to those from the two 

previous seasons.  Of the 82 ctenophores examined, 28.1% of the guts were completely 

empty, 26.8% had lipid only, and 45.1% had some form of digested matter (Fig. 18).  

Only 11% of the digested matter found in the guts was recognizable prey remains, the 

rest typically consisted of material in Stages III and IV of digestion.  The recognizable 

prey consisted of euphausiids and copepods at 38.5% and 61.5%, respectively.  M. 

gerlachii and C. acutus were the only species of copepod that could be identified (8% of 

recognized prey each; Fig. 19).  Copepods that were too far into the digestion process to 

be identified to genera made up 31% of recognizable prey. 
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Figure 18. Callianira antarctica.  Gut contents of ctenophores collected during three seasons; from left to 
right: winter 2001 (n = 20), autumn 2002 (n = 43), winter 2002 (n = 82).  RD=Recognized, 
URD=Unrecognized. 
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Figure 19. Callianira antarctica.  Prey type making up the “recognizable prey” portion of gut contents 
from ctenophores collected during three seasons: winter 2001 (n=23), autumn 2002 (n=18), winter 2002 
(n=13). 
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DISCUSSION 
 

 Chemical composition.  Callianira antarctica did not undergo a large seasonal 

change in elemental composition between autumn and winter, but there was greater 

variability in the carbon and nitrogen content of winter ctenophores than in autumn 

animals, particularly for larger individuals.  These findings may have been an artifact of 

the small sample sizes, especially for autumn.  Variability in ctenophore body carbon has 

been related to prey availability (Kremer 1982, Reeve et al. 1989), which was shown to 

largely decrease between autumn and winter in our study area (Ashjian et al., in press).  

Therefore patchy distribution of prey during winter may account for the variability in the 

winter samples.  Another source of variability in the elemental composition could be due 

to the collection method.  Given that the body carbon in ctenophores is unevenly 

distributed among the tentacles, gut wall and comb rows (Reeve et al. 1989), loss of 

portions of the tentacles on some individuals during net collection would contribute to 

differences in carbon content.  However during winter, gentler collection with SCUBA 

and drift nets, in addition to net tows, allowed for retrieval of ctenophores in excellent 

condition.  In addition, regardless of the collection method, great effort was made to 

ensure that only complete animals in excellent condition were saved for chemical 

analysis, which would greatly reduce this source of error.  Because the geomean carbon 

and nitrogen values for both seasons were similar to each other (autumn: 8.6 and 1.80% 

DW, respectively; winter: 8.35 and 1.92% DW, respectively) averages of the pooled data 

are used in the discussion below.   

Callianira antarctica has a high water content and low organic mass, which is 

characteristic of all ctenophores and other gelatinous zooplankton (Percy & Fife 1981, 
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Hoeger 1983, Clarke et al. 1992).  Because of the high water content and the fact that 

conventional drying methods do not completely free gelatinous tissue of its bound 

moisture (Larson 1986, Clarke et al. 1992), the measured dry weights may be 

overestimated.  The methodology used in this study, however, is similar to that used by 

other gelatinous zooplankton investigators; therefore, the data may be compared to other 

published values.  The mean DW for C. antarctica (4.2% WW) is within the range (1 to 

7%) reported for other ctenophores (Kremer 1977, Hoeger 1983, Martinussen & 

Båmstedt 1999), and closely resembles values given for other polar cydippids, such as 

Pleurobrachia sp. (4.4%) from the Antarctic (Clarke et al. 1992), and P. pileus (4.0%) 

and M. ovum (4.5 to 4.9%) from the Arctic (Hoeger 1983, Percy 1988).  The 78.9% ash 

content for C. antarctica is slightly higher than the ash content reported for 

Pleurobrachia sp. (68.3%) from the Southern Ocean (Clarke et al. 1992), and is 

consistent with the high ash content values typical of gelatinous zooplankton due to the 

considerable inorganic salt content of the dry mass (Ikeda 1971, Hoeger 1983, Kremer et 

al. 1986a, Larson 1986).   

Body carbon and nitrogen contents of C. antarctica are low in comparison with non-

gelatinous marine zooplankton, but are similar to other ctenophores from polar regions, 

and higher than temperate and tropical species.  The geomean carbon and nitrogen 

values, 8.41 and 1.83% DW respectively, for C. antarctica are four to five times lower 

than most non-gelatinous species of zooplankton from the Southern Ocean (Donnelly et 

al. 1994), but are only slightly lower than values for Beroe sp. (9.51 and 2.22% DW; 

Clarke et al. 1992) and Mertensiidae sp. (11.2 and 2.4%; Ikeda & Bruce 1986), and two-

fold higher than those for Pleurobrachia sp. (4.11 and 0.74% DW; Clarke et al. 1992) 
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from the Southern Ocean.  The mean carbon value for C. antarctica is also more than 

double the value for P. pileus (3.4%) from the Arctic, but similar to that for Beroe 

gracilis (7.2%; Hoeger 1983).  Carbon and nitrogen concentrations in C. antarctica are 

also more than four times higher than those in epipelagic ctenophores from temperate and 

tropical regions (reviewed in Youngbluth et al. 1988).  The elevated carbon levels in C. 

antarctica in comparison to temperate and tropical ctenophores are expected, as high 

latitude species typically have higher carbon content than similar species in lower 

latitudes (Ikeda 1977).  The more than two-fold difference in carbon and nitrogen 

concentrations between C. antarctica and Pleurobrachia sp. from both the Arctic and 

Antarctic is not as easily explained.  Both groups are moderately robust species of 

cydippids that, for the most part, are able to withstand net collection techniques that 

severely damage more delicate ctenophores.  Callianira antarctica is a larger species of 

ctenophore (Hoeger 1983, O’Sullivan 1986), however, that may structurally require a 

higher carbon and nitrogen concentration.  Without further morphometric analysis of the 

two species we cannot account for the difference in elemental composition.  

Metabolic rates.  Callianira antarctica metabolic rates were very similar to those of 

Mertensiid ctenophores from the Antarctic, but were higher than those measured for M. 

ovum from the Arctic (Table 2).  The geomean weight-specific oxygen consumption rate 

for C. antarctica (0.163 µl O2 [mg DW]-1 h-1) is only slightly higher than the mean value 

for Mertensiidae sp. (0.129 µl O2 [mg DW]-1 h-1) measured at –1.6oC during austral 

spring in the Prydz Bay region of the Antarctic (Ikeda and Bruce 1986).  The geomean 

nitrogen excretion rates from these same studies are very close as well:  9.39 µg-at N [mg 

DW]-1 h-1 for C. antarctica vs. 8.11 µg-at N [mg DW]-1 h-1 for Mertensiidea sp.   The wet 
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and dry weights of C. antarctica and Mertensiidae in the experiments were nearly 

identical, and the temperatures were similar despite the difference in season.  In contrast, 

the geomean weight-specific oxygen consumption rate for C. antarctica was more than 

twice the mean rate measured for the Arctic cydippid M. ovum (0.074 ± 0.028 µl O2 [mg 

DW]-1 h-1), and C. antarctica’s geomean nitrogen excretion rate was almost two orders 

of magnitude greater than the mean value for M. ovum (0.24 µg-at N [mg DW]-1 h-1) 

during winter (Percy 1988).  The season of sampling, temperature, size range, and mean 

DW (%WW) for C. antarctica were all similar to that of M. ovum, however, the median 

total wet and dry weight (mg) for C. antarctica was only a quarter of mean wet and dry 

weight (mg) for M. ovum.  The larger mass of M. ovum may account for the lower 

specific metabolic rate in comparison to C. antarctica, as larger animals tend to have 

lower weight-specific respiration and nitrogen excretion rates (Ikeda 1970, 1974 & 

1985).   

The metabolic rates of ctenophores are also significantly affected by feeding history 

(Kremer 1982).  Percy (1988) attributed a 30% decline in M. ovum respiration rates 

between summer and winter to a substantial decrease in seasonal abundance of prey.  

Adult M. ovum occurs in the upper 30 m of the water column in Frobisher Bay in the 

Canadian eastern Arctic throughout the year, but were not collected in nets set just below 

the sea ice during winter, and therefore may not take advantage of the zooplankton 

community below the undersurface of the ice (Percy 1989).  In contrast, during our study, 

diver observations and gut content analysis proved C. antarctica to be an effective 

predator on larval and juvenile krill associated with the undersurface of sea ice.  

Exploitation of this winter food source may provide a predatory advantage and contribute 
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to C. antarctica’s higher winter metabolic rate compared with that of M. ovum.  The 

disparity in metabolic rates between C. antarctica and M. ovum also can be considered in 

a evolutionary context by application to the hypothesis that the Arctic is a “younger” 

ecosystem and its species may not be fully adapted to the colder waters; therefore, the 

metabolic rates of Arctic species will be lower than those species from the Antarctic 

(Holeton 1974, Clarke 1984; as referenced in Ikeda et al. 2000).  While this application 

may be interesting, and possibly valid, the hypothesis has yet to be substantiated (Ikeda 

1989). 

The geomean weight-specific oxygen consumption rate of C. antarctica is at the 

lower end of the range given for P. pileus (0.140–0.280 µl O2 [mg DW]-1 h-1; Ikeda 1974) 

and other ctenophores from temperate and tropical regions (0.129-0.848 µl O2 [mg DW]-1 

h-1; as referenced in Percy 1988).  These findings are consistent with the general rule that 

oxygen consumption for polar species of zooplankton is low in comparison to temperate 

and tropical species (Ikeda 1970 & 1974, Clarke & Peck 1991), due in large part to the 

differences in habitat temperature (Ikeda 1985).  If a Q10 of 2 is assumed (Prosser 1961, 

Percy 1988), at 10oC C. antarctica would respire at a rate (0.326 µl O2 [mg DW]-1 h-1) 

slightly greater than rates measured for Pleurobrachia spp. at similar temperatures (0.26-

0.28 O2 [mg DW]-1 h-1 at 7.5-13oC; Hirota 1972, Ikeda 1974), indicating cold adaptation 

in C. antarctica. 

The linear regression of log- log transformed data (GM) for oxygen consumption in 

terms of dry weight and carbon content indicated a weight-dependent respiration for C. 

antarctica.  Values of ‘b’ indicating weight-dependent respiration in the range of 0.6 to 

0.9 are characteristic of ctenophores and marine zooplankton in general (Ikeda 1974, 
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Ikeda & Mitchell 1982, Kremer et al. 1986b, Bailey et al. 1994, Percy 1988, Ikeda et al. 

2000).  However values ranging from 0.9 to 1.28, indicative of weight- independent 

respiration, have been reported for ctenophore species such as Mnemiopsis leidyi (Kremer 

1977), Mnemiopsis mccradyi (Kremer 1982) and Bathyocyroe fosteri (Youngbluth et 

al.1988).  Bailey et al. (1994) attributed the variability in ‘b’ values among species of 

ctenophores to methodological treatments as well as low sample sizes in the studies.  

Further experiments with larger samples sizes are necessary in order to confirm C. 

antarctica’s metabolic relationship to size. 

Maintenance carbon rations and body turnover.  Smaller C. antarctica required a 

higher carbon-specific maintenance ration to support metabolic processes than larger 

ctenophores during winter.  The minimum amount of carbon that C. antarctica needed to 

ingest daily during winter was calculated to be 3.61 µg to 0.190 mg for small ctenophores 

(average 2.7% to 3.6% total body carbon), and 0.151 to 1.13 mg for larger ctenophores 

(average 1.4% to 1.9% total body carbon).  The higher maintenance ration for smaller C. 

antarctica was due to having higher weight-specific respiration rates combined with a 

lower carbon content on a per unit weight basis.  The mean daily maintenance ration 

(1.5% body C d-1; Ikeda & Bruce 1986) for large Mertensiidae from the Antarctic in early 

summer is within the range of average values for large C. antarctica.  The range in 

maintenance rations reported here are greater than that estimated for M. ovum of a similar 

size range from the Arctic during winter (ca. 0.2 to 1.5% body C d-1, RQ: 0.8; Siferd & 

Conover 1992), but smaller than that reported for mesopelagic and epipelagic 

ctenophores (5 to 11% body C d-1) from tropical waters between spring and autumn 

(Kremer et al. 1986b, Youngbluth et al. 1988).   
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Even if we assume a very conservative assimilation efficiency of 70% (Reeve et al. 

1978), the maximum daily carbon requirement to support metabolism for small C. 

antarctica during winter would be satisfied with the ingestion of one larval (F6) E. 

superba, one adult C. propinquus, or two M. gerlachii.  Larger ctenophores (>20 mm) 

would need to ingest up to 6 larval (F6) E. superba, 16 M. gerlachii, 3 C. propinquus or 1 

juvenile E. superba or T. macrura each day.  Average winter digestion times (e.g., 10.0 

and 16.5 hours for prey items under 1.0 and 2.0 mg C, respectively) would allow for 

multiple meals each day, suggesting that C. antarctica may have been able to meet, and 

possibly exceed, the maintenance daily carbon requirement.  Ingestion rate experiments 

with C. antarctica in austral autumn indicated that at prey concentrations of ca 40 µg C-1 

l-1, the minimum daily ration was equivalent to 17% of body carbon (Scolardi et. al 

submitted).  Ingestion rates for winter are not likely to be as high as the autumn rates due 

to reduced temperatures and prey concentrations, yet a reduction in ingestion rates as 

large as one half the original would still bring in sufficient food to meet minimum 

maintenance rations, although very little to none will be left for allocation to growth and 

reproduction. 

Feeding ecology: experimental. Sluggish digestion rates may be the limiting factor in 

the amount of carbon C. antarctica can process in excess to the minimum maintenance 

ration on a daily basis.  The mean winter digestion time for C. antarctica (11.5 h) was 

substantially longer than values reported for temperate and tropical ctenophores (Fig. 20; 

range 0.2 - 5.8 h, T = 5 - 26°C).  Copepods in tropical waters (25 – 27oC) are typically 

digested in less than 3 hours (Reeve 1980, Kremer et al. 1986a, Larson 1987b), whereas 

C. antarctica took 9 to 12 h to digest a single copepod in our study.  Unfortunately there 
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are few investigations on digestion processes of polar ctenophores for comparison.  

Mertensia ovum from the Canadian High Arctic digested <1 mm to 6 mm copepods 

significantly faster (1.5 to 4 h; Siferd & Conover 1992) than C. antarctica.  The M. ovum 

rate is shown in Fig. 20 as a comparison with the other published rates, but was not 

included in the functional relation between digestion rate and temperature because 

temperatures in the experimental aquaria (=1.5oC) were higher than in situ winter 

temperatures, which would have resulted in more rapid digestion of prey.  Also, the 

authors did not include egestion of the indigestible exoskeleton in the gut evacuation 

time, which may have shortened the actual digestion time.  For all other published 

digestion rates, temperature explained almost 50% of variability in the digestion time of 

different prey types ranging from fish eggs to euphausiid larvae (Fig. 20).   
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Figure 20. Relationship between digestion time and incubation temperature for ctenophores. Data from: 
Reeve and Walter (1978), Reeve (1980), Sullivan & Reeve (1982), Frank (1986), Larson (1987a,b), 
Monteleone and Duguay (1988) and this study.  Callianira antarctica rates designated by triangle; the data 
designated by the X, (Siferd & Conover 1992), was not included in the functional relationship; see 
explanation in text.  
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Winter digestion times for C. antarctica were independent of ctenophore size, but 

highly correlated with prey number.  The influence of prey number was two-fold: 

digestion time lengthened with the increasing amount of prey carbon consumed, and was 

further retarded by the size of the food bolus and/or accumulating chitineous 

exoskeletons in the gastrovascular cavity.  Other studies have shown a lack of correlation 

between digestion time and ctenophore size, but a positive correlation with prey number 

(Martinussen & Båmstedt 1999, Larson 1987b).  However, Martinussen & Båmstedt 

(1999) also found that that digestion time in two species of scyphomedusa decreased with 

increased medusa diameter, but increased with prey number.  In addition, Reeve (1980) 

reported that the mean digestion time of Mnemiopsis mccradyi decreased from two to one 

h after it reached > 4 mm in length.  However, this decrease was attributed to a change in 

the selection of food at this size; after this adjustment, the digestion time remained 

consistent through 13 mm.  Reeve (1980) observed an increase in digestion time in M. 

mccradyi with increasing prey number as well.   

Prey type also was a significant factor in influencing winter digestion time.  The 

influence of prey type is a function of the prey tissue structure, which governs the 

digestion process (Hirota 1974, Larson 1987a, Martinussen & Båmstedt 1999).  For C. 

antarctica, prey with greater lipid or carbon content, such as C. propinquus and T. 

macrura, took longer to digest than other prey of similar size.  That the digestion rate did 

not increase linearly with increasing ingested prey carbon indicates some level of 

enzymatic mediation is involved. The remaining variability in digestion times that cannot 

be explained by prey number or prey type may, therefore, reflect differences in enzyme 

function (Hirota 1974).   



    

 59 

Callianira antarctica assimilation efficiencies appeared to be very high since they 

egested little other than clear pieces of disarticulated exoskeleton during digestion 

experiments.  The major organic component of exoskeletons is chitin, which on average 

is 4.6% DW in copepods (Båmstedt 1986), and 4.0% DW in E. superba (Raymont 1983); 

hence, carbon assimilation efficiencies could be >90%.  The accumulation of lipid 

droplets in the stomodeum of C. antarctica suggests, however, that some portion of prey 

carbon is not immediately assimilated.  In his review of lipid composition of Antarctic 

zooplankton, Clarke (1984) found accumulation of wax ester (storage lipid) droplets in 

every ctenophore, tentatively identified as Pleurobrachia sp., that he examined.  Arctic 

gelatinous zooplankton are known to store lipid after feeding on copepods, which has 

been suggested as a survival strategy during times of low food availability (Percy 1988).  

Percy (1988) found that the ratio of oxygen consumed to nitrogen excreted (O:N) in M. 

ovum increased in winter, suggesting a shift towards lipid based metabolism fuelled by 

increased lipid reserves accumulated from their lipid-rich prey (copepods).  The results 

obtained from this study, however, indicate that C. antarctica lipid stores are not used as 

an over-wintering strategy.  Ctenophores in autumn had small concentrations of wax 

esters (storage lipid) and triacylglycerols (short term energy reserves), but zero levels of 

this lipid during winter.  The total lipid concentration actually increased in C. antarctica 

from autumn to winter, but was mostly due to an enrichment in structural lipids (PO).  In 

addition, excretion measurements for C. antarctia resulted in a geomean O:N ratio that 

was more indicative of protein than lipid-oriented metabolism.  Furthermore, the possible 

‘degrowth’ of some portion of the ctenophore population during winter, as suggested by 
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the length frequency distributions from autumn and winter, does not support the theory of 

lipid accumulations being used as an over-wintering strategy by C. antarctica.   

Accumulations of lipids in the gut of ctenophores may be used to infer ctenophore 

diets.  Lipid class analyses of these accumulations were not performed for this study, 

however, literature on lipid deposits in the stomodeum of Antarctic ctenophores (Clarke 

1984, Larson & Harbison 1989), indicates that these accumulations consisted mostly of 

WE or TG.  Due to the fact that lipid in Antarctic copepods are largely comprised of WE 

or TG (Clarke 1984, Hagen et al. 1993), whereas the lipid content of Antarctic 

euphausiids is more variable, implies that these sequestered lipids are mostly from the 

digestion of  copepods.  For example, copepodite stage V C. propinquus has a reported 

lipid content of 25 – 47% DW stored largely as WE (Conover & Huntley 1991), whereas 

immature E. superba in the WAP region had generally low levels of lipids (12 – 20% 

DW) stored primarily as TG (Stübing et al. 2003, Ju & Harvey in press).  Lipid content 

analysis of larval E. superba from this study had low lipid concentration, with no 

indication of WE.  However, T. macrura typically has a total lipid content of >50% DW, 

also predominantly stored as WE (Clarke 1984, Falk-Petersen et al. 1999), and therefore 

may also be a source of these lipid stores.   

Copepods as the primary source for the lipid accumulations is further supported by 

the digestion rate experiments, where differences in the quantity and type of lipids found 

in prey used in winter experiments resulted in varying accumulations of lipid in the 

stomodeum of C. antarctica, with the largest amount occurring after the digestion of 

copepods, particularly C. propinquus, rather than the digestion of larval euphausiids.  

Therefore, of the 20 to 30% of the ctenophores examined for gut contents that contained 
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only lipid droplets, with no other evidence of prey in their gut, it is likely that they had 

previously ingested copepods.  These results, however, do not exclude krill as a possible 

prey source.  Observations of lipid in the guts of ctenophores also do not necessarily 

indicate recent feeding either, as Larson & Harbison (1989) noted that accumulated lipids 

in the gut of C. antarctia from the Ross Sea during summer remained there for more than 

two weeks.     

The results of the lipid biomarker analyses allow us to make more definitive 

connections between ctenophore and their prey.  The observed low lipid concentrations 

(2-7% of dry weight) dominated by PO in C. antarctica is consistent with results reported 

for other Antarctic ctenophores (Clarke 1984, Nelson et al. 2000).  Wax esters and TG 

were detected in C. antarctica in autumn, but not in winter.  The presence of these two 

neutral lipid classes may reflect active feeding on lipid-rich copepods in autumn, and 

their absence in winter may suggests reduced feeding activity (Ju et al. submitted).  Major 

fatty acids (16:0, 16:1(n-7), 18:1(n-9), and 20:5(n-3)) observed in ctenophores were also 

found in larval and adult krill.  Significant amounts of the MUFA 20:1 and 22:1 were 

found in ctenophores, which are known to be important component s of wax esters in 

calanoid copepods, although E. superba furcilia in this study also contained these 

alcohols at noticeable levels.  Cholest-5,22-dien-3β-ol (C27∆5,22), the major sterol in the 

Antarctic ice diatom Nitzschia cylindrus (Nichols et al. 1986; as referenced in Ju et al. 

submitted) accounted for a significant fraction of the total sterols in copepods and larval 

krill.  The appearance of this sterol in ctenophores indicates that copepods and larval krill 

may be a significant food source for C. antarctica during winter.   
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Lipid compositions in C. antarctica showed similarities with both copepods and adult 

krill for both seasons and larval krill in winter.  While adult krill were considered in the 

analysis, it is questionable that C. antarctica could successfully capture and ingest adult 

krill, although the breaking strength of ctenophore tentacles suggests that the tentacles of 

large C. antarctica could successfully hand le prey as long as 4 cm (Matsumoto pers. 

comm.)  The absence of copepod associated WE in winter animals does suggest a 

possible shift towards larval krill as a major source of food, which was strongly 

supported by gut contents analysis from the first winter, but to a lesser degree in winter 

2002. 

Feeding ecology: in situ.  Recognizable prey items from gut contents indicated that 

C. antarctica were preying predominantly on larval euphausiids during winter 2001, 

predominantly on copepods during autumn 2002, and on larval euphausiids and copepods 

during winter 2002.  Although there is some level of selectivity in prey capture with 

ambush predators, as they tend to catch relatively large, fast-moving prey (Greene et al. 

1986, Larson 1987c, Madin 1988, Purcell 1997), tentaculate ctenophores are 

opportunistic feeders, and as a result their gut contents reflect in situ prey concentrations 

and compositions (Frank 1986, Siferd & Conover 1992).  Diver and ROV observations 

under sea ice and results from net tows (Daly in press; Ashijian et al. in press) over three 

sampling periods support what was seen in the gut contents: larval E. superba 

concentrations were highest during winter 2001, lowest during autumn 2002, and variable 

in winter 2002.   

Although overall prey abundance varied between season and years, 40 – 55% of the 

gut contents for all three seasons did not contain any digested material, neither 
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recognized nor unrecognized.  This seasonal consistency contradicts the findings of Frank 

(1986), who concluded that the feeding incidence of P. pileus off southwestern Nova 

Scotia in the spring, which varied from an average of 46% to 84%, paralleled the total 

zooplankton biomass available to ctenophores.  Contrary to this, frequencies of empty 

guts reported for M. ovum (52% to 70%) from the Arctic (Siferd & Conover 1992), where 

prey densities are highly seasonal, compared to those for Bolinopsis vitrea (40 – 80%) 

from Bimini Harbor (Kremer et al. 1986a), which has low, but steady prey densities year 

round, show a similar range in feeding incidence despite differences in seasonal 

variability of total prey biomass.  This comparison indicates that factors other than total 

zooplankton biomass, such as prey patchiness, may significantly influence feeding in 

ctenophores.  The results of this study suggest that C. antarctica overcome decreased 

prey concentrations and increased prey patchiness by exploiting larval krill aggregations 

under the sea ice.  The important role of larval krill aggregations under sea ice in the 

feeding ecology of C. antarctica implies that the success of larval krill could be directly 

tied to the success of ctenophores during winter. 

While experimental digestion rates and information on ingestion rates indicate that C. 

antarctica are capable of meeting their metabolic requirements, the question still remains: 

do in-situ observations indicate that C. antarctica is successfully feeding?  This is not 

immediately obvious, as feeding incidences of ca 50% could mean half of the 

ctenophores are fed or half are starved.  We must give success a quantitative value, such 

as minimum daily ration.  Assuming that a large ctenophore ingests its minimum daily 

carbon requirement (1.13 mg C) in one sitting, then the equation in Fig. 14B can be used 

to calculate the time of digestion.  If it takes a total of 12.4 hours for the ctenophore to 
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digest its minimum carbon requirement for that day, then it can be said that there is a 

52% chance that this ctenophore will be caught with food in its gut.  This is a noticeably 

good match with the actual feeding incidence observed from the gut content analysis.  

Therefore, feeding incidences near 50% indicate that it is possible for ctenophores to 

successfully obtaining enough food to sustain metabolic needs during autumn and winter. 
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CHAPTER FIVE 

SUMMARY 

 Callianira antarctica, was the dominant ctenophore in the Marguerite Bay region 

with a widespread distribution during autumn and winter consisting mostly of adult 

ctenophores.  The annual occurrence of this species, based on both literature accounts and 

this study, suggests that there is a stable, persistent population of C. antarctica in the 

WAP region.  The mean abundance of C. antarctica during winter (0.45 ind. m-2) is 

significantly lower than ctenophore populations in temperate regions, but similar to the 

abundance of M. ovum found in the artic.  Specific circulation features, such as the large 

clock-wise gyre located over the north shelf where dense aggregations of ctenophores (>1 

ind. m-2) were found, may concentrate prey and predators within these areas, increasing 

chances of predation on zooplankton in an otherwise patchy environment.  Ctenophores 

were mostly distributed in the upper 200 meters of the water column; however the depth 

of maximum abundance occurred within and just below the pycnocline, where higher 

concentrations of prey may be found.  Day/Night tows indicating a sub-maximum 

occurrence of C. antarctica in the upper 50 m at night, and ROV observations of large 

numbers C. antarctica directly under the sea- ice with tentacles extended, suggests an 

increased predation impact on larval krill at night.  

Callianira antarctica is a physically robust tentaculate ctenophore containing 

relatively high concentrations of carbon and nitrogen.  Callianira antarctica’s winter 

metabolic rates were within the range of rates reported for other ctenophore species from 
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the Antarctic and the Arctic, and lower than that for most ctenophores from temperate 

waters.  Winter digestion rates of C. antarctica were slow compared with that of 

ctenophores from temperate and tropical habitats, and were highly dependent on prey 

type and number.  The extended digestion times during winter may ultimately limit the 

amount of carbon ctenophores can process on a daily basis and, therefore, the amount of 

carbon available for growth or reproduction after metabolic requirements are satisfied. 

Despite the decrease in potential prey abundances between autumn and winter 

(Ashjian et al. in press), the fact that (1) average digestion times (e.g., 10.0 and 16.5 

hours for prey items under 1.0 and 2.0 mg C, respectively) would allow multiple meals 

each day, and (2) about 50% of the collected ctenophores had food in their gastrovascular 

cavity, suggest that C. antarctica may have been able to meet, and possibly exceed, the 

maintenance daily carbon requirement, even during winter.  However, length frequencies 

distribut ions from fall and winter suggest ctenophores may be experiencing degrowth in 

winter.  Whether this decrease actually result ed from degrowth in ctenophores, or was the 

result of sampling two different populations is unclear.  Diver observations, net 

collections, and gut content analysis indicate that this species is an opportunistic predator 

that feeds on both copepods and krill during the day and night.  Lipid biomarker analysis 

and prey composition in the gut contents of ctenophores collected over autumn and 

winter suggest ctenophores do not utilize lipid reserves in times of low food availability, 

but instead may compensate for the seasonal decrease in prey abundance and increase in 

food patchiness by relying on under- ice aggregations of larval and juvenile krill to sustain 

metabolic needs.  Hence, dense aggregations of C. antarctica under the ice could have 

significant affects on the recruitment of larval euphausiids. 
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