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INFLUENCE OF THE SO3 CONTENT OF CEMENT ON THE DURABILITY  
AND STRENGTH OF CONCRETE EXPOSED TO SODIUM SULFATE 

ENVIRONMENT 
 

Amin A. Hanhan 
 

ABSTRACT 
 
 

The objective of this investigation was to assess the influence of the SO3 content on 

the durability and strength of portland cement. 

Four portland cements were used in this study. The cements had a variable 

tricalcium silicate, tricalcium aluminate, and alkali contents, as well as differences in the 

amount and form of calcium sulfates. The SO3 content of the cements was increased by 

replacing part of the cement by gypsum according to ASTM C 452-95.  

Mortar bars and cubes were prepared for the as-received as well as for the cements 

with an SO3 content of 3.0% and 3.6%. The durability of the as-received and doped 

cements was determined by measuring the length change of the mortar bars that were 

exposed to sodium sulfate environment. The compressive strength of the mortar cubes 

prepared for the same mixes was measured at different ages for sets of cubes cured both 

in sodium sulfate solution and in saturated lime solution. 

It was concluded at the end of this study that there is an optimum SO3 content for 

the lowest expansion that is different from that determined for the highest compressive 

strength. Optimum values also differed from one cement to another and from one age to 
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another for the same cement. The results also indicate the dependence of SO3 content on 

tricalcium aluminate and alkali content of cements. In addition, for all cements examined 

in this study with alkali content of less than 0.60%, increasing the SO3 content above 

3.0% had negative effects on durability assessed by strength or expansion measurements. 

For the cement with highest alkali and tricalcium aluminate content, increasing the SO3 

content from 3.0% to 3.6% delayed the onset of strength drop; however, at 360 days the 

strength drop experienced by both doping levels was the same.  
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CHAPTER 1. 

 
INTRODUCTION 

 
 

1.1 Objective 

When portland cement clinker is ground without the addition of a retarder, the 

reactions with water are usually so rapid that quick set occurs. Consequently it is the 

common practice in the manufacturing process of portland cements, to add a retarder to 

control the rate of the initial reactions. At present, gypsum (calcium sulfate dihydrate) 

and hemihydrate are the retarders generally used. The addition of the correct amount of 

gypsum to the clinker is one of the most important steps in the manufacturing process. 

This added amount of gypsum, together with other sulfate sources determines the final 

sulfur trioxide (SO3) content of the cement. Other sulfate sources in portland cement 

clinker include raw materials used for manufacturing the clinker and from products of 

fuel combustion. 

Although gypsum was found to be beneficial in slowing down the early hydration 

reactions of tricalcium aluminate (C3A), and thus controlling the setting time; 

nevertheless, and in order to provide sufficient protection against the abnormal expansion 

that could result from the use of excessive amounts of gypsum, placing a limit on the SO3 

content of portland cement in standard specifications has been the tradition. ASTM  C 

150 limits the SO3 content for Types I and II cements to 3.0%, for Type III cement 3.5%, 



 2

and for Types IV and V cements to 2.3% (these limits apply for the case when the 

tricalcium aluminate C3A is 8% or less). Alexander and co-workers [6] stated that 

“according to surveys published by CEMBUREAU and Cement and Lime Manufacture, 

the limit in various national standards ranges from 2.5 to 5.0% SO3, depending on cement 

fineness or composition or both”. During the last decades, the Blaine fineness of typical 

cements has increased dramatically, mainly in an attempt to increase concrete early 

strength. Since increasing cement fineness leads to higher early rate of hydration, and 

since gypsum is basically needed to control the early hydration reactions of tricalcium 

aluminate (C3A), cement fineness would be an important consideration in determining the 

quantity of gypsum required for proper retardation. Also during the last decades, a large 

increase in the sulfate content of the five ASTM types of cement clinkers occurred. This 

increase was to some extent the result of environmental restrictions on sulfur and other 

emissions, which in turn resulted in the change of the burning and dust recycling 

practices. Since the total SO3 content is limited in specifications, regardless of the origin 

of SO3, this change had the effect of limiting the amounts of gypsum needed for proper 

retardation without exceeding the limits set in specifications. 

The objective of this research was to assess the influence of increasing the SO3 

content of cement on the durability and strength. 

 

1.2 Phases in Clinker and Portland Cement 

The manufacturing of portland cement is in principle very simple and relies on the 

use of abundant raw materials. A mixture, usually of limestone and clay, is heated in a 

kiln to 1400 – 1600 ◦ C (2550 to 2900◦ F), which is the temperature range in which the  
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two materials interact chemically to form the calcium silicates. The purity and uniformity 

of the raw materials determines the quality of the produced cement. A source of calcium 

oxide and a source of silica are the main sources needed. The most commonly used 

source of calcium oxide is limestone (calcium carbonate) although other sources such as 

chalk, shell deposits, and calcareous mud, are used. Iron-bearing aluminosilicates are the 

primary source of silica. Clays or silts are usually preferred because they exist in a finely 

divided state; but shales, schists, and other argillaceous rocks are also used. Although 

quartz is the major form of pure silica in nature, it is a relatively unreactive material and, 

moreover, pure lime-silica mixes have very high fusion temperatures. The aluminum and 

iron oxides coming from the siliceous raw materials, although they can lead to problems 

of durability and abnormal setting behavior, they act as fluxing agents, lowering the 

fusion temperature of the portion of the raw mix to a practical firing temperature [2]. 

The heat treatment of the raw feed is termed clinkering, to distinguish it from 

sintering (where no melting occurs) and fusion (where complete melting occurs) [2]. In 

the cement Kiln, partial melting takes place; only about one-fourth of the charge is in the 

liquid state at any time, but it is in this fraction that the necessary chemical reactions 

proceed. The kiln is a long steel cylinder lined with refractory brick and inclined a few 

degrees from the horizontal. It is rotated at about 60-200 rev/h about its axis. The raw 

feed enters the kiln at the high end, and is slowly moved down the length of the kiln by 

the actions of rotation and inclination. As the raw feed moves down, it moves gradually 

into zones of increasing temperature, where four distinct processes take place: 

evaporation, calcinations, clinkering, and cooling. Free water is lost by evaporation in the 

dehydration zone and consequently the charge quickly heats up to calcinations 
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temperature. At 600 ◦ C water is lost from the argillaceous material and at about 900 ◦ C 

limestone decomposes and carbon oxide is lost. In the calcinations zone, the charge 

transforms into a reactive mixture of oxides that can enter into new chemical 

combinations. At the later part of the calcinations zone and around 1200 ◦ C, calcium 

aluminates and ferrites form through solid-state reactions. These compounds act as 

fluxes, melting around 1350 ◦ C to begin the clinkering zone. This is the heart of the kiln 

where final chemical combinations occur to form the calcium silicates. Finally, as the 

charge moves past the flame in the final few meters, it rapidly drops off in temperature in 

the cooling zone. As the liquid phase solidifies again, it produces hard, dark-gray porous 

nodules (6 to 50 mm in diameter) known as clinker. The clinker is conveyed to ball mills, 

where it is ground to a fine powder. A small amount of gypsum is inter-ground with the 

clinker to control the early reactions of tricalcium aluminate that, without the addition of 

gypsum, can cause flash setting of the clinker [2]. Portland cement is clinker inter-ground 

with gypsum; without the gypsum, it is only ground clinker. 

 

1.3 Composition of Portland Cement  

1.3.1 Compound Composition 

The typical chemical composition of portland cement consists of tricalcium silicate 

(3CaO.SiO2), dicalcium silicate (2CaO.SiO2), tricalcium aluminate (3CaO.Al2O3), 

tetracalcium aluminoferrite (4CaO.Al2O3.Fe2O3), and calcium sulfate dihydrate or 

gypsum (CaSO4.2H2O). The oxide notation by which these compounds are traditionally 

written and frequently used in ceramic chemistry, gave rise to a unique shorthand 

notation that has universal use among cement scientists. Thus tricalcium silicate is 
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usually written as C3S, dicalcium silicate as C2S, tricalcium aluminate as C3A, 

tetracalcium aluminoferrite as C4AF, and calcium sulfate dihydrate as CŜH2 where Ŝ 

represents SO3.  

The compound composition of portland cement is usually estimated by calculation 

using the ideal compound stoichiometries and oxide analysis determined by standard 

methods (usually X-ray fluorescence spectroscopy) and available from the cement 

supplier (mill certificate). The calculation of the phases from the composition is known as 

the Bogue calculations. The values obtained by Bogue calculations are only approximate 

and do not necessarily represent the true values. This is mainly because Bogue 

calculations are based on several assumptions that are not usually found in the cement 

chemistry. Among these assumptions are chemical equilibrium and the consistency in the 

composition of all the phases [22]. It is known that chemical equilibrium rarely occurs 

inside the kiln during cooling, and it was found that a large number of substitutional ions 

can be incorporated in most of the phases. Thus, the phases do not have the compositions 

assumed for them.  Nevertheless ASTM C 150 gives the Bogue calculations that are 

suitable for most purposes, although more sophisticated procedures have been developed. 

Knowing the compound composition of portland cement makes it possible to predict the 

properties of the cement, but more important is the fact that manipulation of the 

compound composition can be used to modify certain properties of the cement so that the 

cement will perform more satisfactorily in particular applications. C3A and C3S are the 

most reactive compounds, where as C2S reacts much more slowly. The calcium silicates 

provide most of the strength developed by portland cement; C3S provides most of the 

early strength (in the first three to four weeks); while C2S provides most of the ultimate 
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strength. C3A and C4AF control the setting time and the presence of gypsum slows the 

early rate of hydration of C3A. The reaction of C4AF + gypsum + water is believed to be 

somewhat slower than C3S, whereas the hydration of C4AF without gypsum is faster. 

Gypsum also increases the rate of hydration of the calcium silicates, which also compete 

for sulfate during hydration. 

 

1.3.2 Impurity Oxides 

 Since only approximate chemical equilibrium can be attained in the rotary kiln, it is 

to be expected that all cement compounds will contain small amounts of the other oxides 

present in the clinker. The calcium silicates probably contain about 3% by weight of 

impurity oxides, principally Al2O3, Fe2O3, and MgO [2]. Impure C3S, as it exists in 

portland cement, is known as alite and impure C2S as belite. Both alite and belite are 

more reactive than the pure silicates and hydrate more rapidly. C3A contains considerable 

amounts (about 10% by weight) of SiO2 and Fe2O3, while C4AF contains considerable 

SiO2 and much MgO [2]. 

 

1.3.3 Sources of Sulfates 

The most important source of sulfates in portland cement is calcium sulfate. Various 

forms of calcium sulfate (anhydrite, hemihydrate, dihydrate) are added to clinker during 

cement grinding to control the cement setting characteristics as was stated previously. 

These sulfates may be added in the form of natural or industrial-grade calcium sulfate 

dihydrate (gypsum) or anhydrite. Additional sulfates originate from the clinker, in which 

they are formed during the manufacturing of the clinker from the raw materials, and from 
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the products of fuel combustion. Predominantly, they are present in the clinker in the 

form of alkali-and calcium-alkali sulfates (double salts), and occasionally, in the form of 

calcium sulfate anhydrite or other phases [3]. The most common sulfate phases present in 

clinkers are arcanite, K2SO4, calcium langbeinite, KC2Ŝ3, and aphthitelite K3NŜ4. As 

stated earlier, and as a result of environmental restrictions on sulfur and other emissions, 

a large increase in the sulfate content of currently produced cements occurred. Thus, the 

proportion of sulfate that is present in typical cements in the form of alkali-and alkali-

calcium sulfates, originating from the clinker, could be in some cases higher than it was 

in the past [3]. 

Occasionally, additional sources of sulfate in concrete may be the sulfates (e.g. 

gypsum) or sulfides present in aggregate. Also, sulfates may be components of mineral 

and chemical admixtures. Thus, when using an unknown or new admixture in concrete 

applications potentially exposed to sulfate conditions, it is advisable to check the 

chemical or mineralogical nature of all concrete materials [3]. Finally, mixing water 

could be a possible source of sulfate, but this is considered to be an improbable source of 

serious damage. 

Although the chemical requirements of portland cement given in ASTM C 150 

allow wide variations in chemical composition, since it has been found that cements with 

quite different chemical compositions may have suitable physical behavior, the only 

limits placed on all cement types are the MgO and SO3 levels and, optionally alkalis.  
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1.4 Hydration of Portland Cement 

It is very important to understand the reactions that take place during the hydration 

of portland cement in order to assess the effect of the SO3 content of the cement. 

Although the hydration of portland cement involves a complex of chemical reactions, 

three main reactions are the ones involving the calcium silicates and calcium aluminates. 

The hydration reactions of the two calcium silicates ( Equations 1 and 2 ) are 

stoichiometrically very similar, differing only in the amount of calcium hydroxide 

formed:- 

2C3S       +       11 H       →       C3S2H8        +         3CH                          (1) 

Tricalcium        water                  C-S-H                  calcium 

silicate                                                                      hydroxide 

 

2C2S       +        9H        →       C3S2H8        +         CH                           (2) 

Dicalcium         water                  C-S-H                  calcium  

silicate                                                                      hydroxide  

The principle hydration product is a calcium silicate hydrate. The formula C3S2H8 is 

only approximate because the composition of this hydrate is actually variable over quite a 

wide range. C3S2H8 is a poorly crystalline material that forms extremely small particles in 

the size range of colloidal matter (less than 1µm) in any dimension [2]. Its name, C-S-H 

(or C-S-H gel) reflects these properties. In contrast, calcium hydroxide is a crystalline 

material with a fixed composition. Although C2S hydrates in a similar manner to C3S, it 

is much slower because it is a less reactive compound than C3S.  
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The hydration of C3A in portland cement involves reactions with sulfate ions that 

are mainly supplied by the dissolution of gypsum. The primary initial reaction of C3A is 

C3A        +        3CŜH2        +         26H          →           C6AŜ3H32               (3) 

Tricalcium        gypsum                  water                        ettringite 

aluminate 

 

The hydration product which is a calcium sulfoaluminate hydrate is called 

“ettringite”. Ettringite is a stable hydration product only while there is an ample supply of 

sulfate available [2]. If the sulfate is all consumed before the C3A has completely 

hydrated, then ettringite transforms to another calcium sulfoaluminate hydrate containing 

less sulfate:- 

2C3A         +         C6AŜ3H32        +        4H       →        3C4AŜH12             (4) 

This second hydration product is simply called monosulfoaluminate. 

Monosulfoaluminate may sometimes form before ettringite if hydrating C3A consumes 

the sulfate ions faster than they can be supplied by dissolution of the gypsum in the mix 

water. It was found that the formation of ettringite slows down the hydration of C3A by 

creating a diffusion barrier around C3A grains. This barrier is broken down during the 

conversion to monosulfoaluminate and allows C3A to react rapidly again [2]. The more 

gypsum there is in the system, the longer the ettringite will remain stable. Conversion to 

monosulfoaluminate will occur in most cements within 12 to 36 h, after all the gypsum 

has been used to form ettringite. The formation of monosulfoaluminate occurs because in 

most cements there is not sufficient gypsum necessary to form ettringite from all the 
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available aluminate ions. When monosulfoaluminate is brought into contact with a new 

source of sulfate ions, then ettringite can be formed once again:- 

C4AŜH12        +        2CŜH2         +       16H         →        C6AŜ3H32              (5) 

This potential for reforming ettringite is the basis for sulfate attack of portland 

cements when exposed to an external supply of sulfate ions. 

If gypsum is not present, C3A will react rapidly with water to form calcium 

aluminate hydrates: 

C3A          +          21H           →           C4AH13         +          C2AH8             (6) 

These hydrates are not stable and later convert to C3AH6 (hydrogarnet): 

C4AH13      +       C2AH8        →        2C3AH6         +          9H                      (7) 

If C3A is very reactive, even with the presence of gypsum, small amounts of 

hydrogarnet may be found in a hydrated cement. When small amounts of gypsum are 

present, there may still be unreacted C3A present when all of the ettringite has been 

converted to monosulfoaluminate. In this case, a solid solution between C4AŜH12 and 

C4AH13 is formed, the two hydrates having the same crystal structure. This solid solution 

is written as C3A(CŜ,CH)H12.  

The hydration of the ferrite phase C4AF forms similar hydration products to C3A in 

both cases with or without gypsum, however the reactions are slower and involve less 

heat. Changes in the composition of the ferrite phase affect only the rate of hydration; as 

iron content is raised, hydration becomes slower. Practical experience has shown that 

cements low in C3A, but high in C4AF are much more resistant to sulfate attack [2]. This 

means that the formation of ettringite from monosulfoaluminate (Eq. 5), does not occur. 

It has not been established why this is so; it may be that an iron-substituted 
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monosulfoaluminate cannot react to form ettringite. Alternatively, the presence of the 

amorphous product (F,A)H3 may in someway prevent the reaction described in Eq. 5 

from occurring. 

 

1.5 Review of Previous Research 

The phenomenon of optimum sulfate levels in portland cements has occupied 

researchers for decades. Beginning in 1870 Michaelis discovered the most remarkable 

effect of adding only 2% of raw gypsum to ground cement on regulating setting, that is to 

lower the setting time to 5-7 hours [4]. This discovery of Michaelis then became a very 

significant issue to the whole world especially when it was noticed that adding gypsum, 

not only regulates the rapid setting, but even improves the strength of cement mortars [4]. 

An early research work done on the setting time concluded that there would be no 

advantage in adding more than 2% CaSO4 and that specifications should call for such a 

limit. In this work, one type of clinker was grounded with gypsum at 0.5% intervals from 

0.5 to 7.0% and time of set was measured with a Vicat-Type apparatus. Maximum 

retardation was obtained with 1.5% CaSO4 and additional gypsum did not further delay 

initial set for this clinker. ASTM adopted a limit of 2.0% SO3 in 1920, but the 

recommended limits for SO3 have increased consistently since then due to several factors, 

including higher sulfur fuels used in burning clinker and increased clinker fineness [4]. 

Several researchers observed an increase in strength with increasing gypsum content and 

the first publication indicating an optimum amount of gypsum for strength development 

was published in 1924. The researchers also observed that gypsum inter-ground with 

clinker produced higher strength mortars than cements made by blending ground clinker 
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plus gypsum. This suggests that gypsum fineness plays an important role in strength 

development, a significant finding which has been confirmed more precisely in recent 

years [4]. A study conducted by ASTM Committee C-1, Subcommittee B in 1931 

concluded that more than 1.75% SO3 was detrimental in cements with 8% C3A but that 

higher C3A cements (11-16%) could contain up to 2.5% SO3 without detrimental effects. 

A close look at their data indicates that 2.5% SO3 was optimum for strength development 

measured at one day, but that 3.0% SO3 gave higher strengths at later ages. Other 

investigations also showed similar trends but indicated that for a certain optimum gypsum 

level, a set of conditions should be well defined including the fineness of the cement, the 

form and reactivity of the calcium sulfate, the curing conditions, the temperature during 

storage, and the age of the specimen at test. Kanare and Gartner [4] stated that “the 

sulfate addition level which gives optimum strength development may not give the best 

volume stability under all circumstances”. 

In 1941, Lerch [5], began a thorough study of the effects of gypsum and lime on 

cement hydration. Twelve commercial clinkers covering the range of chemical 

composition generally found in portland cements were selected for study. Each of 

these compositions was used with various SO3 contents with fineness held constant at 

about 1900 sq. cm. per gram. In addition five of the clinkers were ground to varying 

degrees of fineness with SO3 constant at about 1.8 percent. The results of the study 

showed that with some cement compositions, the gypsum retards the initial hydration and 

set, while with others it acts as an accelerator. It also showed that for many cements, the 

strengths can be increased and the drying shrinkage decreased by the use of larger 

additions of gypsum than were permitted by the specifications at that time. The results 
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also showed that the fineness, the alkalis, and the C3A content all influence the gypsum 

requirements. Lerch defined a “properly retarded” cement on the basis of the shape of the 

heat-liberation curve during the first 30 hr. of hydration. A “properly retarded” cement, 

according to Lerch, “is the one that contains the minimum quantity of gypsum required to 

give a heat-liberation curve that shows two cycles of ascending and descending rates and 

that shows no appreciable change with larger additions of gypsum”. The results of the 

tests showed that when considering cements ground from a given clinker, those 

containing the proper amount of gypsum to give this type of curve will develop the 

highest strength and the lowest contraction. 

As for the influence of the alkalis and C3A content of the cement on the gypsum 

requirements for proper retardation, the results showed that with cements of low alkali 

content, those of high C3A content require larger additions of gypsum than those of low 

C3A. For cements of the same C3A content, those high in alkalis react with gypsum more 

rapidly and require larger additions of gypsum than those low in alkalis. The author 

stated that “there is some evidence that cements containing Na2O require larger amounts 

of gypsum than do similar cements containing an equivalent quantity of K2O”. The 

author adds that “it appears that at least part of the alkalis of the cement are present in the 

aluminate phases, and that aluminate phases containing alkalis react with water more 

rapidly than do similar phases which are alkali-free or of lower alkali content. Thus the 

cements of higher alkali content require larger additions of gypsum for proper retardation 

than do similar cements of lower alkali content”.  

The author also explained that increasing the specific surface of the cement 

increases the quantity of aluminate phases available for reaction with the water at early 
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ages and thereby increases the quantity of gypsum required for proper retardation of 

cements of moderately high or high C3A content. 

It was stated that “cements of low C3A and low alkali content without added gypsum 

can be mixed with water without the occurrence of a flash-set” [5]. The explanation of 

the author for this statement was that with cements of this type an amorphous hydrated 

calcium ferrite precipitates on the surface of the cement particles and seals the surface in 

a manner such as to retard subsequent hydration, while with added gypsum a crystalline 

hydrated calcium sulfoferrite is formed which does not seal the surface and the hydration 

is accelerated.  

The results of the physical tests showed that for many cements the strengths can be 

increased and the contraction on drying or the expansion in water storage decreased by 

the use of larger additions of gypsum than were permitted by specifications. In some 

instances, the strengths were increased by as much as 20 to 50 percent and the contraction 

decreased by as much as 30 to 50 percent. For cements of low C3A and low alkali 

content, the strengths were not increased nor were the contractions decreased by larger 

additions of gypsum. The cements high in C3A regardless of their alkali content or 

cements high in alkalis regardless of C3A content require larger additions of gypsum. 

Lerch concluded that gypsum could be added in larger amounts than was permitted by the 

specifications at that time without danger of delayed expansion. 

Although some researchers found that Lerch’s work could be faulted in some areas, 

other researchers reached essentially the same conclusions. Perhaps the most important 

conclusion which can be drawn from Lerch’s study is that most cements show different 
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optimum gypsum requirements for different properties, such as strength or shrinkage, at 

different ages. 

In 1956, the standard specification for portland cement C 150 was revised to reflect 

the thinking that SO3 content should depend upon cement type and composition, and by 

1961 up to 4.0% SO3 was permitted in Type III cements with more than 8% C3A [4]. 

Several researchers have attempted to find correlations between clinker composition, 

cement fineness, and the level of gypsum which produces optimum strength 

development, however none of the given equations proved to be sufficiently accurate or 

reliable for use as predictive tools. Kanare and Gartner [4] stated that, “it seems that the 

technology of optimizing the sulfate content in portland cements has remained virtually 

unchanged since the turn of the century when technologists first made cements with 

several levels of gypsum to see which got strongest. This is still the best and only method 

to use for the purpose of maximizing early strength in commercial cements”. 

Some research work was done on the effect of fineness of calcium sulfates in 

cements on the optimum sulfate content. Observations by several researchers suggest that 

gypsum interground with clinker might be “smeared” on the surfaces of clinker particles 

rather than simply ground into a fine powder which is intimately mixed with the clinker. 

Calcium sulfate particles several hundred micrometers in size are often observed in 

commercial cements [4]. These coarse gypsum particles could be effectively “inert” 

during early cement hydration, possibly as a result of encapsulation by hydrated cement 

phases. In such a case these large particles may influence the attempts to optimize sulfate 

content. 
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Panigrahy et.al. [20], studied the differential comminution of gypsum in cements 

ground in different mills. Identical mixes containing fixed amounts of ordinary portland 

cement clinker and gypsum were ground in two types of industrial cement mills, ball mill 

(BM) and vertical roller mill (VRM), to identical Blaine fineness to examine the effect of 

any possible differential comminution of gypsum on cement setting times. The authors 

found that in every occasion, the VRM cement recorded much lower setting time than the 

BM cement. It was also found that although the SO3 contents in all the cement samples 

are almost identical, their gypsum XRD pulse counts were quite different and they were 

always significantly less in the BM products than in the VRM products. Since the XRD 

spectra did not record any other crystalline Calcium sulfate phase, it is evident that the 

BM product contained a significant portion of Calcium sulfate in amorphous form. The 

effect of grinding on amorphism was also reported by other researchers and the authors 

stated that “it is only the differential amorphism of gypsum caused during grinding which 

is solely responsible for variation in setting times”. It was concluded from the study that 

during comminution of cements, the degree of crystallinity of gypsum, as determined by 

X-ray diffraction (XRD), changes with used grinding mills and this causes changes in 

setting times of similar cements even when ground to identical Blaine fineness. 

Goswami, Mohapatra, and Panda [1], studied gypsum dehydration during 

comminution and its effect on cement properties. The authors concluded that gypsum in 

cements, ground to the same fineness in different mills, may be subjected to different 

degrees of dehydration. During cement grinding in an industrial mill, gypsum is often 

dehydrated to hemihydrate. It was found that the presence of hemihydrate in the cement 

increases ettringite formation during early hydration, retards the setting times, and 
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reduces the strength of the cement by about 10%. The authors suggested that the fall in 

strength is particularly due to re-hydration of part of the hemihydrate present in the 

cement.  

Among the earliest findings concerning the optimum gypsum content were those of 

Lerch [5] who found that the optimum gypsum for minimum shrinkage of mortars was 

slightly greater at 28 days than at 3 days. Another important finding was that of 

Alexander and co-workers [6] who studied the effects of variable SO3 in concretes. In 

one study, using three commercial cements, each produced at four different levels of SO3, 

creep under compressive loads was found to be very sensitive to the SO3 content of the 

cement, and that the optimum SO3 for minimum creep, generally 3-4% SO3, was at least 

0.6% higher than the optimum gypsum for minimum drying shrinkage. The SO3 content 

of the cement was also shown to have no significant effect on concrete modulus of 

elasticity. 

Some researchers investigated the effect of SO3 on the hydration of the silicate 

phases. They concluded that calcium sulfate has an accelerating effect upon the hydration 

of C3S [4]. One indication among the findings of these researchers is that any level of 

gypsum which keeps the hydration liquid saturated with sulfate ions at early ages will 

provide acceleration of the alite hydration. In addition to the fact that gypsum accelerates 

the hydration of the silicate phases, it is believed that it also influences the composition of 

the hydration products. It has been suggested that the silicate hydration products 

containing sulfate are intrinsically inferior to those without sulfate, but the opposite has 

also been claimed [4]. It appears that there is a trade-off between the increased amount of 

gel produced by the addition of gypsum and its inferior quality at later ages. It seems that 
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a certain combination of the amount and quality of gel was optimum for compressive 

strength. Sulfate ions are isostructural with silicate ions and might be expected to 

substitute for the silicate in CSH gels [4]. 

Bentur [9], studied the effect of gypsum on the hydration and strength of C3S pastes. 

He studied pastes hydrated at 0.43 water-to-solid ratio of mixtures of C3S with 0,2,4, and 

9% analytical-grade gypsum. He found that the effect of gypsum content on compressive 

strength changes with time. At early ages (1 and 2 days) the compressive strengths of the 

pastes containing 2,4, and 9% gypsum were similar, whereas the pure C3S was much 

weaker. At 3 and 7 days, the compressive strength was maximum at 2% gypsum content. 

At 28 and 90 days, the strengths of pure C3S and the paste containing 2% gypsum were 

markedly greater than those of the pastes containing 4 and 9% gypsum. He also studied 

the C/S values of the pastes with different gypsum content. He found that in pure C3S 

past, this value decreases as hydration advances; beyond 70% hydration, it tends to 

stabilize. In the pastes containing gypsum, the C/S ratio increases up to approximately 

60% hydration and decreases thereafter. Bentur also found that in 70% hydrated pastes, 

the C/S ratio increases with the Ŝ/S ratio. This trend indicates that the reaction of the 

sulfate causes chemical changes in the structure of the CSH gel. He assumed that the 

variations in the strength of pastes having the same degree of hydration are related with 

changes in intrinsic strength. At 40 and 50% hydration, the C/S ratio is independent of 

gypsum content and so is the intrinsic strength. At higher degrees of hydration, the C/S 

ratio increases with gypsum content and the intrinsic strength decreases with it. He 

suggested that the difference in the gypsum effect at lower and higher degrees of 

hydration might be the result of a slow reaction between the sulfate and the CSH gel, so 
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that the influence of gypsum on the chemical constitution and mechanical quality of the 

CSH gel begins to be important only after a certain period of hydration. Thus the 

optimum gypsum content is the value at which the optimum combination of quantity and 

quality of the CSH gel occurs. 

Me’ne’trier, et. al. [14], and in order to better understand both the effect of gypsum 

on cement hydration and the morphology of the hydration products, conducted studies on 

C3S hydration in the presence of gypsum and then incorporated  this into a mechanical 

study of cement hydration. The results of this study confirmed an increase in C3S 

dissolution rate in the presence of gypsum. The study also revealed that a substantial 

amount of sulfur is incorporated in the C-S-H, this was evidenced by the disappearance 

of gypsum from the system. It is the belief of the authors that sulfate ions 

may replace the silicate ions in the amorphous structure of C-S-H. The authors also 

concluded that the morphology of the C-S-H formed in the first minutes of hydration is 

similar to that of C-S-H formed in a saturated lime solution rather than in pure H2O. 

However, the morphology developed in later stages resembles that of usually-observed 

C-S-H.  

Observations of other researchers suggest that sulfate may affect the strength by 

modifying the morphology of the hydration products, or by modifying the pore structure 

which surrounds and permeates the solids. Other investigators found that although 

gypsum produced a higher hydration rate and, therefore, a more rapid strength increase, 

the resulting gel was less condensed (had more pores) and had higher lime-silica ratio, at 

the same degree of hydration, in the pastes containing gypsum. The lime-silica ratio is 

one of the most intensively studied aspects of cement chemistry. At a given degree of 
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hydration, compressive strength was related to the inverse of the C/S ratio as determined 

by QXRD, with best strength at C/S = 1.9 (molar basis). C/S decreased with increasing 

degree of hydration and increased with increasing sulfate-to-silica (Ŝ/S) ratio [4]. Some 

researchers estimated the maximum amount of sulfate which could be accommodated in 

the gel to be equivalent to a S/Ŝ molar ratio of 5.85, which is approximately equal to 

4.5% SO3 by weight in ordinary portland cement. Since most commercial cements 

contain far less than 4.5% SO3, all of the gypsum could, in principle, be accommodated 

in the CSH. The sulfate substitution for silicon in hydrated C3S paste appears to have a 

small contribution to the increase in strength since optimizing the SO3 content of a 

cement typically can produce a 25% increase in compressive strength of mortar cubes [4]. 

The most important effect of gypsum is to accelerate C3S hydration in addition to the 

important role of retarding C3A and C4AF hydration.  

According to Kanare and Gartener [4], “it could be concluded that the uptake of SO3 

by CSH is potentially an important factor in determining the kinetics of SO3 depletion in 

cement hydration at early ages. Although by the end of the induction period (which 

usually takes few hours) only very little C3S is consumed and very little CSH is formed, 

the steady hydration of C3S that occurs after that results in a rapid uptake of CaSO4 by 

CSH, well before the onset of the renewed rapid aluminate-phase hydration”. 

Ish-Shalom and Bentur [8], studied the effects of aluminate and sulfate contents on 

the hydration and strength of portland cement pastes and mortars. They used three cement 

samples varying in C3A content and one varying in SO3 content. In the interpretation of 

their results, bound water was used as a measure of quantity of binding material, and free 

lime to bound water ratio (FLWR) as a measure of chemical constitution and quality. In 
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their work they stated that aluminate and gypsum can influence the hydration in two 

different ways: directly, by the presence of sulfoaluminate hydrate, or, indirectly, by 

affecting the rate of hydration of the silicate phases or the quality of the hydrosilicate gel 

that is formed or both. They assumed that the extent of hydration represents the quantity 

of binding material while FLWR represents some measure of its quality. Their results 

showed that when comparing different cements hydrated under the same conditions 

(period and temperature of hydration) high compressive strength is associated with the 

higher FLWR but not with bound water. They suggested that in these cases high FLWR 

indicates the existence of a high quality gel. According to their explanation, high FLWR 

implies low Bound Lime to Bound Water Ratio (BLWR) and since bound water is 

approximately proportional to the amount of hydrated silicates, then low (BLWR) means 

low CaO/SiO2 ratio in the hydrated gel. Thus, a high FLWR indicates the existence of a 

low CaO/SiO2 hydrated gel and this gel indicates according to other researchers a large 

proportion of double tobermorite layered structure in it, which is also connected with 

higher specific surface, which in turn leads to higher strength. 

They concluded from their work that the highest compressive strength is achieved 

with medium aluminate content cement for all the temperatures and ages investigated. A 

good correlation was observed between strength and free lime water ratio (FLWR), 

which is a parameter of the chemical constitution of the cement gel. They also concluded 

that the increase in sulfate content of the medium aluminate cement caused an increase in 

extent of hydration (bound water) and a reduction in the quality of the gel (FLWR). 

An optimum combination of both parameters (expressing quality and quantity of gel) was 

achieved at the medium sulfate cement which exhibited the highest compressive strength. 
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They also found that the medium aluminate cement exhibited an optimum response to the 

effect of high initial temperature: The beneficial effect at early age (high strength and 

degree of hydration) was highest while the deleterious effect at later age was lowest. 

The effect of added gypsum on the compressive strength of portland cement clinker 

was also studied by Soroka and Relis [15]. The authors state that there is an optimum 

gypsum content which imparts the cement maximum strength and minimum shrinkage 

without excessive expansion. This optimum, generally speaking, depends on, and 

increases, with C3A and alkali oxide contents of the cement and with its fineness. The 

observed optimum content in the strength curve, and according to the authors, implies 

that the addition of gypsum involves two opposing effects. The first, which pre-

dominates the lower range of SO3 content, has a beneficial effect on strength, and brings 

about the ascending part of the curve. The second, which pre-dominates the range of SO3 

content greater than the optimum, has an adverse effect and brings about retro-gradation 

in strength and the associated descending part of the curve. This adverse effect may be 

attributed to internal cracking which takes place when an excessive amount of gypsum 

(i.e., more than the optimum) is added to the cement. It should be noted, however, that 

sulfate expansion is probably not the only mechanism involved because such retro-

gradation in strength was observed also in C3S and alite pastes, i.e., under conditions 

where no ettringite is formed. It was, accordingly, suggested by researchers that the 

hydration of C3S and alite in the presence of gypsum resulted in a C-S-H gel of inferior 

quality (a gel of a lower intrinsic strength), and it was shown that such a gel was 

characterized by lattice-substituted Ŝ and a higher C/S ratio [9]. 
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The test data of this study also indicated that the addition of gypsum to portland 

cement clinker resulted in higher strength, in particular at the early ages of one and three 

days. This higher strength was associated with a lower degree of hydration and a greater 

porosity. Under test conditions, this observation, implied that the beneficial effect of the 

gypsum on the strength of the cement was attributable to the improved quality of the gel 

which was produced in the presence of gypsum. The study showed that the addition of 

the gypsum resulted in hydration products of greater average density and it was suggested 

that this greater density brought about the higher strength. The authors also suggested that 

the greater density of the hydration products was due to the pressure generated on 

formation of ettringite due to the increase in the volume of the solids involved in the 

reaction. 

Alexander and Ivanusec [16], studied the long-term effects of cement SO3 content 

on the strength of concrete. Six brands of cements were each manufactured at four SO3 

contents, in full scale plants. The strengths were determined, at up to one year, in 

concretes of high and low w/c ratios. The study showed that strength was usually 

independent of, or linearly related to, the SO3 content observed. Only rarely was a well 

defined optimum SO3 content observed. The study also showed that there is an 

appreciable increase in strength between 28 days and one year at all SO3 levels. The 

greatest strength increase with time occurred with low-C3A cement. Almost invariably, 

with each cement, the strength v. SO3 content relationships at 28 days and one year are 

similar, and the strength increase between these ages is therefore largely insensitive to the 

SO3 content of cement. The authors concluded that the association between the 28-day 

strength of concrete and the C3S content of cement does not vary greatly with the SO3 



 24

content of cement. However, the correlation coefficient for C3A and strengths shows 

considerable sensitivity to SO3 content. The one-year strengths of concrete made from 

under-sulfated cements showed a strong negative association with the C3A content of 

cement. Under these conditions, differences in the C3A contents could account for up to 

10 MPa difference in strength. It was also concluded that the strength of the association 

between one-year concrete strength and the C3A content of cement varies with the SO3 

content of cement. At this age, the degree of sensitivity of the C3A coefficient to SO3 

content depends, in turn, on w/c ratio.  

Since only few explanations have been suggested in order to explain the effect of 

gypsum on the mechanical properties of the cement and since these explanations are not 

always complete and even sometimes contradictory, Soroka and Abayneh [17], 

conducted a study aimed to establish the effect of gypsum, if any, on the structure of the 

cement paste, and to try and relate, if possible, this effect to the mechanical properties of 

the paste. It was clearly evident from the study, that an optimum SO3 content existed in 

most cases, but not always, with respect to the strength and drying shrinkage of the 

pastes. Strength-wise, the optimum was 2 to 3%, increasing to 4% in the finer cement. It 

was pointed out that the increase in the optimum content with the fineness of the cement 

was generally observed. The authors explained the higher value of 4% which was 

observed in the finer cement by the higher rate of hydration of such cements in 

comparison with their coarser counterparts. Sulfate expansion is generally attributed to 

the continued formation of ettringite in the set cement as a result of topochemical reaction 

between the gypsum and the C3A of the cement. As more gypsum is consumed at an 

earlier stage with a higher rate of hydration, and because only the gypsum which is left to 
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react at the later stages causes expansion, a greater gypsum content can be tolerated in the 

finer cements. The study also showed that for SO3 contents exceeding the optimum of 

3%, and particularly at the later ages of 28 and 90 days, the presence of the gypsum 

significantly retarded the hydration of the cements. It was concluded from the study that 

the strength of a cement at a given SO3 content in the range studied (i.e., to 5%), is 

significantly related to the degree of hydration, and that at a given degree of hydration or 

porosity, strength is increased with the increase in the SO3 content of the cement. The 

authors found that the improved strength with the increased SO3 content could not be 

related to the quality of the gel, as it is reflected in the density of the hydration products, 

nor to differences in pore-size distribution. The authors concluded that there are 

apparently some other factors involved and this warrents further study. 

The increase in strength with increasing SO3 content, can be explained by the fact 

that the presence of calcium sulfate accelerates the hydration of alite, but this does not 

explain the existence of a maximum. Kanare and Gartner [4], suggests one possible 

explanation as follows:- “When the optimum amount of calcium sulfate is present, the 

aluminate phases are retarded and the liquid phase remains saturated with respect to 

gypsum until after the alite has experienced its maximum rate of hydration and the 

cement has achieved final set. This permits the maximum rate of alite hydration and 

therefore maximizes early strength development. However, if too much sulfate is present, 

then the remaining aluminate hydration will be retarded and so will continue to produce 

ettringite after the paste has hardened, causing localized expansion of the paste structure 

and consequent reduction in strength development due to micro-cracking”.  This 

explanation is supported by the fact that the 1-day strength-versus-SO3 curves for low 
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C3A cements are virtually flat in the region beyond the SO3 level that gives maximum 

strength, whereas the curves for cements containing more than 5% C3A show significant 

decreases in strength at higher SO3 levels. When gypsum continues to be present beyond 

the time of final set, this need not be necessarily detrimental to the early paste structure 

because the growth of expansive ettringite can be accommodated and micro-cracks which 

may develop can be autogenously filled by newly formed CSH [4]. Another important 

fact is that it is reasonable to assume that the strength increases as the total volume of 

hydrates increases and this includes the calcium aluminate hydrates, thus early gypsum 

depletion could be advantageous in that it will result in a high degree of C3A hydration 

within the first day. Accordingly, a relatively small excess level of SO3 could retard this 

process and therefore lowers 1-day strengths, although it need not necessarily produce 

any obvious expansion. SO3 levels well beyond the optimum are usually necessary to 

produce deleterious expansions [4].  

Tang and Gartner [19], studied the influence of sulfate source on portland cement 

hydration. Cements were synthesized by blending a Type I low alkali portland cement 

clinker with sulfate salts. The authors developed a quantitative X-ray diffraction method 

to measure the rate at which C3A and C4AF phases in these cements were consumed in 

pastes hydrated at 23 ◦ C. It was found that the initial high rate of aluminate phase 

consumption was influenced significantly by the rate of solubility of the sulfate source 

and especially the rate at which it released CaSO4 into solution. Interground gypsum was 

far more effective than interblended gypsum in controlling aluminate hydration. It was 

also found that a better control of the initial aluminate hydration generally led to higher 

28-day paste strengths. For all sulfated cements, ettringite was the only aluminate hydrate 
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detected by XRDA over the first 30 min. However, by 24 hr. it was in most cases 

accompanied by detectable amounts of an AFm phase which usually appeared to be 

monosulfoaluminate. The authors stated that although it has been suggested that high 

alkali cements require more SO3 for optimization because the alkali accelerates aluminate 

hydration, their data did not support this as a general rule. They added that other factors, 

such as the solubility or “reactivity” of the sulfate source, seem to be just as important. 

Thus, much less aluminate reacts initially in the low alkali cements containing 

hemihydrate than in the comparable cement made only with gypsum, because 

hemihydrate is more soluble than gypsum. After 30 min. however, the difference is lost, 

but this initial control of the aluminate phase hydration could lead to higher 28 day 

strength. More remarkably, the cement made by inter-grinding clinker and gypsum 

showed significantly lower aluminate consumption than the interblend at all ages, and 

even after 24 hr. its aluminate was severely retarded. This indicates that distribution of 

sulfates is just as important as their chemical form, and that results obtained with 

interblends can never completely represent what would occur in commercially produced 

cements made from clinkers containing alkali sulfates. The study showed that there is an 

approximate inverse correlation between initial aluminate consumption and initial mini-

slump of the pastes. The data for the paste compressive strength show the positive effect 

of soluble alkali on 1-day strengths, but at 7 and 28 days, there was little significant 

difference between the high and low alkali cement groups. The practical consequence of 

this work lies in the observation that a reduced initial rate of aluminate phase 

consumption tends to improve both the workability of the fresh cement paste and the 

ultimate strength of the hardened product [19]. 
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1.5.1 C3A and C4AF Hydration   

Considerable controversy still exists regarding whether the formation of ettringite is 

the primary mechanism for early retardation of C3A. According to Kanare and Gartner 

[4], some researchers suggest that retardation of C3A in mixtures with CaSO4 is due to 

ettringite formation, but in cements it is due to amorphous hydration products. They also 

suggest that monosulfoaluminate can form even when gypsum particles are present, and 

thus local dissolution and transport rates are an essential part of the retardation 

mechanism. Other researchers demonstrated that the hydration of C3A and C4AF is 

retarded in solutions saturated with both lime and gypsum and that the ferroaluminate 

phase is the one being more strongly affected. They suggest that ettringite forms first on 

the C4AF surface, and when the sulfate concentration becomes low, monosulfoaluminate 

is produced, the ettringite layer is broken up, and C4AF hydration accelerates. Other 

researchers stated that evidence was found that a retarding coating of ettringite and 

hydrous alumina exists which disappears at later stages as the sulfate is used up, 

permitting renewed acceleration. The findings reported by several researchers indicate 

that gypsum retards C3A only when calcium hydroxide is also present. In this case, 

ettringite forms protective films on the surface of the C3A as long as the solute 

concentration exceeds 14.5 mg CaSO4/liter. 

When all the gypsum is used to form ettringite, further reaction of C3A converts 

ettringite to a solid solution of monosulfoalumiante and hydrated tetracalcium 

sulfoaluminate [4]. Other researchers hydrated cements in the presence of isotopically 

labeled gypsum and then treated the products with lime water to remove residual gypsum. 

They concluded that a calcium sulfoaluminate coating formed initially on the grains as a 



 29

slightly permeable film, and that the minimum amount of sulfate required to give a 

complete film coating to the grains was the amount which would properly retard the 

cement. 

Skalny and Tadros [11], investigated the mechanism of retardation of the C3A 

dissolution rate by CaSO4 and concluded that the retardation of the C3A-H interaction in 

the presence of CaSO4 is not primarily the result of the formation of an ettringite film on 

its surface. Upon contact with water, C3A dissolves incongruently, leaving an aluminum-

rich layer on the surface. Calcium ions adsorb on this surface, producing positively 

charged particles even though the medium is highly alkaline. The formation of such a 

structure appears to minimize the active dissolution sites, and the dissolution rate of C3A 

decreases. In the presence of small amounts of CaSO4, sulfate ions adsorb on the 

positively charged particles, resulting in further reduction of the dissolution sites which 

would otherwise be available for hydroxyl ions to catalyze the dissolution.  

Collepardi et.al. [13], studied the hydration of tricalcium aluminate in the presence 

of lime, gypsum, or sodium sulfate. The results of his work confirmed that the 

mechanism of C3A hydration by gypsum is based on ettringite coating C3A grains. The 

authors concluded that ettringite crystals are formed by a through-solution mechanism 

but that they are assumed preferentially to form on the surface of C3A because of the 

catalytic action of the C3A surface on the nucleation of ettringite. The retardation due to 

gypsum is more effective in the presence of CH as ettringite crystals are smaller and can 

fit to the irregular shape of C3A grains better than larger ettringite crystals obtained in the 

absence of CH. The same hypothesis was proposed to explain why CH retards C3A 

hydration. The authors also found that after some hours, the ettringite coating C3A grains 
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is converted to monosulfate because of the consumption of gypsum, and C3A hydration is 

renewed. The results of this work did not confirm two other proposed mechanisms for the 

retardation of C3A hydration in the presence of CH and gypsum. The first mechanism 

was the one based on the formation of C4AHx impervious layer coating the C3A grains, 

this was due to the fact that ettringite was observed instead of C4AHx during the initial 

period of C3A hydration. Also expansion caused by the formation of monosulfate from 

C4AHx was not observed. The second mechanism was the one based on the adsorption of 

sulfate ions on C3A grains, this is because the results of this work showed that Na2SO4 

does not retard C3A hydration as gypsum does. Also the renewal of C3A hydration which 

was observed after some hours when C3A hydrates in the presence of gypsum or gypsum 

and CH, can not be explained by this mechanism.  

The Rilem Committee 68-MMH, in their report about the hydration of tricalcium 

aluminate and tetracalcium aluminoferrite in the presence of calcium sulfate [18], 

summarized the state of knowledge regarding the hydration of C3A and C4AF in the 

presence of calcium sulfate at ordinary temperatures. The report states that there does not 

appear to be general agreement as to the mechanism by which C3A hydration is retarded 

in the presence of calcium sulfate. Most of the experimental evidence favors the view that 

retardation is associated with AFt formation. However, recent electron optical studies 

have shown the formation of a hydration product layer of uncertain composition that may 

control the rate of early C3A hydration. A number of investigations have analyzed the 

kinetics of ettringite formation and have suggested a diffusionally controlled mechanism. 

However, reported activation energies are not consistent with a diffusionally controlled 

process. Some researchers proposed a mechanism in which a thin layer of ettringite 
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rapidly forms around the surface of a C3A particle by a topochemichal mechanism. As 

this layer thickens, pressure resulting from the volume increase as C3A is converted to 

ettringite, develops and causes fissures in the layer. As the fissures form, calcium and 

sulfate ions and water gain access to the C3A surface and the fissures are filled by the 

formation of additional ettringite. Finally, when sulfate ion is exhausted, ettringite begins 

to convert to AFm in the presence of unreacted C3A. 

Other researchers disagree with the fissure mechanism. They stated that they 

observed the development of hollow, tubular, amorphous calcium sulfoaluminate hydrate 

filaments early in the hydration process, which they reported to form as a result of 

osmotic swelling of amorphous calcium sulfoaluminate layers initially surrounding the 

C3A particles. These observations support other proposed mechanisms in which semi-

permeable membranes form around the C3A grains. Water, diffusing through these 

membranes, eventually results in their rupture. This results in the mixing of an aluminate-

rich solution with calcium and sulfate ions and the precipitation of ettringite. Another 

proposed mechanism suggests that the retardation of C3A hydration results from the 

formation of alumina gel in the interfacial region between the C3A surface and an outer 

hydrate layer. Observations have shown that CH and gypsum, when mutually present, are 

more effective in retarding C3A hydration than is gypsum alone. Other studies indicated 

that the size of the ettringite crystals was reported to increase with increasing temperature 

and, as a consequence, become less effective as a diffusion barrier. Studies have also 

indicated that while ettringite forms during initial hydration of portland cement, it is 

slowly converted to an AFt solid solution in which hydroxyl ion partially replaces sulfate 

ion. Fe+3 may substitute for Al+3 in the ettringite structure and a solid solution between 
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the aluminum and iron AFt phases exists. Other researchers concluded that at a pH of 

about 12.8, the AFt phase is unstable with respect to the AFm phase and gypsum. 

As for the ferrite phase, in general, the hydration of the ferrite phase in the presence of 

calcium sulfate follows the same mechanistic path as that of C3A: early formation of AFt 

phase, followed by its conversion to AFm on exhaustion of gypsum. 

Kanare and Gartner [4], stated that “No researcher has presented unequivocal 

evidence for the formation of a crystalline ettringite coating which can seal the surfaces 

of C3A grains and thereby retard hydration. While the formation of crystalline ettringite is 

coincident with retardation, the experimental evidence suggests that a slightly permeable, 

gel-like layer is formed on the surface of C3A grains surmounted by several layers of 

varying composition ranging from amorphous to crystalline. Sulfate and other ions are to 

be found in this coating and its composition will determine its permeability and 

propensity toward further re-crystallization”. 

The effect of temperature is another important factor reported by researchers who 

showed that the hydration of C3A is very sensitive to temperature, and can be greatly 

accelerated by heating. They also showed that at much higher temperatures than 20◦ C, 

gypsum is far less effective in controlling the rate of C3A hydration.     

1.5.2 Effect of Alkalis 

It is known that sulfate solubility increases and calcium solubility decreases with 

increasing alkali ion concentration [4]. Some researchers have pointed out that the 

fineness, distribution, and mineral form of the interground calcium sulfate affects the rate 

at which calcium and sulfate can go into solution and interact with the other phases 

already present. The presence of alkalis will cause a change in the rate of gypsum 
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consumption and thus affects the levels of calcium and sulfate in solution. The alkalis in 

portland cement clinker are found partly as soluble sulfates and partly as constituents of 

the clinker minerals. The effects of alkalis on the strength development properties of 

hydrating cement can be attributed to changes in the composition of the liquid phase 

mainly caused by the alkali sulfates, or to changes in the hydraulic properties of the 

clinker minerals caused by the presence of alkalis in their lattice structure [4].  

Osbaeck and Jons [7], and in order to evaluate the importance of the distribution of 

the alkalis, prepared a series of laboratory-burned clinker, differing only in content and 

distribution of alkalis, and have been ground to cement fineness at various gypsum 

addition levels. Their investigation indicated that it is the soluble alkalis that affect 

strength. They concluded that the influence of the content of alkalis in clinker on cement 

strength is dependent on the content of SO3 in clinker as well as the content of gypsum in 

the cement. Increased SO3 levels in clinker of the same alkali content imply that a greater 

fraction of the alkalis will be in an easily soluble form. The effect of this transfer of 

alkalis will generally be an increase of early strength and a decrease in late strengths. 

However, the effects are modified by the content of gypsum in the cement. Thus the 

effect on early strength seems to be absent when gypsum content is higher than the 

optimum content. By analogy high gypsum contents tends to diminish the negative effect 

of alkalis on late strengths. The authors explained the above by assuming that the 

presence of soluble alkalis causes entrainment of air in mortar during mixing by 

promoting premature structure formation in the paste (precipitation of gypsum, syngenite 

or ettringite). Such an indirect effect of alkalis will introduce a general reduction of 

strength at all ages, but most pronounced at late ages. The authors also explained the 
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favorable influence of high gypsum contents on late strength of cements rich in soluble 

alkalis to the fact that more gypsum is necessary to counteract the faster removal of 

gypsum from the system caused by the alkalis. Thus the presence of gypsum to control 

the composition of the liquid phase is believed to be favorable for the hydration of C3S. 

However, too much gypsum will be detrimental to strength development even after 28 

days. This could be due to a prolonged retardation of the C3A and C4AF phases and thus 

a reduced contribution from these phases to the total hydrate formation. 

The research work done by Lerch [5] showed similar trend and this led Lerch to 

state that: “ For cements of the same C3A content, those high in alkalis react with gypsum 

more rapidly and require larger additions of gypsum than those low in alkalis”. 

Various studies have shown that the presence of alkali metal sulfates, and of anions 

other than sulfate, also have a marked effect on the reaction kinetics of C3A hydration. It 

is of particular interest that, as the ratio of alkali sulfate to calcium sulfate is increased, 

the effect is first to retard C3A hydration, and then, at higher alkali levels, to accelerate it 

very severely [4]. The results of these investigations, although they were done on pure 

C3A, they indicate that the optimum level of SO3 in a cement is likely to be strongly 

influenced by the presence of soluble alkalis. The mechanisms and kinetics of SO3 

reactions in cements are not fully understood and the data that exists leads to conflicting  

conclusions. As stated previously, the availability of calcium hydroxide and sulfate ions 

in solution at very early ages is an important factor in determining the amount of C3A 

which reacts in the first few minutes. This amount of reacted C3A and of sulfate uptake 

during the first few minutes is very important to the overall reaction kinetics and may 

affect the whole course of the reactions at later ages, because it determines how much 
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gypsum is remaining to keep the liquid phase saturated during the initial hydration of 

alite. 

Jelenic, et. al. [10], studied the influence of gypsum content on the hydration and 

compressive strengths of two commercial portland cements having the same amount of 

alite, a similar amount of C3A, but different amounts of readily soluble alkalis and 

sulfates. This work was intended to find out how much the effects observed on pure 

systems may be significant for the determination of the optimum gypsum content in the 

case of portland cements, especially in the presence of alkali sulfates which cause a 

higher concentration of SO4
2- ions in the liquid phase of portland cement pastes. The 

effects observed on the strength of their samples were in accordance with those observed 

by Lerch [5], mainly for a clinker rich in alite and C3A, and low in alkalis; the maximum 

strength shifts to the lower values of SO3 as the hydration proceeds. On the other hand for 

a clinker high in alite and moderately high in C3A but containing a considerable amount 

of readily soluble alkalis and sulfates, the shift of the maximum to the higher values of 

SO3 was noticeable. They found that gypsum had a remarkable effect in accelerating alite 

hydration at all ages for the clinker rich in soluble alkalis and sulfates. For the clinker that 

is low in alkalis, the accelerating effect was noticed up to the age of 28 days but not at 90 

days. They concluded that the difference in the optimum addition of SO3 is influenced 

not only by the difference in C3A content, but also by the difference in alkalis, as well as 

in the amount of the primary present water soluble sulfates. They also found that only a 

part of the SO3 content (1.14%) is used in forming ettringite at the age of 1 day, and this 

is much lower than 2.58% which is the total SO3 value determined by chemical analysis, 

and since the calcium aluminate monosulfate hydrate has not been detected at 2% of SO3 
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added, they concluded that the rest of the total SO3 amount (i.e. ~ 1.4%) has been 

incorporated into the C-(S,Ŝ)-H. They also concluded that the amount of SO3 

incorporated in the C-(S,Ŝ)-H increases with the increase of total SO3, thus giving a bad-

quality gel, and consequently lower compressive strengths. The two examined clinker 

samples behaved differently with respect to ettringite formation and the authors 

suggested that this was caused by the difference in the composition of the liquid phase, 

i.e. by the presence of a higher amount of readily soluble alkalis and higher amount of 

glassy phase in the clinker sample rich in alkalis. The authors also noticed differences in 

the morphological characteristics of the ettringite formed by the two different clinker 

samples. There were also indications that the nature of ettringite coatings on C3A grains 

has been influenced by the amount of the gypsum added; at higher SO3/C3A ratios the 

retardation of C3A hydration is more effective, most probably because a faster reaction 

forms a much denser coating. 

Jawed and Skalny [12], in their review about alkalis in cement, states that there is a 

worldwide trend towards higher alkali content in cements. This is due to various factors 

including changes in clinkers pyprocessing technology, call for energy conservation, the 

limited availability of low-alkali raw materials, and tightened environmental restrictions, 

and the use of coal as the primary fuel source. The authors stated that the presence of 

sulfur leads to reduction of alkali volatility during clinker formation and that alkali 

compounds in clinker can be divided into three main groups: 

a)Alkali sulfates; b)Alkali aluminates and aluminoferrites; c)Alkali silicates. Also in 

some cases, alkalis may occur in the form of carbonates. The authors added that the 

clinker’s SO3 makes prior demand on the alkalis, the resulting quantity of alkali sulfate is 
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determined by the ratio of total clinker sulfate to total alkali. The remaining sulfate forms 

calcium sulfate. After allocating alkalis to sulfate, the remainder appears to be distributed 

between the silicates, aluminates, and aluminoferrites. The rules governing the 

quantitative division of alkalis between silicates, aluminates and ferrites are not yet clear 

but, it is known that aluminates and ferrites accommodate about half or more of the 

available alkalis. The introduction of alkalis into clinker minerals modifies their crystal 

structure which in turn, can change their hydraulic reactivity. Some researchers have 

shown that introduction of alkalis into C3A modifies its normal cubic form to 

orthorhombic. This orthorhombic form of C3A is formed with a minimum alkali content 

of 2.8% equivalent Na2O or 1.8% equivalent K2O [12]. The authors also pointed out the 

effect of SO3 on clinker in the presence of alkalis. A positive effect of gypsum addition to 

alkali containing raw materials on the formation of clinker minerals has been reported by 

some researchers. The clinkering temperature decreased, the amount of C3S increased 

and a positive effect on the binding of CaO was noticed. The presence of alkali sulfates 

resulted in well developed alite and belite crystals. Different alkali containing raw 

materials required different amounts of gypsum. It is claimed that the use of proper 

amount of gypsum resulted in higher kiln output and reduction of fuel consumption [12]. 

Some other research work showed that almost 17% of the total C3A in cement reacts 

during the first 20 minutes of hydration while other results from another research work in 

which gypsum was substituted by hemihydrate (which has a high initial solubility) at the 

same total SO3 level in cements showed that at the first 20 minutes of hydration a 

decrease in the amount of formed ettringite and of consumed gypsum happened. Also a 

small but significant increase in the time to the second C3A heat peak happened. These 
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results contradict the previous ones because they imply that the amount of C3A consumed 

in the initial period is reduced by the increased sulfate availability resulting from using 

the hemihydrat [4]. 

Also previous research work has shown that C3A hydration rates in cement pastes 

differ considerably from those observed in the C3A-CaSO4-Ca(OH)2 system, mainly with 

respect to the time of occurrence of the second heat peak which is usually associated with 

depletion of gypsum [4]. In pure C3A-CaSO4-Ca(OH)2 system, and at a Ŝ/A = 0.7, the 

retardation of the second peak is expected to be about 50-70 hours at 20-25◦ C. Since 

most optimized Type I portland cements (Ŝ/C3A = 0.7-1.5) does not show any heat peak 

after 18 hrs, regardless of alkali content, this implies that sulfate uptake in cements is 

more rapid than what is expected in pure C3A/C4AF systems. One explanation is that it is 

most likely a result of its uptake by the CSH [4]. The importance of CSH in gypsum 

depletion is a subject worthy of further examination. It was found that CSH can contain 

as much as 20% SO3 relative to SiO2 in cement pastes after 1-day hydration at typical  

w/c ratios. Although these same pastes show a decreasing level of SO3 substitution in 

CSH reducing to about 10% relative to SiO2 at 28 days, the fact that there is typically 

twice CSH present at 28 days compared to 1 day, this shows that the same total amount 

of SO3 is contained at both ages and the concentration is reduced by dilution [4]. 

Another interesting observation was that the concentration of Al2O3 and Fe2O3 in the 

CSH in the same pastes were increasing from 1 to 28 days. This implies that initially and 

while sulfate is still available to form ettringite, there is little initial dissolution of Al3+ or 

Fe3+ in CSH. Once all the sulfate has been consumed, and AFm phases begin to form in 

large amounts, Al3+ and Fe3+ become more soluble and can apparently diffuse into the 
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CSH more readily. The results of a research work showed that the reaction of C3A with 

sulfate-rich CSH, or the reaction of gypsum with Al3+-rich CSH, tends to result in the 

formation of ettringite, in preference to monosulfoaluminate. Some researchers 

concluded from these results that CSH has a stronger tendency to dissolve Al3+ than it 

does to dissolve SO4
2-. This implies that a mixture of monosulfoaluminate plus excess 

CSH will tend to disproportionate towards ettringite plus substituted CSH [4]. 

 

1.5.3 Effects of Temperature 

The temperature during mixing and curing is expected to have a significant effect on 

the optimum level of gypsum. This is due to the rapid increase in C3A hydration rate with 

increasing temperature. It is worthwhile to note that the time to the second heat peak at a 

molar Ŝ/C3A ratio of 0.5 decreases from 60 hours at 15◦ C to 15 hours at 30◦ C, to 5 hours 

at 40◦ C, and to less than 1 hour at 70◦ C [4]. 

It was found that cements can accommodate more SO3 at higher curing temperatures 

with no detrimental effects, possibly because ettringite becomes increasingly less stable 

with respect to monosulfoaluminate, and the formation of the latter phase is apparently 

not destructive to the matrix. Also, more Al2O3 and SO3 may enter the CSH during high 

temperature curing [4].    
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                                                       CHAPTER 2. 

                                         EXPERIMENTAL PROCEDURE 

 

2.1 Materials 

The materials used in this study consisted of cements, gypsum, sand, distilled water,  

sodium sulfate, and fly ash. 

 

2.1.1 Cements 

Four types of cements were used in this study. They were randomly labeled as C, 

D2, E, and P cement. 

2.1.1.1 Oxide Chemical Composition of the Cements 

The cements were analyzed for their oxide chemical composition in an external 

laboratory. The laboratory report of chemical analysis stated that the samples were fused 

at 1000 ◦  C  with Li2B4O7 and the oxide analysis was done by X-ray fluorescence 

spectrometry. This analysis meets the precision and accuracy requirements for rapid 

methods per ASTM C 114-00 “Test Methods for Chemical Analysis of Hydraulic 

Cement”. 

2.1.1.2 Bogue Calculations 

    Bogue formulas as stated in ASTM C 150-00 “Standard Specification for Portland  

Cement” were used to calculate the theoretical mineralogical composition of the cements.    
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2.1.2 Gypsum 

The gypsum used in this study was Terra Alba No.1 gypsum as it meets the 

requirements specified in ASTM C 452-95 “Standard Test Method for Potential 

Expansion of Portland-Cement Mortars Exposed to Sulfate”. The SO3 content of the 

gypsum was determined by an external laboratory and was found to be 46.5%. This value 

was used in calculating the percentage of cement and gypsum required to provide a 

mixture containing 3.0 and 3.6 mass % SO3 according to the formula given in ASTM C 

452-95.  

2.1.3 Sand 

The sand used in this study was ASTM Graded Sand furnished by U.S. Silica 

Company. The sand conforms to ASTM Designation C 778-00 “Standard Specification 

for Standard Sand”. The sand was delivered in bags of 50 lbs each and was oven dried 

before use. 

2.1.4 Water 

All the water used in mixing of mortar and in preparing of sodium sulfate solution 

for this study was pure distilled water conforming to Type IV of Specification D 1193. 

2.1.5 Sodium Sulfate 

All the sodium sulfate used in this study was a certified ACS sodium sulfate 

anhydrous obtained from Fisher Scientific. 

2.1.6 Fly Ash 

The fly ash used in this study was a Class F fly ash with a LOI of 4.8%. It was 

sieved and the amount used was reconstituted from the fly ash that was retaining on 

different sieves. 
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2.2 Strength and Durability Tests 

In order to assess the effect of the SO3 content of the cement on the durability and 

strength, mortar cubes and bars were prepared for the as-received cements as well as for 

the cements with an SO3 content of 3.0% and 3.6%. The mortar cubes were tested for 

their compressive strength both in saturated lime solution and in sodium sulfate solution. 

The mortar bars were stored in sodium sulfate solution and their length was measured at 

certain ages in order to assess the expansion that was happening to the bars. 

2.2.1 Mortar Cubes 

Mortar cubes were prepared for each type of the four as-received cements. The 

cubes were mixed in accordance to ASTM C 305-99 “Standard Practice for Mechanical 

Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency”. The mix 

proportions are listed in Table 1. All the mixes had 1 part cement to 2.75 parts of sand by 

mass. The water/cement ratio by mass was 0.485 . 

  

 Table 1. Mix Proportions for the Mortar Cubes Prepared from the As-Received       

               Cements 

 9 cubes mix 

Cement , g 740 

Sand , g 2035 

Water , ml 359 

 

The cubes were molded according to the ASTM C 109-99 “Standard Test Method for 

Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)”. 
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For each type of cement, 39 cubes were prepared for the first mix. Three cubes were 

tested immediately after de-molding at the age of 1 day and 18 of the remaining 36 cubes 

were stored in saturated lime solution while the other 18 were stored in sodium sulfate 

solution.  

Three cubes from each set were tested at the ages of 3, 7, 28, 90, 180, and 360 days 

respectively. The cubes were tested according to the ASTM C 109-99 also and the testing 

machine was an MTS 809 Axial/Torsional Test System. The sodium sulfate solution was 

a 5 weight percent solution and was prepared according to the ASTM C 1012. The 

sodium sulfate solution was changed for the remaining cubes of each set after the testing 

was done at any age. Before placing the cubes in the new solution, the pH of the solution 

was measured with a pH meter to ensure that the pH was within the range of 6.0 – 8.0 as 

per ASTM C 1012.   

The same procedure was repeated for a second mix where another 39 cubes were 

prepared for each type of cement. The cubes were stored and tested exactly as the first 

mix and the average strength of the first and second mix at any age (i.e. the average 

strength of 6 cubes, 3 from each mix) was taken to represent the compressive strength at 

that age. 

Mortar cubes were also prepared for the cements with an SO3 content of 3.0% and 

3.6%. As was the case for the as-received cements, the first mix for each type of cement 

with an SO3 content of 3.0% consisted of 39 cubes. The SO3 content of the cement was 

increased by replacing part of the cement with Terra Alba gypsum. The percentage of 

cement and gypsum required to provide the mixture for each type of cement was 

calculated according to the formula given in ASTM C 452-95. The mix proportions for 
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the cements with SO3 content of 3.0% are listed in Table 2 while those for the SO3 

content of 3.6% are listed in Table 3. 

Table 2. Mix Proportions for the Mortar Cubes Prepared from the Cements with            

               3.0% SO3 Content 

 

 Cement C Cement D2 Cement E Cement P 

Cement , g 736.78  732.26 732.92 737.96 

Gypsum , g 3.22 7.74 7.08 2.04 

Sand , g 2035 2035 2035 2035 

Water , ml 359 359 359 359 

 

 

Table 3. Mix Proportions for the Mortar Cubes Prepared from the Cements with     

               3.6% SO3 Content 

 

 Cement C Cement D2 Cement E Cement P 

Cement , g 726.62  722.16 722.81 727.79 

Gypsum , g 13.38 17.8435 17.19 12.21 

Sand , g 2035 2035 2035 2035 

Water , ml 359 359 359 359 

 

In both cases, the mortar was mixed according to the procedure for mixing mortars of 

Practice C 305, with the exception that after placing the mixing water in the bowl, the 
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gypsum was added and mixed at the slow speed for 15 seconds, then the mixer was 

stopped and the cement was added and the mixing continued as prescribed in Practice C 

305. This was done according to the procedure as per ASTM C 452-95. 

Three cubes from each set of cement were tested at the age of 1 day and the 

remaining 36 cubes were stored half in saturated lime solution and the other half in 

sodium sulfate solution. As was the case for the as-received cements, the cubes were 

tested at the ages of 3, 7, 28, 90, 180, and 360 days. The sodium sulfate solution was also 

replaced every time testing was done. 

On a different date, a second mix was prepared for each type of cement (i.e. 39 

cubes per each type of cement with an SO3 content of 3.0%). The second mix was also 

cured and tested under the same conditions as the first mix and the average value of the 

compressive strength for the two mixes was taken to represent the compressive strength 

at any age. 

The same procedure that was done for the as-received cements and for the cements 

with an SO3 content of 3.0% was repeated for the case of the 3.6% and again the average 

value of the compressive strength for the first and second mixes for each type of cement 

was taken to represent the compressive strength of the 3.6% SO3 content mortar at any 

age. 

In all the cases, the 5 weight percent sodium sulfate solution was changed at the ages 

of 3, 7, 28, 90, and 180 days for the remaining cubes of each set on the same day when 

testing was done. Again the pH of the solution was measured every time before placing 

the cubes to ensure that the pH is between 6.0 and 8.0 . 
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2.2.2 Mortar Bars 

For each type of cement, mortar bars were prepared for the three cases of the as-

received cement, 3.0% SO3 content cement, and 3.6% SO3 content cement. The bars were 

prepared according to ASTM C 1012-95a “Standard Test Method for Length Change of 

Hydraulic-Cement Mortars Exposed to a Sulfate Solution”. The mix proportions for the 

mortar used to prepare the bars were the same as those used for preparing the cubes and 

are listed in Tables 1, 2, and 3. In all the cases the mortar bars were cured in saturated 

lime solution until they attained a compressive strength of 20.0 ± 1.0 MPa ( 3000 ± 150 

psi), as measured using cubes made of the same mortar, before the bars were immersed in 

the sodium sulfate solution. The apparatus used for the determination of the length 

change was according to the ASTM C 490-00 “Standard Practice for Use of Apparatus 

for the Determination of Length Change of Hardened Cement Paste, Mortar, and 

Concrete”. The initial reading for the length of the bars was taken immediately before 

they were immersed in the sodium sulfate solution. A digital comparator manufactured 

by Humboldt Co. (model H 3250) was used for measuring the length change of the bars. 

After the initial reading, the bars were measured at 7, 14, 21, 28, 56, 91, 105, 120, 150, 

180 days, and then every 15 days after that. The sodium sulfate solution was changed 

every time the bars were measured and the pH of the new solution was measured before 

immersing the bars to ensure that it is in the range of 6.0-8.0 . 

All the sets of bars were repeated another time on different dates to verify the trend 

of the expansion found in the first sets. The second sets were prepared, cured, and 

measured in the same way and on the same ages as the first sets. 
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In addition to all the above sets of bars, an additional set of bars was prepared for 

each type of cement by replacing 20% of the cement by fly ash. The fly ash used was a 

Class F fly ash with LOI of 4.8%. The SO3 content of the remaining 80% of the cement 

was increased to 3.6% by replacing part of the cement by Terra Alba gypsum. The mix 

proportions for the fly ash bars are listed in Table 4. 

 

Table 4. Mix Proportions for the Mortar Bars Prepared from the Cements With     

               20% Fly Ash Replacement and 3.6 % SO3 Content of the Remaining  

                Cement 

 

 Cement C Cement D2 Cement E Cement P 

Cement, g 581.30 577.73 578.25 582.23 

Gypsum, g 10.70 14.27 13.75 9.77 

Fly Ash, g 148 148 148 148 

Sand, g 2035 2035 2035 2035 

Water, ml 359 359 359 359 

 

 

The fly ash was sieved before use and the 148 grams required for each mix were 

reconstituted from the fly ash retained on different sieves according to Table 5. 
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Table 5. Proportions of Class F Fly Ash, LOI 4.8%, for 20% Replacement of  

               Cement 

 

             Sieve No.          Weight (grams) 

                   40                   0.91 

                   50                   1.12 

                   70                   1.60 

                  100                   3.31 

                  200                 26.61 

                  325               107.84 

                  Pan                   6.61 

                 Total               148.00 

 

After weighing the fly ash, it was added to the dry cement and mixed together in a 

glass beaker with a spatula for several minutes until a homogeneous mixture was 

obtained. After placing the water in the mixing bowl, the gypsum was added and mixed 

with the water at the slow speed for 15 seconds. Then the mixer was stopped and the 

cement-fly ash mixture was added and the mixing continued as prescribed in Practice C 

305. As was the case with the other sets of bars, the fly ash bars were also prepared 

according to the ASTM C 1012-95a, and after de-molding, the bars were cured in a 

saturated lime solution until they attained a strength of 20 ± 1.0 MPa (3000 ± 150 psi), as 

measured using cubes made of the same mortar, before the bars were immersed in the 
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sodium sulfate solution. The Fly Ash bars were measured at the same ages as the other 

bars, and the solution was changed every time a set of bars was measured. 

 

2.3 X-Ray Powder Diffraction Analysis of Mortar Cubes and Bars  

X-Ray powder diffraction analysis was done for the mortar cubes that were tested at 

the age of 360 days. Pieces of the crushed cube, after testing, were ground in a mortar for 

several minutes and then sieved using sieve number 325. The amount passing the sieve 

was collected in a vial and 0.45 grams of it were weighed and placed in another vial. An 

amount of 0.05 grams of TiO2 were weighed and added to the vial containing the 0.45 g 

sample. The sample was mixed inside the vial with a spatula for approximately 5 minutes 

until a homogeneous mixture was achieved. The sample was then placed in a 

diffractometer. The diffractometer used for analyzing the sample was a Phillips X’Pert 

PW3040 Pro diffractometer.    

In a similar manner, XRD analysis was also done for the mortar bars at the age of 

480 days. For each type of bars, a piece of approximately two inches was taken out from 

the middle of the bar. The bars were broken using a hammer and a screwdriver. The 

outside perimeter of the 2 inch piece was sawed off at a thickness of 2-3 mm, and the 

sawed pieces were soaked in acetone for an hour, then ground in a mortar and the same 

procedure as described above was done for sieving, mixing with TiO2 and placing in the 

diffractometer. 
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CHAPTER 3. 

RESULTS AND DISCUSSION 

 

3.1 Characteristics of the As-Received Cements 

3.1.1. Cements Fineness 

As was stated earlier in Chapter 1, the limit on the SO3 content of cement in various 

national standards ranges from 2.5 to 5.0% depending on cement fineness or composition 

or both. Since increasing the cement fineness will lead to a higher rate of hydration due to 

an increase in the surface area of the cement that would be in contact with water, the 

cement fineness plays an important role in determining the quantity of gypsum required 

to obtain proper retardation and the proper optimum SO3 content. Based on this 

consideration, it was decided to eliminate cement fineness as a variable in this work. All 

of the four types of cements used in this study, have very similar fineness, but vary in 

their C3S, C3A, and alkali contents. 

Table 6 lists the Blaine Fineness values of the as-received cements. 

Table 6. Blaine Fineness 

Cement           C         D2           E           P 

Blaine Fineness (cm2/g)         3840       3880        3800        3820 
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The values range between 3800 – 3880 cm2/g with cement E having the lowest value and 

cement D2 having the highest although the difference is not significant. Based on this, the 

four types of cements are expected to have similar reactivity. 

 

3.1.2 Oxide Chemical Composition 

Table 7 lists the oxide chemical composition of the as-received cements as 

determined by X-ray fluorescence spectroscopy.  

Table 7. Oxide Chemical Composition of the As-Received Cements 

                                Cement Type 
          C         D2          E          P 

Analyte   Weight %   Weight %   Weight %   Weight % 
SiO2         20.52         20.55         21.15         20.78 
Al2O3          4.92           4.4          4.78          5.47 
Fe2O3           3.7          3.61          3.76          4.15 
CaO         64.31          64.6         64.41         63.14 
MgO          1.71          2.47          0.95          0.85 
SO3          2.81          2.54          2.58          2.88 
Na2O          0.01          0.03          0.18          0.26 
K2O          0.41          0.54          0.34           0.6 
TiO2          0.27          0.22          0.33          0.32 
P2O5          0.03          0.05          0.07          0.18 
Mn2O3          0.04          0.05          0.03          0.03 
SrO          0.04          0.02          0.12          0.05 
Cr2O3        < 0.01          0.02        < 0.01          0.02 
ZnO        < 0.01          0.03          0.02          0.02 
L.O.I. (950◦ C)         1.08          0.99          1.15           1.3 
Total        99.83        100.12         99.84       100.04 
Alkalies as Na2O         0.27          0.39           0.4         0.65 
Free CaO         0.92          2.31          1.05         0.44 
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P cement has the highest SO3 content followed by C cement, while cements E and 

D2 have lower SO3 content. P cement also has the highest Na2O and K2O content and 

consequently the highest Na2O equivalent. Cement C has the lowest Na2O content and 

Na2O equivalent. Cements E and D2 have similar Na2O equivalent values although E has 

much higher Na2O content while D2 has a higher K2O content. Among the four cements, 

only the equivalent alkali content of cement P marginally exceeds the limit established by 

the ASTM C 150. Cement D2 has the highest MgO content followed by cement C 

although the values are well below the limit established in the ASTM C 150 (6%). 

Cement D2 also has the highest level of free CaO. 

 

3.2. Compound Composition 

3.2.1. Mineralogical Composition According to Bogue Calculations 

Table 8 lists the mineralogical composition of all the cements according to Bogue 

calculations. 

Table 8. Mineralogical Composition According to Bogue Calculations 

                                            Cement Type 
     Compound           C          D2            E            P 
           C3S          60          65           57           48 
           C2S          14          10           18           23 
           C3A           7           6            6            7 
          C4AF          11          11           11           13 
        C3S/C2S          4.3          6.5           3.2           2.1 

 

The C3S content of the cements varies between 48% for cement P and 65% for cement 

D2. Cements P and C have a C3A content of 7% while cements D2 and E has a slightly  
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lower value (6%). Cements C, D2, and E have a C4AF content of 11% while cement P 

has a slightly higher value of 13%. It is worth noting that as the C3S content of the 

cements increases, so does the C3S/C2S ratio. Cement D2 has the highest C3S/C2S ratio 

(6.5) while cement P has the lowest ratio of 2.1 . 

According to the Bogue calculations for the compound composition, the four types of 

cements can be considered as ASTM Type I portland cements. 

 

3.2.2. Mineralogical Composition According to Internal Standard Method and      

Rietveld Refinement Method 

In order to determine a more accurate mineralogical composition of the four cements 

used in this study, both the Internal Standard Method and the Rietveld Refinement 

Method were used. 

Table 9 shows the amounts of C3S, C3A, C4AF, and MgO in the as-received cements 

based on the Internal Standard Method [21]. 

 

Table 9. Mineralogical Composition Based on the Internal Standard Method 

                                      Cement Type 

       Compound            C           D2            E            P 

            C3S           70           63           58           55 

      Cubic C3A            3            3            4            6 

          C4AF           14           11          10           15 

           MgO            1            2           0            0 
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The results for the C3S content of the cements according to the internal standard 

method differed from those according to Bogue calculations. Although cement P still has 

the lowest C3S content, the new value is 55% compared to 48% according to Bogue 

calculations. The new value for cement E is very close to the previous one, but for 

cements D2 and C, the internal standard method showed that cement C has the highest 

C3S content of 70% (60% according to Bogue) followed by cement D2 63% (65% 

according to Bogue). 

For the C3A content, only cement P had a value close to that determined through 

Bogue calculations, while all the other three cements had a much lower C3A content than 

that determined by Bogue calculations. The internal standard method showed that cement 

P has the highest C3A content, followed by cement E, while cements C and D2 have the 

lowest C3A content. 

The C4AF content of the cements according to the internal standard method is 

similar to that according to Bogue calculations. Cements P and C had a higher value and 

both were higher than those for D2 and E cements. 

Table 10 shows the results obtained by the Rietveld Refinement Method [21]. The 

results of the Rietveld refinement method are similar to those of the internal standard 

method. Cement P has the lowest C3S content and the highest C3A content. Cement C has 

the highest C3S content and the lowest C3A content. 

It is worth noting that the Rietveld refinement method showed that cement E has the 

highest total calcium sulfates (3.6%) followed by cement C (2.8%). Gypsum was not 

found in cements C and D2, while insoluble anhydrite was only found in cement C 

(1.3%). Since the solubility of this form of anhydrite is extremely low, it is expected that 
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it will not participate in the hydration process and thus the actual total CaSO4 content for 

cement C can be considered to be 1.5%. 

This is similar to the values obtained for cements D2 and P. Although cements C and D2 

have no gypsum, calcium sulfate is present in them in the form of Bassanite which is 

more soluble than gypsum. 

Table 10. Rietveld Refinement Results for the As-Received Cements  

                                       Cement Type 

              Compound          C         D2          E           P 

                  C3S          67         61         54          53 

                β-C2S         15        19         25          23 

            Cubic C3A          2         3          4           8 

               C4AF        14        12         13          11 

   Gypsum (Ca2SO4.2H2O)         --         --         2.0         1.1 

Bassanite (Ca2SO4. 0.5 H2O)        1.5        1.6         1.6         0.7 

Insoluble Anhydrite (Ca2SO4)        1.3         --          --          -- 

       Magnesite (MgCO3)         --         --          --         1.8 

         Periclase (MgO)        0.6        1.8          --          -- 

   Dolomite (CaMg(CO3)2)         --         --          --         0.8 

      Portlandite (Ca(OH)2)         --        1.2          --          -- 

                C3S/C2S        4.5        3.2         2.2         2.3 

           Total Ca2SO4        2.8        1.6         3.6         1.8 
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3.3 Strength and Durability 

The effect of the SO3 content of the cements on their strength and durability was 

determined in this study by measuring the compressive strength of mortar cubes prepared 

for the As-Received cements as well as for the cements with an SO3 content of 3.0% and 

3.6%, and also by measuring the length change of mortar bars prepared for the same 

mixes and stored in sodium sulfate solution.   

 

3.3.1 Compressive Strength of Mortar Cubes 

Sets of cubes for all the mixes and for the four types of cements were prepared and 

stored in both saturated lime solution and sodium sulfate solution. The cubes were tested 

for their compressive strength at several ages. Figure 1 shows the compressive strength 

verses the SO3 content for C cement cubes stored in saturated lime solution while Figure 

2 shows the same relationship but for the cubes stored in sodium sulfate solution. 

In saturated lime solution C-3.0 cubes had the highest compressive strength for all the 

ages up to 28 days, although the C-3.6 had a very close strength at the age of 7 days. In 

sodium sulfate solution, the C-3.0 had the highest strength only at the age of 3 days, 

while the C-3.6 had the highest strength at 7 days and the as-received at 28 days, 

although the differences between the strengths for the as-received and 3.0 and 3.6 at the 

same age were not that significant.   

Figures 3 and 4 shows the compressive strength verses age for the as-received C 

cement as well as the cement with SO3 content of 3.0% and 3.6% in both lime and 

sodium sulfate solutions. The strength of C cement in lime was not affected by increasing 

the SO3 content with the 3.0 having a slightly higher strength.  
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Figure 1. Compressive Strength verses SO3 Content for C Cement in Lime 
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Figure 2. Compressive Strength verses SO3 Content for C Cement in Sulfate 
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Figure 3. Compressive Strength verses Age for C, C-3.0, and C-3.6 in Lime 
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Figure 4. Compressive Strength verses Age for C, C-3.0, and C-3.6 in Sulfate 
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In all the three cases for C cement, the strength keeps on increasing up to the age of 

180 days with the value of the increase in the strength between the ages of 180 days and 

28 days being 390 psi for the as-received, 490 psi for the 3.0 and 540 psi for the 3.6. 

Only a slight increase in strength happens after the age of 28 days and this can be 

explained by the fact that C cement has a very high C3S content, which is responsible for 

the high early strength, and a low C2S content, which governs later-age strength 

development.  In sodium sulfate solution, and for all the three cases, the strength 

increases only up to the age of 90 days and then starts dropping. The value of this drop 

between the ages of 180 days and 28 days was 440 psi for the as-received and 720 psi for 

the C-3.0. For the C-3.6 and although a drop happened after 90 days, the strength at 180 

days was slightly more than that at 28 days by 110 psi. The strength of the C as-received 

in lime at the age of 180 days was higher than that in sulfate at the same age by 1150 psi 

while the same difference for the case of the C-3.0 was 1640 psi and for the C-3.6 was 

730 psi. A big drop in strength of 2320 psi happened to the C-3.6 cubes in sodium sulfate 

exposure between the ages of 180 days and 360 days while the drop that happened for the 

C-3.0 between the same two ages was 360 psi only. Thus a big difference in the strength 

was observed between the CS-3.0 and CS-3.6 at 180 and 360 days in sulfate. Also the 

difference in the strength between the C-3.0 in lime and sulfate at the age of 360 days 

was 2010 psi while the same difference for the C-3.6 was 2970 psi. Thus it is clear that 

increasing the SO3 content of C cement has a very detrimental effect on the strength in 

sodium sulfate exposure but this effect only becomes obvious at late ages. It is worth 

noting that C cement has the highest C3S content according to both the Internal Standard 

Method and the Rietveld Refinement Method, and also has the lowest alkali content. 
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The compressive strength verses the SO3 content for cement D2 in both lime and 

sodium sulfate solutions are shown in figures 5 and 6.                                                                      
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Figure 5. Compressive Strength verses SO3 Content for Cement D2 in Lime 
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Figure 6. Compressive Strength verses SO3 Content for Cement D2 in Sulfate 
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In the saturated lime solution, the As-Received D2 had the highest strength at 1 day 

and at 28 days while the D2-3.0 had the highest strength at 3 days. The D2-3.6 had the 

highest strength at 7 days. In the sodium sulfate solution, the D2-3.0 had the highest 

strength at the ages of 3, 7, and 28 days. Figures 7 and 8 shows the compressive strength 

verses age for the D2 As-Received, D2-3.0, and D2-3.6 in both lime and sulfate 

solutions. In lime solution and for the three cases, the strength keeps on increasing up to 

the age of 180 days. The value of the increase in strength for the as-received case 

between the ages of 180 days and 28 days was 650 psi while the increase for the D2-3.0 

between the same ages was 1350 psi and for the D2-3.6 880 psi. In the sodium sulfate 

solution, and as it was the case of the C cement, for all the three cases of the D2 cement 

the strength keeps on increasing up to the age of 90 days and then starts dropping. 
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Figure 7. Compressive Strength verses Age for Cement D2, D2-3.0, and D2-3.6 in  

                 Lime  
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Figure 8. Compressive Strength verses Age for Cement D2, D2-3.0, and D2-3.6 in                       

                 Sulfate 

Despite this drop, the value of the strength of the as-received was higher at 180 days than 

that at 28 days by 110 psi and for the case of the D2-3.0 was higher by 280 psi while for 

the D2-3.6, it was higher by 350 psi. At the age of 180 days, the difference in the strength 

between the lime and sulfate conditions was 510 psi while that for the D2-3.0 was 540 psi 

and for the D2-3.6 was 150 psi only. On the other hand, the D2-3.6 in sulfate that had the 

lowest difference in the strength between the lime and sulfate exposures at the age of 180 

days, had a large drop of 970 psi at the age of 360 days with the D2-3.0 having a higher 

strength. D2 cement has the second highest C3S content (61% according to the Rietveld 

Refinement Method) and the second highest K2O content (0.54%), but has the lowest SO3 

content (2.54%). The D2 cement handled the increase in its SO3 content in a better way 

than the C Cement, but again the detrimental effect was only obvious at late ages. 
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The relationship between the compressive strength and the SO3 content for cement E 

in lime and sodium sulfate solutions is shown in Figures 9 and 10. In the lime solution, 

the E As-Received had the highest strength at all the ages of 1, 3, 7, and 28 days. In the 

sodium sulfate solution, the E As-Received only had the highest strength at the ages of 3 

and 7 days, while the E-3.0 had the highest strength at 28 days. In the saturated lime 

solution the strength of the three cases of E cement also keeps on increasing up to the age 

of 180 days as was the case with the C and D2 cements. The increase in the strength 

between the ages of 180 days and 28 days was higher in both the cases of E-3.0 and E-3.6 

than it was for the as-received case. The value of the increase was 1950 psi for E-3.0 and 

1220 psi for the E-3.6 while it was only 900 psi for the as-received cement. In the sodium 

sulfate exposure and unlike both the C and D2 cements the E cement, and for its three 

cases, kept on increasing in its strength up to 180 days without any drop at 90 days. This 

is shown in figures 11 and 12 which show the relationship between the compressive 

strength and age for the E cement As-Received, E-3.0, and E-3.6 cubes cured in both 

saturated lime and sodium sulfate solutions. The increase in the strength between the ages 

of 180 days and 28 days for the E as-received in sulfate was 1610 psi while that for the E-

3.0 was 1680 psi and for the E-3.6 was 1250 psi only. At the age of 180 days, the 

difference in the strength between the lime and sodium sulfate exposures was only 70 psi 

for the E-3.0 and 660 psi for the E-3.6. On the other hand, for the as-received case, the 

strength in sulfate exposure was slightly higher by 80 psi than that in lime exposure. At 

the age of 180 days, the strength of the E-3.6 in sulfate was much lower than the E-3.0. 
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After that age, both the E-3.0 and E-3.6 in sulfate had a drop in strength, and although the 

drop for the E-3.0 was greater than that that of the E-3.6, it still had the higher strength. 
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Figure 9. Compressive Strength verses SO3 Content for Cement E in Lime 
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Figure 10. Compressive Strength verses SO3 Content for Cement E in Sulfate 
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Figure 11. Compressive Strength verses Age for Cement E, E-3.0, and E-3.6 in Lime 
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Figure 12. Compressive Strength verses Age for Cement E, E-3.0, and E-3.6 in    

                   Sulfate 
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It is worth noting that cement E has the second lowest C3S content and the highest 

C2S content (according to the Rietveld Refinement Method). This explains its low early 

strength and high late strength. Cement E also has the second highest Na2O content and 

accordingly the second highest Na2O equivalent.                                              

The relationship between the compressive strength and the SO3 content for cement P 

is illustrated in Figures 13 and 14. In the saturated lime solution, the P-3.0 had the highest 

strength from the age of 1 day up to the age of 28 days. The P As-Received and P-3.6 had 

very similar strengths during that period with the 3.6 having a slightly higher strength. In 

the sodium sulfate solution, the P-3.0 also had the highest strength up to the age of 28 

days. Figures 15 and 16 illustrate the relationship between the compressive strength and 

age for cement P, P-3.0, and P-3.6 cured in both lime and sodium sulfate solution. Again 

in lime solution, the strengths of both the P cement and P-3.6 keep on increasing up to the 

age of 180 days, while the P-3.0 had a slight drop in strength after 90 days. The increase 

in the strength between the ages of 180 days and 28 days in lime was 1060 psi for the as-

received, and was 810 psi for the P-3.6 case. For the P-3.0 the value of the strength at 180 

days was equivalent to that at 28 days. The increase in the strength of the P-3.6 in lime 

between the ages of 180 days and 360 days was also greater than that of the P-3.0 but the 

final strength of the P-3.0 was slightly higher than that of the P-3.6. In the sodium sulfate 

solution the strengths of the P as-received and P-3.0 keep on increasing up to the age of 

90 days and then begins to drop, while that of the P-3.6 keeps on increasing up to the age  
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Figure 13. Compressive Strength verses SO3 Content for Cement P in Lime                                        
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Figure 14. Compressive Strength verses SO3 Content for Cement P in Sulfate 
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of 180 days without any drop. The strength of the P as-received in sulfate at 180 days was 

less than that at 28 days by 280 psi and for the P-3.0 was less by 570 psi. On the other 

hand an increase in strength of 670 psi happened for the P-3.6 in sulfate between the 

same ages. 

Also the difference in the strength at 180 days between the lime and sodium sulfate 

exposures were much less for both the P-3.0 and P-3.6 than it was for the P as-received. 

The difference for the P as-received was 550 psi while the difference for the P-3.0 was 

420 psi and for the P-3.6 was only 40 psi. Also the difference in the strength between 

lime and sulfate at 360 days was approximately similar at 1000 psi for both the P-3.0 

(1240 psi) and P-3.6 (1030 psi).  

P cement has the lowest C3S content and the second highest C2S content. This 

explains the low early strength of 1 and 3 days and the large increase in strength that 

happened after 28 days. On the other hand, P cement has the highest Na2O, the highest 

K2O, and consequently the highest Na2O equivalent. This could explain the continuous 

increase in the strength of the P-3.6 without any drop up to the age of 180 days where it 

got a much higher strength than both the as-received and the P-3.0 in sulfate.   
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Figure 15. Compressive Strength verses Age for Cement P, P-3.0, and P-3.6 in Lime 
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Figure 16. Compressive Strength verses Age for Cement P, P-3.0, and P-3.6 in  

                   Sulfate 
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Figure 17 illustrates the relationship between the compressive strength of the as-

received cements cured in saturated lime solution verses age, while figures 18 and 19 

shows the same relationship for the cements with an SO3 content of 3.0 and 3.6% 

respectively. In all the three cases, E cement had the highest strength with the E-3.0 

having a slightly higher value. C cement got the second highest with the C-3.0 having a 

slightly higher strength, followed by cement D2 with the D2-3.0 also having a slightly 

higher value. P cement had the lowest strength with the P-3.6 having a slightly higher 

value. It was found that a big difference in the compressive strength of the cubes in lime 

exists between cements E and P although they have very similar C3S and C2S contents.  
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Figure 17. Compressive Strength verses Age for the As-Received Cements in Lime 
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Figure 18. Compressive Strength verses Age for the Cements with 3.0% SO3  

                   Content in Lime                                                    
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Figure 19. Compressive Strength verses Age for the Cements with 3.6% SO3  

                   Content in Lime 
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Most of the cements exposed to the sodium sulfate environment had lower strengths 

than their equivalents that were cured in saturated lime solution especially at the late 

ages. Figures 20, 21, and 22 illustrates the relationship between the compressive strength 

and age for the as-received cements, 3.0% , and 3.6% SO3 content cements respectively, 

all cured in sodium sulfate solution. As was the case in lime solution, E cement had the 

highest strength in all the cases with the E-3.0 and the as-received having slightly higher 

late strengths than the E-3.6 cement. D2 cement had the second highest strength with the 

D2-3.0 and D2-3.6 having a better late strength also. Although C and D2 cements had 

relatively close strengths in the as-received condition, this was not the case in the doped 

cements as the C-3.0 and C-3.6 had a large drop in their late strengths. It was found that 

the largest drop in strength between the lime and sulfate exposures occurred for the C 

cement and especially for the C-3.6 case were the drop was ~ 3000 psi at 360 days.                                   
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Figure 20. Compressive Strength verses Age for the As-Received Cements in Sulfate 
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Figure 21. Compressive Strength verses Age for the Cements with 3.0% SO3  

                   Content in Sulfate                                                      
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Figure 22. Compressive Strength verses Age for the Cements with 3.6% SO3  

                   Content in Sulfate 
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Although P cement had the lowest strength in sulfate for the as-received case, 

increasing the SO3 content to 3.6% seems to increase the durability of the cement against 

sulfate attack. This can be seen by the fact that a drop in strength between the ages of 90 

and 180 days did not happen for the P-3.6 as was the case for both the as-received and P-

3.0. Also, the drop in strength at 360 days for the P-3.6 cement was less than that for D2-

3.6 cement, thus bringing both P-3.6 and D2-3.6 to a very close strength at 360 days of 

exposure to sodium sulfate solution. 

Figures 23 and 24 illustrates the difference in the strength between the 3.0 % 

cements and 3.6 % cements at the age of 360 days in both saturated lime solution and 

sodium sulfate solution respectively. 
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Figure 23. Compressive Strength of Doped Cements at 360 Days in Lime  

                   and Sulfate 
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Figure 24. Compressive Strength of Doped Cements at 360 Days in Sulfate 

It can be seen from the figures that increasing the SO3 content of the cements did not 

greatly affect the compressive strength in lime exposure, but this was not the case in 

sodium sulfate exposure. C cement which had the highest C3S content and the lowest 

alkali content was greatly affected by increasing its SO3 content. On the other hand, the 

cements high in its C3A content and alkali content like cement P got a beneficial effect 

from this increase. Cements D2 and E and due to their higher alkali content relative to 

cement C were able to handle the increase in a better way. Cement E also had a lower 

C3S content and a higher C2S content. 
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3.3.2 Expansion of Mortar Bars in Sodium Sulfate Solution 

The length change of mortar bars prepared for the as-received cements as well as for 

the cements with an SO3 content of 3.0% and 3.6% was measured in order to assess the 

expansion of the bars that were cured in sodium sulfate solution. Figure 25 illustrates the 

expansion of the bars prepared from the as-received cements.                                                                  
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Figure 25. Expansion of Bars Prepared with the As-Received Cements 

It can be seen from the figure that the expansion of the mortar bars can be divided 

into two stages. The first stage is characterized by a relatively minor expansion and can 

be referred to as the induction period, while the second stage is characterized by a rapid 

increase in expansion which continues at the same rate until failure. P cement had the 

shortest induction period of 105 days with an expansion of 0.06% at that age. After that 

the expansion started to increase dramatically and at 180 days of exposure to sodium 

sulfate solution, the P bars expanded by 0.293%. P bars had the largest expansion at 180 

days. It should be noted that P cement had the highest C3A content and the highest alkali 
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content. C and D2 bars had the same induction period of 120 days with an expansion of 

0.063% for C and 0.068% for D2. C bars had the second highest expansion followed by 

D2 bars. At 180 days, the expansion of  C bars was 0.169%, while that for D2 bars was 

0.145%. Although C and D2 cements had approximately the same low C3A content, both 

had a high C3S content with the C having the highest C3S content. The induction period 

of the E cement lasted much more longer than the other three cements and can be 

estimated to be 210 days with an expansion of 0.06%. The final expansion of the E bars 

at 180 days (0.044%) was way less than the other three cements and this made it difficult 

to exactly locate the end of the induction period. The expansion was much lower 

although E cement had a slightly higher C3A content than both C and D2 cements 

according to Rietveld Refinement Method. It is worth noting that E cement had the 

second lowest C3S content, the highest C2S content, and the highest total CaSO4 content 

of 3.6% with 2.0% of it in the form of gypsum. 

The expansion trend of the four cements suggests dividing them into three 

categories. The first one is that of high expansion and includes P cement, followed by 

medium expansion (C and D2 cements), and finally low expansion which includes E 

cement.   
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Figure 26 illustrates the expansion of the C, C-3.0, C-3.6, and C-FA bars cured in sodium 

sulfate solution.                                                                   
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Figure 26. Expansion verses Age for the C, C-3.0, C-3.6, and C-FA Bars in      

                   Sulfate 

Increasing the SO3 content of cement C led to an increase in the expansion of the 

bars exposed to sodium sulfate environment. While the expansion of C bars at 180 days 

was 0.169%, the expansion of the C-3.0 bars was 0.179% and that of the C-3.6 bars was 

0.342%. 

Although the increase in expansion was not significant at early ages up to 105 days, 

a 102% increase in expansion happened for the bars at the age of 180 days due to 

increasing the SO3 content of the cement from 2.81% to 3.6%. This increase in the 

expansion explains the results obtained for the strength of the cubes cured in sodium 

sulfate solution where the strength was not significantly affected in the early ages, but a 

significant drop happened at later ages. Also, the big difference in the strength observed 



 79

between the CS-3.0 and CS-3.6 at 180 and 360 days, can be explained by the big 

difference in the expansion of the C-3.0 and C-3.6 bars at these ages. 

It can also be seen from the figure that by replacing 20% of the C cement by fly ash, 

the expansion of the bars was lowered dramatically to 0.064% at 180 days. This huge 

drop in the expansion happened although the SO3 content of the remaining 80% of the 

cement was increased to 3.6%. Thus, incorporating Fly Ash in the mix greatly increased 

the durability of the cement against sulfate attack despite the increase in the SO3 content. 

The expansion of D2, D2-3.0, D2-3.6, D2-4.0, and D2-FA bars in sodium sulfate 

solution is illustrated in Figure 27. 
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Figure 27. Expansion verses Age for the D2, D2-3.0, D2-3.6, D2-4.0,  

                  and D2-FA Bars in Sulfate 

In the case of the D2 cement which has a low C3A content (3%) but the second 

highest C3S content and the second highest K2O content (0.54%), increasing the SO3 
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content to 3.0% led to a decrease in the expansion of the bars. On the other hand, 

increasing it further to 3.6% and 4.0%, led to an increase in the expansion with a final 

expansion greater than the as-received cement. Thus it seems that the optimum SO3 

content for minimum expansion in sodium sulfate solution for the D2 cement is around 

3.0%. The results of the cubes compressive strength showed that the D2-3.6 cubes had a 

higher strength than the as-received at the ages of 3, and 7 days. At the ages of 28 and 90 

days the strength of the as-received was higher, but at the age of 180 days the D2-3.0 had 

a higher strength which is in compliance with the expansion results. This indicates that 

the optimum SO3 content for maximum compressive strength is not the same for all ages 

of the D2 cement and also indicates that this optimum can be different than that for 

minimum expansion of bars. Similar results were found by other researchers, among 

them was Lerch [5] who concluded that most cements show different optimum gypsum 

requirements for different properties, such as strength or shrinkage, at different ages.      

As was the case with the C cement, replacing 20% of the D2 cement with Fly Ash 

led to a significant decrease in the expansion of the bars even to a much lower value than 

that of the D2-3.6 bars. While the D2 as-received bars had a final expansion of 0.145% at 

the age of 180 days, the D2-FA bars had an expansion of 0.052% at the same age. The 

SO3 content of the remaining 80% of the cement was increased to 3.6%, and still we had 

this big difference in the expansion of the bars. This indicates the effectiveness of the 

pozzolanic materials in improving the durability of mortar and concrete against sulfate 

attack. 
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Figure 28 illustrates the expansion of E, E-3.0, E-3.6, E-4.2, and E-FA bars in 

sodium sulfate solution.                                                                        
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Figure 28. Expansion verses Age for the E, E-3.0, E-3.6, E-4.2, and E-FA Bars in  

                  Sulfate 

The expansion of the E cement bars was generally very low compared to the other 

cements and increasing the SO3 content led to an increase in the expansion, although this 

increase was not much significant. Although the E as-received had the lowest expansion, 

it did not have the highest compressive strength at all the ages. The E-3.0 had the highest 

strength at 28, and 180 days while the strengths at 90 days were very similar with the as-

received having a slightly higher value. 

As was the case with the D2 cement, it was found that also for the E cement, the 

optimum SO3 content for minimum expansion of bars is different than the optimum for 

maximum compressive strength, and that the optimum for maximum strength differs with 

age. In general, for both cements, increasing the SO3 content to 3.0% led to an increase in 
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the strength especially at the late ages. It is worth noting that E cement had the second 

lowest C3S content and the highest C2S content. It also had the second highest Na2O 

content and accordingly the second highest Na2O equivalent. 

The increase in strength with increasing the SO3 content of other cements was also 

reported by other researchers [15]. These researchers stated that the beneficial effect of 

gypsum on the strength of the cement was attributable to the improved quality of the gel 

which was produced in the presence of gypsum. Their study showed that the addition of 

gypsum resulted in hydration products of greater average density and it was suggested 

that this greater density brought about the higher strength. 

The expansion of the E-FA bars was very similar to that of the as-received cement, 

thus incorporating 20% Fly Ash in the mix did not cause a significant decrease in the 

expansion, most probably because the expansion of the E cement is generally very low. 

The expansion of the P, P-3.0, P-3.6, and P-FA bars in sodium sulfate solution is 

illustrated in Figure 29. Increasing the SO3 content of cement P to 3.0% caused a 

significant decrease in the expansion of the bars, and increasing it further to 3.6% caused 

an additional significant decrease in the expansion. Thus P cement requires a higher 

amount of SO3 content to reach the optimum for lowest expansion. The P-3.6 with an 

SO3 content of 3.6%, which is higher than the specified limit of  3.0% had the lowest 

expansion under sodium sulfate exposure. P cement had the highest C3A content and the 

lowest C3S content. It also had the highest Na2O, the highest K2O, and accordingly the 

highest Na2O equivalent. 
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Figure 29. Expansion verses Age for P, P-3.0, P-3.6, and P-FA Bars in  

                  Sulfate 

The result that cements with high C3A content and high alkali content requires larger 

additions of gypsum to reach the optimum was also reported by other researchers. 

The results for the compressive strength of the P cubes in sulfate showed that the P-3.0 

had the highest strength up to the age of 90 days, and it can be seen from Figure 29 that 

the expansion of all the sets of P bars does not vary significantly up to that age. The 

strength results also showed that a large drop in strength happened to both the as-received 

and P-3.0 at the age of 180 days while an increase happened in the strength of the P-3.6. 

The expansion results matches the strength results as it is clear from Figure 29 that a 

significant difference in expansion exists between the 3 sets at the age of 180 days with 

the P-3.6 having the lowest expansion. The reason why the P-3.6 had a higher drop in 

strength between the ages of 180 and 360 days than the P-3.0 can not be explained from 
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the expansion results as the P-3.0 continued to have a much higher expansion than the P-

3.6 at that age. 

Figures 30, 31, and 32, compares the expansion of the different types of cements 

used in this study in the three cases of 3.0% SO3 content, 3.6% SO3 content, and 

replacement of 20% of the cement with Fly Ash respectively.  

 

                                                                        

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 50 100 150 200
AGE (DAYS)

EX
PA

N
SI

O
N

 % C-3.0
E-3.0
P-3.0
D2-3.0

 

Figure 30. Expansion verses Age for the Cements with 3.0% SO3 Content in Sulfate 
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Figure 31. Expansion verses Age for the Cements with 3.6% SO3 Content in Sulfate   
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Figure 32. Expansion verses Age for the Cements with 20% Replacement by Fly Ash 
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The figures show the beneficial effect of increasing the SO3 content of cement D2 to 

3.0% and cement P to 3.6% on decreasing their expansion in sodium sulfate environment. 

The D2-3.0 had the lowest expansion of the 3.0% sets, while a significant decrease in the 

expansion of the P bars happened in the case of P-3.6 as compared to the as-received 

case.   

Figure 32 shows that incorporating 20% Fly Ash in the mix, had a significant effect 

in reducing the expansion of all the cements, bringing them to very close low values 

regardless of the differences that exist in their chemical and mineralogical composition. 

This result also happened despite the fact that the SO3 content of the remaining 80% of 

the cement was increased to 3.6%.      

3.4 X-Ray Diffraction Analysis of Mortar Cubes 

Tables 11 and 12 illustrates the Relative Intensity Ratios for ettringite and gypsum 

as measured by the X-Ray diffraction analysis done on pieces of the crushed cubes at the 

age of 360 days for both the 3.0% sets and 3.6% sets respectively. 

Table 11. Relative Intensity Ratios of Ettringite and Gypsum for the 3.0% SO3 

Content Mortar Cubes at the Age of 360 Days in Sulfate 

           Mortar cubes at 360 days in Sulfate Solution 

      C-3.0     D2-3.0       E-3.0       P-3.0 

  Ettringite Intensity Ratio       0.166      0.245      0.206      0.288 

  Gypsum Intensity Ratio       0.196      0.220      0.215      0.271 
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Table 12. Relative Intensity Ratios of Ettringite and Gypsum for the 3.6% SO3 

Content Mortar Cubes at the Age of 360 Days in Sulfate 

 

          Mortar Cubes at 360 days in Sulfate Solution 

      C-3.6     D2-3.6       E-3.6       P-3.6 

  Ettringite Intensity Ratio      0.169      0.262      0.199      0.313 

  Gypsum Intensity Ratio      0.206      0.279      0.300      0.276 

 

The relative intensity ratios are also illustrated in Figures 33 and 34. 
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Figure 33. Relative Intensity Ratios of Ettringite and Gypsum for the 3.0% SO3 

Content Mortar Cubes at the Age of 360 Days in Sulfate 
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Figure 34. Relative Intensity Ratios of Ettringite and Gypsum for the 3.6% SO3 

Content Mortar Cubes at the Age of 360 Days in Sulfate 

From the above figures, it can be seen that for both the 3.0% sets and the 3.6% sets, 

P cubes contained the highest amounts of ettringite as expected, since P cement has a 

much higher C3A content than the other three cements. P cubes also contained the highest 

gypsum content for the 3.0% set. For the C, D2, and E cements, which have a relatively 

similar C3A content, D2 cubes contained the highest ettringite content in both 3.0% and 

3.6% sets. It is worth noting that cement D2 has the highest K2O content of the three 

cements (0.54%) and the lowest SO3 content (2.54%).  
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As for the gypsum content, P-3.0 cubes had the highest gypsum content for the 3.0% 

set, while E-3.6 cubes had the highest gypsum content for the 3.6% set. It is worth noting 

that increasing the SO3 content of E cement from 3.0% to 3.6% caused a significant 

increase in the gypsum content while the ettringite content only increased slightly.  

 

3.5 X-Ray Diffraction Analysis of Mortar Bars 

Tables 13 and 14 illustrates the Relative Intensity Ratios for ettringite and gypsum 

as measured by the X-Ray diffraction analysis done on pieces from the outside perimeter 

of bars at the age of 480 days for the 3.0% sets and 3.6% sets respectively. 

   

 

Table 13. Relative Intensity Ratios of Ettringite and Gypsum for the 3.0% SO3 

Content Mortar Bars at the Age of 480 Days in Sulfate 

 

           Mortar bars at 480 days in Sulfate Solution 

       C-3.0     D2-3.0       E-3.0       P-3.0 

  Ettringite Intensity Ratio       0.268       0.296       0.252      0.306 

  Gypsum Intensity Ratio       0.368       0.455       0.450      0.292 
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Table 14. Relative Intensity Ratios of Ettringite and Gypsum for the 3.6% SO3 

Content Mortar Bars at the Age of 480 Days in Sulfate 

 

           Mortar bars at 480 days in Sulfate Solution 

       C-3.6     D2-3.6      E-3.6       P-3.6 

  Ettringite Intensity Ratio      0.330       0.281       0.268      0.308 

  Gypsum Intensity Ratio      0.407       0.495       0.534      0.469 

 

 

Figures 35, 36, 37, and 38 illustrates also the relative intensity ratios of the sets of bars 

for the C, D2, E, and P cements respectively. 
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Figure 35. Relative Intensity Ratios of Ettringite and Gypsum for the C-3.0 and     

C-3.6 Mortar Bars at the Age of 480 Days in Sulfate 
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Figure 36. Relative Intensity Ratios of Ettringite and Gypsum for the D2-3.0 and 

D2-3.6 Mortar Bars at the Age of 480 Days in Sulfate 
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Figure 37. Relative Intensity Ratios of Ettringite and Gypsum for the E-3.0 and     

E-3.6 Mortar Bars at the Age of 480 Days in Sulfate 
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Figure 38. Relative Intensity Ratios of Ettringite and Gypsum for the P-3.0 and      

P-3.6 Mortar Bars at the Age of 480 Days in Sulfate 
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Figure 39. Relative Intensity Ratios of Ettringite and Gypsum for the 3.0% SO3 

Content Mortar Bars at the Age of 480 Days in Sulfate 
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Figure 40. Relative Intensity Ratios of Ettringite and Gypsum for the 3.6% SO3 

Content Mortar Bars at the Age of 480 Days in Sulfate 

 

Figures 39 and 40 compares the relative intensity ratios of ettringite and gypsum for 

the four types of cements in the two cases of 3.0% and 3.6% SO3 content respectively. 

From the above figures, it can be seen that increasing the SO3 content of cements C and E 

led to an increase in the amount of ettringite found in the bars. These results explain the 

expansion trend that was found for the C and E cements with the 3.6 bars having a higher 

expansion than the 3.0 bars. 
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Similarly, the results of the 3.6% set showed that the C-3.6 bars contained the 

highest amounts of ettringite followed by P-3.6 bars, then D2-3.6 bars, and finally the E-

3.6 bars with the lowest amount. The expansion trend for the 3.6% set was exactly the 

same at that age, with the C-3.6 bars having the highest expansion, followed by P-3.6 

bars, then D2-3.6 bars, and finally E-3.6 bars with the lowest expansion. The gypsum 

content of the D2 and E bars was higher than that of the C bars in both the cases of the 

3.0% and 3.6%.  
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CHAPTER 4. 

CONCLUSIONS AND RECOMMENDATIONS 

 

It can be concluded from this study that there is an optimum SO3 content for the 

lowest expansion and for the highest compressive strength of the portland cement mortars 

used, and exposed to sodium sulfate environment. This optimum was not the same for 

both expansion and strength. The optimum also differed from one cement to another and 

from one age to another for each cement. 

For cements C, D2, and E with similar and low C3A content, the compressive 

strength showed an optimum at 3.0% for ages up to 28 days except for E cement. In the 

case of the latter, the optimum was at the as-received SO3 content. For cement P in lime, 

with a moderately high C3A and alkali content, increasing the SO3 content to 3.0% 

increased the strength; however, increasing it further to 3.6% decreased the strength. The 

effect became more pronounced as the SO3 content was increased beyond 3.0%. 

As for the expansion behavior, for cements with similar tricalcium aluminate 

content, increasing the SO3 content beyond 3.0% results in an increase in expansion on 

exposure to sodium sulfate solution. For cement P with higher tricalcium aluminate and 

alkali content, increasing the SO3 content to 3.6% did not increase the expansion in 

sodium sulfate solution.   
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The findings of this study did indicate that increasing the SO3 content above 3.0% 

for all the cements studied here results in decreasing the durability of mortar exposed to 

sulfate environment. 
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