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Tracing the Source of the Elephant and Hippopotamus Ivory from the 14th Century  
B.C. Uluburun Shipwreck: The Archaeological, Historical, and Isotopic Evidence 

 
Kathryn A. Lafrenz 

ABSTRACT 

 

The aim of this study is to establish the provenance of the elephant and 

hippopotamus ivory recovered from the 14th century B.C. Uluburun shipwreck in order 

to reconstruct the trade mechanisms and associated social relationships (e.g. diplomacy) 

operating in the eastern Mediterranean during the Late Bronze Age (LBA).  Elephant 

ivory came either from Northeastern Libya, Southeastern Sudan via Egypt or 

northwestern Syria during this period.  Hippopotamus ivory likewise was obtained from 

Syria, Palestine, or Egypt. 

The Uluburun’s cargo is reconstructed by the excavator, George Bass, as “royal,” 

and primarily originates from Cyprus and Syro-Palestine.  Indeed, LBA trade is largely 

understood as gift-exchange between ruling elites, thereby reflecting a trade system 

organized by and for a centralized authority.  With the transition to the Iron Age, an 

identifiable merchant class developed and decentralized trade (relative to the preceding 

era) under a system of cabotage shipping.  If the ivory is shown to derive from several 

regions instead of a single location, a revision of LBA trade must be fashioned to include 

ruling elites acting as “merchants” to a larger degree than previously assumed, or the web 

of social relationships involved in “international” diplomacy as much more intricate.



x 

 

Indeed, the mechanisms of the LBA trade must be established to provide a complete 

picture of trade, especially since the import and historical data is biased towards a 

simplistic, centralized trade system. 

The δ13C, δ15N, and δ18O reflect the climate and vegetation of the area in which a 

population dwells, so that areas with similar climate/vegetation will produce similar 

isotopic signatures, though these areas may be geographically seperated.  Nevertheless, 

examining 87Sr/86Sr ratios will distinguish between populations because 87Sr/86Sr mirrors 

the isotopic signature of the underlying rock, and is sufficiently unique to each region to 

warrant differentiation.   

Isotopic ratio analysis (carbon, nitrogen, oxygen, and/or strontium) was conducted 

on the collagen and apatite components of the ivory using mass spectrometry to 

differentiate between regions and therefore provide the provenance.  Ultimately a source 

determination utilizing HR-ICP-MS for 87Sr/86Sr was not successful.  Future provenance 

research on ivory should employ TIMS, and consider triangulating 87Sr/86Sr against lead 

and neodymium isotopes.     
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Chapter 1 

Introduction 

The Uluburun became anchored in the imagination of the public and specialists 

alike since it was first discovered off the southwest coast of Turkey in 1982.  The 

shipwreck dates to 1300 B.C. (Late Bronze Age), as determined by dendrochronology 

(Pulak 1996), and is most well-known for its rich and  cosmopolitan cargo, carrying 

artifacts from at least seven cultures: Mycenaean, Canaanite, Cypriot, Egyptian, Kassite 

(Babylonian), Assyrian, and Nubian.  Given the unusually large cargo of metal (10 tons 

of copper and 1 ton of tin), the Uluburun has been interpreted by its excavators, George 

Bass (1987; 1997) and Cemal Pulak (1997; 1998; 2001), as a royal cargo.   Part of this 

wealthy cargo was a primary section of a large elephant tusk (cf. Krzyszkowska 1993: 

30), and even more surprising were six canines and seven incisors of hippopotamus 

ivory, which serve as the focal point for my investigation.   

While the majority of the finds from the Uluburun shipwreck have been ascribed 

probable origins, the ivory recovered as raw material has thus far evaded assignment of 

provenance.  The Uluburun ivory samples and three elephant bone samples from Maraş 

Fili (Turkey) were sent by Cemal Pulak to Robert Tykot for analysis, and thereupon 

handed over to me, which is how the present study was initiated. Several educated 

guesses for the provenance of ivory in the LBA Mediterranean, based on archaeological 

and historical data, have been offered.  However, the lack of agreement among scholars, 

partly due to clear biases and inconsistencies within the archaeological and historical 

records, requires that another avenue of research be sought, that is, a source 

determination based on isotopic ratio analysis.   
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Unfortunately the source of ivory cannot be determined from the color or relative 

hardness of the ivory, and structural characteristics will only differentiate elephant ivory 

from hippopotamus ivory.  There is furthermore no means for distinguishing ivory 

obtained from the Asian versus the African species of elephant, and the only diagnostic 

skeletal part to verify the presence of one of these species is the post-cranial material 

(Krzyszkowska 1990: 7-12; Karali-Yannacopoulos 1993: 58).  As of yet there are no 

means for determining the provenance of ivory based on routine laboratory methods.   

However, analyses conducted by van der Merwe et al. (1990) using 13C/12C, 

15N/14N, and 87Sr/86Sr isotope ratios in the bone collagen of modern African elephants 

demonstrated the efficacy of isotopic analysis for provenancing elephant bone and ivory.  

Furthermore, recent research by White et al. (1998) utilized 18O/16O to distinguish 

between human populations (see Chapter Six for a discussion of these studies).  Isotope 

ratio analysis has furthermore been utilized in archaeological bone chemistry studies to 

reconstruct the diet and health of ancient populations, residence and mobility patterns, 

and palaeoclimate.     

Stable isotopic ratio analysis of carbon and nitrogen isotopes was therefore 

conducted on the collagen of the Uluburun ivory samples, in addition to carbon and 

oxygen isotope analysis on the apatite component of the ivories.  δ13C, δ15N, and δ18O 

reflect the climate and vegetation of the area in which a population lives, and, as a result, 

areas with similar climate and vegetation will produce similar isotopic signatures, even 

though these areas may be geographically distant from one another.  Consequently, 

strontium isotope ratio (87Sr/86Sr) analysis of the samples was also included in the 

research program in order to confidently distinguish between populations.  The strontium 
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ratio mirrors the isotopic signature of the underlying rock, and is sufficiently unique to 

each source area to warrant differentiation.  Three bone samples from Maraş Fili, Turkey, 

were also analyzed to compare the isotope ratio values of the ivory with those from a 

known region. 

Ultimately a successful provenancing of the ivory will reveal much more than the 

mere source.  Every last bit of information which will be culled from the cargo of the 

Uluburun shipwreck offers a rare chance to illuminate the mechanisms of Late Bronze 

Age trade, hitherto poorly understood except in broad assignments of “royal” versus 

“merchant” initiatives, and “Canaanite” versus “Mycenaean” agents.  The reality is much 

more complicated, and research has been limited so far, not in effort but by the paucity of 

information, in reconstructions of Late Bronze Age trade in the eastern Mediterranean. 

At the outset, however, I think it is important to stress that there are several things 

the present study is not trying to do.  It is not trying to reconstruct with startling clarity 

the mechanisms of LBA maritime trade in the eastern Mediterranean on the basis of an 

admittedly small data set of ivory fragments.  Nor is it advocating that external stimuli, 

such as trade, are the prime mover of cultural change, and as such should be paid a great 

deal of attention.  Instead this investigation is trying to establish, in a pilot study, whether 

it is feasible or even possible to use isotope ratio analyses to provenance ivory from 

archaeological contexts.  It is trying to give a wholly contextual investigation of the 

Uluburun ivories, and in doing so emphasizes the necessity of placing the archaeometric 

analysis of the ivories within the context of the archaeology itself.  How does the 

sourcing of ivory contribute to the broader picture and say something about the culture 

history of the eastern Mediterranean?  What theoretical questions are being asked about 
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LBA trade and how could an analysis of the Uluburun ivories possibly add to this 

discussion?  Moreover, in the process of contextualizing archaeometric data, the 

symbolic and ideological concepts of ivory must be emphasized.  What did ivory mean to 

people in the LBA, especially when they traded it?  Just as the material itself lends the 

possibility of sophisticated scientific analyses on account of isotopes embedded within its 

composition, so also does the material argue for a unique perspective on LBA trade as it 

is embedded within an ideology of luxury, gift-exchange, internationalism and political 

entente.   

Because the present investigation is, at its foundation, approached from a 

materials perspective, the morphological characteristics of ivory must be considered first, 

and will be covered in Chapter Two.  The archaeological, historical, and osteological 

evidence for the sources of hippopotamus and elephant ivory in the eastern 

Mediterranean are then presented in Chapters Three and Four, respectively, so as to 

establish the geographical parameters of the isotopic ratio analyses.  The results of these 

analyses will ultimately be incorporated into the larger picture of the mechanisms of Late 

Bronze Age trade.  Since one of the principal stages in the ivory trade (and the hallmark 

of a palace economy) was the conversion of the raw material into even more valuable 

prestige objects, the ivory workshops within the eastern Mediterranean are the topic of 

Chapter Five.  I will then switch gears into an explanation of the scientific analyses 

behind this study.  A general overview of the principles of carbon, oxygen, nitrogen, and 

strontium isotopic analysis is given in Chapter Six, followed by a discussion of the 

ecological and dietary requirements of the hippopotamus and elephant (Chapters Seven 

and Eight), as knowledge of these are necessary for interpretation of the results.  Further, 
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past isotopic research on modern populations of elephants and hippopotami are reviewed 

in Chapter Nine.  The published geological literature for the source regions of ivory are 

likewise considered in Chapter Ten for strontium isotope ratio data of the underlying 

bedrock.  The laboratory and analytical procedures (Chapter Eleven) including a brief 

description of the samples, and the results of the isotopic ratio analyses (Chapter Twelve) 

are presented before concluding with a discussion of the results (Chapter Thirteen) and 

suggestions for future research (Chapter Fourteen).      

 

Historical Background 

The Late Bronze Age marked the height of political centralization the eastern 

Mediterranean region had yet seen, with several major political powers sharing common 

boundaries buffered by a number of city-states ruled by minor kings.  Egypt had expelled 

the Hyksos by the middle of the 16th century B.C. and thereafter adopted an aggressive 

expansionist agenda to remove the threat of another such invasion, and probably also to 

atone for past injustices.  A large portion of Palestine came under Egyptian control, with 

the result that Egypt shared a border for the first time with another major military power: 

the Mitanni in the 15th century B.C. and the Hittites in the 14th-13th centuries.  Egypt 

formed an alliance with the Mitanni in an attempt to curtail the growing presence of the 

Hittites to the west, and a long period of peace followed under Amenophis III (ruled 

1390-1352 B.C.; low chronology), whose reign also signaled the beginning of the 

Amarna period, late XVIIIth Dynasty.  The period is named after the site of Tell el-

Amarna, where the next pharaoh Akhenaten (1352-1336 B.C.) based his distinctive social 

and religious reforms.  The period is famously documented by the Amarna letters (cited 
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as EA), clay tablets written primarily in Akkadian which recorded the royal 

correspondence with other rulers.  After Akhenaten there followed a quick succession of 

pharaohs (including Tutankhamen), whose reigns were possibly cut short by the same 

plague that claimed several of the Hittite royalty.  Horemheb then ruled from 1323-1295 

B.C. and resumed Egyptian campaigning and tribute-collecting in Palestine (Kuhrt 1995: 

185-202).  The Uluburun thus sank towards the end of Horemheb’s reign, circa 1300 B.C. 

Palestine and North Syria were thus composed of many small city-states which 

jockeyed among themselves for power while also playing the larger powers off one 

another.  Each minor king owed his throne to a “Great King,” whether this was the 

Egyptian pharaoh, or the Mitannian or Hittite king, and the minor kings had to give 

public loyalty to the king through gifts/tribute.  The Egyptians had administrative centers 

in the region at Sumur, Gaza, and Kumidi (Kamid-el-Loz), and Canaanite royalty were 

sometimes brought up at the Egyptian court (Kuhrt 1995: 324-328).  Meanwhile, from 

1500/1480-1350/1340 B.C., the Mitanni controlled an area stretching from northwest 

Iran, through north Iraq and the very north of Syria to the southeastern corner of Anatolia 

(the western boundary in the vicinity of Maraş, where the elephant bone samples hail 

from for this present thesis).  This region included the city-states of Alalakh (Tell 

Atchana), Aleppo, Emar, Taide, Alshe, Ugarit (held briefly), and the regions of Assyria 

(north Iraq) and Arrapha (Kirkuk region) (Yener 2001; Kuhrt 1995: 283-296).  Two city-

states which shall figure prominently in the consideration of the ivory trade are Alalakh 

and Ugarit.  Alalakh is located in the Amuq Plain (also known as the Plain of Antioch), a 

region which was home to elephants and hippopotami, and has yielded a number of ivory 

artifacts.  Ugarit, on the other hand, was a major trading center with specialized craft 



7 

 

production in ivoryworking, metalworking, purple-dyed textiles, and furniture (often 

inlaid with ivory).  The city’s port at Minet el-Beida channeled North Syrian goods to 

Cyprus and farther west, and acted as a major supplier of grain to the Hittites through 

Cilicia (Kuhrt 1995: 300-303).   

The Hittites were increasingly in conflict with the Mitanni until the Syrian 

conquests of Suppiluliuma I (1344-1322) and Mursili II (1321-1295) subjugated the 

Mitanni, essentially creating a buffer area between themselves and Assyria.  By the time 

the Uluburun sank off their shores, the Hittites were in control of Aleppo, Alalakh, 

Nuhash-she, Amurru, Cilicia, and the Arzawa in western Anatolia.  They had additionally 

signed a treaty with Ugarit whereby Ugarit recognized Hittite authority, although Ugarit 

retained much more autonomy than other city-states.  The border between the Hittites and 

Egypt slowly moved farther south from the mouth of the Orontes to Byblos.  Eventually 

the Hittites and Egypt signed a peace treaty under Hattusili III and Ramesses II in 1258 

B.C., an agreement which was solidified by a royal marriage and led to a peaceful period 

in which members of the two royal families corresponded regularly with one another.  

Like at Amarna, a great amount of the Hittitte royal archives are preserved at Hattusa, the 

capital of the Hittite kingdom.  From these archives it is known that the Hittites also had 

trade or business dealings with Babylonia, Lycia, Cyprus, and the Ahhiyawa  (Sherratt 

and Sherratt 1991: 371; Kuhrt 1995: 225-263). 

To the west the mainland Mycenaean palace centers had gained prominence over 

Crete in the Aegean sphere, although Kommos still remained economically robust due to 

its location, effectively linking long-distance eastern Mediterranean trade with regional 

Aegean maritime circuits.  Strangely enough there is a great dearth of Aegean and 
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Mycenaean material in central Anatolia, suggesting perhaps some sort of trade embargo 

was operating (Kuhrt 1995: 281; Sherratt and Sherratt 1991: 370-371).  Cyprus on the 

other hand held a significant role in Late Bronze Age trade, due in large part to its role as 

primary supplier of copper to the eastern Mediterranean.  The island witnessed major 

urbanization at centers such as Enkomi and Kition which linked the copper-rich interior 

with the ports. 

Egypt’s border was also extended southward into Nubia, and Hatshepsut sent a 

maritime expedition by the Red Sea to Punt, located roughly in the location of modern 

Eritrea.  Very little is known about Punt as the archaeological evidence for it, other than 

historical references in Egypt, is severely lacking (Phillips 1997; Kitchen 1993; 

O’Connor 1993).  In Nubia the situation is only slightly better.  The archaeological record 

is more visible but with little diachronic differentiation.  More is known about Upper 

Nubia than Lower Nubia, particularly because Upper Nubia had an environment more 

hospitable to permanent settlement and much of Lower Nubia is now submerged due to 

the construction of the Aswan High Dam.  Prior to the Late Bronze Age the large site of 

Kerma probably prospered from monopolizing trade from the south going to Egypt.  

However, Kerma was destroyed and by the New Kingdom Egypt controlled Nubia as far 

upriver as the Fourth Cataract, most likely for closer access to trade with the south 

through middle agents such as the Irem of the Khartoum region.  Nubian princes also 

were raised and educated in Egyptian courts, like Palestinian royal offspring (Shinnie 

1984; O’Connor 1993: 583-584; Kuhrt 1995: 329-330; Luce 1998: 59).  The material 

culture of Libya is also poorly understood.  However, it is known that the region was 

home to pastoral nomads who exhibited aspects of political centralization and social 
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hierarchy by the LBA, and had established some cities in Cyrenaica, although these have 

not been located yet (O’Connor 1993: 576, 583; McBurney 1970).   
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Chapter 2 

Morphological Characteristics of Ivory 

Elephant Ivory 

 When one considers the word ‘ivory’ the tusk of the elephant is generally brought 

to mind.  Yet it is just as appropriate to identify the incisors and canines of the 

hippopotamus as ivory tusks.  Elephant and hippopotamus ivory are both primarily 

composed of dentine, and furthermore both represent permanent teeth of continuous 

growth (hence the designation ‘tusk’).  In fact, dentine is found in all teeth and is a non-

cellular structure with organic and inorganic components.  Elephant ivory does not have 

enamel but is covered by a ridged cementum at the proximal end of the tusk.  

Hippopotamus ivory, on the other hand, does have enamel on some areas of the tusk, and 

cementum elsewhere.  It is possible to differentiate between elephant and hippopotamus 

ivory based on morphological characteristics and structural differences in dentine 

formation, and these features will be outlined below.  Identifying anything beyond this, 

however, such as which species of elephant the ivory came from, or the environment or 

region from which the animal came, is not possible using morphological characteristics.  

Factors such as hardness, color, or size are not precise enough descriptors, nor are they 

consistent.  Further, even if they were, they would be subject to observer bias.  Some 

claim that ivory from the forest elephant (Loxodonta africana cyclotis) is harder than that 

from the bush elephant (Loxodonta africana africana).  Similarly, hippopotamus ivory is 

more dense.  In the end, though, and disregarding enamel and cementum, all ivory ranks 

between 1.5 to 2.5 on the Mohs scale (Krzyszkowska 1990: 8, 33; Raubenheimer et al. 

1998: 641; Raubenheimer 1999: 57). 
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 As mentioned above, the elephant tusk is a permanent tooth of continuous growth, 

and more specifically, tusks are the upper incisors (or “modified premaxillary lateral 

incisors”) of the elephant.  Each tusk replaces a deciduous tooth called a ‘tush’ when the 

elephant is six months to one year old.  The tusks increase in size with age, although sex, 

habitat, and the species will influence the size (Krzyszkowska 1990:33; Raubenheimer et 

al. 1995: 571; Raubenheimer 1999: 57).  In general, males have longer tusks than females 

of the same age, and the circumference of the male tusk increases continuously, whereas 

for the female the tusk ceases to grow in circumference when she reaches an age of 30-35 

years (Layser and Buss 1985: 408-410).  One researcher in Zambia, Elder (1970), was 

able to identify correctly the sex of the elephant from 58 out of 60 tusks, based only on 

the shape of the tusk (cited in Layser and Buss 1985: 407).  Another reason for 

differences in tusk size is that elephants are ‘right-tusked’ or ‘left-tusked,’ so that one 

tusk is a working tusk and consequently made shorter through greater use (Krzyszkowska 

1990:51). 

 The tusk itself has a tapering pulp cavity in the third closest to the elephant’s head 

(the proximal end of the tusk).  This end is also covered by ridged cementum.  The tip (or 

distal end) is solid and has a smooth outer surface (Krzyszkowska 1990: 33-34; 

Raubenheimer 1999: 59; see Figure 1).  Probably the most identifiable and diagnostic 

marker of elephant ivory is the “engine-turning” pattern (short for “engine-turned 

decussating appearance”) visible in transverse cross-sections of the tusk.  This pattern is 

also called “lines of Retzius,” as distinguished from the “lines of Owen” which are the 

ovoid concentric rings spaced approximately 1 cm apart.  Similar to tree rings, the lines 
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of Owen represent 6-8 years of tusk growth.  The regular growth of the tusk is apparent in 

such “lamellae” or laminations, which are the layers of dentine formation (see Figure 2).  

 
Figure 1: Morphology of the elephant tusk  

(adapted from Krzyszkowska 1990: 32, figure 12). 
 

 
 
Figure 2: Structural characteristics of elephant ivory: transverse section depicting lines of 

Owen (left), longitudinal section showing pattern of lamellae (right),  and a transverse 
section showing lines of Retzius (inset, below center)  

(adapted from Krzyszkowska 1990: 35; figure 13). 
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Dentine in elephant tusks is essentially a biological apatite deposited on an 

organic matrix of calcified connective tissue, and during its formation over 45 major and 

trace elements compete for incorporation (Krzyszkowska 1990: 34; Raubenheimer et al. 

1998: 645; Raubenheimer 1999: 63).  Nevertheless, it is not known whether these 

elements are structural substitutes within the hydroxyapatite crystal or absorbed onto the 

surface of the crystal (Raubenheimer et al. 1998: 645).  This mineral (inorganic) 

composition is largely dependent on the diet of the elephant, although age, habitat, and 

metabolism of the animal also come into play (Sreekumar and Nirmalan 1989: 1562; 

Raubenheimer et al. 1998: 645; Raubenheimer 1999: 63).  This composition is, 

moreover, stable after formation and not subject to turnover or remodeling, as in bones.  

A general survey of the range and average elemental composition of Indian and African 

elephant ivory was conducted by Sreekumar and Nirmalan (1989), and the results are 

listed in Table 1.  The trace elements such as strontium are not reported. 

Odontoblasts are the cells responsible for the formation of ivory (dentine).  They 

come from the pulp and move centripetally (toward the axis of the tusk), depositing ivory 

along the way and essentially forming a cytoplasmic extension.  The ivory mineralizes 

around this extension so that tubules are formed.  The circumference of the pulp 

decreases towards the distal end of the tusk because of the centripetal movement of the 

odontoblasts.  This is turn causes the odontoblasts to be more tightly packed and 

increases the intercellular pressure.  Thus the odontoblastic tubules are crowded closer 

together (manifest in the dark bands of the ivory).  The crowding is alleviated by the 

odontoblasts moving towards the proximal end, in addition to odontoblastic cell fusion  
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Table 1: Mineral composition of elephant tusks (mean ± SE)  
(data from Sreekumar and Nirmalan 1989: 1561). 

 
Element African elephant Asian (Indian) elephant 
Sodium (mg %) 0.56 ± 0.22 0.56 ± 0.03 
Potassium (mg %) 0.11 ± 0.29 0.19 ± 0.02 
Calcium (mg %) 12.93 ± 0.29 12.72 ± 0.75 
Magnesium (mg %) 1.58 ± 0.03 1.67 ± 0.09 
Inorganic phosphate (mg %) 9.88 ± 0.03 9.53 ± 0.46 
Manganese (ppm) 46.62 ± 3.53 45.03 ± 4.60 
Zinc (ppm) 28.35 ± 2.59 34.64 ± 2.81 
Iron (ppm) 167.13 ± 26.90 202.33 ± 26.52 
Copper (ppm) 1.90 ± 0.57 12.51 ± 0.53 

 
 

and cell death.  Once this intercellular pressure is relieved (the light bands in ivory), the 

odontoblasts progress centripetally again.  Morphologically this entire process appears as 

a regular sinusoidal course followed by odontoblasts (Raubenheimer 1999: 62).  

Furthermore, the engine-turning pattern is caused by the intersection of dentinal tubules 

radiating in clockwise and anti-clockwise arcs from the center of the tusk (Krzyszkowska 

1990:34), and visibly evident by the alternating light and dark lines mentioned above.  

Fractures in ivory generally occur in the dark bands (Raubenheimer 1999: 59, 63).   

 Collagen is the principal organic component of elephant ivory, and elephant ivory 

has less organic content and collagen than bone (approximately 20% organic content in 

elephant ivory, 25% in bone; and 18% collagen in ivory, 25% in bone) (Krzyszkowska 

1990: 50).  The collagen molecule itself is composed of three intertwined helical chains 

of amino acid, particularly of glycine, proline and hydroxyproline.  In dentine “the 

collagen fibrils are embedded in the organic matrix between the dentinal tubules and 

appear to be preferentially orientated parallel to the long axis of the tooth and 
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perpendicular to the tubules....[collagen is] found as a meshwork between the dentinal 

tubules” (Turner et al. 2000: 71). 

 Raubenheimer et al. (1998) conducted analyses of the inorganic and organic 

content of elephant ivory from seven park reserves in South Africa, Botswana, and 

Namibia.  They were able to detect 20 elements in the inorganic fraction, and showed 

statistically significant differences in some of the elemental concentrations between 

different regions.  Nevertheless, such analyses are not practical for the purposes of this 

thesis, as they require a very large dataset of elephant ivory from known and bounded 

geographical locations.   

The researchers also found in their analyses of the organic fraction that the ivory 

from arid regions had significantly lower proline and hydroxyproline content and under-

hydroxylation of lysine residues.  Thus ivory from Kaokoveld and Etosha are more brittle 

and hydrolyzed more rapidly than the ivory from other regions (Raubenheimer et al. 

1998: 641-643; Raubenheimer 1999: 62).  Both the Kaokoveld and parts of Etosha have 

less than 200 mm rainfall per annum, and the elephants inhabiting these regions, known 

as “desert” elephants, will be discussed in Chapter Eight (see Viljoen 1988).  The 

strength of collagen would be affected by malnutrition, and in particular a vitamin C 

deficiency.  Kaokoveld and Etosha ivory also have high flouride contents, which 

effectively softens the mineral fraction and weakens the crystal (Raubenheimer et al. 

1998: 645-646).  All the same, hardness, and by extension ‘brittleness,’ is not 

acknowledged as an accurate criterion to consider in provenancing ivory, and at any rate, 

would be exceedingly difficult to demonstrate as feasible for ancient ivory due to 

differential preservation and diagenetic processes.   
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Hippopotamus Ivory 

As explained previously, hippopotamus ivory is also composed of permanent, 

continuous-growth dentine, but is formed differently from elephant ivory (Eltringham 

1999: 14; Krzyszkowska 1990: 38, 47).  Dentine in hippopotamus ivory is recognized as 

more dense and whiter than elephant ivory due to a tighter packing of smaller dentinal 

tubules, and is thus less predisposed to decay.  Moreover, whereas the lamellae in 

elephant ivory are very regular and even, in the hippopotamus they are wavy and 

discontinuous.  The tusk size of the hippopotamus also varies with age and sex.  

 The tusks of the hippo are depicted below in Figure 3.  The large lower incisor 

and lower canine are, by far, the most frequently utilized hippopotamus ivory.  These will 

therefore be discussed in further detail.  The incisors and canines are not used by the 

hippo for feeding but rather for fighting, and can be quite formidable, especially since the 

lower canines can approach elephant tusks in size.  This fact plus the whiter color and 

denser structure could have rendered hippopotamus ivory more valuable or sought after 

than elephant ivory in ancient times, if it were not for the shape of the tusks, which are 

harder to work with.  For instance, the triangular cross-section and curving nature of the 

lower canine restricts the designs which may be fashioned from it (Eltringham 1999: 14).  

Inlays, discs, and lids are ultimately the favored uses of hippopotamus ivory 

(Krzyszkowska 1990: 46). 

There are four canines (two larger lower ones and two shorter upper ones) all of 

which are ridged lengthwise.  The upper and lower canines abut and keep each other 

sharp by grinding together.  A large amount of sexual dimorphism affects the canines, so 

that the lower canines in males may weigh up to 1.5 kg and reach 30 cm in length, with a  
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Figure 3 : The incisors and canines of the hippopotamus  
(Krzyszkowska 1990: 39, figure 14). 

 
potential upper limit of 70 cm due to a maximum 40 cm length root (Eltringham 1999: 

14).  Curving and with a triangular cross-section, the lower canine has three faces of 

different lengths (see Figure 4).  The longest faces (A and B in Figure 4) are covered in a 

very hard (6-7 Mohs) ridged enamel and separated by a natural fracture (ii in Figure 4).  

The third side (C) faces towards the mouth and is protected only by cementum.  The 

lower canine has a pulp cavity in the proximal end and visible wear on the distal end due 

to grinding against the upper canine (Krzyszkowska 1990: 42-43).   

Other than the basic morphology, another means by which to identify the lower 

canine of the hippopotamus is through recognition of the lamellae patterns and several 

other extremely diagnostic features.  The transverse cross-section exhibits wavy and 

discontinuous sub-triangular lamellae, in addition to a “commissure” in the center where 

the pulp cavity once was.  Towards the proximal end of the lower canine, where the pulp 

cavity has yet to close up, the commissure looks like an angled crack.  The pulp cavity, as  
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Figure 4: Characteristics and morphology of the hippopotamus lower canine.   
Left tusk depicted (adapted from Krzyszkowska 1990: 43). 

 

 
 
Figure 5:  Left tusk of the hippopotamus lower canine in transverse section (above) and 

longitudinal section (below) (adapted from Krzyszkowska 1990: 45, figure 18). 
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for the elephant, is where the dentine is formed.  Figure 5 gives an excellent illustration 

of the lamellae and commissure in the transverse of the hippopotamus lower canine.  The 

center of the longitudinal section reveals the ‘inner dentine’ which is the most recently 

formed dentine.  Compared to the outer dentine it often looks marbled and somewhat 

translucent, with a sometimes greenish color (Krzyszkowska 1990: 44).   

There are eight incisors of the hippopotamus, two of each type for a total of four 

types in each jaw (see Figure 3): a larger lower incisor, a smaller lower, a larger upper, 

and a smaller upper (not shown).  The incisors are longer in the lower jaw and can reach 

17 cm in length from the gum, and 6 cm in diameter.  They project outwards and slightly 

upwards, with a tapering pulp cavity in the proximal end.  The outer incisors in both jaws 

are furthermore larger than the inner incisors.  They all possess blunt tips, but the small 

incisors have a more marked distal wear facet.  Unlike the canines, the incisors are 

straight and have a sub-circular cross-section, where discontinuous and wavy concentric 

lamellae are visible as well as the “heartline” running through the center.  However, the 

heartline is usually difficult to identify on artifacts made of hippo incisors (see Figure 6).  

The longitudinal section shows the lamellae running parallel with the surface and curving 

toward the distal end of the heartline (Eltringham 1999: 14; Krzyszkowska 1990: 39-42). 

 

Conclusion 

In conclusion, there are obvious visual differences in elephant and hippopotamus 

ivory which may be used for identification purposes.  There are, moreover, advantages 

and disadvantages to each type of ivory.  Elephant ivory offers larger pieces for artisans 

to carve, and thus more flexibility in design.  Hippopotamus ivory, on the other hand, is 
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Figure 6: Hippopotamus incisor showing patterns of lamellae in transverse section (left) 

and longitudinal section (right) (adapted from Krzyszkowska 1990: 41). 

 
 

denser and whiter.  The pulp cavity, or lack thereof, will also influence which final 

product is fashioned from the ivory.  The specific artifacts often recovered of each type, 

in addition to a discussion of the workshop materials, will be discussed further in Chapter 

Five.  Again, it is worth stressing that while the characteristics of hippopotamus and 

elephant ivory summarized above are useful for distinguishing between the two types, 

there are no reliable visual means for recognizing Asian elephant ivory versus African 

elephant ivory, nor for differentiating between ivory from different regions.  The studies 

by Raubenheimer (1999, 1998, 1995) do not demonstrate basic elemental or amino acid 

identification as a dependable procedure for ivory from archaeological contexts.  
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Chapter 3 

The Archaeological, Historical, and Osteological Evidence for the Provenance of 
Hippopotamus Ivory in the Late Bronze Age Eastern Mediterranean 

 
 The hippopotamus (Hippopotamus amphibius) was utilized for ivory as much as 

the elephant, perhaps even more so in some times and places.  Moreover, much of the 

ivory visually identified offhand as elephant could very well be hippopotamus ivory.  The 

raw ivory cargo of the Uluburun ship supports this hypothesis, as the majority of the raw 

ivory is in fact hippopotamus ivory.  Unfortunately not as much is known about the 

hippopotamus ivory trade as the elephant ivory trade, but the more specific diet and 

ecological requirements of the hippo narrows the geographical areas capable of 

supporting a trade in hippopotamus ivory.  In Egypt the hippopotamus was the 

embodiment of one of the gods in the pantheon, and the word hippopotamus comes from 

the Greek for “river horse.”  The average height and weight of the hippopotamus is 140-

160 cm and 1100-2600 kg, respectively, and the animal has a life-span of approximately 

40 years (Grubb 1993: 41; Eltringham 1999: 5). 

 

Present Distribution 

The hippopotamus once inhabited a much broader geographical area than it does 

today.  Eltringham (1993; 1999) provides the two maps below which outline the 

approximate distribution of the hippopotamus today (Figure 7), and circa 1959 (Figure 8), 

the latter of which utilized data provided by J. Sidney (1965).  Immediately apparent is 

the drastic reduction in the area where hippos dwell, and presumably a drastic reduction 

in their numbers.  This is perhaps a modern phenomenon, but could be a process which 

has been going on since humans began to appropriate land for agriculture and  
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Figure 7: Current distribution of Hippopotamus amphibius 
(adapted from Eltringham 1993: 45). 

 

 
 

Figure 8: Distribution of Hippopotamus amphibius circa 1959  
(adapted from Eltringham 1999: 135). 
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pastoralism.  Today most of the hippos in Africa are found in the east along the White 

and Blue Niles, Sobat River and the Jur of southern Sudan, along other tributaries of the 

Nile, within several national parks in this area, as well as the Sudd.  In the west of Africa 

the hippopotamus may be found in estuarine habitats, along rivers close to the coast, and 

in the sea in the Archipelago of Bijagos off the coast of Guinea Bissau (Eltringham 1993: 

44-46).   In the Late Bronze Age, however, the hippopotamus would have been present 

throughout sub-Saharan Africa in all areas where their ecological requirements were met. 

 

Prehistoric Distribution 

Middle to Late Miocene fossils of hippopotamus recovered from East Africa 

support the view that the hippopotamus originated in Africa.  The hippopotamus initially 

spread out of Africa in the late Miocene, and dispersed throughout Asia and Europe by 

the Pleistocene, with dwarf (Phanourios minor) and pygmy (Phanourios minutus) species 

colonizing Cyprus (Eltringham 1999: 40-41).  Phanourios minutus persisted on Cyprus 

and was demonstrated to coexist with, and possibly be rendered extinct by, humans.  The 

8500 B.C. (uncalibrated) site of Akrotiri-Aetokremnos yielded over 200 disarticulated 

individuals in association with early or pre-Neolithic cultural remains (Simmons 1991, 

1993; Reese 2001).    

The modern species of Hippopotamus amphibius is featured in rock paintings and 

engravings in the high plains and mountains of the Sahara, suggesting that the Sahara was 

once watered.  One example from Djanet in the Tassili n’Ajjer Mountains depicts a hippo 

hunt and dates from 2000 to 3000 BC, while the largest example comes from Tilemsin,  
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Figure 9: Rock engraving of a hippopotamus (adapted from Faleschini 1999: 142) 
 

 
 

located near the western border of Libya in the Messak Mellet district (see Figure 9) 

(Faleschini 1999; Eltringham 1999). 

 

Archaeological Evidence for the Hippopotamus in the Eastern Mediterranean 

The two most probable sources of hippopotamus ivory in the eastern 

Mediterranean during the Late Bronze Age are Syro-Palestine and Egypt.  Osteological 

evidence suggests the hippopotamus dwelled in swampy areas in Syro-Palestine, 

including the Amuq plain and Orontes Valley, until at least the Early Iron Age (see 

Figures 10, 11, 12, and 13 for location of the Amuq and Orontes valleys) (Krzyszkowska 

1990: 20).   

Osteological evidence offers substantial proof for the presence of the 

hippopotamus, specifically post-cranial remains.  Crania or mandibles could have been 

brought from elsewhere, although it seems highly unlikely, and moreover such a 

phenomenon would expectedly result from short-distance exchanges (Karali-

Yannacopoulos 1993: 58-59).  With this in mind, the distribution of hippopotamus 
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remains in the Syro-Palestinian region and Egypt, minus the canines or incisors which 

could have been traded into the region, shall now be conisdered.  Reese (1998) serves as 

the fundamental publication for the osteological evidence, due to his thoroughness and 

attention to detail, and many of the citations below are taken from this work.  Further, 

workshops and worked hippopotamus ivory are covered together in Chapter Five, 

because often both hippopotamus ivory and elephant ivory are present in the same 

workshop, or the materials of artifacts are misidentified or elude identification.  Worked 

material and workshops also represent separate stages in the exchange system. 

 

Syro-Palestine 

The only definitive Chalcolithic (4th millennium B.C.) osteological evidence has 

been recovered from Qatif on the Sinai coastal plain (a premolar and an astragalus) 

(Reese 1998: 140).  The Early Bronze Age (3rd millennium B.C.) is represented by Tel 

Aphek on the Yarkon River, Tel Dalit, Tell Gath (Tel Erani), and Tell Sukas (northern 

Syria).  However, the excavator of Tell Gath maintains that the humerus found there 

“must have been brought as an offering” (Yeivin 1959: 417).  EBA finds in the ecological 

setting preferred by the hippopotamus include mandibles located near Nahal 

Hataninim/Kebara Swamp, and near Tell Qasile on the Yarkon River (northern Tel Aviv) 

(see Figure 10 for location of Tell Qasile).  From the Middle Bronze Age came a single 

cuboid from Tel Nagila, in addition to several more remains reported from Orontes River 

sites in Syria from about 1500 B.C. (Bodenheimer 1960: 52).  A jaw with teeth from Tel 

Dor dates to MBA or later, and additional finds from Tel Dor include a molar (11th-8th 

century B.C.) and an undated humurus (See Figure 10 for location).  Tell Sukas also  
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Figure 10.  Location of the Amuq Valley, Orontes River, and some major sites 
where hippopotamus faunal remains and ivory have been recovered 

(adapted from Krzyszkowska 1990: overleaf). 
 

 
 

yielded a LBA or Early Iron Age (EIA) molar.  A great deal of EIA hippopotamus bones 

and teeth came from Tell Qasile, including a metacarpal bearing a cut marks.  Also EIA 

in date is a radius/ulna from Tell Garisa (Reese 1998: 141).   

 Hippopotamus teeth that could have been traded into the region include an 

unworked incisor (misidentified as an elephant tusk) from Chalcolithic Bir es-Safadi, 
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near Beersheba.  An EB I lower right canine was found outside the sanctuary at Ai, and 

two EB II lower incisors hailed from Arad in the northern Negev (see Figure 10 for the 

location of Ai and Arad).  The Late Bronze Age is well represented at Ras Shamra 

(Ugarit), whereas Minet el-Beida has just one canine.  Iron Age cases come from Tell 

Jalul (one upper canine) and Zincirli (one canine tip) in the Syrian Amuq (now Turkish 

Hatay).  Tell Qasile, in addition to the skeletal material discussed above, had one lower 

canine and an incisor from the Iron Age.  Sidon contained two molars “probably 

Pleistocene or Holocene in date.”  Other “probably Pleistocene or Holocene” material 

came from Tell Dan, Tell Gezer (tooth and fragment of a canine), Tell el-Hesi, Rabbah 

(molar), and Chekka (molar), located 10 km from Tripoli (Reese 1998: 140-141).   

 Thus the LBA is not well-represented by osteological evidence, but this seems to 

be a mere blip in the overall record, being preceded by and preceding ample evidence.  

Tusks, on the other hand, are most representative in LBA Ras Shamra (Ugarit), and 

directly linked to ivory workshops in this renowned entrepot.  A significant proportion of 

the ivory recovered from the ivory workshops in Ugarit (dating to the fourteenth and 

thirteenth centuries) were from hippopotami rather than elephants (Krzyszkowska 1990: 

20; Bass 1997: 161; Reese 1998: 141).  Overall, the coastal plains and river valleys, 

including the Amuq region and the Orontes River, were the most probable sources of 

hippopotamus ivory in the Levant.  See Figures 12, 13, and 14 for detailed maps of the 

Amuq and northern Orontes region, including the locations of Middle and Late Bronze 

Age sites in the area. 
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Figure 11: Location of the Amuq Plain (adapted fromYener 2001: figure 1) 

 
 

Figure 12: Geophysical map of the Amuq Valley, looking northeast from the  
Mediterranean coast.  The geophysical characteristics of the region are well suited for 

elephants and hippopotami 
(adapted from http://www-oi.uchicago.edu/OI/PROJ/AMU/Amuq.html). 
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Figure 13: The distribution of Middle and Late Bronze Age sites in the Amuq Valley.  
Tell Atchana is ancient Alalakh (adapted from Yener 2001: figure 2). 
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Egypt 

The hippopotamus was furthermore well-known in Egypt, as evidenced by tomb 

paintings (see Figure 14), and its ivory was widely used, especially prior to and during 

the Old Kingdom.  The hippopotamus would have inhabited the Nile Delta in addition to 

those regions up-river.  It went extinct in the delta in the seventeenth century A.D. and 

was last witnessed in Upper Egypt in the 20th century (Krzyszkowska 1990: 20).   

Strangely enough, there is little in the way of unworked osteological evidence 

from Egypt, despite the fact that the hippopotamus is native to Egypt.  In all there is one 

metacarpus from Late Predynastic (c. 2900 B.C.) Maadi near Cairo, a first phalanx from 

Gizeh dating Ist-IVth Dynasty (c. 3100-2494 B.C.) and six IIIrd to VIth Dynasty (c. 

2686-2181 B.C.) samples from Elephantine.  Approaching the time period of interest to 

this thesis are several examples from Tell el-Dab’a and North Karnak (Upper Egypt) 

circa 1600-1550 B.C., whereas contemporary with or later than the Uluburun wreck are 

numerous hippootamus bones and teeth from XIXth Dynasty (c. 1306-1195 BC) Matmar 

and Qau in Middle Egypt (Reese 1998: 140).  Moreover, in the southern Sudan the site of 

Debbat El Eheima (c. 1600-1000 B.C.), located on the western bank of the White Nile, 

produced a canine fragment, jugal tooth fragment, a carpal and two sesamoids in addition 

to several more fragments of hippopotamus bone (Gautier and Van Neer 1997: 55).  The 

habitat of this area, a Nilotic riverine environmental zone which receives 500 mm annual 

rainfall, is undeniably hippopotamus territory, and the osteological evidence merely 

reaffirms this supposition.  Truly Egypt, along with Syria, must be considered a chief 

candidate for the source of the hippopotamus ivory on the Uluburun.   
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Figure 14: 18th Dynasty Egyptian tomb relief from the reigns of Hatshepsut  
and Tuthmosis III (adapted from Krzyszkowska 1990: 21, figure 6). 

 

 
 

As for worked ivory from Egypt, common artifacts carved explicitly from 

hippopotamus ivory include “wands” and “knives” of lower canines from the XIth to 

XVIIIth Dynasties (c. 2133-1306 BC), and carved canines characterized by a hand or 

Hathor head terminal from c. 1900-1150 BC.  Qau also has a large collection of XVIIIth 

Dynasty worked hippopotamus ivory, but these may have been carved elsewhere, outside 

of Egypt (cf. Lilyquist 1998: 27, 30).   

 
Cyprus 

As mentioned above, pygmy hippopotami were known on Cyprus, but in all 

likelihood died out shortly after the island was colonized by humans, which is too early 

for a consideration of the Late Bronze Age distribution of the hippopotamus 

(Krzyszkowska 1990: 12).  All of the Bronze Age to Early Iron Age hippopotamus 

remains from Cyprus, save one molar, are incisors or canines.  The molar was recovered 

from a Late Cypriot IIIA (c. 1190-1125) domestic context in Kition, and represented a 
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young individual, six to ten years old (Reese 1998: 140).  Kition was a Phoenician 

settlement and major trade center, and the young hippo could very well have been 

brought over to Cyprus from Phoenicia, or on a Phoenician ship from Egypt or Syria.  At 

any rate, Cyprus is unlikely to be a source of hippopotamus ivory in the Late Bronze Age.  

One molar is not enough to argue convincingly that hippos existed in Cyprus.  The 

overwhelming majority of the hippopotamus material on Cyprus is in the form of ivory, 

including unworked and worked, and will be considered alongside the evidence for 

Cypriot ivory workshops in Chapter Five.   

 

Conclusion 

Thus if the osteological evidence is considered alone, Syro-Palestine would be the 

most likely source of hippopotamus ivory.  The general dearth of osteological remains in 

Egypt is puzzling and it is quite possible that Egyptians did not use hippopotamus ivory, 

preferring instead to carve from elephant ivory.  Perhaps hippopotamus populations were 

already dwindling rapidly by the New Kingdom, and were more likely to be found in 

regions of Upper Egypt than Lower Egypt.  The tomb paintings in and of themselves do 

not argue for a specific location, and it could be that hippopotamus hunting was 

conducted primarily in Upper Egypt.  The hippopotami certainly dwelled further up-river 

in the southern Sudan, and survive still in the tributaries of the Nile. 
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Chapter 4 

The Archaeological, Historical, and Osteological Evidence for the Provenance of 
Elephant Ivory in the Late Bronze Age Eastern Mediterranean 

 
Like the hippopotamus, there are two main areas from which the elephant ivory 

could have been obtained in the eastern Mediterranean in the Late Bronze Age: Egypt 

and Syria.  However, the reconstruction of the trade in elephant ivory is complicated by 

the fact that Egypt acted as an intermediary, acquiring elephant ivory from the lands to 

the south (sub-Saharan Africa), and possibly to the west.  Indeed elephant ivory from 

North Africa (with or without Egypt as an intermediary) is just as viable as an alternative 

provenance.  Furthermore, instead of dealing with one species, as in the case of the 

hippopotamus, two species of elephant must be considered: the African elephant 

(Loxodonta africana, see Figure 15) and the Syrian elephant, the western version of  the 

Asian elephant (Elephas maximus).  There are also two sub-species of the African 

elephant: the Forest (Loxodonta africana cyclotis) and larger Bush (Loxodonta africana 

africana) elephant.   

Figure 15: The African elephant (adapted from Macdonald 1984: 455) 
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Part I: The African elephant 

Present Distribution and the Question of Sub-species 

 The population of elephants has been greatly reduced in the past century due to 

habitat degradation, the trade in ivory, and other forms of human interference.  Figure 16 

depicts the current distribution for the African (Loxodonta africana) and Asian elephant 

(Elephas maximus).  Elephants once inhabited all of Africa, but today are limited to small 

regions south of the Sahara (Scullard 1974: 24).  The most northerly African elephant 

population is in Mauritania, West Africa (north of latitude 17°10´ up to the heights of 

Tijelat) (Scullard 1974: 25; Krzyszkowska 1990: 29).  This population may be the 

remnants of elephant populations spread throughout North Africa before the severe 

desertification of the Sahara, and attested in classical times north of the Atlas Mountains.  

What is more, Scullard (1974) believes the population in present-day Mauritania and the 

ancient North African population were Forest elephants (Loxodonta africana cyclotis), 

not Bush elephants (Loxodonta africana africana). 

 Indeed there is much discussion in the literature on whether the elephants utilized 

in ancient times for ivory were Forest or Bush elephants.  Krzyszkowska (1990: 16-17) 

and Scullard (1974: 24-26) both conclude that of the African elephants only the Forest 

elephant was known to the eastern Mediterranean region in classical times, although the 

argument is based on negative evidence and from classical sources who only knew one 

type of African elephant.  See Figure 17 for the present distribution of Forest and Bush 

elephants in Africa, and the regions exploited for ivory during classical times according 

to Scullard (although in the following discussion this region will be significantly 

expanded).   
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Figure 16:  Present distribution of the African and Asian elephant  
(adapted from Macdonald 1984: 452). 

 

 

Figure 17: Distribution of Forest and Bush elephants in Africa, in addition to Scullard’s 
reconstruction of the provenance of African ivory, particularly during the Hellenistic and 

Roman times (adapted from Scullard 1974: 25). 
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The only differences between the two elephants which concern the present study 

are in the tusks, which are larger and more curving in the Bush elephant, whereas in the 

Forest elephant the tusks are smaller and straighter (and some claim the ivory is harder) 

(Krzyszkowska 1990: 17).  These differences have been noted in modern populations, 

and since smaller tusks can be the result of inbreeding, and furthermore since tusk size 

varies depending on the age, sex, and nutrition of the animal (Karali-Yannacopoulos 

1993: 58), it cannot be assumed that these differences were applicable to the past.  The 

discussion is, moreover, a moot one, since it is not possible to discern between the two 

species, or sub-species, from elephant ivory in the archaeological record (cf. 

Krzyszkowska 1990: 12), nor is the discussion relevant in the case of sub-species.  

Distinguishing between species and sub-species is more an academic exercise than a 

necessary one.  Only which regions were exploited is pertinent to the present 

investigation.  

 

The African Elephant in Prehistoric North Africa 

The earliest evidence for elephants in the northern half of Africa is the subject of 

a comprehensive article by Gautier et al. (1994).  The article was prompted by the 

discovery of an elephant skull in Nabta Playa, a drainage basin in the south of the 

Western Desert of Egypt, located approximately 100 km west of Abu Simbel.  The 

individual was young when it died, about four to eight years old, and dates to “several 

tens of thousands” of years before present.  The authors compiled an inventory of all 

Holocene elephant finds in the Sahara and adjacent Sudano-sahelian belt, excluding 

worked ivory (see Figure 18 for a map illustrating this inventory).  Literature on the  
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Figure 18: Approximate location of the fossil and parietal art occurrences of Loxodonta 
africana in North Africa:  N) Nabta, 1) Chami, 2) Oum Araouba, 3) Taoudenni basin, 4) 

Hassi-el Abiod, 5) Ntereso, 6) Karkarinchinkat, 7) Tamaya-Mellet, 8) Arlit, 9) Tin 
Ouaffadene, 10) Tibesti, Enneri Direnao, 11) Tibesti, Enneri Bardague, 12) Wadi Behar 
Belama, 13) Jebel Uweinat, 14) Wadi Shaw, 15) Wadi Howar, 16) Fayum, 17) Dakhleh 

Oasis, 18) Bir Kiseiba, 19) Shabona, 20) Khartoum Hospital, 21) Esh Shaheinab, 22) 
Kadero, 23) Saggai, 24) Geili, 25) Shaqadud, 26) El Kadada, 27) El Damar, Abu 

Darbein, Aneibis, 28) Ghasm-el-Girba (adapted from Gautier et al. 1994: 15, figure 10). 
 

 
 

 
Maghreb was inaccessible or nonexistant, and the area is represented by few finds, but 

historical evidence from the Iron Age and later suggests elephants roamed the Maghreb 

into the first millennium A.D.  These would have been the elephants Hannibal and the 

Carthaginians utilized in the Punic wars (Gautier et al. 1994: 13).   

The authors conclude that the faunal and graphic art records agree well with one 

another.  While the distribution may reflect the disproportionate levels of archaeological 

research or preservation in each region, generally it may be said from the number of finds 
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in Egypt and northern Sudan that the elephant was much more frequent in the Sudano-

sahelian belt, with low population densities in the Sahara.  Thus the elephant in North 

Africa not only lived in those areas bounding the Sahara, but in the Sahara as well, and 

what is more, was not restricted to only the mountainous regions of the Sahara.  

Furthermore, elephants persisted in the Sahara until the second and maybe even the first 

millennium B.C., although the range was probably fragmented and gradually reduced to 

the point of extinction by increasing aridity, deterioration of the environment, and human 

activities (Gautier et al. 1994: 7, 16).     

 Another point expounded upon was that the occurrence of elephants in the Sahara 

should not be taken as evidence of “lush prehistoric landscapes” in the Sahara, because 

such a conclusion would be an “underestimation of the ecological tolerance of elephants” 

(Gautier et al. 1994: 8).  Here the authors cite the studies by Viljoen (1989 and 1990, see 

also 1988) on elephants in very arid conditions to suggest that North African elephants 

adapted similarly to the Namib Desert elephants, and could survive in areas with limited 

or almost no rainfall and exploit the wadi system (Gautier et al. 1994: 16).  The elephants 

of the Namib Desert are discussed further in Chapter Eight. 

 

Egypt and its Nubian Territories as a Potential Source of Ivory 

 As for the Nile Valley in Nubia and Egypt, prehistoric elephant remains have not 

yet been recovered, although this could be ascribed to poor preservation from the annual 

flooding and dense human population (Gautier et al. 1994: 13).  Krzyszkowska (1990: 

17) agrees that the elephant was absent in Egypt, but reconstructs a range which includes 

parts of Mauritania and Libya in the west of Africa, and Ethiopia, Eritrea and Somalia in 
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the east.  As argued above, this range was probably much more extensive, including the 

North African coast, Sudano-sahelian belt, and the Sahara.  Thus Egypt would have 

imported ivory from elsewhere, and much of the evidence for ivory imports points to the 

south.  The Tomb of Rekhmire (vizier of Thutmosis III) from the New Kingdom depicts 

four different peoples bringing tusks: Nubians, Syrians, men of Punt, and the Keftiu.  The 

Nubians and men of Punt were both from the south where elephants were plentiful, and 

the “Keftiu” have been interpreted as people from Crete, who incidentally did not have 

local sources of ivory (Krzyszkowska 1990: 14,19; see part II of this chapter for a 

discussion of the Syrian tribute).  The fourteenth century B.C. tombs of Meryra II and 

Huya also exhibit men from the south bringing elephant tusks, ostrich eggs, and ebony 

(Bass 1997: 160), all items recovered from the cargo of the Uluburun.  Clearly the 

archaeological evidence from these tombs can only relate some of Egypt’s imports, and 

little is revealed about the mechanisms of trade or volume.   

 Turning to the historical evidence from Egypt only complicates the issue, as 

Egypt was importing and exporting ivory.  The Annals of Tuthmosis III list eighteen 

elephant tusks among the tribute from Syria-Palestine c. 1439 BC (Hayward 1990: 103).  

More interesting, however, are the Amarna letters.  This collection of clay tablets serves 

as an invaluable record of the fourteenth century reign of Akhenaton and his queen 

Nefertiti, and relates the royal correspondences between Akhenaton and other rulers or 

vassal kings.  Alašia (EA 40) and Mittani (EA 22) are recorded as sending ivory or ivory 

objects to Egypt, probably as some sort of gift-exchange between rulers.  Worked ivory is 

meanwhile recorded as sent to King Tarkhundaraba of Arzawa (EA 31:37) and to Kings 

Kadashman-Enlil I and Burnaburiash II of Babylon (EA 5:20; 14; col. III 75-77, col. IV 
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1-19, 60, 61), while there is additionally a letter from Burnaburiash asking for worked 

ivory (EA 11: Rev. 10-11) (Hayward 1990: 104; Bass 1997: 160).  Hayward (1990: 104), 

however, points out that in the Amarna letters and other historical texts ivory was 

imported to Egypt, but only worked ivory was exported.  Egypt’s role as intermediary 

therefore requires more precise methods for ascertaining the source of ivory in the eastern 

Mediterranean.   

 

Nubia and Punt 

The land to the south of Egypt from which elephant ivory came was known as 

Punt and Meroe to the Egyptians and corresponds roughly to Somalia and 

eastern/southeastern Sudan, respectively (see Figure 19 for map of region south of 

Egypt).  An expedition by Sesostris I (ruled c. 1971-1928) to Nubia is recorded to have 

brought back a live elephant, and the bones of a male elephant were recovered from a 

Ramsesside royal residence at Piramesse.  Indeed, in the New Kingdom tusks were 

shipped down the Nile with increasing frequency and Queen Hatshepsut sent an 

expedition to Punt to procure tusks, among other goods, around 1500 B.C. (Scullard 

1974: 27; Gautier et al. 1994: 13).  Ivory was imported from the Sudan by way of the 

Nile Valley or the Red Sea during the 18th and 19th dynasties (c. 1550-1186 B.C.) since 

there were no elephants in Egypt or its Nubian territories by this time.  An inscription 

from Qusr Ibrim in Lower Nubia, dating to the reign of Amenophis II (c. 1427-1400 

BCE), mentions imports of approximately 500 tusks from the “southern countries” 

(Hayward 1990: 104).  As mentioned above, the Tomb of Rekhmire depicted Nubians 
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(see Figure 20) and the men of Punt as bearing ivory to Egypt, with another six tusks 

piled at the head of the procession.   

 
Figure 19: Map of Sudan and the Nile, including the location of the city of Meroe, which 

lent its name to the region and was later, beginning around the 8th century A.D., the 
center of the Meroitic civilization.  Punt was located along the coast of the Red Sea 

southwards of the Second Cataract (adapted from http://www-
oi.uchicago.edu/OI/INFO/MAP/SITE/Sudan_Site_150dpi.html). 
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Figure 20: Nubians bearing tribute, from the Tomb of Rekhmire at Thebes  
(adapted from Krzyszkowska 1990: frontispiece). 

 

 
 
 
North Africa 

As advocated above, another source of elephant ivory in the Late Bronze Age 

may have been North Africa.  Elephants almost certainly dwelled there, in forests which 

were later stripped by human activity, such as Julius Caesar’s rebuilding his fleet from 

timber in the (then) heavily forested Sousse region in Tunisia.  No trees grow naturally 

there today (Blondel and Aronson 1999: 203).  Indeed, in the second half of the second 

millennium B.C. elephants are reconstructed as living between Morocco in the west to 

northwestern Libya in the east, through Northern Algeria and Tunisia, in addition to north 

and east of the Sudan (Hayward 1990: 104).   
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The degree of contact between the Late Bronze Age Aegean and North Africa 

(Libya) is a widely questioned and debated subject.  While this area was not in direct 

contact with Egypt, ivory may have been traded through Minoan and Mycenaean contacts 

in the coastal regions of Northeastern Libya (ancient Cyrenaica).  It must be emphasized 

that this hypothesis, advocated by L.G. Hayward (1990), is based on seemingly shaky 

evidence, according to Krzyszkowska (1990: 18, 29).  Some Late Minoan artifacts have 

been recovered from Northeastern Libya, but not from Late Bronze Age contexts.  

Further support for this theory comes from representations of two Berber tribes with 

Aegean weapons in depictions of Ramesses III’s two Libyan wars of his fifth and 

eleventh regnal years (c. 1180-1174 BCE) from his mortuary temple at Medinet Habu 

(Hayward 1990: 104-107).  Krzyszkowska (1990) does not see North Africa as a source 

for ivory until the 8th century, at the earliest, although by the seventh century the area was 

utilized by Etrurian workshops, and by the fifth “Libyan” ivory was heavily depended on 

by Greece (Krzyszkowska 1990: 18).  Gautier et al. (1994: 13) advocate the 

Mediterranean littoral of North Africa as capable of supporting a large number of 

elephants, ascribing the lack of finds to lack of research, and moreover support a much 

wider geographical range than just the coast.   

There is better evidence of trade contact in northwestern Egypt, where a 

considerable amount of imported Late Bronze Age Cypriot and Syro-Palestinian pottery 

and some Aegean sherds have come from a small island east of Marsa Matruh (ancient 

Paraetonium) (see Figure 21 for location of Marsa Matruh).  Excavations at Marsa 

Matruh (see White 1986; 1989) have recovered Cypriot wares (White Slip II, Base Ring, 

Red Lustrous, and White Shaved), Levantine wares (a Canaanite jar and lamp), and a few  
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Figure 21: Late Bronze Age trade in the eastern Mediterranean.  Note the location of 
Marsa Matruh on the north coast of Africa, as well as the counter-clockwise maritime 

trade route.  The Uluburun is also marked (adapted from Morkot 1996: 28-29). 
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Minoan and Mycenaean sherds from the 14th/13th centuries in Late Bronze Age contexts.  

There is also evidence for copper smelting and trade in ostrich eggs (Vagnetti and Lo  

Schiavo 1989: 217; Luce 1998).  The site has been reconstructed as a trade entropot 

inhabited during the 14th-12th centuries B.C., although Hayward (1990: 105) suggests the 

site “does not seem to have had any real connection with New Kingdom Egypt- until the 

time when a fortress was built at Zawiyat Umm ar Rakham, about 20 km to the west 

during the reign of Ramesses II (c. 1279-1213 BC).”  Hayward further cites one of the 

obelisks erected by Hatshepsut at Karnak, which bears the inscription: “I brought the 

goods of Tjehenu (Eastern Libya/Western Egypt), consisting of 700 ivory tusks (which) 

were  there...numerous panther skins (measuring) 5 cubits along the back (and) belonging 

to the southern panther, beside all the (other) goods of this country.”  Hayward (1990: 

107) then proceeds to suggest the tusks “must have originated further to the west, in 

North Western Libya... or, just possibly, south of the Sahara.”   How the tusks must have 

originated to the west when the panther skins in the same inscription originated from the 

south seems questionable.  Both the ivory and the panther skins could have been traded 

northward from south of the Sahara, as Hayward suggests, but then the inferred “other” in 

“other goods of this country” should be removed from her translation.  Nevertheless, the 

inscription is a tantalizing and exceptional piece of evidence for Late Bronze Age trade of 

elephant ivory in Egypt.  

 

The Possibility, and Degree, of Contact Between the Aegean and North Africa  

 Bass (1997) entertains the possibility of some of the Aegean ivory as coming 

from North Africa, noting that ships may have stopped at Marsa Matruh on a counter-
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clockwise route around the eastern Mediterranean (see Figure 21).  Other arguments for 

contact between the Aegean and North Africa rely on similarities between eastern Libyan 

and Minoan cultures, ancient Greek legends (i.e. Jason and the Argonauts), the Akrotiri 

frescoes, and later contact with the Sea Peoples (Hayward 1990: 105).  The subject is 

addressed by Knapp (1981), who after reviewing the above points in favor of such a 

contact, flatly dismisses the hypothesis as unsupportable based on the available 

archaeological record in North Africa.   

Thera, an island in the Cyclades, was destroyed by a volcano (circa 1700 B.C.) 

which fortunately preserved many frescoes.  The frescoes were described by the 

excavator Marinatos (1974a, 1974b, cited by Knapp 1981: 249) as having “Libyan” or 

“African” elements.  The fresco cited most often is the “Miniature Fresco”, which 

purportedly depicts tunics similar to those worn by North Africans, a desert replete with 

plants and animals (such as a cheetah, lion, and horned Berbery sheep) found in an 

African environment, and a type of shield similar to that used by a Libyan tribe, as 

described by Herodotus.  The fresco is interpreted as depicting the arrival of Minoan 

ships at a settlement on the Libyan coast (Hayward 1990: 105), but Knapp (1981: 250-

251) argues that all of the “Libyan” elements on the frescoes were either native to the 

Aegean or suggest sporadic and infrequent contact or exchange with the coast of North 

Africa west of Egypt.  Furthermore, the handful of Bronze Age Aegean artifacts in Libya 

(Cyrenaica) have not been recovered from Bronze Age contexts.  Yet Knapp (1981: 258) 

also states that the archaeological evidence for the third and second millennia B.C. is 

“lacking almost entirely in Libya.”  So the problem is not so much that Aegean materials 
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are lacking in North Africa, but that almost any evidence for this time period is lacking, 

and certainly there were indigenous LBA cultures in North Africa.       

The tribes inhabiting North Africa at this time included the Tehenu in the area 

west of the Nile Valley, the Libu who lived west of the Tehenu (eastern Cyrenaica), and 

the Meshwesh in western Cyrenaica (and perhaps further west).  These tribes were known 

as pastoralists, as the Odyssey refers to “Libya of the numerous flocks,” and Libya was 

also mentioned as a destination for seafaring (IV.85-89 and XIV.295, cited by Knapp 

1981: 267 and Luce 1998).  An Aegean knowledge of the flocks and harbors of North 

Africa is entirely possible given the favorable sailing winds which blow from the Aegean 

to North Africa during the sailing season (May to October) (Casson 1995: 270-272; 

Knapp 1981: 257).  Furthermore, the North African coast is a natural stopover on the way 

from the Aegean to Egypt, so it is very likely that ships coming from the Aegean stopped 

along North Africa and were in contact with the Meshwesh, Libu, and Tehenu.  Even 

Knapp must admit to this probability: “It is conceivable that the ‘Ship’s procession’ in the 

‘Miniature fresco’ may represent a generalized portrayal of an Aegean (Cycladic) trading 

mission to North Africa.  If so, Cyrenaica may be regarded as having been part of a more 

extensive Bronze Age Aegean-Egyptian pattern of intercourse” (Knapp 1981: 269).  Yet 

he then goes on to deny Cyrenaica any active role in this trade network operating in the 

eastern Mediterranean.  Mostly he regards North Africa as devoid of anything that might 

be trade-worthy, and furthermore incapable of acting as a trade outlet for goods coming 

from the more resource-rich interior because “desert trade would have been difficult if 

not impossible without the camel” (Knapp 1981: 259), which was not introduced into the 

area until the 1st century A.D.  But North Africans possibly did have trade resources; they 
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had perishable goods and ivory.  I consider the idea that North Africa was not an active 

part of the eastern Mediterranean counter-clockwise trade route as patently absurd (and I 

am agreeing with Hayward on this point).  As demonstrated by the research by Gautier et 

al. (1994) and Viljoen (1988; 1989; 1990) the elephant inhabited North Africa during the 

LBA; it did not go extinct until the 7th century A.D. (Krzyszkowska 1990: 18).  The 

North African tribes could have exchanged ivory for perishable goods that have not 

survived to be part of the archaeological record (indeed, there is very little 

archaeologically visible in this region from the LBA).  By the late 13th century the 

Meshwesh were moreover allied with the Sea Peoples against Egypt.  From inscriptions 

at Karnak and a stela from Benha (ancient Athribis) in Lower Egypt it is known that the 

Libu, Meshwesh and Qeheq were in cohorts with the Ekwesh (generally identified as 

Eastern Mycenaeans), Teresh, Luka, Sherden and Shekelesh warriors in an invasion of 

Egypt circa 1209 B.C. (Hayward 1990: 105; Knapp 1981: 259).  That only 100 years later 

people from the Aegean and from North Africa joined together to attempt a take-over of 

the political juggernaut of the day suggests that they must have had a close relationship 

prior to such a feat.      

By the Iron Age and later the two regions were robust trade partners, as the fifth 

century B.C. Attic poet Hermippus (Athenaeus i.27.f) relates that “Libya supplies ivory 

in plenty for trade”- Libya meaning North Africa in general, west of Egypt (Gill 1993: 

233; Scullard 1974: 32).  Egypt also proved to be an important source for ivory to the 

classical and Hellenistic world, as receipts written on ostraka have been recovered as 

testimony to this trade (Gill 1993: 233).  Taking all of this into account, North Africa 

must be a serious contender in the search for the provenance of the Uluburun ivory.  
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Part II: The Syrian Elephant 

Turning attention to the north, the Syrian population of elephants is just as 

promising a source for the elephant ivory on the Uluburun shipwreck.  Some scholars 

(e.g. Miller 1986) believe the Syrian elephant may have been introduced into the region 

because there is a dearth of evidence for it before the 2nd millennium (in the form of, 

presumably, Mesopotamian historical references to an ivory trade from Syria), and due to 

the small size of the population described by the Egyptian and Assyrian historical sources 

(cf. Krzyszkowska 1990: 15; Miller 1986: 29-30; Winter 1973: 267-268; Hayward 1990: 

103; Collon 1977).  However, I see no reason for assuming that Syrian elephants did not 

exist in the region before the 2nd millennium.  The elephants of Syria may not have been 

exploited for ivory, whether because Egyptian ivory was preferred (because it was 

coming from the larger-tusked Bush variety of the African elephant?), trade networks 

with Egypt were more established than those with Syria, or the inhabitants of Syria had 

not yet organized such a trade, for whatever reasons.  Furthermore, the Syrian elephant is 

regarded to be of the same species as, or perhaps a sub-species of, the Asian elephant 

(Elephas maximas).  Thus, like Asian elephants, only the male Syrian elephants would 

have had tusks (Krzyszkowska 1990: 15, 17, 27). 

Suffice it to say for now that elephants are known to have inhabited Syria during 

the Late Bronze Age, based on osteological and historical evidence.  Elephant bones, 

other than tusks, have been found at Ras Shamra (Ugarit), Alalakh, and several other 

Mesopotamian sites (Miller 1986: 30).  The earliest osteological evidence for Syrian 

elephants are remains from Babylon (c. 1800 BC), although it is unclear whether these 

remains are in fact from the Syrian elephant and not the Asian elephant, traded in from 
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the east.  Elephant molars have also been found at Ugarit and identified as coming from 

the Asian species (Elephas maximas) (Hooijer 1978: 187-188, cited by Krzyszkowska 

1990: 27).  Other early evidence for the Syrian elephant, albeit in the form of tusks, 

comes from Chagar Bazar in the Jezirah (c. 2000 B.C.), Megiddo, and the destruction 

level of the 18th century B.C. palace of Alalakh in northwest Syria (Scullard 1974: 30; 

Miller 1986: 30).  Alalakh also yielded examples of worked ivory from the early 2nd 

millennium B.C., as did Ebla and Byblos.   Pre-cut pieces of elephant ivory were 

interpreted as evidence for an active ivory workshop in Acemhöyük in Anatolia 

(Bourgeois 1993: 63). 

Historical evidence from Egypt also advocates for a Syrian source of elephant 

ivory.  Thutmosis I recorded his endeavors of hunting elephants, as did his grandson 

Thutmosis III.  The Annals of Tuthmosis III include 18 elephant tusks as tribute from 

Syria-Palestine circa 1439 B.C. (Hayward 1990: 103).  However, he also claims to have 

hunted and killed 120 elephants in Neya (or Niy), a region reconstructed as being located 

in the Ghab north of Hama, the Orontes Valley, or the Euphrates region near Aleppo, but 

nevertheless somewhere in Northwestern Syria (Miller 1986: 31; Krzyszkowska 1990: 

15; Hayward 1990: 103-4; Kuhrt 1995: 323; see Figure 22 for location of Ghab and the 

Orontes Valley).  In the Tomb of Rekhmire (the vizier to Thutmosis II) Syrians are 

depicted as bringing an elephant as tribute (smaller than life-size- perhaps ascribable to 

artistic license; see Figure 23) (Krzyszkowska 1990: 14; Scullard 1974: 28).  The 

fourteenth century B.C. tombs of Meryra II and Huya also represent Syrians as bringing 

copper oxhide ingots and elephant tusks (Bass 1997: 160).   
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Figure 22: Location of Ghab Valley and the Orontes River, reconstructed as the region in 
which Tuthmosis III hunted Syrian elephants (adapted from Yasuda et al. 2000: 128). 

 

 
 

Figure 23: Relief from the Tomb of Rekhmire, depicting Syrian elephants brought as 
tribute (adapted from Krzyszkowska 1990: 14, figure 2). 
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Further historical references to the Syrian elephant come from the twelfth century 

Assyrian king Tiglath-pileser I (ruled 1114-1076 B.C.), who in his fifth campaign drove 

the Ahlami (Aramaeans) to Carchemish and “in the region of Haran and of the river 

Habur I slaughtered ten mighty male elephants and took four alive.  Their hides and 

tusks, together with the live elephants, I brought to my city of Assur” (quoted in Scullard 

1974: 29). 

Given that the number of Syrian elephant osteological remains is small, most 

reconstructions of the elephant distribution in western Asia rely on the known 

environmental needs of the animal and the biogeography of the region in antiquity 

(Krzyszkowska 1990: 28; Miller 1986).  Krzyszkowska (1990) reconstructs a rather large 

range of northern and western Syria, including the Amuq plain, across to the foothills of 

the Zagros mountains, and southwards through the Assyrian plain to southern 

Mesopotamia (Krzyszkowska 1990: 15).  Similarly, Miller (1986: 29) examined the 

biogeographical needs of elephants and concluded that two key interrelated factors 

operated in the consideration of the range of the Syrian elephant: the development of a 

woody savanna habitat in conjunction with a period of low settlement density.  He 

considers work by Cloudsley-Thompson (1977) and Wing and Buss (1970) on the 

ecological requirements of elephants, but overestimates the browse requirements of the 

elephant and underestimate their resourcefulness and flexibility in adapting to conditions 

hitherto considered inadequate for elephants.  He notes that elephants are generalist 

feeders, and given abundant food resources may exploit a range of 16-52 km², although 

these ranges may be extended considerably.  Elephants moreover require an optimum 

mix of grasses, bark, and tender branches in their diet, but Miller proffers that Asian 
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elephants show a lower preference for grasses compared to the African elephant (see 

Miller 1986: 32-33, and Sukumar et al. 1987:11).  He correctly states that  a mixture of 

woodland and grassland is the optimum environment for elephants, and that habitat 

change (from forest to savanna) promotes a decline in elephant populations (Miller 1986: 

32).  While I agree that the environment influences the size of elephant populations, and 

that less than optimum conditions may explain the theoretically small size of the Syrian 

elephant population, he may nevertheless be placing too much emphasis on 

environmental determinism, particularly in his focus on optimization.  Elephants, unlike 

hippopotami, are able to exploit a great variety of environments, as shown in Chapter 

Eight and particularly by the findings of Viljoen (1988).   

In the end, Miller reconstructs the geographic range of the Syrian elephant as 

including the mountainous forested areas of northwest Syria and southern Turkey (which 

has the optimal 500 mm annual rainfall).  Here the Syrian elephant could have seasonally 

exploited the high quality (high protein) browse available in the arid steppe between the 

Orontes and the Euphrates, as well as the area of Lake Jabbul, and the Hama steppe 

stretching across to below the bend of the Euphrates southeast of Aleppo (Miller 1986: 

30, see Figure 24 below).   

 Miller then ties all of this up beautifully by establishing an inverse relationship 

between the elephant populations and human population density; a relationship which is 

furthermore exacerbated by human induced deforestation (see also Yasuda et al. 2000).  

During this time the advances in metal-working required more fuel, and population 

increases lent the way for more pasture and agricultural zones to be established.  All of 

Miller’s argument makes perfect sense but I presume that the situation for the Syrian  
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Figure 24:  A reconstruction of the Syrian elephants’ range, primarily based on rainfall 
per annum (adapted from Miller 1986: 31, figure 1). 

 

 
 
 

elephants’ demise was not so clear cut, and that other factors (such as, possibly, over-

hunting for ivory) were at work.  Moreover, the elephants’ ecological requirements are 

not so dependent on forest resources.  The fact that studies on Asian elephants, such as 

Sukumar et al. (1987), showed a preference for browse does not mean that Asian 

elephants cannot exist in other habitats.  We do not know how Asian elephants would 

react to desert or savanna environments, such as those in the Namib Desert or East 

Africa, but considering that Asian and African elephants are extraordinarily similar 

overall, it may be surmised that Asian (and Syrian) elephants are able to dwell in habitats 
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similar to those of the African elephant.  Miller’s conclusions are also based on the 

assumption that abandonment of large sites (such as Aleppo following destruction by the 

Hittites) equates to low settlement density.  The population could very well have 

dispersed out of the urban centers, but not necessarily declined significantly.  

Eventually deforestation and overhunting (for sport or ivory) did annihilate the 

Syrian elephant population in the Early Iron Age, with the last references to Syrian 

elephants coming from the ninth century B.C. (Scullard 1974: 30; Francis and Vickers 

1983: 251; Miller 1986: 32; Krzyszkowska 1990: 15).  Francis and Vickers (1983: 249-

251) and Gill (1993: 233) propose the misidentification of the Al Mina elephant tusks 

(later identified as a horn core of water buffalo and domesticated cattle) as evidence 

against an exportation of Syrian elephant ivory.  The Al Mina ‘tusks’ (Al Mina was an 

Iron Age Greek emporium) are from the 8th century B.C., and therefore serve better as an 

argument for the extinction of the Syrian elephant before this time than as a refutation for 

the utilization of Syrian elephants for ivory. 

While the population was probably never very large, at least compared to the 

populations in Africa, it is nonetheless a viable source for the ivory of the Uluburun 

shipwreck, and even Hayward (1990: 103) notes that the Uluburun shipwreck “would 

tend to indicate that the Aegean did indeed receive raw elephant ivory from Syria during 

the Late Bronze Age.”  Further, an increase in the incorporation of ivory into luxury 

craftwork during the late 2nd millennium could very well be tied to accessibility of Syrian 

elephant ivory (Miller 1986: 31).   
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Conclusion 

 Thus there are two general derivations of elephant ivory in the eastern 

Mediterranean during the Late Bronze Age: Syria or Africa.  Egypt would have acted as 

an intermediary between trade from Nubia and the Sudan, but nothing in the historical 

records indicate that Egypt ever exported raw ivory.  As a result, any sort of discussion 

on Egypt as a source for raw ivory is pure conjecture at this point.  North Africa, 

however, could very well be a supplier of elephant ivory as a raw material, even though 

this region also lacks supporting evidence for such a claim.  The difference between 

advocating for either of the two regions is that there is a great deal of archaeological and 

historical evidence in Egypt, whereas the rest of North Africa suffers from the vagueries  

of archaeological invisibility.  One would be hard-pressed to argue that differential 

preservation of the archaeological record was at work in Egypt, and then turn around and 

cite negative evidence in Libya as grounds for its dismissal as a source of ivory.  

Moreover, Egypt also carried off tusks from North Africa, as mentioned in the Qusr Ibrim 

inscription.  The ivory traded from North Africa could have originated from the south or 

the coastal regions of North Africa, and if from the south (Nubia/Sudan) the middle 

agent(s) (Egyptian or Libyan) may be difficult to discern.  Syria, on the other hand, is 

known to have exported ivory, typically depicted as tribute in Egyptian historical sources, 

and the Mitanni in northern Syria sent ivory as gift-exchange to the Egyptian pharaoh.  

Raw ivory and osteological remains are furthermore found in a number of Syria’s major 

trade centers, where workshops transformed the elephant ivory into prestige objects.  

How the trade in raw ivory articulates with the distribution of ivory workshops and ivory 

carving styles is the topic of the next chapter.
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Chapter 5 

Ivory Workshops in the Late Bronze Age Mediterranean 

In my consideration of the provenance of ivory in the Late Bronze Age 

Mediterranean, I have thus far concentrated on the “supply” end of the trade and will now 

focus on the “demand” or acquisition end (although I am not using these terms to imply a 

modern economic system in the LBA).  Both ends of trade nevertheless represent 

“consumption” if we take Gosden’s broad yet applicable definition of “using things in 

social acts” (1999: 163; cited in Jones 2002: 96).  It is to this end that the next stage in the 

use-life of ivory must be considered.  As discussed earlier, there could be any number of 

intermediaries in the trade, from the example of Egypt and the phenomenon of cabotage 

trade, before the ivory reached the next stage in the process: the workshop (either 

associated with a royal palace or not).  The workshop transformed the ivory into a 

product with even higher value and/or prestige, and consequently the workshop 

represents a transformative stage in the trade, technically and socially, and the luxury 

items could be shipped elsewhere or retained close at hand.   

The archaeological evidence from the Aegean has not been considered until now 

because the Aegean had no local sources of ivory and therefore had to procure the 

precious material through maritime trade.  The archaeological evidence from the Aegean 

is, moreover, abundant and includes remarkable examples of workshops.  Cyprus, Syria, 

Anatolia, and Palestine additionally possessed workshops.  Overall the eastern 

Mediterranean in the Late Bronze Age saw the “resurgence and apogee of ivory working” 

as a widespread and decidedly international phenomenon, embodied by the 14th to 13th 

century Ras Shamra and 13th century Tell Fakhariyah ivories in Syria, the 14th to 13th 
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century Middle Assyrian ivories in northern Mesopotamia, and the Aegean, Egyptian, 

and Palestine workshops (Liebowitz 1987: 20).  In any discussion of workshops stylistic 

considerations are sometimes brought to the fore in order to demonstrate distinct 

workshop traditions, but such methods are fraught with difficulty due to the international 

character of the LBA, as will be seen from an examination of “Egyptianizing” versus 

local innovations in style.   

 

The Signature of an Ivory Workshop in the Archaeological Record 

 All of this of course begs the question of how one recognizes a workshop in the 

archaeological record, and Krzyszkowska (1993) addresses this question in her 

investigation of LBA Aegean workshops.  Workshop material includes every stage of the 

manufacturing process: from raw material in the form of whole or partial tusks, to 

prepared blocks and blanks, roughouts, waste pieces (such as large offcuts to chips and 

trimmings), rejects, mistakes, salvaged material for secondary working, unfinished 

pieces, as well as the finished pieces (1993: 25-27).  Elephant tusks are the preferred 

form of ivory as larger solid flat blanks may be cut from prepared blocks.  These blocks 

were cut lengthwise from the tusk, not transversely, whereupon the outer “bark” 

(cementum and enamel) was removed.  The final product to be carved from the blanks 

may be deduced from the shape and size of the blanks, in addition to possible guidelines 

on the blank.  The proximal end with the tapering pulp and the distal tip were more 

difficult to carve and were utilized for pyxis (squat container) manufacturing.  Small 

chips, such as those recovered from Knossos, are “good indicators of a working area 

proper, as opposed to a storeroom for a workshop” (1993: 27).  The shape of the waste 
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pieces may also intimate what sort of objects were carved in the workshop.  Thin and 

relatively regular trimmings would suggest the manufacture of inlays, whereas carving in 

the round or high relief would leave irregular flakes or chips in the working area.  Some 

of the waste pieces may be reused for secondary manufacture, as for pegs, dowels, or 

other types of joins.   

Krzyszkowska (1993: 28) further warns “no single site has yielded a complete 

range of workshop material from unworked tusk to finished product, by way of blanks 

and unfinished pieces and with a full complement of workers’ waste.  Nor do I expect 

such a site to be found... I suspect that our rather offhand use of the term ‘ivory 

workshop’ may have seduced us into seeing ivory production as a much more centralized 

activity than it actually was.”  By ‘centralized’ Krzyszkowska means the idea that all 

stages of manufacture occur in a single, central, workshop, not that the ivory workshops 

were free of centralized control.  For example, the ivory may have been stored in one 

location, carved in another, and assembled in yet another area.  Thus in the 

archaeological record working areas may be distinct from assembly areas and storerooms.  

There may additionally be separate storerooms for separate stages of the manufacturing 

process (i.e. raw materials, blanks, reusable offcuts, interim stages of manufacture, and 

finished pieces).  Of course each site is unique and these stages may be collapsed into one 

area or extended further, and may not offer such a nice and clean-cut picture: at Knossos, 

for example, there is “debris of ivory-working in fairly close proximity to an assembly 

area for finished inlays.  But where the inlays were made is a mystery, since they are 

hippopotamus ivory and the chips and offcuts are elephant ivory” (Krzyszkowska 1993: 

28).   
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Ivory Workshops in the Aegean 

The now familiar Tomb of Rekhmire, in addition to depicting Nubians and 

Syrians as bearing elephant tusks, also depicts the Keftiu (generally agreed to be Cretans) 

as bringing a tusk in tribute (see Figure 25).  But Crete had no sources of ivory of their 

own, and after importing it they may have traded the material further or presented the 

ivory as a gift-exchange among ruling elites (Krzyszkowska 1990: 19). 

Figure 25: Keftiu bearing ivory to Egypt, from the Tomb of Rekhmire  
(adapted from Krzyszkowska 1990: Fig. 5). 

 

 
 
 

In Homer (and the later authors Hesiod and Pindar) the word elephas (ελέφας) 

meant ivory, not the elephant (Scullard 1974: 32), as they presumably had no familiarity 

with the animals from which ivory came.  References to ivory in Homer include likening 

Menelaus’ white skin to the ivory of bridal ornaments after he is injured (Iliad IV.141), 

the ivory of Menelaus’ palace (Odyssey IV.73), the couch of Penelope as inlaid with 
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ivory and silver (Odyssey XIX.55) and a bed that Odysseus built and inlaid with gold, 

ivory, and silver (Odyssey XXIII.200) (Dodge 1955: 18).  There is moreover the speech 

by Penelope:  “‘Ah my friend,’ seasoned Penelope dissented, ‘dreams are hard to unravel, 

wayward, drifting things- not all we glimpse in them will come to pass... Two gates are 

there for our evanescent dreams, one is made of ivory, the other made of horn.  Those 

that pass through the ivory cleanly carved are will-o’-the-wisps, their message bears no 

fruit.  The dreams that pass through the gates of polished horn are fraught with truth, for 

the dreamer who can see them’” (Odyssey XIX.630, translated by Fagles 1996).  Clearly 

ivory is a luxury item in all the above Homeric references, and could be inferred to be 

available to the Aegean only in restricted quantities.     

 Aegean ivory is generally found in workshop contexts located in prestigious 

places such as palaces (Zakro and Knosses in Crete, Mycenae and Pylos in mainland 

Greece), or within sanctuaries, or as grave-goods (Karali-Yannacopoulos 1993: 58).  The 

most common products of Aegean workshops were combs, plaques and inlays, with 

elephant ivory the preferred medium (Krzyszkowska 1993: 26).  The earliest (worked) 

pieces come from the pre-palatial period (2500-2000 B.C), but do not definitively argue 

for workshops in Crete.  Ivory seals were found in the communal burials of the period, 

and a worked hippopotamus lower canine was excavated from the fill below the West 

Court at Knossos (Reese 1998: 142).  Hippopotamus ivory has additionally been 

discovered in the pre-palatial workshops of Crete, which Krzyszkowska suggests may be 

of Egyptian origin (1990: 20).   

 By the Late Bronze Age the amount and geographical range of Aegean workshop 

material dramatically increases, and represent two phases: early 16th century-early 14th 
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century and the LH IIIB2 period on the mainland (ca. 1250-1200 BC).  Many of the ivory 

objects from the LBA are hippopotamus lower canines and incisors rather than elephant 

tusks (Reese 1998: 142; Krzyszkowska 1990), with a higher percentage of hippopotamus 

ivory in the first phase of Aegean ivory-carving, and by the second phase (represented 

primarily in mainland Greece) the majority of the material is elephant.  Ivory production 

on Crete, meanwhile, is limited to the first period (LM IA-LM IIIA1) (Hayward 1990: 

103), and represented by finds in Knossos, Zakro, Archanes, Kommos and Palaikastro.  

At the Royal Road excavations in Knossos a working area for a workshop (including over 

one kg of small chips, and evidence of secondary manufacture), fragments of large ivory 

statuettes, and many small inlays were recovered (Reese and Krzyszkowska 1996: 325; 

Krzyszkowska 1993: 27, 30-31; Scullard 1974: 260).  The inlays were primarily 

fashioned from hippopotamus ivory, but are in close association with the chips and 

offcuts which are elephant ivory (Krzyszkowska 1990: 112; 1993: 28).  Four elephant 

tusks from the Zakro palace are dated to the LM IB destruction, circa 1450 B.C. (Reese 

and Krzyszkowska 1996: 325; Krzyszkowska 1993: 30; Krzyszkowska 1990: 112; 

Scullard 1974: 260) (see Figure 26 for location of Knossos and Zakro).   Two pieces of 

tusk sections from Archanes, and the center of a tusk and unfinished pieces from 

Palaikastro have been recovered as evidence of ivory working (Reese and Krzyszkowska 

1996: 325; Krzyszkowska 1993: 30).  Additionally LM III Kommos yielded two small 

elephant tusk segments, as well as partly worked ivory and leftover waste ivory (Reese 

and Krzyszkowska 1996: 324; Krzyszkowska 1993: 30). 

 The finds from the mainland are much less than those from Crete during this 

period.  Ivories on the mainland were manufactured from the early 16th to the late 13th 
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century B.C. (LH I-LH IIIB), but the vast majority date to the 14th and 13th centuries B.C. 

and are of elephant ivory (Hayward 1990: 103).  The earliest examples come from the 

Shaft Graves from Mycenae (see Figure 26 for location of Mycenae), some of which 

(Shaft Graves IV and V) include tusk tips that may be considered trophies (Reese and 

Krzyszkowska 1996: 325; Krzyszkowska 1993: 31; 1990: 112).   

 
Figure 26.  Locations of ivory workshop material from the Aegean 

(adapted from Krzyszkowska 1990: overleaf). 
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The LHIIIA and IIIB witnessed the climax in a systematic long-distance trade 

within the central Mediterranean, articulating farther west with peninsular Italy, Sardinia, 

and Sicily (Vagnetti 1999; which also serves as the citation source for all proceeding 

references in this paragraph).  A fragment of an ivory Mycenaean warrior head was 

recovered in southern Sardinia (Ferrarese Ceruti et al. 1987), and the site of Frattesina in 

peninsular Italy yielded a local ivory workshop in the form of waste material and finished 

objects, primarily combs (Bietti Sestieri 1981; 1997).  The  “Frattesina type” of comb 

was also fashioned from bone and horn, and is found at other sites in Italy, with one 

example in elephant ivory from Torre Mordillo.  A waste piece was also found at Torre 

Mordillo, offering further intimations of potential ivory workshops in peninsular Italy 

(Arancio et al. 1995).   Interestingly, another Frattesina type comb was recovered at 

Enkomi in Cyprus (Vagnetti 1986), suggesting reciprocity in manufactured ivory goods 

between east and west. 

Returning to Greece, while ivory carving was known in the mainland from the 

16th century B.C., the art form did not reach its zenith until the 13th century, that is, the 

LH IIIB2 period (circa 1250-1200 BC), in what may be described as the final phase of 

Aegean ivory working (Krzyszkowska 1990: 112; Liebowitz 1987: 20).  Elephant ivory, 

instead of hippopotamus ivory, was utilized far more than in the previous period and 

makes up a great majority of the recovered ivory (Karali-Yannacopoulos 1993: 57; 

Krzyszkowska 1993: 30).  Common items were pyxides, combs, plaques, and the 

appliques and inlays for furniture.  A great deal of workshop material comes from 

Mycenae, from the aforementioned Shaft Graves, Schliemann’s excavations on the 

acropolis, the Citadel House and the Artisans’ Quarter.  The House of the Shields and the 
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House of the Sphinxes include storerooms for workshop material (Krzyszkowska 1993: 

30).  A small cube from Schliemann’s excavations, and a larger cube from the Citadel 

house represent partly worked ivory (Reese and Krzyszkowska 1996: 325).  The Citadel 

House reveals hardly any evidence of the act of ivory working, but it possesses workshop 

material in many storerooms.  Surprisingly enough the bulk of this workshop material is 

not primary raw material (tusks or sections of tusks), nor finished pieces, but rather works 

in progress, off-cuts and waste (awaiting secondary manufacture).  Krzyszkowska (1993: 

28) concludes that there was an obvious control of the raw materials by the workshop, so 

that “fixed amounts could have been issued for piecework, with any waste or salvage 

being returned on completion of the task.”  A noteworthy find, because it is 

hippopotamus ivory, includes a burnt unworked piece of a lower canine from the Citadel 

House (Reese 1998: 142).  From Tiryns (see Figure 26) came a partly worked piece of 

elephant ivory, in addition to a number of other pieces, including evidence for secondary 

manufacture (Reese and Krzyszkowska 1996: 325; Krzyszkowska 1993: 27, 30).  

Nichoria also had a large partly worked offcut of elephant ivory, while Pylos produced 

some unworked fragments in a mixed context from the Lower Town.  There is a bit of 

partly worked ivory from a burnt deposit in Thebes (Reese and Krzyszkowska 1996: 325; 

Krzyszkowska 1993: 30).   

   So much for the Mycenaean workshop material.  Much of the ivory in the 

Cyclades probably arrived already worked and the volume was not great (Krzyszkowska 

1990: 112-113).  However, a small rectangular piece of ivory, possibly a blank, was 

recovered at Ayios Irini, Kea (Krzyszkowska 1993: 32).  Much later in the seventh 
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century B.C. unworked hippopotamus ivory tusks were left as offerings at the Heraion on 

Samos (Reese 1998: 142; Krzyszkowska 1990: 20).   

 

Ivory Workshops in Anatolia 

The ivory carving tradition is also separated into two phases, that of the Assyrian 

Colony period (19th-18th centuries B.C.), and the Hittite empire period (14th-13th centuries 

B.C.).  The Assyrian Colony period is represented by finds from Kültepe, Acemhöyük, 

and Eskiyapur, whereas the Hittite empire ivory derives from Bogazköy and Beycesultan.  

Bourgeois (1993) addresses the material from the first period, and while this lies a bit 

before the period with which the present investigation is concerned, some details are in 

order.  In a complex near the palace at Acemhöyük (which was destroyed circa 1750 

B.C.) was a completely mineralized tusk of Elephas maximas, in addition to numerous 

fragments of elephant ivory and a variety of pre-cut pieces suggesting active ivory 

production (Bourgeois 1993: 61-63; Krzyszkowska 1990: 50).  Manufactured objects 

such as pyxides were also made of elephant ivory.  For hippopotamus ivory, however, 

only finished objects were recovered, and these were fashioned from lower incisors and 

canines.  Caubet considers the hippopotamus ivory goods as imported from Syria 

(personal communication cited in Bourgeois 1993: 64), a sentiment shared by Potts 

(1987: 69).  He considers the ivories from Anatolia as indirect evidence of Syrian 

workshops “since this is the closest possible source of raw material.  The Syrians are 

unlikely not to have exploited a resource desired by others.  The relative scarcity of 

ivories in MB Syria-Lebanon probably reflects more the extent of reuse and the ill 

fortune of discovery than a genuine dearth.”  The second phase of Anatolian ivory-
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working may be illustrated by an example from Palestine.  A small plaque from Megiddo 

dates stylistically to the 13th century Hittite empire, but represents one Anatolian ivory in 

a hoard of three hundred ivories, and was moreover possibly transported to Megiddo after 

the fall of the Hittite empire (Alexander 1991: 182).  The second-phase Anatolian ivory 

workshops would have acquired their ivory from the Syrian elephant herds in southeast 

Turkey/North Syria, or imported hippopotamus and elephant ivory from Syria.  These 

workshops were outshadowed, however, by the Syrian workshops.  

 

Ivory Workshops in Syria 

The Amarna letters of the 18th Dynasty record the Mittani of Syria as sending 

ivory or ivory objects to Egypt (EA 22), probably as some sort of gift-exchange between 

rulers (Hayward 1990: 104; Bass 1997: 160).  As described in Chapter Four, Syria had 

hippopotami and elephants living in the region, and two elephant tusks were recovered 

from the destruction level of the 18th century B.C. palace of Alalakh (Scullard 1974: 30; 

Miller 1986: 30; Krzyszkowska 1990: 50).  There was also the mistaken identity business 

of the 8th century B.C. Al Mina ‘tusks’ later shown to be horn cores (Krzyszkowska 

1990: 50; Francis and Vickers 1983: 249-251).   

Tell Fakhariyah has only yielded examples of worked ivory (Liebowitz 1987: 19). 

However, by far the most spectacular example of ivory-working in LBA Syria comes 

from Ugarit (Ras Shamra), a LBA trade center with its bustling port of Minet el Beida.  

Caubet and Poplin (1993) have shown that more than three-quarters of the ivory objects 

from Ugarit (Ras Shamra) are made from hippopotamus canines and incisors.  The LBA 

palace at Ugarit exhibits two destruction episodes: the first circa 1370/1350 B.C. and the 
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second around 1180, thus placing almost all the luxury items from the site in the 140 year 

period of 1320-1180 B.C. (Lilyquist 1998: 27, citing a personal communication with 

Caubet).  All in all there are approximately 350 ivory objects, most of which have not 

been published (Gachet 1993: 67-70).  These objects include items from daily life such as 

combs (see Figure 27), duck-shaped boxes (to be discussed in more detail below), 

circular boxes, pyxides, discs/lids, and spindles and rods. 

 
 

Figure 27: Ivory comb from Ugarit (Ras Shamra).  Poplin has examined one of the combs 
and determined it was made of elephant ivory (adapted from Gachet 1993: 68, figure 2b). 

 

 
 

The distribution of the daily life objects and more uncommon objects, such as 

figurines and furniture inlays, suggests that ivory was indeed a luxury item.  In Ugarit the 

king owned the ivories with the greatest prestige, “but a range of stereotyped shapes is 

present everywhere, as the property of individuals during life and death; their function or 

their significance is considered to be important for they are present also in the sanctuaries 

(as ritual furniture? or offerings?).  Moreover, the objects are so standardized that no 

variants of the shapes themselves exist: the social hierarchy is reflected only in the more 

frequent use of ivory for whole objects and of elephant ivory for larger pyxides” (Gachet 
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1993: 75).  The standardization of shapes in my opinion argues for an established and 

centralized ivory-working tradition.   

Hippopotamus ivory was far more frequently utilized than elephant ivory, yet also 

remains a luxury item, which raises more questions about why the traders of Ugarit relied 

so heavily on hippopotamus ivory when elephant ivory was available.  A number of 

possibilities include: either the Syrian elephant population was difficult to utilize as a 

source of ivory, the herds were too small or scattered, the Ugaritic traders (whether 

independent or acting under royal initiative) preferred to export the more valuable ivory, 

or the ivory-carvers were skilled enough to work around the difficulties in working hippo 

ivory.  The only ivory in the process of being carved was excavated from the priest’s 

neighborhood near the temples, suggesting that ivory-workers did not require their own 

workshop but could take their work with them to the person commissioning the work 

(Gachet 1993: 74-75).  There were additionally a “magic wand” and a clapper with 

Hathoric head recovered which are possibly Egyptian imports, found in a tomb and the 

seer’s house respectively.   

 

Ivory Workshops in Palestine 

The Palestinian ivory-carving tradition thrived in the Late Bronze Age in spite of 

continuous subjugation of the city-states to the Egyptians, Mitanni, and Hittites.  The 

small kingdoms were able to maintain their importance and wealth by playing one great 

power against another and by establishing their usefulness as international emporia.   

While Canaanite art may have its stylistic origins in Egyptian carving styles, by the 14th 

and 13th centuries the region had developed a unique style of its own, albeit still retaining 
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Figure 28: Comparison of utilization of hippopotamus versus elephant ivory in Syria and 
Palestine (adapted from Caubet and Poplin 1993: 100).  Hippopotamus ivory is more 

prevalent in Syria during the LBA, while elephant ivory is preferred in Palestine.  Syria 
does possess more unidentified material, however, and also utilizes more bone. 
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some “Egyptianizing” influences (Kantor 1956: 160).  Most of the ivories from Palestine 

are from the second half of the LBA, as carved ivory more or less replaces bone in LB II 

as a luxury item (Liebowitz 1987: 3-4).  There is, however, no concrete evidence for  

Palestinian ivory workshops, in that no evidence for workshops in the archaeological 

record of Palestine exists.  Only the finished products were recovered.  Megiddo has 

yielded the most notable examples of LBA ivories in Palestine, and other sites possessing 

worked ivory include Lachish (Fosse Temple III), Tel Far‘ah, Ebla, Pella, Kamid el-Loz, 

Lachish, Nahal Sorek (el-Jisr), Ekron, Tell el-‘Ajul (Gaza), Shiqmona, and Beth Shan 

(Liebowitz 1980 and 1987; Lilyquist 1998: 26-28; Potts 1987: 59-71; Reese 1998: 141-

142).  Of these, worked hippopotamus lower canines were recovered from LB I Tell el-

‘Ajul (fragment of a clapper/wand), Shiqmona (a 14th century LB II hand and Hathor-

headed clapper/wand), another Hathor-headed clapper/wand from Beth Shan at the Great 

Court of the Temple of Amenophis III (1411-1314 BC), and Megiddo (a LB I wand) 

(Reese 1998: 141-142).  In fact at least ten of the worked ivories from Megiddo were 

fashioned from hippopotamus canines or incisors. 

Much of the discussion about Palestinian workshops centers around the extent and 

meaning of the Egyptianizing stylistic influences.  Once believed to be Egyptian imports, 

many scholars now agree that most of the Egyptianizing ivories in the Levant are of 

Levantine manufacture (Lilyquist 1998: 29; Liebowitz 1987; Potts 1987), and of these 

Liebowitz (1987: 3-4, 16-19) believes the majority are Palestinian and not Syrian.  There 

are differing opinions, however, on what exactly these Egyptianizing stylistic influences 

mean.  Potts (1987) claims that the Lion Box from Pella (from the first half of the Late 

Bronze Age when the number of Palestinian ivories is markedly less) is evidence for a 
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strong Egyptian presence in Canaan.  Lilyquist (1998) on the other hand regards linking 

artistic style to political situations as injudicious.  She asserts “the new ivories from Ebla 

display as pure an Egyptian iconography as anything in Late Bronze Palestine... Does this 

mean that Ebla was under Egyptian political control?  In my view, no; almost all objects 

from there... are Syro-Canaanite” (Lilyquist 1998: 28).  Thus local Palestinian artisans 

appropriated Egyptian motifs and styles, but these are often used without understanding 

and formed part of a larger “quasi-international” style with influences from Assyria and 

Cyprus as well (Lilyquist 1998: 29; Liebowitz 1987: 4; Potts 1987: 68-69).  This 

international style was perhaps more prevalent in the trade entrepôts of the Levant than 

farther inland (after Potts 1987: 69).  With all of this in mind, I shall now turn to the 

evidence for ivory-working in Egypt.  

 

Ivory Workshops in Egypt 

Ivory carving was healthy during the early part of the 18th Dynasty (around the 

time that saw Hatshepsut and Tuthmosis importing tusks) but saw its apogee during the 

reigns of Amenophis III and Tutankhamen until the end of the 18th Dynasty (Liebowitz 

1987: 20).  Common items are curving wands or knives made from hippopotamus lower 

canines (c. 2133-1306 B.C.), often found in tombs, as well as hippo canine clappers with 

hands or Hathor heads at the terminus (c. 1900-1150 B.C.) (Reese 1998: 140). 

Nevertheless, Egypt’s refined style, royal workshops, comparably better preservation of 

material culture, and well-established chronology, does not mean that the ideas for all 

items made in Egypt originated there (Lilyquist 1998: 27-28).  Worked ivory was, 

moreover, imported and exported, as recorded by the Amarna letters and discussed in 
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Chapter Four.  Lilyquist does not consider the Qau ivories (large deposits of 

hippopotamus ivories in Middle Egypt) to be 18th Dynasty Egyptian due to the “foreign 

overtones, as exhibited by Aegeanlike animal scenes and Near Eastern criss-cross 

hatching and decorative drill work, as well as by animal scenes with Cypriot or eastern 

Mediterranean style” (1998: 27, 30).  Plus, ivory-decorated furniture was brought from 

the Levant during the time of Tuthmosis and his successors  (Potts 1987: 69).  

 

Duck-shaped Containers 

The duck containers alluded to in the discussion of the Ras Shamra ivories are an 

interesting phenomenon, and especially germane to the discussion since one was 

recovered from the Uluburun and is included in the stable isotope ratio analyses for this 

thesis (KW 2534; see Figure 29).  Duck-shaped containers were popular in the Levant 

and have been recovered from Ras Shamra, Alalakh, Kamid el-Loz, Lachish, Megiddo, 

Tel Dan, Shechem, Lachish, Meskene-Emar, Tell el Far‘ah, Akko, Sidon, and Gezer  

(Lilyquist 1998: 27; Gachet 1993: 77; Karali-Yannacopoulos 1993; Liebowitz 1987: 14).  

They have also been found at Knossos and Mycenae, in addition to some other sites (see 

below) and most definitely represent imports (Gachet 1993: 77; Krzyszkowska 1990: 

plate 17b).  The containers date from 1400-1200 B.C., although a tighter chronology of 

13th to 12th century may be the case at Ras Shamra, Kamid el-Loz, Lachish, and Megiddo 

(Lilyquist 1998: 27, citing a personal communication with Caubet; Liebowitz 1987: 14). 

The example from Tomb 24 at Megiddo is not MB II, but was out of context and is LB II 

instead  (Liebowitz 1987: 14), although Gachet (1993) does mention some Iron Age 

examples from Tell Qasile and Gezer (Gachet 1993: 77).  Duck pyxides are always  
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Figure 29: Duck-shaped container from Uluburun (KW 2534). 

 
 

Figure 30: A back-turned head duck container from Ugarit (Ras Shamra)  
(adapted from Gachet 1993: 84). 

 

 

carved from hippopotamus ivory, generally from lower canines for the body (Gachet 

1993: 68; Krzyszkowska 1990: 78). 

Two types are represented at Ugarit (Ras Shamra): duck containers with a back-

turned head and an oval lid (17 examples, see Figure 30) and containers with a forward 

looking head, two-part wing-shaped lid, and a separate tail joined to the body (five 

examples).  These two types are extremely standardized shapes, as with most ivory 

objects at Ras Shamra, and were painted.  The majority of the containers were recovered 
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from funerary contexts, while some fragments such as heads, necks, lids or bases (never 

bodies) derive from the houses, suggesting composite pieces made of ivory and wood 

(Gachet 1993: 68).   

The back-turned head shape is considered to have originated in New Kingdom 

Egypt, but is well represented and standardized in Syria and Palestine at such sites as 

Alalakh, Kamid el Loz, Megiddo, Akko, Sidon, Lachish, and Gezer.  They have also 

been found in Cyprus at Enkomi and Kalavasos-Ayios Dhimitrios as well as in the 

Aegean at Ialysos, Asine, and possibly at Zafar Papoura and Mycenae.  The forward 

looking head type has a similar origin and distribution, but occurs less frequently.  This 

type has been recovered from Alalakh, Meskene-Emar, Byblos, Kamid el Loz, Megiddo, 

and Tell Dan, in addition to Cypriot examples from Enkomi and Kition (Gachet 1993: 

77).  However, while some scholars consider the back-turned head type as blatant copies 

of Egyptian types, possibly constructed of wood (Bryan 1996: 49), Lilyquist (1998: 27) 

argues that for both of the types “nothing in Egypt can be dated earlier than examples in 

the eastern Mediterranean, and those in Egypt are objectively later.  The “turned back” 

examples are certainly more plentiful outside Egypt, and their vibrant style is more at 

home in the Levant,” thus declaring the two types as Canaanite.  The tomb of Kenamun 

(Dynasty 18, from the time of Amenhotep II) depicts a back-turned head duck container, 

but this should be interpreted as a Syrian import or Egyptian-made in a Syrian style, 

possibly by a Canaanite ivory-worker (Lilyquist 1998: 27, 30).  Liebowitz (1987: 14) 

agrees, saying “the type does not appear to have been typical of Egypt” and are not 

present before the 18th Dynasty.    
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Ivory Workshops in Cyprus 

 Cyprus enjoyed a thriving ivory-working tradition, as discussed in Chapters Three 

and Four with the discussion of hippopotamus and elephant faunal material.  But Cyprus 

was home to neither of these animals, and consequently had to import the ivory, and 

sometimes subsequently export it as well.  Alašia, commonly regarded as Cyprus, is 

recorded as sending ivory or ivory objects to Egypt (EA 40), probably as some sort of 

gift-exchange between rulers.  (Hayward 1990: 104; Bass 1997: 160; Krzyszkowska 

1990: 19, 29).   

 Much of the ivory from Cyprus is hippopotamus and dates to Late Cypriot II-III 

(c. 1450-1050 B.C.) and common objects in the LC III include boxes, handles, and 

mirrors (Reese 1998: 140,142; Karageorghis et al. 2000).  Like the Aegean, and unlike 

Palestine, there is much evidence for ivory carving on the island, principally at Hala 

Sultan Tekke, Kition, Palaepaphos (Kouklia), and Enkomi (Reese 1998: 142; Åström 

1993: 101).  Excavations at Hala Sultan Tekke have uncovered approximately thirty 

ivory artifacts, with half coming from the tombs and the other half from the LC III (early 

12th century) settlement (Åström 1993: 101).   Two sawn and two partly worked pieces of 

elephant ivory were from the settlement, suggesting an ivory workshop (Reese and 

Krzyszkowska 1996: 325-326).  Åström (1993) proposes that the ivory workshop at Hala 

Sultan Tekke also produced works in stone, as at Enkomi where Dikaios (1969: 99-100) 

proposed a joint stoneworking/ivorycarving workshop based on the findings of unworked 

stone cylinders in association with waste from ivory carving (Åström 1993: 102).  The 

artisans responsible for carving ivory may also have worked on stone since ivory was 

expensive and probably not always readily available.   
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As mentioned previously, a molar was present at Kition from a Late Cypriot IIIA-

B context, but it is extremely unlikely this elephant was originally from Cyprus (Reese 

1998: 140; Reese and Krzyszkowska 1996: 325).  From Well 1 of Temple 1 in Kition 

was the tip of an incisor dating from 1300-1000 B.C. (Reese 1998: 140).  Palaepaphos-

Teratsoudhkia yielded a number of LC I-III ivories carved from hippopotamus incisors, 

including a waste piece, whereas abundant debris from ivory working was present at  

Kouklia-Evreti from Late Cypriot III period (Reese 1998: 140; Reese and Krzyszkowska 

1996: 326).  Plus two upper canines from Episkopi-Bamboula recently turned up in 2001, 

one of which had saw marks on it.  The Kition incisor associated with the temple and a 

13th century unmodified upper canine from a tomb at Enkomi  may be votive offerings, 

similar to other unmodified hippopotamus teeth associated with temples at Ai and Samos, 

as well as at the Minet el-Beidha (Ras Shamra) tombs (Reese 1998: 142).   

 

The End of Ivory-working in the LBA Eastern Mediterranean 

The ivory-carving tradition across the eastern Mediterranean suffered the same 

fate as much else c. 1200-900 B.C.: it disappeared, and was not seen again until the ninth 

century when the renowned North Syrian and Phoenician schools of ivory-working arose 

(see Winter 1973, 1976; 1981; Kantor 1956; Krzyszkowska 1990: 112-113).  These 

schools had their roots in the LBA ivory tradition, as evidenced by some common motifs 

which transcend the intervening “dark” period.  These schools saw an eventual end in the 

eighth century, which some scholars link to the depletion or extinction of Syrian 

elephants (Miller 1986: 32; Scullard 1974: 30; Barnett 1939: 18), but this argument 

ignores the fact that hippopotamus ivory (or even bone) could have been substituted.   
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Chapter 6 

Principles of Stable Isotope Ratio Analysis 

After a review of the pertinent archaeological and historical evidence, it becomes 

evident that a detailed program of source discrimination using isotope ratio analyses is in 

order, so as to trace the source of the raw material of ivory.  Analyses conducted by van 

der Merwe et al. (1990) using 13C/12C, 15N/14N, and 87Sr/86Sr isotope ratios in the bone 

collagen of modern African elephants demonstrated the efficacy of this method for 

provenancing elephant bone and ivory.  Furthermore, recent research by White et al. 

(1998) testified to the utilization of 18O/16O to distinguish between populations.  Thus a 

detailed analysis of the elephant and hippopotamus ivory from the Uluburun shipwreck 

was carried out by determining the isotope ratios of 13C/12C, 15N/14N, 18O/16O, and 

87Sr/86Sr. δ13C and δ15N will be measured from the collagen component of the ivory and 

bone samples, if preserved, whereas δ13C and δ18O was measured from the apatite 

(inorganic component of ivory and bone). An ashed sample will be used to analyze the 

87Sr/86Sr ratio.  All measurements were made with a Finnigan MAT Delta plus XL mass 

spectrometer or by ICP-MS (Inductively Coupled Plasma Mass Spectrometry).  The ivory 

samples may be provenanced by comparing the strontium isotope ratio values obtained 

with published geological data on the regions under study (namely, Syria, Palestine, 

Egypt, Sudan, and Libya).  The carbon, nitrogen, and oxygen isotope ratios are useful in 

reconstructing the environment of the animal, and therefore help to narrow down the 

possibilities. 

Isotope ratio analysis has been utilized in archaeological bone chemistry studies 

to reconstruct the diet and health of ancient populations, palaeoclimate, as well as to 
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study residence and mobility.  Katzenberg and Harrison (1997) offer a comprehensive 

review of the state of archaeological bone chemistry studies.  The various isotopes of a 

given element differ in the number of neutrons, while sharing the same number of 

protons and electrons.  Mass spectrometry is used to determine the amount of a given 

isotope present in the sample.  Stable isotopes do not change over time, and the isotope 

ratios are used to characterize bone and ivory samples.  The isotope ratios are expressed 

using the delta (δ) notation in parts per thousand (per mil: ‰), and are derived from the 

equation below, where R is the ratio of the heavier isotope to the lighter isotope: 

δ(‰) = [(Rsample/Rstandard)-1] x 1000 

 

Stable Carbon Isotope Ratios 

The two stable carbon isotopes are 12C and 13C.  12C accounts for 98.89% of 

naturally occurring carbon, whereas 13C accounts for 1.11%.  The international standard 

is derived from the Belemnitella americana marine fossil limestone from the Peedee 

geological formation in South Carolina (PDB).  Because limestone has more 13C than 

organic matter, the δ13C values from analyses of organic tissues are negative.  The 

variation in δ13C in plants reflects the different photosynthetic processes of C3, C4, and 

CAM (crassulacean acid metabolism) plants, which all obtain their carbon from 

atmospheric CO2.  C3 plants generally grow in temperate climates and include trees, 

shrubs, tubers, and temperate grasses, while C4 plants are subtropical grasses capable of 

growing in hot and dry climates.  Fractionation occurs in biological systems because 12C 

reacts first since it is lighter and leaves behind the heavier 13C, so that plants end up with 

far less 13C than is present in the atmosphere.  The δ13C values of C3 plants range from     
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-22‰ to -38‰ (average -26‰). Compared to C3 plants, C4 plants have a reduced 

discrimination against 13C isotopes, and consequently have values that range from -9‰ to 

-21‰ (average -12.5‰) (Tykot and Staller 2002; Larsen 1997: 271; Sukumar and 

Ramesh 1992).   

Notice these values do not overlap, thereupon making it possible to differentiate 

between animal diets based solely on either type of plant.  C4 plants have δ13C values that 

are on average about 14‰ less negative than C3 plants.  Different carbon isotope ratios 

may occur between plants of the same species due to differences in 1) atmospheric CO2 in 

forested and high altitude areas, and 2) latitude, which will affect the amount of sunlight 

and therefore the efficiency of photosynthesis.  Moreover, carbon isotope ratios will 

differ within the plant from one part to another.  Considering that most animals eat a 

variety of plants, these intra-species and intra-plant differences in carbon isotope ratios 

are of little concern when reconstructing diets since the analysis is aimed at a larger scale, 

that is, the relative contribution of C3 versus C4 plants to the diet (Larsen 1997: 271). 

An additional consideration, however, is the CAM photosynthetic pathway.  This 

pathway is designed in such a way as to allow the plant to switch between a C3 or C4 

pathway depending on the environmental conditions, and CAM plants (cacti and other 

succulents) have δ13C values intermediate between and overlapping those of C3 and C4 

plants.  Marine plants also have δ13C values between and overlapping those of C3 and C4 

plants (Larsen 1997: 272; Tykot and Staller 2002). 

The isotopic signature of the plants are passed on to herbivores, after a trophic 

shift due to fractionation by metabolic processes (van der Merwe et al. 1988: 165).  

Generally the trophic level shift is around 5‰ from plant to the collagen of the animal 
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feeding on the plant (Sukumar and Ramesh 1992: 536; Sukumar and Ramesh 1995: 369; 

Tieszen et al. 1989; DeNiro and Epstein 1978).   Collagen moreover largely reflects the 

δ13C values of the protein component of the animal’s diet, since collagen is formed from 

amino acids.  Conversely, the apatite represents the whole diet (carbohydrates, fats, and 

protein), and is therefore more useful for characterizing the entire diet, and in particular 

the carbohydrate portion of the diet, since to a large extent it is not represented in 

collagen (Larsen 1997: 272), as determined by controlled feeding laboratory experiments 

(cf. Ambrose and Norr 1993; Tieszen and Fagre 1993).  See Figure 31 for a summary of 

the carbon isotope fractionation through the foodchain and the difference in δ13C values 

between collagen and apatite. 

 

Figure 31: Carbon isotope fractionation in terrestrial foodchains 
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The δ13C values in elephant bone collagen reflect a mixture of C3 foliage or C4 

grasses in the diet, and are directly proportional to the density of C3 browse, in addition to 

having a simple linear relationship to tree density (van der Merwe et al.1988: 163; 1990: 

744).  Of particular note is the possibility that Forest elephants may be identified 

isotopically by their more negative δ13C values due to what is known as the “canopy 

effect,” whereby the denser the forest, the more negative the δ13C value due to the 

recycling of isotopically light CO2 under the forest canopy (van der Merwe et al. 1988: 

171; 1990: 745). 

 

Stable Nitrogen Isotope Ratios 

Nitrogen isotope ratio analysis has focused mainly on differentiating between 

terrestrial and marine food resources, as well as weaning practices (Katzenberg and 

Harrison 1997).  The stable nitrogen isotopes are 14N (99.95% of all nitrogen) and 15N 

(0.05%).  The international standard is atmospheric nitrogen (cleverly referred to as 

Ambient Inhalable Reservoir, or AIR).  Stable nitrogen isotope ratios are most useful for 

differentiating between marine and terrestrial food sources, because nitrogen-fixing 

plants (and bacteria) convert nitrogen directly from the air into plant material, whereas 

other plants obtain nitrogen through bacteria on their roots.  Nitrogen-fixing plants have 

δ15N values close to zero since their values are similar to air, whereas non-fixing plants 

have values approximately 2‰ higher than nitrogen-fixers because the nitrates in the soil, 

derived from the decomposition of organic matter, have relatively more 15N than 14N 

compared to the atmosphere.  Terrestrial plants have δ15N values which are on average 
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4‰ lower than those of marine plants, and terrestrial plants have a wide spread of δ15N 

values.  For terrestrial foodchains in general, there is a 2-3‰ trophic level shift higher 

from plants to herbivores, as well as a 2-3‰ trophic level shift from herbivores to 

carnivores, which is due to the preferential excretion of 14N, leaving behind 15N in the 

animal.  Marine ecosystems also have trophic levels shifts, but more of them, so that 

“δ15N values in marine organisms and those in other aquatic settings (e.g., rivers and 

lakes) are higher than in terrestrial ones (up to 20‰)” (Larsen 1997: 283).   

The δ15N values are furthermore influenced by climate, so that “cool forest soils 

have low δ15N values, owing to higher nitrogen fixation and mineralization rates, and hot 

savannah or desert soils have higher δ15N values.  Other contexts producing generally 

high δ15N soils include areas with a history of evaporation (e.g., saline soils) and those 

enriched in organic matter” (Larsen 1997: 283).  Indeed, the nitrogen isotope ratios 

(15N/14N) in bone collagen of African mammals has been shown to be related to rainfall 

or water stress, and these values are caused by differential fractionation of nitrogen 

during fixation or absorption in plant groups (Tykot and Staller 2002; van der Merwe et 

al. 1990: 744).  The δ15N values in bone collagen of elephants and hippopotami is higher 

in more arid habitats, which is due to the higher 15N levels of the local vegetation, as well 

as the effect of drought stress on the protein metabolism of the animals, which is 

expected in areas with an annual rainfall of <400 mm (Vogel et al. 1990: 747; van der 

Merwe et al. 1990: 745).  In areas with <500 mm the δ15N of elephants will be higher 

than 10‰ (Heaton et al. 1986).  In fact, these effects are such that terrestrial animals 

living in arid environments will have higher δ15N values than marine animals, and water-

dependent herbivores have lower nitrogen isotope ratios (2-4‰) than drought-tolerant 
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ones (i.e. ones with physiological adaptations for water conservation) in the same habitat 

(Ambrose 1986: 707, 721; Ambrose 1989: 293; Larsen 1997: 284). 

 

Stable oxygen isotope ratios 

Oxygen isotope ratio studies have mainly been utilized in climate studies “on the 

principle that δ18O of bone has a positive linear relationship to the isotopic composition 

of ingested water, which is indicative of climate” (Katzenberg and Harrison 1997: 275). 

The stable isotopes of oxygen are 16O (99.759% of all oxygen), 17O (0.037%), and 18O 

(0.204%), but only 16O and 18O are used for isotope ratio analysis.  Studies have also 

been conducted using oxygen isotope ratio analysis on human bone phosphate to 

differentiate between geographically separated populations, and to attempt to ascertain 

their point of origin (cf. White et al. 1998).  The isotopic composition of water consumed 

by mammals is chiefly controlled by the composition of local meteoric precipitation, 

which is determined by geography and climate.  The δ18O is hypothesized to decrease 

with distance from the sea, with elevation, and with falling temperature.  Humidity can 

also have an effect on δ18O values (White et al. 1998: 645; Larsen 1997: 289; Katzenberg 

and Harrison 1997: 275).   

However, the range of variation in oxygen isotope ratio measurements makes 

interpretation difficult, and “part of this variation is due to problems with the 

identification of specific water sources (the primary source of 18O/16O) for the deceased 

individuals, [and with] problems with turnover in bone” (Price et al. 2000: 911), in 

addition to geographical movement and dietary heterogeneity (White et al. 1998:645).  
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Studies which have focused on evaluating this variation within a population have ranged 

from finding very low variation (i.e. 1‰) to statistically significant variation (White et  

al. 1998:645).  Furthermore, diagenesis of oxygen can occur from equilibrium with 

groundwater, which may be exacerbated by invasive biological organisms (White et al. 

1998:647-48; Ayliffe et al. 1992).   

 

Strontium Isotope Ratios 

 The 13C/12C, 15N/14N, and 18O/16O isotope ratios provide three avenues of 

investigation in order to ascertain the provenance of the ivory samples from the Uluburun 

shipwreck, and may be compared against one another to discover if any isotopic ratio 

signatures exist within the sample set.  However, because these isotope ratios are based 

on climate and vegetation, animals from geographically separated regions could exhibit 

the same isotopic ratios if the environments are similar enough.  As a result, a fourth 

isotope ratio, that of 87Sr/86Sr, is evaluated in the Uluburun ivories.  Strontium isotopes 

have proved particularly useful in other studies in identifying geographically distinct 

populations and immigrants (cf. Price et al. 1994a, 1994b, 1998, 2000, 2001; Sillen et al. 

1998; Cox and Sealy 1997; Ezzo et al. 1997; Grupe et al. 1997; Sillen and Sealy 1995; 

Sealy et al. 1991; van der Merwe et al. 1990; Vogel et al. 1990; Ericson 1989) due to 

their ability to produce a sufficiently unique signature mirroring the local geology of the 

region (van der Merwe et al. 1990: 744; Price et al. 2000: 903).  87Sr/86Sr ratios derived 

from ivory or bone reflect the average Rb/Sr ratios of the parent rocks in a particular area, 

which in turn is based on the age (because 87Sr is produced by the slow radioactive decay 

of 87Rb, which has a half-life of approximately 4.7 x 1010 years) and the initial Rb/Sr 
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composition of the rock.  Thus geologists use Sr ratios to date geological formations by 

the proportion of 87Rb that has decayed.  The higher the initial Rb/Sr ratios and the older 

the rock, the higher the 87Sr/86Sr ratio (van der Merwe et al. 1990: 746; Price et al. 1998: 

407; 2000: 906; 2002: 118; Vogel et al. 1990: 747; Koch et al. 1995: 1340-3).  This ratio 

value will be virtually similar in the rock, groundwater, soil, plants and animals of the 

region, due to the fact that the relative mass differences between 87Sr and 86Sr are small 

and therefore no isotopic fractionation takes place (some exceptions are discussed 

below).  The strontium in the soil is absorbed by the water and then up into the food 

chain, where it is then deposited in the hard tissues (such as bone and ivory) in animals 

(Ericson 1985: 503; Koch et al. 1995: 1340-3; Price et al. 1998: 407; 2000: 906; 2002: 

118, 121).  86Sr, on the other hand, is a stable isotope (Koch et al. 1995: 1340-3).  88Sr is 

the most abundant strontium isotope in nature (c. 82.53%) whereas 87Sr makes up 7.04%, 

86Sr 9.87%, and 84Sr 0.56% of all strontium.  As a result, the total global ratio of 87Sr/86Sr 

is approximately 0.71327 (7.04/9.87) (Price et al. 1998; 2000; 2002).   

Research on strontium levels across the globe have already discovered some 

generalizations regarding strontium levels.  Sr ratios usually range between 0.700 to 

0.750 across the globe.  Overall, animals in areas with old granitic crust have high Sr 

isotope ratios (>0.715), whereas in areas with young volcanic, basaltic, or marine 

sediments the animals will have low values (Koch et al. 1995: 1340-3; van der Merwe et 

al. 1990: 746).  Young volcanic soils, such as those found in the Rift Valley, have ratios 

similar to the value of ocean water: 0.70906.  In fact the strontium budget of the ocean 

remains remarkably homogeneous due to the long residence of Sr in a rapidly mixing 

environment (Stein et al. 2000: 2039).  In a study by Price et al. (1998: 407) the granitic 
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sediments in one area had isotopic ratios greater than 0.710, but even ranging to 0.750 

and higher, whereas the glacial origin loess and marine carbonates (glacially redeposited 

chalk sediments) had strontium isotope ratios ranging between 0.708 and 0.710.  The 

difference in these values enabled him to track migration in the Bell Beaker culture.  

Geologically young rocks (<1-10 million years) with low Rb/Sr ratios (i.e. Late Cenozoic 

volcanic fields in the highlands of Mesoamerica) have 87Sr/86Sr ratios of less than 0.706.  

Basalt, which has a very low initial Rb/Sr composition, can have 87Sr/86Sr ratios of less 

than 0.704, compared to clay-rich rocks with high Rb/Sr ratios (e.g. shales and granites) 

with values up to 0.730 (Price et al. 2000: 906; 2002: 118).  However, granites may vary 

widely from 0.700 to 0.737, whereas those of ocean basalts remains relatively invariant at 

about 0.7037 +/- 0.0001 (Ericson 1985: 505-506).  Considering that modern thermal 

ionization mass spectrometers (TIMS) have a measurement error between +/- 0.00003 

and +/- 0.0001 for strontium isotope ratios, generally very slight variations are easily 

detectable.  Even areas with similar geology will have different strontium ratios, which is 

the value of such an analysis in the first place.  Another interesting consideration is that 

“because the strontium values for continental granites are linearly correlated with 

geological age… one can estimate the expected isotopic ratio for the granite if its 

geological age is known” (Ericson 1985: 505).  This could prove particularly useful for 

approximating the 87Sr/86Sr values for regions where the strontium isotope ratios are 

unknown or have not been published.  Similarly, once a 87Sr/86Sr value is obtained for the 

ivory samples, and working under the premise that the underlying rock may be granite, 

one could reconstruct the age of the rock and therefore potentially the provenance.    



88 

Nevertheless, some caution must be used in interpreting strontium isotope data, 

since, depending on the area, the strontium isotope values may vary locally between the 

bedrock, sediment, and water, and Sr ratios of skeletal components (bone, dentine, 

enamel) may vary as well (Price et al. 2002: 119).  Moreover, “biologically available 

strontium”, that is, strontium circulating in the natural environment, may be different 

from geological strontium due to atmospheric sources of strontium (aeolian and 

precipitation) and differential mineral weathering of rocks (Price et al. 2002: 119-120; 

citing Chadwick et al. 1999; Miller et al. 1993; Graustein and Armstrong 1983).  Price et 

al. 2002: 119) resolves these problems by offering that “the impacts of such atmospheric 

contributions are probably minimal in most areas, and  particularly in much of 

prehistory.” 

More insights into specifics of strontium in the environment include the 

following: a) alluvial sediments generally have 87Sr/86Sr values that are averaged from the 

geological sources; b) plants growing close to rivers will have Sr values close to the value 

of the river water, while those not close to rivers will have Sr values of the soil, and the 

same goes for the animals eating these plants; c) the Sr value of plants is distinct from 

bedrock values; and d) surface water may have a lower Sr ratio than the surrounding 

plants and soils (Price et al. 2002: 120-121, citing Sillen et al. 1998).  Thus the one to one 

relationship of strontium values between bedrock geology, sediments, plants, and water 

has been dismissed, which shifts the emphasis to a “biologically available strontium” 

approach when employing strontium isotopes.  Luckily animal skeletal tissues serve as an 

averaging mechanism for the potentially heterogeneous strontium values available in the 
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local environment, and thus answer the question of how to measure biologically available 

strontium isotope levels (Price et al. 2002: 122; see also Sillen et al. 1998). 

Diagenesis (addition, loss, or replacement) of strontium in skeletal tissues is 

another very important consideration however.  Initially the problem was considered 

dealt with if the samples were properly cleaned, as with acetic acid (Ericson 1985: 508), 

or repeatedly washed in acetic acid/sodium acetate buffer solution (Sealy et al. 1991: 

399).  Other techniques for removing contamination are discussed in Price et al. (1992), 

Sillen and Sealy (1995), Koch et al. (1997), and Nielsen-Marsh and Hedges (2000; cited 

by Price et al. 2002: 127).  Sealy et al. (1991, 1995) addressed problems of diagenesis of 

strontium in bone, and concluded that while diagenesis definitely affects the elemental 

abundance (Sr concentration), it does not seem to affect the isotopic ratio to any 

considerable degree.  However, more recent studies by Budd et al. (2000) and Chiaradia 

et al. (2003) refute this.  Moreover, treatments involving weak acids to remove diagenetic 

material assume that the diagenetic Sr is additive and not exchanged (Budd et al. 2000: 

668).  Horn and Müller-Sohnius (1999) recently criticized Grupe et al. (1997) for not 

recognizing signs of diagenesis in their data (increases in Sr content and changes in Sr 

isotope ratio between enamel and bone) (discussed in Budd et al. 2000: 668; see also 

Grupe’s reply: Grupe et al. 1999).   

Budd et al. (2000) compared the Sr concentration and isotope ratios in enamel and 

dentine from prehistoric, Romano-British and medieval individuals in Britain with soil 

samples taken from each of the sites.  They found that the Sr isotope ratios from the 

enamel and soil samples were significantly different.  The dentine Sr ratios were also 

different from the soil, but closer in value.  These results are not surprising if the 
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individuals had migrated in their lifetime, since the Sr isotope ratio of the enamel will 

reflect in utero conditions (the diet of the mother) or the first few years of an individual’s 

life, when the enamel was formed.  It is the difference between the dentine and enamel 

which is worrisome, as both tissues are formed at the same time.  “Secondary dentine” 

can be incorporated into the dentine as the individual ages, but the researchers side-

stepped this problem by removing the tooth crowns and tissues adjacent to pulp cavity to 

obtain samples of “predominantly” primary dentine (Budd et al. 2000: 688-689).   

Another indication of diagenesis is an increase of the Sr concentration (ppm).  

The researchers demonstrate the presence of diagenesis in Figure 32 where the Sr 

concentration is plotted against the parameter standard measure of difference in 87Sr/86Sr 

values between the samples and the ‘bulk earth’ (expressed as ∆ε87Sr).  The same data are 

reproduced in Price et al. (2002) as Figure 33.  These graphs shows that Sr concentration 

in dentine is constantly higher than in enamel, in addition to showing the different 

strontium isotope ratios between the enamel and dentine, as discussed above.  Since the 

strontium ratios of the dentine are closer to the soil values (dotted line), they have lower 

∆ε87Sr, presumably as a result of diagenesis.  However, the diagenesis appears to be 

primarily additive, as the strontium concentrations are also higher in dentine than enamel, 

and the enamel strontium concentrations are similar to modern samples not affected by 

diagenesis.  The researchers then demonstrate, after some elaborate calculations, that 

most of the samples were affected by partial replacement (leaching and deposition) of the 

sample (biogenic) strontium with strontium from the soil (Budd et al. 2000: 691-693).  

They conclude that enamel, as a more resistant tissue to diagenesis, serves as a reliable 

test subject for research utilizing strontium isotope ratios, whereas dentine is believed  
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Figure 32: Sr concentrations plotted against ∆ε87Sr for enamel (open symbols) and 
dentine (filled symbols) samples.  The dashed line represents aqueous soil leaches from 

the four sites (adapted from Budd et al. 2000: 690) 
 

 
 
 

Figure 33: Available soil (line), enamel (solid triangle), and dentine (open triangle) 
87Sr/86Sr values from four sites in England 

(figure adapted from Price et al. 2002: 126; data from Budd et al. 2000). 
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unreliable.  However, dentine could be used as a proxy for determining how effective 

pretreatments were in removing contamination.  If similar strontium ratios for enamel and 

dentine were obtained, then the treatment would be considered successful and could be 

used on bone, which would have a different strontium ratio anyway if the individual  

migrated since bone is subjected to turnover (and therefore could not be compared with 

enamel or dentine). 

 Chiaradia et al. (2003) came to similar conclusions after analyzing the dentine 

and enamel of individuals from the necropolis of Sion (Switzerland) for strontium as well 

as lead isotopes.  Their research showed consistently higher Sr concentrations in the 

dentine relative to the enamel, as well as differences in their isotopic ratios (Figure 34).  

Two teeth from the same individual, moreover, had different Sr and Pb isotopic ratios for 

the enamel, suggesting diagenesis of enamel as well. 

Taking all of this into account, Price et al. (2002: 131-132) offer some 

suggestions.  Obviously enamel is preferable to dentine or bone, when available, as it is 

less susceptible to diagenesis.  It is moreover a good idea to establish what the 

biologically available strontium is for a region, and the best way to do this is to analyze 

the local faunal assemblage, especially enamel or shells.  The enamel of the faunal 

assemblage could be compared to modern enamel from the same species (and same area) 

to get an idea of the level of diagenesis.  Thus while Budd et al. (2000), Price et al. 

(2002), and Chiaradia et al. (2003) have brought valid concerns to the attention of 

researchers, there are ways to work around the problems of diagenesis and the potential 

heterogeneity of strontium in a given locale.  Unfortunately with ivory only dentine is 

available, since a) it is only found on two faces of the hippopotamus lower canine, b)  
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Figure 34: 87Sr/86Sr vs. age of the ancient teeth from Sion, Switzerland.  The square 
brackets join isotopic compositions of dentine-enamel pairs of the same tooth. Also 

reported are the isotopic compositions of soil and calc-schists leaches as well as of Rhone 
sediments and water.  PCI, PCIII, SSG, SSS are the burial sites  

(adapted from Chiaradia et al. 2003: 364). 
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would be carved away as one of the first steps, in the primary sectioning of the tusk, and 

c) is often worn away through use on the distal end of the tusk.  As a result, the dearth or 

complete lack of enamel on ivory indicates that diagenesis problems are more difficult to 

demonstrate and/or control for ivory.  Another important consideration is that while the 

high precision of TIMS may detect even very slight variations in strontium isotope ratios 

and is most amenable to comparing with the geological literature, the work for this thesis 

had to utilize ICP-MS because of the small sample sizes available and lower cost.  

Interpretation of the strontium isotope values received must therefore take into account 

the lower precision of ICP-MS. 
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Chapter 7 

Ecological and Dietary Requirements of Hippopotami 

Additional lines of evidence for the geographical distribution of the hippopotamus 

in the Late Bronze Age may be found by examining the ecological and dietary 

requirements of the animal.  As shown in Chapter Six, these factors also prove 

indispensable for interpreting the carbon, oxygen, and nitrogen stable isotope ratio 

analyses.  In all there are two genera of hippopotami: Hexaprotodon and Hippopotamus.  

Only one modern species is recognized in either genus, and these are the West African 

pygmy hippopotamus (Hexaprotodon liberiensis) and the more commonly known 

Hippopotamus amphibius (Eltringham 1993: 41). 

  First, unlike the pygmy hippopotamus, Hippopotamus amphibius cannot live in 

forest or thick brush.  The hippo instead resides in all types of water: rivers, lakes, muddy 

wallows, and even off the sea shore.  The skin of the hippopotamus is very sensitive and 

cracks if exposed to direct sunlight for too long.  The animal therefore requires a source 

of permanent moisture, whether it be water or its much-loved wallowing medium of mud 

(Eltringham 1999: 4).  Hippos may leave the water source during the day but will return 

if they become overheated.  The body of water hippos inhabit must also be suitably vast 

to accommodate the male hippos in their territorial requirements.  Indeed, the male 

hippos are only territorial in water and each lords over a strip of shoreline and associated 

bank.  Klingel (1991) documented the sizes of these linear territories in Uganda as 

varying from 250-500 m on the lake shore, although in rivers they were considerably 

shorter (50 to 100 m in length) Females, on the other hand, are not territorial and 

furthermore not tied to any one male territory.  After grazing most females return to the 
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same territory, although some utilize several areas (Klingel 1991: 73-75; Eltringham 

1993: 51; 1999: 49-51).   

Areas for grazing are just as ecologically important.  While the hippo spends the 

day in the water, during the night the hippo grazes as an individual, except for mothers 

and their young who feed together.  The hippo requires open grassland within traveling 

distance from the wallows and water.  The distance traveled at night may vary from a few 

hundred meters to several kilometers or more.  Studies have shown an average distance 

of 2.2 to 3.5 kilometers roundtrip, or about 1.0 to 1.3 kilometers from water, with large 

seasonal differences.  The hippopotamus must travel farther during the dry season to find 

adequate graze, but during the wet season is capable of enlarging its range by resting 

during the day in temporary wallows.  In Uganda, feeding ranges were extended through 

temporary wallows by as much as 7 kilometers, that is, 10 kilometers from the permanent 

water source.  Such wallows are generally utilized only by non-territorial males (Clemens 

and Maloiy 1982: 151; Eltringham 1993: 51; 1999: 43, 51-53).   

The hippopotamus is a strict grazer of short grasses and follows regular paths to 

reach the grazing areas, so that after a while there are noticeable trails.  The grazing areas 

are known in the literature as “hippo lawns” because the grazing activities of the hippos 

keep the grass clipped rather short.   The animal plucks the grass with its lips while 

swinging its head from side to side (Mugangu and Hunter 1992: 346; Eltringham 1993: 

51;  1999: 53, 77-78).  As a result, certain types of grass are either “selected” or 

“preferred,” and in fact there is some disagreement among scholars as to which it is.  Van 

Hoven (1983: 47) argues that the hippo is an unselective grazer, because the plucking and 

swinging of the head “rules out any degree of feed selection.”  Indeed, the flat snout and 
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wide, straight lips of the hippo enable it to graze so close to the soil surfaces that, as 

Clemens and Maloiy (1982: 151) point out, considerable amounts of soil is inadvertantly 

consumed, thereby strengthening the argument for unselective feeding.  Nevertheless, 

Eltringham (1999: 78, 80-81) suggests that, despite the unselective physiology and 

feeding behavior, the hippopotamus does exhibit preferences since the types of plants 

ingested are not in proportion to their occurrence in the natural environment.   The hippo 

may not select for grass species, per se, but rather selects the patches of grass sward in 

which to feed.   Swards are usually composed of only a handful of grass species and the 

grazing activity of hippos creates an environment which favors the growth of short and 

creeping grasses.  The lips of the hippopotamus are adept at breaking off the short and 

creeping grasses from the ground, whereas course tussock-forming grasses are difficult to 

break off as they slip between the lips.  Fortunately the short and creeping variety are 

what the hippo favors and they tend to grow aggressively, effectively pushing out other 

species less agreeable to the hippopotamus.   

Several studies have investigated the specific species of grasses in the diet of the 

hippopotamus.  Field (1970, 1972; cited in Eltringham 1999: 79-81) analyzed the 

stomach contents of the hippos in Queen Elizabeth National Park (Uganda) owing to 

culling operations, and determined that some species were selected while others were 

avoided.  Such distinctions were made by comparing the percentage of the plant species 

within the hippos’ stomachs with the percentage of the plant species in the natural 

environment.  If the percentage within the stomach is significantly more than within the 

grassland then the species is said to be selected or preferred, whereas if the percentage 

within the stomach is less, then the species is avoided.  There were, furthermore, seasonal 
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differences in the frequency of species.  Another culling study by van Hoven (1983) in 

Kruger National Park (South Africa) concluded that hippos largely ate grass in proportion 

to the availability of the grass,  which according to the author agrees with an earlier study 

in Kruger National Park conducted by Young (1966).  Field’s studies, nevertheless, are 

more likely accurate, and thus his conclusions more likely correct, since van Hoven only 

identified plant species and not their percentages.  However, only differentiating between 

browse and graze is necessary for the purposes of this research, and the hippo is 

decidedly a grazer, overwhelmingly consuming grasses, some of which are likely to be 

C4 grasses. 

 Even so, hippos are known to consume other types of food, particularly in times 

of environmental stress such as drought or high grazing animal density, which would 

limit the availability of grass.  These other types of food include elephant dung (Dudley 

1996: 488; Dudley 1998: 58), fruit (i.e. Acacia albida. Eltringham 1999: 79; Dunham 

1990), aquatic plants (van Hoven 1983: 48; Field 1970; Mugangu and Hunter 1992; 

Eltringham 1999: 79), and even other animals (Dudley 1996: 486-487, 1998: 58-59; 

Eltringham 1999: 82-84).   

 While it is generally agreed that aquatic plants are not a significant part of the 

hippo’s diet, small amounts are consumed.  Young (1966) in his Kruger NP study found 

traces of reeds (Phragmites communis) in the stomachs of the hippos (as reported by van 

Hoven 1983: 48).  Eltringham (1993, 1999) also reports from Field’s research (1970) that 

hippos were seen eating a floating plant, the Nile cabbage (Pistia stratiotes), and having 

witnessed the same behavior himself, Eltringham is of the opinion that the hippos 

“appeared to be merely toying with the plants in a rather bored, desultory way and it is 
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unlikely that many were actually eaten” (1999: 79).   However, Mugangu and Hunter 

(1992) observed hippos foraging on aquatic vegetation in Lake Rutanzige in Virunga 

National Park, Zaire, during the dry season of 1989.  They found that the grasses, other 

than Panicum repens, did not produce adequate levels of crude protein to adequately 

nourish the hippos, and therefore aquatic plant consumption was likely a response to food 

shortage (Mugangu and Hunter 1992: 345).  Measuring the percentage of crude protein in 

the diet of animals is means of determining food quality.  The specific aquatic species 

consumed included Nile salad (Pistia stratiotes, approx. 70% coverage in Lake 

Rutanzige), a grass (Leersia hexandra) and a sedge (Cyperus sp.) (approx. 10% coverage 

each).  However, the hippo foraged more on the sedge and grass than the Nile salad 

(Mugangu and Hunter 1992: 346, contra Field 1970).  The hippos were also seen eating a 

creeping vine (Ipomoea cairica) and two herbs (Justicia flava and J. cynorensis) along 

the river bank.   

 Carnivory in hippos, on the other hand, is an even rarer occurrence.  Dudley 

(1996: 486-487) reported instances of carnivory in Hwange National Park, located in the 

Zambezi of southern Africa, during the 1995 winter dry season.  Drought conditions had 

been instigated by low rainfall and high grazing animal density.  Dudley (1998) later 

detailed further incidents reported to him or personally witnessed in the years following 

his first publication.  Eltringham (1999: 82-84) even gives an account of an episode of 

cannibalism!  Nevertheless, carnivory (and most decidedly cannibalism) are likely the 

consequence of scavanging due to severe nutritional stress and not predation.  As such, 

the hippopotamus will not be treated as a carnivore in the interpretation of the stable 
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isotope ratio results, although Dudley (1998: 58) does argue convincingly that hippos 

have a much broader feeding niche than previously recognized. 

 Thus, from the diet and ecological requirements of the hippopotamus described 

above, a more informed interpretation of the results from the stable isotope ratio analyses 

is discussed in Chapter Thirteen.   However, several points may briefly be inferred:  

(a) The hippopotamus is regarded as a strict grazer consuming a diet composed primarily 

of grasses, including C4 grasses, and this should become evident in the analysis of the 

stable carbon isotope ratio results; 

(b) Due to their aquatic ecosystem, the stable oxygen and nitrogen isotope ratio values 

should reflect their proximity to water, yet exhibiting a reliance on terrestrial plants.  The 

oxygen isotopes may even mirror the signature of the water in which the hippo resides; 

(c) Based on their ecological and dietary requirements, in addition to the archaeological 

and historical evidence, those geographical areas in which they most likely dwelled 

during the Late Bronze Age in the eastern Mediterranean may be deduced.  As such, this 

informs which geological strontium values to consider when interpreting the strontium 

isotope ratio results. 

The territorial tendency of some males may also have important implications for 

understanding the stable isotope ratio analyses.  Since the females are not tied to one 

territory, they are thus able to exploit a wider geographical area for food, and in times of 

environmental stress would have access to more and better resources.  The female and 

non-territorial male diet could potentially reflect more of an average of the local 

vegetation than the territorial males, who would have access to only a limited number of 

“hippo lawns.”  However, the carbon stable isotope ratio would only indicate the 
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proportion of C3 to C4 vegetation in the diet.  Thus the female and non-territorial male 

hippo may have a higher proportion of C4 than the male, since grass is their preferred 

foodstuff, and in times of environmental stress the territorial male, behaviorally 

restrained to his territory and those lawns within distance of this territory, would 

necessarily be forced to utilize a broader feeding niche.   
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Chapter 8 

Ecological and Dietary Requirements of Elephants 

 As the archaeological and historical evidence indicate, elephant ivory in the Late 

Bronze Age was most likely not obtained from the Asian elephant but rather the African 

elephant.  While the two species are not entirely different in their diets and physiology, 

their diet is largely influenced by the available vegetation (Ayliffe et al. 1992: 180), and 

therefore the diet and ecological requirements of only the African elephant will be 

considered here.    

 Unlike the strict graze diet of the hippopotamus, the African elephant may be best 

described as an opportunistic or mixed feeder, consuming both browse (C3 plants, 

including some grasses) and graze (including C4 grasses).  Their diets can include more 

than 100 species, including grasses, stems, the leaves, barks and small twigs of trees and 

shrubs, forbes, palms, and fruit.  The trunk limits their ability to be selective when 

grazing, so that only tall grasses are generally consumed.  Mature elephants, moreover, 

ingest approximately 100-200 kg of food each day depending on the individual’s body 

size.  Water is also a vital part of the diet, and during most of the night and in the middle 

of day elephants occupy the local drinking holes (Clemens and Maloiy 1982: 151; van 

Hoven 1983: 47; Ayliffe et al. 1992: 180).  

 The African elephant is furthermore capable of residing in extremely diverse 

habitats, from open savannah-grasslands, and bush or woodlands, to dense forests, and 

even deserts.  Moreover, studies on the feeding preferences of elephants vary widely 

from one region to another (Dhakal and Ojha 1995: 29).  Yet while the African elephant 

shows remarkable variation in habitat and diet, the two are correlated, and as such the 
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diet as interpreted from the stable carbon and nitrogen isotope ratios will typify the 

habitat from which the elephant derived.  For example, increasing habitat change is 

correlated with an increasing proportion of grass in the diet (Laws 1970, cited by van 

Hoven 1983: 47).  The habitat also influences the degree of seasonal change in diet, in 

addition to the size of the elephant’s home range, and both of these factors will in turn 

affect the stable oxygen and strontium isotope signatures.  Therefore, due to the 

geographical differences in the habitats of Africa, each region of Africa (East, West, and 

South) will be examined separately in terms of diet and feeding and ranging behavior.  

The main geographical focus, as determined in Chapter Four, is North and East Africa.  

As no elephants currently inhabit North Africa, the environment and diet of elephants that 

once lived there in the Late Bronze Age will have to be reconstructed.  Furthermore, 

while South and West Africa are not considered as likely sources for Late Bronze Age 

ivory in the eastern Mediterranean, the studies from South and West Africa will illustrate 

the diet and behavior associated with those types of habitat which may have existed in 

North or East Africa during the Late Bronze Age.   

 

East Africa 

 Studies by Kabigumila (1993) and Barnes (1983) examined the diet and feeding 

behavior of African elephants in the national parks of Tanzania, while a more general 

study by Eltringham (1980) looked at range usage by large mammals in Uganda.  In 

general, the vegetation of East Africa includes both C3 (browse) and C4 (graze) plants, 

with the grasses almost exclusively C4 (Tieszen and Imbamba 1980: 237), but as 

mentioned previously, seasonal variation in diet will affect the ratio of browse to graze.   
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In the Ngorongoro Crater of northern Tanzania, Kabigumila (1993) considered 

this seasonal variation in the diet of African elephants.  The Ngorongoro Crater is 

grassland, with some areas of swamp and closed canopy Acacia forest.  He found that the 

elephants’ diet in this area consisted of at least 36 different plant species, with an 

emphasis on high-quality vegetation such as forbs and grasses during the wet season, and 

sedges and tree-browse during the dry season.  Moreover, the shoots, leaves, and 

inflorescences of the most important plant species, the sedge Cyperus immensus, were 

targeted in the wet season while the bark, wood, and twigs were ingested in the dry 

season, showing seasonal preferences for plant parts within a species.  Sedges such as C. 

immensus are generally considered to be a low quality vegetation, with a 5.8-7.0% crude 

protein content. 

Indeed, with the advent of the dry season and subsequent drying out of the grasses 

and forbs in the grasslands, elephants concentrated their feeding on twigs of trees and 

sedges from the Lerai forest.  Thus the proportion of browse in the diet was higher during 

the dry season.  Field (1971, cited by Kabigumila 1993: 162) suggested that elephants 

browse more during the dry season because a) browse has a higher crude protein content 

than grass, and b) grasses are less palatable because they become more fibrous and 

accumulate tannins.  Kabigumila also found that there was a significant increase during 

the wet season in the number of elephants using the Crater. 

Ranging behavior was the focus of the studies by Barnes (1983) in Ruaha 

National Park, located in south-central Tanzania, and Leuthold (1977) in Tsavo National 

Park in Kenya. Leuthold (1977) established that range size is dependent on the quality of 

the environment.  In Tsavo East, an area with comparatively poorer habitat, the elephants 
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had larger ranges than those elephants dwelling in the more favorable habitat of Tsavo 

West.  Barnes (1983) reports further that there is a difference between males and females 

in ranging behavior, especially during the mid-dry season when bulls traveled only short 

distances each day while females and their young journeyed long distances in search of 

higher quality food.  Males traveled the most in the mid-winter and early dry seasons 

when they were sexually active.   

Eltringham’s (1980) study on the Mweya Peninsula, Rwenzori National Park, 

(Uganda) found that elephant numbers decreased significantly when there was an 

increase of other animals in the same area.  There was a deterioration in the grassland due 

to an increase in the hippopotamus population, which in turn led the elephants to avoid 

the Peninsula.  As a result, reconstructions of the past environment in the Late Bronze 

Age must take into account other animals- in particular the hippopotamus, which is 

known to cause deterioration in the environment due to over-grazing, or at least render 

the grasslands unusable to other animals who are unable to feed on the closely cropped 

grass of the ‘hippo lawns.’  The implication is that hippopotamus ivory is not as likely to 

come from the same geographic localities as elephant ivory. 

 

West and Central Africa 

In the Acacia woodlands of Central Africa elephants prefer browse in the hot dry 

season, but grasses in the wet season.  Again, these season-dependent food preferences 

seem to be correlated to the protein content of the available food. 

West Africa, unlike the dry grasslands of East Africa, is covered by much forest.  

Short (1981) and Tchamba and Seme (1993) examined elephant diet and feeding 



106 

behavior in the tropical closed canopy forests of two national parks in West and Central 

Africa.  Here the diet is heavily browse with little reliance on grass.  Bia National Park is 

located in the forest belt of western Ghana, receives 1500 mm rain per annum, and is 

described by Short (1981) as lowland tropical rainforest with characteristics of evergreen 

and semi-deciduous forest.  Browse (mainly woody leaves and stems) constituted the 

bulk of elephants’ diet in Bia, in addition to some fruit.  Grass, on the other hand, is 

almost completely absent from Bia NP and thus does not contribute to the diet of these 

elephants.  Although closed canopy forests dominate the landscape, the elephants 

preferred to browse in open forest and old forest gaps.  The only feeding activities that 

took place in closed forest were barking and gathering of fruits.  Accordingly, vegetation 

cover type is not utilized in proportion to its occurrence, and elephants’ avoidance of 

closed forest and preference for open canopy with dense ground vegetation is also 

supported by Wing and Buss (1970) and Laws et al (1975) (cited by Short 1981: 184).   

Another interesting finding by Short was that elephants in different habitats prefer 

different types of trees, depending on the total vegetation assemblage.  Two species, 

Pipideniastrum africanum and Parinari excelsa, heavily barked in other studies (see 

Wing and Buss 1970 and Laws et al 1975), were not barked at all in Bia NP.  Also, the 

elephants are highly selective, preferring to bark from a small number of species.  Short 

offers several explanations for this phenomenon: 

(i) elephants with a greater range of choice in forest, select alternative species; 

(ii) palatability or calcium content may differ for these species between areas; 

(iii) elephants' need for a particular mineral may vary between areas; 

(iv) learned preferences may differ between areas (Short 1981: 184). 
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 Tchamba and Seme (1993) likewise reported on the feeding behavior and diet of 

the ‘forest’ elephant in the Santchou Reserve in western Cameroon.  The habitat of the 

reserve is also a tropical closed canopy forest with 1750 mm rainfall a year and 700-800 

m altitude.  Here, unlike Bia National Park, the main component of the elephants’ diet 

was grass, particularly Pennisetum purpureum, and the woody material (leaves and 

stems) only made up a small fraction of the diet.  Fruit was also very important to the 

diet, with 22 varieties being represented.  Also contrasting with Short’s study, Tchamba 

and Seme found that the elephants exploited the habitat types (closed forest, swamp 

forest, savanna, farmland) in direct proportion to their occurrence.  Taking these factors 

into consideration, the authors propose that the Santchou elephants’ diet and feeding 

behavior are more similar to the results from East African studies (i.e. Wing and Buss 

1970 and Field 1971) than West African ones (i.e. Short 1981).   

Thus, while sufficient browse is available in East Africa, grass generally accounts 

for 80-90% of the bulk diet for elephants of this region.  The diet of the Santchou 

elephants agrees with eastern Africa findings, but the diet of the Bia elephants agrees 

with southern Africa research, such as that of Williamson (1975; cited by Short 1981: 

181).  Consequently, research conducted in South Africa is the next region to be 

considered. 

 

South Africa 

Williamson (1975) found that browse constituted the bulk of the diet for South 

African elephants, except during the wet season (Short 1981: 181).  Steyn and Stalmans 

(2001) found in the Songimvelo Game Reserve in the Barberton Mountains, South 
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Africa, that the forest, thickets and woodlands were preferred.  The shrublands and 

grasslands, however, were barely utilized.  The Songimvelo Game Reserve receives from 

800 to 1400 mm rainfall per annum and the vegetation (particularly in the winter) is 

considered low-quality for grazing.  van Hoven (1983: 47), however, suggests that the 

majority of woodland plant species in Southern Africa are consumed in proportion to 

their occurrence, with only a few species preferred or avoided.   

Particularly fascinating are the “desert” elephants of the western Kaokoveld, 

located in the northern Namib Desert (Southwest Africa), a region which receives less 

than 150 mm per year in rainfall and is characterized by dry savanah and shrub.  

Research conducted by Viljoen (see 1988; 1989; and Viljoen and du P. Boethma 1990) 

has brought this hitherto ignored and unique population of elephants to the forefront in 

discussions of the ecological requirements of elephants.  These elephants are, 

furthermore, not a recent introduction to the area as there is evidence for them since 

before 1793.  Not only do the elephants that live in this region survive droughts that kill 

off other “desert” mammals, but the populations also have shown no history of migrating 

eastward out of this supposedly inhospitable terrain to more favorable regions.  In fact, 

their home ranges are rarely modified, even after multiple human attempts to chase them 

out of the region.  They are capable of traveling up to 70 km per day in search of water or 

food, and moreover are able to go without water for up to four days in the dry season.  

Viljoen estimates that they may utilize food resources up to 80 km away from the nearest 

water.  Water can also be obtained by digging in the sandy river beds.  Nevertheless, their 

detailed knowledge of the distribution of resources is probably the most important factor 

in their adaptation to the desert (Viljoen 1988: 111-113).  It seems that the elephant is in 
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fact adapted to the desert, and this has crucial implications for the reconstruction of the 

African elephant range in North and East Africa during the Late Bronze Age. 

In conclusion, the diet of the African elephant does vary from region to region, 

but some generalizations may be drawn.  When open forest and grasslands are available, 

the elephants prefer more browse than graze during the dry season and more graze (grass) 

than browse during the wet.  Their stable carbon isotope signatures will therefore range in 

the middle of the spectrum of carbon isotope values, reflecting a mixed C3 and C4 diet.  

In areas where grassland is rare, elephants will rely almost wholly on open forest and 

somewhat on closed forest (as seen in West Africa).  These elephants will exhibit a pure 

C3 diet (with some exceptions, as explained in Chapter Six).  Regions such as East Africa 

characterized by grassland with limited open forest will host elephants with strong C4 

grass diets, as they consume browse only during the dry season when the grass dries out 

and reduces in nutritional value.  “Desert” elephants’ carbon signatures would be more 

difficult to decipher since research has not been conducted specifically on their diet, but 

their nitrogen and oxygen isotope values would reflect an arid environment.  

Furthermore, while elephants are known to be capable of large ranges, they do exhibit 

range-specific behavior, thus narrowing the geographical scope for interpreting the 

strontium isotope ratios.   
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Chapter 9 

A Review of  Stable Isotope Ratio Studies for Modern Populations of Elephants  
and Hippopotami 

 
Having considered the mechanics of isotope analysis in Chapter Six, and the diet 

and ecological requirements of hippopotami and elephants (Chapters Seven and Eight) to 

better interpret these analyses, I now turn to take a brief look at previous isotopic research 

on elephants (there is virtually none on hippopotamusi) to consider past successes.  

Research on elephants has focused primarily on diet, utilizing stable carbon and nitrogen 

isotopes (Tieszen and Imbamba 1980; Sukumar et al. 1987; van der Merwe et al. 1988; 

Sukumar and Ramesh 1992, 1995; Koch et al. 1995; Ishibashi et al. 1999).  More 

germane to the present investigation are several studies using additional isotopes such as 

strontium and lead to illustrate the potentiality for sourcing illegally poached ivory (van 

der Merwe et al 1990; Vogel et al. 1990).  

Tieszen and Imbamba (1980) were one of the first to apply isotopic analysis to 

elephants (cf. Heaton et al. 1986 for another seminal article), and were the only 

researchers to investigate hippopotami isotopically.  They measured δ13C values from 

fecal samples of a number of East African herbivores.  In the lowlands of East Africa all 

the grasses are C4, so they were able to estimate the percentage of browse (C3) to graze 

(C4) for the animals.  As expected, elephants exhibited a generalized feeding pattern, 

utilizing C3 and C4 with high individual variability in percentages of each (Table 2).  

Hippopotami have a high C4 component as well, but not as high as anticipated.  In one 
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Table 2: δ13C values and % C4 from fresh fecal samples of elephants and hippopotami in 
Kenya, East Africa.  Coefficient of variation (CV) is expressed as a percentage of the 

δ13C (data from Tieszen and Imbamba 1980: 240). 
 

            Amboseli National Park  /Samburu Game Reserve/ Aberdares National Park            
 Mean CV 

(%) 
% C4 Mean CV 

(%) 
% C4 Mean CV 

(%) 
% C4 

Elephant -17.1 14.1 70 -16.4 12.5 75 -26.5 1.7 10 
Hippo -18.4  62       

 
  

forested area, Aberdares National Park, the elephants exhibited a heavy reliance on C3 

plants.  The authors caution that sampling feces may overestimate the C4 as these plants 

do not break down as well in the digestive tract. 

In a study with a broader geographical scope, van der Merwe et al. (1988) 

analyzed the bone collagen of elephants from twelve wildlife refuges in East and South 

which spanned many types of habitats: primary rain forest, savanna woodland, and 

desert.  The results are given in Figures 38 and 39.  A linear relationship was found 

between tree density and the δ13C values.  This is due to factors such as the availability of 

browse in savanna woodland and forest, the dominance of C4 grasses in grassland 

habitats verses C3 grasses in forests, and the “canopy effect” whereby the δ13C values in 

forests are more negative than C3 plants in open woodlands (van der Merwe et al. 1988: 

164-169).  The variation among elephants within each refuge is very small, probably due 

to the artificial boundaries of the refuges, as well as the clan-based social organization.  

However, the C4 component is probably under-represented in collagen, since field studies 

of the parks suggest elephants eat a greater amount of C4 grasses. 

 Another study published around this time was that of Sukumar et al. (1987), who 

tested the bone collagen of Asian elephants for carbon isotopes and reported wide 

individual variability (-11.1 to –20.8).  The researchers  related the variability to age, as  
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Table 3: δ13C values of bone collagen from African elephants  
(data from van der Merwe et al. 1988: 166-167). 

 
Park, Country Vegetation Lab number δ13C (‰) 
Sapo, Liberia Primary rainforest 1646 -26.3 

  1647 -26.9 
  1648 -27.6 
  1649 -27.5 
  1650 -27.1 
  1651 -27.3 
  1652 -28.1 
  1653 -27.4 
    

Gola, Sierra Leone Primary and secondary 
rainforest 

1645 -24.0 

    
Knysna, South Africa Coastal forest 1668 -23.2 

    
Shimba Hills, Kenya Forest-woodland mosaic 913 -21.7 

  914 -22.1 
  915 -22.2 
  916 -22.6 
  1457 -21.0 
  1458 -20.8 
  1459 -20.1 
  1460 -21.4 
  1461 -19.6 
  1462 -21.7 
  1463 -19.9 
  1464 -20.5 
  1465 -21.8 
  1466 -19.4 
  1436 -21.8 
  1437 -20.0 
  1438 -21.8 
  1439 -22.7 
  1440 -21.0 
  1441 -19.8 
  1442 -21.1 
  1447 -19.3 
  1448 -23.0 
  1449 -21.0 
  1450 -19.9 
  1443 -20.6 
  1444 -20.3 
  1445 -21.0 
  1446 -22.1 
  1454 -20.9 

 
(Table 3 continued on next page) 
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Table 3: δ13C values of bone collagen from African elephants (continued). 
 

Park, Country Vegetation Lab number δ13C (‰) 
Shimba Hills, Kenya  Forest-woodland mosaic 1455 -20.1 

(cont.)  1456 -20.9 
  1433 -21.3 
  1434 -22.0 
  1435 -18.9 
    

Parc W, Niger Northern guinea savanna 1657 -22.1 
  1658 -21.5 
  1659 -21.8 
  1660 -22.0 
  1661 -22.4 
    

Nazinga, Burkina Faso Northern guinea savanna 1655 -21.9 
  1656 -21.9 
    

Kasungu, Malawi Brachystegia woodland 909 -20.3 
  910 -19.6 
  911 -19.6 
  912 -19.5 
    

Kruger, South Africa Bushveld savanna 1451 -20.9 
  1452 -20.1 
  1453 -19.9 
    

Liwonde, Malawi Mopane woodland with 
marsh 

1643 -19.1 

  1644 -19.7 
  1654 -19.1 
    

Luangwa, Zambia Mixed woodland with 
mopane 

905 -18.1 

  906 -17.9 
  907 -17.7 
  908 -18.0 
    

Damaraland, Namibia Semi-desert 1490 -19.0 
    

Addo, South Africa Portulacaria thicket 1696 -17.2 
  1697 -17.0 
  1698 -17.4 
  1699 -16.3 
  1700 -17.2 
    

East Tsavo, Kenya Elephant-induced grassland 917 -17.6 
  918 -16.1 
  919 -15.8 
  920 -16.0 
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Figure 35: Average δ13C values of elephant bone collagen from twelve African wildlife 
refuges.  The diagonal dotted line (from 100% C3 = -21.5‰ to 100% C4 = -7.0‰) equals 

the relative contribution of C3 and C4 plants to the diet  
(adapted from van der Merwe et al. 1988: 165). 

 

 
 
the results suggested young elephants preferred graze while adults consumed more 

browse (Figure 36; see also Sukumar and Ramesh 1992: 537).  These findings are 

elaborated upon by Sukumar and Ramesh (1992; 1995), and the problem of under-

representation of C4 is also considered.  The results are compared to data from African 
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elephants (Tieszen et al. 1989) and presented in Table 4.  The variance in sub-adults (<25 

years) is greater than in adults, suggesting that the usual seasonal alternation between C4 

plants in the wet season and C3 in the dry season is made more visible in growing animals 

due to a high collagen turnover rate (Sukumar and Ramesh 1992: 536-538; 1995: 372).  

The researchers, like van der Merwe et al. (1988), also noticed that more of the carbon in 

collagen was incorporated from C3 plants, thus under-representing the C4 component.  

This may be explained by higher protein contribution of C3 to the diet (per unit of 

quantity consumed), so that C3 plants are more important to the diet of elephants for 

growth.  The carbon from C4 grasses may be more important for other metabolic 

functions however (Sukumar and Ramesh 1992: 536; 1995: 368-373).   

 
 

Figure 36: Percentage of time spent in feeding on C3 (browse) plants on average during 
different seasons by adult elephants (solid circles, upper line) and sub-adult elephants 

(open circles, bottom line).  The dry season is from December to April and the wet season 
is May to November (adapted from Sukumar and Ramesh 1992: 538). 
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Table 4: Percentage of C3 plants in diet as inferred from stable carbon isotope ratios of 
bone collagen in African elephant population.  Data from Sukumar and Ramesh (1995: 

370) and Tieszen et al. (1989). 
 

Region/Country Vegetation type δ13C per mil ± SD % C3 plants  
in diet 

Nilgiris-E.Ghats, India Moist & dry 
deciduous forest 

-18.6 ± 1.36 
(n=16, adults) 

 
-16.4 ± 3.61 

(n=65, all ages) 
 

71 
 
 

57 

Tsavo, Kenya Grasslands & dense 
woodland 
 

-18.4 ± 0.18 (n=65) 75 

East Tsavo, Kenya Grassland 
 

-16.4 ± 0.7 (n=4) 65 

Addo, South Africa Portulacaria thicket 
 

-17.0 ± 0.4 (n=5) 68 

Damaraland, Namibia Semi desert 
 

-19.0 (n=1) 82 

Luangwa, Zambia Mixed woodland 
with mopane 
 

-17.9 ± 0.2 (n=4) 75 

Liwonde, Malawi Mopane woodland 
with marsh 
 

-19.3 ± 0.3 (n=3) 85 

Kruger, South Africa Bushveld savanna 
 

-20.8 ±  1.0 (n=34) 97 

Kasungu, Malawi Brachystegia  
woodland 
 

-19.8 ± 0.3 (n=4) 88 

Nazinga, Burkino Faso Northern guinea  
savanna 
 

-21.9 (n=2) 100 

Parc W., Niger Northern guinea 
savanna 
 

-22.0 ± 0.3 (n=5) 100 

Shimba Hills, Kenya Forest-woodland 
mosaic 
 

-22.2 ± 0.3 (n=4) 100 

Knysna, South Africa Coastal forest 
 

-23.2 (n=1) 100 

Gola, Sierra Leone Rain forest 
 

-24.0 (n=1) 100 

Sapo, Liberia Primary rain forest -27.3  ±  0.5 (n=8) 100 
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Koch et al. (1995) reported on several isotopes (carbon, nitrogen, and strontium) 

from elephants in Amboseli National Park, Kenya, to track dietary and habitat changes.  

Time series were gathered by microsampling sequential growth laminations in molar 

roots (because tooth dentine grows by accretion in elephants).  The results are presented 

in Table 5.  There were no coherent temporal trends for the nitrogen isotopes, but the 

δ15N values were as expected for elephants living in a semi-arid environment.  The 

carbon isotopes did change with time, showing a switch in the diet from browse to grass.  

A negative correlation was observed between carbon and strontium isotope values 

(Figure 37) as a result of two isotopically distinct regions within the park: the C3 rich 

bushlands on Precambrian soils (low δ13C, high 87Sr/86 Sr) and the C4 rich grassland on 

Plio-Pleistocene volcanic and lakebed soils (medium to high δ13C, low 87Sr/86 Sr).  The 

soils overlying the Proterozoic gneiss had Sr ratios of approximately 0.7067, whereas the 

soils on the Plio-Pleistocene volcanic rocks were approximately 0.7048.  At 0.70518 the 

mean elephant Sr value is closer to the Plio-Pleistocene volcanic rocks, suggesting a 

greater residence time in this region (see Figure 38 for map of study area).  

The researchers also warn that ivory may be more isotopically variable than bone, 

as illustrated by the carbon isotope data.  They suggest that “in the face of such high 

within-tusk variability, it may be difficult to characterize a tusk or ivory artifact on the 

basis of a single, small (for example, 20 mg) isotopic sample.  Isotopic discrimination 

between populations could probably be obtained if multiple samples of different 

geologically controlled isotopes (Sr, Nd, and Pb) were examined for each artifact” (Koch 

et al. 1995: 1343).  While this may hold true for elephants (particularly with carbon 

isotopes) because of their seasonal diet and large home-range, hippopotami are much less  
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Table 5: Isotope values for Amboseli elephant collagen listed by year of death (YD) 
(data from Koch et al. 1995: 1341). 

 
Name Age YD δ13C δ15N 87Sr/86Sr 

  Females   
Annabelle 44 74 -18.3 12.0 0.70597 
C75-17 Ad 75 -18.2 11.3  
Vera 22 76 -17.1 10.7 0.70556 
Gabriella 17 78 -13.2 10.3 0.70460 
Daphne 18 79 -12.3 10.2 0.70449 
Tamar 12 83 -13.9 10.3 0.70490 
Ruth 23 83 -19.4 11.4 0.70695 
Zoe 30 84 -13.3 10.8  
Tia 34 84 -15.3 10.1 0.70462 
Priscilla 41 84 -13.4 10.1  
Teresia 62 84 -17.3 9.7 0.70532 
Sara 39 85 -15.5 11.6 0.70486 
Calandra 22 86 -12.6 9.1 0.70456 
Big T 53 86 -14.3 10.1  
Ophelia 20 87 -15.5 10.4  
Harriet 49 87 -15.5 10.2 0.70521 
Gardenia 8 88 -12.0 8.6 0.70452 
Emily 41 89 -14.2 9.8  
  Males   
SPC 33 35 70 -18.8 10.2 0.70533 
SPC 39 50 70 -16.8 11.3 0.70539 
C75-27 Ad 72 -17.9 11.3  
C75-6 Ad 72 -18.2 9.5  
M33 39 76 -17.7 12.4 0.70573 
Rex 5 84 -13.3 10.4  
Noah 5 85 -14.1 11.2  
M252 15 85 -13.7 11.9  
M185 16 85 -13.2 10.7  
M153 28 85 -15.1 10.7 0.70474 
M144 29 85 -15.3 10.3 0.70464 
Daniel 9 86 -11.9 10.4  
Zeppo 9 86 -13.9 11.4 0.70475 
SPC 23 21 86 -14.7 10.7  
Zach 24 87 -18.4 10.8 0.70737 
Ali 83 5 88 -11.9 10.7 0.70458 
M178 28 90 -15.0 11.9 0.70469 
SPC 31 28 90 -15.6 12.0  
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Figure 37: Plot showing relation between δ13C and 87Sr/86Sr in elephant bones 
(adapted from Koch et al. 1995: 1342). 

 
 
 

Figure 38: Map of the Amboseli Basin, Kenya (adapted from Koch et al. 1995: 1341). 
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Figure 39: Carbon versus nitrogen isotope ratios for African elephant populations. Boxes 
indicate mean ± 1 SD for each population, whereas circles refer to single specimens. Note 

the significant overlap between the Amboseli population and several other populations, 
especially for the Amboseli total range. Data from van der Merwe et al. (1990), Vogel et 

al. (1990), and Koch et al. (1995), and figure adapted from Koch et al. (1995: 1342). 

 
 

 

likely to exhibit intra-tusk variability.  Moreover, because carbon and nitrogen isotope 

values may be the same in geographically separated populations (see Figure 39 for 

illustration of this problem), sourcing ivory should rely heavily on those geological 

isotopes (Sr, Nd, and Pb) as suggested above.  

Ishibashi et al. (1999) conducted one of the largest research programs on 

elephants utilizing isotopic analysis: eighty-one samples (collagen) from eleven 

countries, including some countries previously included in isotopic studies (Sudan, 

Djibouti, and Ethiopia).  The results of their research are listed in Table 6 by country.   
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Interestingly, the two samples from Sudan have δ13C values indicating a diet rich in C3, 

and δ15N values corresponding to an environment with much rainfall.  The sample from 

Ethiopia, however, suggests a C4 rich diet and arid environment.  Similar arid δ15N values 

were found in the desert areas of Damaraland and the Kaokoveld in Namibia.  Their data 

are plotted for each region in Figures 40-43.  

 
Table 6: Isotopic analysis results for ivory samples from Ishibashi et al. (1999: 2-3). 

 
Country Lab number δ15N δ13C Average 

δ15N 
Average  
δ13C 

Botswana 93EL26 8.2 -21.0 8.9 ± 3.7 -21.7 ± 1.9 
 93EL27 5.6 -23.9   
 93EL28 12.8 -20.3   
      

Congo 92EL01 9.8 -25.8 10.2 ± 2.3 -25.3 ± 1.4 
 92EL02 9.6 -26.1   
 92EL03 -- -24.2   
 92EL04 6.9 -24.8   
 92EL05 13.2 -27.0   
 93EL06 8.9 -27.3   
 93EL07 7.8 -23.9   
 93EL08 9.7 -26.1   
 93EL09 10.2 -26.2   
 93EL10 9.3 -25.7   
 93EL11 11.6 -25.3   
 93EL12 11.8 -25.4   
 93EL13 7.6 -21.6   
 93EL14 7.6 -23.2   
 93EL15 8.3 -27.4   
 93EL16 5.7 -27.5   
 94EL01 12.5 -26.0   
 94EL02 9.7 -24.8   
 94EL03 14.0 -24.4   
 94EL04 13.9 -25.0   
 94EL05 11.8 -24.4   
 94EL06 11.9 -24.3   
 94EL07 12.4 -25.6   
      

Djibouti 94EL08 7.0 -18.8 N/A N/A 
 

(Table 6 continued on next page) 
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Table 6: Isotopic analysis results for ivory samples from Ishibashi et al. (1999) 
(continued). 

 
Country Sample 

number 
δ15N δ13C Average 

δ15N 
Average  
δ13C 

Ethiopia 94EL09 12.4 -17.5 N/A N/A 
      

Gabon 92EL06 11.4 -29.4 10.1 ± 1.3 -27.2 ± 1.5 
 92EL07 10.3 -28.9   
 92EL08 8.7 -27.7   
 93EL01 10.1 -26.1   
 93EL02 9.2 -28.2   
 93EL03 11.6 -27.3   
 93EL04 9.3 -28.9   
 93EL05 8.9 -27.1   
 94EL10 11.8 -26.1   
 94EL11 11.8 -25.4   
 94EL12 8.5 -24.6   
      

Mozambique 92EL09 9.9 -28.4 10.5 ± 0.4 -25.3 ± 3.4 
 93EL33 10.8 -26.6   
 94EL13 10.5 -26.0   
 94EL14 10.8 -20.4   
      

South Africa 92EL12 10.3 -17.6 9.9 ± 1.5 -19.4 ± 2.3 
 92EL13 9.1 -20.9   
 92EL14 10.6 -19.4   
 92EL16 8.2 -20.0   
 92EL17 9.7 -18.4   
 93EL29 11.7 -15.3   
 93EL30 12.5 -20.4   
 93EL31 8.4 -23.2   
 93EL32 8.4 -21.5   
 94EL15 10.4 -17.4   
      

Sudan 92EL10 5.9 -29.9 N/A N/A 
 92EL11 -- -28.3   
      

Zaire 92EL20 -- -25.4 10.0 ± 2.1 -26.7 ± 1.2 
 92EL21 11.8 -24.9   
 92EL22 10.1 -28.5   
 92EL23 -- -27.4   
 92EL24 13.8 -28.7   
 93EL17 6.4 -24.9   

 
(Table 6 continued on next page) 
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Table 6: Isotopic analysis results for ivory samples from Ishibashi et al. (1999) 
(continued). 

 
Country Sample 

number 
δ15N δ13C Average 

δ15N 
Average  
δ13C 

Zaire (cont.) 93EL18 8.6 -27.2 10.0 ± 2.1 -26.7 ± 1.2 
 93EL19 6.8 -25.5   
 93EL20 9.4 -27.2   
 93EL21 9.3 -27.6   
 93EL22 9.5 -27.5   
 93EL23 11.2 -27.3   
 94EL17 9.4 -25.8   
 94EL18 11.9 -25.9   
 94EL19 11.9 -26.2   
      

Zambia 92EL18 7.5 -21.6 7.1 ± 0.7 -21.0 ± 0.9 
 92EL19 -- -21.6   
 93EL24 6.5 -20.2   
 93EL25 7.9 -19.9   
 94EL16 6.4 -21.9   
      

Zimbabwe 92EL25 11.9 -22.1 10.1 ± 2.3 -22.6 ± 3.3 
 92EL26 -- -19.5   
 92EL27 12.0 -22.0   
 92EL28 9.4 -21.2   
 92EL29 7.1 -28.2   
      

Unknown 92EL30 5.9 -31.0 N/A N/A 
 92EL31 12.9 -26.6   
 92EL32 -- -25.1   
 92EL33 -- -32.5   
 92EL34 -- -30.5   
 92EL35 -- -29.0   
 92EL36 -- -28.0   
 92EL37 5.6 -23.3   
 92EL38 7.9 -21.1   
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Figure 40: δ13C versus δ15N for South African countries (adapted from Ishibashi et al. 1999:5). 
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Figure 41: δ13C versus δ15N for East African countries (adapted from Ishibashi et al. 1999: 6). 
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Figure 42: δ13C versus δ15N for Middle African countries (adapted from Ishibashi et al. 1999: 6). 
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Figure 43: δ13C versus δ15N for South Africa (adapted from Ishibashi et al. 1999: 6). 
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The two hallmark articles illustrating the success of using isotopes to source ivory 

are van der Merwe et al. (1990) and Vogel et al. (1990).  As Price et al. (2002: 122) 

pointed out, the homogeneity of the isotopic signatures (with a very low standard 

deviation and coefficient of variation) despite potentially heterogeneous geological 

sources and seasonal variation in diet is encouraging for sourcing ivory.  Van der Merwe 

et al. (1990) sampled bone and ivory from 100 elephants in 20 game refuges in 10 

African countries and found seasonal variation in diet and seasonal migration most 

pronounced in desert regions (i.e. Northern Namibia).  Elephant populations from areas 

situated on old granitic rocks (shield areas) have ratios >0.715, while populations from 

basaltic regions have <0.715.  Some of the data is presented below as Figure 44, where 

definite grouping of areas is evident.  Vogel et al. (1990) also tested African game 

refuges (n = 7) but looked at lead isotopes in addition to carbon, nitrogen, and strontium.  

The researchers obtained similar results to those of van der Merwe et al. (1990), but 

found that the lead isotopes were not useful in distinguishing populations.  However, they 

employed multivariate statistics to characterize populations, using “combined R- and Q-

mode component analysis, based on a correlation similarity matrix.  Ninety-eight percent 

of the total variance in the data set is explained by three components which are 

essentially dominated by the isotope ratios of C and N (component 1), Pb and Sr 

(component 2), and Sr (component 3).  Distinction of the four populations is quite clear 

on a plot of component 1 against component 2” (Vogel et al. 1990: 748; see Figure 45b).  

Vogel et al. (1990) furthermore tested ivory and bone from three individuals to see how 

the values of the different tissues compared, and found that the ivory values were in the 

same grouping (Figure 45a) as those for the bone for each individual.
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Figure 44: δ13C versus 87Sr/86Sr for elephants in African game refuges (data from van der Merwe et al. 1990). 
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Figure 45: Above: 87Sr/86Sr versus δ15N for elephant bone, indicating the complete 
separation of the different elephant populations from Knysna, Addo, Kruger Park and the 

Northern Namib Desert.  The specimens belonging to specific populations are circled.  
Below: plot of the first two principal components of the multivariate statistical analysis 

(adapted from Vogel et al. 1990: 747). 
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In conclusion, isotopic analysis has generally been utilized to study the diet of 

elephants and sometimes the climate in which they lived.  However, the possibility of  

using isotopic analysis to source ivory is demonstrated by van der Merwe et al. (1990) 

and Vogel et al. (1990), and the advice of Koch et al. (1995) to look into neodymium and 

lead isotopes for sourcing offers future avenues of research worth investigating.  Because 

neodymium and lead isotopes are tied to local geology, like strontium, and often reported 

alongside strontium in the geological literature, triangulating these three isotopes against 

one another would offer a more unique and descriptive fingerprint for sources.  However, 

since the scope of this study is restricted to strontium, I shall now turn to a review of the 

strontium isotope ratio valaues reported in the geological literature for the eastern 

Mediterranean and northeast Africa.  
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Chapter 10 

A Review of the Published Strontium Isotope Ratio Values for the Eastern 

Mediterranean and Northeast Africa 

The results of the ICP-MS analysis for strontium isotope ratios of the Uluburun 

ivory and Maraş Fili samples must be compared against the strontium isotope ratios 

available in the geological literature for the areas in question: Northwest Syria/Southeast 

Turkey, the Levantine coast, Egypt (Nile River Valley), Northeastern Libya, and 

Southeastern Sudan.  Unfortunately there are several obstacles to making sound 

comparisons between any strontium isotope values obtained for the Uluburun/Maraş Fili 

samples and the geological strontium isotope values, some of which have been already 

discussed in Chapter Six.   

Not only is there a paucity, or a complete lack, of information for some of the 

areas under consideration, but often the research questions of interest to geologists are of 

very particular and geographically limited areas.  Therefore the strontium isotope values 

published are not representative for the region.  Nevertheless, some general trends were 

discerned, and are discussed below. 

 

Syria and Southeastern Turkey 

The region defined as northern and western Syria and southeastern Turkey is 

plagued by insufficient strontium isotope data, which is extremely unfortunate 

considering this region was almost certainly the source of quite a bit of ivory in the Late 

Bronze Age trade and home to one of the most important trade centers of the era 
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(Ugarit/Ras Shamra).  Only two studies address the geology of the region: Alici et al. 

(2001) and Gale et al. (1981). 

 The Karasu Valley in Hatay, southeastern Turkey, was the area of investigation 

for Alici et al. (2001).  The area is bounded by two major fault lines, namely the Dead 

Sea transform fault and the East Anatolian fault (see Figure 46 for location of study area 

and faults).  Karasu Valley is considered the northern segment of the Dead Sea transform  

 
Figure 46:  Map of the Karasu Valley region in Southeast Turkey.  Inset: DSF = Dead 

Sea fault; EAF = East Anatolian fault (adapted from Alici et al. 2001: 122). 
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Figure 47: Published strontium isotope ratios for the eastern Mediterranean and Northeast Africa 
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Southern Coastal Plain, Israel (Starinsky et al. 1983) Harbor at Caesarea Maritima, Israel (Reinhardt et al. 1998)
Libyan desert sandstone (Schaaf et al. 2002) Kenya Rift basalts (Rogers et al. 2000)
Afar region, Ethiopia (Betton & Civetta 1984; Barberi et al. 1980) Erta'Ale range, Ethiopia (Barrat et al. 1998)
Northwestern Ethiopian Plateau (Pik et al. 1999) Southwestern Ethiopia (Ayalew et al. 1999)
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fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is, 

understandably, an active fault zone that is known as the "Karasu fault," and extends in a 

NE-SW direction.  The authors collected eighteen samples for strontium isotope analysis 

from alkali basalts, quartz tholeiites, and olivine tholeiites, the results of which are 

reproduced in Figure 47 (solid dark-blue diamond).  The 87Sr/86Sr values for the basalts 

range from 0.703353 to 0.704410, whereas the quartz-tholeiites are from 0.704410 to 

0.705490, and the olivine tholeiites from 0.703490 to 0.704780.  The latter two types 

have higher 87Sr/86Sr values due to contamination of magmas by crustal materials (Alici 

et al. 2001: 124, 129). The second study, by Gale et al. (1981), hails from the Baër-Bassit 

area of Syria which lies north of Ugarit/Ras Shamra along the Levantine coast.  The study 

is a more specific investigation concentrating primarily on the metalliferous sediments 

associated with Upper Cretaceous ophiolites.  Only four samples were collected, and their 

locations are depicted in Figure 48.  See also Figure 49 for a larger geologic map of the 

region. The results are reproduced in Figure 47 (solid pink squares).   

It is readily apparent that the values from southeastern Turkey and northwestern 

Syria range on opposite ends of the spectrum of typical 87Sr/86Sr values.  The Karasu 

Valley has 87Sr/86Sr values typical of the basalt geology of the area, whereas the Baër-

Bassit values derive from the strontium isotope signature of the Campanian-Maestrichtian 

sea, when the sediments were formed (Gale et al. 1981: 1299).  These two studies only 

highlight the difficulties inherent in trying to characterize a geologically complex area by 

a narrow range of 87Sr/86Sr values.  The complicated nature of the geology requires a 

large number of site-specific studies in order for a strontium isotope profile of the region 

to be developed, and unfortunately such studies are not available at this time. 
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Figure 48:  Locations of the metalliferous sediment samples associated with the ophiolitic 
rocks of the Baër-Bassit area, northwestern Syria.  1 = upper Maestrichtian-Pliovene 
shallow-water marine carbonates; 2 = deformed Triassic-Upper Cretaceous volcano-

sedimentary association tectonically underlying the ophiolitic rocks; 3 = ophiolitic rocks;; 
(adapted from Gale et al 1981: 1295, figure 3). 
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Figure 49: Geologic and fault map of Northwestern Syria  

(adapted from Brew 2001, figure 4.3). 
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Israel 

 Published strontium isotope data from Israel are available, but the geological 

coverage is less than ideal.  The coastal areas are of primary interest for Israel, since these 

regions are where hippopotami would have once dwelled.  However, the rest of Israel 

will be considered as well. 

 Ayalon et al. (1999) sought to reconstruct the palaeoclimate of the eastern 

Mediterranean region based on δ18O and δ13C variations in speleothems from Soreq Cave 

in Israel, about 40 km inland from the coast.  They noticed an increase in isotopic ratios 

during colder and drier periods, and established that strontium isotopes, like oxygen 

isotopes, can be influenced by climatic factors (Ayalon et al. 1999: 715, 719).  More 

important for the purposes of this thesis, however, they found the local dolomite host 

rock to have a 87Sr/86Sr ratio of 0.70745, and the Holocene values from the speleothems 

to range from 0.7079 to 0.70825, with the majority around 0.70822.  These values are 

reproduced in Figure 47 (solid yellow triangles).  The disparity between the dolomite host 

rock and the speleothems is attributed to exogenic sources to the speleothem such as sea 

spray and aeolian dust (Ayalon et al. 1999: 720).  Another article by the same group of 

researchers sees the strontium isotope ratios as influenced by “major changes in the 

temperature, the mean annual rainfall and its isotopic composition, the isotopic 

composition of the Mediterranean vapor source, the soil moisture conditions, and in the 

mixing proportions of sources with different 87Sr/86Sr ratios (sea spray, dust particles and 

dolomitic host rock)” (Bar-Matthews et al. 1999: 85).  However, a correlation between 

strontium isotope ratios and climate may only be encountered in special geological 

situations like that of speleothems. 
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 The Negev Desert in Southern Israel was the focus of the next study by Avigour 

et al. (1990).  The purpose of the study was to compare the strontium isotope 

compositions of secondary calcites to those of their marine carbonate host rocks.  The 

host rocks, which are of the most use for the present investigation, ranged from 0.707251 

to 0.70755.  The results of both the host rock and the secondary calcites are depicted in 

Figure 47 (solid blue diamonds).  The sample locations are furthermore portrayed in 

Figure 50. 

Also from this general area, but along the coastal plain of southern Israel (see 

Figure 51 for location), come more 87Sr/86Sr values from Starinsky et al. (1983).  These 

values span from 0.7075 to 0.7090, with an average value of 0.7081 (see Figure 47 for 

values, depicted as purple stars).   

In an innovative use of strontium isotope values for reconstructing the history of 

the ancient harbor at Caesarea Maritima, Reinhardt et al. (1998) also provided strontium 

isotope ratios for the coastal region.  The researchers took 42 samples from fossils for 

87Sr/86Sr measurements to investigate temporal paleosalinities that may be related to the 

shape of the harbor, and the results are listed in Figure 47 (solid gray circles).  By 

recognizing that “environments in close proximity to the fluvial input of strontium to the 

world’s oceans may have 87Sr/86Sr ratios that deviate from that of the global value for 

normal seawater” (Reinhardt et al. 1998: 3), they were able to draw some conclusions 

about the form and function of the harbor by taking the known value of groundwater in 

Israel (0.7080) and calculating mixing averages with the seawater in the eastern 

Mediterranean (0.709072). Using this same principle, the strontium isotope budget of the 

eastern Mediterranean will now be considered. 
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Figure 50: The main faults and folds of the Negev and the sampling sites, as marked by 
numbers (adapted from Avigour et al. 1990: 70). 

 
 

Figure 51: Location of the studied area in Starinsky et al. (1983).  Figure adapted from 
Starinsky et al. (1983: 688). 
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The Eastern Mediterranean and the Nile 

 The seawater of the eastern Mediterranean, especially along the Levantine coast, 

has a 87Sr/86Sr value directly affected by the fluvial strontium input from the Nile, which 

is mirrored by the surface sediments as well.  Stable oxygen and carbon isotopes from 

two cores off the coast of southern Israel (see Figure 52 for location) were evaluated by 

Schilman et al. (2001) to illustrate this process, and in particular the effects of climatic 

and environmental changes in the southeast Mediterranean during the Late Holocene (3.6 

ka BP).  The factors contributing to the δ18O value of the seawater and sediment of the 

Southeast Mediterranean are outlined in Figure 53.  These factors include water coming 

from the Atlantic Ocean through the Strait of Gibraltar, sediment from Saharan dust 

(composed primarily of Precambrian rocks), water from rainfall over the Mediterranean,  

 

Figure 52: Location of two cores, indicated by a star  
(adapted from Schilman et al. 2001: 159). 
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Figure 53:  Schematic diagram showing the main inputs of water and sediment to the SE Mediterranean surface waters. The 
δ18O and the δ13C of the freshwaters and their annual amounts are also shown. The precipitation (P), runoff (R), and 

evaporation (E) affecting the sea-surface layer, together with the present-day contribution of the Saharan dust and the Nile 
particulate matter are included (adapted from Schilman et al. 2001: 168, figure 5). 
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and water and sediment from the Nile.  The four main sources of the Nile include the 

Atbara, Sobat, and the Blue Nile, all of which hail from monsoonal rainfall over the 

Ethiopian highlands, and the White Nile which originates from Lake Victoria in the 

Central African Plateau.   

At present the Blue Nile and Atbara contribute 97% of the sediment load of the 

Nile, and these sediments derive from the weathering of Tertiary basalts in the Ethiopian 

Highlands.  The White Nile on the other hand only contributes 3% of the sediment load.  

Aeolian Saharan dust from Paleozoic Nubian sandstones and Cretaceous rocks of the 

North Africa desert belt mixes with the sediment load of the Nile to form the surface 

sediments of the eastern Mediterranean (Schilman et al. 2001: 171).  

 The researchers found that the relative contribution of aeolian dust and Nile 

sediments changed with time, reflecting an aridification trend in the eastern 

Mediterranean.  This aridification process included the reduction of vegetation cover in 

East Africa, which in turn “led to an increased erratic flood-related sediment flux via the 

Nile River... This is reflected by the general change in the local sediment composition. At 

3.6 ka, the Saharan eolian input reached 65% whereas at about 0.3 ka 70% of the SE 

Mediterranean sediment was composed of Nile particulate matter” (Schilman et al. 2001: 

157; see also Abell and Williams 1989).  Thus, from Figure 54, the surface sediment 

composition circa 1300 B.C. may be roughly extrapolated as 40% Nile sediments and 

60% Aeolian dust.  The modern predominance of Nile sediment in the surface sediments 

of the eastern Mediterranean was also discussed by Waldeab et al. (2002).  They found 

the surface sediments of the eastern Mediterranean to exhibit the lowest 87Sr/86Sr values 

(average 0.709541) of the entire Mediterranean, which reflected the input of the Nile 
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sediment.  As may be seen in Figure 55, the low strontium values follow the natural 

current counter-clockwise up the Levantine coast.  The same researchers quote the 

average value of Nile river sediments as 0.707043 and the average value of Saharan dust 

as 0.721788 (Waldeab et al. 2002: 142; citing Goldstein et al. 1984; Grousset et al. 1998, 

Krom et al. 1999).  If these values are used and the extrapolated inputs circa 1300 B.C. 

from Schilman et al. (2001) are considered, then an estimate may be deduced for the 

average strontium input to the eastern Mediterranean c. 1300 B.C.: 

87Sr/86Sr NS (percent input) + 87Sr/86Sr SD (percent input) =  

Average 87Sr/86Sr input to EM 

0.707043 (0.40) + 0.721788 (0.60) = 0.71589  

where NS = Nile Sediment, SD = Saharan dust, and EM = eastern Mediterranean.   

 
Figure 54: Ti/Al ratios plotted against calendar ages (ka), showing higher Saharan dust 
contribution at past times (65%) compared with the Nile particulate matter contribution 
(70%), which is higher towards the present (adapted from Schilman et al. 2001: 171). 
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Figure 55: Contour diagrams for the isotopic composition of lithogenic surface sediments 
in the eastern Mediterranean.  Contours are drawn at intervals of 0.001  

(adapted from Weldeab et al. 2002: 145, figure 4b). 
 

 
 

Thus the average input to the eastern Mediterranean circa 1300 B.C. was approximately 

0.71589.  This is only an estimate because modern values for Nile sediment and Saharan 

dust were used, and moreover Pe-Piper and Piper (2001) cite slightly higher modern Nile 

sediment values of 0.7075 to 0.7078.  

 Gerstenberger et al. (1997) address the origin of strontium in the Nile, tracing the 

major fluvial inputs, their sources, and the sources of change to the strontium signature 

during the course of the rivers.  As mentioned previously, the Blue Nile, Atbara, and 

Sobat drain from the Ethiopian highlands which are geologically characterized by 

oceanic crustal rocks.  As a result, the strontium content of these rivers bears an old 

oceanic crustal signature of relatively higher 87Sr/86Sr values.  The White Nile drains 
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from a large area of supracrustal metamorphic rocks with even higher strontium isotope 

ratios, including the Lake Victoria plateau and Bahr el Ghazal region.  However, it is also 

fed by the Sobat.  The Nile is constrained to these sources, as north of the Atbara there is 

no inflow.  However, the relative contributions of these sources varies: “whereas the flow 

rate of the White Nile is well regulated by lakes and swamps, resulting in a relatively  

constant proportion (16%) of the average discharge of the Nile, the Blue Nile and the 

Atbara discharge rates differ extremely as a result of the seasonal rainfall pattern” 

(Gerstenberger et al. 1997: 349-350). 

 The strontium isotope ratio of the White Nile is 0.7114, a high value typical of 

silicate weathering of cratonic rocks including the Sabaloka granulites, migmatities and 

granites.  The Blue Nile flows a shorter distance in a floodplain than the White Nile- 

across metasedimentary gneiss, oceanic volcanosediments and ophiolitic rocks.  As to be 

expected from this type of the geology, the 87Sr/86Sr of the Blue Nile is a relatively low 

0.7056.  The Aswan High Dam reservoir represents a major modern alteration to the 

river, but for the purposes of this thesis has only slight consequences as it serves to level 

out the seasonal fluctuations of the strontium isotope values caused by the variable 

discharge rates of the Blue Nile.  The effective outflow from the Aswan Dam is 0.7062 

(Gerstenberger et al. 1997: 352-353).  As Figure 56 demonstrates, the 87Sr/86Sr values 

remain fairly constant with distance downstream from Aswan, although at a slightly 

higher strontium isotope ratio of approximately 0.7070, probably due to evaporation 

along the course of the river. 

Taking another look at the principal lakes and rivers of the Upper Nile, Talbot et 

al. (2000: 343-345) note a Sr ratio of 0.7113 for Lake Victoria and 0.7073 for Lake  



147 

Figure 56: The Sr isotope ratios in the water of the Nile from Aswan to North of Cairo 
(gray ovals) (adapted from Gerstenberger et al. 1997: 354, figure 2). 

 

 
 
 

 

Edward, whereas Lake Albert, which receives water from both lakes, has an intermediate 

value of 0.7102.  The Bahr el Jebel river downstream from the lakes has a higher Sr ratio  

of 0.7117 at Bor.  Farther downstream, the Sobat empties into the White Nile, effecting 

lower Sr ratios at Esh Shawal, Guli and Tagra of 0.7093 to 0.7109 (determined from 

fossil mollusks and faunal remains).  The Sobat probably has values similar to the Gezira 

region of the Blue Nile (0.7062), as the both empty from the volcanic geology that is the 

Ethiopian highlands.  See Figure 57 for a map of this region and locations of sampled 

fossils, and Figure 58 for a schematic diagram of strontium ratio values during the course 

of the White Nile. 
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Figure 57: White and Blue Nile drainage networks with detailed map of area between Esh 

Shawal and Khartoum.  Numbers in parentheses = modern Sr isotope ratios; solid 
triangles = fossil localities (adapted from Talbot et al. 2000: 343). 

 

 
 
Ethiopia 

 Having considered the hydrology of the Nile, and in particular its catchment 

areas, I shall now turn to the geology of Ethiopia.  Fortunately there is a great deal of 

literature for this region because of researchers’ interest in the unique geology of the 

Kenya and Ethiopian rift valleys. 

Rogers et al. (2000) investigated the geology of the Kenya rift system which has a 

basement composed of three zones: the Archaean Tanzanian craton (TC), the late 

Proterozoic Pan-african Mozambique mobile belt (MB) and a zone of craton margin 

reactivated (remobalized) during the Pan-african orogeny (RCM) (see Figure 59 for map 



149 

Figure 58: Schematic diagram along Upper Nile-White Nile from headwater lakes to Khartoum, summarizing Sr isotope composition 
of main components of drainage system.  Water analyses are open stars, numbers are sample ages in 14C ka BP, long arrows are main 

water courses.  End member values are for two principal types of catchment geology: Precambrian-lower Paleozoic crystalline 
basement and Cenozoic-Holocene volcanic rocks (adapted from Talbot et al. 2000: 344, figure 2). 
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Figure 59: Map of the Kenya and Ethiopia rifts, showing the distribution of Tertiary-
Recent volcanism, and the MB, TC, and RCM.  The curved solid lines denote the extent 

of the Ethiopian and east African plateaus (adapted from Rogers et al. 2000: 389). 
 

 
 
 

of these zones).  These basalts located along the axial regions of the Kenya Rift have Sr 

ratios of 0.7030 to 0.7055.  Specifically, the TC and RCM have values ranging from 

0.7035-0.7056 (or > 0.7035), and the MB yields ratios from 0.7030-0.7035 (or < 0.7035) 

(389).  All of these values agree with the volcanic end member of < 0.706 suggested 

byTalbot et al. (2000) in Figure 58 above.  Specific Sr ratios from geological samples 

were only given for the MB and RCM, and these are depicted in Figure 47 as unfilled 

black circles. 

Strontium isotope ratios for the Afar region (see Figure 59 above for location) are 

given by Betton and Civetta (1984).  These values, ranging from 0.70328 to 0.70410,  are 

represented in Figure 47 as light-blue filled rectangles and represent the entire range of 

geological compositions in Afar (from low-K tholeiites and alkali basalts) (Betton and 
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Civetta 1984: 61; Barberi et al. 1980).  Slightly north of Afar is the Danakil Depression 

where one of the most important axial volcanic chains of the Afar region, the Erta’Ale 

range is located (see Figure 60 for location).  Strontium ratios from this range have a 

fairly limited spread of 0.7035-0.7038 (Barrat et al. 1998: 85), which fit well with the 

strontium data from Betton and Civetta (1984).  The Erta’Ale data is depicted in Figure 

47 as light-purple solid triangles.  Surrounding the Afar region are basalt highlands, 

which in Northern Ethiopia and Yemen were formed by volcanism starting in the 

Oligocene (Pik et al. 1999: 2264).  The Blue Nile also hails from this region.   

Figure 60: Geological map of the Danakil Depression 
(adapted from Barrat et al. 1998: 86). 
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Figure 61: Location map of the northwestern volcanic province and Afar triple junction, showing the main tectonic features 
and phases of volcanism.  Open circles represent sample locations on the northwestern Ethiopian plateau  

(adapted from Pik et al. 1999: 2265). 
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These flood basalts have 87Sr/86Sr values of 0.70304-0.70429 in the northwestern 

Ethiopian highlands (data represented in Figure 47 by solid red circles; see Figure 61 for 

geological map of the region and locations of samples tested).   

Basalts from Southwestern Ethiopia were analyzed for strontium isotopes by 

Ayalew et al. (1999), again demonstrating a small range of 0.7031-0.7039 (Figure 47, 

represented by solid green triangles).  Figure 62 illustrates the location of these samples.  

Moreover, Barbieri et al. (1976) have similar values at an average of 0.7035 ± 0.0004 (n 

= 6) for Late Tertiary-Quaternary basalts from the Harar Plateau, 50 km northeast of Gara 

Badda  (Kennan et al. 1990: 41).  

 
Figure 62: Map of southwestern Ethiopia showing the main volcanic geology and sample 

locations (white circles) (adapted from Ayalew et al. 1999: 383, figure 1). 
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North Africa 

 Now moving north another dearth of published strontium isotope values is seen.  

Whatever strontium values are available as outlined below have been culled from 

research either not directly discussing the region, or concerned primarily with very 

specific geological formations.  From the Great Sand Sea in western Egypt the 87Sr/86Sr 

values for the local sandstone range from 0.70910 to 0.71053 (n = 5; plotted in Figure 47 

as open orange squares) (Schaaf et al. 2002: 570).  The local sandstone was sampled 

from the area where the arrow in Figure 63 indicates “LDG strewn field.”  Nevertheless, 

these values are only useful if ‘desert’ elephants should be represented in the Uluburun 

samples.  However, the local sandstone (marked “LDG field”) was plotted, in Figure 64, 

against sandstone samples from the BP and Oasis crators (data from Abate et al. 1999) 

and Precambrian granitic rocks from northeast Africa west of the Nile (data from Pegram 

et al. 1976; Schandelmeier and Darbyshire et al. 1984; Harms et al. 1990).  From this 

graph a value of 0.70625 to greater than 0.7140 is estimated for the Precambrian granitic 

rocks.   

Küster and Liégeois (2001) sampled many types of geology along the Nile in the 

Bayuda Desert, located north of Khartoum (see Figure 65 for location).  Unfortunately 

the strontium isotope values (Table 7) have an extremely large range and as a result prove 

virtually useless.  

Returning full circle to the topic of the strontium budget of the eastern 

Mediterranean, the strontium isotope signature for Saharan dust is discussed by Grousset 

et al. (1998), but in the context of the Atlantic off the coast of northwest Africa.  It seems 

that 87Sr/86Sr ratios increase with decreasing grain size in carbonate-free sediments  
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Figure 63:  Map of the Libyan Desert (hatched).  Location of sampled sandstones 
indicated by arrow.  Notice also the location of the BP and Oasis crators  

(adapted from Schaaf et al. 2002: 566). 

 
 

Figure 64: Strontium isotope ratios of sandstone samples from BP and Oasis craters 
(Libya) and 5 sandstone samples from the LDG strewn field compared to Precambrian 

granitic rocks from northeast Africa west of the Nile (shaded area)  
(adapted from Schaaf et al. 2002: 573, figure 7). 
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Figure 65: Geological map of the Bayuda Desert and surrounding areas.  The boxed areas 
represent sampling zones (adapted from Küster and Liégeois 2001: 4). 
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Table 7:  Isotopic data of high-grade metamorphic rocks from the Bayuda Desert  
(data from Küster and Liégeois 2001: 10). 

 
Sample no. Rb Sr 87Rb/86Sr 87Sr/86Sr 2σ 
Amphibolites 
12-4a 2.05 151 0.0393 0.708912 0.000010 
12-6 1.04 139 0.0217 0.708514 0.000009 
6-2a 0.14 471 0.0008 0.703929 0.000008 
10-5a 2.06 130 0.0458 0.704332 0.000013 
10-1a 1.05 64 0.0475 0.705476 0.000013 
9-5 1.08 64 0.0488 0.704281 0.000008 
9-2a 0.52 241 0.0062 0.703127 0.000010 
11-1 24.2 777 0.0901 0.704259 0.000008 
 
Epidote-biotite gneisses 
9-1 9.41 493 0.0552 0.703456 0.000008 
11-2a 27.2 564 0.1395 0.704277 0.000008 
6-3 89.0 300 0.8588 0.711177 0.000009 
 
Muscovite-biotite gneisses 
12-3 259 51 14.9580 0.888458 0.000011 
12-2 253 49 15.2366 0.891699 0.000011 
12-5b 242 73 9.6957 0.816103 0.000013 
14-9 211 73 8.4328 0.790800 0.000009 
 
Meta-sedimentary rocks 
11-2b 26.0 48 1.5689 0.717021 0.000009 
6-5 0.67 155 0.0125 0.703914 0.000011 
6-8b 80.0 16 14.6403 0.827762 0.000015 
7-1 47.3 314 0.4362 0.708155 0.000010 
14-11 141 92 4.4576 0.764279 0.000014 
17-6b 128 63.9 5.8405 0.784470 0.000022 

 
 
 

 
(Dasch 1969), thus explaining one of the reasons for the rather high Sr value for Saharan 

dust (Grousset et al. 1998: 399-400).  For the Atlantic off the coast of northwestern 

Africa the smallest fraction of surface sediments and aerosols range from 0.7135 to 

0.7253.  This research is worth mentioning because it reports some Sr values for samples 

taken in Algeria (n = 4), Morocco (n = 4), and Mauritania (n = 7).  All of the values given 
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are extremely high: Algeria = 0.726253, 0.720515, 0.724395, 0.713; Morocco = 

0.716593, 0.726932, 0.728197, 0.734041; Mauritania = 0.735679, 0.727284, 0.737645, 

0.737535, 0.731493, 0.728389, 0.720021. 

 

Conclusion 

Thus from the above review of the available literature, the difficulties involved in 

sourcing by strontium isotope ratios from such a large geographical area with such spotty 

publishing are readily evident.  The largest misfortune is that those areas which could 

potentially have been the source of elephant ivory but have been ignored or disregarded 

by scholars are those same areas with a complete dearth of literature, namely Syria and 

the north coast of Africa.  On a fortunate note, the regions with the most available 

strontium isotope data correlate well with the areas in which hippopotami resided, 

namely the Levantine coast and the Nile.  Hippopotamus ivory luckily represents the 

largest number of samples in the present investigation as well.  The separation between 

the Levant and the Nile plus associated tributaries is particularly encouraging, as the 

Levant has 87Sr/86Sr values >0.707 and the Nile and its tributaries are <0.707.  Obviously 

the downfalls are the great lacunae in geographical strontium values which will limit the 

ability to provenance with absolute certainty, as well as the danger of diagenesis with the 

seawater of the Mediterranean, which would tend to pull either endmember (the Levant 

versus the Nile) toward the middle (although slightly more to the Levant side).  
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Chapter 11 

Analytical Procedures, Sample Preparation, and Description of the Uluburun and 
Maraş Fili Samples 

 
Researchers have concluded that there is no difference between using bone and 

ivory (other than that ivory grows by accretion and represents growth over lifetime, 

whereas bone has a turn-over rate) and that their isotope ratio values can be compared 

within the same set (Vogel et al. 1990: 748; van der Merwe et al. 1990: 745; Koch et al. 

1995: 1340-3).  Ivory sample sizes required for analysis are generally 2-3 mg, although a 

mass spectrometer can measure samples less than a milligram (Tykot and Staller 2002).  

The samples were processed for collagen and apatite and analyzed using mass 

spectrometry at the University of South Florida.  Samples were sent to MURR (Missouri 

University Research Reactor) for analysis of strontium isotope ratios by HR-ICP-MS.  

For descriptive details on the specific samples analyzed see Table 8. 

Four ivory samples (KW 744, KW 1182, KW 1192, and KW 3843) and 3 bone 

samples (MTA 2142, MTA 2711, and MTA X) were selected for collagen (see Table 9).  

The ivory and bone collagen samples for carbon and nitrogen stable isotope ratio analysis 

were prepared according to the laboratory protocol of the Laboratory of Archaeological 

Science at the University of South Florida.  The samples were ultrasonically cleaned in 

acetone, the solution poured off, and the samples dried in a drying oven at 60°C for 24 

hours.  Approximately 200 mg of whole ivory or bone were then weighed out from each 

sample and 50 mls of 2% HCl acid was added to remove the bone mineral (apatite) 

portion of the sample.  After 24 hours the ivory and bone samples were cut into smaller 

pieces so as to increase the surface area and thereby ensure the reaction followed to 
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Table 8: Description of Uluburun ivory and Maraş Fili bone samples 

Sample 
number 

Material Sample Description Site Initial 
weight 

(g) 

Apatite 
USF# 

Collagen 
USF# 

KW 744 Ivory Hippopotamus canine.  Fragmentary, white with brown 
surface. 

Uluburun 0.60 
 

5862 5876 

KW 1182 Ivory Hippopotamus tusk fragment.  Fragmentary, green with 
dark green/black surface. 

Uluburun 1.70 
 

5863 5877 

KW 1192 Ivory Hippopotamus canine.  Fragmentary, light green and white 
with light brown surface. 

Uluburun 7.05 
 

5864 5878 

KW 1523 Ivory Hippopotamus canine.  White with light brown surface. Uluburun 0.30 
 

5865 N/A 

KW 2557 Ivory Hippopotamus tusk fragment.  Fragmentary, light 
green/light brown. 

Uluburun 0.32 
 

5866 N/A 

KW 2877 Ivory Hippopotamus incisor.  Fragmentary, light green with 
some dark green. 

Uluburun 0.24 
 

5867 N/A 

KW 3614 Ivory Hippopotamus incisor.  Very fragmentary, light brown 
with some medium brown. 

Uluburun 0.10 
 

5868 N/A 

KW 162 Ivory Elephant tusk.  Very fragmentary, light green with some 
dark brown.  Noticeably treated with consolidates. 

Uluburun 0.11 
 

5869 
 

N/A 

KW 3843 Ivory Hippopotamus incisor.  Fragmentary, white with some 
gray. 

Uluburun 1.06 
 

5870 5879 

KW 2534 Ivory Artifact (Duck-shaped cosmetic container).  Extremely 
fragmentary, light green with some medium green. 

Uluburun 0.03 
 

5871 
 

N/A 

KW 1723 Ivory Artifact (scepter).  Extremely fragmentary, off-white.  
Analyzed only for strontium isotopes. 

Uluburun < 0.01 
 

N/A 
 

N/A 

MTA 2142 Bone Elephas maximus molar.  Last pre-erupted molar from left 
jaw cavity. 

Maraş 
Fili. 

54.65 
 

5873 
 

5880 

MTA 2711 Bone Rib of Elephas maximus.  Flakes from left anterior rib  
(rib 3, 4, or 5). 

Maraş 
Fili. 

0.72 
 

5874 
 

5881 

MTA  X Bone Rib of Elephas maximus. Maraş 
Fili. 

140.00 
 

5875 5882 
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Table 9: Collagen samples for analysis of carbon and nitrogen isotope ratios 

 
 
 
 

USF # Museum 
Catalog # 

Site Country Material Sample Description Initial 
weight (mg) 

5876 KW 744 Uluburun Turkey Ivory Hippopotamus canine 245.58 
5877 KW 1182 Uluburun Turkey Ivory Hippopotamus tusk fragment 209.79 
5878 KW 1192 Uluburun Turkey Ivory Hippopotamus canine 223.59 
5879 KW 3843 Uluburun Turkey Ivory Hippopotamus incisor 243.84 
5880 MTA 2142 Maraş Fili Turkey Molar Elephas Maximus molar.  Last 

pre-erupted molar from left jaw 
cavity 

362.31 

5881 MTA 2711 Maraş Fili Turkey Bone Rib of Elephas Maximus.  
Flakes from left anterior rib 
(rib 3, 4, or 5) 

568.08 

5882 MTA X Maraş Fili Turkey Bone Rib of Elephas Maximas 361.57 
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completion.  Sample USF 5879 (KW 3843) was lost after this first 24 hour period, 

indicating the sample was poorly preserved and had retained no viable collagen.  The 

HCl solution was poured off and replaced with fresh HCl solution, and allowed to sit for 

another 24 hours.  After 24 hours the remaining ivory samples (USF 5876, 5877, and 

5878) exhibited a clear solution (that is, was not colored yellow) and no bubbles, so the 

samples were removed from solution and dried in the oven at 60°C for 24 hours.  The 

HCl solutions of the remaining bone samples (USF 5880, 5881, and 5882) were replaced 

and the samples allowed to sit another 24 hours.  This was again repeated the next day, 

and samples USF 5881 (MTA 2711) and USF 5882 (MTA X) were lost during this stage. 

Ten ivory samples (KW 744, KW 1182, KW 1192, KW 1523, KW 2557, KW 

2877, KW 3614, KW 162, KW 3843, and KW 2534) and 3 bone samples (MTA 2142, 

MTA 2711, and MTA X) were selected for apatite (see Table 10). The ivory and bone 

apatite samples for carbon and oxygen stable isotope ratio analysis were also prepared 

according to the laboratory protocol of the Laboratory of Archaeological Science at the 

University of South Florida.  The samples were ultrasonically cleaned in acetone, the 

solution poured off, and the samples were dried in the drying oven at 60°C for 24 hours.  

Approximately 20 mg of each sample was weighed out and pulverized using a mortar and 

pestle.  The samples were treated with 1 ml of 1M acetic acid/sodium acetate buffer 

solution for 24 hours, after which the samples were centrifuged and the solution was 

poured off.  The samples were then rinsed with distilled water and centrifuged again, and 

this process of rinsing with distilled water and centrifuging was repeated four times.  The 

samples were dried in the oven at 60°C for 24 hours, and the resulting ivory or bone 

powder of each sample was weighed.  The collagen and apatite samples were analyzed by 
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Table 10: Apatite samples for analysis of carbon and oxygen isotope ratios 
 
 
USF # Museum 

Catalog # 
Site Country Material Sample Description Initial 

weight (mg) 
Final 

weight 
(mg) 

Sample 
weight for 
MS (µg) 

5862 KW 744 Uluburun Turkey Ivory Hippopotamus canine 27.98 22.63 1210 
5863 KW 1182 Uluburun Turkey Ivory Hippopotamus tusk fragment 23.20 19.74 925 
5864 KW 1192 Uluburun Turkey Ivory Hippopotamus canine 27.35 23.88 1175 
5865 KW 1523 Uluburun Turkey Ivory Hippopotamus canine 25.40 21.80 1202 
5866 KW 2557 Uluburun Turkey Ivory Hippopotamus tusk fragment 24.89 21.51 1190 
5867 KW 2877 Uluburun Turkey Ivory Hippopotamus incisor 20.82 17.52 1091 
5868 KW 3614 Uluburun Turkey Ivory Hippopotamus incisor 25.34 21.01 1088 
5869 KW 162 Uluburun Turkey Ivory Elephant tusk 33.24 28.59 1227 
5870 KW 3843 Uluburun Turkey Ivory Hippopotamus incisor 31.63 25.91 1184 
5871 KW 2534 Uluburun Turkey Ivory Artifact (Duck-shaped cosmetic 

container) 
25.25 6.67 1123 

5873 MTA 2142 Maraş Fili Turkey Molar Elephas Maximus molar.  Last 
pre-erupted molar from left jaw 
cavity 

31.46 25.60 998 

5874 MTA 2711 Maraş Fili Turkey Bone Rib of Elephas Maximus.  
Flakes from left anterior rib (rib 
3, 4, or 5) 

37.08 28.21 1019 

5875 MTA X Maraş Fili Turkey Bone Rib of Elephas Maximas 31.07 22.00 1092 
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a Finnigan MAT Delta plus XL mass spectrometer at the University of South Florida, and 800-

1200 µg of each sample was weighed out for analysis. 

Approximately 2-3 mg is required for strontium isotope ratio analysis by ICP-MS, 

utilizing a Thermo Elemental Axiom high resolution magnetic sector ICP.  A standard sample 

preparation for strontium isotope ratio analysis is described in Sealy et al. (1991).  The strontium 

samples were prepared by MURR and placed in aqueous solution for analysis by HR-ICP-MS.   

Samples were chosen for analysis of apatite, collagen, and strontium isotopes based on 

the available amount of the sample sent by Cemal Pulak, the excavator of the Uluburun.  As may 

be seen from Table I, some samples were quite large and all three analyses could be performed 

for these.  Six samples did not have enough for analysis of collagen, and the sample from a 

carved ivory sceptor (KW 1723) only had enough for strontium isotope analysis (< 0.01 g). 

Photographs of the larger samples are presented as Figures 66 through 72: the Uluburun 

ivory samples are Figures 74 to 78 and the Maraş Fili elephant bone samples are given in Figures 

79 and 80.  A slight greenish color may be discerned in Figures 66-69, which is due to the in situ 

proximity of the ivory to the copper ingots. 
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Figure 66: KW 1182 (Hippopotamus tusk fragment). 
 

 
 

 
Figure 67: KW 1192 (Hippopotamus canine). 
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Figure 68: KW 1523 (Hippopotamus canine). 
 

 
 
 
 

Figure 69: KW 2557 (Hippopotamus tusk fragment). 
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Figure 70: KW 3843 (Hippopotamus incisor). 

 

 

Figure 71: MTA 2142 (Elephas maximus molar.  Last pre-erupted molar from  
left jaw cavity). 
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Figure 72: MTA X (Elephas maximus rib). 
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Chapter 12 

Results and Discussion 

 

Results of the Isotope Ratio Analyses for Carbon, Oxygen, Nitrogen, and Strontium 

The results of the carbon and oxygen isotope ratios from apatite for the ten 

Uluburun ivory samples and three Maraş Fili bone samples are listed in Table 11.  These 

results are moreover presented graphically as a simple X-Y plot in Figure 73.  The carbon 

and nitrogen isotope ratios from collagen for four ivory samples and three bone samples 

are given in Table 12. 

Unfortunately the results from the ICP-MS measurement of strontium isotope 

ratios are difficult, if not impossible, to interpret.  The samples were analyzed several 

times and different numbers were given for many of the samples, suggesting the 

particular type of ICP-MS employed lacked the necessary precision.  Interpretation of the 

carbon, oxygen, and nitrogen isotopes, as well as a discussion regarding the lack of 

reliable strontium measurements follows in the next section. 

 

Interpretation of the Stable Carbon, Oxygen, and Nitrogen Isotope Ratio Analyses 

of Apatite and Collagen 

From Figure 73 it is evident almost immediately that there are distinct groupings 

from the Uluburun and Maraş Fili samples.  Foremost of these is the expected grouping 

according to animal, as the discussion from Chapters Seven and Eight on the diet and 

ecological requirements of hippopotami and elephants demonstrated that elephants tend 

to have a higher reliance on C3 browse, since elephants are generalist mixed feeders



170 

 
 
Table 11: Results of mass spectrometry analysis of carbon and oxygen isotope ratios in apatite 

 
 

USF # Museum 
Catalog # 

Site Country Material Sample Description δ13C δ18O 

5862 KW 744 Uluburun Turkey Ivory Hippopotamus canine -2.7 2.3 
5863 KW 1182 Uluburun Turkey Ivory Hippopotamus tusk fragment -3.2 1.0 
5864 KW 1192 Uluburun Turkey Ivory Hippopotamus canine -2.1 0.3 
5865 KW 1523 Uluburun Turkey Ivory Hippopotamus canine -3.7 2.7 
5866 KW 2557 Uluburun Turkey Ivory Hippopotamus tusk fragment -4.3 2.1 
5867 KW 2877 Uluburun Turkey Ivory Hippopotamus incisor -2.3 2.3 
5868 KW 3614 Uluburun Turkey Ivory Hippopotamus incisor 0.4 1.0 
5869 KW 162 Uluburun Turkey Ivory Elephant tusk -9.6 0.2 
5870 KW 3843 Uluburun Turkey Ivory Hippopotamus incisor -5.3 1.2 
5871 KW 2534 Uluburun Turkey Ivory Artifact (Duck-shaped cosmetic 

container) 
-3.0 1.1 

5873 MTA 2142 Maraş Fili Turkey Molar Elephas Maximus molar.  Last 
pre-erupted molar from left jaw 
cavity 

-7.3 -1.7 

5874 MTA 2711 Maraş Fili Turkey Bone Rib of Elephas Maximus.  
Flakes from left anterior rib (rib 
3, 4, or 5) 

-7.0 -1.1 

5875 MTA X Maraş Fili Turkey Bone Rib of Elephas Maximas -5.1 0.8 
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Figure 73: δ13C versus δ18O for Uluburun ivory and Maraş Fili bone samples. 
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Table 12: Results of mass spectrometry analysis of carbon and nitrogen isotope ratios in collagen  
(* = not accepted as accurate because collagen not preserved, as indicated by absence of N2 to measure) 

 
 

USF # Museum 
Catalog # 

Site Country Material Sample Description δ13C δ15N C:N Ratio 

5876 KW 744 Uluburun Turkey Ivory Hippopotamus canine -19.0 5.0 4.6 
5877 KW 1182 Uluburun Turkey Ivory Hippopotamus tusk fragment -30.2* N2 below 

detection 
N/A 

5878 KW 1192 Uluburun Turkey Ivory Hippopotamus canine -30.6* N2 below 
detection 

N/A 

5879 KW 3843 Uluburun Turkey Ivory Hippopotamus incisor N/A N/A N/A 
5880 MTA 2142 Maraş 

Fili 
Turkey Molar Elephas Maximus molar.  

Last pre-erupted molar from 
left jaw cavity 

-19.1 10.2 3.4 

5881 MTA 2711 Maraş 
Fili 

Turkey Bone Rib of Elephas Maximus.  
Flakes from left anterior rib 
(rib 3, 4, or 5) 

N/A N/A N/A 

5882 MTA X Maraş 
Fili 

Turkey Bone Rib of Elephas Maximas N/A N/A N/A 
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and hippopotami are grazers.  To compare the carbon isotope ratios from apatite with 

those from collagen 7 per mil must be  subtracted from the apatite values (since there is a 

+5 fractionation from the diet of the animal to their collagen and a +12 fractionation from 

diet to bone apatite).  Past isotopic research considered in Chapter Nine was 

overwhelmingly concerned with elephant diet and generally used collagen, as the 

researchers were using modern samples not affected by the preservation issues which 

plague archaeological samples.  Unfortunately most of the samples for this thesis are 

hippopotamus, and all but one of the elephant samples are from a known region: 

southeastern Turkey.  These factors restrict comparisons between the carbon and oxygen 

isotope ratios of the Uluburun samples with past isotopic research.   

 In general, however, the hippopotamus ivory is closely clustered in Figure 73, and 

the duck-shaped cosmetic container (KW 2534) is very likely fashioned from 

hippopotamus ivory.  The elephant tusk (KW 162) holds the most negative carbon 

isotope ratio (-9.6‰), and compared to elephant collagen data from Chapter Nine (after 

subtracting 7 per mil), a value of -16.6‰ would cluster close to those arid regions where 

elephants must rely on C4 the most, compared to other elephants.  These regions include 

East Tsavo, Kenya (average δ13C = -16.4‰), Addo in South Africa (average -17.0‰), 

and the famous “desert” elephants of Namibia (-19.0‰) (see Table 3 from van der 

Merwe et al. 1988: 166-167, Table 4 with data from Tieszen et al. (1989) and Figure 44 

from van der Merwe et al. 1990).  However, the sample sizes for all these regions are 

small (n ≤ 5).  The large study conducted by Ishibashi et al. (1999) also shows 

similarities between the Uluburun elephant tusk (KW 162) and elephants from arid 

regions, such as Ethiopia (-17.5‰) and South Africa (see Figure 43).  Other research 
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summarized in Chapter Nine is not useful for comparison, as the δ13C values have too 

wide a spread for Amboseli National Park, Kenya (Koch et al. 1995, see Figure 39), and 

Tieszen and Imbamba (1980) were analyzing feces of the hippos and elephants, not 

collagen or apatite.  In Figure 73 the elephant sample does group near to the Maraş Fili 

samples as well, but the Maraş Fili samples are some of the most positive δ13C 

encountered in any isotopic study of elephants.  Either the Uluburun’s elephant ivory 

came from a region where elephants had an extremely heavy reliance on C4 grasses, such 

as very arid grasslands, or there is a problem of preservation.  Calcite carbonates from the 

ocean water may be incorporated with time or semi-fossilization may occur, and the 

presence of this contaminating carbon may be detected by using X-ray diffraction (XRD). 

 The oxygen isotope values from the Uluburun and Maraş Fili samples fit well 

with the δ18O values of the eastern Mediterranean, as depicted in Figure 53 (Schilman et 

al. 2001: 168).  The ocean water of the southeast Mediterranean has δ18O ranging from 

+1.4 to 2‰, the Nile is +2‰, the monsoonal rainfall from the Ethiopian highlands ranges 

from 0 to –2.9‰, and Mediterranean rainfall averages at -5.6‰.  The extent of diagenetic 

effects on stable oxygen isotope ratios and the multitude of factors controlling δ18O 

values in animal bone are still poorly understood, so I hesitate to draw conclusions on the 

oxygen isotope data.  Nevertheless, the δ18O values do fit well with the eastern 

Mediterranean, and diagenesis from the ocean water would have acted to pull the 

Uluburun hippopotamus δ18O values further towards the negative or zero, as most of 

these values are greater than +2‰.  Also, I suspect hippopotami will pick up the oxygen 

isotope signature of the water source which they inhabit during the day, so that the Nile 

valley as a potential source of most of the hippopotamus tusks would not be so far-
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fetched (with the Nile ≈ +2‰).  The Maraş Fili samples overall have more negative δ18O 

values, which also accords well with an environment (whether the elephant’s or the burial 

conditions) more influenced by Mediterranean rainfall.   

 Overall, though, the carbon and oxygen isotope data are essentially inconclusive, 

especially since it is uncertain how affected the samples were by diagenesis.  Apatite 

tends to be less susceptible to preservation issues than collagen, in that it may still be 

retrievable in the laboratory, which is why this investigation has utilized apatite for 

isotopic analysis.  As the processing of the collagen samples clearly verified, retrieval of 

the collagen component of the ivory and bone proved much more difficult.  Three 

samples (KW 3843, MTA 2711, and MTA X) were lost during processing, as there were 

no more viable collagen remaining in these samples, and in two of the samples (KW 1182 

and KW 1192) the collagen was not preserved, so that the nitrogen (in the form of N2 

gas) was not detectable.  The δ13C results for these two samples were not accepted as 

reliable, and therefore discarded, since the collagen was not preserved.  Another standard 

indicator of deterioration of the original isotopic signal is the ratio of %C to %N, and 

acceptable values range from 2.9 to 3.7.  From the two samples (KW 744 and MTA 

2142) which retained detectable nitrogen, only MTA 2142 has an acceptable C/N value at 

3.4 (see Table 12).  Only samples which show this sort of preservation should be 

considered as an accurate description of the original isotopic ratios, so MTA 2142 is the 

only collagen sample suitable for interpretation, and this thesis is not attempting to source 

MTA 2142 as its provenance is already known.  The δ13C value of the collagen was -

19.1‰, while the carbon from the apatite for the same sample was -7.3‰.  This is a 

difference of greater than 7 per mil, suggesting the apatite was contaminated by 
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carbonates in the groundwater of the depositional environment.  Collagen is not subject to 

such contamination.  The nitrogen isotope ratio of +10.2‰ is standard for semi-arid 

environments, as the δ15N of elephants will be higher than 10‰ in areas with <500 mm 

rainfall per annum (Heaton et al. 1986).  

 

Interpretation of the Strontium Isotope Ratio Analysis by HR-ICP-MS 

 The results of the strontium isotope analysis by ICP-MS are disappointing, but the 

data serve a purpose in highlighting the problems involved in isotopic analysis.  The 

entire sample set was analyzed several times with different numbers returned for each 

run.  Some of the samples were run through the mass spectrometer as many as four times 

without obtaining similar enough measurements.  Thus the primary challenge is precision 

of measurement.  There are several types of ICP mass spectrometers, the differences 

lying primarily in how the particular isotopes or elements are measured or collected.  

Quadrupoles are the most common ICP-MS, although a newer version is the high 

resolution (HR-ICP-MS) magnetic sector instruments with single or multiple collectors.  

Our investigation used HR-ICP-MS, which has showed isotopic discrimination between 

sources for some studies, although not yet for strontium isotope ratio analysis.  Previous 

strontium isotope studies (cf. Price et al. 1994a, 1994b, 1998, 2000, 2001; Vogel et al. 

1990; Koch et al. 1997; Grupe et al. 1997) either had favorably large distinction between 

regional strontium values or utilized a TIMS (Thermal Ionization Mass Spectrometer).  

While ICP-MS scans the whole mass spectrum and is most suited to measuring elemental 

concentrations, TIMS has the ability to focus on specific mass ranges, which is much 

more appropriate for isotopic applications and gives better measurement precision, 
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especially multiple measurements such as ratios.  Analysis of the Uluburun and Maraş 

Fili samples by TIMS was prohibitively expensive, and requires 5-10 mg of sample as 

opposed to the 2-3 mg required for ICP-MS.  As forewarned in Chapter One, this 

investigation was a pilot study in determining the efficacy of source discrimination of 

archaeological ivory.  Ivory is a unique material because the science behind sourcing it 

has been established for modern samples, and for materially comparable bone samples 

from archaeological contexts, but only very small sample sizes are available for study 

since it is a valuable material, and made more valuable with time.  Moreover, as this 

thesis is a pilot study, a beneficial and fitting conclusion is to end with suggestions for 

future provenancing research on ivory.  Another aim of this study, however, was to 

investigate the mechanisms of the ivory trade, and to situate the archaeometric data 

within the cultural context and larger research questions of the Late Bronze Age in the 

eastern Mediterranean.  Indeed it is to this end that it must be established whether a 

successful source discrimination of ivory by isotopic analysis is worth further time and 

money (cf. Cherry and Knapp 1991). 

 

Mechanisms of Late Bronze Age trade in the Eastern Mediterranean and 

Theoretical Considerations 

Shipping was indirect, involving different outbound and inbound routes, often 

hugging the coast and articulating with smaller regional shipping cycles at trade entrepots 

such as Ugarit, Enkomi, Kommos, and Marsa Matruh.  The ivory trade probably followed 

the metals trade, and most of the copper in circulation hailed from Cyprus, whereas most 

of the gold was Egyptian.  Bigger ships were required for the metal-heavy cargoes and 
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longer distances, and ivory would have served as an excellent “space-filler” or ballast 

item (Gill 1993: 235).  The Uluburun data support such a view of an important but 

usually archaeologically invisible trade in raw materials (often including vast amounts of 

metal), and serves as a calibration for the archaeological record (Bass 1991; Sherratt and 

Sherratt 1991: 373).  The Uluburun is, moreover, confidentally interpreted as a royal, or 

ruling-elite, shipment which was following a tramping counter-clockwise course to the 

Aegean when it sank (Bass 1991: 76).  However, this tramping cabotage trade should be 

characterized as more decentralized than implied by our current notions of what a “royal” 

shipment means, in particular when taking the quotidian and heterogeneous nature of the 

Cypriot pottery into account (Hirschfeld 2004).   

The archaeological and historical context of ivory is characteristically elite-

centered, being socially embedded in dialogues of power, conspicuous consumption, and 

royal gift-exchange.  Recognition of the archaeological correlates of social stratification 

has been one of the first steps in the interpretation of the material record, followed by a 

focus on the rich and powerful and what was seen as the historically important major 

political actors.  The acknowledgment of the significance of other social classes and 

every-day events to the overall reconstruction of culture history was a just counter-

balance to the previous emphasis on the rich, powerful, and “history-worthy.”  It forced 

archaeologists to unleash cultures from bounded homogenous units and refract the result 

into a spectrum of heterogeneity where population-oriented rather than typology-oriented 

thinking was required.   

Thus I argue that while the ruling class and elites have been the subject of much 

(some would say too much) archaeological research, it is worth considering their role 
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again in light of an unbounded, population-focused, concept of culture (see also 

Schortman 2001: 372).  So in the analysis of LBA trade the “culture of the elite,” “the 

culture of merchants,” and the “culture of craft specialists” must be considered.  The 

ruling elite and their merchants, who served as ambassadors of sorts in trading ventures 

which were essentially diplomacy via gift-exchange, were operating in an increasingly 

international environment.  The LBA is known for its cosmopolitan and 

internationalizing character, and artisans in their workshops were carving in an 

Internationalizing style which reflected the times.  In this setting the ivory trade 

represents these lateral relationships throughout the eastern Mediterranean.    

Previous discussions on Late Bronze Age trade centered around Levantine versus 

Aegean agency were not useful.  This discourse had quite a bit of momentum in the 

literature (e.g. Liverani 1987: 68) and the Uluburun shipwreck was unwittingly pulled 

into these discussions (see Bass 1991; Knapp 1993: 335).  As Knapp (1993) and Sherratt 

and Sherratt (1991: 337) argued, looking for specific agents of trade within nationalities 

(Syrian/Canaanite/Semitic versus Minoan/Mycenaean) is misleading, for reasons 

discussed above and also because no monopoly on trade or thalassocracy existed at this 

time.  So many were trading that there were no serious inequalities in trade in the region. 

More useful are those discussions taking centralized royal trade initiatives versus 

decentralized cabotage merchant trade as their starting point.  These debates have 

focused on economic theory and the role of merchants in attempting to illuminate the 

mechanisms of LBA trade.  The “primitivist” or “substantivist” (per Karl Polanyi) 

schools of economic thought considered the economy as driven by reciprocity (including 

royal gift-exchange) and redistribution.  The large storage facilities of the palace 
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economies of the Aegean and Near East were taken as evidence of redistributive 

economies focused on the internal procurement of resources, and thus import-led trade.  

Most important, ancient economics could not be interpreted in modern economic 

frameworks (because they were not market economies), and the ancient economy was 

socially embedded.  Short distance redistributive trade was viewed as more important 

than long-distance trade (Sherratt and Sherratt 1991: 352-353; Melas 1991; Snodgrass 

1991; Finley 1965, 1981; Ratnagar 2001: 353; citing Polanyi 1946: 51-53).  Sherratt and 

Sherratt (1991: 353) contend that while this debate has been beneficial “in exorcising 

anachronistic modernism, it has too often resulted instead in replacing it with an equally 

anachronistic primitivism.”  They argue, along with Knapp (1993), for an export-led, 

consumption-oriented perspective of economy which “looks at the incentive to trade: the 

desire, on the part of a minority, to acquire goods which have… social significance.  The 

goods themselves acquire such significance as parts of social practices” (Sherratt and 

Sherratt 1991: 354) which include social strategies of recruitment and exclusion.  The 

desire for valuable goods (metal as well as luxury goods such as worked ivory) on the 

part of elites motivated the intensification of local production and the extraction of 

surplus.  Moreover, any sort of dichotomy between reciprocal gift-exchange and bulk 

trade in raw materials obscures understanding of LBA trade mechanisms (Peltenberg 

1991: 170), and indeed, the cargo of the Uluburun contained luxury items alongside a 

huge cargo of metal ingots.   

Entrepreneurship and the degree of autonomy maintained by merchants are 

closely tied in reconstructions of LBA economy.  Gift-exchange between elites, as 

documented most clearly in the Amarna letters, occurred under the agency of envoys 



181 

between rulers, who were involved in diplomatic relations but frequently traveled with 

merchants.  The merchants, likewise, operated within this framework of international 

relations and benefited from it, but were semi-independent and commercially-oriented 

(Peltenberg 1991: 169; Sherratt and Sherratt 1991: 365; Warren 1991: 295).  That is, non-

palatial markets existed alongside palace-centered gift-exchange, particularly in a shared 

interest in the procurement of raw materials.  Merchants were never completely 

autonomous because they were subject to taxation and agreements between rulers.  The 

tamkars of Ugarit are the best example of the commercial merchant in the LBA.  The title 

is mentioned in Ugaritic lists of professions, sometimes as an office appointed by the 

king (Kuhrt 1995: 302-303; Warren 1991: 295; Snodgrass 1991: 17).  In one instance a 

merchant, Sinaranu, was freed from taxation, possibly on account of his connection with 

the Aegean: 

Declaration of Ammistamru, King of Ugarit (RS/PRU III, 16.238:1-11) 

From this day, Ammištamru, son of Niqmepa, king of Ugarit, has ‘freed’ (from 

import duty) Sinaranu, son of Sigina.  As the Sun (the Hittite king) is free, he is 

free.  His grain, his beer, his oil need not enter into the palace (for accounting).  

His boat is free (from duties), if his boat comes from Crete (Kabturi) (quoted in 

Knapp 1991: 68, see also Peltenberg 1991: 169). 

In a similar document a tamkar is exempted from serving in a diplomatic office (PRU III, 

105; cited by Peltenberg 1991: 167).  In return for services these state merchants received 

land and rations from the palace.  Foreigners also operated in Ugarit as merchants, 

including merchants from Cyprus (Alashia) and the merchants of Ura, from a town 

located in Cilicia, who managed the grain shipments to Hatti on behalf of the Hittites 
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(Kuhrt 1995: 302-303; Peltenberg 1991: 167; Zaccagnini 1977).  Apparently the Hittite 

king was irritated with the economic independence of his merchants in Ugarit, and in an 

edict of Hattusili III (ruled 1275-1245/1264-1239 B.C.) curtailed the transactions of the 

Ura merchants by forbidding them to invest money or buy property in Ugarit.  Nor could 

they accept Ugaritic property as collateral in loans, claim property from past debtors, or 

live in Ugarit during the summer (Kuhrt 1995: 309-310).  Similar royal interventions in 

the commercial activity of merchants include a Hittite-Egyptian agreement regarding 

Hittite merchants in Egyptian territory (southern Beqa valley) acquired after the 

Mitannian-Egyptian alliance (Kuhrt 1995: 324-328), and a 13th century treaty by 

Sausgamuwa, which banned Ahhiyawan merchants from access to Assyria through the 

Syrian ports of Amurru (Peltenberg 1991: 168). In one of the Amarna letters (EA 39: 10-

16) the diplomatic envoys sent by ruling elite to the Egyptian court is described as a 

merchant (Luce 1998: 60).  International trade and diplomacy were inextricably linked. 

 Gift-exchange amongst the ruling elite also involved the exchange of specialists 

such as physicians, scribes, cooks, seers, chariot-makers and sculptors, which were sent 

from one palace to another (Zaccagnini 1983: 248-251).  Thus craft specialists, such as 

those that carved and worked ivory, were also bound up in international relations, and 

this is reflected in the Internationalizing style of pottery decoration, sculpture (wood, 

stone, and ivory), architecture (domestic and funeral), and bronze working.  This was a 

common stylistic eastern Mediterranean koine of the LBA (Melas 1991: 391).  The 

mechanisms of LBA trade also show a separation of production from the source, as a 

trade in the raw material of ivory must be distinguished from the trade in prestige goods 

fashioned from ivory.  In fact, those huge storerooms of the major palace centers, which 
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the substantivists and primitivists cite as evidence that the palace economy was 

essentially a redistributive system, should be replaced with an emphasis on the 

workshops and manufacturing areas.  In this light the palace economy was essentially 

exploitative and collected products (agricultural or luxury items) in the large storerooms 

to increase demand and therefore value, rather than to provide subjects with the benefits 

of redistribution (Sherratt and Sherratt 1991: 366).  In fact the recipients of redistribution 

were other ruling elites (Ratnagar 2001: 355), and the raw material of ivory tusks was 

“stored” in a sense and converted to luxury items in workshops, so that “additional labor 

inputs had a direct effect on value; and it is the central concentration of production in an 

attempt to monopolize this added value” which characterizes the palace economy 

(Sherratt and Sherratt 1991: 359).  As discussed in Chapter Five, workshops may have 

tightly controlled ivory in the Aegean, as Linear B texts record ivoryworkers as receiving 

ivory from the royal storerooms and then returning the finished object back to storage 

(Warren 1991: 295; Peltenberg 1991: 166, 169, 172).  The most common ivory-carving 

style in the eastern Mediterranean has been called Egyptianizing or Orientalizing (recall 

Chapter Five) but is more accurately titled Internationalizing, as it was a conglomeration 

of styles from all the major palace centers.  The Internationalizing style replaced an 

indigenous Aegean style in the Late Bronze Age (Sherratt and Sherratt 1991: 370; 

Peltenberg 1991: 166).  As the Aegean had no local sources of ivory, the 

Internationalizing style was likely transported along with the material and the material’s 

name from Syria-Palestine, ivory in Linear B (e-re-pa) is derived from a Semitic 

language (Cline and Cline 1991: 52; Astour 1964; 1973).   
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 Across the eastern Mediterranean the Internationalizing style in ivory carving may 

be regarded as a common symbolic language, laterally tying together in aesthetic fashion 

the ruling elites.  Because the style was so common, and subject to mass production (as in 

Ugarit), elite demand would have encouraged competition between palace centers.  Some 

form of economic competition may have operated at this time, as the King of Cyprus 

offers an Egyptian pharaoh a better deal than he can get elsewhere (EA 35:50-53; cited 

by Peltenberg 1991: 170), and the Cypriots were also producing cheaper imitations of 

Mycenaean pottery, especially drinking sets, for import to the Levant (Sherratt and 

Sherratt 1991; see also Gittlen 1981, and for the Early Iron Age see Winter 1976: 21-22).  

Interestingly, in the Aegean two palaces centers within three kilometers of one another, 

Mycenae and Tiryns, have very different eastern imports.  Mycenae has predominantly 

Egyptian imports with very little Cypriot material, while Tiryns has the opposite case 

(Cline and Cline 1991: 54).  A similar case has been uncovered at Laish/Dan and Akko in 

Palestine, where the Mycenaean ceramic imports recovered in Laish/Dan came 

exclusively from the Mycenae/Barbati region and the Akko imports came from Nichorie 

in Messenia (Gunneweg and Michel 1999).  There is also an almost complete absence of 

trade between Hittite Anatolia and the Aegean, suggesting an embargo of some sort 

(Cline and Cline 1991: 52; Sherratt and Sherratt 1991: 370).  Late Bronze Age trade then 

was not a monolithic entity but composed of a great deal of circuits of various sizes, 

some articulating with one another.  These routes were governed by international 

relations which relied on good will between the ruling elite as expressed through gift-

exchange of luxury items such as ivory.  Those luxury items carved from ivory or 
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incorporating ivory likewise manifested this international diplomacy symbolically in the 

Internationalizing style. 

Thus, in the final analysis, exchange should be viewed as a form of diplomacy 

rather than “economic” as defined by the modern western understanding of economics 

(see also Bradley and Edmonds 1993; Jones 2002).  The trade in ivory in the eastern 

Mediterranean during the Late Bronze Age must ultimately be seen as the exchange of 

symbols, expressed as the exchange of their material correlates, which legitimated social 

relations and could be manipulated, particularly in the act of emulation, competition, or 

the pursuit of reputation (Bourdieu 1977; Hodder 1982: 209; Melas 1991: 393-395; 

Knapp 2000).  Speaking more generally, consumption should be viewed as “using things 

in social acts” (Gosden 1999: 163).  As emphasized in the introduction, this investigation 

has at its foundation a materials perspective, both from a scientific archaeometric angle 

and from the recognition of the symbolic nature of material culture, in particular the 

symbolic significance of ivory.  Moreover, one of the advantages of material culture, of 

artifacts, in shaping social relations is via the mobility of the object, so that social 

influence may be extended geographically and temporally (Jones 2002).  Luxury items 

fashioned from ivory, or even simply the raw material, held a value beyond their relative 

scarcity, which was to express the importance of being related to a certain person (or 

group, polity, or idea) (Sherratt and Sherratt 1991: 354-356).  In gift-exchange between 

the ruling elite the relationship was embedded within international diplomacy and could 

express political affiliation, royal approval, obligation, favor seeking, or even simply the 

desire to locate other humans similar to oneself.  The Hittite and Egyptian royal families 

exchanged letters on a regular basis, royal children writing to other royal children, wives 
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to other wives.  There was a practicality to international relations in the LBA, as the great 

powers of the Egyptians, Mitanni, and Hittites shared common borders and were forced 

into a “conditioned coexistence” (a term coined by Liverani 1987: 68).  Expansion was 

not possible by land, and the minor kingdoms within Syria, Palestine, and Nubia acted as 

merchants to the great powers.  Cyprus led the way with commercial exchange, 

answering to none for its political legitimation and controlling most of the copper 

resources.  The international relationships could be viewed cynically as masking purely 

commercial intentions, but this is probably not the case. 

 From the letters exchanged between the ruling elite and other historical sources, 

the fundamental ideas “expressed with obsessive insistence” (Liverani 1987: 67) were 

reciprocity and brotherhood.  Other ideas included “generosity and disinterest (even in 

the specific form of an augmented restitution), the contrast between self-sufficiency and 

exchange, the personalization of the gifts… The ideological complex was quite coherent” 

(Liverani 1987: 67; Sherratt and Sherratt 1991: 371).  Gift-exchange could also be 

presented as tribute to one’s subjects.  But equality was emphasized perhaps because the 

ruling elite were matched well in the specific political configuration of power, but also as 

an inversion of (or reaction to) the growing inequality within societies, inequalities which 

would eventually come to a head at the end of the LBA with the mass destruction and 

population movements throughout the eastern Mediterranean.  The growing inequalities 

and social problems could be ignored if one operated within a “culture of the elite” in 

which peers mutually reinforced one another in their justification of power.  

 A successful isotopic provenancing of ivory would have therefore said something 

about the circulation of these symbols amongst the upper crust of society in the eastern 
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Mediterranean.  The degree to which the objects were passed from one ruler to another in 

a “prestige chain network” (Peltenberg 1991: 168) would be evident, but more important, 

the other trade cycles operating alongside and perhaps outside of royal trade initiatives 

would be finally documented if the ivory samples from the Uluburun shipwreck were 

shown to come from a variety of sources.  This merchant, commercially-oriented, trade is 

widely suspected to have existed, but could be rendered particularly archaeologically 

visible if it were shown to operate even in the realm of a material assumed to be primarily 

controlled by the palace centers.  The Uluburun ship may be a royal exchange venture, 

but the extent of trade in ivory before it was loaded onto the boat could be ascertained.  
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Chapter 13 

Conclusion and Suggestions for Future Research 

To sum up the endeavors of this exploration into the ivory trade of the eastern 

Mediterranean in the Late Bronze Age via recent advances in archaeometric analyses, the 

results must be said to be inconclusive.  The most successful isotopes, in terms of 

retrieval of values to work with, were the carbon and oxygen isotopes from the apatite 

component of the ivory and bone.  However, the carbon and oxygen isotope data must 

remain essentially inconclusive, as it is uncertain to what extent the samples were 

affected by diagenesis.  Possibly these samples could be analyzed by X-ray diffraction 

(XRD) in the future to detect the presence of contaminating carbonates.  However, the 

inquiry itself is not inconclusive as knowledge has been gained in how to approach the 

research program in the next round.  The HR-ICP-MS instrument did not have the 

precision required, but TIMS or other new types of mass spectometers could be utilized 

in the future.   

Overall, several suggestions for further strontium isotope research on ivory are in 

order.  First of all, as recommended by Price et al. (2002), faunal samples from the 

specific regions considered as sources of ivory should be analyzed to determine the 

“biologically-available” strontium.  However, the biologically-available strontium, while 

more accurate than the strontium values available in the geological literature database, 

will differ from ivory samples.  Bone acts as an averaging mechanism for the strontium 

circulating in the environment, whereas ivory grows by accretion.  An average could be 

taken from the ivory sample by taking several micro-samples of each sample, or by 

physically mixing the powdered sample.  At any rate, the variation in ivory would be 
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more significant in elephants, as their diet varies seasonally and the home range of the 

elephant may cover geologically heterogeneous regions.  Hippopotamus ivory would 

likely not show significant variation.  Water and soil samples from the regions would be 

beneficial as well.  Enamel should also be compared with dentine from the same sample 

to determine the extent of contamination and diagenesis in the depositional environment, 

when available.  The probability of finding enamel on archaeological ivory samples is 

very small though.  The enamel is either not present (in the case of elephant ivory and 

most of the teeth of the hippopotamus, excluding the lower canine), or was removed by 

humans (possibly before shipping even), or by nature, as the enamel tends to wear off 

with use.   

The availability of strontium isotope data in the geological literature for some 

regions leaves something to be desired.  The next step would be to search out 

unpublished data by contacting mining companies and governmental geological surveys.  

In general the geological literature is biased, understandably, towards answering research 

questions of interest to geologists.  These tend to concern unusual formations or 

processes.  But the geological literature should not be solely depended on anyway, 

because of the potential differences between biologically-available strontium and 

geological strontium. 

The stable carbon, oxygen, and nitrogen isotopes did not provide isotopic 

signatures like those reported by van der Merwe et al. (1990) and Vogel et al. (1990), 

primarily because the oxygen and nitrogen isotopes were not retrievable or potentially 

contaminated by diagenetic processes.  These isotopes were not expected to differentiate 

source areas, since they are based on diet and environmental factors, and therefore 
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populations from geographically separated regions could have the same isotopic 

signature. XRD should also be conducted on apatite samples to determine to what degree 

the burial environment has affected the integrity of the isotopic signal.   

Strontium isotope ratios, because they are based on the geology of the region, are 

therefore the best suited for provenance studies.  Other isotopes, such as lead (Pb) and 

neodymium (Nd), are also incorporated into bone and ivory of animals from the 

environment based on the underlying bedrock geology.  In the future strontium isotopes 

should be analyzed alongside lead and neodymium, as the more isotopes available to 

compare, the more unique the regional isotopic fingerprints will be, and sophisticated 

statistical analyses may also be performed to better interpret the data (as in, for example, 

Koch et al. 1995).  Lead and neodymium isotopes are furthermore widely available in the 

geological literature, perhaps more so than strontium isotopes.  Lead isotopes have been 

successfully utilized in archaeological research application (Aufderheide et al. 1981, 

1988; Molleson et al. 1986; Gale 1989; Reedy and Reedy 1991; Carlson 1996).  To my 

knowledge neodymium isotopes have not been exploited yet for archaeological purposes.  

Naturally a larger sample size is required, and the most practical solution would 

be to establish a database so that any isotopic research on ivory, or even any research 

utilizing strontium isotopes, could be compared quickly and efficiently.  The problem, as 

usual, is time and money, as TIMS would be essential for adequate precision.  Also, a 

database of a single material type is unnecessarily restrictive, as eventually all categories 

of exchange items should be incorporated to give a broader picture of Late Bronze Age 

trade.  Certainly, the contribution to archaeological research in general of studying trade 

patterns and exchange mechanisms (“the trade perspective” as I call it) is that it offers the 
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“wide” perspective in giving larger scales of analysis, just as “settlement” or “landscape” 

archaeology opened up the focus from site analysis to regional analysis.  As was 

demonstrated here, the trade perspective is capable of encompassing large geographical 

areas and recognizing lateral social relationships, expressed via international relations for 

the ruling elite.  If culture is to be regarded as unbounded and population-based, a move 

must be made to larger scales of analysis.  Moreover, archaeology as a discipline does 

well to elucidate the relationship between “people” and “material things.”  If objects are 

utilized to initiate, shape, maintain, and manipulate social relations, and if one of the 

primary advantages of a given object is its mobility, then studies of long-distance trade 

are especially important for articulating the relationship between small-scale social 

practice and large-scale pan-Mediterranean frameworks.
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