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Bayesian and Empirical Bayes Approaches to Power Law Process and Microarray

Analysis

Zhao Chen

ABSTRACT

In this thesis, we apply Bayes and Empirical Bayes methods for reliability growth

models based on the power law process. We also apply Bayes methods for the study of

microarrays, in particular, in the selection of differentially expressed genes.

The power law process has been used extensively in reliability growth models.

Chapter 1 reviews some basic concepts in reliability growth models. Chapter 2 shows

classical inferences on the power law process. We also assess the goodness of fit of a

power law process for a reliability growth model. In chapter 3 we develop Bayesian proce-

dures for the power law process with failure truncated data, using non-informative priors

for the scale and location parameters. In addition to obtaining the posterior density of

parameters of the power law process, prediction inferences for the expected number of fail-

ures in some time interval and the probability of future failure times are also discussed.

The prediction results for the software reliability model are illustrated. We compare our

result with the result of Bar-Lev,S.K. et al.([7]). Also, posterior densities of several para-

metric functions are given. Chapter 4 provides Empirical Bayes for the power law process

with natural conjugate priors and nonparametric priors. For the natural conjugate priors,

two-hyperparameter prior and a more generalized three-hyperparameter prior are used.

In chapter 5, we review some basic statistical procedures that are involved in mi-

croarray analysis. We will also present and compare several transformation and normal-
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ization methods for probe level data. The objective of chapter 6 is to select differentially

expressed genes from tens of thousands of genes. Both classical methods (fold change,

T-test, Wilcoxon Rank-sum Test, SAM and local Z-score (Chen,Z.[17])) and Empirical

Bayes methods (EBarrays and LIMMA) are applied to obtain the results. Outputs of

a typical classical method SAM and a typical Empirical Bayes Method EBarrays are

discussed in detail.
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Chapter 1

Reliability Growth and Growth Models

Repairable systems are often modeled after a class of stochastic point processes.

(Ascher(84)[2], Engelhardt(86)[26], Rigdon and Basu(1990)[49]). This class usually con-

sists of homogeneous Poisson processes (HPP), nonhomogeneous Poisson processes (NHPP),

the branching Poisson processes (BPP) and the renewal processes (RP). In this chapter

we present some fundamental results on homogenous Poisson processes and nonhomoge-

neous Poisson processes. A particular nonhomogeneous Poisson process with Power Law

intensity function can be employed as a reliability growth model and will play a major

role in our research. The results that are covered in this chapter are basic for the research

presented in later chapters.

1.1 Fundamentals of Reliability

The reliability function is the probability that a system will carry out its mission

through time t and is denoted by R(t). Let T denote the failure time since the initial

start up of the system (assumed to be at time t = 0). Let N(t) denote the cumulative

number of failures from time 0 to time t. Then the reliability function is defined as

R(t) = Pr[T > t] = 1− F (t) =
∫ ∞

t
f(s) ds,

1



where F (t) is the cumulative distribution function of T and f(t) is the probability density

function of T . We note that R(t) = Pr[N(t) = 0]. The reliability function is also called

the survival function of T . R(t) decreases in t, from 1 at t = 0, to 0 at t = ∞.

Reliability plays a key role in developing products and in enhancing competitive-

ness. There is a lot of literature on the reliability of nonrepairable system. However, we

will focus on repairable system.

A repairable system is a system which, after failing to perform one or more of

its designed functions satisfactorily, can be restored to a fully satisfactory performance by

any method, other than replacement of the entire system (Ascher(84)[2]). A good portion

of literature on repairable systems seems to be motivated from applications to mechan-

ical systems. However, repairable systems are not limited to such cases. An important

application area is the reliability of software systems.

Consider the system is tested until it fails. Since it is repairable, we will debug

the software and it runs again. Then we will continue to test the system until it fails

again. Before the systems are put into the market, we need reach a desirable reliability,

which will reflect the quality of the final design. This process of testing a system has

been referred as reliability growth. In what follows, we will discuss how to model this

process in a suitable way.

1.2 Counting Process

Models utilizing a counting process have played a key role in the analysis of sys-

tems composed of random occurring events. By way of motivation, suppose that we are

interested in observing the occurrences of a repeatable event over a period of time. One

of the simplest examples is the arrival of customers at a service station, such as a bank.

Another example is the occurrences of earthquakes of a specified magnitude at a partic-

ular location over time. The example that is of interest to us here is the points in time

2



Figure 1.1: The Sample Path of a Counting Process

when a system’s software fails. In all such cases, the event of interest does not occur with

any regularity and is therefore not exactly predictable. We are not sure about the exact

times at which the events will occur and consequently about the exact number of events

that will occur in any time interval. Such a random phenomenon is called a point process.

A counting process is simply the count of the number of events that have occurred

in any specified interval of time. Since N(t) is unknown for any value of t, we are facing

with the problem of describing our uncertainty about an infinite collection of random

variables, one for each t. Any indexed collection of random variables is called stochastic

process, and when the interest is focused on counts, the process is called a counting pro-

cess and is denoted by {N(t), t ≥ 0}.

The sample path of a counting process is given by Figure 1.1. The horizontal line

is designated to represent time; the vertical line is used to represent the total number of

counts over time. It is a step function starting at zero, and taking jumps of size one at

each ti, that is, the cumulative time of the ith failure.

Our purpose of this chapter is to introduce some probabilistic models for the

3



counting process. The most commonly used models are homogeneous and nonhomoge-

neous Poisson processes. We now define a Poisson process and the intensity function.

A counting process N(t) is said to be a Poisson process if

1. N(0) = 0;

2. For any a < b ≤ c < d the random variables N(a, b] and N(c, d] are independent. This

is called the independent increment property.

3. There is a function v such that

ν(t) ≡ lim
∆t→0

Pr{N(t+ ∆t)−N(t) ≥ 1}
∆t

.

The function v is called the intensity function of the Poisson process.

4.

lim
∆t→0

Pr{N(t+ ∆t)−N(t) ≥ 2}
∆t

= 0

This precludes the possibility of simultaneous failures.

Properties (1) to (4) of the Poisson process imply that

P [N(t) = n] =
1

n!

(∫ t

0
ν(x) dx

)n
exp

(
−
∫ t

0
ν(x) dx

)
.

For proof, see for example Rigdon(2000)[50].

The terminology of intensity function ν(t) is often confusing with the terminology

of harzard function. Harzard function is defined as:

h(x) = lim
∆x→0

P (x < X ≤ x+ ∆x|X > x)

∆x
.

The harzard function is the limit of the probability that a unit fails (for the first and only

time) in a small interval given that it survived to the beginning of the interval. Harzard

function is a conditional probability and gives its relative rate at time t. It also can be

calculated by dividing the derivative of cumulative distribution function F (t) with the

probability of surviving past time t, that is,

h(t) =
f(t)

1− F (t)
.

4



Note that ν(t)∆t gives the probability of a failure in a small time interval (t, t+∆t].

In a counting process, the expected number of failures up to time t is denoted by

m(t) = E[N(t)]. Intensity function can be obtained by taking the derivative of m(t).

It is an absolute rate.

1.3 Homogeneous Poisson Process (HPP)

The counting process {N(t), t ≥ 0} is said to be a homogeneous Poisson process

(HPP) if the intensity function ν(t) is a constant, that is, ν(t) = λ, λ > 0 and

1. N(0) = 0;

2. The process has independent increments and stationary increments. A point process

has stationary increments if for all k, P (N(t, t+ s] = k) is independent of t.

It can be shown that the number of events in any interval of length s = t2 − t1 has a

Poisson distribution with mean λs, that is

P [N(t2)−N(t1) = n] =
e−λs(λs)n

n!
, 0 ≤ t1 ≤ t2, n = 0, 1, ....

The intensity function is also referred as repair rate. Homogeneous Poisson Process has

the following properties, proofs are given in (Rigdon(2000)[50]):

Property 1. A process is an HPP with constant intensity function λ, if and only

if the times between events are iid exponential random variables with mean 1/λ.

Property 2. If 0 < T1 < T2 < ... < Tn are the failure times from an HPP, then

the joint pdf of T1, T2, ...Tn is

f(t1, t2, . . . , tn) = λnexp(−λtn), 0 < t1 < t2 . . . < tn.

Property 3. The time to the nth failure from a system modeled by an HPP has

a gamma distribution with parameter α = n, β = 1/λ.

Property 4. For an HPP, conditional on N(t) = n, the failure times 0 < T1 <

5



T2 < ... < Tn are distributed as order statistics from UNIF (0, t) distribution.

Property 5. The probability of system failure after time t is

R(t) = Pr[T > t] = Pr[N(t) = 0] = e−λt.

The times between events mentioned in Property 1 is called the sequence of in-

terarrival times which is denoted by {Xi = Ti − Ti−1, i = 1, 2, ...}. We shall note that,

in HPP, each Xi is independently identically exponentially distributed with mean 1/λ.

Hence, we can expect an average 1/λ events to occur within the time interval (tn−1, tn].

Pr[X1 > x] = Pr[N(x) = 0] = e−λx,

P r[X2 > x|X1 = x1] = Pr{zero event in (x1, x1 + x]} = e−λx,

· · · = · · ·

Pr[Xn > x|Xn = xn−1] = Pr{zero event in (xn−1, xn−1 + x]} = e−λx.

1.4 Nonhomogeneous Poisson Process

Nonhomogeneous Poisson process (NHPP) is a Poisson process which intensity

function is not a constant. A counting process {N(t), t ≥ 0} has a nonhomogeneous

Poisson process if

1. N(0) = 0;

2. The process has independent increments.

It can be shown that the number of failures in any interval (t1, t2] has a Poisson distribution

with mean
∫ t2
t1
v(t) dt. That is,

P (N(t2)−N(t1) = k) =
1

k!
exp{−

∫ t2

t1
v(t) dt}(

∫ t2

t1
v(t) dt)k.

For our purposes, these occurrences in time will be the failure times of a repairable

system. Though the models discussed in the following may be applicable to other situa-

tions, we shall use the term failures instead of events from now on.
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There are two different sampling protocols which provide data on repairable sys-

tem: (i) failure truncated case and (ii) time truncated case.

Data are said to be failure truncated when testing stops after a predetermined

number of failures. Suppose that a repairable system is observed till n failures occur

(fixed n), so we observe the ordered failure times t1 < t2 < ... < tn where ti is the time

of ith failure. In this case, the number of failures is fixed and the time when the testing

stops is random.

Data are said to be time truncated when testing stops at a predetermined time

t. We observe a set of failure time t1 < t2 < ... < tn < t. In this case, the time when the

testing stops is fixed and the number of failures n is random. These two different cases

cause slightly different likelihood functions.

Nonhomogeneous Poisson Process has the following properties (Rigdon(2000)[50]):

Property 1. The joint pdf of the failure times T1, T2 . . . Tn from an NHPP with

intensity function ν(t) is given by [1]:

f(t1, t2, ..., tn) =
( n∏
i=1

ν(ti)
)
exp

(
−
∫ w

0
ν(x) dx

)
,

where w is the so-called stopping time: w = tn for the failure truncated case, w = t for

the time truncated case.

Property 2. If the failure times of a nonhomogeneous Poisson process are T1 <

T2 < . . . < Tn then conditioned on Tn = tn, the random variables T1 < T2 < . . . < Tn−1

are distributed as n−1 order statistics from the distribution with cumulative distribution

function

G(y) =



0, y ≤ 0,

m(y)/m(tn), 0 < y ≤ tn,

1, y > tn.

Property 3. If a NHPP with intensity function ν(t) is observed until time t, and if

the failure times are T1 < T2 < . . . < TN(t) where N(t) is the random number of failures in
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the interval (0, t], then conditioned on N(t) = n, the random variables T1 < T2 < . . . < Tn

are distributed as n order statistics from the distribution with cdf

G(y) =



0, y ≤ 0,

m(y)/m(t), 0 < y ≤ t,

1, y > t.

Property 4. The probability of system failure occurring after time t is known

as the reliability function, R(t). The nonhomogeneous Poisson process assumes that the

number of failures in any interval (t1,t2] has a Poisson distribution with mean
∫ t2
t1
v(t) dt.

Hence the reliability function is

R(t) = Pr[T > t]

= Pr[N(t) = 0]

=
e
−
∫ t2

t1
ν(t) dt

(
∫ t2
t1
ν(t) dt)0

0!

= e
−
∫ t2

t1
ν(t) dt

= e−[λ(t2)−λ(t1)].

1.5 Power Law Process

A common function form for the intensity function in NHPP is

ν(t) = (
β

α
)(
t

α
)
β−1

for α > 0, β > 0,

where α and β are the scale parameter and shape parameter respectively. The intensity

function is proportional to the cumulative failure time t raised to a power, therefore this

special nonhomogeneous Poisson process is usually called the Power Law Process. The

mean value function λ(t) of the process is

λ(t) = E(N(t)) =
∫ t

0
ν(s) ds =

∫ t

0

β

αβ
sβ−1 ds = (t/α)β.
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An alternative way of describing the power law process is to consider the sequence

of successive failure times T1, T2, ... where Ti is the time of the ith failure. Then the time of

the first failure T1 has a Weibull distribution with scale and shape parameter α and β. Ti

(i = 2, 3, ...n) have left truncated Weibull distributions conditional on T1 = t1, . . . , Ti−1 =

ti−1. Therefore, Power Law Process is also called Weibull Process.

1.5.1 Historical Review

The power law process has been widely used in reliability growth(Crow(1982)[22]),

and software reliability models (Kyparisis and Singpurwalla(1985) [35]), and in repairable

systems (Ascher and Feingold (1984)[2], Engelhardt and Bain(1986) [26], Rigdon and

Basu(1989) [49]). Other names for the Power Law model are: the Duane Model (Du-

ane(1964) [24]) and AMSAA model. AMSAA stands for the United States Army Mate-

rials System Analysis Activity.

There is a lot of literature on the power law process from a classical statistics view.

Much theoretical work describing the Power Law model was performed in the 1970’s (Lee,

L and Lee, K.(1978)[36] and Engelhardt and Bain(1978)[26] [3]). Classical inference on

the power law process, such as point estimation, confidence intervals, tests of hypothe-

sis for parameters and estimates of the intensity function, was reviewed by Rigdon and

Basu(1989)[49]. Calabria(1988)[12] examined modified maximum likelihood estimators of

the expected number of failures in a given time interval and of the failure intensity and

compare their mean squared errors with those MLEs. Qiao, H. and Tsokos, C.(1998) [44]

obtained the best efficient estimates of intensity function.

Bayesian inference on the power law process was also studied during the past two

decades. Bayesian point and interval estimates were obtained by Guida,M.(1989)[30] and

Kyparisis and Singpurwalla(1985)[35]. Informative and noninformative priors were both

employed on failure truncated data case. Bar-Lev et al.(1991)[7] discussed both time and
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failure truncated data by using noninformative priors. They derived prediction distri-

butions of future failure times and the number of failures in some future time interval.

It involves complicated numerical calculation. Calabria(1990)[13] also derived predic-

tion distribution by using noninformative and informative priors. These references are

given on a single system and usually assume parameters are independent. Crow(1974)[21]

and Bain(1978)[3] analyzed independent equivalent multi-system by employing power law

process. Power bounds for a test of equality of trends in several independent power law

processes were discussed by Calabria,R., Guida,M. and Pulcini,G.(1992)[14]. Huang and

Bier (1998) [33] presented a natural conjugate prior for the PLP.

1.5.2 Model Motivation

The most commonly used models for repairable systems are the homogeneous and

nonhomogeneous Poisson processes. Let us start with different data sets. Figure 1.2 dis-

plays the time dot plots and scatter plots of cumulative failure number against cumulative

failure time under different situations of repairable systems.

In figure 1.2, the first situation (a) illustrates an improving system. After removing

bugs, times between failures tend to get longer and system is improving. The intensity

function decreases since the probability of failures gets smaller when system ages. This

can be employed as a reliability growth model and hence is of the most interest. The

second situation (b) illustrates a steady system. Times between failures tend to stay the

same. The intensity function remains constant since the probability of failure does not

change. The third situation (c) illustrates a deteriorating system. After removing bugs,

times between failures tend to get shorter and system is deteriorating. The intensity

function increases since the probability of failure will gets larger when system ages.

Usually the assumptions of independent and identical distribution for times be-
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Figure 1.2: Three Different Types of Systems
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tween failures in repairable system are invalid. We must consider models in which the

assumptions do not hold. The intensity function (repair rate) plays an important role

for selecting model because it contains the information about likelihood of a failure at or

around any time t. The intensity function changes when system ages. In situation (a),

the repair system is improving. In situation (c), the system is deteriorating. Under those

two cases, we should employ NHPP. In situation (b), the intensity function is a constant,

HPP is a more proper choice. If NHPP is selected as the model, a very commonly used

process in NHPP is the power law process (PLP). Power law process is flexibly enough to

set up models for those three situations by applying different values of shape parameter

β. Details will be given in the next chapter. Except PLP is very flexible, the fact that

mean function can be easily derived is also a plus.

1.5.3 Present Study

We make parameters transformations µ = lnα, θ = 1/β. A location parameter µ

and a scale parameter θ are obtained. This makes noninformative priors more appropri-

ate. Thus we applied non-informative priors to get the posterior densities of µ and θ and

got Bayes estimators of µ and θ. A newly developed Bayes estimator of intensity function

is shown. We compared the prediction result by employing posterior inferences with the

result by employing a Bayesian estimator of intensity function. The current approach

simplifies the calculation considerably. The posterior densities of several parameter func-

tions are discussed in the last part. Bayesian approach requires numerical integration.

We either use some approximation method or create computer program to calculate the

data.

We also provide our original work by applying natural conjugate priors and non-

parametric Kernel priors in Empirical Bayes analysis for the power law process. For
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the natural conjugate priors, two-hyperparameter prior and a more generalized three-

hyperparameter prior (Huang and Bier(1998)[33]) are used. Given the estimates of hy-

perparameters, we obtain closed forms for prior and posterior distributions in a special

case.

Another area of current research interests focuses on Bayesian and Empirical Bayes

methods on microarray. Currently we have an opportunity to work with Dr. Haura on

microarray data analysis in Moffitt Lee Cancer Center–one of the largest national cancer

centers. In this work, the main object is to select differentially expressed genes in around

22,000 genes. The data are nonpaired 5-control (GFP protein) and 5-experiment (Stat3)

gene expression. Both classical and Bayesian methods are applied. We briefly address

the statistical structure and illustrate the results of two classical methods SAM (Storey

2002), local Z-score (Chen,Z.[17]) and one parametric Empirical Bayes (Newton, 2002).

Several partial lists of differentially expressed genes are shown. The results are obtained

by SAS programming and research software packages. We also discuss some normalization

methods and applications on probe-level and expression-level data.

Bayesian methods are developed in many other fields of microarray analysis, for

instance, assessing differential expression (Newton 2002, Speed 2002, Smyth 2003), clus-

tering (Sebastiani 2002), decomposition (Ochs 2002), principal component analysis and

prediction (Mike West, 2000). The main problems on microarray are from low replicates

and large amount of genes. Bayesian analysis partially contributes to solve the problem by

considering the typical variability in the system. Further work can be done by employing

Bayesian or Empirical Bayes analysis in microarray.
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1.6 Summary

We address some fundamental concepts which are involved in reliability model and

reliability growth. A class of point processes is usually used to model repairable system,

such as homogeneous Poisson processes, nonhomogeneous Poisson processes, Branching

Poisson processes and renewal processes. Our research will focus on a commonly used

nonhomogeneous process–Power Law Process. We give a historical review on the power

law process in this chapter. And we showed a brief idea how the power law process can

be applied in reliability growth models. Our research interest also includes Bayesian and

Empirical Bayes approaches on microarray analysis, especially on the area of selection of

differentially expressed genes.
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Chapter 2

Classical Inference on the Power Law Process

In this chapter, we address some classical inference results on the Power Law Pro-

cess. These include point and interval estimates for the parameters, hypothesis testing,

estimation of the intensity function and estimation of the mean time between failures

(MTBF). We will also discuss three goodness-of-fit tests. The first two will be illustrated

with real data set.

2.1 Introduction

As mentioned in the last chapter, the power law process can be described as a

nonhomogeneous Poisson process {N(t), t ≥ 0} with intensity function:

ν(t) = (
β

α
)(
t

α
)β−1, for α > 0, β > 0.

The mean value function λ(t) of the process is:

λ(t) = E(N(t)) =
∫ t

0
ν(s) ds =

∫ t

0
(
β

α
)(
s

α
)
β−1

ds = (t/α)β.

The shape parameter β affects how the system deteriorates or improves over time.

If β > 1, the intensity function ν(t) is increasing, then the failures tend to occur more

frequently, and we call the system deteriorating. If β < 1, the intensity function ν(t) is

decreasing, then the system is improving. Under this situation, the power law process

can be applied as a reliability growth model. If β = 1, the power law process is reduced to
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a simple homogeneous Poisson process with intensity 1/α, where α is a scale parameter.

The power law process has been widely used as models in repairable systems (As-

cher And Feingold (1984)[2], Engelhardt and Bain(1986)[26], Rigdon and Basu(1989)[49])

and software reliability growth models (Kyparisis and Singpurwalla(1985) [35]). For ex-

ample, Duane (1964) demonstrated that many systems developed at General Electric

seemed to follow a model closely related to the power law process.

2.2 Point Estimation of Parameters β and α

There are two different sampling protocols which provide data on the power law

process: (i) failure truncated case and (ii) time truncated case. These two terms are

defined in the previous chapter.

The joint pdf of the failure times T1, T2, ..., Tn from a NHPP with intensity function

ν(t) is then given by Crow(1982)[22],

f(t1, t2, ..., tn) =
( n∏
i=1

ν(ti)
)
exp

(
−
∫ w

0
ν(x) dx

)
. (2.1)

where w is a so-called stopping time: w = tn for the failure truncated case, w = t for the

time truncated case. Thus for the failure truncated case with ν(t) = β
α
( t
α
)β−1, the joint

density of T1 < T2... < Tn is obtained from equation (2.1):

f(t1, t2, ..., tn) =
( n∏
i=1

β

α
(
ti
α

)β−1
)
exp

(
−
∫ tn

0

β

α
(
x

α
)β−1 dx

)

= (
β

α
)n
( n∏
i=1

ti
α

)β−1

exp
(
−tn
α

)β
. (2.2)

For the time truncated case, we observed t1 < t2 < . . . < tN < t. The number

of failures N in time truncated interval [0, t) is a random variable. Given N = n, the

distribution of T1 < T2... < Tn can be shown by using property 3 of NHPP,

f(t1, t2, ..., tn|n) = n!
n∏
i=1

β

t
(
ti
t
)β−1
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and the random variable N has a Poisson distribution with mean (t/α)β, so

fN(n) =
(t/α)nβexp[−(t/α)β]

n!
n = 0, 1, . . . .

Thus, the joint density of N and T1 < T2 < ... < Tn is

f(n, t1, t2, ..., tn) =
(t/α)nβexp[−(t/α)β]

n!
n!

n∏
i=1

β

t
(
ti
t
)β−1

= (
β

α
)n
( n∏
i=1

ti
α

)β−1

exp
(
− t

α

)β
. (2.3)

It is possible that we observe no failure before time t. In this case, f(0) = exp[−(t/α)β].

This is of no inferential interest, and hence we won’t consider this case. It is remarkable

that the likelihood functions are almost identical for the failure truncated case (2.2) and

the time truncated case (2.3). Those two likelihoods can be written as

L(α, β|n, t1, t2, ..., tn) = (
β

α
)n
( n∏
i=1

ti
α

)β−1

exp
(
−w
α

)β
, (2.4)

where w = tn for the failure truncated case, w = t for the time truncated case.

2.2.1 Maximum Likelihood Estimates β̂ and α̂

Given the likelihood function (2.4) as above section, the log-likelihood function is

L(α, β|t1...tn, n) = nlogβ − nβlogα+ (β − 1)
n∑
i=1

logti − (
tn
α

)β.

Setting the first partial derivatives (with respect to β and α) equal to zero, we obtain the

MLE’s as following,

β̂ =
n∑n

i=1 log(w/ti)
,

α̂ =
w

n1/β̂
,

where w = tn for the failure truncated case, w = t for the time truncated case. They

are biased estimates. It is known (Guida (1989)[30] and Rigdon and Basu(1989)[49]) that
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2nβ/β̂ has a chi-square distribution with 2(n − γ) degrees of freedom, where γ = 1 for

failure truncated case and γ = 0 for time truncated case.

Now we will show

E(β̂) =
nβ

(n− 1− γ)
, V ar(β̂) =

n2β2

(n− 1− γ)2(n− 2− γ)
.

For the proof we shall use the following Lemma.

Lemma. Let X be χ2 distributed with n degrees of freedom, then

E(Xk) = 2k
Γ(n

2
+ k)

Γ(n
2
)

where k is an integer s.t.
n

2
+ k > 0.

In particular,

E(X) = n, E(
1

X
) =

1

n− 2
,

E(X2) = n2 + 2n, E(
1

X2
) =

1

(n− 2)(n− 4)
.

Proof. By the Lemma above, we have

E(β̂) = 2nβE(
1

χ2
2(n−γ)

)

=
nβ

n− 1− γ
.

We also have

E(β̂2) = E(
2nβ

χ2
2(n−γ)

)2

=
4n2β2

[2(n− γ)− 2][2(n− γ)− 4]

=
n2β2

(n− 1− γ)(n− 2− γ)
.

Thus, the variance of the MLE of β is

V ar(β̂) = E(β̂2)− [E(β̂)]2 =
n2β2

(n− 1− γ)2(n− 2− γ)
.

A modified maximum likelihood estimate of β is given by Suresh and Rao(1992).

This modified MLE is given by

β′ =
(n− 1)

n
β̂.
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2.2.2 Unbiased Estimates β̄

The MLE’s are biased estimates and we can adjust them to unbiased estimates.

The unbiased estimators are(Bain and Engelhardt(1991)[4]),

β̄ =
n− 1− γ

n
β̂ =

n− 1− γ∑n
i=1 log(tn/ti)

,

γ = 1 for the failure truncated case, and γ = 0 for the time truncated case.

The variance of β̄ is

V ar(β̄) = V ar(
n− 1− γ

n
β̂) =

β2

n− 2− γ
.

In Calabria et al. (1988), it was shown that the unbiased estimate of β is more efficient

than the biased estimate.

2.2.3 Linearly Best Efficient Estimate of β́

In Qiao and Tsokos (1998), they showed that there exists a linearly best efficient

estimate of β, denoted by β́.

Theorem. Assume θ̄ is an unbiased estimate of θ, and θ̄ has a finite variance, then there

exists an unique α0 such that

MSE(α0θ̄) = minαMSE(αθ̄).

Moreover,

α0 =
θ2

θ2 + V ar(θ̄)
.

In the above theorem, the MSE is defined as the expected value of the square of the

deviation of the estimate from the true vale and it equals to the square of variance plus

the square of bias.

Applying their theorem, we have

α0 =
β2

β2 + [ β2

n−2−γ ]
,
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and the best efficient estimate of β is

β́ =
n− 2− γ

n− 1− γ
β̄ =

n− 2− γ∑n
i=1 log(tn/ti)

.

We also have

MSE(α0β̄) = α2
0V ar(β̄) + (α0 − 1)2β2

=
β4V ar(θ̄)

[β2 + V ar(β̄)]2
+

β2V ar(θ̄)2

[β2 + V ar(β̄)]2

=
β2V ar(θ̄)

[β2 + V ar(β̄)]

=
β2

n− 1− γ
.

The efficiency of MLE β̂, unbiased estimate β̄ and linearly best estimate β́ are

EFF (β́|β̄) =
MSE(β́)

MSE(β̄)
=
n− 2− γ

n− 1− γ
< 1,

EFF (β́|β̂) =
MSE(β́)

MSE(β̂)
=
n− 3

n+ 6
< 1, (Failure truncated case)

EFF (β́|β̂) =
MSE(β́)

MSE(β̂)
=

(n− 2)(n− 3)

(n− 1)(n+ 2)
< 1, (Time truncated case)

EFF (β̄|β̂) =
MSE(β̄)

MSE(β̂)
=
n− 2

n+ 6
< 1, (Failure truncated case)

EFF (β̄|β̂) =
MSE(β̄)

MSE(β̂)
=

(n− 2)2

(n− 1)(n+ 2)
< 1.(Time truncated case)

Therefore, the linearly best estimate β́ has the greatest efficiency and unbiased estimate

β̄ has a better efficiency than MLE β̂.

2.3 Interval Estimation and Tests of Hypothesis

We again apply the fact that 2nβ/β̂ has a chi-square distribution with 2(n − γ)

degrees of freedom, where γ = 1 when failure truncated case and γ = 0 when time

truncated case. Then we can write

P
(
χ2

1−α/2(2(n− γ)) <
2nβ

β̂
< χ2

α/2(2(n− γ))
)

= 1− α
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Note: α is the significance level and not the parameter α here. So the confidence interval

for β is
χ2

1−α/2(2(n− γ))β̂

2n
< β <

χ2
α/2(2(n− γ))β̂

2n
.

The result that (2nβ)/(β̂) has a chi-square distribution with 2(n − γ) degrees of

freedom can also be used to construct a test at significant level α for

H0 : β = β0 versus H1 : β 6= β0.

The rule to reject H0 is

2nβ0

β̂
< χ2

1−α/22(n− γ) or
2nβ0

β̂
> χ2

α/22(n− γ),

that is,

β̂ <
2nβ0

χ2
α/22(n− γ)

or β̂ >
2nβ0

χ2
1−α/22(n− γ)

.

It is often useful to test H0 : β = 1 versus H1 : β 6= 1. The power law process reduces

to the homogeneous Poisson process when β = 1, and it tests whether the system is re-

maining stable or not. Alternative test can also be H1 : β > 1 which means the system

is deteriorating or H1 : β < 1 which means the system is improving.

2.4 Estimation of Intensity Function

Recall Power Law process’s intensity function is

ν(t) = (
β

α
)(
t

α
)β−1, forα > 0, β > 0.

The simplest way is using maximum likelihood estimates of α and β to evaluate ν(t). We

have

v̂(t) = (
β̂

α̂
)(
w

α̂
)β̂−1 =

nβ̂

w

where w = tn for the failure truncated case, w = t for the time truncated case. Other

estimates are obtained by Tsokos and Rao (1995)[59] and Qiao and Tsokos (1998)[44].
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Rigdon and Basu(2000)[50] combined the failure truncated case and time truncated case

together, in summary, the estimates of intensity function are unbiased Estimate

v̂UB =
(n− 1)(n− 2)β̂

nw

and best efficient estimate with minimum mean squared error

v̂MMSE =
(n− 2)(n− 3)β̂

nw
.

2.5 Mean Time Between Failure (MTBF)

Mean time between failures is defined to be the average time that a component

works without failure. It is an important metric that assesses the reliability of repairable

system. The reciprocal of the intensity function is widely accepted as an approximate

estimate of the MTBF (Cox & Lewis 1966)[20], denoted by MTBFA. However, such a

relationship is only true for HPP (Thompson(1981)[57]). The expected time between the

nth and the (n + 1)th failure, denoted by MTBFn, is the mean time between failure in

time interval (tn, tn+1). In this section, we first derive MTBFn as a function of α and β,

then we show an estimate of MTBFn derived by Qiao and Tsokos[44]. Their estimate of

MTBFn will be referred as MTBFQ.

2.5.1 MTBFn

The probability F (tn+1|tn) of system failing after time tn+1, given that the system

last failed at time tn is equivalent to the probability of the system experiences zero failures

between (tn, tn+1). This can be used to derive the distribution of MTBFn for the power

law process. From previous section,

Pr[N(tn+1)−N(tn) = 0] = exp{−[λ(tn+1)− λ(tn)]}.

Hence

f(tn+1|tn) =
d

dtn+1

F (tn+1|tn) =
d

dtn+1

{1− Pr[N(tn+1)−N(tn) = 0]}
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= ν(tn+1)exp{−[λ(tn+1)− λ(tn)]}.

MTBFn =
( ∫ ∞

tn
tn+1fn+1(tn+1/tn)dtn+1

)
− tn

=
( ∫ ∞

tn
tn+1

β

αβ
(tn+1)

β−1exp(− 1

αβ
[tβn+1 − tβn])dtn+1

)
− tn

= (
1

αβ
)−1/βexp((

tn
α

)β)Γ(
1

β
+ 1)F̄x.

where F̄x = 1− Pr[X > ( tn
α

)β], X ∼ Γ( 1
β

+ 1, 1).

2.5.2 MTBFQ

Qiao and Tsokos(1998)[45] investigated the relation between MTBF and the recip-

rocal of the intensity function. They provided upper and lower bounds for the estimate

of MTBFn. What it follows is a brief proof for the reliability growth model (β < 1).

Consider the intensity function

ν(t) = (
β

α
)(
tn
α

)β−1,

Let θ = 1/β, h = (tn/α), then

1

ν(t)
= θαhθ−1.

We can also rewrite MTBFQ as

MTBFQ = αehθ
∫ ∞

h
e−ttθ−1dt.

Case 1: β ≤ 1
2

This case is equivalent to θ ≥ 2. Therefore we may assume θ = m+1+ δ, where m ≥ 1 is

an integer and δ ∈ [0, 1). We shall take the speical case δ = 0. In this case, the MTBFQ

can be expanded as

MTBFQ = αehe−h
m∑
i=0

i∏
k=0

(θ − k)hm−i
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= θhm
m∑
i=0

1

hi

i∏
k=0

(θ − k)

=
1

ν(t)
[1 + (θ − 1)

1

h
+ . . .+

(θ − 1)(θ − 2) . . . (θ −m)

hm
].

The expression above shows that the difference between 1
ν(t)

is given by

1

ν(t)

[
(θ − 1)

1

h
+ . . .+

(θ − 1)(θ − 2) . . . (θ −m)

hm

]
.

For general δ, we have

MTBFQ = αhδ+m
[ m∑
i=0

i∏
k=0

(θ − k)hm−i + θehh−δ
∫ ∞

h
tθ−m−1e−tdt

]
.

From the expression of MTBFQ, it can be easily seen that

MTBFQ ≥ 1

ν(t)

[
(θ − 1)

1

h
+ . . .+

(θ − 1)(θ − 2) . . . (θ −m)

hm

]

≥ 1

ν(t)

[
1 +

(θ − 1)

h

]
,

and

MTBFQ ≤ 1

ν(t)

m∑
i=0

θ − 1

h

i

≤ 1

ν(t)

1

1− θ−1
h

.

Hence,

1

ν(t)

[
1 +

(θ − 1)

h

]
≤MTBFQ ≤

1

ν(t)

1

1− θ−1
h

,

where θ = 1
β

with β ≤ 1/2, h = ( tn
α

)β and ν(t) = 1
α
β

( α
tn

)β−1 . Thus the point estimate for

MTBFQ is

MTBFQ =
1

2ν(t)
[
(
1 +

α− 1

h

)
+
(
1− α− 1

h

)−1

]. (2.5)

Case 2: 1
2
< β ≤ 1

In this case, we may write θ = 1 + δ with 0 ≤ δ < 1. Thus

MTBFQ = αehθ
∫ +∞

h
e−ttδdt ≥ αθhδeh

∫ +∞

h
e−tdt = αθhδ =

1

ν(t)
.
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We may also obtain

MTBFQ = αehθ
[
hδe−h + δ

∫ +∞

h
hδ−1e−tdt

]
≤ 1

ν(t)

[
1 +

δ

h

]
.

Therefore, in this case, we have

1

ν(t)
≤MTBFQ ≤

1

ν(t)
[1 +

δ

h
].

Thus the point estimate for MTBFQ for this case is

MTBFQ =
1

2ν(t)
[2 +

δ

h
].

For the intensity function ν(t) = β
α
( t
α
)β−1, we conclude

MTBFQ =



MTBFA

2
[(1 + θ−1

h
) + ( 1

1− θ−1
h

)], 0 < β ≤ 1
2

MTBFA

2
(2 + δ

h
), 1

2
< β ≤ 1

MTBFn. β > 1

2.6 Goodness-of-fit Tests

There are several ways to assess the fit of power law process. The Duane plot is

an informal graphical method. Exact goodness-of-fit tests can be constructed by making

an appropriate transformation of the failure times. Such transformations include ratio-

power transformation and log-ratio transformation. We use the following software failure

time table to illustrate how the Duane plot and ratio-power transformation work in test-

ing the goodness-of-fit. This data set consists of 38 software failure times taken from

Musa(1979)[41].
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Software Failure Times in Seconds

i ti i ti i ti i ti

1 115 11 1955 21 6162 31 36800

2 115 12 2026 22 6552 32 37363

3 198 13 2632 23 8415 33 40133

4 376 14 3821 24 9752 34 40785

5 570 15 3861 25 14260 35 46378

6 706 16 4649 26 15094 36 58074

7 1780 17 4871 27 18494 37 64798

8 1798 18 4943 28 18500 38 67344

9 1813 19 5558 29 23061

10 1905 20 6147 30 26229

i:Failure number; ti: Cumulative Failure time. (Musa(1979)[41])

Table 2.1

2.6.1 Duane Plot

If the power law process is the correct model, Duane plots should be roughly linear.

This is derived from the following:

E[N(t)] = λ(t) = (
t

α
)β.

Thus,

E[
N(t)

t
] =

1

t
λ(t) = (

tβ−1

αβ
).

After taking natural logarithm of both sides, we have

logE[
N(t)

t
] = (β − 1)logt− βlogα,

this shows logE[N(t)/t] is a linear function of logt assuming t is fixed, in which N(t) is

random. From Figure 2.1, it suggests the power law process is indeed proper since the

Duane plot shows a linear relation.

26



Figure 2.1: Duane Plot for Data Table 2.1

2.6.2 Ratio Power Test

A common goodness-of-fit is the ratio-power transformation, which is defined by

R̂i = (ti/tn)
β̄, i = 1, 2, ..., n− 1, where β̄ is an unbiased estimator which is obtained as in

subsection 2.1.2.

H0: The power law process is correct model.

H1: The power law process is not correct model.

The test statistic for the Cramer-von Mises test is

C2
R =

1

12(n− 1)
+

n−1∑
i=1

(
R̂i −

2i− 1

2(n− 1)

)2

.

From the data table 2.1, the statistic C2
R = 0.25. We accept the null hypothesis at 5%

level. Furthermore, Figure 2.2 is a scatter plot of number of failures. It suggests an

improving system since it is concave down.
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Figure 2.2: Plot of Number of Failures against Cumulative Operating Time for Data Table
2.1

2.6.3 Log-ratio Test

In Log-ratio goodness-of-fit test for the power law process, we make a log-ratio

transformation

Ui = log(tn/tn−i).

If the power law process with parameters β and α is the proper model, it can be shown

that U1 < U2 < · · · < Un−1 are distributed as n − 1 order statistics from an exponential

distribution with mean 1/β. Thus, any goodness-of-fit test for the exponential distribu-

tion with unknown mean (β is usually unknown) can be used to test the adequacy of the

power law process. For example, Lilliefors’ test (1969), Shapiro-Wilk W test(1972) and

Stephens’ test (1974), etc.

2.7 Summary

Classical inferences on the power law process have been done during the past

decades[36, 26, 3, 49, 12, 44]. Basic inferences such as point and interval estimates,
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hypothesis test of model parameters were given. We derived a unified form of linearly

best efficient estimates of the scale parameter for the failure truncated and time truncated

data. For completeness, we also included the estimation of intensity function and mean

time between failures (MTBF). In the last part, we applied real data set to show how

three existing goodness of fit tests for the PLP work in model check.
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Chapter 3

Bayesian Inference on the Power Law Process

Recall that the power law process can be described as a nonhomogeneous Poisson

process {N(t),t ≥ 0} with intensity function

ν(t) =
β

α
(
t

α
)β−1, for α > 0, β > 0.

The mean value function λ(t) of the process is:

λ(t) = E(N(t)) =
∫ t

0
ν(s) ds =

∫ t

0

β

α
(
t

α
)β−1 ds = (t/α)β.

In this chapter, we use the transformation µ = lnα, θ = 1/β and obtain the location pa-

rameter µ and the scale parameter θ. We develop Bayesian procedures for the power law

process with failure truncation data, using non-informative priors for the scale parameter

θ and the location parameter µ. Bayesian inference is different from the classical meth-

ods since we take the parameters θ and µ as random variables instead of fixed numbers.

In addition to obtaining the posterior density of parameters of the power law process,

Bayesian prediction inferences for the expected number of failures and the future failure

times are discussed. Predictive inference based on Bayesian estimation of the intensity

function greatly simplifies the calculations. We compare our results with the paper of Bar-

Lev,S.K., Lavi,I. and Reiser,B.(1992)[7] by using the data set from Musa(1979). We also

derive posterior densities of system reliability, mean value function and intensity function.
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3.1 Likelihood Function

3.1.1 Likelihood of y1

As pointed out in section 1.5, the time of the first failure T1 has a Weibull distri-

bution with scale parameter α and shape parameter β, that is, T1 ∼ Weibull(α, β) with

pdf

f(t1) =
β

α
(
t1
α

)
β−1

e−(t1/α)β

and cdf

F (t1) =
∫ t1

0
f(s) ds =

∫ t1

0

β

α
(
s

α
)
β−1

e−(s/α)β

ds

= −e−(s/α)β
∣∣∣∣t1
0

= 1− e−(t1/α)β

.

Let Y1 = lnT1, then

F (y1) = Pr(Y1 < y1) = Pr(lnT1 < y1) = Pr(T1 < ey1) = F (ey1) = 1− exp{−(
ey1

α
)β}.

Take derivative of F (y1), pdf of Y1 becomes

f(y1) =
d

dy1

F (y1) =
d

dy1

Pr(Y1 < y1) =
β

αβ
ey1βe−( ey1

α
)

β

.

Let µ = lnα, θ = 1
β
, we have

f(y1) =
1
θ

e
µ
θ

·e
y1
θ · e−e

y1−µ
θ =

1

θ
· exp{y1 − µ

θ
− exp(

y1 − µ

θ
)}, θ > 0.

3.1.2 Likelihood of ~y = (y1, y2, y3, ..., yk)

Let Yk = lnTk, for k = 2, ..., n, where Tk is the kth ordered failure time, then

Pr{Yk > yk|tk−1} = Pr{lnTk > yk |tk−1} = Pr{Tk > eyk |eyk−1}

= Pr{zero failure in (eyk−1 , eyk ]} = exp(−
∫ eyk

eyk−1
ν(s) ds)

= exp(−λ(s)|eyk

eyk−1 ).
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Since the mean value function is λ(t) = (t/α)β, we have

λ(s)
∣∣∣∣eyk

eyk−1

=
1

αβ
· eykβ − 1

αβ
· eyk−1β for k = 2, ..., n.

Therefore, cdf of Yk conditional on observation yk−1 is

F (yk|yk−1) = Pr{Yk > yk|yk−1}

= exp{−λ(y)
∣∣∣∣eyk

eyk−1

}

= exp{−(
eyk

α
)β + (

eyk−1

α
)β}

and the pdf of Yk conditional on observation yk−1 is

f(yk|yk−1) = (
β

αβ
) · exp{ykβ − (

eyk

α
)β + (

eyk−1

α
)β}.

Hence, the joint likelihood function of ~y for the failure truncated case is

L(~y) = L(yn, yn−1, yn−2, ..., y1)

= f(yn|yn−1) · f(yn−1|yn−2) · · · f(y2|y1) · f(y1)

= (
β

αβ
)
n

exp{β
n∑
1

yi −
1

αβ
eynβ}. (3.1)

Similarly, it can be shown that for time truncated data, likelihood function is

L(~y) = (
β

αβ
)
n

exp{β
n∑
1

yi −
1

αβ
eyβ}

where y = ln t and t is the stopping time. To simplify our work, we only consider the

failure truncated case. However, inferences for the time truncated case is similar since we

have a similar likelihood function.

Now we make a transformation on the parameters α and β. Let µ = lnα, θ = 1
β
,

then the joint likelihood function (3.1) of ~y becomes

L(~y) = L(yn, yn−1, yn−2, ..., y1) = (
1

θ
)nexp{

∑n
i=1(yi − µ)

θ
− exp(

yn − µ

θ
)}. (3.2)

Hence, from the likelihood function (3.2), the classical MLE’s of θ and µ are obtained as

θ̂ = yn −
n∑
1

yi/n
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and

µ̂ = yn − θ̂ · ln(n).

3.2 Posterior Density of (µ, θ)

We note that µ is a location parameter and θ is a scale parameter. From Box and

Tiao(1973)[10], the noninformative priors for µ and θ are

πo(µ) = constant, πo(θ) ∝
1

θ

We also note that these priors are both improper since integral of priors are not finite.

If µ and θ are independent, the joint prior is π0(µ, θ) ∝ 1/θ. If µ and θ are depen-

dent, π0(µ, θ) ∝ 1/θ2(Bar-Lev,S.K. et al.(1992)[7]). Here we assume that µ and θ are

independent. Hence, by the Bayes’ rule the posterior density π(µ, θ|~y) is:

π(µ, θ|~y) =
L(~y|µ, θ)× 1

θ∫∞
−∞

∫∞
0 L(~y|µ, θ)× 1

θ
dθ dµ

. (3.3)

We now compute the marginal density m(~y) of ~y. It is given by

m(~y) =
∫ ∞

−∞

∫ ∞

0
L(~y|µ, θ)× 1

θ
dθ dµ

=
∫ ∞

−∞

∫ ∞

0
(
1

θ
)n+1exp{

∑n
1 (yi − µ)

θ
− exp(

yn − µ

θ
)} dθ dµ

=
∫ ∞

0
(
1

θ
)
n+1∫ ∞

−∞
exp{

∑n
1 yi
θ

}exp{−nµ
θ
}exp{−e

yn−µ
θ } dµ dθ

=
∫ ∞

0
(
1

θ
)
n+1

exp{
∑n

1 yi
θ

}exp{−nyn
θ

}
∫ ∞

−∞
exp{n(yn − µ)

θ
}exp{−e

yn−µ
θ } dµ dθ

Let h = exp{yn−µ
θ
}, then

dh

dµ
= e

yn−µ
θ · (−1

θ
).

We also have ∫ ∞

−∞
exp{n(yn − µ)

θ
}exp{−e

yn−µ
θ } dµ = θΓ(n).
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Thus,

m(~y) = Γ(n)
∫ ∞

0
(
1

θ
)
n

exp{Σn
1yi − nyn

θ
} dθ

=
Γ(n)

(nyn −
∑n

1 yi)
n

∫ ∞

0
(
nyn − Σn

1yi
θ

)nexp{−(
nyn − Σn

1yi
θ

)} dθ

=
Γ(n)Γ(n− 1)

(nyn − Σn
1yi)

n−1
.

Using this in (3.3), we obtain the joint posterior density of (µ, θ) as

π(µ, θ|~y) = c(~y)(
1

θ
)n+1exp{

∑
(yi − µ)

θ
− exp(

yn − µ

θ
)} (3.4)

where

c(~y) =
1

m(~y)
=

(nyn −
∑n

1 yi)
n−1

Γ(n)Γ(n− 1)

.

3.3 Posterior Density of θ and µ

3.3.1 Marginal Posterior Density of θ

The marginal posterior density of θ is obtained by taking integral of joint posterior

density (3.4) with respect to µ. That is

π(θ|~y) =
∫ ∞

−∞
π(µ, θ|~y) dµ = c(~y)Γ(n)× (

1

θ
)
n

exp{Σn
1yi − nyn

θ
}.

Figure 3.1 gives the posterior density of θ for the data in table 2.1.

Therefore, Bayesian point estimate for θ under squared error loss is

θ̃B = E(θ|~y) =
∫ ∞

0
θf(θ|~y) dθ =

nyn −
∑n

1 yi
n− 2

.

The Bayesian maximum likelihood estimate of θ (obtained as the maxima of the posterior

p.d.f of θ) is

θ̂B =
nyn −

∑n
1 yi

n
.
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Figure 3.1: Marginal Density of θ
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Evaluated from data table 2.1, we have θ̃B = 2.653 and θ̂B = 2.513.

The marginal posterior variance of θ, denoted by V
π(θ|~y)
θ̃B

, is the estimation error for

θ̃B.

V
π(θ|~y)
θ̃B

= Eπ(θ|~y)(θ − θ̃B)2

= Eπ(θ|~y)(θ2)− 2θ̃BE
π(θ|~y)(θ) + θ̃2

B

= E(θ2)− θ̃2
B.

Since

E(θ2) =
∫ ∞

0
c(~y)Γ(n)× (

1

θ
)
n−2

exp{
∑n

1 yi − nyn
θ

} dθ

=
(nyn −

∑n
1 yi)

2

(n− 2)(n− 3),

it follows that

V
π(θ|~y)
θ̃B

=
(nyn −

∑n
1 yi)

2

(n− 2)2(n− 3)
.

Moreover, the mth moment is given by

E(θm) =
(nyn −

∑n
1 yi)

mΓ(n−m− 1)

Γ(n− 1)
m = 1, 2, . . . n.

3.3.2 Marginal Posterior Density of µ

The marginal posterior density of µ is obtained by taking integral of joint posterior

density (3.4) with respect to θ, hence,

π(µ|~y) =
∫ ∞

0
π(µ, θ|~y) dθ

= c(~y)
∫ ∞

−∞
(
1

θ
)n+1exp{

∑
(yi − µ)

θ
− exp(

yn − µ

θ
)} dθ.

The evaluation of this integral requires numerical procedures. Here we derive an

approximate estimator of µ by using Lindley’s approximation.

Lindley’s Approximation: Lindley (1980) [54] developed an asymptotic approx-

imation to the ratio

I =

∫
Ωw(ψ)eL(ψ)dψ∫
Ω ν(ψ)eL(ψ)dψ

36



where ψ = (ψ1, . . . , ψm), L(ψ) is the logarithmic of the likelihood function, w(ψ) and

ν(ψ) are arbitrary functions of ψ and Ω represents the range space of ψ. Clearly, if

w(ψ) = u(ψ)ν(ψ) and ν(ψ) is the prior distribution of ψ, then Posterior expectation of

u(ψ) given the data x = (x1, . . . , xn) is

I = E(u(ψ)|x)

which is the Bayes estimator of u(ψ) under the squared-error-loss function.

To obtain Bayes estimate of µ, we need to approximate I for m = 2 and assume

ψ1 and ψ2 are independent. Lindley gave the following expansion:

I = u+
1

2
(u11σ11 + u22σ22) + ρ1u1σ11 + ρ2u2σ22 +

+
1

2
(L30u1σ

2
11 + L03u2σ

2
22 + L21u2σ11σ22 + L12u1σ22σ11) (3.5)

evaluated at (ψ̂1, ψ̂2) and

u11 =
∂2u

∂ψ2
1

, u22 =
∂2u

∂ψ2
2

,

L30 =
∂3L

∂ψ3
1

, L03 =
∂3L

∂ψ3
2

,

L21 =
∂3L

∂ψ2
1ψ2

, L12 =
∂3L

∂ψ2
2ψ1

,

σ11 = (−L20)
−1 = (−∂

2L

∂ψ2
1

)−1,

σ22 = (−L02)
−1 = (−∂

2L

∂ψ2
2

)−1,

ρ1 =
∂

∂ψ1

(−2 log v(ψ)), ρ2 =
∂

∂ψ2

(−2 log v(ψ)).

In our case, ψ = (µ, θ),

U(µ, θ) = µ, V (µ, θ) = (1/θ)n+1, L(µ, θ) =

∑
(yi − µ)

θ
− exp(

yn − µ

θ
),

U1 = 1, U2 = 0, U11 = 0, U22 = 0,

ρ1 = 0, ρ2 = −1/θ2,

L10 = −n
θ

+
1

θ
exp(

yn − µ

θ
), L20 = − 1

θ2
exp(

yn − µ

θ
),
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L21 =
2

θ3
exp(

yn − µ

θ
) +

1

θ4
exp(

yn − µ

θ
), L30 =

1

θ3
exp(

yn − µ

θ
)

L01 = −
∑

(yi − µ)

θ
+
yn − µ

θ2
exp(

yn − µ

θ
),

L02 =
2
∑

(yi − µ)

θ3
− 2(yn − µ)

θ3
exp(

yn − µ

θ
)− yn − µ

θ4
exp(

yn − µ

θ
),

L03 = −6
∑

(yi − µ)

θ4
+

6(yn − µ)

θ4
exp(

yn − µ

θ
) +

6(yn − µ)

θ5
exp(

yn − µ

θ
)

+
yn − µ

θ6
exp(

yn − µ

θ
),

L12 = −2n

θ3
+

2

θ3
exp(

yn − µ

θ
) +

2(yn − µ)

θ4
exp(

yn − µ

θ
) +

1

θ4
exp(

yn − µ

θ
)

+
yn − µ

θ5
exp(

yn − µ

θ
).

Using the expression (3.5) and some of terms are equal to zero, we obtain

E(µ|~x) = µ+
1

2
L30σ

2
11 +

1

2
L12σ22σ11

= µ+
1

2
L30(

1

L20

)2 +
1

2
L12

1

L20L02

= µ+
θ

2exp(yn−µ
θ

)
+

−2nθ3

exp( yn−µ
θ

)
+ 2θ3 + 2(yn − µ)θ2 + θ2 + (yn − µ)θ

−4θ
∑n

1 (yi − µ) + 4θ(yn − µ)exp(yn−µ
θ

) + 2(yn − µ)exp(yn−µ
θ

)

which will be evaluated by (µ̂, θ̂), which are MLE’s of µ and θ.

3.4 Predictive Inference

3.4.1 Predictions Based on Posterior Density

For µ = lnα and θ = 1/β, the mean function for the power law process becomes

λ(t) = ( t
eµ )

1
θ . Let N(s1; s2) denote the number of failures occurring in the interval (s1, s2).

Then N(s1; s2) has a Poisson distribution with mean

λ(s1, s2) = (
s2

eµ
)

1
θ − (

s1

eµ
)

1
θ .

Hence the probability of r failures occur between the time interval (s1, s2) is

P [N(s1; s2) = r|µ, θ] =
1

r!
[λ(s1, s2)]

r exp [−λ(s1, s2)] .
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Consequently, by plugging in the posterior density π(µ, θ|~y), the predictive distribution

of N(s1, s2) is

P [N(s1; s2) = r|~y] =
∫ ∞

0

∫ ∞

−∞
P [N(s1; s2) = r|µ, θ]π(µ, θ|~y) dµ dθ

=
Γ(n+ r)

Γ(r + 1)
c(~y)

∫ ∞

0
θ−nexp

(
Σyi
θ

)
(s

1/θ
2 − s

1/θ
1 )

r
(s

1/θ
2 − s

1/θ
1 + eyn/θ)

−(n+r)
dθ.

(3.6)

An important special case is s1 = tn = eyn , that is, we are interested in the probability of

number of failures occurring in some future time (tn, s2). In this case, (3.6) reduces to

P [N(tn : s2) = r|~y] =

(
n+ r − 1

r

)
r∑

k=0

(−1)k
(
r

k

)[
nyn −

∑
yi

(n+ k)lns2 −
∑
yi − kyn

]n−1

.

(3.7)

For the special case s1 = 0, s2 = s, that is, another equivalent system is to begin operating

and we want to predict the number of failures of the new system over interval (0, s), for

some s of interest, (3.6) reduces to

P [N(0 : s) = r|~y] =
Γ(n+ r)

Γ(r + 1)
c(~y)

∫ ∞

0
θ−n

( n∏
i=1

ti/s
)1/θ

(1 + (tn/s)
1/θ)−(n+r) dθ.

(3.8)

The integral in (3.6) and (3.8) can be computed numerically. However, for the case s > yn,

(3.8) can be written as an infinite sum,(Bar-lev,S.K. et al.(1992)[7])

P [N(0 : s) = r|~y] =

(
n+ r − 1

r

) ∞∑
k=0

(
−n− r

k

)[
nyn −

∑
yi

(n+ k)lns−∑
yi − kyn

]n−1

.

If s = yn, then (3.8) can be reduced to

P [N(0 : yn) = r|~y] =

(
n+ r − 1

n− 1

)
(1/2)n+r.

We shall now discuss the prediction of future failure times. Given current available

data t1, t2, ..., tn, we have to predict the future (n + r)th failure time Tn+r. Define Zr =
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Tn+r−Tn, conditional on the observation Tn = tn. Then the prediction of Tn+r is equivalent

to the prediction of Zr. From equation (3.7), we have

P [N(tn : s2) = r|~y] =

(
n+ r − 1

r

)
r∑

k=0

(−1)k
(
r

k

)
(φ(k))n−1

where φ(k) =
[

nyn−
∑

yi

(n+k)lns2−
∑

yi−kyn

]
and

P (Zr ≤ z|~y) = P (at least r failures in (tn, tn + z] |~y)

= 1− P (at most (r-1) failures in (tn, tn + z] |~y)

= 1−
r−1∑
j=0

(
n+ j − 1

j

) j∑
k=0

(
j

k

)
(−1)k(φ(k))n−1.

(3.9)

The time for (n+ r)th failure can now be estimated by evaluating E(Zr).

3.4.2 Prediction Inference Based on Estimation of Intensity Function

LetQ = ν(Tn)
ν̂(Tn)

. It is known that nQ ∼ χ2
(n−1) approximately (Lee,L. and Lee,K.(1987)).

ν̂(Tn) =
e−µ̂/θ̂

θ̂
· T 1/θ̂−1

n and Tn = eYn ,

where θ̂, µ̂ are classical MLE’s of θ and µ respectively.

ν(Tn) =
e−µ/θ

θ
· T 1/θ−1

n ,

which gives µ = θln( θν

t
1/θ−1
n

). Recall that the noninformative priors are π0(µ)=constant=c,

π0(θ) ∝ 1/θ. Hence, the prior of ν conditional on θ is

π0(ν|θ) = πµ(ν) ·
dµ

dν
= c · θ · t

1/θ−1
n

θν
· θ

t
1/θ−1
n

=
cθ

ν
.

Therefore the prior of ν is

π0(ν) ∝
∫
π0(ν|θ) · π0(θ)dθ ∝ 1/ν.
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If ν is given, from the equation ν̂ = ν/Q and nQ ∼ χ2
(n−1), the p.d.f. L(ν̂|ν) of ν̂

conditional on ν is

L(ν̂|ν) =
(nν
ν̂

)(n−3
2

)e−
nν
2ν̂

2
n−1

2 Γ(n−1
2

)
(
nν

ν̂2
).

By the Bayes rule, the posterior density π(ν(Tn)|ν̂(Tn)) ∝ L(ν̂|ν)π0(ν) and

π(ν|ν̂) =
L(ν̂|ν)π0(ν)∫
L(ν̂|ν)π0(ν) dν

=
(nν
ν̂

)(n−3
2

)e−
nν
2ν̂ (n

ν̂
)

2
n−1

2 Γ(n−1
2

)
.

(3.10)

It is concluded from the posterior density (3.10) that nν
ν̂
∼ χ2

n−1. We have the Bayesian

point estimates for ν is

ν̃B = E(ν) =
n− 1

n
ν̂,

ν̂B =
n− 3

n
ν̂.

We now use ṽB to give prediction inference. The probability of the number of failures in

time interval (tn, y) is

P [N(tn : y) = r|ṽ] =
e
−
∫ y

tn
ṽB(t)dt

(
∫ y
tn
ṽB(t) dt)r

r!
.

(3.11)

The probability of the (n+ 1)th failure time is

P (Z1 ≤ z|~t) = Pr(at least 1 failure in [tn, tn + z]|~t)

= 1− Pr(no failure in [tn, tn + z]|~t)

= 1− exp(−
∫ tn+z

tn
ṽB(t) dt).

(3.12)

One of the drawbacks in Bayesian analysis comes from the requirement of numerical

calculation. Predictive inference based on Bayesian estimate ṽB of intensity function

greatly simplifies the computation. In the following section, we utilize a data set to show
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the results remain very close as traditional posterior density approach, which usually

needs double integral.

3.4.3 Data Comparison

Figure 3.2 displays the predictive probability function of N(tn, s2) for the data in

table 2.1 with tn = 67, 344 and s2 = 80, 000. The line with circles represents the predic-

tive probability distribution (3.7) based on the posterior density, while the line with stars

represents the predictive probability distribution (3.11) based on a Bayesian estimate of

intensity function v. In the time interval (67,344, 80,000), the peak point shows that the

most possible number of failures is three with probability of 1/4.

Figure 3.3 displays the predictive probability function of (n+ 1)th failure time Z1

given (3.8) and (3.12) for the data table 2.1 with tn = 67, 344 and s2 = 80, 000. Simi-

larly as Figure 3.2, the line with circles represents the predictive probability distribution

(3.8) based on the posterior density, while the line with stars represents the predictive

probability distribution (3.12) based on a Bayesian estimate of intensity function v. The

next failure will almost certainly occur within the next 14,000 seconds and within 2000

seconds there is a probability of about 1/3 of a failure occurring.

Figure 3.2 and 3.3 show that we have very close results by using two different ap-

proaches. However, the one with the Bayesian estimate of intensity function simplify the

computation and don’t require numerical calculation.

3.5 Posterior Density for Some Parametric Functions

In this section, we shall derive posterior distributions of functions of (θ, µ) which

are of particular interest. Those functions are system reliability, expected number of fail-

ures in some time interval and intensity function.
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Figure 3.2: The Predictive Probability Function of N(67, 344 : 80, 000)

Figure 3.3: The Probability of n+ 1th Failure Time
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3.5.1 Posterior Density for System Reliability

Recall that the reliability function is defined to be the probability of no failures over

a specified time interval. For a given repairable system for which data has been collected,

a high reliability over some future time of interest will affect decisions on replacement.

Also, a high reliability for some period of interest in reliability growth may imply that it

is worthwhile ending the development process. With this in mind, set

R = R(y, s) = P [N(y, s) = 0]

= exp{−e
s−µ

θ + e
y−µ

θ },

which implies

µ = θln(
es/θ − ey/θ

−lnr
)

The posterior cumulative distribution of reliability is

F (r) =
∫ ∞

0
Pr[µ ≤ θln(

es/θ − ey/θ

−lnr
)|θ] · π(θ)dθ.

Hence, the posterior pdf of reliability is

f(r|~y) =
∫ ∞

0
fµ[θln(

es/θ − ey/θ

−lnr
)] ·

d[θln( e
s/θ−ey/θ

−lnr )]

dr
· π(θ)dθ

=
∫ ∞

0

∫ ∞

0
C(~y)(1/θ)n+1 · exp{

∑n
1 (yi)− nθln( e

s/θ−ey/θ

−lnr )

θ

−exp(
yn − θln( e

s/θ−ey/θ

−lnr )

θ
)}dθ · −θ

rlnr
· π(θ)dθ

= (−rlnr)−1 · nyn −
∑n

1 yi
n− 2

·
∫ ∞

0
C(~y)(1/θ)n+1exp{

∑n
1 yi
θ

+ exp(
y

θ
) · 1

(es/θ − ey/θ)
lnr}

·( −lnr
es/θ − ey/θ

)ndθ

=
(−lnr)n

−rlnr

∫ ∞

0
C(~y) · (1/θ)n+1 · exp(

∑n
1 yi
θ

)r(e
s−y

θ
−1

)−1 · (es/θ − ey/θ)−ndθ.

In a special case, we consider an equivalent system which is just beginning to operate;

i.e., over the time interval (0, es]

f(r|~y) =
(−lnr)n

−rlnr

∫ ∞

0
C(~y) · (1/θ)n+1 · exp(

∑n
1 (yi − s)

θ
)r(e

yn−s
θ )dθ.
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For s = ln(tn), we obtain

f(r|~y) =
(−lnr)n−1r−1

Γ(n− 1)(nyn −
∑n

1 yi)
.

3.5.2 Posterior Density For the Expected Number of Failures in Some Time

Interval

Similar to the consideration of the reliability function, we stop modifying system

when the expected number of failures in some period of interest gets small enough in a

reliability growth model. Here the expected number of failures in a given interval is of

interest. The expected number of failures over time interval (ey, es] is also the mean value

function in that given time, which is

m = m(y, s) = e
s−µ

θ − e
y−µ

θ ,

which implies

µ = θln(
es/θ − ey/θ

m
).

The posterior cdf of mean value is

F (m) = 1−
∫ ∞

0
Pr[µ ≤ θln(

es/θ − ey/θ

m
)|θ] · π(θ)dθ.

Hence, the posterior density of m is

f(m|~y) = −
∫ ∞

0
fµ[θln(

es/θ − ey/θ

m
)] ·

d[θln( e
s/θ−ey/θ

m
)]

dm
· π(θ)dθ

= −
∫ ∞

0

∫ ∞

0
C(~y)

1

θn+1
· exp{

∑n
1 (yi)− nθln( e

s/θ−ey/θ

m
)

θ

−exp(
yn − θln( e

s/θ−ey/θ

m
)

θ
)}dθ · −θ

m
· π(θ)dθ

= mn−1 · nyn −
∑n

1 yi
n− 2

·
∫ ∞

0
C(~y)(1/θ)n+1exp{

∑n
1 yi
θ

+ exp[−me(
y−s

θ
−1)

−1

]}

·(es/θ − ey/θ)−ndθ.
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3.5.3 Posterior Density for Intensity Function

After the completion of the testing stage of a system, the system is supposed to

have a constant failure rate (intensity function) through its useful life time. Thus we are

interested in the intensity function value of the time stopping developing. The intensity

function is

ν = ν(y) =
1

θ
exp(

y − µ

θ
− y),

which implies

µ = y − θln(νθ + y)

We can write cdf of ν as

F (ν) = 1−
∫ ∞

0
Pr[µ ≤ y − θln(νθ + y)|θ] · π(θ)dθ.

Therefore, the posterior density for ν is

f(ν|~y) = −
∫ ∞

0
fµ[y − θln(νθ + y)] · d[y − θln(νθ + y)]

dν
· π(θ)dθ

=
∫ ∞

0

∫ ∞

0
C(~y)(1/θ)n+1 · exp{

∑n
1 (yi)− ny

θ
+ nln(νθ + y)− (νθ + y)} dθ

· θ2

νθ + y
π(θ) dθ

=
∫ ∞

0
C(~y)(1/θ)n+1 · exp[

∑n
1 (yi)− ny

θ
− (νθ + y)] · (νθ + y)n dθ

·
∫ ∞

0

θ2

νθ + y
π(θ) dθ.

We obtained posterior densities for reliability function, mean value function and intensity

function. Therefore, we can find Bayesian point estimates using numerical calculation. If

the integral can’t be evaluated in a closed form, many mathematical software packages,

such as Mathematica, Maple, Matlab, can do double integration.

3.6 Summary

We applied a logarithm transformation on the shape parameter α and a reciprocal

transformation on the scale parameter β. Then we obtained a location parameter µ and
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a scale parameter θ. This makes noninformative priors more appropriate. We developed

Bayesian procedures for the power law process with failure truncation data based on θ and

µ. Basic Bayesian results such as the posterior density, marginal posterior distribution of

each parameter and Bayesian point estimates of parameters are obtained. Estimates of θ

include the estimate under squared loss function and Bayesian MLE. Posterior variance

for the estimate under squared loss and mth moment of θ are also derived. We applied

Lindley’s approximation to find estimation of µ under squared loss function.

Then we discussed the Bayesian prediction inferences for the expected number of

failures and the future failure times. There are two ways to approach this. One is us-

ing posterior density; the other one is using a newly developed Bayesian estimation of

intensity function. Predictive inference with the second approach greatly simplifies the

calculations. We compare our results with the paper of Bar-lev,S.K. et al.(1992)[7] by

using the data set from Musa(1979). Finally, we also derive posterior densities of system

reliability, mean value function and intensity function.
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Chapter 4

Empirical Bayes Analysis on the Power Law Process

In this chapter we focus on Empirical Bayes (EB) analysis on the Power Law Pro-

cess by employing parametric EB priors and nonparametric EB priors. For the parametric

EB priors, we apply two-hyperparameter natural conjugate prior and a more generalized

three-hyperparameter natural conjugate prior. Those priors were stated in Huang and

Bier (1998)[33]. Here we derive an Empirical Bayes procedure to estimate the natural

conjugate priors. To compare with the previous chapter, when we completely know the

prior, the approach is Bayesian. If we don’t know the prior completely, we use Empirical

Bayes when assuming parameters of prior are fixed but unknown. Since we have past

experience about the parameters of the model, we can employ data to estimate the hy-

perparameters of priors, hence estimate the priors in parametric Empirical Bayes.

4.1 Parametric Empirical Bayes on the PLP

Parametric empirical Bayes procedures are easier to work with if the intensity

function is parametrized as

ν(t) = ηβtβ−1, t > 0.

Throughout most of this dissertation, we have used

ν(t) =
β

α
(
t

α
)β−1, for α > 0, β > 0.
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Figure 4.1: Bayesian Model for the PLP

The relationship between η and α is η = α−β.

If k systems are similar, but not identical, a parametric empirical Bayes (PEB)

approach can be applied. We assume that the system parameters (in our case the (ηi, βi)
′s)

are drawn from some prior distribution π(η, β). Figure 4.1 displays Bayesian framework in

the previous chapter. Figure 4.2 displays parametric empirical Bayes model for the PLP.

We assume (ηi, βi)
′s make up a random sample selected from the prior. This assumption

is reasonable if the k systems are made from the same manufacturing process. Here we

employ natural conjugate priors with two and three hyperparameters.

4.1.1 Two Hyperparameters (a,m)

Assume there are k systems. Let ~ti denote the vector of failure times for system i,

and let

T = [~t1,~t2, . . . ,~tk]
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Figure 4.2: Parametric Empirical Bayes Model for the PLP

denote the two-dimensional array of failure times. The likelihood function of the first ni

failure times for system i is

L(~ti|η, β) = L(ti1, ti2, . . . , tini
|η, β) = ηniβni(

ni∏
j=1

tij)
β−1exp(−ηtβni

). (4.1)

The natural conjugate prior distribution for the power law failure model is given by

π0(η, β|m, a) = c−1ηm−1βm−1(exp(−a)tmni
)β−1exp(−ηtβni

), (4.2)

here (m, a) are positive hyperparameters. c is a constant and tni
is a fixed truncated

failure time for system i.

c =
∫ ∫

ηm−1βm−1(exp(−a)tmni
)β−1exp(−λtβni

)dηdβ

= Γ2(m)a−m[exp(−a)tmni
]−1 (4.3)

Then the marginal distribution of ~ti given m, a is

m(~ti|m, a) =
∫ ∫

L(ti1, ti2, . . . , tini
|η, β)π0(η, β|m, a)dηdβ

= c−1
∫ ∫

ηni+m−1βni+m−1[exp(−a)tmni

ni∏
j=1

tij]
β−1exp(−2ηtβni

)dηdβ
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= c−1
∫

2−(m+ni)Γ(ni +m)t−(m+ni)β
ni

[exp(−a)tmni

ni∏
j=1

tij]
β−1βni+m−1dβ

=
c−12−(m+ni)Γ2(ni +m)[a+ ni ln(tni

)− ln
∏ni
j=1(tij)]

−(ni+m)

exp(−a)tmni

∏ni
j=1 tij

=
2−(m+ni)Γ2(ni +m)[a+ ni ln(tni

)− ln
∏ni
j=1(tij)]

−(ni+m)∏ni
j=1 tijΓ

2(m)a−m
. (4.4)

Since K systems are independent, we have the marginal distribution of T given m and a

is

m(T |m, a) = m(~t1|m, a)m(~t2|m, a) · · ·m(~tk|m, a)

=
k∏
i=1

{
Γ2(ni +m)[a+ ni ln(tni

)− ln
∏ni
j=1(tij)]

−(ni+m)

2m+ni
∏ni
j=1 tijΓ

2(m)a−m
}. (4.5)

In order to obtain MLEs of m and a, we need take a natural logarithm of (4.5)

ln[m(T |m, a)] =
k∑
i=1

{
− (m+ ni) ln 2 + 2 ln Γ(ni +m)− (ni +m) ln[a+ ni ln(tni

)

− ln
ni∏
j=1

(tij)]− ln
ni∏
j=1

tij − 2 ln Γ(m) +m ln a
}
. (4.6)

Then taking the derivative with respect to a in (4.6) and set it equal to zero, we have

k∑
i=1

[
ni +m

a+ ni ln(tni
)− ln

∏ni
j=1 tij

− m

a

]
= 0. (4.7)

Similarly, taking the derivative with respect to m in (4.6) and set it equal to zero, we

have

k∑
i=1

− ln 2 +
2Γ′(ni +m)

Γ(ni +m)
− [a+ ni ln(tni

)− ln
ni∏
j=1

(tij)]− 2
Γ′(m)

Γ(m)
+ ln a

 = 0. (4.8)

According to the following well known property of Gamma function:

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
i=1

(
1

n+ z
− 1

n
).

Equation (4.8) is simplified to

2
k∑
i=1

ni∑
j=1

1

m+ j − 1
+ k ln

a

2
− ka−

k∑
i=1

ni ln(tni
)− ln

ni∏
j=1

(tij)

 = 0 (4.9)
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MLEs of a and m can be obtained by solving equations (4.7) and (4.9) numerically. In

general, the likelihood equations do not admit a closed form solution and a numerical

method must be employed to approximate the MLEs of the hyperparameters (a,m). In

the special case that we have one system, that is k = 1, with observations (t1, t2, . . . , tn),

we are able to obtain the estimate of a in a closed form from Bayesian maximum likelihood

approach. The following results shall be considered as Bayesian inference.

â = m̂ ln tn −
m̂

n
ln

n∏
i=1

ti.

We can use Newton-Raphson method to get MLE for m.

The posterior distribution

π(η, β|~t, n, m̂, â) =
1

m(~t|m̂, â)
c−1ηn+m̂−1βn+m̂−1[exp(−â)tm̂n

n∏
i=1

ti]
β−1 exp(−2ηtβn). (4.10)

Hence, the prior distribution and posterior distribution are from the same family, priors

are natural conjugate priors. The posterior mean for η is

η̃B = E(η) =
∫ ∫

ηπ(η, β) dβ dη

=
c−12n+m̂+1Γ(n+ m̂+ 1)Γ(m̂+ n)[â− ln

∏n
i=1 ti + (n+ 1) ln tn]

−(n+m̂)

m(~t|m̂, â)[exp(−â)tm̂n
∏n
i=1 ti]

.

=
Γ(n+ m̂+ 1)

2Γ(m̂+ n)
{ â+ (n+ 1) ln tn − ln

∏n
i=1 ti

â+ n ln tn − ln
∏n
i=1 ti

}
−(n+m̂)

. (4.11)

The posterior mean for β is

β̃B = E(β) =
∫ ∫

βπ(η, β) dη dβ

=
c−12n+m̂Γ(n+ m̂+ 1)Γ(m̂+ n)[â− ln

∏n
i=1 ti + n ln tn]

−(n+m̂+1)

m(~t|m̂, â)[exp(−â)tm̂n
∏n
i=1 ti]

.

=
Γ(n+ m̂+ 1)

Γ(n+ m̂)(â+ n ln tn − Σn
i=1 ln ti)

. (4.12)
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4.1.2 Three Hyperparameters (a,m, ym)

The situation is similar as in the previous subsection. But here we take a more

general conjugate prior. Recall the likelihood function:

L(~ti|η, β) = L(ti1, ti2, . . . , tin|η, β) = ηniβni(
ni∏
j=1

tij)
β−1exp(−ηtβni

).

The natural conjugate prior distribution for the power law failure model is given by

π0(η, β|m, a, ym) ∝ ηm−1βm−1(
m∏
i=1

ymi )β−1exp(−ηyβm). (4.13)

The parameters y1 . . . ym can be interpreted as a pseudo-data set, where m is the number

of failures and yi is the time of the ith failure. For simplicity and without loss of generality,

we can choose
∏m
i=1 y

m
i = exp(−a)ymm. Thus the natural conjugate prior becomes

π0(η, β|m, a, ym) = c−1ηm−1βm−1(exp(−a)ymm)β−1exp(−ηyβm), (4.14)

here (m, a, ym) are positive hyperparameters. c is a constant and

c =
∫ ∫

ηm−1βm−1(exp(−a)ymm)β−1exp(−λyβm)dηdλ

= Γ2(m)a−m[exp(−a)ymm]−1. (4.15)

Then the margianl distribution of ~ti given m, a ,ym is

m(~ti|m, a, ym) =
∫ ∫

L(ti1, ti2, . . . , tini
|η, β)π0(η, β|m, a, ym)dηdβ

= c−1
∫ ∫

ηni+m−1βni+m−1[exp(−a)ymm
ni∏
i=1

tni
]β−1exp[−η(tβni

+ yβm)]dηdβ

=
1

c

∫
Γ(ni +m)[tβni

+ yβm]−(m+ni)[exp(−a)ymm
ni∏
j=1

tij]
β−1βni+m−1dβ.(4.16)

Since K systems are independent, the likelihood distribution of T given m and a is

m(T |m, a) = m(~t1|m, a)m(~t2|m, a) · · ·m(~tk|m, a). (4.17)

Again the likelihood equations do not admit a closed form solution and a numerical

method must be employed to approximate the MLEs of (a,m, ym). However, suppose
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we only have observations (t1, t2, . . . , tn) from one system, which means we only have a

random sample of size one (η, θ) from the prior π(η, β|a,m, ym), our inference shall be

regarded as Bayesian maximum likelihood approach. Hence, for this special case, we have

the posterior distribution of (η, β) is

π(η, β|~t, n, m̂, â, ŷm) =
c−1ηn+m̂−1βn+m̂−1[exp(−â)ŷm̂m

∏n
i=1 ti]

β−1exp(−η(ŷβm + tβn))

m(~t|m̂, â, ŷm)
.

(4.18)

The posterior mean for η is

E(η) =
∫ ∫

ηπ(η, β) dβ dη

=
c−1Γ(n+ m̂+ 1)

∫
βn+m̂−1[exp(−â)ŷm̂m

∏n
i=1 tn]

β−1(ŷβm + tβn)
−(n+m̂)dβ

m(~t|m̂, â, ŷm)

=
Γ(n+ m̂+ 1)

∫
βn+m̂−1[exp(−â)ŷm̂m

∏n
i=1 tn]

β−1(ŷβm + tβn)
−(n+m̂+1)dβ

Γ(n+ m̂)
∫
βn+m̂−1[exp(−â)ŷm̂m

∏n
i=1 tn]

β−1(ŷβm + tβn)−(n+m̂)dβ
.(4.19)

The posterior mean for β is

E(β) =
∫ ∫

βπ(η, β) dη dβ

=
c−1Γ(n+ m̂)

∫
βn+m̂[exp(−â)ŷm̂m

∏n
i=1 tn]

β−1(ŷβm + tβn)
−(n+m̂)dβ

m(~t|m̂, â, ŷm)

=

∫
βn+m̂[exp(−â)ŷm̂m

∏n
i=1 tn]

β−1(ŷβm + tβn)
−(n+m̂)dβ∫

βn+m̂−1[exp(−â)ŷm̂m
∏n
i=1 tn]

β−1(ŷβm + tβn)−(n+m̂)dβ
. (4.20)

It should be addressed that the problem with parametric Emperical Bayes (PEB)

is that we assume that the estimates of the prior parameters are the prior parameters

themselves. The PEB approach does not account for uncertainty in the estimates of

these hyper-parameters. Variation in these estimates would lead to more variation in the

estimates of function of parameters, such as intensity and reliability etc.

4.1.3 Prior Plots

The joint prior density is given by (4.18). By take integral with respect to η,

π0(β|m, a, ym) =
∫
c−1ηm−1βm−1(exp(−a)ymm)β−1exp(−ηyβm)dη,

=
amβm−1exp(−aβ)

Γ(m)
(4.21)
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marginal prior distribution of β has a Gamma distribution with mean m/a and variance

m/a2. The conditional prior distribution of η given β is

π0(η|β) =
π0(η, β)

π0(β)

=
c−1ηn+m−1βn+m−1[exp(−a)ymm

∏n
i=1 ti]

β−1exp(−η(yβm + tβn))

m(~t|m, a, ym)

Γ(m)

amβm−1exp(−aβ)

=
yβmm ηm−1exp(−ηyβm)

Γ(m)

which is Gamma distribution with mean m/yβm and variance m/y2β
m . Figure 4.1 to Figure

4.8 are the prior density plots given different value of hyperparameters.

1. Figure 4.3 and Figure 4.4 gives contour and three-dimension graph for m =

2 a = 2 ym = 2. Only draw x-axis η in [0,4] and y-axis β in [0,4].

2. If only m increases, the other parameters are fixed, all the means and variance

increase. The graph moves always from x-axis and y-axis, and more spread out. As shown

in Figure 4.5 and Figure 4.6 when a = 2 m = 6 ym = 2.

3. If only ym increases, the other parameters are fixed, mean m/yβm decreases and

variance m/y2β
m decreases the graph moves close to y -axis and more concentrated. As

shown in figure 4.7 and figure 4.8 m = 2 a = 2 ym = 6.

4. If only a increases, the other parameters are fixed, mean m/a and variance m/a2

decrease. The graph moves close to x-axis and more concentrate. As shown in Figure 4.9

and Figure 4.10 when a = 6 m = 2 ym = 2.

4.2 Nonparametric Prior on the Power Law Process

We now assume θj, j = 1, 2, . . . ,m from m systems are drawn from a prior distri-

bution π0(θ). The goal of density estimation is to approximate the probability density

function π0(θ). Assume we have m independent, identically distributed observations θ̂1,

θ̂2 . . . θ̂m which are obtained from m systems using classical MLEs in the previous chapter.
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Figure 4.3: Prior Contour Plot a = 2 m = 2 ym = 2

Figure 4.4: Prior Three-Dimension Plot a = 2 m = 2 ym = 2
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Figure 4.5: Prior Contour Plot a = 2 m = 6 ym = 2

Figure 4.6: Prior Three Dimension Plot a = 2 m = 6 ym = 2
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Figure 4.7: Prior Contour Plot a = 2 m = 2 ym = 6

Figure 4.8: Prior Three Dimension Plot a = 2 m = 2 ym = 6
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Figure 4.9: Prior Contour Plot a = 6 m = 2 ym = 2

Figure 4.10: Prior Three-Dimension Plot a = 6 m = 2 ym = 2
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The kernel density estimator π̂0(θ) for the estimation of the density value π0(θ) is defined

as

π̂0(θ) =
1

mh

m∑
j=1

K
(
θ̂i − θ

h

)
where K(•) denotes the kernel function, and h denotes the bandwidth, or the smoothing

parameter. The bandwidth controls the amount of smoothing. If h is large, there is

a lot of smoothing, and if h is small there is less smoothing. π̂0(θ) is a nonparametric

probability density estimation to π0(θ). A number of possible kernel functions are listed

in the following table:

Table 4.1: Commonly Used Kernel Functions

Kernel K(u)

Uniform 1
2
I(|u| ≤ 1)

Triangle (1− |u|)I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1)

Quartic 15
16

(1− u2)2I(|u| ≤ 1)

Triweight 35
32

(1− u2)3I(|u| ≤ 1)

Gaussian 1√
2π
exp(−1

2
u2)

Cosinus π
4

cos(π
2
)I(|u| ≤ 1)

Kernel function has the following properties: (i) K(u) = K(−u), (ii)
∫∞
−∞K(u)du = 1 ,

(iii)
∫∞
−∞ uK(u)du = 0 and (vi)

∫∞
−∞ u2K(u)du 6= 0.

To obtain the prior density π̂0(θ), we need to select a kernel function K(•) and

bandwidth h. In our work, we employ the most common used kernel function: Gaussian

kernel. It is differentiable everywhere and is given by

K(θ) =
1√
2π
e−

1
2
θ2
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To determine an optimal kernel density and bandwidth, we need minimize the

mean integrated squared error (MISE) which is defined as

MISE(K,h) = E
∫ ∞

−∞
(π̂0(θ)− π0(θ))

2 dx.

For a fixed Gaussian kernel, estimation of bandwidth h can be obtained by unimodel

Silverman’s method (See details in chapter 5 of [51]). To estimate nonparametric density

for µ, we apply the same procedure as above. Hence, nonparametric kernel prior density

for θ and

P (θ) =
1

nĥ1

n∑
i=1

1√
2π
exp{−1

2
(
θ − θ̂i

ĥ1

)2}

nonparametric kernel prior density for µ and

P (µ) =
1

nĥ2

n∑
i=1

1√
2π
exp{−1

2
(
µ− µ̂i

ĥ2

)2}.

This is the simplest idea that employs nonparametric Empirical Bayes on the Power Law

Process. Further work can be done to address more optimal nonparametric priors.

4.3 Further Research

It is fundamental basis of Bayesian decision theory that statistical inference should

start with the determination of three factors: the distribution family for the observations,

the prior distribution for the parameters and the loss associated with decisions. Further

work can be done to check the robustness of the priors we used, such as noninformative

priors, natural conjugate EB priors and nonparametric Empirical Bayes priors. We can

slightly change the prior and see what happens to the decision. Two commonly used

measures are the range of posterior decision and comparing Bayes risk criteria.

4.4 Summary

We worked on Empirical Bayes (EB) analysis on the Power Law Process by em-

ploying parametric EB priors and nonparametric EB priors. For the parametric EB
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priors, we apply two-hyperparameter natural conjugate prior and a more generalized

three-hyperparameter natural conjugate prior. Those priors were mentioned in Huang

and Bier (1998)[33]. Here we derive Empirical Bayes procedure to estimate the natural

conjugate priors. We employed past experience to estimate priors through data. We

considered a special case when we only have one system. Under that case, the analysis

becomes a Bayesian Maximum Likelihood approach. Hence, we also showed some results

from Bayesian perspective in this chapter. According to nonparametric EB priors, we

have k estimates of parameter from k systems, then we construct a nonparametric prior

with normal kernel function and an optimal bandwidth.
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Chapter 5

Microarray Analysis: Normalization and Transformation of Probe-Level Data

This chapter provides an overview of microarray from statistics perspective. We

give a description of the target data sets. We also summarize and compare several methods

of transformation and normalization for probe-level data.

5.1 Overview of Microarray Analysis

DNA microarray technology is a tool for studying how large numbers of genes in-

teract with each other and enables the simultaneous analysis of thousands of sequences

of DNA for genetic and genomic research. Microarray technology has been developing

rapidly over the last several years.

Statistical and data-analytic techniques are involved in all stages of microarray ex-

perimentation and analysis. A task map in microarray data analysis is given in Figure 5.1.

This chapter covers the application of several existing methods in probe level analysis of

oligonuleotide arrays. In the next chapter, which includes a more important issue, several

classical and Bayesian statistical methods are applied to analyze differentially expressed

genes on expression level data produced from Dr. Haura’s laboratory.

To select differentially expressed genes across different conditions is the first level

of gene expression analysis. The second level considers the terms such as common func-

tionalities, interactions and co-regulation. Therefore clustering is an important issue.

The third level aims to find the underlying regulatory regions and gene networks that
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ultimately are responsible for the observed patterns.

5.2 Data Description

We obtain two sets of data from the experiments in Dr. Haura’s laboratory. The

first set consists of DNA probe-level data, which is the base data set obtained by scan-

ning hybridized cDNA. The second set is gene expression level data. Gene expression level

data are computed from probe level data. There are various methods developed for the

gene expression index computation. (Irizarry et al.(2003); Lemon et al.(2002); Holder et

al.(2001); Naef et al.(2001); Zhou and Abagyan (2002); Affymetrix Inc. (2001b); Zhang

et al.(2002)) In the following section we will give a brief comparison of four main methods

and corresponding software.

Here is an introduction of probe level data. It is the raw data before having gene

expressions. The first type of probe is referred to a perfect match (PM). Each PM probe

is paired with a mismatch (MM) probe. These two probes are referred to as a probe

pair. Each gene expression is represented by 11-20 probe pairs as shown in Figure 5.2 and

usually a value representing the average difference between PM and MM. The purpose

of the MM probe design is to measure non-specific binding and background noise. After

scanning the arrays hybridized to labeled RNA samples, intensity values PMij and MMij

are recorded for arrays i = 1, . . . , I and probe pairs j = 1, . . . , J for any given probe set.

In our data set, the expression level data contain 22215 genes. This arranges

the data set consisting of 22215 rows. We perform treatments on five samples and use

another five samples as control. This yields dataset consisting of 10 columns. Those five

control units are denoted by GFP (GFP protein) and five experimental units are denoted

by STAT3 (Stat3: a member of the family of signal transducers and activators of tran-

scription).

A scatterplot of experiment gene expression (STAT3) against control gene expres-
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Figure 5.1: Data-analytic Tasks in Microarray Experimentation
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Figure 5.2: Signal Extraction in Probe Level Data

sion (GFP) is shown in Figure 5.3. It gives a brief idea about the value of gene expression.

Each dot represents a gene. The regression is supposed to be y = x based on the assump-

tion that up-regulated genes and down-regulated genes with similar average intensity

roughly canceled out or otherwise most genes remain unchanged. This assumption is

usually true in large genome studies.(Dudoit et al.(2002)[25])

5.3 Probe-Level Analysis of Oligonucleotide Arrays

An important step in microarray analysis is the normalization of raw data. For

Affymetrix gene chips, summarizing 11 to 20 probe pairs into one measure of expression

is an essential step. The normalization aims to account for system technical difference in

measurement process and control for many experimental sources of variability. Measure-

ment differences consistently between chips are due to image analysis (identifying and

quantifying each spot on the array), different amount of RNA, hybridization conditions
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Figure 5.3: STAT3 v.s. GFP Mean Value: STAT3 = 0.98745 ·GFP

(temperature, time, mixing, etc) and scanner setting (Laser and detector, chemistry of

the fluorescent label) etc.

Different approaches - all underlying some specific model assumptions - have been

proposed. Two key elements should be specified in each approach: mathematical model

and normalization method. We will discuss a standard method used in the Affymetrix

Microarray Suite 5.0 software (MAS 5.0) with comparison to other three preprocessing

algorithms: the robust multichip analysis (RMA); model based expression index (MBEI);

a variance stabilization method (VSN). RMA and MBEI(dChip) are available within the

Bioconductor project.

5.3.1 MAS 5.0 – Microarray Analysis Suite Version 5.0

Microarray Analysis Suit Version 5.0 (MAS 5.0) is produced by Affymetrix Inc.

2002. H. Lee Moffitt Cancer Center is applying this package to extract signals from

scanning image. Here is an introduction about this approach. The mathematical model
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is

Signal = TukeyBiweight{log2(PMj −MM∗
j )}

for probe pair j.

MM∗
j is an adjusted MMj that is never bigger than PMj. Tukey Biweight is a

robust average procedure with weights. The mean is calculated to identify center of data.

Distance of each data point from the mean is calculated. The distance determines how

each value is weighted in the average, i.e. outlier far from the median contribute little to

the average.

MAS 5.0 offers only a global normalization procedure for the summarized probe

sets. It adjusts the trimmed mean signal to a specified target signal value, in some case

500. Expression measures for each probe set are calculated with Tukey Biweight before

normalization. MAS 5.0 assigns to each probe set an expression call and also offers the

possibility of performing data scaling.

The drawbacks for MAS 5.0 depend on two facts. Average of different probes isn’t

really meaningful since probes have intrinsically different hybridization characteristics.

The MAS 5.0 method doesn’t learn based on cross-chip performance of individual probes.

5.3.2 MBEI – Model-Based Expression Index (dChip 2001)

MBEI accounts for individual probe-specific effects, automatic detection and han-

dling of outliers and image artifacts. dChip is a software package produced by Li and

Wong(2001) associated with Model-Based Expression Index method. This model is based

on the observation that the variation of a specific probe across multi arrays could be

considerably smaller than the variance across probes in a probe set and some probes are

outliers. To take this into account, the following multiplicative model was proposed as

PMij −MMij = θiφj + eij,
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which indicates a strong probe affinity effect (φj). Distribution of error (eij) is assumed to

be independent of signal strength. Furthermore, dChip allows assessment of a standard

error (SE) for each probe set intensity measure, which is an indicator of hybridization

quality to the probe set. Standard errors of φj (probe pair j) are useful for discarding

probe sets with low hybridization quality. Standard errors of θi (array i) are used to

identify array outliers.

Normalization methods in MBEI are invariant set normalization, quantile normal-

ization and cyclic Lowess. For the invariant set normalization, a set of non-differentially

expressed genes are selected by their invariant ranks of the probe intensities. Those genes

can be regarded as baselines. The invariant set normalization produces a better fitting of

the replicates comparing to the MAS 5.0 scaling procedure. Lowess technique is to apply

a nonlinear curve to the scatter plots of the probe pair differences of a baseline array

against all the other arrays and then force the curve to the line y = x.

5.3.3 RMA – Robust Multichip Analysis

A log scale linear additive model Robust Multichip Analysis (RMA) was proposed

by Bolstad, Irizarry, Speed(2002). This method analyzes data for a set of chips using only

PM and ignoring MM. The mathematical model is

log(PMij) = log(θi) + log(φj).

A robust linear fitting procedure, such as median polish, was used to estimate the

log scale expression values θi. In practice, log(PMij −BG) = log(ai) + log(bj) + log(eij).

Signal log(PMij) represents the transformation that background corrects and normalizes.

Thus background value is important here. Recent results suggest that subtracting MM as

a way of correcting for non-specific binding is not always appropriate. Unadjusted MM

value may add more noise.
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Normalization methods include quantile normalization and curve fitting normal-

ization. The quantile method tries to make the same distribution of probe intensities for

each array in a set of arrays. The method is bound to the idea that a quantile-quantile

plot shows that the distribution of two data vectors is the same if the plot is a straight

diagonal. The idea can be extended to n dimensions.

5.3.4 VSN – Variance Stabilization of Network

VSN is a normalization procedure produced by Huber etal(2002)[34] and also a

method to preprocess DNA microarray expression data. In probe level data analysis,

VSN uses the same mathematical model as in RMA except for the normalization. And

normalization method is variance stabilizing transformations.

As the name states, variance stabilization transformation removes the dependence

of the variance on the total intensity. This gives genes with higher intensities an equal

chance of being ranked high as genes with lower intensity.

5.3.5 Comparison

To compare the probe level transformation and normalization methods, several

standards should be considered, such as precision, consistency, specificity, sensitivity and

accuracy. Precision means the reproducibility of measurement, as estimated by standard

error across replicate chips. Specificity means the proportion of the signal that originates

from the intended transcript (i.e. cross hybridization). Sensitivity gives lowest transcript

concentration for an acceptable accuracy. Accuracy measures the distance of measure-

ment to true value.

Li & Wong demonstrated that the multiplicative model has a more sensible model

to analyze data from high density oligonucleotide array experiments compared to MAS
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5.0. MBEI(dchip) also is more suitable for any further analysis that MAS 5.0 estimation

does a reasonable job on probe-set that are bright. dChip and RMA does a better job on

genes that are less abundant.

According to Irizarry et al, RMA has a better precision than MAS 5.0 and dChip

based on higher squared coefficient correlation, especially for low expression levels. Con-

cerning in the amount of true positives identified using spiked-in experiments, RMA

performs slightly better than dChip, but much better than MAS 5.0. On the basis of

published data, RMA also shows better sensitivity and specificity with respect to dChip

and MAS 5.0. The advantage of RMA and VSN are two-fold: first, we are able to detect

more of the spike-in genes while getting less false positives; secondly, the resulting data

is easier to analyze. The strong intensity dependency of MAS 5.0 data has disappeared.

RMA and VSN perform similar on some data set. However, quantile normalization

in RMA performs faster. Log transformation in RMA is more interpretable than arcsine

transformation in VSN. At the moment RMA appears to be the best method available.

However, it is also necessary to check model assumption for any given data.

5.4 Summary

Microarray analysis is a fairly new research area and just developed in past few

years. Here we first gave a structure how statistical techniques are involved in all stages of

microarray analysis. Then we introduced how the real data set that we are analyzing look

like. We summarized and compared several methods in transformation and normalization

of probe level data. It is treated as low level analysis in microarray and the results are

usually obtained by existing software packages. Following to this step, we will have gene

expression data, which will be analyzed in next chapter.
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Chapter 6

Statistical Methods of Selecting Differentially Expressed Genes

In this chapter, the object is to find differentially expressed genes in 22,215 genes.

The data are nonpaired five-control (GFP protein) and five-experiment (STAT3) gene ex-

pression. Both classical and Bayesian methods are applied. Classical methods include fold

change, T-test, Wilcoxon Rank-sum test, Local Z-score (Chen,Z.[17]) and SAM(Storey

2002). Empirical Bayes methods include EBarrays(Newton, 2002[42]), LIMMA(Smyth

G.K.(2003)[55]) and Cybor-T (Baldi and Long(2001)[5]). We mainly discuss two classical

methods SAM (Storey 2002), local Z-score (Z. Chen[17]) and one parametric Empirical

Bayes method (Newton, 2002). Several partial lists of differentially expressed genes are

shown. Classical method intends to control false discovery rate, while Empirical Bayes

method EBarrays aims to classify genes by expression patterns using posterior probability.

6.1 Select Differentially Regulated Genes Using Classical Statistics Methods

6.1.1 Fold Change Method

Fold change method is the simplest and most intuitive approach. However, the fold

threshold is chosen arbitrarily. We may get too many or too few genes. Usually variance

of gene expression data in low intensity is large, in high intensity is small. Figure 6.1 is a
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Figure 6.1: Lowess Regression for Five Experiments

scatter plot of Log-ratio against log-intensity while vertical axis represents

Log(ratio) = log2(STAT3/GFP)

and horizontal axis represents

Log(intensity) = log10(STAT3 ∗GFP).

It has a funnel shape. By using fold change method, this leads to high false positives at

the low intensity end and missing true positives at the high intensity. To improve the

sensitivity, local Z-score will be illustrated later.(Z. Chen[17])

In microarray analysis, we have large set of genes. Before the gene profiles of

RNA samples can be analyzed and interpreted, the GFP and STAT3 intensities must be

normalized relative to one another so that the STAT3/GFP ratio provides an unbiased

representation of relative expression. Per-chip normalization is essentially a type of scaling

to adjust the total or average intensity of each array. Per-gene normalization compares

the results for a single gene across all the samples.
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Since most genes will not change, Figure 6.1 is supposed to center at zero. Based

on this assumption, normalization is necessary to balance the expression intensities so

that meaningful biological comparisons can be made. The following are two normal-

ization methods concerning gene-expression data from a single array hybridization (re-

viewed by John Quackenbush(2002)[46]). Note that Log-ratio for each gene is denoted

by Ti, Ti = log2(STAT3i/GFPi) and Log-intensity of each gene is denoted by Ai,

Ai = log10(GFPi ∗ STAT3i)

• Total intensity normalization

Let T ′i = Ti − Log2(Ntotal) where Ntotal = ΣStat3/ΣGFP . Thus, mean of T ′i

is equal to zero. This is equivalent to subtracting a constant from the logarithm of the

expression ratio.

• Normalization using regression techniques

A basic normalization method is print-tip LOWESS normalization. LOWESS

stands for LOcally WEighted polynomial regreSSion(Dudoit et al.(2002)). We set yi =

Log2(Stat3i/GFPi) and xi = Log10(Stat3i ∗ GFPi) for each gene. Then we make a re-

gression such that yi = m ∗ xi + b, obtain an estimate ŷ(xi). Then use this estimate to

plot scatter graph : T ′i = Ti − ŷ(xi) on A, where Ti and Ai are defined as above. Ti will

be brought to be centered at zero by the regression line.

From figure 6.1, it is obvious that normalization is not a key issue in our data since

Log-ratios in our data have centered at zero. The slope of regression line is approximately

zero so that there is only a slight change after normalization.

6.1.2 T-test

A univariate statistical test T-test is used to select differentially expressed genes.

In a T -test, the empirical means mc and mt and variances s2
c and s2

t are used to calculate
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Figure 6.2: Histogram of T-statistics

the normalized distance between two populations in the form:

t = (mc −mt)/

√
s2
c

nc
+
s2
t

nt
. (6.1)

Here, for each population, m = Σxi/n and s2 = Σ(xi −m)2/(n− 1) are the estimates for

the mean and standard deviation. It is well known that t follows approximately a Student

distribution, with

f =
[(s2

c/nc) + (s2
t/nt)]

2

(s2
c/nc)

2/(nc − 1) + (s2
t/nt)2/(nt − 1)

(6.2)

degrees of freedom. When t exceeds a certain threshold depending on the confidence

level selected, the two populations are considered to be different. Because in the t-

test the distance between the population means is normalized by the empirical standard

deviations, this has the potential for addressing some of the shortcomings of the simple

fixed fold-threshold approach. The fundamental problem with the t-test for array data is

that the repetition number nc and/or nt are often small since experiments remain costly

or tedious to repeat. Small populations of size n = 1, 2, or 3 are still very common and

lead to poor estimates of the variance. Thus a better framework is needed to address
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Figure 6.3: Histogram of Log-expression Wilcoxon Statitsics

these shortcomings. Later we will describe several Bayesian probabilistic frameworks for

array data, which can effectively address the problem of poor replicates.

Figure 6.2 gives a histogram of 22215 genes’ T-statistics. From the graph, we can

conclude that most gene expression do not change since T-statistics is concentrated at

the center.

6.1.3 Wilcoxon Rank-Sum Test

Wilcoxon Rank-Sum test is a nonparametric test for two independent samples and

is equivalent to Mann-Whitney U test . The statistic Tj is concerned about a difference in

means, where Wilcoxon Rank-Sum statistic is more concerned about general distribution.

For example, if all five experiments expression value is slightly greater than five controls

expression value by chance, it will give a significant statistic value when the truth is not.

Thus T-statistics is more powerful. Figure 6.3 gives a histogram of Wilcoxon statistics

for all the genes.
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6.1.4 SAM

SAM stands for Significance Analysis of Microarrays and is an outperformed method

in identifying differentially expressed genes in DNA microarrays (Newton,2002[42]). In

this section, we give a brief context how SAM works . The result table and plot for our

data will also be interpreted.

Statistically speaking, identifying differentially expressed genes is a multiple hy-

pothesis testing which tests all genes simultaneously and decides which genes are differ-

entially expressed. There are four key steps in SAM as following:

STEP 1. A Statistic is formed for each gene by

dj =
x̄j2 − x̄j1
sj + so

for gene j.

where x̄j1 and x̄j2 are the average gene expression for gene j under control and experiment

respectively. sj is the pooled standard deviation for gene j. A small positive constant s0

is added to the denominator in order to ensure that the variance of dj is independent of

gene expression. The value for s0 was chosen to minimize the coefficient of variation of

dj, which is computed as a function of sj in moving windows across the data.

STEP 2. Calculate null distribution for statistics. Each gene has a null distribution.

The null distribution can most easily be calculated by permutating the group labels. For

example, we label our data as (1,1,1,1,1,2,2,2,2,2). To assess null distribution, we do a

random permutation of the sample labels and recompute the statistics and count how

many exceed a threshold, say, ±2. Redo this, say, 200 times. We can find the average

number of genes exceeding ±2 and use this number to estimate false discovery rate(FDR)

in step 4.

STEP 3. Choose rejection regions and compare the statistics from observation to statis-

tics from null distribution. d(j) is the order statistics for dj such that d(1) ≤ d(2) · · · ≤

d(J). d̄(j) is the estimate of the expected order statistics from K permutations. K can be

chosen by user, for example, 200 in our data. ∆ is a threshold chosen by user in software,
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for example, we use 0.53245 in our data. We define reject regions as:

d(j)− d̄(j) ≥ ∆ or d(j)− d̄(j) ≤ ∆.

STEP 4. Find the estimate of False Discovery Rate (FDR). False Discovery Rate is

the error rate that we call truly unchanged genes differentially expressed. The FDR was

proposed by Benjamini and Hochberg (1995). An estimate of FDR (Storey(2002)[56])is

ˆFDR(∆) =
R0(∆)

R(∆)
× π̂0(∆

′)

where R0(∆) is the average number of significant genes from K random permutation of

labels, which can be interpreted as average number of false discovered genes.

R0(∆) =
1

K

K∑
1

#{dj : dj ≤ t1(∆) or dj ≥ t2(∆)}.

R(∆) is the number of significant genes we discovered based on a threshold ∆.

R(∆) = #{dj : dj ≤ t1(∆) or dj ≥ t2(∆)}

and π̂0(∆
′) is an estimate of the overall proportion of true null hypothesis and depends

on another threshold ∆′.

π̂0(∆
′) =

J −R(∆′)

J −R0(∆′)
.

Table 6.1 displays a significant gene list by employing VSN normalized gene ex-

pression. Figure 6.4 displays a typical result plot by using SAM package. We input our

data type as two class and unpaired data. Since we use VSN normalized gene expression,

data has been in log scale. Number of permutations is set to one hundred to calculate

the d-statistic under null hypothesis. The critical value ∆ is adjusted to 2.06105 in order

to obtain a reasonable false discovery rate to 0.05747. Score (d) is the statistic value

from the observations. Numerator of d, denominator (s + s0) of d and fold change are

also given. q-value is the lowest pFDR (positive false discovery rate) at which the gene is

called significant. It is similar to p-value, but interpreted as the probability that a false

positive given its statistic is as or more extreme than the observed statistic.
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Figure 6.4: SAM Plot
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Significant Genes List

Input Parameters

Imputation Engine 10-Nearest Neighbor Imputer

Data Type Two class, unpaired data

Data in log scale? True

Number of Permutations 100

Blocked Permutation? False

RNG Seed 37571352

(Delta, Fold Change) (2.06105, )

Computed Quantities

Computed Exchangeability Factor S0 0.024499213

S0 percentile 0.02

False Significant Number (Median, 90% (0.59364,2.37455)

False Discovery Rate (Median, 90% (0.05747,0.22987)

PioHat 0.59346

578 Positive Significant Genes

Row Gene Name Gene ID Score Numerator Denominator Fold Change q-value

8487 208992-s-at gb: BC000627.1 29.0263 3.5768 0.1232 12.0184 0.0398

4516 204988-at gb: NM 005141.1 21.2830 1.8281 0.0858 3.5462 0.0398

5178 205650-s-at gb:NM 021871.1 19.9642 2.1003 0.1052 4.2850 0.0398

21449 222088 s at gb:AA778684 17.8435 1.5972 0.0895 3.0238 0.0398

15609 216236 s at gb:AL110298.1 17.4420 1.3602 0.0780 2.5724 0.0398

18977 219612 s at gb:NM 000509.3 17.3390 2.4297 0.1401 5.3553 0.0398

2289 202760 s at gb:NM 007203.1 17.3031 1.5197 0.0878 2.8728 0.0398

5177 205649 s at gb:NM 000508.2 16.6140 1.5350 0.0924 2.8874 0.0398

3032 203504 s at gb:NM 005502.1 16.5730 1.4455 0.0872 2.7329 0.0398

18520 219155 at gb:NM 012417.1 16.4220 0.7138 0.0435 1.6401 0.0398
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Figure 6.5: Boxplot of Gene Expression for Five Experiments and Five Controls

6.1.5 Local Z-score Method

As mentioned in fold change method, the scatter plot of Log-ratio against Log-

intensity is funnel-shaped. Gene expression intensities have high variation in low intensity

and lower variation in high intensity. This is an extremely serious problem in our data.

If only use a cut-off threshold, we will get a large quantity of false positive genes in low

intensity and miss differentially expressed genes in high intensity. Local Z-score method

balances the weights on the low and high intensity. The data we are analyzing is gene

intensity (MAS 5.0) from five experiments (STAT3) and five controls (GFP), which has

10 columns and 22215 rows. Steps in Calculating Local Z-score is shown as following:

Step 1. Normalization across array: each column is divided by its median. Figure 6.5

displays boxplots for ten-array gene expression before normalization. After step 1, median

will be exactly same.

Step 2. Get Combined Experiment Intensity and Combined Control Intensity: Fifth

root of product of five experiments (controls).
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Step 3. Calculate LOG(RATIO) and LOG(INTENSITY) based on combined experiment

intensity and combined control intensity.

Step 4. Lowess Normalization to LOG(RATIO) (in our case, ratio is centered at 0 al-

ready)

Step 5. Graph LOG(RATIO) versus LOG(INTENSITY)

Step 6. Split data into 4 local parts based on LOG(INTENSITY) (by quartiles of

LOG(INTENSITY)

Step 7. Each part, calculate the local Z-score :

Z− score =
Log(ratio)

local SD
.

We call genes whose z-score is greater than 2 differentially expressed genes. In our result

table, we have 159 genes from part I (black), 167 genes from part II (blue), 152 genes

from part III (green) and 170 genes from part IV (red).

Main advantage of local z-score is that it partially solves the problem that the

change of low-intensity genes is more significant than high-intensity genes. In local z-

score method, it gives a good shot to find significant genes in high intensity. One-cut of

fold change will give us too many low-intensity genes. All level of intensity get relatively

equal chance.

6.2 Select Differentially Expressed Genes by Bayesian and Empirical Bayes

Methods

There is a kind of information sharing among genes. The data from other genes

provide some information about typical variability in the system. This can benefit our

analysis because experiments often involve tens of thousand of genes but only tens of mi-

croarrays, so the amount of information per genes can be relatively low. Empirical Bayes

(EB) Methods are well-suited to high dimensional inference problems and thus provide a
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natural approach to microarray data analysis. In general, classical methods focus on con-

trolling false discovery rate, while Empirical Bayes method ”EBarrays” aims to classify

genes by expression patterns using posterior probability. (Newton(2002)[42])

6.2.1 EBarrays

Instead of applying statistical inference on individual genes as in classical methods,

Empirical Bayes analysis takes account of information that shares among genes. Michael

A. Newton and Christina Kendziorski (2002) developed an EB framework for selecting

differentially expressed genes and EBarrays is the software package which is available in

an R library. Output in EBarrays provides the posterior probabilities of differential ex-

pression across multiple conditions. This section focuses on an overview of how EBarrays

works under two conditions.

In our data, data can be described in two patterns:

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and(1, 1, 1, 1, 1, 2, 2, 2, 2, 2).

The first pattern presents equivalent expression (EE) and the second pattern presents

differential expression (DE). Results from EBarrays provide the posterior probabilities

of two patterns as illustrated in Table 6.2. P1 is the posterior probability that a gene has

an EE pattern and P2 is the posterior probability that a gene has a DE pattern.

Here is the mathematical structure:

A distribution for equivalent expression (EEj) for gene j , sample i=1,2. . . n:

fo(xj) =
∫

(Πn
i=1fobs(xji|µ))π(µ) dµ.

A distribution for differential expression (DEj):

f1(xj) = fo(xj1)fo(xj2).
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The posterior probability of differential expression calculated by Bayes’ rule is:

pf1(xj)

pf1(xj) + (1− p)fo(xj).

Table 6.2: EBarrays Result Table

Name P1 P2 Fold Change Link Description

117 at 7.01E-44 1.00E+00 0.417294305 3310 X51757/FEATURE=cds

200612 s at 2.12E-04 1.00E+00 0.72426676 163 gb:NM 001282.1

200613 at 2.61E-04 1.00E+00 0.728831113 1173 gb:NM 004068.1

200632 s at 2.74E-29 1.00E+00 2.053329445 10397 gb:NM 006096.1

200635 s at 3.00E-06 1.00E+00 1.429124935 5792 gb:AU145351

200636 s at 9.75E-06 1.00E+00 1.418685758 5792 gb:NM 002840.1

200637 s at 2.63E-09 1.00E+00 1.525636934 5792 gb:AI762627

200697 at 1.58E-26 1.00E+00 1.987423539 3098 gb:NM 000188.1

200699 at 3.32E-06 1.00E+00 0.695327778 11014 gb:BE962456

200768 s at 3.62E-04 1.00E+00 1.376725964 4144 gb:BC001686.1

200769 s at 2.92E-04 1.00E+00 1.378797068 4144 gb:NM 005911.1

Two particular specifications of the general mixture models are described in EBarray:

Gamma-Gamma model and Lognormal-Normal model. In Gamma-Gamma model, it as-

sumes observation component is a Gamma distribution with shape parameter α > 0 and

a mean value µj, while marginal distribution for µj is an Inverse Gamma with hyperpa-

rameters. In Lognormal-Normal model, it assumes observation component is a Lognormal

distribution with a mean value µj and common variance σ2, marginal distribution µj is a

normal distribution with hyperparameters. It is critical to check model assumption before

we apply it. Figure 6.6 displays a good fit of gene expression from Li-Wong normalization

to Gamma-Gamma model.

An important advantage in EBarrays is that the data from other genes provide

some information about the typical variability in the system through marginal distri-
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Figure 6.6: EBarrays Fit GG Model - From Li Wong Normalized Data

bution. The general framework provided by EB analysis is quite flexible. Probability

distributions are specified in several layers and account for multiple sources of variation.

The posterior probability of differential expression is a very useful inference in EBarrays.

This transforms evidence to the familiar scale of probability. Posterior probability cal-

culation carries over naturally to comparisons among multi conditions. It is easier to be

interpreted to non-statistician.

The methods that treat genes as separate fixed effects may have reduced efficiency

compared to methods that treat the genes as arising from some population since they

do not take advantage of the level of information sharing among genes. Furthermore,

classifying genes into expression patterns by the posterior probability is an optimal pro-

cedure in the context of the mixed model: it minimized the expected number of er-

rors. In classical testing, the goal is to bound the false discovery rate and maximize the

power.(Newton(2002)[42])

A main drawback is that the data may not satisfy the assumption, for instant, the

distributions of expression across genes or within array do not have a normal or gamma
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distribution, which occurs very often.

6.2.2 LIMMA

LIMMA is a software package associated with the paper titled ”Linear Models and

Empirical Bayes Methods For assessing differential expression in microarray experiments”

produced by Gorden K.Smyth (2003)[55].

This paper extended and reset the hierarchical model of Lonnstedt and Speed

(2002) [40] in the context of general linear models. Consistent and closed form estimators

are derived through the marginal distribution of the observed statistics. The advantage

of this method that the estimator obtained lower false discovery is shown in a simulation

study.

A Bayes inferential approach is proposed in terms of moderated t-statistic in which

posterior variances are substituted for the sample-variances. The moderated t-statistic

has the advantage over the ordinary t-statistic that very small sample variances are heav-

ily balanced while larger sample variances are moderated to a less relative degree. The

moderated t-statistic approach has the advantage over the posterior odds that the num-

ber of hyperparameters which are needed to be estimated is reduced and knowledge of

non-null prior for the fold change is not required. The moderated t-statistic is distributed

independently of the sample variances so that inference about the variance and effect hy-

perparameters can be considered separately. Moreover, the inferential approach extends

easily to provide tests involving two or more patterns through the use of moderated F-

statistics. Table 6.3 gives a partial result for our data from LIMMA package. M is the fold

change. t is the ordinary t-statiscs. B is the moderated t-statistic associated with p-value.
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Table 6.3: LIMMA Result Table

Name M t P.Value B Description

208992 s at 3.576775568 43.75188021 1.51E-12 26.00787978 gb:BC000627.1

204988 at 1.826076349 31.30802095 9.49E-11 22.89101456 gb:NM 005141.1

205650 s at 2.100255784 29.96882705 1.19E-10 22.42797956 gb:NM 021871.1

222088 s at 1.597187059 26.40506191 5.19E-10 21.02410681 gb:AA778684

202760 s at 1.519678276 25.54032036 5.88E-10 20.64054422 gb:NM 007203.1

216236 s at 1.36024007 25.21315777 6.06E-10 20.49054964 gb:AL110298.1

205649 s at 1.535027452 24.67935255 6.42E-10 20.2398186 gb:NM 000508.2

216238 s at 2.307502018 24.66346006 6.42E-10 20.23223735 gb:BG545288

6.2.3 Cyber-T

The idea of using a t-statistic with a Bayesian adjusted denominator was proposed

by Baldi and Long (2001) who also developed a useful Cyber-T program. Independent

normal distributions are modeled for log-expression value. It is reasonable to assume

mean and variance are dependent based on the inspection of typical microarray data sets.

In this method, the prior of mean conditional on variance has a normal distribution with

two hyperparameters. The prior of variance is assumed to have an inverse Gamma with

another two hyperparameters. They obtained the posterior density, which has same form

as the joint prior density. Bayesian estimates for parameter and hyperparameters are

obtained. Simulation shows that these point estimates, combined with a t-test, provide a

systematic inference approach that compares favorably with simple t-test or fold methods,

and partly compensate for the lack of replication.

However, the work was limited though to two-sample control versus treatment

designs and the model didn’t distinguish between differentially and non-differentially ex-

pressed genes. They also didn’t develop consistent estimators for the hyperparameters.

The degrees of freedom associated with the prior distribution of the variances was set to a
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default value while the prior variance was simply equal to locally pooled sample variances.

6.3 Other Work in Microarray

In spite of the fact that differential expression can be applied to a large number of

genes, it remains within the restriction of the old one-gene-at-a-time model. Most genes

act related with other genes. The patterns of expression across multiple genes and exper-

iments are critical in DNA microarray analysis. To detect such patterns, clustering must

be introduced.

At this level, instead of assuming genes are independent, researchers are inter-

ested in genes covariance, at whether there exists multi-gene patterns, cluster of genes

that share the same behavior over or across different treatments. Multi-gene expression

patterns can be used to characterize diseases and discriminate, for example, different

kinds of cancers. Various clustering methods (Sebastiani 2002) have been proposed, in-

cluding k-means, hierarchical clustering. Clustering methods can be applied not only

to genes, but also to conditions, DNA sequences, and other related data. Most popu-

lar package in clustering (microarray data) is from Michael Eisen’s lab and here is the

URL.http://rana.lbl.gov/EisenSoftware.htm .

Array data is inherently high-dimensional, hence dimensionality reduction and vi-

sualization are particularly useful. Principal component analysis (PCA)(Mike West 2002)

and clustering are the most important and widely used methods. PCA can be viewed as a

method to compress and visualize data. It provides an optimal linear dimension reduction

technique in the mean-square sense.
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6.4 Summary

We worked on the selection of differentially expressed genes among 22,215 genes and

obtained several gene lists as results. Both classical and Bayesian methods are applied.

Classical methods consist of fold change, T-test, Wilcoxon Rank-sum test, Locally Z-score

and SAM(Storey 2002). Empirical Bayes methods consist of EBarrays(Newton, 2002[42]),

LIMMA(Smyth G.K.(2003)[55]) and Cybor-T (Baldi and Long(2001)[5]). SAM (Storey

2002), local Z-score (Z. Chen[17]) and a parametric Empirical Bayes method (Newton,

2002) are discussed with more detail. We illustrated the procedures by a form of clear

steps. We also showed the main advantage and drawback of each method and explained

result table. Higher level of microrray analysis, such as clustering, PCA, can be done as

further work.
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