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Abstract: Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico,
was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived
sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined
with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple
regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance,
SST, and turbidity explained 20% of the variation in observed enterococci concentrations based
upon these analyses. Changes in these parameters preceded increases in enterococci concentrations
by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm
of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still
significant, increases in enterococci concentrations were also observed during positive dew point
anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies.
Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when
4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity
anomaly >0.005 sr−1; SST anomaly >0.8 ◦C; and 3-day average MSL anomaly <−18.8 cm. This case
study shows that satellite-derived environmental data can be used to inform future water quality
studies and protect human health.

Keywords: recreational beach water quality; fecal indicator bacteria; coastal water quality; ocean
color; remote sensing

1. Introduction

Fecal pollution is a threat to coastal ecosystems in many countries around the world that carries
important public health and economic consequences. The city of San Juan, the capital of the island
of Puerto Rico in the Caribbean Sea, is located within the Rio Piedras watershed, which receives
the discharge of two centralized wastewater treatment plants (WWTPs; Puerto Nuevo Regional and
Bayamon Regional WWTPs). The Rio Piedras watershed also catches the runoff from agricultural
areas further upstream [1,2] as well as septic seepage [3–5]. While 56% of the Puerto Rican population
is connected to these sewer systems [4,5], the remaining population, especially those located at
higher elevations in San Juan, typically uses septic tanks. These septic tanks discharge approximately
165 million gallons per day directly to streams that empty into coastal waters [3–5]. Inadequate
wastewater treatment prior to ocean outfall discharge, ineffective and old stormwater systems,
and septic systems that leak into the karst geology and streams in the region are a constant and
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present danger to the public, especially because of the large numbers of people that enjoy visiting
these beaches year-round for recreational purposes.

It is impractical to measure the concentrations of all wastewater-associated pathogens. Therefore,
allochthonous gastrointestinal bacteria known as fecal indicator bacteria (FIB; e.g., fecal coliforms,
Escherichia coli, and Enterococcus spp.), are used to characterize water quality [6,7]. While enterococci
have correlated with public health risks in coastal areas with known point sources of fecal
contamination in temperate and sub-tropical regions [7–12], this correlation has only been suggested
in tropical regions [13] and has not been identified in areas exposed to non-point sources of fecal
pollution [14,15]. Since FIB persist in the environment in the absence of active fecal pollution events,
particularly in tropical climates, it is often difficult to differentiate between actual events that pose
a threat to public health and the natural resuspension and growth of FIB in coastal waters [16,17].
Despite the environments important role on enterococci concentrations in tropical surface waters,
few studies have investigated the relationship between environmental conditions and enterococci
concentrations for beaches located in tropical climates [2,6,9,10,13].

The 2012 United States Environmental Protection Agency (US EPA) Recreational Water Quality
Criteria (RWQC) recommends that culturable enterococci concentrations not exceed geometric means
of 35 colony forming units (CFU) per 100 mL for safe recreation [18]. The Puerto Rico Environmental
Quality Board (PREQB) has adopted this recommendation in their coastal recreational water quality
monitoring program. Since October 2015, the public notification has been issued based on the Beach
Action Value (BAV) of 70 CFU/100 mL, recommended by the US EPA National Beach Guidance and
Required Performance Criteria for Grants [19,20]. The PREQB assesses beach water quality throughout
the island every two weeks per the 2000 US Beaches Environmental Assessment and Coastal Health
Act [14,21] and water quality standards of Puerto Rico [22].

Previous water quality studies in Puerto Rico have mostly focused on infrastructure; however,
there have been a handful of short-term studies (i.e., weeks to months) on the relationship
between water quality and environmental conditions [14,23–25]. These investigations showed that
environmental parameters can influence the persistence and concentration of enterococci in recreational
waters. For example, increased precipitation contributed to elevated enterococci concentrations [14].
Enterococci thrived in warmer waters [26] and were inhibited by increased irradiance [27]. Increased
turbidity protected enterococci from ultraviolet (UV) light [28,29]. Enterococci concentrations in beach
water also increased during low tide [30]. It is not known if enterococci co-occurred or correlated
with the presence of wastewater-related pathogens or incidence of infection in these studies. Whether
there is a relationship between FIB and long-term environmental change is a question that has not yet
been explored.

The current case study seeks to identify environmental factors that influence the variability of
culturable enterococci concentrations in Escambron Beach surface waters, and specifically seeks
to assess when water quality issues exceed the US EPA recommended rate of 36 illnesses per
1000 primary contact recreators (BAV 70 CFU/100 mL; [18,20]). The approach included an analysis of
11 years of culturable enterococci concentrations with respect to the spatial and temporal variation
of environmental factors observed locally (i.e., mean sea level, precipitation, winds) and via satellite
(i.e., turbidity, sea surface temperature, dew point, direct normal irradiance). Previous studies in
tropical areas have suggested a relationship between Enterococcus spp. and public health risks in
recreational beach waters. However, the extra-intestinal sources of enterococci in the tropics as well
as the presence of non-point sources of fecal pollution can obscure this relationship. Thus, it is
important to understand how environmental factors influence culturable enterococci concentrations in
tropical settings.

This case study demonstrates how the environmental factors significantly correlated with
culturable enterococci surface water concentrations and considered the specific lags and ranges
where these factors correlated with unsafe culturable enterococci concentrations at Escambron Beach.
This study serves as an important point of reference for future water quality studies at Escambron
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beach as well as for other Caribbean beaches located in a similar context. The results of this case study
begin to fill the existing knowledge gaps specific to water quality in the tropics and set the stage for
targeted beach monitoring aimed at identifying a correlation between enterococci and health risks
in the tropics. Additionally, the results can be used to develop microbial water quality forecasting
systems, which would provide early information to local authorities, avoid unnecessary beach closures,
and effectively balance the need to protect public health with the economic consequences associated
with beach closures.

2. Materials and Methods

2.1. Escambron Beach, San Juan, Puerto Rico

The study took place at Escambron Beach (18.47◦ N, 66.08◦ W, Figure 1). This is one of the
most popular, well-visited beaches of San Juan, Puerto Rico and it has a year-long swimming season.
Escambron Beach is generally visited by residents between the months of May to September, whereas
during October to December it is mostly visited by non-residents and tourists. The beach is surrounded
by hotels, business, residences, and governmental buildings [2]. The average annual air temperatures
range between 24 and 29 ◦C. During the timeframe of this study, average precipitation was ~1800 mm
per year, with lowest precipitation during February–March. Escambron Beach has mixed semidiurnal
tides, and is classified as a low wave action along beach.
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may have been affected by: (1) stormwater drainage (18.46° N, 66.09° W) located immediately 
adjacent to one of the sampling sites, which includes urban runoff, precipitation, and other 
graywaters (e.g., showers, washer machines; [2]); (2) WWTP ocean outfall (18.47° N, 66.14° W);  
(3) beach public bathrooms; and (4) Rio Grande de Loiza, a river that receives agricultural runoff, 
WWTP effluent (secondary treatment only), and septic system effluent and seepage  
(Figure 1; [31–33]). Non-point source pollution throughout San Jan Bay also likely affects water quality 
at Escambron Beach. 

Figure 1. Location of Escambron Beach with respect to the combined ocean outfall that discharges
primary-treated domestic wastewater from the Puerto Nuevo Regional and Bayamon Regional
treatment plants (black triangles). The ocean outfall discharges at a depth of approximately 40 m;
it is located 1 km north of Isla de Cabras and about 5 km from the study site. The inset map details
Escambron Beach and depicts both sampling locations (green triangles), stormwater discharge drain
(black circle), Rio Grande de Loiza (river symbol), and public bathrooms (bathroom symbol).

Two sites, separated by a distance of ~100 m, were sampled by the PREQB (Figure 1).
These sites may have been affected by: (1) stormwater drainage (18.46◦ N, 66.09◦ W) located immediately
adjacent to one of the sampling sites, which includes urban runoff, precipitation, and other graywaters
(e.g., showers, washer machines; [2]); (2) WWTP ocean outfall (18.47◦ N, 66.14◦ W); (3) beach public
bathrooms; and (4) Rio Grande de Loiza, a river that receives agricultural runoff, WWTP effluent
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(secondary treatment only), and septic system effluent and seepage (Figure 1; [31–33]). Non-point
source pollution throughout San Jan Bay also likely affects water quality at Escambron Beach.

2.2. Culturable Enterococci Data

Data from biweekly measurements of culturable enterococci surface water concentrations were
obtained for 2005–2012 from the US EPA Storage and Retrieval data warehouse for Escambron
Beach (https://www.epa.gov/waterdata/water-quality-data-wqx). The enterococci time series was
extended from 2012 to 2015 with data provided by PREQB. Two methods were used to quantify
enterococci concentrations: US EPA method 1600 from January 2005–March 2015 [34] and IDEXX
Enterolert (IDEXX Laboratories, Inc., Westbrook, ME, USA) from April 2015 through December
2015 [19]. The US EPA method 1600 quantifies culturable enterococci using membrane filtration and
had a detection limit of 4 CFU/100 mL [34]. The IDEXX Enterolert Quanti-Tray methods determined
the culturable enterococci concentrations (most probable number (MPN) per 100 mL); this method had
a detection limit of 10 MPN/100 mL [19]. Over the 11-year period, a total of 642 culturable enterococci
data points were generated, with the surface waters from two sites being sampled approximately once
every two weeks (PREQB RW-20A at 18.47◦ N, 66.08◦ W and PREQB RW-20B at 18.46◦ N, 66.09◦ W;
Figure 1). One site had 334 and the other site had 308 data points from 2005 to 2015. Daily geometric
means for each sampling date, considering both sampling sites, were calculated for the beach; thus,
the total combined number of unique enterococci data points was n = 376 for the 2005–2015 period.
These geometric means were used in all further analyses. All samples were collected between 9:00 a.m.
and 1:00 p.m. (AST). Puerto Rico’s climate does not show a significant season variability through the
entire year. Therefore, samples collection considered sunlight amount, timing before people go to
the beach, traveling time to the Puerto Rico Environmental Sciences Research Laboratory for sample
processing, and timing of beach advisories if bacterial levels exceed thresholds [19,20]. If a sample had
concentrations above US EPA guidelines, a subsequent sample was taken within seven days.

2.3. Satellite-Derived and In Situ Environmental Data

Daily precipitation data for San Juan, Puerto Rico were obtained from the US National Oceanic
and Atmospheric Administration National Centers for Environmental Information for 2000–2015.
Accumulated precipitation was calculated for different intervals of days prior to each surface
water sampling date. Direct Normal Irradiance (DNI) and dew point were obtained at a 30-min
temporal resolution and 4 km spatial resolutions from the National Solar Radiation Database
(1998–2014; http://rredc.nrel.gov/solar/old_data/nsrdb/). Mean sea level (MSL) was obtained from
the University of Hawaii Sea Level Center for 2000–2015 (https://uhslc.soest.hawaii.edu/). Maximum
values, in a 24-h period, were identified for both MSL and DNI and included in the analyses due to their
known influence on enterococci [29,30]. Wind speed and direction were obtained from the Caribbean
Coastal Observing System (CariCOOS; http://www.caricoos.org/) buoy located north of San Juan
(18.47◦ N, 66.09◦ W). East (u) and nort (v) wind components were calculated due to their mixing
potential and influence on enterococci concentrations [35]. Since the CariCOOS buoy was deployed
in 2010, satellite-derived wind data was also included from the Cross-Calibrated Multi-Platform
(CCMP; ~28 km spatial resolution) surface winds (2010–2015). Both data sets were compared and
followed the same patterns regarding wind speed, direction, and east/west components.

Sea surface temperature (SST) data were obtained from the Advanced Very High Resolution
Radiometer (AVHRR; 1 km spatial resolution) from 2000 to 2015. These images were mapped using
a cylindrical equidistant projection at the University of South Florida Institute for Marine Remote
Sensing (http://imars.usf.edu/). Interactive Data Language (IDL; v. 7.2) was used to extract SST
data from 3 × 3-pixel boxes centered on three points for the northern coast of San Juan, Puerto Rico
(18.47◦ N, 66.09◦ W; 18.48◦ N, 66.08◦ W; 18.46◦ N, 66.07◦ W). Data from those three boxes showed
similar temporal patterns; therefore, they were averaged into one SST time series for further analyses.

https://www.epa.gov/waterdata/water-quality-data-wqx
http://rredc.nrel.gov/solar/old_data/nsrdb/
https://uhslc.soest.hawaii.edu/
http://www.caricoos.org/
http://imars.usf.edu/
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Remote sensing reflectance at 645 nm (Rrs 645) [36,37] from the Moderate Resolution Imaging
Spectroradiometer (MODIS-Terra; 250 m spatial resolution) was used as a proxy for water turbidity
(2005–2015). Remote sensing reflectance represents the ratio of upwelling “water-leaving” radiance to
downwelling irradiance measured in per steradian (sr−1) units. Reflectance in the red (645 nm) is used here
as a proxy for turbidity, an approach which has been used in several previous studies [36,38,39]. Rrs was
extracted using MATLAB (v. 2014b; The MathWorks Inc., Natick, MA, USA, 2000); the average value of
two 3 × 3-pixel boxes was used for turbidity for this coastal region (centered on: 18.47◦ N, 66.10◦ W;
18.46◦ N, 66.08◦ W; these included sampling sites and adjacent areas). Turbidity measurements from
these boxes followed similar temporal patterns; thus, the data were averaged into a single time series
for further analyses. Daily and weekly time series, climatologies, and anomalies were calculated for
all the variables mentioned above for the period of 2005–2015. Both SST and turbidity, as extracted,
covered the entire study site; however, for SST we added a third sampling point to cover the overall
variability due to its lower spatial resolution (1 km) in comparison to turbidity (250 m). Additionally,
3-day averages of SST and turbidity anomaly images were also computed for the coastal region of the
municipality of San Juan (l8.51–18.42◦ N, 66.16–65.85◦ W) to examine the spatial distribution of SST
and turbidity before beach advisories on 9 March 2007 and 16 December 2011 (dates were selected
based on satellite images availability/clarity to show data).

2.4. Data Identified as Below the Limit of Detection

Sixty-two enterococci data points out of the 376 (combined sampling sites) were described
as below the limit of detection (LOD); consequently, it was necessary to accommodate these
data to be able to use the 2005–2015 data set for downstream analyses. To determine the most
appropriate substitution [40–42], the use of three different, previously-used substitutions were
evaluated: the maximum concentration after the LOD (i.e., 3 CFU/100 mL and 9 CFU/100 mL
for method 1600 and IDEXX Enterolert, respectively), minimum concentration (i.e., 1 CFU/100 mL),
and half the detection limit (i.e., 2 CFU/100 mL and 5 CFU/100 mL). When comparing the three
methods, all the correlations coefficients showed a difference less than 0.10 and were considered
not significantly different. Based on this, it was concluded that the results of the downstream
Akaike Information Criteria analyses were not significantly different among the three aforementioned
substitution approaches (Supplementary Materials, Tables S1–S3). Therefore, a conservative approach
was selected, such that all that left-censored data were substituted by the next highest concentration;
3 CFU per 100 mL for those samples analyzed before April 2015 and 9 MPN per 100 mL for samples
analyzed after April 2015. These were substituted in the raw data (1999–2015) and then filtered to
obtain a total of 376 points from 2005 to 2015.

2.5. Non-Parametric Statistical Analyses

Data were analyzed with non-parametric, permutation-based statistics, which are a distribution-free
method. Significant time-lagged correlations between explanatory variables (i.e., SST, precipitation,
DNI, dew point, MSL, and turbidity) and the dependent variable (i.e., culturable enterococci
concentrations) were identified using Pearson’s correlation analyses. A MATLAB function was created
to identify different lags between explanatory variables and dependent variable, where those who
showed the highest and significant Person’s correlation coefficient were selected.

Lagged environmental factors, with the lag-periods showing significant correlations (Pearson’s
correlations) with culturable enterococci were divided into three to six bins using the histogram
function of MATLAB (v.2014b); bins sizes were selected based upon sample size. Bins were divided
as follow: (A) precipitation (mm) six bins: ≤240, 241–480, 481–720, 721–960, and ≥961; (B) DNI
(W·m−2) five bins: ≤667, 668–732, 733–798, 799–864, and ≥865; (C) turbidity anomaly (sr−1) three
bins: ≤0.001, 0.002–0.004, and ≥0.005; (D) SST anomaly (◦C) four bins: ≤−3.7, −3.6–−1.5, −1.4–0.7,
and ≥0.8; (E) dew point anomaly (◦C) five bins: ≤−1.6, −1.5–−0.7, −0.6–−0.3, −0.2–1.2, and ≥1.3;
and (F) MSL anomaly (cm) six bins: ≤−78.8, −78.7–−18.8, −18.7–41.2, 41.3–101.2, 101.3–161.2,
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and ≥161.3. Surface water sampling dates that matched those specific ranges in environmental
conditions were identified and the average geometric means (of enterococci concentrations) were
extracted for each bin. Confidence intervals for each of the bins were calculated using bootstrapping
(random sampling with replacement) with 5000 iterations. Subsequently, permutation-based one-way
ANOVAs were executed for each explanatory variable to test for significance across different
environmental parameter ranges. For those intervals that showed a significant or marginally
non-significant difference, a series of a posteriori, multiple-comparison (pair-wise) tests were run to
identify those bins that were significantly different.

A stepwise selection of explanatory variables via forward addition based on Akaike Information
Criteria (AIC) was executed. AIC analyses identified the optimal environmental factors that
substantially explained variation in culturable enterococci concentrations [43–45]. The variables
included in the AIC analysis were precipitation, SST, dew point, MSL, DNI, and turbidity.
The MATLAB Fathom toolbox was used for all data analyses [46].

3. Results

3.1. Modeling Culturable Enterococci Using Akaike Information Criterion Model and Correlation Analyses

The environmental variables used in the AIC model were selected based on their significant,
time-lagged correlations identified by the Pearson’s correlation analyses (p < 0.05; Table 1).
The stepwise AIC analyses showed that precipitation, MSL, DNI, SST, and turbidity were the optimal
explanatory variables for culturable enterococci concentrations in Escambron Beach surface waters
during 2005–2015 (p < 0.05; r2 = 0.20; Table 2); dew point was not identified as an optimal explanatory
variable by the AIC analyses.

Table 1. Pearson’s correlation coefficient to identify significant lags in enterococci concentrations in
surface waters at Escambron Beach with respect to the environmental parameters: Mean sea level (MSL),
direct normal irradiance (DNI), sea surface temperature (SST), dew point, turbidity, and precipitation.
Values are considered significant at α < 0.05.

Variable Pearson’s Correlation Coefficient (r) Lag

Mean sea level −0.19 9th to 11th day (mean)
Direct normal irradiance −0.24 1 day
Sea surface temperature 0.12 5th to 9th day (mean)
Dew point 0.19 7 days (mean)
Turbidity 0.25 1 day
Precipitation 0.22 4 days (accumulated)

Table 2. Akaike Information Criterion (AIC) model with those environmental variables that explained
enterococci concentration variability in surface waters at Escambron Beach.

Variable r2 r2-Adjusted AIC

Precipitation 0.08 0.08 59.81
Mean sea level 0.13 0.12 48.76
Direct normal irradiance 0.16 0.15 39.19
Sea surface temperature 0.19 0.17 32.79
Turbidity 0.21 0.19 26.76

3.2. Environmental Variables Influence on Culturable Enterococci

All the variables were divided into three to six bins to characterize how culturable enterococci
concentrations were influenced across specific ranges of environmental variables (Figure 2A–F).
Precipitation, SST, dew point, and turbidity anomalies showed a positive correlation with enterococci
concentrations in Escambron Beach surface waters (Table 1). Enterococci concentrations were above
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the 2014 US EPA BAV and exceeded the 2012 US EPA RWQC recommendation 1 (36 estimated illnesses
per 1000 recreators, [18,20]) after 481 mm–960 mm of rainfall in four days, SST greater than 0.8 ◦C for
at least 5 days, or turbidity anomalies greater than 0.005 sr−1 after 24 h (Figure 2). During warmer
anomalies of high dew points sustained over seven consecutive days, there were higher concentrations
of culturable enterococci. (Table 1). While these conditions did not automatically lead to levels
exceeding the 2014 US EPA BAV, they did lead to values above the original 2012 US EPA RWQC
recommendation 1 (Figure 2E).Int. J. Environ. Res. Public Health 2017, 14, 1602  7 of 16 
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Figure 2. Geometric mean of enterococci concentrations in Escambron Beach surface waters at different
ranges of (A) precipitation; (B) direct normal irradiance (DNI); (C) turbidity anomaly; (D) sea surface
temperature anomaly (SST); (E) dew point anomaly; and (F) mean sea level (MSL) anomaly at
Escambron Beach during 2005–2015. Dashed lines are the 2014 US EPA beach action value (BAV) of
70 CFU/100 mL (US EPA 2012; 2014). Vertical lines represent the 95% confidence interval. Lower-case
letters above the vertical lines identify statistically significant differences among bins (α = 0.05).

Conversely, DNI and MSL showed a strong, negative correlation with enterococci concentrations
in Escambron Beach surface waters. The highest correlations were observed after a 24-h lag for
DNI, and a nine-day lag for MSL anomalies (Table 1). Higher culturable enterococci concentrations,
exceeding the 2014 US EPA BAV and 2012 US EPA RWQC recommendation 1, were observed
during the lowest DNI (≤667 W·m−2; Figure 2B) as well as during the lowest negative MSL
anomalies (≤−18.8 cm; Figure 2F). Culturable enterococci concentrations decreased as DNI increased
(>~668 W·m−2; Figure 2B). Wind data (i.e., average wind speed, u-component, and v-component)
showed no significant correlation with culturable enterococci during 2005–2015 (data not shown).

3.3. Satellite-Derived SST and Turbidity Anomaly Images to Anticipate Potential Beach Advisories

The PREQB issued beach advisories on 9 March 2007 (>35 enterococci CFU/100 mL) and
16 December 2011 (48 enterococci CFU/100 mL), where the possible sources were identified as
sewer line and runoff, respectively (US EPA 2016). The mean satellite-derived turbidity over three
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consecutive days prior to these events was higher than normal in adjacent areas (Figure 3; gray boxes).
Higher than normal river discharge (i.e., >~0.2 m3·s−1 based on anomalies from 1998 to 2015; data
not shown) was observed on 16 December 2011 (Figure 3B; Rio Grande de Loiza; dark blue box).
Warmer than normal waters were also observed on both dates (Figure 4) over the whole region.
SST on 16 December 2011 was even warmer (~0.5–1.0 ◦C) than on 9 March 2007 (Figure 4).
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4. Discussion

In US recreational waters, enterococci continue to be the recommended fecal pollution indicator
despite their natural presence in tropical waters [6,7,47,48]. Thus, it is necessary to understand
the environmental factors related to elevated FIB concentrations to begin to differentiate pollution
events from FIB ecology as well as to forecast water quality. The current case study investigated the
environmental conditions that are related to exceeding the recommended enterococci concentrations at
a Caribbean beach. While similar studies have been executed in other tropical [13,49] and subtropical
locations [50–53] using in situ environmental data, this study also incorporated satellite-derived
environmental data. In addition to identifying the time-lagged correlations of environmental
parameters and culturable enterococci concentrations, the environmental parameter ranges and
patterns were also identified when enterococci concentrations indicated unsafe recreational water
quality (>70 CFU/100 mL; 2014 US EPA BAV). While future research is needed to identify if enterococci
correlate with human health risks, this study provides an overview of how long-term data can be used
to understand the most influential environmental variables on culturable enterococci concentrations
and sets the stage for future investigations to distinguish the cause of high enterococci concentrations
(fecal pollution events vs. enterococci ecology).

4.1. Environmental Factors Associated with Culturable Enterococci Variability

Of the environmental factors analyzed in this study, only precipitation, DNI, MSL, SST,
and turbidity were significantly associated with enterococci concentrations; these associations may
have been due to enterococci ecology and/or fecal pollution events. The strong correlation between
precipitation, particularly 4-day accumulated rain events, and enterococci concentrations may indeed
be explained by increased sewage and septic tank discharge [2,14,54–56], or runoff with animal
feces [9,25,57,58]. However, it is also possible that precipitation increased the presence of non-fecal
sources of enterococci via resuspension of sediments as well as runoff of bacteria in soil [35,36].
With respect to lower enterococci concentrations outside the 481 mm–960 mm precipitation range,
it is possible that drier conditions promoted decreased bacterial replication due to lower nutrient
additions and/or reduced stormwater inputs decreased the input of enterococci into beach surface
waters. With respect to the wettest conditions, it is possible that the excess rainfall diluted enterococci
concentrations in surface waters [59,60].

Similarly, the significant decrease observed in enterococci concentrations during periods of high
solar irradiance was likely due to production of reactive oxygen species (ROS) that cause bacterial
dieoff [27,30,61]; however, enterococci concentrations may have been low due to a lack of fecal
pollution inputs (e.g., stormwater, runoff). There was also an inverse correlation between enterococci
concentrations and MSL anomalies. It is possible that bacterial dilution occurs during higher MSL
anomalies, and concomitant back-washing mixing and enhanced drainage from coastal sources may
promote increased bacteria concentrations during lower MSL anomalies [30,62,63]. While winds
have been previously correlated with increased enterococci concentrations [35,64], no correlation
between wind components and culturable enterococci concentrations was identified for Escambron
Beach surface waters during 2005–2015. It is possible that the limited local wind data obscured the
identification of significant correlations between winds and enterococci concentrations. Additionally,
increased enterococci concentrations were observed during warmer SST anomalies, which could
be due to an increased bacterial growth and replication (e.g., metabolism) due to warmer water
temperatures [35,48]. Finally, this study did not consider how the presence of aquatic plants, such as
seagrass, or algae, such as the green alga Cladophora, could have decreased and increased enterococci
concentrations, respectively [65–68].

Given the combined effects between many of the environmental parameters analyzed, it is
difficult to tease apart their independent influence on coastal enterococci concentrations. For example,
higher turbidity anomalies are the result of increased runoff [69,70], but increased enterococci
concentrations could also be the result of protection from UV exposure [28,29,71]. Furthermore, it is
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possible that dew point was not identified as an optimal explanatory variable due to its relationship
with rainfall as well as to SST [72] as the AIC model reduces multi-collinearity (i.e., higher correlations
between predictor variables). Finally, winds are known to be associated with increased precipitation,
which also leads to increased wave action that stimulate sediment resuspension, which can increase
non-fecal enterococci concentrations [35,58,64]. While it is difficult to discern the confounding influence
of each environmental parameter, this study identified the environmental conditions that should be
considered for microbial water quality modeling at Escambron Beach.

Even though this study was not able to tease apart the combined effects of environmental variables
nor enterococci ecology from actual fecal pollution events, the results of this investigation demonstrated
that precipitation, DNI, MSL, SST, and turbidity were strongly and significantly associated with
culturable enterococci concentrations at a tropical, Caribbean beach. Similar results have been shown in
freshwaters, where enterococci concentrations were modeled in the great lakes and parameters, such as
river discharge, temperature, turbidity, and winds were significantly correlated with enterococci
variability [73,74]. Liu et al. [75] showed that human fecal pollution is also transported in river
tributaries, where discharges into the great lakes influence enterococci concentrations and create public
health concerns. Now that the environmental conditions associated with enterococci concentrations
exceeding the limits for safe recreation have been identified for Escambron Beach, future research is
needed to tease apart the influence of enterococci ecology versus fecal pollution events and should
include microbial source tracking and measurement of human pathogens.

4.2. Sanitation Infrastructure, Human Fecal Pollution, and Culturable Enterococci Variability

Since only 20% of the enterococci variation was explained by the environmental parameters
in the AIC model in this study, it is possible that the remaining 80% could have been attributed
to sanitation infrastructure (which was not included in the analyses), other environmental factors
(e.g., extra-intestinal, environmental enterococci sources; animal feces), as well as stochastic
variability [35]. About 42% of the people living in Puerto Rico use septic tanks and many of these
systems do not work properly or lack maintenance [4]. Consequently, improperly functioning systems
and the porous karst-geology facilitate the movement of domestic wastewater into surrounding surface
waters [1,4]. Over the last 50 to 60 years, there has been a shift from septic tanks to centralized WWTP
(primary treatment) to accommodate San Juan’s growing population and increasing urbanization.
Escambron Beach also has public bathrooms located next to its stormwater discharge. While toilets
are connected to the centralized sewer system, there may be leaks that can influence enterococci
concentrations at the study site [2].

The combined Puerto Nuevo Regional and Bayamon Regional WWTP ocean outfall is located
approximately 5 km northwest from Escambron Beach. Yet this discharge can impact beach water
quality under specific current regimes. The outfall discharges ~200 MGD of primary-treated domestic
wastewater at 40 m depth [76], which vertically mixes due to buoyancy forces and causes the
development of an ocean outfall surface and sub-surface boils [77]. Following initial mixing, ocean
currents can transport and dilute the outfall boil. Currents in Puerto Rico are generally westward
and influenced by the westerlies; however, the CariCOOS buoy current data shows very weak
south-southeast semi-diurnal tidal currents on Puerto Rico’s northern coast between 2 and 30 m
depth. Any episode that strengthens this eastward flow can carry outfall boils toward Escambron
Beach. Additionally, the Rio Grande de Loiza discharge is another potential source of contamination
due to westward movement of currents. Studies have shown that this river’s tributaries were impaired
due to fecal contamination [32,33,78]; thus, the Rio Grande de Loiza discharge could have impacted
the study area, particularly when flow rates were high during rain events [79].

4.3. Satellite-Derived SST and Turbidity Anomaly Images, and PREQB Beach Advisories

Beach advisories are issued by PREQB two to three days after the sampling date when culturable
enterococci concentrations exceeded the PREQB water quality criteria. Consequently, it is important to
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understand the lags, ranges, and spatial distributions of precipitation, DNI, MSL, SST, and turbidity,
that are correlated with culturable enterococci concentrations to identify conditions that lead to such
advisories [80]. Additionally, it is well-known that enterococci may not be the most appropriate water
quality indicator for tropical regions due to its presence in secondary, non-fecal related reservoirs that
confound the identification of health risks (e.g., soil, sediments) [17,49]. Thus, this understanding can
inform future studies that seek to decipher when enterococci might exceed US EPA guidelines and
represent an actual health risk versus when no health risk is present [17].

For example, high turbidity and SST anomalies occurred at Escambron beach during the days
preceding the 9 March 2007 and 16 December 2011 beach closures. Prior to the 16 December 2011
advisory, there was a significant discharge from the Rio Grande de Loiza, which was likely transported
toward the beach by westward ocean currents [1] and likely caused the high turbidity anomalies
observed. While there was no anomalous river discharge during 9 March 2007, higher than normal
turbidity was observed north of the study area. Additionally, the images showed warmer than
normal water temperatures (~1.0–1.5 ◦C) for most of the region, which also likely influenced increased
culturable enterococci concentrations. Since these satellite-derived data preceded the beach closures,
satellite-derived data can help identify conditions for poor water quality in advance and guide
sampling efforts.

4.4. Future Work

A better understanding of enterococci variability with respect to environmental conditions
and fecal pollution events is needed to identify accurately public health risks and minimize public
exposure to such risks [10,81,82]. Ideally, these risks should be forecasted by beach-specific predictive
models to prevent the public’s exposure to waterborne pathogens [28,83]. To create such models,
future investigations at Escambron Beach should consider this study’s results, which identified
that precipitation, DNI, MSL, SST, and turbidity significantly influence enterococci concentrations,
as well as the following: (1) the relationship between enterococci and human health risks (e.g., illness,
reference pathogens) and (2) the impact of human (e.g., WWTP ocean outfall, leaky septic systems) and
non-human (e.g., animal feces) fecal pollution sources that can influence enterococci variability and/or
health risks. Additionally, data were not analyzed in terms of wet/dry season because the dry season
at Escambron beach is only two-months long (February and March) and therefore, requires a different
data set to achieve sufficient statistical power to determine how environmental variability influences
enterococci concentrations by season.

Since the Puerto Rican economy relies mostly on tourism, proper management of Escambron
Beach through targeted monitoring and early-warning systems is necessary to restrict beach
advisories/closures to those that are truly necessary to protect public health [51,78]. This investigation
demonstrated that satellite-derived and local environmental parameters explained enterococci
variability at a tropical, Caribbean beach. The results presented will be important to future water quality
investigations in the tropics, as well as to the development of the spatial and temporal components of
predictive models that aim to improve forecasting and now-casting of beach water quality.

5. Conclusions

Identifying the environmental factors correlated with culturable enterococci concentrations can
help to better understand their potential risk to public health in a tropical setting. This study looked
into 11 years of culturable enterococci concentrations and assessed how much of its variability can be
explained by environmental factors alone, where the main findings were:

• Environmental factors (i.e., direct normal irradiance (DNI), mean sea level (MSL), precipitation,
turbidity, and sea surface temperature (SST)) explained 20% of the enterococci variability observed
in Escambron Beach surface waters during 2005–2015.

• Identified time-lags for the different environmental factors helped better understand variability
in culturable enterococci in Escambron Beach surface waters due to environmental factors.
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• Increased enterococci concentrations were observed at strong positive SST and turbidity anomalies;
conversely, these concentrations decreased with increased DNI and MSL anomalies in Escambron
Beach surface waters.

• Specific ranges of precipitation (i.e., 481–960 mm) promoted increased enterococci concentrations,
potentially due to urban run-off (e.g., resuspension of solids, soil runoff, and non-human sources),
combined sewer overflow events, and/or increased leaching of septic tanks.

• The combined effects of environmental factors can help model culturable enterococci
concentrations and understand ranges where these would exceed recommended 2014 US EPA
BAV at Escambron Beach.

• Satellite-derived data can improve beach water quality assessments, potentially reducing in-situ
sampling efforts as this data is readily available, and help identify events for early warning
systems and improve beach advisory.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/12/1602/s1,
Table S1: Pearson’s correlation coefficient to identify significant lags in enterococci concentrations in Escambron
Beach surface waters with respect to the environmental parameters. Concentrations below the limit of detection
were substituted by 1 MPN/CFU per 100 mL. Values are considered significant with 95% certainty (α = 0.05).
Bold values are those with the highest and significant Pearson’s correlation coefficient, Table S2: Pearson’s
correlation coefficient to identify significant lags of enterococci concentrations in Escambron Beach surface waters
with respect to the environmental parameters. Concentrations below the limit of detection were substituted
by 3 MPN/CFU per 100 mL for those samples analyzed before April 2015 and 9 MPN/100 mL for samples
analyzed after April 2015. Values are considered significant with 95% certainty (α = 0.05). Bold values are those
with the highest and significant Pearson’s correlation coefficient, Table S3: Pearson’s correlation coefficient to
identify significant lags of enterococci concentrations in Escambron Beach surface waters with respect to the
environmental parameters. Concentrations below the limit of detection were substituted by 2 MPN/CFU per
100 mL for those samples analyzed before April 2015 and 5 MPN/100mL for samples analyzed after April 2015.
Values are considered significant with 95% certainty (α = 0.05). Bold values are those with the highest and
significant Pearson’s correlation coefficient.

Acknowledgments: This investigation and A.E.L.-R. were supported by the US National Science Foundation
(NSF) Partnerships for International Research (PIRE) under Grant No. 1243510 and by the US National Aeronautics
and Space Administration (NASA) Headquarters under the NASA Earth and Science Fellowship Program Grant
No. NNX15AN60H. A.E.L.-R. was also funded by the USF College of Marine Science Linton Tibbetts Endowed
Fellowship. F.E.M.-K., D.O., and D.R. were supported by the US EPA Science to Achieve Results (STAR) grant
No. 83519301. E.M.S. was supported by the USF College of Marine Science William and Elsie Knight Fellowship
and US NSF grant No. OCE-1566562. Mya Breitbart (USF) and Marirosa Molina (US EPA) are recognized for their
invaluable input with respect to data interpretation, as well as David Jones (USF) for his help with the multivariate
and time series analyses. Thanks to Valerie J. Harwood (USF) for providing feedback for this manuscript.
Additionally, we recognize Matthew E. Verbyla (École Polytechnique Fédérale de Lausanne) for his insight into
left-censored data analyses, Stephenie Ayala-Flores (PREQB) for providing data and information on beach water
quality monitoring in Puerto Rico, and Mark E. Luther (USF) for his insight on Caribbean surface currents.

Author Contributions: E.M.S. contributed substantially with data interpretation and manuscript preparation;
D.O. and D.R.-R. contributed with obtaining satellite data and data analyses; F.E.M.-K. collected the satellite
observations, edited the text, and provided extensive written comments on the manuscript; A.E.L.-R. analyzed
the data, and wrote and led the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Lugo, A.E.; González, O.M.R.; Pedraza, C.R. The Rio Piedras Watershed and Its Surrounding Environment;
USDA Forest Service: Washington, DC, USA, 2011.

2. Diaz, M.N. Evaluacion de la Intensidad de Lluvia y Su Efecto en la Presencia de Bacterias Fecales en Las Playas del Norte de
Puerto Rico; Ciencias en Gerencia Ambiental; Universidad Metropolitana: San Juan, Puerto Rico, 2007.

3. Soderberg, C.-A.P. Agua potable y saneamiento para comunidades aisladas: Un imperativo social y ambiental
para Puerto Rico. Rev. Int. Desastres Nat. Accid. Infraestruct. Civ. 2008, 8, 1–3.

4. Quiñones, F. Impacto ambiental de pozos sépticos en puerto rico y su diseño y control. Dimensión Revista
Colegio Ingenieros Agrimensores Puerto Rico 2012, 1, 16–22.

www.mdpi.com/1660-4601/14/12/1602/s1


Int. J. Environ. Res. Public Health 2017, 14, 1602 13 of 16

5. Garcia-Montiel, D.C.; Verdejo-Ortiz, J.C.; Santiago-Bartolomei, R.; Vila-Ruiz, C.P.; Santiago, L.;
Melendez-Ackerman, E. Food sources and accessibility and waste disposal patterns across an urban tropical
watershed: Implications for the flow of materials and energy. Ecol. Soc. 2014, 19, 37. [CrossRef]

6. Colford, J.M.; Wade, T.J.; Schiff, K.C.; Wright, C.C.; Griffith, J.F.; Sandhu, S.K.; Burns, S.; Sobsey, M.;
Lovelace, G.; Weisberg, S.B. Water quality indicators and the risk of illness at beaches with nonpoint sources
of fecal contamination. Epidemiology 2007, 18, 27–35. [CrossRef] [PubMed]

7. Pruss, A. Review of epidemiological studies on health effects from exposure to recreational water.
Int. J. Epidemiol. 1998, 27, 1–9. [CrossRef] [PubMed]

8. Boehm, A.B.; Sassoubre, L.M. Enterococci as Indicators of Environmental Fecal Contamination. In Enterococci:
From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N.,
Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 1–17.

9. Colford, J.M.; Schiff, K.C.; Griffith, J.F.; Yau, V.; Arnold, B.F.; Wright, C.C.; Gruber, J.S.; Wade, T.J.; Burns, S.;
Hayes, J.; et al. Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban
runoff contaminated marine water. Water Res. 2012, 46, 2176–2186. [CrossRef] [PubMed]

10. Haile, R.W.; Witte, J.S.; Gold, M.; Cressey, R.; McGee, C.; Millikan, R.C.; Glasser, A.; Harawa, N.; Ervin, C.;
Harmon, P.; et al. The health effects of swimming in ocean water contaminated by storm drain runoff.
Epidemiology 1999, 10, 355–363. [CrossRef] [PubMed]

11. Parker, J.K.; McIntyre, D.; Noble, R.T. Characterizing fecal contamination in stormwater runoff in coastal
North Carolina, USA. Water Res. 2010, 44, 4186–4194. [CrossRef] [PubMed]

12. Soller, J.; Bartrand, T.; Ravenscroft, J.; Molina, M.; Whelan, G.; Schoen, M.; Ashbolt, N. Estimated
human health risks from recreational exposures to stormwater runoff containing animal faecal material.
Environ. Model. Softw. 2015, 72, 21–32. [CrossRef]

13. Lamparelli, C.C.; Pogreba-Brown, K.; Verhougstraete, M.; Sato, M.I.Z.; de Castro Bruni, A.; Wade, T.J.;
Eisenberg, J.N. Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics:
A cohort study of beach goers in Brazil? Water Res. 2015, 87, 59–68. [CrossRef] [PubMed]

14. Cordero, L.; Norat, J.; Mattei, H.; Nazario, C. Seasonal variations in the risk of gastrointestinal illness on
a tropical recreational beach. J. Water Health 2012, 10, 579–593. [CrossRef] [PubMed]

15. Rochelle-Newall, E.; Nguyen, T.M.H.; Le, T.P.Q.; Sengteheuanghoung, O.; Ribolzi, O. A short review of fecal
indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol.
2015, 6, 308. [CrossRef] [PubMed]

16. Boehm, A.B.; Ashbolt, N.J.; Colford, J.M.; Dunbar, L.E.; Fleming, L.E.; Gold, M.A.; Hansel, J.A.; Hunter, P.R.;
Ichida, A.M.; McGee, C.D.; et al. A sea change ahead for recreational water quality criteria. J. Water Health
2009, 7, 9–20. [CrossRef] [PubMed]

17. Fujioka, R.S.; Solo-Gabriele, H.M.; Byappanahalli, M.N.; Kirs, M. US Recreational water quality criteria:
A vision for the future. Int. J. Environ. Res. Public Health 2015, 12, 7752–7776. [CrossRef] [PubMed]

18. United States Environmental Protection Agency. Recreational Water Quality Criteria; US EAP: Washington, DC,
USA, 2012. Available online: https://www.epa.gov/wqc/microbial-pathogenrecreational-water-quality-
criteria (accessed on 17 July 2017).

19. PREQB. Beach Monitoring and Public Notification Program-Performance criteria 2016–2017. 2016. Available
online: https://www2.pr.gov/agencias/jca/Documents/Monitoreo%20de%20Playas/Performance%20Criteria/
BEACH_PERFORMANCE_CRITERIA_PREQB_2016-2017_final-draft.pdf (accessed on 19 July 2017).

20. United States Environmental Protection Agency. National Beach Guidance and Required Performance
Criteria for Grants. 2014. Available online: https://www.epa.gov/sites/production/files/2014-07/
documents/beach-guidance-final-2014.pdf (accessed on 19 July 2017).

21. United States Environmental Protection Agency. Beaches Environmental Assessment and Coastal Health Act of
2000; Public Law; US EAP: Washington, DC, USA, 2000; pp. 106–284.

22. PREQB. Water Quality Standards Regulation of Puerto Rico. 2010. Available online: http://www.gobierno.
pr/NR/rdonlyres/5A9F2F2E-94AE-4C69-8453-CA08D616ED7D/0/Reg_Estdares_Calidad_Agua_2010.pdf
(accessed on 15 September 2017).

23. Bachoon, D.S.; Markand, S.; Otero, E.; Perry, G.; Ramsubaugh, A. Assessment of non-point sources of fecal
pollution in coastal waters of Puerto Rico and Trinidad. Mar. Pollut. Bull. 2000, 60, 1117–1121. [CrossRef]
[PubMed]

http://dx.doi.org/10.5751/ES-06118-190137
http://dx.doi.org/10.1097/01.ede.0000249425.32990.b9
http://www.ncbi.nlm.nih.gov/pubmed/17149140
http://dx.doi.org/10.1093/ije/27.1.1
http://www.ncbi.nlm.nih.gov/pubmed/9563686
http://dx.doi.org/10.1016/j.watres.2012.01.033
http://www.ncbi.nlm.nih.gov/pubmed/22356828
http://dx.doi.org/10.1097/00001648-199907000-00004
http://www.ncbi.nlm.nih.gov/pubmed/10401868
http://dx.doi.org/10.1016/j.watres.2010.05.018
http://www.ncbi.nlm.nih.gov/pubmed/20617564
http://dx.doi.org/10.1016/j.envsoft.2015.05.018
http://dx.doi.org/10.1016/j.watres.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26378732
http://dx.doi.org/10.2166/wh.2012.076
http://www.ncbi.nlm.nih.gov/pubmed/23165715
http://dx.doi.org/10.3389/fmicb.2015.00308
http://www.ncbi.nlm.nih.gov/pubmed/25941519
http://dx.doi.org/10.2166/wh.2009.122
http://www.ncbi.nlm.nih.gov/pubmed/18957771
http://dx.doi.org/10.3390/ijerph120707752
http://www.ncbi.nlm.nih.gov/pubmed/26184253
https://www.epa.gov/wqc/microbial-pathogenrecreational-water-quality-criteria
https://www.epa.gov/wqc/microbial-pathogenrecreational-water-quality-criteria
https://www2.pr.gov/agencias/jca/Documents/Monitoreo%20de%20Playas/Performance%20Criteria/BEACH_PERFORMANCE_CRITERIA_PREQB_2016-2017_final-draft.pdf
https://www2.pr.gov/agencias/jca/Documents/Monitoreo%20de%20Playas/Performance%20Criteria/BEACH_PERFORMANCE_CRITERIA_PREQB_2016-2017_final-draft.pdf
https://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
https://www.epa.gov/sites/production/files/2014-07/documents/beach-guidance-final-2014.pdf
http://www.gobierno.pr/NR/rdonlyres/5A9F2F2E-94AE-4C69-8453-CA08D616ED7D/0/Reg_Estdares_Calidad_Agua_2010.pdf
http://www.gobierno.pr/NR/rdonlyres/5A9F2F2E-94AE-4C69-8453-CA08D616ED7D/0/Reg_Estdares_Calidad_Agua_2010.pdf
http://dx.doi.org/10.1016/j.marpolbul.2010.04.020
http://www.ncbi.nlm.nih.gov/pubmed/20570293


Int. J. Environ. Res. Public Health 2017, 14, 1602 14 of 16

24. Sanchez-Nazario, E.E.; Santiago-Rodriguez, T.M.; Toranzos, G.A. Prospective epidemiological pilot study on
the morbidity of bathers exposed to tropical recreational waters and sand. J. Water Health 2014, 12, 220–229.
[CrossRef] [PubMed]

25. Santiago-Rodriguez, T.M.; Tremblay, R.L.; Toledo-Hernandez, C.; Gonzalez-Nieves, J.E.; Ryu, H.;
Domingo, J.W.S.; Toranzos, G.A. Microbial quality of tropical inland waters and effects of rainfall events.
Appl. Environ. Microbiol. 2012, 78, 5160–5169. [CrossRef] [PubMed]

26. Zhang, Z.H.; Deng, Z.Q.; Rusch, K.A. Development of predictive models for determining enterococci levels
at Gulf Coast beaches. Water Res. 2012, 46, 465–474. [CrossRef] [PubMed]

27. Maraccini, P.A.; Mattioli, M.C.M.; Sassoubre, L.M.; Cao, Y.P.; Griffith, J.F.; Ervin, J.S.; Van De Werfhorst, L.C.;
Boehm, A.B. Solar inactivation of enterococci and Escherichia coli in natural waters: Effects of water absorbance
and depth. Environ. Sci. Technol. 2016, 50, 5068–5076. [CrossRef] [PubMed]

28. He, L.M.; He, Z.L. Water quality prediction of marine recreational beaches receiving watershed baseflow
and stormwater runoff in southern California, USA. Water Res. 2008, 42, 2563–2573. [CrossRef] [PubMed]

29. Shibata, T.; Solo-Gabriele, H.M.; Sinigalliano, C.D.; Gidley, M.L.; Plano, L.R.; Fleisher, J.M.; Wang, J.D.;
Elmir, S.M.; He, G.; Wright, M.E. Evaluation of conventional and alternative monitoring methods for
a recreational marine beach with nonpoint source of fecal contamination. Environ. Sci. Technol. 2010, 44,
8175–8181. [CrossRef] [PubMed]

30. Maraccini, P.A.; Ferguson, D.M.; Boehm, A.B. Diurnal variation in Enterococcus species composition in polluted
ocean water and a potential role for the Enterococcal Carotenoid in protection against photoinactivation.
Appl. Environ. Microbiol. 2012, 78, 305–310. [CrossRef] [PubMed]

31. Ortiz-Zayas, J.R.; Cuevas, E.; Mayol-Bracero, O.L.; Donoso, L.; Trebs, I.; Figueroa-Nieves, D.; McDowell, W.H.
Urban influences on the nitrogen cycle in Puerto Rico. Biogeochemistry 2006, 79, 109–133. [CrossRef]

32. Puerto Rico Environmental Quality Board. Total Maximum Daily Loads (TMDL) Rio Grande de Loiza Watershed;
Puerto Rico Environmental Quality Board: San Juan, Puerto Rico, 2007.

33. Puerto Rico Environmental Quality Board. Carga Máxima Total Diaria de Bacterias Coliformes Fecales (TMDL)
Para Unidades de Evaluación, Puerto Rico; Departamento de Planificación y Protección Ambiental: San Juan,
Puerto Rico, 2011.

34. United States Environmental Protection Agency. Method 1600: Enterococci in Water by Membrane Filtration
Using Membrane-Enterococcus Indoxyl-B-D-Glucoside Agar (mEI); US EPA: Washington, DC, USA, 2006.

35. Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment.
Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [CrossRef] [PubMed]

36. Chen, Z.Q.; Hu, C.M.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m
imagery. Remote Sens. Environ. 2007, 109, 207–220. [CrossRef]

37. Chen, Z.Q.; Hu, C.M.; Muller-Karger, F.E.; Luther, M.E. Short-term variability of suspended sediment and
phytoplankton in Tampa Bay, Florida: Observations from a coastal oceanographic tower and ocean color
satellites. Estuar. Coast. Shelf Sci. 2010, 89, 62–72. [CrossRef]

38. Aurin, D.; Mannino, A.; Franz, B. Spatially resolving ocean color and sediment dispersion in river plumes,
coastal systems, and continental shelf waters. Remote Sens. Environ. 2013, 137, 212–225. [CrossRef]

39. Moreno-Madrinan, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Muller-Karger, F.E. Using the surface reflectance
MODIS Terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens. 2010, 2, 2713–2728. [CrossRef]

40. Schang, C.; Henry, R.; Kolotelo, P.A.; Prosser, T.; Crosbie, N.; Grant, T.; Cottam, D.; O’Brien, P.; Coutts, S.;
Deletic, A.; et al. Evaluation of techniques for measuring microbial hazards in bathing waters: A comparative
study. PLoS ONE 2016, 11, e0155848. [CrossRef] [PubMed]

41. Leskinen, S.D.; Harwood, V.J.; Lim, D.V. Rapid dead-end ultrafiltration concentration and biosensor detection
of enterococci from beach waters of Southern California. J. Water Health 2016, 7, 674–684. [CrossRef]
[PubMed]

42. Boehm, A.B. Enterococci concentrations in diverse coastal environments exhibit extreme variability.
Environ. Sci. Technol. 2017, 41, 8227–8232. [CrossRef]

43. Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89,
2623–2632. [CrossRef] [PubMed]

44. Burnham, K.P.; Anderson, D.R. Kullback-Leibler information as a basis for strong inference in ecological
studies. Wildl. Res. 2001, 28, 111–119. [CrossRef]

http://dx.doi.org/10.2166/wh.2014.107
http://www.ncbi.nlm.nih.gov/pubmed/24937216
http://dx.doi.org/10.1128/AEM.07773-11
http://www.ncbi.nlm.nih.gov/pubmed/22610428
http://dx.doi.org/10.1016/j.watres.2011.11.027
http://www.ncbi.nlm.nih.gov/pubmed/22130001
http://dx.doi.org/10.1021/acs.est.6b00505
http://www.ncbi.nlm.nih.gov/pubmed/27119980
http://dx.doi.org/10.1016/j.watres.2008.01.002
http://www.ncbi.nlm.nih.gov/pubmed/18242661
http://dx.doi.org/10.1021/es100884w
http://www.ncbi.nlm.nih.gov/pubmed/20925349
http://dx.doi.org/10.1128/AEM.06821-11
http://www.ncbi.nlm.nih.gov/pubmed/22081569
http://dx.doi.org/10.1007/s10533-006-9005-y
http://dx.doi.org/10.1128/MMBR.00023-12
http://www.ncbi.nlm.nih.gov/pubmed/23204362
http://dx.doi.org/10.1016/j.rse.2006.12.019
http://dx.doi.org/10.1016/j.ecss.2010.05.014
http://dx.doi.org/10.1016/j.rse.2013.06.018
http://dx.doi.org/10.3390/rs2122713
http://dx.doi.org/10.1371/journal.pone.0155848
http://www.ncbi.nlm.nih.gov/pubmed/27213772
http://dx.doi.org/10.2166/wh.2009.086
http://www.ncbi.nlm.nih.gov/pubmed/19590135
http://dx.doi.org/10.1021/es071807v
http://dx.doi.org/10.1890/07-0986.1
http://www.ncbi.nlm.nih.gov/pubmed/18831183
http://dx.doi.org/10.1071/WR99107


Int. J. Environ. Res. Public Health 2017, 14, 1602 15 of 16

45. Godinez-Dominguez, E.; Freire, J. Information-theoretic approach for selection of spatial and temporal
models of community organization. Mar. Ecol. Prog. Ser. 2003, 253, 17–24. [CrossRef]

46. Jones, D. Fathom Toolbox for Matlab: Software for Multivariate Ecological and Oceanographic Data Analysis;
College of Marine Science, University of South Florida: St. Petersburg, FL, USA, 2015; Available online:
http://www.marine.usf.edu/user/djones/ (accessed on 10 October 2017).

47. Herrera, A.; Suarez, P. Bacterial markers as tools for coastal water environmental quality measurement.
Interciencia 2005, 30, 171–176.

48. Mote, B.L.; Turner, J.W.; Lipp, E.K. Persistence and growth of the fecal indicator bacteria enterococci in
detritus and natural estuarine plankton communities. Appl. Environ. Microbiol. 2012, 78, 2569–2577.
[CrossRef] [PubMed]

49. Viau, E.J.; Goodwin, K.D.; Yamahara, K.M.; Layton, B.A.; Sassoubre, L.M.; Burns, S.L.; Tong, H.I.;
Wong, S.H.C.; Lu, Y.A.; Boehm, A.B. Bacterial pathogens in Hawaiian coastal streams-associations with fecal
indicators, land cover, and water quality. Water Res. 2011, 45, 3279–3290. [CrossRef] [PubMed]

50. Aranda, D.; Lopez, J.V.; Solo-Gabriele, H.M.; Fleisher, J.M. Using probabilities of enterococci exceedance
and logistic regression to evaluate long term weekly beach monitoring data. J. Water Health 2016, 14, 81–89.
[CrossRef] [PubMed]

51. Enns, A.A.; Vogel, L.J.; Abdelzaher, A.M.; Solo-Gabriele, H.M.; Plano, L.R.W.; Gidley, M.L.; Phillips, M.C.;
Klaus, J.S.; Piggot, A.M.; Feng, Z.X.; et al. Spatial and temporal variation in indicator microbe sampling is
influential in beach management decisions. Water Res. 2012, 46, 2237–2246. [CrossRef] [PubMed]

52. Feng, Z.; Reniers, A.; Haus, B.; Solo-Gabriele, H.; Fiorentino, L.; Olascoaga, M.; MacMahan, J. Modeling
microbial water quality at a beach impacted by multiple non-point sources. Coast. Eng. Proc. 2012, 1, 74.
[CrossRef]

53. Wright, M.E.; Abdelzaher, A.M.; Solo-Gabriele, H.M.; Elmir, S.; Fleming, L.E. The inter-tidal zone is the
pathway of input of enterococci to a subtropical recreational marine beach. Water Sci. Technol. 2011, 63,
542–549. [CrossRef] [PubMed]

54. Perez-Villalona, H.; Cornwell, J.C.; Ortiz-Zayas, J.R.; Cuevas, E. Sediment denitrification and nutrient
fluxes in the San José Lagoon, a tropical lagoon in the highly urbanized San Juan Bay Estuary, Puerto Rico.
Estuar. Coasts 2015, 38, 2259–2278. [CrossRef]

55. Ramirez, A.; De Jesús-Crespo, R.; Martinó-Cardona, D.M.; Martínez-Rivera, N.; Burgos-Caraballo, S. Urban
streams in Puerto Rico: What can we learn from the tropics? J. N. Am. Benthol. Soc. 2009, 28, 1070–1079.
[CrossRef]

56. Zhang, W.W.; Wang, J.Y.; Fan, J.F.; Gao, D.L.; Ju, H.Y. Effects of rainfall on microbial water quality on Qingdao
No. 1 Bathing Beach, China. Mar. Pollut. Bull. 2013, 66, 185–190. [CrossRef] [PubMed]

57. Shehane, S.D.; Harwood, V.J.; Whitlock, J.E.; Rose, J.B. The influence of rainfall on the incidence of microbial
faecal indicators and the dominant sources of faecal pollution in a Florida river. J. Appl. Microbiol. 2005, 98,
1127–1136. [CrossRef] [PubMed]

58. Feng, Z.X.; Reniers, A.; Haus, B.K.; Solo-Gabriele, H.M. Modeling sediment-related enterococci loading,
transport, and inactivation at an embayed nonpoint source beach. Water Resour. Res. 2013, 49, 693–712.
[CrossRef]

59. Ioan, C.; Robescu, D.N. Effect of increased inflow and dilution on the activated sludge properties and
viability of microbial community. UPB Sci. Bull. 2015, 77, 197–204.

60. Kleinheinz, G.T.; McDermott, C.M.; Hughes, S.; Brown, A. Effects of rainfall on E. coli concentrations at Door
County, Wisconsin beaches. Int. J. Microbiol. 2009, 2009, 876050. [CrossRef] [PubMed]

61. Boehm, A.B.; Yamahara, K.M.; Love, D.C.; Peterson, B.M.; McNeill, K.; Nelson, K.L. Covariation and
photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted
marine beach. Environ. Sci. Technol. 2009, 43, 8046–8052. [CrossRef] [PubMed]

62. Grant, S.B.; Sanders, B.F.; Boehm, A.B.; Redman, J.A.; Kim, J.H.; Mrse, R.D.; Chu, A.K.; Gouldin, M.;
McGee, C.D.; Gardiner, N.A.; et al. Generation of enterococci bacteria in a coastal saltwater marsh and its
impact on surf zone water quality. Environ. Sci. Technol. 2001, 35, 2407–2416. [CrossRef] [PubMed]

63. Yamahara, K.M.; Walters, S.P.; Boehm, A.B. Growth of enterococci in unaltered, unseeded beach sands
subjected to tidal wetting. Appl. Environ. Microbiol. 2009, 75, 1517–1524. [CrossRef] [PubMed]

64. Gast, R.J.; Gorrell, L.; Raubenheimer, B.; Elgar, S. Impact of erosion and accretion on the distribution of
enterococci in beach sands. Cont. Shelf Res. 2011, 31, 1457–1461. [CrossRef] [PubMed]

http://dx.doi.org/10.3354/meps253017
http://www.marine.usf.edu/user/djones/
http://dx.doi.org/10.1128/AEM.06902-11
http://www.ncbi.nlm.nih.gov/pubmed/22327586
http://dx.doi.org/10.1016/j.watres.2011.03.033
http://www.ncbi.nlm.nih.gov/pubmed/21492899
http://dx.doi.org/10.2166/wh.2015.030
http://www.ncbi.nlm.nih.gov/pubmed/26837832
http://dx.doi.org/10.1016/j.watres.2012.01.040
http://www.ncbi.nlm.nih.gov/pubmed/22365370
http://dx.doi.org/10.9753/icce.v33.management.74
http://dx.doi.org/10.2166/wst.2011.255
http://www.ncbi.nlm.nih.gov/pubmed/21278478
http://dx.doi.org/10.1007/s12237-015-9953-3
http://dx.doi.org/10.1899/08-165.1
http://dx.doi.org/10.1016/j.marpolbul.2012.10.015
http://www.ncbi.nlm.nih.gov/pubmed/23158543
http://dx.doi.org/10.1111/j.1365-2672.2005.02554.x
http://www.ncbi.nlm.nih.gov/pubmed/15836482
http://dx.doi.org/10.1029/2012WR012432
http://dx.doi.org/10.1155/2009/876050
http://www.ncbi.nlm.nih.gov/pubmed/20182543
http://dx.doi.org/10.1021/es9015124
http://www.ncbi.nlm.nih.gov/pubmed/19924921
http://dx.doi.org/10.1021/es0018163
http://www.ncbi.nlm.nih.gov/pubmed/11432541
http://dx.doi.org/10.1128/AEM.02278-08
http://www.ncbi.nlm.nih.gov/pubmed/19151188
http://dx.doi.org/10.1016/j.csr.2011.06.011
http://www.ncbi.nlm.nih.gov/pubmed/21984862


Int. J. Environ. Res. Public Health 2017, 14, 1602 16 of 16

65. Dodds, W.K.; Gudder, D.A. The ecology of Cladophora. J. Phycol. 1992, 28, 415–427. [CrossRef]
66. Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J. Cladophora (Chlorophyta)

spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Appl. Environ. Microbiol. 2006,
72, 4545–4553. [CrossRef] [PubMed]

67. Lamb, J.B.; van de Water, J.; Bourne, D.G.; Altier, C.; Hein, M.Y.; Fiorenza, E.A.; Abu, N.;
Jompa, J.; Harvell, C.D. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes,
and invertebrates. Science 2017, 355, 731–733. [CrossRef] [PubMed]

68. Whitman, R.L.; Shively, D.A.; Pawlik, H.; Nevers, M.B.; Byappanahalli, M.N. Occurrence of Escherichia
coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan.
Appl. Environ. Microbiol. 2003, 69, 4714–4719. [CrossRef] [PubMed]

69. Serrano, E.; Moreno, B.; Solaun, M.; Aurrekoetxea, J.J.; Ibarluzea, J. The influence of environmental factors
on microbiological indicators of coastal water pollution. Water Sci. Technol. 1998, 38, 195–199.

70. Soupir, M.L.; Mostaghimi, S.; Dillaha, T. Attachment of Escherichia coli and Enterococci to Particles in Runoff.
J. Environ. Qual. 2010, 39, 1019–1027. [CrossRef] [PubMed]

71. Landmeyer, J.E.; Garigen, T.J. Relation between Enterococcus Concentrations and Turbidity in Fresh and Saline Recreational
Waters, Coastal Horry County, South Carolina, 2003–04; US Geological Survey: Reston, VA, USA, 2016.

72. Phillips, L.; Liss, P. The Physical Chemistry of Air-Sea Gas Exchange. In The Sea Surface and Global Change;
Cambrigde University Press: Cambridge, UK, 1997; pp. 207–250.

73. Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Nevers, M.B. Linking non-culturable (qPCR) and
culturable enterococci densities with hydrometeorological conditions. Sci. Total Environ. 2010, 408, 3096–3101.
[CrossRef] [PubMed]

74. Nevers, M.B.; Whitman, R.L. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches
of southern Lake Michigan. Water Res. 2005, 39, 5250–5260. [CrossRef] [PubMed]

75. Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.
Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan.
Environ. Sci. Technol. 2006, 40, 5022–5028. [CrossRef] [PubMed]

76. United States Environmental Protection Agency. Draft National Pollutant Discharge Elimination System
(NPDES) Permit to Discharge into the Waters of the United States; US EPA: Washington, DC, USA, 1994; p. 15.

77. Huang, H.; Fergen, R.E.; Proni, J.R.; Tsai, J.J. Probabilistic analysis of ocean outfall mixing zones.
J. Environ. Eng. 1996, 122, 359–367. [CrossRef]

78. Isleib, R.; Thuman, A. Verification of large scale watershed modeling analysis using small subwatershed
models. In Proceedings of the 2010 Watershed Management: Innovations in Watershed Management under
Land Use and Climate Change, Madison, WI, USA, 23–27 August 2010; pp. 1405–1416.

79. Murphy, S.F.; Stallard, R.F. Hydrology and climate of four watersheds in eastern Puerto Rico. In Water
Quality and Landscape Processes of Four Watersheds in Eastern Puerto Rico; U.S. Geological Survey: Reston, VA,
USA, 2012; Volume 100, pp. 43–84.

80. Crowther, J.; Kay, D.; Wyer, M.D. Relationships between microbial water quality and environmental
conditions in coastal recreational waters: The Fylde coast, UK. Water Res. 2001, 35, 4029–4038. [CrossRef]

81. Boehm, A.B.; Fuhrman, J.A.; Mrse, R.D.; Grant, S.B. Tiered approach for identification of a human
fecal pollution source at a recreational beach: Case study at Avalon Cay, Catalina Island, California.
Environ. Sci. Technol. 2003, 37, 673–680. [CrossRef] [PubMed]

82. Fleisher, J.M.; Fleming, L.E.; Solo-Gabriele, H.M.; Kish, J.K.; Sinigalliano, C.D.; Plano, L.; Elmir, S.M.;
Wang, J.D.; Withum, K.; Shibata, T.; et al. The BEACHES Study: Health effects and exposures from non-point
source microbial contaminants in subtropical recreational marine waters. Int. J. Epidemiol. 2010, 39, 1291–1298.
[CrossRef] [PubMed]

83. Mavani, J.; Chen, L.; Joksimovic, D.; Li, S. Development and Testing of Data Driven Nowcasting Models of Beach
Water Quality; City University of New York: New York, NY, USA, 2014; p. 318.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.0022-3646.1992.00415.x
http://dx.doi.org/10.1128/AEM.00131-06
http://www.ncbi.nlm.nih.gov/pubmed/16820442
http://dx.doi.org/10.1126/science.aal1956
http://www.ncbi.nlm.nih.gov/pubmed/28209895
http://dx.doi.org/10.1128/AEM.69.8.4714-4719.2003
http://www.ncbi.nlm.nih.gov/pubmed/12902262
http://dx.doi.org/10.2134/jeq2009.0296
http://www.ncbi.nlm.nih.gov/pubmed/20400597
http://dx.doi.org/10.1016/j.scitotenv.2010.04.051
http://www.ncbi.nlm.nih.gov/pubmed/20546850
http://dx.doi.org/10.1016/j.watres.2005.10.012
http://www.ncbi.nlm.nih.gov/pubmed/16310242
http://dx.doi.org/10.1021/es060438k
http://www.ncbi.nlm.nih.gov/pubmed/16955902
http://dx.doi.org/10.1061/(ASCE)0733-9372(1996)122:5(359)
http://dx.doi.org/10.1016/S0043-1354(01)00123-3
http://dx.doi.org/10.1021/es025934x
http://www.ncbi.nlm.nih.gov/pubmed/12636264
http://dx.doi.org/10.1093/ije/dyq084
http://www.ncbi.nlm.nih.gov/pubmed/20522483
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Environmental Factors Correlated with Culturable Enterococci Concentrations in Tropical Recreational Waters: a Case Study in Escambron Beach, San Juan, Puerto Rico
	Scholar Commons Citation

	Introduction 
	Materials and Methods 
	Escambron Beach, San Juan, Puerto Rico 
	Culturable Enterococci Data 
	Satellite-Derived and In Situ Environmental Data 
	Data Identified as Below the Limit of Detection 
	Non-Parametric Statistical Analyses 

	Results 
	Modeling Culturable Enterococci Using Akaike Information Criterion Model and Correlation Analyses 
	Environmental Variables Influence on Culturable Enterococci 
	Satellite-Derived SST and Turbidity Anomaly Images to Anticipate Potential Beach Advisories 

	Discussion 
	Environmental Factors Associated with Culturable Enterococci Variability 
	Sanitation Infrastructure, Human Fecal Pollution, and Culturable Enterococci Variability 
	Satellite-Derived SST and Turbidity Anomaly Images, and PREQB Beach Advisories 
	Future Work 

	Conclusions 

