University of South Florida

DIGITAL COMMONS Digital Commons @ University of

@ UNIVERSITY OF SOUTH FLORIDA South Florida
USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations
7-1-2004

Involution Codes with Application to DNA Strand Design

Kalpana Mahalingam
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

b Part of the American Studies Commons

Scholar Commons Citation

Mahalingam, Kalpana, "Involution Codes with Application to DNA Strand Design" (2004). USF Tampa
Graduate Theses and Dissertations.

https://digitalcommons.usf.edu/etd/1142

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.


https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Involution Codes: with Application to DNA Strand Design

Kalpana Mahalingam

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Mathematics
College of Arts and Sciences
University of South Florida

Major Professor: Natasa Jonoska, Ph.D.
Gregory McColm, Ph.D.
Masahico Saito, Ph.D.

Richard Stark, Ph.D.

Stephen Suen, Ph.D.

Date of approval:
July 1, 2004

Keywords: Codes, Watson-Crick Involution, DNA codes

©Copyright 2004, Kalpana Mahalingam



Dedication

To my mom.



Acknowledgments

A journey in life is made easier when you have good company. This thesis is a result of
four years of work whereby i have been accompanied and supported by many people.
It is my wonderful aspect that i now have an opportunity to express my gratitude to
all of them who traveled with me these four years.

The first person I would like to thank is my advisor Dr. Natasha Jonoska. She is
the best advisor any student can have. She could not even realize how much I have
learned from her. Besides of being an excellent supervisor, Natasha was as close as a
relative and a good friend to me. I am really glad that I have come to get to know
her in my life.

I would also like to thank the other members (Dr. Stephen Suen, Dr. Masahico
Saito, Dr. Gregory McColm and Dr. Richard Stark) of my PhD committee who
monitored my work and took effort in reading and providing me with valuable com-
ments on earlier versions of this thesis. My special thanks to Dr. Junghuei Chen
from University of Delaware for letting me use his laboratory and to teach me the
experiments. I would also like to thank his students for being very helpful.

David Kephart: I have no words to thank him. Whenever I have a problem, the
first person that comes to my mind is him. He was always there for me, right from
teaching me Latex, discussing my research work, giving good tips about how to give
a good speech and much more. Thanks David!!!

Life is not complete without good friends. I have wonderful friends who helped
me a lot in so many different ways. Ed, Kalin, Ami, Kevin, Mitch, Daniela, Savita:
Thank You All. T would also like to thank Nancy, Denise, Beverly, Mary Ann, Aya
and Frances, who work in the Math office. A special thanks to Jim.

I am grateful to my uncle and aunt from Miami. If not for her food I would
have starved most of the times. Thanks aunty!! I am also grateful to my brother,
sis-in-law, mom, granny, my sis and my cousin Naresh for their moral support all
these years. Special thanks to my sis Gayathri for putting up with my mood swings
for the past one year.

A Special thanks to NSF for supporting me all summer all these four years through
the grants EIA-0086015 and EIA-0074808.



TABLE OF CONTENTS

Abstract

1 Introduction

1.1 Background And Motivation . . . . ... ... ... .. ..
1.2 Definitions and Basic Concepts . . . . . . .. ... .. ..
1.21 Codes . . . . . . .
1.2.2 Involution Codes . . . . ... .. .. .. ......
1.2.3 Syntactic Semigroups . . . . . . . ... ...

2 Properties Of Coded Languages

2.1 Closure Properties . . . .. ... ... ... ........
2.2 Generating Infinite Set of Code Words . . . . . . . .. ..
2.3 Levels of Involution-Comma-Free Codes . . . . . .. .. ..

2.4 Codes Preserved by Splicing . . . . . ... ... .. ....

3 Algebraic Characterizations of Involution Codes

3.1 f-image of the Syntactic Monoid . . . . . . ... ... ...

3.2 Constructing Strictly Locally Testable Involution Codes

3.3 Syntactic Monoid of Involution Codes . . . . . . . ... ..

4 Constructing Coded Languages

4.1 Algorithms. . . . . .. ... . Lo
4.2  Methods for Constructing Involution codes . . . . . . . ..

4.3 Experimental Results . . . . . . .. ... ... ... ...

Conclusion

References

About the Author

S O ==

15

...... 15
...... 18
...... 25
...... 30

50

...... a0
...... 93
...... 61

63

65

End Page



Involution Codes With Application To DNA Strand Design

Kalpana Mahalingam

Abstract

The set of all sequences that are generated by a biomolecular protocol forms a lan-
guage over the four letter alphabet A = {A,G,C,T}. This alphabet is associated
with the natural involution mapping #, A — T and G — C which is an antimor-
phism of A*. In order to avoid undesirable Watson-Crick bonds between the words
the language has to satisfy certain coding properties. Hence for an involution 6 we
consider involution codes: 6-infix, #-comma-free, #-k-codes and @-subword-k-codes
which avoid certain undesirable hybridization. We investigate the closure properties
of these codes and also the conditions under which both X and X% are the same
type of involution codes. We provide properties of a splicing system such that the
language generated by the system preserves the desired properties of code words. Al-
gebraic characterizations of these involution codes through their syntactic monoids
have also been discussed. Methods of constructing involution codes that are strictly
locally testable are given. General methods for generating such involution codes are
given and the information capacity of these codes show to be optimal in most cases.
A specific set of these codes was chosen for experimental testing and the results of

these experiments are presented.

ii



CHAPTER 1
INTRODUCTION

1.1 Background And Motivation

DNA is a crucial molecule in living cells. Proteins are the fundamental agents of life.
The information that defines the primary structure of every protein is encoded in the
DNA. DNA is a double stranded sequence of 4 nucleotides, and a portion of DNA
sequence encodes the information that determines the sequence of amino acids of the
protein encoded by that particular gene. DNA contains the genetic information that
defines the proteins.

DNA consists of polymer chains, referred to as DNA strands. A chain is composed
of nucleotides, and nucleotides may differ only in their bases. The information in a
DNA molecule is stored in a sequence of nucleotides also called by their chemical
group, base A,G,C,T (adenine, guanine, cytosine and thymine) joined together by
phosphodiester bonds. A single strand of DNA, i.e. a chain of nucleotides, has also a
“beginning” (usually denoted by 5’) and an “end” (denoted by 3’), and so the molecule
is oriented. The nucleotides come in complementary pairs(A is complementary to T
and C is complementary to G). This is the well known Watson-Crick complemen-
tarity. Two single-stranded DNA molecules with opposite orientation join together
(hybridize) through hydrogen bonds and form a double stranded molecule which in
space appears in double helix. When double stranded molecules are heated to 95°C),
they denature into single-stranded molecules. If single stranded molecules are cooled,
they seek their complement and re-anneal into double stranded form. These proper-
ties are used in many biomolecular experiments and are also used in many models of
DNA computers and in DNA nanotechnology.

In most DNA computations, there are three basic stages. The first is encoding
the input data using single stranded DNA, then performing the computation using

bio-operations and finally decoding the result. In such computations, one of the main



problems is associated with the design of the oligonucleotides such that mismatched
pairing due to Watson-Crick complementarity is minimized. In laboratory experi-
ments, the complementarity of the bases may pose potential problems if some DNA
strands can form non-specific hybridization and partially anneal to strands that are
not their complete complements. This type of hybridization can occur during a poly-
merase chain reaction, self-assembly step or in the extraction process. Many authors
have addressed this problem and proposed various solutions. A common approach
has been to use Hamming distance as a measure for uniqueness [3, 7, 8, 11, 32]|.
Deaton et.al. |7, 11] used genetic algorithms to generate a set of DNA sequences that
satisfy predetermined Hamming distance. Marathe et. al. [36] also used Hamming
distance to compute combinatorial bounds of DNA sequences, and they used dynamic
programing for design of the strands used in [32]. Seeman’s program [44] generates
sequences by testing overlapping subsequences to enforce uniqueness. This program
is designed for producing sequences that are suitable for complex three-dimensional
DNA structures, and the generation of suitable sequences is not as automatic as the
other programs have proposed. Feldkamp et.al. [9] also uses the test for uniqueness of
subsequences and relies on tree structures in generating new sequences. Ruben et.al.
[43] use a random generator for initial sequence design, and afterwards check for
unique subsequences with a predetermined properties based on Hamming distance.
One of the first theoretical observations about number of DNA code words satisfying
minimal Hamming distance properties was done by Baum [3]. Experimental sepa-
ration of “good” codes that avoid intermolecular cross hybridization on big pool of
random strands was reported in [6].

In [16], Kari et.al. introduce a theoretical approach to the problem of designing
code words. Based on these ideas and code-theoretic properties, a computer program
for generating code words is being developed [19, 26]. Another algorithm based on
backtracking, for generating such code words is also developed by Li [30]. Every
biomolecular protocol involving DNA or RNA generates molecules whose sequences
of nucleotides form a language over the four letter alphabet A = {A, G, C,T}. The
Watson-Crick complementarity of the nucleotides defines a natural involution map-
ping #, A — T and G — C which is an anti-morphism of A*. Undesirable Watson-

Crick bonds (undesirable hybridizations) can be avoided if the language satisfies



certain coding properties. In particular for DNA code words, no involution of a word
is a subword of another word, or no involution of a word is a subword of a composition
of two words. These properties are called #-infix and #-comma-free respectively. The
case when a DNA strand may form a hairpin, (i.e. when a word contains a reverse
complement of a subword) was introduced in [19] and is called #-subword-k-code here.

For words representing DNA sequences we use the following convention. A word
u over A denotes a DNA strand in its 5’ — 3’ orientation. The Watson-Crick com-
plement of the word u, also in orientation 5 — 3’ is denoted with u. For example
if u = AGGC then u= GCCT. There are two types of unwanted hybridizations:
intramolecular and intermolecular. The intramolecular hybridization happens when
two sequences, one being a reverse complement of the other appear within the same

DNA strand (see Fig. 1.1). In this case the DNA strand forms a hairpin.

Y C\TFWH X 5 ‘ﬁ_lljl—l_l_li)
@ (b)

w=uviix, [u|=k, [v|=m

Figure 1.1: Intramolecular hybridization (6-subword-k-code): (a) the reverse complement is at the
beginning of the 5’ end, (b) the reverse complement is at the end of the 3. The 3’ end of the DNA

strand is indicated with an arrow.

Two particular intermolecular hybridizations are of interest (see Fig.1.2). In
Fig.1.2 (a) the strand labeled u is a reverse complement of a subsequence of the
strand labeled v, and in the same figure (b) represents the case when u is the reverse

complement of a portion of a concatenation of v and w.

u u
- T - [T
\" Vv W
@ (b)

Figure 1.2: Two types of intermolecular hybridization: (a) (f-infix) one code word is a reverse
complement of a subword of another code word, (b) (-comma-free) a code word is a reverse com-
plement of a subword of a concatenation of two other code words. The 3’ end is indicated with an

arrow.



DNA codes that avoid all kinds of unwanted partial bindings was introduced in
[18] and was called @-k-code. Note that for any word w over the alphabet A and for
an anti-morphic involution 0, #(w) denotes the Watson-Crick complementarity of the
strand w. Hence, we together call #-infix (comma-free) and #-(subword)-k-codes to

be involution codes for any involution map 6.

lul =k

Figure 1.3: Various cross hybridizations of molecules one of which contains subword of length k

and the other its complement.

In Section 1.2 of this chapter, we present some basic definitions required for this
research. For more details, refer to [5, 10, 12, 16, 21, 29].

In Chapter II, Section 2.1 we make several observations about the closure proper-
ties of these involution codes. In particular, we concentrate on properties of languages
that are preserved under concatenation. If a set of DNA strands has “good” coding
properties then the same property will be preserved under arbitrary ligation of the
strands. In Section 2.2 we provide necessary and sufficient conditions for a finite set
of words to generate (by concatenations) an infinite set of code words. In Section 2.3
we investigate the properties of codes which are not #-comma-free but can be split in
to sub-codes which are f-comma-free and can be used for bio-computing experiments.
Section 2.4 investigates the necessary and sufficient conditions for preserving these
“good” properties under splicing.

Chapter III investigates the algebraic characterization of the involution codes
through their syntactic monoids. Section 3.2 discuss ways to construct involution
codes that are strictly locally testable and we use the characterization of the syntactic

monoid of locally testable languages to characterize these involution codes. Section



3.3 describes the properties of the syntactic monoid of certain type of involution codes
X and the properties of syntactic monoid of X+ U #(X ") when X* is f-infix and
f-comma-free.

In Chapter IV, Section 4.2 describes several methods to generate involution codes.
These sets of code words also provide sufficient informational entropy such that they
can be used to encode binary strings bits — symbols. Sets of molecules obtained by
the described methods in this section were tested for cross-hybridization experimen-

tally. The results of the experiment are shown in Section 4.3.



1.2 Definitions and Basic Concepts

1.2.1 Codes

An alphabet set ¥ is a finite non-empty set of symbols. A word u over X is a finite
sequence of symbols in X. We denote by X* the set of all words over X, and by X+
the set of all non empty words over 3. The empty word is denoted by 1. We note
that with the concatenation operation on words, X* is the free monoid and X" is the
free semigroup generated by 3. The length of a word u = a;...a, is n for all a; €

and is denoted by |u|. We denote by 3F the set of all words in ¥ of length k.

Definition 1.2.1 (Code)
A subset X of the free monoid X* is a code over the finite alphabet set 3 if for all

!
m

!

m & n=m and

! _ !
n,m > 1 and for all z,,...,x,,2%,...,2, € X , 1.0, = z}|..x

x; =x; fori=1,..,n.

This means that X is a code if every word in X' can be written uniquely as a
product of words in X. In other words X is a free subsemigroup of ¥*. Throughout

this work we consider X C X% to be a code.

Example 1.2.2 For an alphabet set ¥ = {a,b}, X = {ab,baa} is a code. But
Y = {a,ab,ba} is not a code since the word aba = (ab)a = a(ba) € X* has two

distinct factorizations in X.
The following definition was used in [18, 20, 21].

Definition 1.2.3 We define the prefix, suffiz and subword of a word as

Pref(w) ={u|3v € T* uv = w}
Suff(w) =A{u|Iv € ¥*,vu = w}
Sub(w) = {u|Jv,ve € X% viuvy = w}



We define prefiz, suffix and subword of a language X as

Pref(X) = U,ex Preflw)
Suff(X) = Upex Suff(w)
Sub(X) = Uyex Sub(w)

We define proper prefiz, proper suffix and proper subword as

PPref(X) = Pref(X)\ X
PSuff(X) = Suff(X)\ X
PSub(X) = Sub(X)\X

Similarly we have for a word w,

Pref,(w) = Pref(w) NXF
Suff,(w) = Suff(w) N S*
Subg(w) = Sub(w) NX*

Note that for X,V C¥X* XY ={zy:z€ X,y e Y}.
A set in which no element is a proper left (right) factor of another element is called
a prefix (suffix) set. In other words, no two elements in the set are incomparable in

the prefix (suffix) ordering.

Definition 1.2.4 (Prefix Code)
Let X C XF. The set X is a prefiz code if X N XX+ = ).

Definition 1.2.5 (Suffix Code)
Let X CXT. The set X is a suffizx code if X N XTX = (.

A set in which no word appear as a substring of any other word is called an infix code.

Definition 1.2.6 (Infix Code)
Let X C X%, The set X is an infiz code if (Z*XLTUIDTXE*) N X = 0.

In other words, X is an infix code if none of the words in X is a proper subword of
any word in X. Note that if X is an infix code then X is both prefix and suffix code.
A set in which no word appears as a substring across the concatenation of two words

is called a comma-free code.



Definition 1.2.7 (Comma-free Code)
Let X C XF. The set X is a comma-free code if 2T XYt N X2 = (.

Example 1.2.8 For X = {ab,baa} over the alphabet set ¥ = {a,b}, X is prefix,
suffix and infix code. Note that X is not comma-free since ba(ab)aa € X? with
ab € X.

For Y = {bbab, baa} over the alphabet set ¥ = {a,b}, Y is comma-free since Y? =
{b?abab, b*ab?a?, ba’b*ab, ba?ba?} and for all y € Y, pyq ¢ Y? for all p,q € BT .

Let X be a language such that X C ¥*. We define the context of a word in X.

Definition 1.2.9 (Context of a Word )
For any word w € ¥*, context of w in X is given by Cx(w) = {(u,v) : vwv €

X,u,v € X*}.

Example 1.2.10 Let X = {bbab, baa}. Then Cx(ba) = {(b,b),(1,a)}.

Definition 1.2.11 Forw € ¥*, Rx(w) = {u € * : wu € X} is the right context of w in X.
Similarly, Lx (w) = {u € ¥* : uw € X} is the left context of w in X.

The following was defined in [12] and used in [10].

Definition 1.2.12 (Solid Code)
A code X is a solid code if

(1) X is an infiz code
(ii) PPref(X) N PSuff(X) = 0.

Example 1.2.13 X = {ac, abb} over the alphabet set ¥ = {a, b, ¢} is solid since for
all z,y € X, z ¢ PSub(X) and PPref(z) N PSuff(y) = 0.

Definition 1.2.14 (Relative Solidity)
A code X is solid relative to a language L if

(i) w = ypuqz in L with both u and puq in X can hold only if pg =1 and

(ii) w = ypuqz in L with pu and uq in X and u # 1 can hold only if pg = 1.



In other words, if u has a non trivial context in X then it cannot have a non trivial

context in L with that context of X.

Example 1.2.15 Let X = {ac,abb} and L = {bac,bbc} over the alphabet set ¥ =
{a, b, c}. Note that b(ac) € L with ac € X but bac ¢ X and PPref(X)NPSuff(X) =0
such that both the conditions of definition 1.2.14 are satisfied. Hence X is solid

relative to L.
The following was defined in [12] and used in [10].

Definition 1.2.16 (Join Relative to a Language )
A string w in ¥ is join relative to a language X, if w € Sub(X) and for all (u,v) €

Cx(w) then both u and v are also in X.

Note that for an infix code X such that X C ¥ and for all w € X, context of w

is trivial in X and so w is join relative to X.

Example 1.2.17 Let X = {ac, abb} over the alphabet set X = {a,b,c}. Both abb

and ac are join relative to X since X is solid.

Definition 1.2.18 (Join of a Language )
A word w in a set X C XT is a join of X if w is join relative to X*. J(X) will
denote the set of all joins in the set X.

Note 1.2.19 Recall that when X is a code, J(X) is comma-free subset of X (see

[12]). J(X) is not necessarily the mazimal comma-free subset of X.

Example 1.2.20 Let X = {aab, aba,bab} over the alphabet set ¥ = {a,b}. Note
that J(X) = {aab} but Y = {aab, bab} C X is the maximal comma-free subset of X
since XTY Lt NYZ2 =,

Example 1.2.21 Let X = {ac, abb, bba} over the alphabet set X = {a,b,c}. It is
easy to observe that Y TacXt N X? = () and {ac} is the maximal comma-free subset

of X. Hence J(X) = {ac} and X; = X \ J(X) = {abb, bba}.



We define X = Xy and X; = X, \ J(Xp). Similarly we define a recursive chain of
subsets X; , ¢ > 0 of X such that X; = X;_; \ J(X;_1) where J(X;_) is the join of
X;_1. If there is a k such that X;,; = () then X is called a join code of level k (see
[12]). If X = Uz, J(X}) then X is called a join code of infinite level.

Example 1.2.22 Let X = {bac, cb} over the alphabet set ¥ = {a,b,c} and X? =
{bacbac, baccb, cbbac, cbeb}. Note that J(X) = {bac} and hence X; = X \ J(X) =
{cb}. Then J(X;) = {cb}. Hence X = J(X) U J(X;) can be completely split in two

subsets which are comma-free.

Example 1.2.23 Let X = {aab, aba} over the alphabet set ¥ = {a,b} and X? =
{a?ba?b, a*baba, abab, aba?ba}. Note that a(aba)ab, ab(aab)a € X2. The set X does

not have a comma-free subset and hence J(X) = ().

1.2.2 Involution Codes

An involution # : ¥ — ¥ of a set ¥ is a mapping such that §? equals identity mapping,
6(6(a)) = a, for all a € 3. A mapping 0 : ¥* — ¥* is a morphism if §(uv) = 0(u)é(v)
and an antimorphism if #(uv) = 6(v)0(u) for all u,v € ¥*. The mapping 6 can be
extended to a morphic or antimorphic involution of X*. Note that if # : ¥X* — ¥* is an
involution then 6 : ¥ — X, 6(6(a1az...a,)) = a1as...a, since for all u = a;...a, € X*
with a; € ¥ if and only if 6(6(a;)) = a; for all a; € X.

Note that the mapping v : A — A defined by v(4) =T, v(T) = A, v(C) = G
and v(G) = C is an involution on A and can be extended to a morphic involution
of A*. Since the Watson-Crick complementarity appears in a reverse orientation, we
consider another involution p : A* — A* defined inductively, p(s) = s for s € A and
p(su) = p(u)p(s) for all s € A, u € A*. This involution is an antimorphism such
that p(uv) = p(v)p(u). The Watson-Crick complementarity then is the antimorphic
involution obtained with composition vp = pr. Hence for a DNA strand u we have
that pv(u) = vp(u) =u. The involution p reverses the order of the letters in a word.
Throughout this work, we consider 6 : ¥* — 3* to be either a morphic or antimorphic
involution. Note that whenever # : ¥* — ¥* is an involution, then # maps symbols

to symbols such that 6?(a) = a for all @ € ¥ and for all z € X*, |0(z)| = |z|.
Definition 1.2.24 Let X C X7 be a finite set.

10



(i) The set X is called 0-infiz if S*0(X)XTNX =0 and XT0(X)X*NX = 0.
(ii) The set X is called 0-comma-free if LT(X)LT N X2 = ().

(iii) The set X is called strictly 0 if X NO(X) =0

The notions of #-prefix and #-suffix code can be defined naturally from the notions
defined above. The notion of #-infix and #-comma-free were originally called as 6-
compliance and #-free in [16]. The f-infix and #-comma-free codes avoid unwanted
hybridizations presented in Fig.1.2

The following was defined in [19] and used in [18, 20, 21, 26]. The set of §-subword-

k-codes avoid the formation of hairpin structure as in Fig 1.1.

Definition 1.2.25 (Subword Code)

Let X C X7T be a finite set. The set X is called 0-k-m-subword code if for all
u € XF we have S uX0(u)X* N X =0 for 1 <i < m.

The set X 1is called 0-subword-k-code if i > 1.

The following was defined in [18] and used in [20, 21]. The #-k-codes avoid all
kinds of unwanted hybridizations in Fig 1.3.

Definition 1.2.26 (6-k-Code)
Let X C X1, The set X is a O-k-code for some k > 0 if Suby(X)NSubi(0(X)) = 0.

Example 1.2.27 Let X = {aa,baa} be a language over the alphabet set ¥ = {a, b}
and for a morphic § with @ — b and b — a , (X) = {bb,abb}. Note that X is
f-infix since none of the subwords of X are in 6(X) and X is f-comma-free since
X2 = {a* a®ba?, ba*, ba’ba®} and none of the words in #(X) appears as a subword
of any word in X?2. Suby(X) N Suby(A(X)) = (), hence X is #-subword-2-code and
0-3-code.

Definition 1.2.28 (6-Solid Code)
A code X is a 0-solid code if

(i) X is B-infix

(i) Pref(X) N Suff(0(X)) =0 and Suff(X) N Pref(6(X)) = 0.

11



Definition 1.2.29 (#-Solid Relative to L)
A code X 1is 0-solid relative to a language L if

(i) w=ypuqz in L with u € 0(X) and pug € X then pg =1 and
(ii) w = ypuqz in L with pu € X and uq € 6(X) and u # 1 then pg = 1.

Note that from observation 1.2.19, for a code X, J(X) is comma-free. In a
similar way we would like to define Jy(X) such that Jp(X) is f-comma-free. The
authors in [10] define Jy(X) as J(X) \ 6(J(X)) for 6 = pv. Jo(X) defined as above
is not #-comma-free in general for any (morphic or antimorphic) involution 6. For
example, consider X = {aab, bab, abbb}. For an antimorphic involution # with a — b
and b — a, 0(X) = {abb,aba,aaab}. Note that X+{aab,abbb}xt N X% = () but
LTXYtT N X? # (. Hence J(X) = {aab,abbb} is comma-free subset of X and
Jo(X) = J(X) since 6(J(X)) N J(X) = 0. But Jp(X) is not #-comma-free since,
aabf(aab)b = aab.abbb € (J5(X))?2.

We define Jy(X) for a given set X such that Jy(X) is §-comma-free.

Definition 1.2.30 (#-Join Relative to X)
A string w in X* is a 0-join relative to a language X, if w € Sub(X) and for all
(u,v) € Cx(0(w)), then both u and v are also in X.

Definition 1.2.31 (#-Joins of X)
For a given X C X1, we define Jo(X) = {w € X : w is a O-join relative to X*}.
We call Jo(X) 6-join of X.

Note 1.2.32 If X UO(X) is a code then Jo(X) is 8-comma-free.

Proof: Suppose Jy(X) is not f-comma-free, then there are z,y,z € Jy(X) such that
af(z)b = zxy for some a,b € ET. Since z € Jp(X) with af(z)b € X* , a,b € X in
which case zy has two distinct factorizations in X U #(X) which contradicts that
X UG(X) is a code. If a,b ¢ X then z ¢ Jp(X). Hence Jp(X) is f-comma-free.

ONote that Jp(X) is not necessarily the maximal f-comma-free subset of X.

Example 1.2.33 Let X = {abb, aab,aba} over the alphabet set ¥ = {a,b} and
for an antimorphic 6 with @ — b and b — a, 6(X) = {abb, bab, aab}. Note that
Y = {aab, abb} is the maximal #-comma-free subset of X. But Jy(X) = {aab}.

12



Similarly as in 1.2.19 we write X = X, and X; = X \ Jy(X). We define X;, ¢ > 0,
a chain of descending subsets of X and X1 = X \ Jp(Xx) where Jyp(X) is a #-join
of X. We call Jy(Xy) as #-comma-free code at level k. Also when 6 is identity the
f-comma-free code at level 1 are nothing but J(X). An example of a code X and
involution @ such that X = (J7_, Jp(X) is given section 2.3. If there is a k such that
Xy+1 = 0 then X is called a 0-k-split code. If X = |J;-  Jo(Xj) then X is called a
f-infinite-split code.

1.2.3 Syntactic Semigroups
Let X be a language such that X C X*. We define the syntactic congruence of X.
Definition 1.2.34 (Syntactic Congruence)

The syntactic congruence of a set X C X1 is denoted by Px and is defined by u =
U(Px) ~ Cx(u) = Cx(v).

Definition 1.2.35 (Syntactic Monoid)
Syntactic monoid of X is the quotient monoid M(X) = ¥*/Px with operation

[z]ly] = [zy]. For x € ¥*, [z] denote the Px equivalence class of x.

Definition 1.2.36 (Residue of X)
Let W(X) ={z € X*: Cx(z) =0} i.e. z € W(X) iff © ¢ Sub(X).

Note that if W (X) # () then W (X) represents a class for Px and is the zero of M (X).

Example 1.2.37 Let X = {ab*} over the alphabet set ¥ = {a,b}. Then
Cx(ab") = {(1,b")}
Cx (b) = {(ab", b")}

Hence M (X) = {0, [1], [ab*], [b*]}.

Note that for a regular language X, M (X) is the transition monoid (see [42]) of
the minimal deterministic finite automaton (see [5, 42]) of X. The above definition
of the syntactic congruence Px can be defined for an arbitrary subset X of any
semigroup S. If the syntactic congruence is the equality relation then we call the

set X to be a disjunctive subset of S. If X = {z} for some x € ¥* and if Px is

13



the equality relation then we say that z is a disjunctive element of S. For more on
syntactic monoid we refer the reader to [5, 29, 42].

It is a well known fact that X is a regular language if and only if M (X) is finite
(see [29, 42]). For any set X and its syntactic monoid M(X), n: £* — M(X) is the
natural surjective syntactic morphism defined by  — [z]. Note that for any X, X

is a union of Px classes.

14



CHAPTER 2
PROPERTIES OF CODED LANGUAGES

In this chapter we look at various properties of involution codes. The results in
Sections 2.1, 2.2 and 2.4 are published in [18, 21]. In Section 2.1 we deal with the
closure properties of these involution codes under various operations. Section 2.2
gives us various ways of generating infinite set of involution codes with one of the
“good” properties from a given finite set of involution codes with the same “good”
property. Section 2.3 investigates the properties of codes that are not #-comma-free
but can be split into subcodes that are #-comma-free. In Section 2.4 we look at the

properties of the involution codes that are preserved under splicing operation.

2.1 Closure Properties

In this section we consider several closure properties of the involution codes under
various operations. We concentrate on closure properties of union and concatenation
of “good” code words. From practical point of view, we would like to know under
what conditions two sets of available “good” code words can be joined (union) such
that the resulting set is still a “good” set of code words. Also, whenever ligation of
strands is involved, we need to consider concatenation of code words. In this case it
is useful to know under what conditions the “good” properties of the code words will
be preserved after arbitrary ligations. The following table shows closure properties

of these languages under various operations.

Table 2.1 Closure Properties

15



f-subword-k-code | f-infix | f-comma-free | §-k-code
Union Yes No No No
Intersection Yes Yes Yes Yes
Complement No No No No
Concatenation (XY, X #Y) No Y/N No No
Kleene * No No Yes No

Most of the properties included in the table are straight forward. We add a few

comments for clarification.

e f-subword-k-codes are closed under arbitrary union since every word in the

union of #-subword-k-codes do not form the hairpin structure.

e All involution codes except #-subword-k-codes are not closed under union. For
example let X; = {aa} and Xy = {bbb} over the alphabet set ¥ = {a, b} and
with antimorphic involution # : a — b,b — a. It is easy to check that X;
and X, are #-infix, #-comma-free and #-2-code. But X; U X5 is not. Since
f(aa) is a subword of bbb , X; U X, is not f-infix. Note that (X; U X,)? =
{aaaa, aabbb, bbbaa, bbbbbb} and aaf(aa)b € (X; U X3)?. Hence (X; U X3) is not
f-comma-free. Also aa,f(aa) € Sub(X; U X,) which implies (X; U X5) is not
6-2-code.

e The involution codes are closed under intersection since a subset of an involution
code with one of the “good” properties is again an involution code with the same

property.

e [t is easy to check that none of the involution codes are closed under comple-

ment.

e f-subword-k-code languages are not closed under concatenation and Kleene*.
For example consider the set X = {aba®} C {a, b}* with the morphic involution
0 :aw bbb+ a Then X is f-subword-2-code. But X? = {aba®ba®} is not

f-subword-2-code, i.e. X? contains (ab)a®0(ab)a.

e For a morphic 6, the family of #-infix languages are closed under concatenation.

Proof: Assume that X and Y are #-infix for a morphic involution . Suppose XY

16



is not f-infix then there exists z1,zo € X and y;,y2 € Y such that af(z1y,)b =
Toyo for some a,b € ¥*. Since # is morphic, af(x1)0(y1)b = z2ys. Then either
6(z1) is a subword of zo, or O(y;) is a subword of y,. First case contradicts that

X is f-infix and the second case contradicts that Y is f-infix.

e When 0 is an antimorphism, #-infix languages are not closed under concate-
nation. Consider the following example: X; = {a? ab} and Xy = {b%, aba}
with the antimorphic involution 6 : a — b,b — a. Then ab® € X, X, and
bab® € (X, X,) and hence X; X, is not f-infix.

e It is also easy to check that if X and ¥V (X # Y) are f-comma-free (6-k-code),
then XY may not be -comma-free (6-k-code). For example, take X = {aba}
and Y = {ab,bb} with 0(X) = {bab} and 0(Y) = {aa,ab}. Note that X and
Y are both #-comma-free and 6-3-code. XY = {abaab, ababb} and (XY) =
{abbab, aabab}. But XY is not f-comma-free since abf(ababb)aab € (XY)2
Also aba, 0(aba) € Sub(XY), hence XY is not 6-3-code.

e Note that none of the involution codes other than #-comma-free languages are

closed under Kleene*. The proof will be given in Section 2.2

The next proposition which is a stronger version of Proposition 10 in [16], shows
that for an antimorphic 6, concatenation of two distinct f-infix or f-comma-free
languages is #-infix or #-comma-free whenever their union is #-infix or f-comma-free
respectively. Necessary and sufficient conditions under which a #-infix language is

closed under Kleene* operation are considered in the next section.

Proposition 2.1.1 Let X, Y C X7F be two O-infix ( O-comma-free ) languages for a
morphic or antimorphic 0. If X UY is 0-infiz ( 0-comma-free ) then XY is 0-infiz (

6-comma-free ).

Proof: Suppose XY is not #-infix then there are z,,2o € X and y;,y2 € Y such
that z1y; = af(z2y2)b for some a,b € ¥* not both equal to 1. Then either 6(z5) is
a subword of z; or z1y; or y;. All cases contradict the assumption that X UY is

f-infix. Similarly we can prove for the #-comma-free case. O

17



2.2 Generating Infinite Set of Code Words

It is easy to note that other than the #-comma-free codes none of the f-infix, 6-k-
code and f-subword-k-code are closed under arbitrary concatenation. In this section
we investigate what are the properties of a finite set of “good” code words X that
can generate an infinite set of code words Xt with the same “good” properties.
In practice, it is much easier to generate a relatively small set of code words that
has certain properties (i.e. in case of DNA or RNA, mismatched hybridization is
avoided), and if we know that any concatenation of such words would also satisfy the
requirements, the process of generating code words could be rather simplified. Hence,
we give necessary and sufficient conditions for X such that X+ is #-(subword)-k-code
or f-infix.

We have the following observations.
Lemma 2.2.1 In the following we assume that £ < min{ |z| : z € X}.

(i) When 0 is identity, X is an infix (comma-free) code if and only if X is f-infix

(comma-free).

(ii) When X is such that X = 6(X) then X is #-infix (comma-free) if and only if

X is infix (comma-free).
(iii) X is strictly f-infix if and only if ¥*0(X)X* N X = (.

(iv) If X is strictly f-comma-free then X and #(X) are strictly #-infix and (X)) is

f-comma-free.
(v) If X is strictly #-infix then X* is both #-prefix and #-suffix code.
(vi) If X is #-k-code, then X is 6-k'-code for all &' > k.
(vii) X is a 6-k-code if and only if (X) is a #-k-code.
(viii) If X is strictly 6 such that X? is #-subword-k-code, then X is strictly 6-k-code.

(ix) If X is a #-k-code then both X and 6(X) are f-infix, #-subword-k-code, 6-
prefix-k and suffix-k-code for any m > 1. If k < % for all x € X then X is
f-comma-free and hence avoids the cross hybridizations as shown in Fig.1.1 and

1.2.

18



(x) If X is a B-k-code then X and #(X) avoids all cross hybridizations of length &
shown in Fig. 1.3 and so all cross hybridizations presented in Fig. 2 of [22].

Proof :

(i) When 6 is identity, 8(X) = X. Since X is infix, 2t X¥*NX = () and Z* X3+ N
X = 0 implies ET9(X)X* N X = P and T*G(X)ET N X = 0 since O(X) = X.

Similar proof works for (X )-comma-free.
(ii) Similar to 2.2.1(i).

(iii) X is strictly f-infix if and only if Xt X¥* N X =@ and *X¥X* N X = () and
X NO(X)=0if and only if Z*(X)X* N X = 0.

(iv) X is not f-infix then = = af(y)b for some a € X*. Hence zz = af(y)bab(y)b
which contradicts that X is #-comma-free. Similar proof shows for 6(X) is

f-infix and #-comma-free.

(v) To show that X* is §-prefix (i.e.) to show that X*NA(X*)E* = (). Suppose X*
is not #-prefix code then there exists z;25...2, = 0(y1...ym)b for z;,y;, € X,i =
1,.,n,7 = 1,...,m and b € ¥*. For a morphic 6, x1zs...xn, = 0(1)---0(ym)b
implies either z; is a subword of 6(y;) or z; = 0(y,) or O(y,) is a subword of ;.
All cases contradict our assumption that X is strictly f-infix. Similarly we can

prove that X* is #-suffix code.

(vi) Since X is 6-k-code, Suby(X)NSub,(8(X) = 0. Hence Suby (X )NSuby (A(X) =
(0 for all k" > k which implies X is 8-k'-code.

(vii) X is f-k-code if and only if Suby(X) N Suby(A(X)) = 0 if and only if Suby(6(X))
N Suby,(A(6(X))) = 0 since  is an involution, #(6(X)) = X. Hence X is 6-k-code
if and only if 0(X) is 6-k-code.

(viii) Suppose X is not #-k-code then there exists z; € Subg(X) N Subg(#(X)) such
that £ = az b and y = cf(x1)d for some z,y € X. Hence zy = ax bch(x;)d

which contradicts our assumption that X? is #-subword-k-code.

(ix) Since X is a #-k-code for k < min{|z| : z € X}, X is f-infix and §-subword-k-

code. Let k < % for all z € X. Suppose X is not #-comma-free then there are

19



z,y,z € X such that xy = af(z)b for some a,b € Xt. Hence 0(z) = zoy; for
x = x1%9 and y = y19o. Then either |zo| > k or |y;| > k, both contradict that
X is not a 0-k-code. O

The Lemma below shows that if X is f-comma-free then X? is “almost” @-infix.
The difference is in + vs * in 1.2.24(i) of Definition 1.2.24.
All properties below refer to a finite set X C X+,

Lemma 2.2.2 If X is f-comma-free then X? NS TH(X?)ET = 0.

Proof: Suppose lemma does not hold, then there are z1, s, y1,y2 € X such that
x1y = aB(y1y2)b with a,b € X+, When 6 is morphic, 2120 = af(y;)0(y2)b, and
when 6 is anti-morphic, we have 2122 = af(y2)6(y1)b. In both cases X would not be
6-comma-free. Hence X? N L+9(X?)L+ = (). O

Note that the converse of the above need not be true. For example consider X =
{ab, a*b*} with 6 being morphism a ~— b,b — a. Then X?NYX+9(X?)E+ = () since all

words in X? are of length 8, but X is not #-comma-free since a?b*a®b = a*6(a?b?)ab.
Lemma 2.2.3 If X is strictly 0-infix then X™ is strictly 0-infix for all n > 1.

Proof: If the lemma does not hold then X* is not strictly #-infix for some n. This
means that there are z,y € X" such that © = s6(y)t for some s,t € ¥* (not both
equal to 1). Let z = zy..z, = s0(y1...yn)t with z;,y; € X then one of 0(y;) is a
subword of some z; which is a contradiction to X being #-infix. O

The Kleene x closure of X contains the union of all X” and in order for it to
be #-infix we need stronger properties. The next proposition is somewhat a stronger
version of Lemma 1(ii) and Proposition 1 in [16]. Proposition 1 in [16] proves (i) =

(iii) of the following proposition.

Proposition 2.2.1 The following are equivalent:
(i) X is strictly 0-comma-free
(1) X+ is strictly 0-infix

(11i) X is strictly 6-comma-free

20



Proof: (1)=-(ii). Suppose X is strictly -comma-free. Hence, by observation
2.2.1(iv) X is strictly @-infix. By Lemma 2.2.3 X™ is strictly #-infix for all n > 1.
Suppose X T is not strictly 6-infix then there exist z,y € X such that z = af(y)b for
some a,b € ¥* (not both equal to 1). Let z = zy...x, and y = y1...ym, for z;,y; € X,
hence for some y; either

(a) 8(y;) is a subword of z; for some j,

(b) 0(y;) is a subword of z;z;41,

(c) O(y;) is a subword of ;12241

The cases (a) and (c) contradict the fact that X is f-infix and (b) contradicts to X
being #-comma-free. Hence X is strictly f-infix.

(ii)=(iii). Given that X is strictly #-infix, suppose X+ is not f-comma-free. Then
there exist z,y,2z € X such that xy = af(2)b for some a,b € 1. Let z = x1...1,,
Y = Y1.-Ym and z = 21...2, With z;,y;,2; € X. Then 6(z;) is a subword of one of
TiTji1, Tjy Ys, YsYs+1 OF Tpyq. All cases contradict that X is f-infix. Hence X is
strictly #-comma-free.

(iii)=-(i). Obvious, since X is a subset of X .0

The following two properties are similar observations as Proposition 6 and Propo-
sition 9 in [16]. We use the following definition that was introduced in [16] and used

in [21].

Definition 2.2.4 Let X be the alphabet set and 6 be the involution and X C X*.
Define

(i) Xis = PSuff(6(X)) N PPref(X)
(i) Xip = PSuff(X) N PPref(6(X))
(iii) X, = UwePSuﬁ(X) Ry(x)(x)

(iv) X, = UzePPref(X) Lo(x)(x)

Where Rx (x) = the set of all right context of v in X and Lx(x) = the set of all left

context of x in X.

Proposition 2.2.2 Let X C X" then X is 0-infix and X;, X;sN0(X) = 0 if and only

if X is 0-comma-free.

21



Proof: Let X be #-infix and X,;,X;; N 0(X) = 0. Suppose X is not f-comma-free
and there are z,y,z € X such that zy = af(z)b for some a,b € X*. Since X is
f-infix,0(z) is not a subword of x or y. Let 6(z) = 2,2, such that az; = z and
29 =y. But 2129 € 6(X), so z0b € X implies 2o € X5 and az; € X implies z; € Xj,.
Hence 229 € X;,X;s N O(X) which contradicts the hypothesis. Conversely, let X be
f-comma-free. Suppose zy € X;, X;s N §(X). Then, x € X, implies that there are
u,v € X7 such that ux € X and zv € 6(X). For y € X, there exists w,r € XF
such that wy € 0(X) and yr € X. Hence uzyr € X? with zy € 6(X) which is a

contradiction with X being #-comma-free.(]
Proposition 2.2.3 If X is 6-infiz and X,X;NO(X) =0 then X is 6-comma-free.

Proof: Suppose X is not f-comma-free. Then there exists x,y,z € X such that
xy = ab(2)b for some a,b € XF. Since X is f-infix, (z) is not a subword of z or y.
Let 0(z) = 225 for some 21, 2o such that az; = = and 2,0 = y which implies 2z € X
and z; € X,. Hence 212, € X, X, NO(X) which is a contradiction with the initial

assumption.O

The converse of the above proposition is not true. For example, X = {bba, bbab}
is f-comma-free for an antimorphic § mapping a +— b and b — a with §(X) =
{baa, abaa}. But X, = {baa, a,aa} and X, = () which implies baa € X, X, N O(X).

The following proposition investigates the case when the property of subword-£-
m~codes are preserved with Kleene*. It turned out that conditions under which a
subword-k-m-code is closed under concatenation with itself are somewhat more de-
manding than the ones for §-comma-free and #-infix. Considering 2.2.1(viii), 2.2.1(ix),

2.2.1(x) in Observation 2.2.1 these properties might turn out to be quite important.

Proposition 2.2.4 Let k, m be positive integers and X C X* be such that for every
word x € X, |x| > 2k +m. Let

L=LmJ U Suffi(X)Pref(X) (2.1)
I=1i+j=2k+I

Then X* s 0-subword-k-m-code if and only if X is 0-subword-k-m-code and for all
y € L, Pref,(y) N Suffi(0(y)) = 0.

22



Proof: Assume that X is #-subword-k-m-code and for ally € L, Prefi(y) N Suffx(8(y)) =
(). Suppose X* is not f-subword-k-m-code. Then there exists z € X* such that
x = z1usf(u)xy where |s| =1 < m and |u| = k. We claim that this is impossible.

If usf(u) is a subword of some y € X, then this contradicts the property that
X is -subword-k-m-code. If usf(u) is a subword of some z;xy for 21,2 € X then
there is a p such that Prefi(p) N Suffy(6(p)) # @ which is again a contradiction with
the hypothesis. If usf(u) is a subword of some xizox3 then we have ussuz = xo
for x1, 29,23 € X for some ujus = u and uzus = O(u) and since |us| < k, Juz| < k
and |zo| > 2k + m which implies |s| > m which is a contradiction. Hence X* is
f-subword-k-m-code.

Conversely, note that if X* is f-subword-k-m-code then X is f-subword-k-m-code.
Suppose there exists z € L such that Prefy(z) N Suff,(6(x)) # 0. Then z is such that
x is either a subword of some y € X or a subword of some y;y» with 4, y> € X. Both

cases are contradictory to the fact that X* is #-subword-k-m-code.O

Example 2.2.5 The set X = {AGTCA,AAGCT} C A* is f-subword-2-1-code
for § = pv. It is easy to verify that L ={AAAGC, CAAAG, TCAAA, GTCAA,
TAGTC, CTAGT, GCTAG, AGCTA, AGTCA, AAGCT} and for ally € L, Suffy(y)N
Prefy(6(y)) = 0. Hence X* is #-subword-2-1-code.

The conditions under which codes with one of the coding properties in Definition
1.2.24 are closed under Kleene* are discussed above. But when is a language 6-
subword-k-code, #-infix and f-comma-free all at once? The next two propositions
try to give an answer to this question. The condition in the first proposition is quite
strong due to the strong requirements. However, the condition is only sufficient, and

may not be necessary.

Proposition 2.2.5 Let X be a 0-2-code such that for all v € X, |x| > 3. Then both
X and X are strictly

(i) #-subword-k-code for k > 3.
(ii) 0-infiz and 0-comma-free.

Proof:

23



(i) By induction on the powers of X. Since Suby(X) N Suby(8(X)) =0 and k > 3,
Y*uXmh(u)X* N X = ( for all u € ¥ and for m > 1. Hence X! = X is -
subword-k-code. Consider X? and suppose that there exists an z € X2 such
that x = yuy.0(u)ys for some y;,y3 € ¥*, and u € X¥, yp € ™ for m > 1. Let
T = 1129 for x1,29 € X.

It is not the case that ;7 = y; and zy = uy.0(u)ys since X is f-subword-k-code.

So suppose that 21 = yju;, o = usysf(u)ys for some uy, us such that ujus = u
and u; # 1. Since k£ > 2 one of u; or us has length at least 2. This contradicts
our assumption that Suby(X) N Suby(#(X)) = (. Now the inductive step is
done similarly. Assume X" is #-subword-k-code. Suppose there exists an x =
T Ty € X" such that £ = yyuy.0(u)ys for some yy,y3 € * , u € X,
Yo € ¥™ . m > 1. Suppose u € Sub(z;x;41..T;+¢) with |u| > 2. Then there is a
subword of u say u; € Sub(x;), such that |u;| > 2, and 6(u;) € Sub(X). This is
a contradiction to the condition that Subs(X) N Subs(6(X)) = 0. So for every
i, X is f-subword-k-code. Hence X+ = J°, X" is f-subword-k-code.

(ii) Since Subs(X) N Suby(#(X)) = @ X is both #-infix and f-comma-free and by

proposition 2.2.1 X is #-infix and f-comma-free. O

The following observation is straight forward.

Proposition 2.2.6 Let X be a 0-k-code for k < min{|z| : x € X}. Then X7 is
strictly 0-k-code if and only if X2 is a strictly 0-k-code.

Proof. One way is obvious. Suppose X* is not #-k-code then for some z = z125...2,,
Y = Y1Yo...Ym € X*, there exists u € Subg(x) and v € Subg(f(y)) such that u = v.

The four cases we need to consider are:
(i) u being a subword of z; for some 7 and v is a subword of #(y,) for some j.
(ii) u a subword of z; and v a subword of 6(y,y;11).
(iii) v a subword of z;z,41 and v a subword of 0(y;).
(iv) u a subword of z;z;;; and v a subword of 6(y,y;+1)-
All cases contradict that X? is a #-k-code. Hence X* is a 6-k-code. O

24



2.3 Levels of Involution-Comma-Free Codes

When information is encoded in single stranded DNA molecules, it can be decoded
by applying the Watson-Crick complements of the code. If the code is not #-comma-
free, then we can decode the sequence using #-comma-free code at level 1 first, then
continue decoding by #-comma-free code at level 2 and proceed the same way until
the entire sequence is read. If the code cannot be completely split into subsets that
are f-comma-free then decoding the entire sequence might not be possible. The codes
that can be completely split into finite number of #-join codes that are f-comma-free
subsets allow the segmentation of the code to be made in a sequence of finite steps
for which each step has the simplicity of a #-comma-free segmentation.

A sequence of such extractions provides a sequence of #-comma-free codes. The
level of each code is its sequence number. We note that the #-join code of a set is
f-comma-free and is called as 8-comma-free codes at level 1. When 0 is identity the
f-comma-free code at level 1 of a set X is the join of X in [10, 12]. It is more natural
to call the k-th subset of X which is #- join of the (k — 1)th subset, as 0-comma-free
code at level k. When a set X can be completely split into #-join codes, then X is
called a @-split code. A set is a 0-k-split code if it can be completely split into k& 6-join
codes that are #-comma-free subcodes. A set is a O-infinite-split code if it can be
completely split into infinite §-comma-free subcodes. When @ is identity, examples
of such split codes are given in Section 1.2.2.

When decoding a message with a comma-free code, there will be no mistake
in parsing the message by starting from the middle of the string, since no word
will appear as a substring across the concatenation of two words. If the code is not
comma-free, in some cases we can split it into subcodes which are comma-free [10, 12].
When information is encoded in single stranded DNA molecules, the information can
be decoded by applying complementary strands to the codes. In that case #-comma-
free provides unique place for hybridization of the code strand so that none of the
Watson-Crick complements of the words appear as substrings across concatenation
of two words. If the code is not #-comma-free, we show below that we can sometimes
extract subcodes, that are #-comma-free.

In this section we have several observations about the #-comma-free codes of

25



various levels. We also look at the relativization concepts of these codes. We begin

the section with a few examples.

Example 2.3.1 Let X = {aab,aba} over the alphabet set ¥ = {a,b} with X? =
{aabaab, aababa, abaaab, abaaba} and for an antimorphic 0, a — band b — a, §(X) =
{abb, bab} . Then Jy(X) = {aab} is f-comma-free. Hence X; = X \ Jp(X) = {aba}.
We can check that Jp(X7) = {aba} and hence X = Jy(X) U Jp(X;) is a 0-2-split-code

Example 2.3.2 Let X = {ab, aab, aba} over the alphabet set ¥ = {a, b} and for an
antimorphic 6, ¢ — b and b — a, 8(X) = {ab, abb, bab}. Note that Jy(X) = {aab}.
Then X; = {ab, aba} and Jy(X;) = () since ab(aba)a, abd(ab)a € X?. Hence X cannot

be completely split in to f-comma-free codes. Thus X is not a f-split-code.

Proposition 2.3.1 If X is such that X U 6(X) is a code then 0(Jp(X)) is solid

relative to X*.

Proof: Suppose 6(Jy(X)) is not solid relative to X*, then one of the conditions
in Definition 1.2.14 is not satisfied. If condition (i) of Definition 1.2.14 is violated
then there exists w = ypf(u)gz € X* such that pf(u)q,0(u) € 6(Jp(X)) implies
yp,qz,y,z € X* since u € Jy(X) which contradicts our assumption that X U 6(X)
is a code. If condition (ii) of Definition 1.2.14 is violated then there exists w =
ypB(u)qz € X* such that pf(u),0(u)q € 0(Jy(X)) and hence y, ¢z, yp, z € X* which
is a contradiction to our assumption that X U#(X) is a code. O.

We have the following observations which are not difficult to prove. We assume

that for a set X, X U 6(X) is a code throughout the rest of this section.
Note 2.3.3 (i) Jy(X) = J(X) when 0 is identity.

(i) When X is 0-comma-free, Jo(X) = X.

(iii) X s solid if and only if 6(X) is solid.

(iv) X UO(X) is 6-comma-free if and only if X U O(X) is comma-free and hence
X UB(X) is an infiz code.

(v) If X is solid relative to a language L then for any Y C X, Y is solid relative to
L.

26



(vi) Let X =Y UBO(Y). X is 8-comma-free if and only if X is solid relative to X*.
( see proposition 2 in [10]).

Note that the converse of 2.3.3(iv) above is not true. For example X = {aa,aba}
with @ being antimorphic involution mapping ¢ — b and b — a we have, #(X) =
{bb, bab}. It is easy to check that X U #(X) is a code but not #-comma-free. It was
proved in [12] that X is comma-free if and only if it is solid relative to X*. We prove

a similar result for a #-comma-free code.

Proposition 2.3.2 Let X be such that X is strictly 0. Then X s 0-comma-free if
and only if X is 0-solid relative to X2.

Proof: Assume that X is §-comma-free. To show that X is #-solid relative to X2. Let
ypuqz € X2 with pug € X, u € 0(X). Then pg # 1 is a contradiction to the fact that
X is f-infix code. If pu € X and uq € 0(X), then the case when p or ¢ is 1 contradict
that X is f-infix. If yz = 1 then puq € X? with pu € X. In this case pu € Sub(X) or
uq € Sub(X) which is a contradiction that X is f-infix. When p #1,g# 1,y #1
and z = 1 with ypugz = ypug € X2, pu € X and ug € 0(X) then yp € Sub(X) or
uq € Sub(X) contradict that X is strictly #-infix. Lastly, p #1,¢# 1,y =1 and
z # 1 with ypugz = pugz € X? contradict that X is f-comma-free.

Conversely, assume that X is #-solid relative to X2. Suppose X is not f-comma-
free then there are z,y,z € X such that xy = af(z)b for a,b € ©*. The case when
f(z) is a subword of z or y contradicts the condition 1 of Definition 1.2.29. The case
when 0(z) = 2120 such that az; = z, b = y and az,20b € X? which contradicts

condition 2 of Definition 1.2.29. O

27



Proposition 2.3.3 If X is a 0-solid code then X is strictly 0-comma-free.

Proof: Note that since Pref(X) N Suff(§(X)) = 0, X is strictly 6. Suppose X is
not @-comma-free then there are x,y,z € X such that zy = af(2)b. Then either
6(z) is a subword of x or a subword of y which contradicts that X is f-infix , or
0(z) = 2129 such that az; = x and 2,0 = y which implies z; € Pref(6(X)) N Suff(X)
and zy € Pref(X) N Suff(4(X)) which contradicts condition 2 of Definition 1.2.28. O

Note that the converse of the above proposition holds when 6 is identity (see [12])
but not for any general f. For example let X = {aa,baa} and for an antimorphic
f:a— bb—a, 0(X)={bb,bba}. It is easy to check that X is #-comma-free. But
ba € Pref(X) N Suff(#(X)) which contradicts condition 2 of definition 1.2.28.

Corollary 2.3.4 If X is a 0-solid code then X s 0-solid relative to X*.
Proposition 2.3.4 If X U#(X) is solid relative to X* then X is 6-comma-free.

Proof: Suppose X is not #-comma-free, then there exists z,y,z € X such that xy =
af(z)b for a,b € XF. Then either §(z) = 2129 such that az; = z and 220 = y or 0(2) is
a subword of y such that r0(z)b = y. The first case implies a2z, 2129, 20b € X U (X))
where az;20b € X* which contradicts condition 2 of 1.2.14 with p =a, u = 21, ¢ = 25
and the second case implies that r0(z2)b, 6(z) € X U#(X) which contradicts condition
lof1.2.14 with p=r, u=6(z) and ¢ = b. O

Converse of the above proposition also holds true when 6 is identity mapping (see
[12]). The converse of the above proposition is not true in general for any 6. For
example let X = {a3b,a’} with 0(X) = {b?,ab®} and X? = {aba’b, a®ba?, a®b, a*}.
Note that X2NETH(X)L+ = ), hence X is f-comma-free. Also, y = (aa)(a(aa)b)(aa)
€ X* with p =a, u = aa € X and ¢ = b which contradicts condition 1 of 1.2.14.
Hence X is not solid relative to X*.

The following proposition gives us the condition under which a split code is closed

under Kleene*.

Proposition 2.3.5 Let X C X1 be such that X U 6(X) is a code and X is O-infix.
Let Jy(X;) C X and Jo(X}) C X* be the 0 joins of X; and X} respectively. Then

(i) Jo(X*) = X*Jy(X)X*U{w € X*: 0(w) ¢ Sub(X*)} and

28



(ii)

Jo(X2) = X*Jo(X) X"\ Jp(X7,) fori> 1.

Proof: Recall that Jp(X) is f-comma-free when X U 6(X) is a code.

(i)

(ii)

We first show that X*Jp(X)X* U {w € X* : f(w) ¢ Sub(X*)} C Jy(X*). If
w € X* such that §(w) ¢ Sub(X*) then w € Jy(X*) since af(w)b ¢ X* for all
a,b € X1, Let x € Jy(X) and w = yyxy, for y;,yo € X*. Then for all a,b € T
and for a morphic 6, af(y;xy2)b = af(y1)8(z)0(y2)b which is not in X* since
z € Jp(X) and T Jp(X)ET N (Jy(X))? = 0. Hence w € Jp(X*).

Suppose w € Jy(X*) and O(w) € Sub(X*). To show that w € X*Jy(X)X*,
let w = z129...25, ©; € X such that 0(z,xs...x,) € Sub(X*). Observe that
one of z; € Jy(X). If none of the z; € Jp(X) then at least one of the 0(z;) is
a proper subword of a word in X which contradicts that X is f-infix. Hence

Jo(X*) = X*Jp(X)X*U{w € X*: §(w) ¢ Sub(X*)}.

We show that Jy(X}) = X*Jp(X;) X*\ Jp(X[ ;). Let w € Jyp(X;) where w =
T1Zs...xy for z; € X. Note that w ¢ Jy(X,,) since Jo(X7) = X/, \ Jo(X],)
by definition. Need to show that w € X*Jy(X;)X*. For w = x1x9...%,, if
z; ¢ Jp(X;) for all j then at least one of the 6(z;) is a proper subword of a word
in X which contradicts that X is #-infix.

Conversely, suppose w € X*Jp(X;) X*\ Jo(X}_;). To show that w € Jp(X}), let

w = y1ays for x € Jy(X;) and y1, yo € X*. Then ab(y12y2)b = ab(y1)0(z)0(y2)b ¢
X* for all a,b € ¥= such that af(y;) or 6(y)b is not in X*.0

Corollary 2.3.5 If X is such that X s 0-infiz and 0-k-split code then X* s also
0-1-split code for some l < k.

Proof: Tt is clear from the above proposition if X = (J*__ Jp(X;) then X* = |JE, Jo(X}).

|

We have given some partial results on these f-level codes. There are other new

problems that need to be considered. It will be interesting to look in to the properties

of a given infinite code such that it is a #-split code of finite or infinite level. Also

algorithms could be studied that would decide whether the code is a split code of

finite level. It would be also interesting to find the algebraic characterizations of such

codes.

29



2.4 Codes Preserved by Splicing

The operation of splicing was introduced as a generative mechanism in formal lan-
guage theory by Tom Head in [13]. Splicing systems were introduced as a model for
the cut and paste activity made possible through the action of restriction enzymes
and a ligase on double stranded DNA molecules. They were further developed in
computational models (see for example [15, 38]). Splicing two strings means to cut
them at two points specified by given substrings and to concatenate the obtained
fragments crosswise.

Consider the following two DNA molecules:

Y-CCCcCccTCcGAcccec-3
3-GGGGGAGCTGGGGG-Y

5-AAAAAGCGCAAAAA-3
J-ITTTTTCGCGTTTTT-5

The restriction enzymes are able to recognize specific substrings of double stranded
DNA molecules and cut these molecules at the specific site at the middle of these
double stranded molecules producing “blunt” ends or “sticky” ends. The two enzymes
Taqgl and SciNI cut these molecules at the unique sites occurring in them and the

following four fragments are produced:

5-CcCcCCcCT CGAccccec-3
I-GGGGGAGC TGGGGG-Y

5-AAAAAG CGCAAAAA-3
I-TTTTTCGC GTTTTT-5

The recombination of these four molecules gives the new molecules below:

5-CCCCCTCGCAAAAA-Z
¥-GGGGGAGCGTTTTT-5

5-AAAAAGCGACCCCC-3
I-TTTTTCGCTGGGGG-5

30



In this section we investigate properties of involution codes that are preserved
under splicing operation. In other words, we characterize the set of splicing rules
so that the resulting language of the splicing system keeps the properties of the
involution codes. We consider the question of determining the properties of the code
words such that under splicing they produce new “good” code words, in other words,
during the computational process the “good” encoding is not lost.

A splicing system is an ordered triple v = (3, A, R) where X is a finite alphabet,
A C ¥* is a set of words called azioms and R C (X*)* is a set of splicing rules where
(X*)® is the direct product of ¥* x ¥* x ¥* x ©*,

The splicing operation o is defined such that if » = (uq, ug, v1, v2) then

T =T1U1U2T2 W1 = T1U1V2Y2
rule 7 produces (=)

Y = Y10102Y2 Wo = Y1V1U2T2

and in this case we write (x,y) =, (wi,ws). For a language L C ¥* and a set of
rules R we say that o(L) is obtained by single step splicing of L if o(L) = {w|3r €
R, dz,y € L, (z,y) =, (w,w’)}. Then the language generated by the splicing system
v with axiom set A is L(7y) = Up>o0™(A).

For the background on splicing systems we refer the reader to [15, 38].

The following were defined in [18]

Definition 2.4.1 Base for Splicing Rules
Let X be a set and B C Sub(X) be a subset of words with k = min{|z| : z € B} > 0.
We say that a set B is a base for splicing rules for X if it us strictly 6 and satisfies

the following two properties:

(i) Sub(A(B?)) N Subs(B?) =0 for all s > k

(ii) 0(B?) N Sub(X) = 0.

31



Definition 2.4.2 f-rules
Let X be a set of words and B a base for splicing rules for X. Then a set Rp(X)

which is a subset of B* is called a set of O-rules for X.

Several observations about #-rules

(i)

(ii)

(iii)

(iv)

The f-rules can always be reflexive. This means for each rule (u;, ug, v1,v9) in
Rp(X) the rules (u1,us, u1,us) and (vq, v9, v, v2) can also be in Rp(X). This

follows directly from the definition of #-rules.

f-rules can be symmetric. If (uy,ug, uz, ug) € Rp(X) then (us, uy,ui,uy) €

R p(X). This also follows from the definition of #-rules.

One way to obtain a set of f-rules for X is the following. Let m = min{|z| :

r€ X} and k=[]

Note that even if X is strictly 6, Subg(X) may not necessarily be so. We
partition Subg(X) into three strictly 6 subsets in the following way. Set U; =
{z |z & Subg(0(X))} and Uy = Subg(X) \ U;. Then by definition U, is strictly
6 and for every u € Uy we have §(u) € Us. Now we partition Us into Uj and Uj
such that u € U} and 6(u) € UJ. Hence Suby(X) = U; U U}, U UY is a partition
of Subg(X) into three strictly 0 sets. We form the basis of the words used in

the splicing rules from two of these sets.

Let W be either U} or U) and let B = U; UW. Then B is a maximal set of
subwords of X of length k£ that is strictly 8. Now we remove from B all words
that violate the properties (1) and (2) of Definition 2.4.1. This may leave an
empty set of B. In that case we consider the subwords of length £ —1 and £+ 1
and repeat the procedure for obtaining B. This procedure ends either with a

base B for splicing rules or, since X is finite, with no base for splicing rules for

X.

A set K is called a strong splicing base if for all z € ¥* and for all u € K, if
zu is a prefix of K* then x € K* and if ux is a suffix of K* then x € K*. In
[16] the strong splicing base is called simply a splicing base. We have to make
a distinction in our case since the base for splicing rules is not necessarily a

strong splicing base (see Example 2.4.3). However, the base for splicing rules

32



B obtained from the construction in 2.4.2(iii) above, with words of constant

length, does give us a strong splicing base.

The need for the set of f-rules R to be reflexive and symmetric comes naturally
from the chemistry of the restriction enzymes. If an enzyme can cut one molecule, the
ligase can recombine the same molecule back together, hence a reflexive operation.
If two molecules = and y take part in a splicing operation (can be cut by an enzyme)
then the same molecules written in the opposite order y and z are part of the same
operation. Hence the symmetric operation. In the following we assume that the

splicing rules are reflexive and symmetric.

Proposition 2.4.1 Let v = (X, A,R5(A4)), be a splicing system with Rp(A) being
the a set of 0-rules. If the axiom set A is strictly 0-infix then the language generated
by the system L(v) is strictly 0-infiz.

Proof: Since L(y) = Up>00™(A) we proceed by induction on n. splicing rules
derivation steps. If n = 0 then 0°(A) = A and A is #-infix by assumption. Assume
that 0™(A) is f-infix and suppose 0™ (A) is not f-infix. Then Jz,y € 0™ (A) such
that z = sf(y)p for some words s and p. Since Rz (A) is reflexive, we can assume that
both x and y have been obtained by splicing words from o™(A). Let x = zujusxy
and y = y,v,v4y4 for some (uy, ug, uz, ug) € Rp(A) and (v1, ve, v3,v4) € Rp(A). Then
T = T1urugty = sO(y1v1v4y4)p. In what part of z can 6(vv4) appear as a subword?

There are several possibilities:
(i) O(v1v4) € Sub(x1uy) or B(viv4) € Sub(uszy).
(ii) O(v1vs) € Sub(ujuy).
(iii) (vivs) € Sub(zyuius) or O(vivs) € Sub(uyuszs) but not case 1 or 2.
(iv) O(v1v4) € Sub(z) but none of the previous cases.

The first case involves longer analysis, but it ends up violating the property 1 or
property 2 from definition 2.4.1. The second and the third case violate the property
1 from Definition 2.4.1. The fourth case means that u;us € Sub(f(vivs) which again

violates condition 1 of Definition 2.4.1. Hence, 6™ (A) has to be 6-infix.

33



In order to show that L(vy) is strictly 6 it is sufficient to take the words s and p
to be empty and then follow the above argument. O
The following proposition provides conditions under which the language generated

by a splicing system is #-comma-free.

Proposition 2.4.2 Let v = (X, A, Rg(A4)) be a splicing system where Rp(A) is a
set of O-rules for A. Assume that the base B for the splicing rules is such that

{6(B*)} N Sub(A4?) = 0.
If the aziom set A is strictly 0-comma-free, then L(7) is also 8-comma-free.

Proof. The proof is similar to the above proof and is by induction on the number
of derivation steps. If n = 0 then ¢°(4) = A and A is f-comma-free by assump-
tion. Assume that 0"(A) is #-comma-free and suppose 0""!(A) is not f-comma-
free. Then there are x,y,z € o""(A) such that zy = s6(2)p, s,p € LT. Let
T = T1UU4T4, Y = Y10104Ys and z = zywiwezy for some (uq, ug, U3, ug), (v1, V2, V3, V4)

and (wq, we, w3, wy) € Rp(A)

Let 6(y) be a subword of usz4y;v1.
ugry and yyv; € Sub(A) violates the property 2 from definition 2.4.1. If uqz, =
rit1...tire and Y101 = 7r3q1...¢ T4 Such that ¢y, r3q; € Sub(A), t;,¢; € B, then either

(i) O(wywy) is a subword of ¢;t;, 1, or O(wiwy) is a subword of g;g; 1.
(ii) O(w,w,) is a subword of ror3, then rors € Sub(A?) which is a contradiction.
(iii) f(wqw,) is a subword of ¢;r5 or 8(wiwy) is a subword of r3¢;.

Then the first case violates property 1 of definition 2.4.1 , the second case violates
{0(B?%)} N Sub(A4?%) = () and the third case violates property 2 of definition 2.4.1.

Hence, 0™ *1(A) is f-comma-free.O]

We would like to point out that in [16] it was proven that if a strong splicing base
is strictly #-comma-free, then so is the language generated by the splicing system,
provided that the set of axioms is a subset of the free monoid generated by the splicing

base. The Proposition 2.4.2 does not require that the axiom set is a subset of the

34



free monoid generated by the base for the splicing rules, and therefore, the language
generated by the splicing system is not necessarily a subset of this same monoid (as
is the case in [16]). The following example shows a base for splicing rules that is not

strong splicing base.

Example 2.4.3 Consider the alphabet ¥ = {a, b, c} with the morphic involution 6
defined with @ — ¢, b +— b and ¢ — a. Let the axiom set A = {abaaba}. We choose a
base for splicing rules to be B = {a, ab}. This is clearly a strictly #-comma-free code,
but it is not a strong splicing base. Consider a-ab-a € Bt with suffix aba. If we pick
u = a and z = ba we have that ux is a suffix of a word in B* and v € B but = ¢ B™.
Now, 6(B?) = {cc, ccb, cbe, cbeb} and clearly the conditions of the definition 2.4.1 and
Proposition 2.4.2 are satisfied. We can take R = B® and the resulting generated

splicing language is infinite (contains aba®ba U (ab)ta) and is strictly #-comma-free.

The following proposition provides conditions under which the language generated

by a splicing system is #-k-code.

Proposition 2.4.3 Let v = (X, A, Rp(A)) be a splicing system where Rp(A) is a
set of O-rules for A. Assume that the base B for the splicing rules is such that

Suka(B2) N Subk(A) = @
If the aziom set A is 0-k-code, then L(y) is also -k-code.

Proof: 'The proof is by induction on the number of derivation steps. If n = 0
then 0°(A4) = A and A is #-k-code by assumption. Assume that 0™(A) is #-k-code,
and suppose 0""!(A) is not #-k-code. Then there are z,y € o™"!(A) such that
x' € Subg(z) and y' € Subg(y) and 2’ = 0(y'). Let x = T1u1UsTa, Y = Y1V104Ys
for some (uq,us,us, ug), (v1,v2,v3,v4) € Rp(A). Both z,y € 0"(A) and the case
when 2/ € Subg(z1u1) and y' € Subg(y;v1) violates that o™(A) is a #-k-code. If
x' € Suby(ujuy) and y' € Suby(y1v1) then either yv; € A which violates the condition
Subf(B?%) N Suby(A) = 0 or y1v1 = rwyws...w,t such that rw; € A, w; € B.

(i) The case when 3’ € Sub(rw;) contradicts Subg(f(B?)) N Sub,(A4) = 0.

(ii) The case when y' € w;w;1; violates property 2 of Definition 2.4.1.

35



(iii) ¥’ € wyt where w,t € A or w,t € Sub(B?) which is again a contradiction.

Hence 0™ (A) is #-k-code and so is L(y). O
We end this section with an observation about the conditions under which a

splicing language is #-subword-k-code.

Proposition 2.4.4 Given k, let A be such that Subg(A) N Subg(6(A)) = 0. Let
Re(A) € BW be a set of rules with words from a set B C Suby(A) that satisfies
0(Suff;(B) Pref;(B)) NSuby(A) = 0 and 0(Suff;(B) Pref;(B)) N Suff,(B) Pref,(B) = 0
foralli+j=k andr+s=k. Then L(v) is 0-subword-k-code.

Proof: Clearly A is f-subword-k-code. Assume that ¢"(A) is f-subword-k-code.
Suppose © = zjujugry for some (uq,us, us,us) € Rp(A) such that z = suv(u)p

where [v| > 1, |u| = k (i.e.) suvf(u)p = z1uiusz4. Then the two possibilities are that
(i) u € Subk(A) and 0(u) € Suf f;(B)Pref;(B).

(ii) v € Suf f;(B)Pref;(B) and 0(u) € Suf f,(B)Prefs(B).

(iii) u € Subk(A) and 0(u) € Suby(A).

All cases contradicts the hypothesis. Therefore 6™™!(A) is #-subword-k-code and
hence L(v) is f-subword-k-code. O

Example 2.4.4 X = {(ab)" : 1 < n < 10} is #-comma-free and #-subword-2-code
for ¥ = {a,b,c,d} with the morphic involution # defined with ¢ — ¢ and b — d
and 0(X) = {(cd)” : 1 <n <10} and U = {a,b}. It is easy to verify that L(y) C
(3 \ {c,d})* and hence L(7) is §-subword-2-code, #-infix and #-comma-free.

36



CHAPTER 3
ALGEBRAIC CHARACTERIZATIONS OF INVOLUTION CODES

In this chapter we concentrate on the algebraic characterizations of these involution
codes mainly through their syntactic monoid. Algebraic characterizations of many
classes of codes are already known [34, 39, 40, 41]. The characterizations of the
syntactic monoid of an infix code was shown in [41]. Similar results were shown for
the maximal prefix codes in [40]. The characterizations of the syntactic monoid of a
comma-free code X and X' are discussed in [39]. The syntactic characterization of
strictly locally testable languages are discussed in [34].

In our case we concentrate on #-infix and #-comma-free codes. In section 3.1 we
observe that the image of a syntactic monoid of a language X under a morphic or
antimorphic involution € is equal to the syntactic monoid of the image of the language
X under 0. Then we characterize the syntactic monoid of some involution codes. In
section 3.2 we construct involution codes that are strictly locally testable. In section
3.3 through a new operation on monoids called “glue along a set” we characterize
the syntactic monoid of X, X being #-infix or #-comma-free codes and the syntactic

monoid of XT.

3.1 #-image of the Syntactic Monoid

Given an involution code with one of the “good” property we look at the properties
of these codes such that every non zero element of their syntactic monoid also satisfy
the same “good” property. We also observe that the image of a syntactic monoid of
a language under an involution map is equal to the syntactic monoid of the image of
the language. In other words, the syntactic monoid of a language X is isomorphic
to the syntactic monoid of #(X) for any involution #. Before we proceed with the
results, note that for any code X and an injective morphism 6§ on X, 6(X) is also a

code (see [5]).

37



Lemma 3.1.1 Let § : ¥ — X be (anti) morphic involution such that 6 can be ex-
tended to a (anti) morphism on *. Let X C X* be a code then 6(X) = X' is also
a code for X*. Define 0 : M(X) — M(X') by 0([z]) = [0(x)], where M(X) is the
syntactic monoid of X. Then 0 is well defined, and 0 is a (anti) morphism when 0

is a (anti) morphism.
Proof:

(i) We show that 6 is well defined.
To show if z = y(Px) then 6(z) = 6(y)(Px:), i-e, uf(x)v € #(X) if and only if
uf(y)v € 0(X). Note that uf(xz)v € 0(X) if and only if §(ub(z)v) € X since
6 is an involution. Hence §(u)zf(v) € X when 6 is a morphism, if and only if
0(u)yd(v) € X since z = y(Px), which implies uf(y)v € 0(X). Hence 0 is well
defined.

(ii)  is a (anti)morphism when @ is a (anti)morphism.
To show that ([z][y]) = 8([a))A([y])- Note that ((z][y]) = B(lzy]) = [(ay)] =
[0(z)0(y)] since 6 is a morphism. Hence 0([z][y]) = [0(x)][0(y)] = 0([z])0([y])-

Hence f is a morphism.O

Lemma 3.1.2 Let 6, 0, X and X' be as defined in lemma 3.1.1. [z] € M(X) if and
only if 0([z]) € M(X"). Moreover 0 is an isomorphism.

Proof:
(i) Let [z] € M(X). To show that 8([x]) € M(X') (i.e) to show the following.

(a) For u,v € 0([z]), aub € X' if and only if avb € X' for some z,y € I*.
If u,v € O([x]) then there are uy,v; € [z] such that u = 0(u;),v = O(vy).
Let a,b € ¥* and a4,b; € ¥* such that aub € X' implies af(u1)b € X'
and a = 6(a1),b = 6(by) = 0(a1)0(u1)0(b) € X'. When 6 is morphic
O(aiuiby) € X' = ajuiby € X since [z] € M(X). Hence 0(ajvib) =
0(a1)0(v1)0(by) € 0(X) = X' = avb € X'. Similar method works when 6

is antimorphic.

38



(b) If u = v(Px) with u € 8([z]) then v € 0([z]).
If u = v(Px/) with u € 0([z]) then there exists u; € [z] such that u = 0(u,).
Let a,b € ¥* such that aub € X' and avb € X' where a = 6(a;) and
b= 6(b) for some a1,b; € X*. aub = 6(a;1)f(u1)0(by). For  antimorphic
aub = 6(bjuia;) € X' which implies bjuja; € X. Since avb € X' and
a = 0(ay),b = 0(by) there exists some r € X such that avb = 0(r) =
0(a1)0(v1)0(by) for some vy € 3X*. Hence avb = 0(biv1a1) and bjvia; € X.
Since u € 6([z]) and [z] € M(X), u1,v; € [z] which implies 8(v;) € 0([x])

and hence v € §([z]). Similar method works when 6 is morphic.

Converse can be proved in a similar way. O.

We have the following observations.
Lemma 3.1.3 Let X C X%

(i) X is O-subword-k-code if and only if for every [x] € M(X) \ W(X), [z] is

0-subword-k-code.

(ii) Sub(X) is B-comma-free if and only if for every [z], [y] € M(X)\W (X), [z], [x]U

[y] are B-comma-free.

(iii) Let X be O-infiz, or 0-comma-free or O-subword-k-code or 0-k-code for some

k> 0. In all cases W(X) # 0.

Proof:

(i) Note that for all y € [z] such that [z] € M(X)\ W(X) , y € Sub(X). Hence
[x] € M(X)\ W(X) is #-subword-k-code if and only if X is §-subword-k-code.
(ii) Obvious.

(iii) Let X be #-infix. Then there exists y € ¥* such that §(y) € Sub(X) and y ¢ X.
Hence y € W(X). Similarly we can show for all the other involution codes

W(X)#0. O

Lemma 3.1.4 Let X C ¥*. If X is an involution code with one of the “good”
properties defined in Definitions 1.2.24, 1.2.25, 1.2.26, then there exists atleast one
[x] € M(X) such that [x] is an involution code with the same “good” property.

39



Proof: Note that for a subset of involution code with one of the “good” property
is also an involution code with the same “good” property. Since for any X, X is a
union of Px classes, there exists an equivalence class [z] in Px which is a subset of
X. Since X is an involution code, [z] is also an involution with the “good” property.
O

The following propositions observe the properties of the non zero elements of the

syntactic monoid of involution codes with one of the “good” property.

Proposition 3.1.1 X is 0-k-code if and only if for every [z],[y] € M(X) \ W(X),
[z] and [z] U [y] is a O-k-code.

Proof: (=) obvious. Conversely, assume that X is not #-k-code. Then there exists
x,y € Subg(X) such that §(z) = y. But z € [z] and y € [y] for some [z],[y] €
M(X) \ W(X) which implies [z] U [y] is not a #-k-code which is a contradiction. O

Proposition 3.1.2 Let X C X* and let Z, = {z € Sub(X) : z = ab(x)b,a,b € X*}
for all x € Sub(X).

X is 0-infix and for all x € Sub(X) for all z € Z,, there exists u,v € ¥* such that
uzv € X and uzv ¢ X if and only if for every [z] € M(X), [z] is O-infiz and [s1]U][sq]
is 0-infiz for all [s1],[s2] € S where S is the image of X in M(X) i.e. n7'(S) = X.

Proof: (=). Suppose there exists [z] € M(X) \ W(X) such that [z] is not #-infix,
then there exists z,y € [z] such that = af(y)b for some a,b € ¥* which implies
x € Z,. Since z,y € [z], for all u,v € ¥*, if uyv € L then uzv € L which is a
contradiction since z € Z,. Hence [z] is #-infix. Since X is f-infix and s; C X, for
all [s1] € S, and [s1] U [s9] is f-infix for all [s;],[so] € S.

Conversely, If X is a Px class then X is f-infix. Assume X is not f-infix then
there exists z,y € X such that z = af(y)b. If

(i) z,y € [z] for some [z] € M(X). Done.
(ii) x € [s1] and y € [sq] for some [s1], [s2] € S contradicts that [s;] U [so] is -infix.

Suppose for all x € Sub(X) and for all z € Z, and for all u,v € ¥* such that
uzv € X = uzv € X then uzv,uaf(xz)bv € X. Hence x € [s1],a8(z)b € [sq] for some
[s1],[s2] € S which contradicts that [s1] U [so] is f-infix. O

40



3.2 Constructing Strictly Locally Testable Involution Codes

In this section we provide with methods to generate involution codes that are strictly
locally testable. Locally testable languages are the best known subclass of star free
languages. Regular languages can be described with the help of a strictly locally
testable languages. In [37] the authors showed that there are no star free languages,
where the commutative closure is regular, but not star-free. Locally testable lan-
guages are used in the study of DNA and informational macromolecules in biology.

In [14] Head showed an interesting relationship between splicing languages gener-
ated by splicing systems and regular languages. He showed the equivalence relation
between a certain type of splicing languages and a subclass of regular languages called
strictly locally testable languages (i.e.) a certain type of amino acid sequences can
be expressed by a locally testable language.

In [27] a linear time algorithm that learns the deterministic finite state automaton
of a given strictly locally testable language was presented. Based on the theoretical
result in [14] and the algorithm in [27], the authors described several experimental
results (see [27]) to identify the protein a-chain region in amino acid sequences for
hemoglobin.

Hence it is of interest to look for involution codes that are strictly locally testable.
In this section we construct involution codes with one of the “good” property such
that they are strictly locally testable and use the syntactic monoid characterizations of
these languages to characterize the involution codes. We start the section by recalling
the definition of local and strictly locally testable languages and a characterization

of local languages.

Definition 3.2.1 Let X C ¥*

(1) X is said to be local if there is a finite set of words H such that X = X*\X*HX*.
The set H 1s the set of forbidden words.

(ii) An automaton A is local if there is a positive integer n such that every word
w € Y*with length |w| > n is a constant function in the transition monoid (See

[5, 42]) of A. The integer n is called the order of A.

(iii) X is said to be strictly locally testable if there are finite sets P, S, H C ¥* such

41



that X = (PX*NYX*S)\ 2*HX*. The mazimal length of words in PUS UH is
the order of X.

(iv) w € ¥* is a constant for a language X if, for all x1,x9, 3,24 € ¥* | if ;ywzy €

X and zswzxs € X then viwzxy € X.

Proposition 3.2.1 Let X be a reqular language and A be the minimal deterministic

finite automaton that recognize X. The following are equivalent.
(i) X is strictly locally testable of order k.
(i) A is local of order k.

(iii) All words of X* of length > k are constants for X

For details on the proof of Proposition 3.2.1 refer [31, 42]. Note that if X is local
then it is strictly locally testable.

Example 3.2.2 The language X = {a"b"c" : n > 1} with alphabet set X = {a,b,c,
d,e,f} is not regular and hence not local and hence not strictly locally testable. For
morphic involution § with #(a) = b and 6(c) = ¢, we have §(X) = {b"a"c" : n > 1}.
It is easy to check that XT0(X)XT N X2 = (). Hence X is #-infix and f-comma-free.
For an antimorphic or morphic involution 6 with 6(a) = d, 8(b) = e and 0(c) = f, X
is 0-k-code and #-subword-k-code for some k > 0. Hence involution codes in general

are not strictly locally testable.

Given finite code words with certain properties, we would to like construct lan-

guages that are strictly locally testable with the same “good” properties.

Proposition 3.2.2 Let X C Xt be a finite language. Let A = ¥*X N XX*\
Y*O(X)X*. Then A is strictly locally testable. If X is 0-infiz (comma-free) then

A is also 0-infiz (comma-free).

Proof: Let X be f#-infix. Suppose A is not #-infix, then there exists =,y € A such
that z = af(y)b for a,b € X*. Hence there exists a word u € #(X) such that u is a
subword of x € A which is a contradiction. Therefore A is #-infix.

Let X be 8-comma-free. Suppose A is not #-comma-free, then there exists z,y, z €

A such that zy = af(z)b for some a,b € X1. Let x = 21¢122 ,y = T3C2%y , 2 = T5C3%6

42



for some z; € X and ¢; € X*. Then zy = af(z)b implies that 6(x5) is a subword of
x or y, or f(zs5) is a subword of zox3. Both cases contradict that X is f-comma-free.

Hence A is 0-comma-free. O

Proposition 3.2.3 Let X C X* such that for all x € X, |x| > k for some k > 0
and X is finite and X* is 0-subword-k-m-code. Let Y = Ufi;,:frl Sub;(X?) and let
M = U?i;,:’il YI\Y. Then A = X%\ *MX* is 0-subword-k-m-code and strictly

locally testable.

Proof: Suppose not, then there exists z € A such that z = auyf(u)b with
luyB(u)| = 2k + i for 1 <4 < m. Clearly uyf(u) ¢ Sub(X") since X* is f-subword-
k-m-code, which implies uyf(u) € M = z ¢ A which is a contradiction to our
assumption. Hence A is f-subword-k-m-code. O

The following proposition gives us a method to construct strictly locally testable
language that is also #-k-code for some k. We have much stronger conditions than

Proposition 3.2.3 due to stronger requirements.

Proposition 3.2.4 Let k be a finite number and X be a finite alphabet set and we
partition ¥* into three disjoint subsets such that ¥ = PUQU R such that (P) = Q
and for allz € R, 0(x) =x. Let H = PUR and let A =%X*\ X*HX*. Then A is
0-k-code.

Proof: Suppose A is not 6-k-code, then there exists z,y € Subg(A) such that
x=0(y). z,y ¢ Pand z,y ¢ R since PRC H. If x € Q) then §(z) =y € H which
is a contradiction. Hence A is a #-k-code. O

We use the following well known (see [34, 35]) characterization of strictly locally

testable languages to characterize the involution codes constructed above.

Proposition 3.2.5 (See [35]) Let X be a languages such that .= {[x] : = is a
constant for X}. X is strictly locally testable iff [1]={1} and the set of idempotents
E={e:e?=e,e #1,e # 0} is a non-empty subset of the ideal 7.

We give more methods in section 4.2 to construct involution codes that are not
necessarily strictly locally testable and have also calculated the informational entropy

of such codes.

43



3.3 Syntactic Monoid of Involution Codes

In theory of codes, two types of syntactic monoids are usually considered, the syn-
tactic monoid of the codes itself and the syntactic monoid of the Kleene* of the code.
In this section we concentrate on the characterizations of syntactic monoids of #-infix
and #-comma-free codes and the syntactic monoid of the + closure of the words over
these codes. We characterize the syntactic monoid of an involution code through
a new operation on monoids called “glue along a set”. The main theorem in this
section consists of the characterization of syntactic monoid of X and X when X is
f-infix or #-comma-free. Necessary and sufficient conditions on a monoid to be the

syntactic monoid of a #-infix or a #-comma-free codes are also discussed.

Proposition 3.3.1 Let X C X* be O-infiz. Let [x] € M(X) be such that [x] C X

with O([x]) = [x] then the Px class of 1 is trivial where Px is the syntactic congruence.

Proof: Suppose the Py class of 1 is not trivial, then there exists u such that Cx(u) =
Cx(1). Let v € [z] such that #(v) € [z]. Then v,uv € [z] and §(v),uf(v) € [z]. Hence
v,uf(v) € [x] which implies v = 1 since [x] C X and X is f-infix. O

Proposition 3.3.2 Let X be a code and let L = X*. Then P, class of 1 is trivial

ie. [1]={1}.

Proof: Suppose not, there exists v € ¥* such that Cp(u) = Cr(1). Note that
u ¢ L since 1 ¢ L which implies u € PSub(L) \ L since Cr(u) # 0. Note that
L is a union of Pj, classes and choose [z] such that [z] is a Pp, class and [z] C L
and there exists v € [z] such that v € X. Then Cp(uv) = Cr(v), Cr(vu) = Cr(v)
and Cfr(vuv) = Cr(v?) which implies both uv,vu € [z] and vuv € L since v*> € L.
Hence vuv has two distinct factorizations which implies X is not a code which is a

contradiction. O
Corollary 3.3.1 If X is a code then M (X 1)\ {1} is a sub semigroup of M(X™).

The converse of the above proposition need not be true. For example, take > =
{a,b,c} and let X = {a,b,ab} and let L = X*. Clearly L is not a code. Note
that Sub(L) = L. Note CL(1) = Cp(u) for all u € Sub(L), since Sub(L) = L and
1 ¢ L and hence the Px+ class of 1 is trivial. Also note that for any code X with

44



L = X* Py, class of 1 may not be trivial. For example for X = {ab, aa}, it is easy
to check that Cr(aa) = Cr(1) = {(1,1), (1, ab), (a,b), (ab, 1), (1, aa), (aa,1), (a,a)...}

and hence aa = 1(Pp).

Proposition 3.3.3 Let X C X* and n: X* — X*/Px thenn(X) =S C M(X) is a
disjunctive subset of M(X).

Proof: Suppose there exists [z], [y] € M(X) such that Cs([z]) = Cs([y]) = {([a], [0]) :
[a][z][b] = [axb] € S} which implies Cx(z1) = Cx(y1) = {(a,b) : axb € X} for all
x1 € [z] and y; € [y]. Hence z1,y; € [z] and z1,y; € [y] and therefore [z] = [y].O
We concentrate on necessary and sufficient conditions for a monoid to be syntactic
monoid of a #-infix code. The characterization of syntactic monoid of an infix code
was done in [41]. We have our results here as a corollary to a theorem stated and
proved in [41]. For more details on the proof we refer the reader to [41]. The following

theorem was proved in [41].

Theorem 3.3.2 A monoid M with identity 1 is isomorphic to the syntactic monoid

of an infix code X if and only if
(i) M\ {1} is a subsemigroup of M.
(ii) M has a zero.

(iii) M has a disjunctive element [s] such that [s| # 0,1 and [s] = [z][s][y] for some
x,y € X* implies [z] = [y] = 1.

Note that for L = X U 6(X), (L) = 0(X) U X and hence M (L) = M(0(L)).
Therefore by Lemma 3.1.2 , § : M (L) — M(L).

Corollary 3.3.3 Let X C ¥* be such that L = X U0(X) is 0-infiz. Then M is the
syntactic monoid of L if and only if

(i) M\ {1} is a subsemigroup of M
(i) M has a zero.

(i1i) M has a disjunctive element [s] such that [s] # 0,1 and if [z][s][y] = [s] or
[210([s])[y] = [s] for [z],[y] € M then [z] = [y] = 1.

45



Proof: Note that L is #-infix if and only if L is an infix code. Hence (i),(ii) and part
of (iii) are satisfied by Theorem 2 of [41]. It remains to show that if [z]0([s])[y] = [s]
for a disjunctive element [s] # 0, 1 of the monoid M, then [z] = [y] = 1. Take [s] € M
such that n7*([s]) = L. Suppose there exists [z],[y] € M such that [z][0(s)][y] = [s]
then zf(a)y = b for some a,b € [s] (i.e.) a,b € L which contradicts that L is f-infix.
Since L is infix, converse is true by Theorem 2 of [41]. O

Note that by Proposition 2.2.1, Xt is #-infix if and only if X is §-comma-free.
Here we discuss the properties of the syntactic monoid of Xt U (X ™) where X is

f-comma-free.

Lemma 3.3.4 Let X be a code such that X is strictly 0-infiz. Then the P;, class
of 1 is trivial where L = X" U#(XT).

Proof: Suppose there exists u € ¥* such that Cp(u) = Cr(1). Note that u ¢ L
since 1 ¢ L. Hence u € PSub(L) \ L. Choose [z] € M such that [z] C L and
there exists y € [z] such that y € X. Hence Cr(yu) = Cr(z) = Cr(uy) which
implies yu, uy, yuy € L and yuy ¢ 6(X ™). If yuy € 6(X ™) then either y € H(X ) or
y € PSub(6(X ™)) both contradict that X is strictly #-infix. Hence yuy € X* with
yu,uy € X which implies that yuy has two distinct factorizations in X which is a
contradiction that X is a code. O

Note that X is strictly f-infix does necessarily imply that X U@(X ™) is a code.
For example let X = {aa, aab, ab} with §(X) = {bb, bba,ba} for an antimorphic 6.
X is f-comma-free since Y+{bb, bba,ba}>" N X? = (). Hence by Proposition 2.2.1
X7 is strictly f-infix. But X* U #(X ™) is not a code since aabbba = (aa)(bb)(ba) =
(aab)(bba) € XO(X).

Corollary 3.3.5 Let X be a code such that X is strictly 0-infiv. Let M be the
syntactic monoid of L = XTU@(XT). Then M \ {1} is a subsemigroup of M.

Lemma 3.3.6 Let X be a code such that X is strictly 0-infiz. Let M be the syntactic
monoid of L = X+t UO(X). M has a zero.

Proof: Let x € X and y € 6(X). Since XV is strictly #-infix, z ¢ Sub(f(X)) and
y ¢ Sub(X). Hence zy ¢ Sub(L) which implies zy € W(L). O

46



Consider two monoids M; and M, with zeros. Let N C M; and N' C M, such
that for an morphic or antimorphic bijection h, h : N — N'. Identify every element

n € N with n' € N’ such that h(n) = n'.

Definition 3.3.7 (Glue Along a set)
Define Glue along N of monoids My, and My to be the monoid M = M; Uyx My where
M = (M; \ N)U M, and the operation

0 : z€M\N,ye My\ N’

0 : z€M,\N,ye M;\ N
zy : x,y € My
ry =4 h(z)y : ze€ M \N,yeN

zh(y) : ze€N,ye M\\\ N

h(zy) : z,y€ My\N,zy e N
{ xy : x,y€ My \N,zy € My \ N

We exhibit the operation of gluing of two monoids with the following example of

syntactic monoids of a set X and 6(X).

Example 3.3.8 Let X = {aa, aba} and for an antimorphic # which maps ¢ — b and
b— a, 0(X) = {bb, bab}.

Let  : M(X) — M(0(X)) as in Lemma 3.1.1. We can check that M; = M(X) =
{0,1,a,b,ab, ba,aa} and My = M(0(X)) = {0,1,b,a, ab, ba, bb}. Choose

N = {0,1,a,b,ab,ba}, then N' = {0,1,b,d,ab,ba} and for all & € N, Z is identified
with § € N’ such that § = (%) with the following operation

2.0 =0 for all z € M; \ N and for all z € M,

a.l1 =aa

y =y forall y € M, \ {0}

.z = 0(da).x = bb.x = O for all z € M, \ {1}
a.b = ab and b.a = ba.

Hence M; Uy My ={ 0,1, a, b, ab, ba, aa, bb }.

—>

Example 3.3.9 Let X = {a*b} and for an morphic 6 which maps a — b and b — aq,
0(X) = {ba*}. Let § : M; — M, as in lemma 3.1.1. We can check that M; =

47



M(X) ={0,1,a,ab} and M, = M(0(X)) = {0,1,b,ba}. Choose N = {0,1,a}, then
N' ={0,1,b} and for all Z € N, Z is identified with § € N’ such that § = (&) with

the operation

ab.0 =0

ab.l =ba

ab.x = 0 for all z € M, \ {1}
bi=hb

ba.l =ba

and ab.1 = A(ab).1 = ba.
Hence M; Uy My ={ 0, 1, b, ba, ab }.

In the following theorems we give necessary and sufficient conditions for a monoid
that is obtained by the “gluing along a set” of the syntactic monoids of X and 0(X)
when X is f-infix and #-comma-free.

Let M; be the syntactic monoid of X and M, be the syntactic monoid of §(X).
Let N C M; such that M; \ N = {[z] : + € X} and let N' C M, such that
My \ N' = {[z] : # € §(X)}. Then 6 : M; — M, identifies by Lemma 3.1.2 [z] € N
with [#(x)] € N’ for all [x] € N. Let M = (M; \ N) Uy M.

Theorem 3.3.10 Let X C X% and M be as above. Then X is strictly 0-infiz if and
only if there are disjunctive sets S, S" € M such that I NS = () where I is the ideal
I=MSM.

Proof: Let X be strictly #-infix and S = {[z] : x € X} and S' = {[y] : y €
6(X)}. It follows from Proposition 3.3.3 that S and S’ are disjunctive in M. Suppose
[a][y][b] = [z] for some [a], [b] € M and [y] € S" and [z] € S. Then there are z; € [z]
y1 € ly] , a1 € [a] and b; € [b] such that aiy16; = z; with y; € §(X) and z; € X
which is a contradiction that X is strictly #-infix.

Let S C M with [x] ¢ S for x € X U#(X). Then either C5(0) = Cs([y]) = 0 for
y € XUB(X), 0 e Sbut [y] #0or Cs(0) = Cs([z]) = {(1,1)} for 0,[z] € S but
[2] # 0. Hence S is not disjunctive. Conversely, suppose X is not strictly f-infix, then
there are z,y € X such that af(y)b = x for some a,b € 3*. Then [a][0(y)][b] = [z] in
M with [f(y)] € S" and [z] € S which is a contradiction. O

48



Note by Proposition 2.2.1 X is strictly #-infix if and only if X is strictly 6-
comma-free. Hence we investigate the properties of the monoid obtained by “gluing”
M(X*) and M(6(X™")) when X is strictly f-comma-free.

Let M; be the syntactic monoid of X and M, be the syntactic monoid of (X ™).
Let M = M;Uy M, as defined above where N = M;\{[z] € M; : x € Sub(X+)\X*}.

Theorem 3.3.11 X is strictly 0-comma-free if and only if there are disjunctive

sets S, 5" € M such that INS = () where I is the ideal I = MS'M.

The proof of this theorem is similar to Theorem 3.3.10.

Note that Theorem 3.3.11 does not hold if M; and M, are the syntactic monoids of
X and 6(X) respectively instead of Xt and (X ™). For example let X = {baa, aba}
and 0(X) = {bba,bab}. The syntactic monoids of X and #(X) are respectively,
M, = {0,1,a,b,ba,ab,da,baa} and M, = {0,1,a,b,ba,ab,bb,bba}. Choose N =
{0,1,a,b, ba, ab, da} and hence N’ = {0,1, @, b, ba, ab,bb}. Then the glue of M; and
M, along N is given by M = {0,1,a,b, ba, ab,aa, baa,bba}. Note that the condi-
tion MS"M NS = ) is satisfied for S = {baa} and S’ = {bba}, but X is not strictly

f-comma-free.

49



CHAPTER 4
CONSTRUCTING CODED LANGUAGES

In the previous chapters we have discussed several properties of the involution codes.
In this chapter we provide with methods to generate such involution codes with
one or combinations of “good” properties. Section 4.1 gives an algorithm that can
generate f-infix and #-comma-free codes not necessarily of same length. Section 4.2
provides certain methods to construct the involution codes X and also calculate the
information rate of X*. We designed certain sequences using the methods provided
in Section 4.2 and tested them in a laboratory for cross hybridization. The results of

the experiments are given in Section 4.3.

4.1 Algorithms

Many authors have addressed the problem of DNA strand design and have proposed
various solutions. Most of the approaches have the following properties in common:
(i) all DNA strands are of the same length (ii) a DNA sequence should not hybridize
with a complement of another sequence, (iii) no two strands should hybridize with
each other. We give an algorithm that tests whether a given set of certain DNA se-
quences that are not necessarily of the same length, prevents potential intermolecular
and intramolecular hybridization. In particular we give an algorithm to test whether
a given code is f-infix and/or f-comma-free codes. Algorithms and programs that
test whether a given code is an involution code with one or all of the “good” property
are given in [24, 26).

We want the set of DNA sequences that are designed to be codes. This condition
is not obvious to verify for a finite set of words in general. It can be accomplished
using the Flower automaton as described in [5].

Let X be a finite subset of 1. We define a special automaton for X with A(X) =
(Q, E,1,T) containing a set of states @), the labeling (transition) £ C Q) x ¥ x @, a

50



set of initial states I and a set of terminal states 7" such that I = {x} and T" = {¥'}.
The set of states is defined to be @ = {x,*'} Uyex {¢¥|w = ay...ap,7 = 2, ...,n} and
the transitions in A(X) are:
E = {(x,a1,¢¥)|lw=ay...a, € X} U
{(¢¥, an,*)|w=ay...a, € X} U
(@, a5, ¢ ) |lw = ay...a, € X,i=2,...,n -1}

We call A(X) a semi Flower automaton for X. If x = +/, we say that A(X) is the

Flower automaton for X.

With each automaton we associate a labeling function A : £ — X such that
A(g,a,q') = a. The labeling is extended to paths in the usual way. We say that an
automaton is unambiguous if and only if for all p € I, ¢ € T and w € ¥* there is at

most one path from p to ¢ with label w. We use the following proposition proved in

[5].

Proposition 4.1.1 A finite set of words X s a code if and only if the Flower au-

tomaton A(X) is unambiguous.

We use the following defined in [5].

Definition 4.1.1 (Square Automaton) Let A(X) = (Q, E,I,T) be an automaton
over ¥.. The square of A, is the automaton S(A) = (Q', E', I', T") where Q' = Q x Q,
I'=1x1,T =T xT and the transitions are E' C Q' x ¥ x Q' such that

E' ={((p,9),a, (¥, 4)|(p,a,p),(¢,0a,¢) € E,a € I}

The following proposition follows from the definitions.

Proposition 4.1.2 An automaton A = (Q, E,1,T) is unambiguous if and only if
there is no path in S(A) from a state (p,p) to a state (q,q) visiting a state (r, s) with

r#s.

Using the square of a Flower automaton and Proposition 4.1.2 we can determine
whether a finite set X is a code. Based on this a program was constructed (see
[19]) that uses the construction of the Flower automaton and its square to determine

whether a generated set (or a set of words inputed by the user) is a code.

51



The program is tested for #-infix only and the algorithm that is used for comparing
f(u) with v for all u,v € X is brute force. It is a rather simple check whether one
word is a subword of another that uses standard string library routines of C++ that
the use of the brute force algorithm in this case is justified. In the same way we
check whether X is strictly . However, the algorithm for checking whether it is
f-comma-free is based on the following construction.

Consider the variation of a semi-Flower automaton A%(X) for X? consisting of the
set of states @ = {*,*', %"} Uyex {p¥, ¢*|w = a1...an,7 = 2,...,n}. The transitions

(edges) of A€(X) are as follows:

E= {(*’ alaQéu)a (*’,al,pg’)\w =ai...an € X} U
(g%, an, %), (P¥, @, ") |w = ay...a,, € X} U

{(a, as, q), (PY, @iy Py |w = a1..an € X,1=2,...,m — 1}

Clearly A?(X) recognizes X?. Since we are interested in the subwords of X?, we
set that all states in A?(X) are initial and terminal.

Now consider the semi-Flower automaton A(A(X)) in a similar way as we con-
structed the square automaton. Consider the product of (4)%(X)x (6(X)). The initial
states of the product automaton are ordered pairs of initial states, and the terminal
states of the product are ordered pairs of terminal states. Denote this automaton

with B. The algorithm for §-comma-free the relies on the following proposition.

Proposition 4.1.3 The set of code words X is 0-comma-free if and only if B recog-

nizes the empty set.

It is easily seen from the definitions that for any morphic or antimorphic involution
0 a set of code words that is #-comma-free is also f-infix. Hence, it is sufficient for

our algorithm to check for f-comma-free.

52



4.2 Methods for Constructing Involution codes

With the constructions in this section we show several ways to generate involution
codes with “good” properties. Many authors have realized that in the design of DNA
strands it is helpful to consider three out of the four bases. This was the case with
several successful experiments [4, 8, 32]. It turns out that this, or a variation of
this technique, can be generalized in such a way that codes with some of the desired
properties can be easily constructed. In this section, we concentrate on providing
methods to generate “good” code words X such that X+ has the same property. For
each code X, the entropy of X is computed. The entropy measures the informa-
tion capacity of the codes, i.e., the efficiency of these codes when used to represent
information.

Suppose that we have a source alphabet with p symbols each with probability
51, 82, ...5p. If 51 = 1, then there is no information since we know what the message
must be. If all the probabilities are different then for a symbol with low probability
we get more information than for a symbol with high probability. Hence information
is somewhat inversely related to the probability of occurrence. Entropy is the average
information over the whole alphabet of symbols.

The standard definition of entropy of a code X C ¥ T uses probability distribution
over the symbols of the alphabet of X (see [5]). However, for a p-symbol alphabet, the
maximal entropy is obtained when each symbol appears with the same probability
%. In this case the entropy essentially counts the average number of words of a given
length as subwords of the code words [25]. From the coding theorem, it follows that
{0,1}* can be encoded by X+ with ¥ + {0,1} if the entropy of X is at least log 2
([1], see also Theorem 5.2.5 in [31]). The codes for f-comma-free, strictly #-comma-
free, and 6-k-codes designed in this section have entropy larger than log2 when the
alphabet has p = 4 symbols. Hence, such DNA codes can be used for encoding
bit-strings.

We start with the entropy definition as defined in [31].

Definition 4.2.1 Let X be a code. The entropy of X+ is defined by

1
hX) = limn_mﬁ log |Sub, (X ).

53



If G is a deterministic automaton or an automaton with a delay (see [31]) that
recognizes X ™ and Ag is the adjacency matrix of G, then by Perron-Frobenius theory
Ag has a maximal positive eigen value i and the entropy of X is log i (see Chapter
4 of [31]). We use this fact in the following computations of the entropies of the
designed codes. In [16], Proposition 16, authors designed a set of DNA code words
that is strictly #-comma-free. The following propositions shows that, in a similar
way, we can construct codes with additional “good” properties.

In what follows we assume that X is a finite alphabet with || >3 and 6 : ¥ — X
is an involution which is not identity. We denote with p the number of symbols in 3.
We also use the fact that X is (strictly) f-comma free iff X* is (strictly) f-comma-free
(Proposition 2.2.1).

Proposition 4.2.1 Let a,b € ¥ be such that for all ¢ € ¥\ {a,b}, 6(c) ¢ {a,b}.
Let X = ;2 a™(X\ {a,b})b™ for a fized integer m > 1. Then X and X* are
0-comma-free. The entropy of X+ is such that log(p — 2) < h(X ™) < log(p — 1).

Proof. Let x1,x9,y € X such that x1zo = s0(y)t for some s,t € X1 and z; =
a™pb™, zy = a™gb™ and y = a™rb™, for p,q,r € (X \ {a,b})T. Since 0 is an
involution, if f(a) # a, b, then there is ¢ € ¥\ {a, b} such that 6(c) = a, which is
excluded by assumption. Hence, either 6(a) = a or §(a) = b. When € is morphic
O(y) = 0(a™)0(r)0(b™), and when 6 is antimorphic 0(y) = 0(b™)6(r)0(a™). So,
O(y) = a™(r)b™ or O(y) = b™O(r)a™. Since 1z = a™pb™amqb™ = sb™O(r)a™t
or £1xe = a™pb™a™qb™ = sa™@(r)b™t the only possibilities for r are 6(r) = p or
6(r) = q. In the first case s = 1 and in the second case ¢t = 1 which is a contradiction

with the definition of #-comma-free. Hence X is #-comma-free.

YO0 Brom 20

Figure 4.1: Finite state automaton A that recognizes X+ where S = ¥\ {a, b}.

Let A= (V, E, \) be the automaton that recognizes X where V = {1, ..., 2m+1}
is the set of vertices, E CV x X xV and A : E — X (with (4, s, 7) — s) is the labeling

54



function defined in the following way:

a fori1<i<m, j=1+1,
A, s,5)=1< b form+2<i<2m, j=i+1, andi=2m+1,j =1,
s fori=m+1,m+2, j=m+2 seX\{qb}

Then the adjacency matrix for A is a (2m +1) x (2m + 1) matrix with ijth entry
equal to the number of edges from vertex 7 to vertex j. Then the characteristic
polynomial can be computed to be det(A —ul) = (—p)*™(p—2—p) +(—1)*™(p—2).
The eigen values are solutions of the equation p?™(p — 2) — p?™*! + p — 2 = 0 which

gives p—2 =y — HenceO<%<1,i.e.,p—2<u<p—1.lj

W' 2m+1
In the case of the DNA alphabet, p = 4 and for m = 1 the above characteristic
equation becomes p® — 2u%? — 2 = 0. The largest real value of u is approximately

2.3593 which means that the entropy of X is greater than log 2.

Example 4.2.2 Consider the DNA alphabet A with # = pr. Let m=2 and choose
A and T such that X C J_, A?{G,C}*T?. Then X and so X is f-comma-free.

Proposition 4.2.2 Choose distinct a,b,c € ¥ such that 6(a) # b,c, 8(a) # a. Let
X =2, a™(E™ )™ for some m > 2. Then X, and so X+ is strictly 0-comma-

free. The entropy of X is such that log(p™=) < h(X*) < log((p™ ' + 1)m).

Proof.  The proof that X is strictly #-comma-free is not difficult and we just
give a sketch. Suppose there are z,x1,29 € X such that sf(x)t = z1zo for some
s,t € L. Let © = a™sjcsec..s,chb™ then 0(x) is either 6(a™)0(sic...sxc)0(b™) or
6(b™)0(s1c...sxc)f(a™) which cannot be a proper subword of z1z5 for any z, 25 € X.

Hence X is f-comma-free.

@ a,.a (S (NS ....S.A)c 2m+1b_..._b.@
£ b

Figure 4.2: Finite state automaton A that recognizes X+ where S = X.

Let A = (V, E,\) be the automaton that recognizes X+ where V = {1,...,3m}
is the set of vertices, E C V x ¥ x V is the set of edges and A : E — ¥ (with

(1,8,7) — s) is the labeling function defined in the following way:

55



[ a for1<i:<m, j=1+1,
o b for2m<i<3m-—-1, j=i+1, and i =3m,j =1,
(i, 8,) =
c fori=2m, j=m+1,
L S form+1<i:<2m-1, j=i+1, s€X

Note that this automaton is not deterministic, but it has a delay 1, hence the entropy
of Xt can be obtained form its adjacency matrix. Let A be the adjacency matrix of

this automaton. The characteristic equation for A4 is —(u)*™ + (u)>™p™ 1 +pm~1 = 0.

m—1 __ u3m . .m um . . . um
= g = M~ et Since p is an integer and 0 < 2 < 1,

This implies p
pi < p<pml+1)m.0

For the DNA alphabet, p = 4, and for m = 2, the above characteristic equation
becomes p® — 4u* — 4 = 0. Solving for u, the largest real value of u is 2.055278539.
Hence the entropy of X+ is greater than log 2.

Example 4.2.3 Consider A and # =prandlet m=2,a=A,c=C,b=G.
Then X = J°;, AA(AC)'GG and X are strictly #-comma-free.

With the following propositions we consider ways to generate #-subword-k-code

and 6-k-codes.

Proposition 4.2.3 Let a,b € ¥ be such that (a) = b, and let X = 2, a*1((Z\
{a,0})*2D)".

Then X is 0-subword-k-code for k > 3. Moreover, when 0 is morphic, X is a 0-
k-code. The entropy of X is such that log((p — 2)%) <A(XT) <log(((p—2)F2+
1)k=1).

Proof. Suppose that there exists z € X such that x = rusf(u)t for some r,t € ¥*,
u,0(u) € XF and s € ¥™ form > 1. Let x = a* 's1bsob...s,b where s; € (X\a, b)* 2,

Then the following are all possible cases for u:

(i) u is a subword of a* s,
(ii) w is a subword of as1b,

(iii) u is a subword of s;bs,,

56



(iv) w is a subword of bs;b for some i < n.

In all these cases, since #(a) = b, 6(u) is not a subword of z. Hence X is 6-

subowrd-k-code.

@a@a ..a®s .8 s

Figure 4.3: Finite state automaton A that recognizes X+ where S = ¥\ {a, b}.

Let A= (V, E, \) be the automaton that recognizes Xt where V = {1, ..., 2k — 2}
is the set of vertices, E C V x X xV and A : E — ¥ (with (4,s,7) — s) is the

labeling function defined in the following way:

a for1<:1<k—-1, j=i+1,
A, 8,7) =14 b fori=2k—2, j=k, andi=2k—2,j =1,
s fork<i<2tk-3, j=i+1, s€X\{a,b}

This automaton is with delay 1.
Let A be the adjacency matrix of this automaton. The characteristic equation

for Ais [(—u )2’“*2 —(p=2)F 2 —(p—2F2=0.So (p—2)F2=prF 1 - i

k—1

k=2

Since 0 < <1l,(p-2)" 1 <pu<(p-2F2+1)+10O

k 1+1

For the DNA alphabet, p = 4, and for £ = 3, the above characteristic equation
becomes u* — 2% — 2 = 0. Solving for u, the largest real value is 1.6528 which is
greater than the golden mean (1.618), but less than 2. The asymptotic value for y is

2 when k approaches infinity.

Example 4.2.4 Consider A with § = pv and choose k = 3. Then
X =2, AA({G,C}T)" is f-subword-3-code.

As other authors have observed, note that it is easy to get 6-k-code if one of the

symbols in the alphabet is completely ignored in the construction of the code X.

Proposition 4.2.4 Assume that 0(a) # a for all symbols a € ¥. Let b,c € X
such that 0(b) = ¢ and let X = |J2, a* (X \ {c})*2b)" for k > 3. Then X and

o7



X* are a 0-k-code. The entropy of Xt is such that log((p — 1)%) < KXT) <
log (((p — 1)*~* + D7),

Proof. The fact that X is a #-k-code is straight forward, since every subword of

x € X of length k is either power of a or contains the symbol b.

@a@a ..afk\s .8 s

Figure 4.4: Finite state automaton A that recognizes X+ where S = X \ {c}.

Let A = (V, E, \) be an automaton that recognizes X where V = {1, ..., 2k — 2}
is the set of vertices, F C V x ¥ xV and A : E — ¥ (with (4,s,7) — s) is the

labeling function defined in the following way:

a, for1<i<k—1, j=i+1
(i, 8,7) =14 b, fori=2k—-2, j=k andi=2k-2,j=1
s, fork<i<2k—-3, j=i+1, s€ ¥\ {c}

This automaton is with delay 1.

Let A be the adjacency matrix of this automaton. Its characteristic equation is

p2k=2 — pk=1(p—1)kF=2 — (p—1)¥=2 = 0. This implies (p—1)k¥=2 = pF=1 — % We
are interested in the largest real value for pu. Since p > 0, we have 0 < W

pk=141
which implies (p — 1)% <p<((p-1)F2+ 1)k%1‘ 0O

For the DNA alphabet, p = 4 and for £ = 4 the above estimate says that
"> 35 > 2. Hence the entropy of X in this case is greater than log 2.

Proposition 4.2.5 Assume that 6(a) # a for all symbols a € ¥.. Let b,c € X such
that 0(b) = ¢ and let X = J2,((Z\ {c})¥'b)" for k > 3. Then X and X+ are a
0-k-code. The entropy of X is such that K(X™1) = log((p — 1)%)

The fact that X is a 6-k-code is straight forward, since every subword of z € X
of length k contains the symbol b.

58



Figure 4.5: Finite state automaton A that recognizes X+ where S = ¥ \ {c}.

Let A = (V,E,\) be an automaton that recognizes X+ where V = {1,...,k} is
the set of vertices, E CV x X x V and A: E — X (with (i, s, ) — s) is the labeling

function defined in the following way:

b, fori=k,j=1
s, for1<i<k-1,j=i+1, se X\ {c}

A, 8,7) =

Let A be the adjacency matrix of this automaton. Its characteristic equation is
(% — (p — 1)1 = 0. This implies that p = (p—1)F . O

For the DNA alphabet, p = 4 and for £ = 5 the above estimate says that y = 35.
Hence the entropy of X+ in this case is greater than log 2.

We would like to investigate what happens to the “goodness” of these codes
under a morphic or antimorphic injective mapping. In other words, what should be
the conditions on these codes so that they still satisfy the properties under such a

mapping.

Proposition 4.2.6 Let 31 and X5 be finite alphabet sets and let f be an injective
morphism or antimorphism from %; to 3%5. Let X be a code over ¥i.Then f(X)
15 a code over ¥5. Let 6, : X7 — X7 and 0y : X5 — X5 be both morphisms or
antimorphisms respectively such that f(6:1(z)) = 62(f(z)).

Let P = Pref(62(f(X))) and S = Suff(f2(f(X))).

(i) Let (ATPUSAT)NF(ZF) =0 and ATPATN f(31) = 0 where A =335\ f(32).
If X is strictly 01 -infix (comma-free) then f(X) is strictly Oy-infiz (comma-free).

(ii) Let f be such that |f(a)| = r for some fized r and X3 Subg_1),(f(X))Z5 N
Suby,(f(X)) = 0.

(a) If X is 6,-subword-k-code then f(X) is Oy-subword-(k + 1)r-code.

59



(b) If X is 6;-k-code then f(X) is 0-(k + 1)r-code.

Proof:

(i)

(ii)

Let X be 6;-infix. Suppose f(X) is not fo-infix. Then there exit z,y € f(X)
such that x = afy(y)b for some a,b € 3% and z,y; € X such that z = f(z;) and
y = f(y1). Suppose a,b € f(X3) then there exits aj,b; € 3% such that f(z;) =
f(a1)f(02(y1))f(by) which implies x1 = a16:(y1)b1. This is a contradiction with
the second hypothesis in 1. Suppose a ¢ f(X%). Then either there exists
y'" € P such that ay’ € f(X]) or there exists a b’ such that b = d'b" with
abs(y)b' € f(31). This is a contradiction with the first hypothesis in 1. Hence

f(X) is fy-infix. Similar proof works when X is #;-comma-free.

Suppose f(X) is not a 0-(k 4 1)r-code. Then there are z,y € Subgi1)r(f(X))
such that x = 6y(y). First assume z,y € f(37) and there are z,,y; €
Subg+1)(X) such that f(z1) = z and f(y1) = y. Hence f(z1) = 02(f(v1))
which implies z; = 6;(y;). This contradicts with X being a #;-k-code. Oth-
erwise, if z = ca'd such that 2’ € f(X7) and ¢,d € A, then |z'| < kr and
x' = f(z1) for some z; € Subg(X). Similarly y = ey'g such that e, g € A and
y' = f(y1) for some y; € Subg(X). If 2’ = O5(y') then f(x1) = 62(f(y1)) which
implies £ = 0;(y1), a contradiction. Suppose x’ # 62(y') then 2’ is a subword of
ey'g which contradicts X3 Sub_1),(f(X))X3 N Suby, (f(X)) = 0. Hence f(X)

is 6-(k + 1)r code. Similar proof works for 6,-subword-k-code.

60



4.3 Experimental Results

Using the methods provided in Section 4.2, a set of 20 sequences of length 20 base pairs
was designed and tested experimentally. Among these 10 were designed by methods

from #-5-codes (Proposition 4.2.5), five of them are #-subword-3-codes (Proposition

4.2.3) and the remaining 5 were #-comma free codes (Proposition 4.2.2).

Purified oligonucleotides were purchased from Integrated DNA Technologies. In
addition to the 20 sequences, Watson -Crick complement of one of the sequences
(K1) was ordered to act as a control (lane 18). The sequences K1-K10 are the
0-5-codes, S1-55 and F'1-F'5 are respectively #-subword-3-codes and #-comma free
codes. Non-cross-hybridization and secondary structures were measured by running

the sequences on TAE polyacrylamide non-denaturing gels (15%) at 4°C.

Table 1: Sequences

Sequence Sequence
K1 | aatacatcacatttctaccc | S1 | aagtgtctgtetetgtetgt
K2 | actactacacacctcttace | S2 aactgtctctgtetgtetet
K3 | atcaccacccatcacactac | S3 | aagtctgtgtctetetgtet
K4 | ttaccatctctatacatcte | S4 | aagtctctgtgtetetgtgt
K5 | ctatctattcectetcacate | S5 | aactctgtetgtgtetetet
K6 | tacacataactccactcatc | F1 | aagcggaatctcggaaacgg
K7 | tcccacatcccatactaate | F2 | aatcggaagegegcaaacgg
K8 | ctaacatacctacacactac | F3 | aaccggaatcacgcaatcgg
K9 | acctctacacacttcacaac | F4 | aaacggaaacacggaagegg
K10 | tatacatacctcaaccactc | F5 | aatcggaatctcggaagegg

The results of the experiment are shown in Figure 4.6.

Table 1: Sequences

61




.
— . o

B2 . 5 .57 7890 d0tT 12 13- ISR

Figure 4.6: A 15% acrylamide non-denaturing gel of the tested DNA codes.

Lane Content,
2-11 K1-K10
12 All f-comma-free codes
13 All #-subword-3-codes
14 All #-5-codes
15 All 6-5-codes with all #-subword-3-codes
16 | All #-subword-3-codes with all #-comma-free-codes
17 All f-comma-free codes with all #-5-codes
18 Double stranded molecule (K1 with K 1)

Observed results: No duplexes were detected in lane 14 which contains annealed

solution of all #-5-codes. Their speed on the gel coincides with one of the single
stranded molecules in lanes 2-11. This shows that no cross-hybridization is observed
for these strands. Also no secondary structures were detected in any lanes 2-11. All
molecules are at the same level as 20bp mark of the ladder in lane 1. The ladder
is not visible clearly due to the staining of the gel for a long time in order to make
the DNA’s visible. The double stranded molecule on lane 18 runs at a different
level than the single stranded DNA molecules (K1 — K10) on lanes 2-11. However
some cross hybridization was observed in f-comma-free and §-subword-3-codes (lanes

12,13,15,16,17).

62



Conclusion

We have investigated the theoretical properties of languages that consist of DNA
based code words. In particular we concentrated on intermolecular and intramolecu-
lar cross-hybridizations that can occur as a result that a Watson-Crick complement
of a (sub)word of a code word is also a (sub)word of a code word. These conditions
are necessary for a design of code words but not sufficient. For example, the algo-
rithms used in the programs developed by Seeman [44], Feldkamp [9] and Ruben [43],
all check for uniqueness of k-length subsequences in the code words. Unfortunately
none of the properties from Definitions 1.2.24, 1.2.25 and 1.2.26 of the involution
codes defined in section 1.2 ensures uniqueness of k-length words. Such code words
properties remain to be investigated. We have investigated the closure properties
of these involution codes in Section 2.1. The observations in Section 2.2 provide a
general way how from a small set of code words with desired property we can obtain,
by concatenating the existing words, arbitrarily large sets of codewords with similar
properties. We hope that general methods of designing such code words will sim-
plify the search for “good” codes. Better characterizations of good code words that
are closed under Kleene* operation may provide even faster ways of designing such
code words. The most challenging questions of characterizing and designing good
0-k-codes remains to be developed.

In Section 2.3 we have discussed the properties of various levels of #-comma-free
subcodes of a given code not necessarily #-comma-free. Such codes are useful when a
DNA sequence has to be decoded over a code which is not -comma-free. Decoding a
DNA sequence over a code that can be completely split into a sequence of #-comma-
free codes are desired. The properties of such codes are yet to be investigated. Section
2.4 investigates the necessary and sufficient conditions for preserving these “good”
properties under splicing.

Given a family of sets of code words, we would like to construct an algorithm
that takes as input a given set of code words and outputs yes or no depending on
whether or not the given set of code words are involution codes with one of the “good”
properties. Such decidability issues for §-infix and f-comma-free are discussed in [16].
Note that an algorithm to decide whether a given language is regular already exists.

We would like to investigate the decidability issues for #-(subword)-k-codes.

63



We have also discussed algebraic characterizations of these involution codes through
their syntactic monoid. Section 3.2 gives methods to construct involution codes that
are strictly locally testable. Necessary and sufficient conditions on a monoid obtained
by “gluing along a set” of two monoids are discussed in Section 3.3. General methods
that construct involution codes that are regular are given in Section 4.2. The infor-
mation capacity of these codes designed by the methods from section 4.2 show that
in most cases we obtain sets of code words that can encodes binary strings symbols
— symbols. In [2], the authors use binary strings with certain properties to generate
DNA codes (assigning bases to bits). It remains to be investigated how powerful (in
the sense of information capacity) can be the transition from binary strings to DNA
code words. Our experimental results show when 6-k-codes are used, they provide
a good base for developing new code words. However, the other properties taken
isolated are not shown to provide sufficient distinction between coded DNA strands
in laboratory experiment.

Our approach to the question of designing “good” DNA codes has been from
the formal language theory aspect. Many issues that are involved in designing such
codes have not been considered. These include (and are not limited to) free energy
conditions, melting temperature as well as Hamming distance conditions. All these
remain to be challenging problems, and a procedure that includes all or majority of

these aspects will be desired in practice.

64



References

[1] R.L. Adler, D. Coppersmith and M. Hassner, Algorithms for sliding block codes -
an application of symbolic dynamics to information theory, IEEE Trans. Inform.

Theory 29 (1983): 5-22.

[2] M. Arita and S. Kobayashi, DNA Sequence Design Using Templates, New
Generation Comput. 20(3): 263-277 (2002). (Available as a sample paper at
http://www.ohmsha.co.jp/ngc/index.htm.)

[3] E.B. Baum, DNA Sequences useful for computation, unpublished article, avail-

able at: http://www.neci.nj.nec.com/homepages/eric/seq.ps (1996).

[4] R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman,
Solution of a 20-variable 3-SAT problem on a DNA computer, Science 296
(2002): 499-502.

[5] J. Berstel and D. Perrin, Theory of codes Academis Press, Inc. Orlando Florida
1985.

[6] R. Deaton, J. Chen, H. Bi, M. Garzon, H. Rubin and D.F. Wood, A PCR-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides DNA
Computing: Proceedings of the 8th International Meeting on DNA Based Com-
puters (M. Hagiya, A. Ohuchi editors), Springer LNCS 2568 (2003): 196-204.

[7] R. Deaton et. al., A DNA based implementation of an evolutionary search for
good encodings for DNA computation Proc. IEEE Conference on Evolutionary
Computation ICEC-97 (1997): 267-271.

[8] D. Faulhammer, A. R. Cukras, R. J. Lipton and L. F.Landweber, Molecular
Computation: RNA solutions to chess problems Proceedings of the National

Academy of Sciences, USA 97 4 (2000): 1385-1389.

65



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

U. Feldkamp, S. Saghafi and H. Rauhe, DNASequenceGenerator - A program
for the construction of DNA sequences DNA Computing: Proceedings of the
Tth International Meeting on DNA Based Computers (N. Jonoska, N.C. Seeman
editors), Springer LNCS 2340 (2002): 23-32.

C. Ferreti and G. Mauri, Remarks on Relativisations and DNA Encodings
Aspects of Molecular Computing, N.Jonoska, G.Paun, G.Rozenberg editors,
Springer LNCS 2950 (2004): 132-138.

M. Garzon, R. Deaton and D. Reanult, Virtual test tubes: a new methodology
for computing Proc. 7th. Int. Symposium on String Processing and Information

retrieval, A Coruria, Spain. IEEE Computing Society Press (2000): 116-121.

T. Head, Relativized Code Concepts and Multi-Tube DNA Dictionaries Finite
vs Infinite , C.S. Calude and G. Paun editors, (2000): 175-186.

T. Head, Formal language theory and DNA: an analysis of the generative capac-

ity of specific recombinant behaviors Bull. Math. Biology 49 (1987): 737-759.

T. Head, Splicing Representations of Strictly Locally Testable Languages, Dis-
crete Apllied Mathematics 87 (1-3) (1998): 139-147.

T. Head, Gh. Paun and D. Pixton, Language theory and molecular genet-
ics Handbook of formal languages, Vol.II (G. Rozenberg, A. Salomaa editors)
Springer Verlag (1997): 295-358.

S. Hussini, L. Kari and S. Konstantinidis, Coding properties of DNA languages
Theoretical Computer Science 290 (2003): 1557-1579.

N. Jonoska, Sofic systems with synchronizing representations, Theoretical Com-

puter Science, 158 (1996): No.1-2, 81-115.

N. Jonoska and K. Mahalingam, Languages od DNA based code words Proceed-
ings of the 9th International Meeting on DNA Based Computers, J.Chen, J.Reif
editors, Springer LNCS 2943(2004): 61-73 .

N. Jonoska, D. Kephart and K. Mahalingam, Generating DNA code words Con-
gressus Numernatium 156 (2002): 99-110.

66



[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

N.Jonoska and K.Mahalingam, Methods for constructing coded DNA languages
Aspects of Molecular Computing, N.Jonoska, G.Paun, G.Rozenberg editors,
Springer LNCS 2950 (2004): 241-253.

N.Jonoska , K.Mahalingam and J.Chen, Involution Codes: With Application to
DNA Coded Languages, To appear in Natural Computing.

L. Kari, S. Konstantinidis, E. Losseva and G. Wozniak, Sticky-free and overhang-
free DNA languages, Acta Informatica 40 (2003): 119-157.

L.Kari, S.Konstantinidis and P.Sosik, On properties of bond-free DNA lan-
guages, Tech. report 609, Unwwversity of Western Ontario, Department of Com-
puter Science (2003).

L.Kari, S.Konstantinidis and P.Sosik, Bonde-free Languages: Formalizations,
Maximality and Construction Methods, Preliminary Proceedings of DNA 10
June 7-10 (2004):16-25.

M.S. Keane, Ergodic theory an subshifts of finite type in Ergodic theory, symbolic
dynamics and hyperbolic spaces (ed. T. edford, et.al.) Oxford Univ. Press, Oxford
(1991): 35-70.

D.Kephart and J.Lefevre, Codegen: The generation and testing of DNA code
words, Proceedings of IEEE Congress on FEvolutionary Computation, June

(2004): 1865-1873.

S.Kobayashi and T. Yokomori, Learning Local Languages and their Application
to DNA sequence Analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 20 No. 10, October (1998).

S. Konstantinidis and A. O’Hearn, Error-Detecting Properties of Languages,
Theoretical Computer Science , 276 (2002): 355-375.

G. Lallement, Semigroups and Combinatorial Dynamics, Wiley/Inter science,

New York (1995).

Z. Li, Construct DNA code words using backtrack algorithm , preprint.

67



[31] D. Lind and B. Marcus, An introduction to Symbolic Dynamics and Coding,
Cambridge University Press, Inc. Cambridge United Kingdom (1999).

[32] Q. Liu et al., DNA computing on surfaces, Nature 403 (2000): 175-179.

[33] Y.J. Liu and Z.B. Xu, Monoid Algorithms and Semigroup Properties Related to
Dense Regular languages, Proceedings of the International Conference of Algebra

and its Apllication, Bangkok (2002).

[34] A.D. Luca and A. Restivo, A Characterization of Strictly Locally Testable Lan-
guages and Its Application to Subsemigroups of a Free Semigroup, Information

And Control 44 (1980): 300-319.

[35] N. Jonoska, A Conjugacy Invariant for Reducible Sofic Shifts and its Semigroup
Characterizations , Israel Journal of Mathematics 106 (1998): 221-312.

[36] A. Marathe, A.E. Condon and R.M. Corn, On combinatorial word design, Pre-
liminary Preproceedings of the 5th International Meeting on DNA Based Com-
puters, Boston (1999): 75-88.

[37] A. Muscholl and H. Petersen, A Note on the commutative closure of the Star-free
languages, Information Processing Letters 57(2) (1996): 71-74.

[38] Gh. Paun, G. Rozenberg and A. Salomaa, DNA Computing, new computing
paradigms, Springer Verlag 1998.

[39] M. Petrich and C.M. Reis, The syntactic monoid of the semigroup generated
by a comma-free code, Proceedings of the Royal Society of Edinburgh, 125A
(1995): 165-179.

[40] M. Petrich, C.M. Reis and G. Thierrin, The syntactic monoid of the semigroup
generated by a Maximal Prefix code, Proceedings of the American Mathematical

Society, 124-3 March (1996): 655-663.

[41] M. Petrich, G. Thierrin, The syntactic monoid of an Infix code, Proceedings of
the American Mathematical Society 109-4 (1990): 865-873.

[42] J.E. Pin, Varieties fo Formal Languages, Plenum Press (1986).

68



[43] A.J. Ruben, S.J. Freeland and L.F. Landweber, PUNCH: An evolutionary algo-

rithm for optimizing bit set selection,

DNA Computing: Proceedings of the 7th International Meeting on DNA Based
Computers (N. Jonoska, N.C. Seeman editors), Springer LNCS 2340 (2002):
150-160.

[44] N.C. Seeman, De Novo design of sequences for nucleic acid structural engineering,

J. of Biomolecular Structure & Dynamics 8 (3) (1990): 573-581.

[45] A.N. Trahtman, A Polynomial time algorithm for local testability and its level,
International Journal of Algebra and Computer Science, Vol 9-1 (1998): 31-39.

69



About the Author

Kalpana Mahalingam received a B.Sc., in Mathematics in 1998 from University of
Madras, India and M.sc., in Mathematics in 2000 from Indian Institute of Technology.

She completed the Ph.d. program in Mathematics at the University of South Florida
in 2004.



	Involution Codes with Application to DNA Strand Design
	Scholar Commons Citation

	tmp.1298573646.pdf.JqGsd

