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APPLICATION OF SUPPORT VECTOR MACHINES AND NEURAL 
NETWORKS IN DIGITAL MAMMOGRAPHY: A COMPARATIVE STUDY 

 
      Nivedita V. Candade 

 

ABSTRACT 
 

Microcalcification (MC) detection is an important component of breast cancer 

diagnosis. However, visual analysis of mammograms is a difficult task for radiologists. 

Computer Aided Diagnosis (CAD) technology helps in identifying lesions and assists the 

radiologist make his final decision.  

  

This work is a part of a CAD project carried out at the Imaging Science Research 

Division (ISRD), Digital Medical Imaging Program, Moffitt Cancer Research Center, 

Tampa, FL. A CAD system had been previously developed to perform the following 

tasks: (a) pre-processing, (b) segmentation and (c) feature extraction of mammogram 

images. Ten features covering spatial, and morphological domains were extracted from 

the mammograms and the samples were classified as Microcalcification (MC) or False 

alarm (False Positive microcalcification/ FP) based on a binary truth file obtained from a 

radiologist’s initial investigation.  

 

The main focus of this work was two-fold: (a) to analyze these features, select the 

most significant features among them and study their impact on classification accuracy 

and (b) to implement and compare two machine-learning algorithms, Neural Networks 

(NNs) and Support Vector Machines (SVMs) and evaluate their performances with these 

features.  

 



 x

The NN was based on the Standard Back Propagation (SBP) algorithm. The SVM 

was implemented using polynomial, linear and Radial Basis Function (RBF) kernels. A 

detailed statistical analysis of the input features was performed. Feature selection was 

done using Stepwise Forward Selection (SFS) method. Training and testing of the 

classifiers was carried out using various training methods. Classifier evaluation was first 

performed with all the ten features in the model. Subsequently, only the features from 

SFS were used in the model to study their effect on classifier performance. Accuracy 

assessment was done to evaluate classifier performance. 

 

Detailed statistical analysis showed that the given dataset showed poor discrimination 

between classes and proved a very difficult pattern recognition problem. The SVM 

performed better than the NN in most cases especially on unseen data. No significant 

improvement in classifier performance was noted with feature selection. However, with 

SFS, the NN showed improved performance on unseen data. The training time taken by 

the SVM was several magnitudes lesser than the NN. Classifiers were compared on the 

basis of their accuracy and parameters like sensitivity and specificity. Free Receiver 

Operating Curves (FROCs) were used for evaluation of classifier performance. 

 

 The highest accuracy observed was about 93% on training data and 76% for testing 

data with the SVM using Leave One Out (LOO) Cross Validation (CV) training. 

Sensitivity was 81% and 46% on training and testing data respectively for a threshold of 

0.7. The NN trained using the ‘single test’ method showed the highest accuracy of 86% 

on training data and 70% on testing data with respective sensitivity of 84% and 50%. 

Threshold in this case was -0.2. However, FROC analyses showed overall superiority of 

SVM especially on unseen data.  

  

Both spatial and morphological domain features were significant in our model. 

Features were selected based on their significance in the model. However, when tested 

with the NN and SVM, this feature selection procedure did not show significant 

improvement in classifier performance. It was interesting to note that the model with 



 xi

interactions between these selected variables showed excellent testing sensitivity with the 

NN classifier (about 81%).  

 

Recent research has shown SVMs outperform NNs in classification tasks. SVMs 

show distinct advantages such as better generalization, increased speed of learning, 

ability to find a global optimum and ability to deal with linearly non-separable data. 

Thus, though NNs are more widely known and used, SVMs are expected to gain 

popularity in practical applications. Our findings show that the SVM outperforms the 

NN. However, its performance depends largely on the nature of data used.  
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CHAPTER 1 

INTRODUCTION 
 

 
Breast cancer is the second leading cause of cancer deaths in women today (after lung 

cancer). According to the World Health Organization, more than 1.2 million people will 

be diagnosed with breast cancer this year worldwide (Imaginis, 2004). Currently, 

approximately 3 million women in the US are living with the disease (Center, 2004). 

According to American Cancer Society (ACS) estimates, 215,990 cases of invasive 

breast cancer will be diagnosed in 2004. In the same year, it is also estimated that 1,450 

men will be diagnosed with breast cancer. Year 2004 estimates include nearly 40,580 

deaths occurring from breast cancer in US alone. According to the National Cancer 

Institute, one out of eight women will develop breast cancer during her lifetime.  

 

Breast cancer stages range from Stage 0 (very early form of cancer) to Stage IV 

(advanced, metastatic breast cancer) (Imaginis, 2004). Early stage breast cancers are 

associated with high survival rates than late stage cancers.  

 

The key to surviving breast cancer is early detection and treatment. According to the 

ACS, when breast cancer is confined to the breast, the five-year survival rate is almost 

100%. Breast cancer screening has been shown to reduce breast cancer mortality 

(Society, 2004). Currently, 63% of breast cancers are diagnosed at a localized stage, for 

which the five-year survival rate is 97%. The high survival rates of early detection of 

breast cancer can be attributed to utilization of mammography screening as well as high 

levels of awareness of the disease symptoms in the population.  
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1.1 Motivation 
 

Mammography is used for breast cancer screening and diagnosis for the detection and 

characterization of abnormalities that maybe malignant (Association, 2002). 

Approximately 85% sensitivity (proportion of positives detected correctly as a disease) is 

achieved with conventional film-screen mammography, though results are operator 

dependent and may vary with reader expertise. A lot of research has gone into finding 

techniques that can improve sensitivity and reduce variability among readers.  

 

One method of reducing missed MCs or the false-negative (FN) rate in screening 

mammography is the double reading of mammograms (Anttinen I, 1993; Thurfjell E.L., 

1994). Investigations of this method reported increase in cancer detection rates by as 

much as 15% (Hendee WR, 1999). However, this method is both time consuming and not 

cost-effective.  

 

The incorporation of computer algorithms to increase sensitivity in screening 

mammography has gained popularity in recent years (Chan HC, 1990; Kregelmeyer WP, 

1994; Nishikawa RM, 1995; te Brake GM, 1998; Vyborny, 1994; Warren Burhenne LJ, 

2000). Findings indicated the potential of Computer Aided Diagnosis (CAD) to reduce 

the false negative (FN) rate by 50%-70%.  

 

CAD systems use computerized algorithms for identifying suspicious regions of 

interest (ROIs). The motivation behind CAD systems is to reduce both the False Positive 

(FPR) and False Negative rates (FNR). When used as intended, CAD would be expected 

to increase the number of mammograms interpreted as positive to the extent that it points 

out abnormalities previously overlooked by the radiologist. On the other hand, the cost of 

missed or undetected abnormalities (FNs) is very high.  

 

This work presents a part of a CAD scheme for the detection of microcalcifications in 

mammograms using NNs and SVMs. This would be an aid to a radiologist who would 
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have already outlined suspected abnormalities. This system provides a classification 

scheme which would aid the radiologist make his final diagnosis.  

 

Research (Edwards DC, 2000; Woods KS, 1993; Zhang W, 1996) has shown that the 

use of classifiers based on Artificial NNs (ANNs or simply NNs) can improve the 

performance of a detection scheme. NNs (Hagan MT, 1996) have been successful in 

many applications, especially for clustering (Park, 2000) and pattern recognition (Gader 

PD, 1997). In recent years, the SVM (Chapelle O, 1999; Pontil M., 1998; Vapnik, 1995, 

1998) has become an effective tool for pattern recognition, machine learning and data 

mining, because of its high generalization performance. 

 

Given a set of points that all belong to one of the two classes, an SVM can find the 

hyperplane that leaves the largest possible fraction of points of the same class on the 

same side, while maximizing the distance of either class from the hyperplane. This 

optimal separating hyperplane can minimize the risk of misclassifying examples of the 

test set. On the other hand, NNs are based on the minimization of empirical risk, which is 

the minimization of the number of misclassified vectors of the training set.  

 

SVMs are attracting increasing attention because they rely on a solid statistical 

foundation and appear to perform quite effectively in many different applications (Lecun 

Y, 1995; M. Pontil, 1998; Osuna E, 1997). After training, the separating surface is 

expressed as a certain linear combination of a given kernel function centered at some of 

the data vectors (named support vectors). All the remaining vectors of the training set are 

effectively discarded and the classification of new vectors is obtained solely in terms of 

the support vectors. SVMs also offer other advantages over multivariate classifiers. They 

are free of optimization problems of NNs because they present a convex programming 

problem, and guarantee finding a global solution. They are much faster to evaluate than 

density estimators (like maximum likelihood classifiers), because they make use of only 

the relevant data points, rather than looping over each point regardless of its relevance to 

the decision boundary. Recent research has suggested that the SVM is superior to the NN 

(Burbidge R, 2001; Ding CH, 2001; Liang H, 2001). In this study, both the algorithms 
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were used to classify microcalcifications from false positive signals (or false alarms) and 

evaluated. 

1.2 Objectives and Approach 
 

CAD systems consist primarily of the following processing stages: (a) Pre-

processing, (b) Segmentation (c) Feature extraction and (d) classification. Stages (a)-(c) 

were a part of previous work conducted on this dataset. The mammograms were first 

studied for abnormalities before they were given to the CAD system. Pre-processing was 

performed to reduce noise and artifacts and to enhance the image (Qian W, 1994). 

Segmentation was used to identify suspicious areas from the whole image. Feature 

extraction and selection is a crucial part of the CAD classification process and has a 

significant impact on classification accuracy. Ten features were extracted and given as 

inputs to the classification stage (Qian W, 2001). This work focused on the classification 

(Stage (d)) and feature selection. The database consisted of 22 mammograms, which 

included Cranial Caudal (CC) and Medio Lateral Oblique (MLO) view images of the 

breast. 

 

The NN and SVM algorithms were implemented and evaluated for their performance.  

The NN was constructed using the MATLAB NN toolbox. The network used the 

Standard Back Propagation (SBP) algorithm for training. The SVM classifier was 

obtained in C using the LIBSVM toolbox (Chih-Chung Chang, 2001). LIBSVM is an 

integrated software for support vector classification, regression and distribution 

estimation. It supports multi-class classification. The basic algorithm is a simplification 

of both Sequential Minimal Optimization (SMO) by Platt (Platt, 1999), and SVMLight by 

Joachims (Joachims, 1999). It is also a simplification of the modification of SMO by 

Keerthi et al (Keerthi, 1999). Several kernel options are supported by the classifier.  

 

A detailed feature analysis was performed to evaluate the relationships between the 

input features and the outcome. From this feature analysis, the most significant features 

were selected and tested with the classifiers. Free Receiver Operating Characteristic 
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(FROC) curves were plotted for each experiment and compared. The classification 

algorithms were compared and the feature selection process was assessed.  

1.3 Study Outline 
 

This document has been organized as follows. Chapter 2 discusses the medical 

background of breast cancer, literature review of detection methods and CAD systems in 

mammography. Chapter 3 gives a description of the classification algorithms studied. 

Chapter 4 gives a description of the developed CAD module and the Materials and 

Methods used in this study. Results and discussion are presented in Chapter 5. Chapter 6 

presents the conclusions and future work. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

As the second leading cause of cancer-related mortality in women, it is crucial that 

breast cancer be detected in its early stages of development. Mammography has been 

used as a screening and diagnostic tool for the early detection of breast cancer. Screening 

mammography has proven to be effective for women 50-75 years of age (Kerlikowske K, 

1995). A recent study showed that in women aged 40-49 years; screening mammography 

reduces breast cancer mortality by 16-18% (Rajkumar S, 1999). 80-85% of breast cancers 

are visible on a mammogram as a mass, calcification or combination of both (Mckenna 

RJ, 1994). CAD methods play an important role in improving diagnostic accuracy in 

mammogram interpretation. This chapter provides a background on mammography, types 

of mammograms, types of abnormalities and an introduction to automated methods in 

breast cancer detection.  

2.1 Background: Mammography 
 

A mammogram is a test that is done to look for any abnormalities in a woman’s 

breasts. The test uses an X-ray machine to take pictures of both the breasts. With digital 

mammography, once the images are taken, they can be electronically manipulated. 

Digital mammography offers certain advantages over film mammography. Results can be 

obtained much faster; the doctor can electronically manipulate the images (zoom in, 

magnify etc.) and transmit the images to another site for viewing and printing (Systems, 

2003).  

 

Mammograms look for breast lumps and changes in breast tissue that may develop 

into problems over time. They can find abnormalities that a woman or a health care 

provider cannot feel during a physical examination. Breast lumps can be benign (non-
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cancerous) or malignant (cancerous). A biopsy is done if a lump is found, where a small 

amount of tissue is taken from the lump and the area around the lump. This tissue is then 

tested for cancer. Early detection of breast cancer increases the chances of a woman 

surviving the disease.  

Figure 1 shows a sample mammogram.  

 
Figure 1 Mammographic Anatomy Of The Breast ("Interactive Mammography Analysis 

Web Tutorial", 1999) 
 

2.2 Types of mammography 
 

Two types of mammography exams are in practice today: Screening and Diagnostic. 

2.2.1 Screening mammography 
      

This is performed to detect breast cancer when it is too small to be felt by a physician 

or a patient. It is performed on women with no complaints or symptoms of breast cancer 

(Imaginis, 2004). The procedure involves taking x-ray images of two views for each 

breast. These views are typically from above (Cranial-Caudal view, CC) and from an 

angled view (Medio Lateral Oblique, MLO). The MLO is probably the most important 

and most common view taken followed by the CC.  These views are represented in 

Figure 2. 
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Figure 2  Views In Screening Mammography- Cranio- Caudal (CC) And Mediolateral 

Oblique (MLO) Views (Imaginis, 2004) 
 

2.2.2 Diagnostic mammography 
 

This is performed on a patient who has been evaluated as symptomatic by a physical 

exam or screening mammography. Additional views of the breast are usually taken as 

against two in screening mammography, hence making it a more time-consuming and 

costly procedure. The objective here is to determine the exact size and location of 

abnormality and to image the surrounding tissue and lymph nodes. Diagnostic 

mammography helps determine malignancy, following which a biopsy maybe ordered. 

Biopsy is the only definitive way to ascertain breast cancer (Imaginis, 2004).  

 

Diagnostic mammography typically involves two additional views, the Latero Medial 

(LM) and the Medio Lateral view (ML) apart from the CC and MLO views discussed 

earlier. Additional views maybe taken depending on the nature of the problem.  

 

   
Figure 3 Views In Diagnostic Mammography. (Left) Cranio-Caudal (CC) And Mediolateral 

Oblique (MLO) Views, (Center) Latero Medial (LM) View, (Right) Medio Lateral 
(ML) View (Imaginis, 2004) 
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2.3 Mammographic Abnormalities 
 

A suspicious abnormality normally falls into three broad categories: (1) Asymmetric 

density, (2) Masses (including architectural distortion) and (3) Calcifications (Imaginis, 

2004). Masses often have distinguishing shape, size and margin characteristics. Likewise, 

calcifications can be characterized by their size, number, morphology, distribution and 

heterogeneity. These are the distinguishing characteristics based on which a mammogram 

maybe classified as benign or possibly malignant. Masses and calcifications are the most 

common features associated with cancer. They are discussed below. 

 

2.3.1  Mass 
 

Masses are three-dimensional lesions which may represent a localizing sign of breast 

cancer. A mass is a group of cells clustered together more densely than the surrounding 

tissue. A (non-cancerous) cyst may appear as a mass in a mammographic film. Masses 

can be caused by benign breast conditions or by breast cancer (Imaginis, 2004). They are 

characterized by their location, size, shape, margin characteristics, x-ray attenuation, 

effect on surrounding tissue, and other associated findings like architectural distortion, 

associated calcifications and skin changes. A mass could be round, oval, lobular, irregular 

or have architectural distortion. Mass margins as defined by Breast Imaging Reporting 

and Data System (BI-RADS) include: circumscribed, obscured, micro-lobulated, ill-

defined and speculated (Figure 4). 

 

 
Figure 4   Descriptors For (Left) Shape, (Right) Margins (Imaginis, 2004) 
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2.3.2  Calcification 
 
Microcalcifications are tiny (less than 1/50 of an inch or ½ of a millimeter) specks of 

Calcium that maybe found in an area of rapidly dividing cells (Nagel Rufus H, 1998). 

Calcifications are often important and common findings in mammograms. They may be 

intramammary, within and around the ducts, within the lobules, in vascular structures, in 

interlobular connective tissue or fat. When many are seen in a cluster, they may indicate a 

small cancer. About half the cancers detected appear as these clusters. 

Microcalcifications are the most common mammographic sign of ductal carcinoma in 

situ (an early cancer confined to the breast ducts).  

 

Most breast calcifications are benign. The term microcalcification is often used for 

calcifications found with malignancy, which are usually smaller, more numerous, 

clustered, and variously shaped (rods, branches, teardrops). Calcifications associated with 

benign conditions are usually larger, fewer in number, widely dispersed and round. These 

are termed macro-calcifications. In the middle are hard-to-tell calcifications that are often 

labeled indeterminate. The number of calcifications that make up a cluster can be used as 

an indicator of benign and malignancy. While the actual number itself is arbitrary, a 

minimum number of either four, five or six calcifications per cluster is considered to be 

of significance. The morphology of calcifications is considered to be the most important 

indicator in differentiating benign from malignant. As discussed earlier, round and oval 

shaped calcifications are more likely to be benign. Those associated with malignant 

processes resemble small fragments of broken glass and are rarely rounded or smooth 

(Imaginis, 2004). 

 

The American College of Radiology (ACR) BIRADS has classified findings of 

calcifications into three categories (Table 1): 

(a) Typically benign 

(b) Intermediate concern  

(c) High probability of malignancy 
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Table 1  Summary Of BIRADS Classification Of Calcifications 
  Type of calcification Characteristics 

Skin  typical lucent center and polygonal shape 

Vascular 
parallel tracks or linear tubular calcifications 
 that run along a blood vessel 

Coarse or pop-corn like Involuting fibroadenomas 
Rod-shaped Large rod-like structures usually > 1mm  
Round Smooth, round clusters 
Punctuate Round or oval calcifications 
Spherical or lucent 
centered 

Found in debris collected in ducts, in areas of 
fat necrosis 

Rim or egg-shell Found in wall of cysts.  
Milk or calcium Calcium precipitates 

Typically 
benign 

Dystrophic 
Irregular in shape but usually large > 0.5mm 
in size 

Intermediate 
concern 
  

Indistinct or amorphous 
  

Appear round or flake shaped, small and hazy 
uncertain morphology 
  

Pleomorphic or 
heterogenous 

Cluster of these calcifications irregular in 
shape, size 
and < 0.5mm raises suspicion 

 
High risk 

Fine, linear or 
branching 

Thin, irregular that appear linear from a 
distance  

 

2.4 Limitations of Mammograms 
 

Mammography can help detect breast cancer at an early stage, when the chances for 

successful treatment and survival are the greatest. Mammography can detect about 85% 

to 90% of breast cancers. However, mammographic films maybe difficult for the 

radiologist to read and in some cases, abnormalities maybe overlooked. Also, False 

Negatives (FN) and False Positives (FP) are possible. FN means even though the 

mammogram may look normal, cancer is actually present. An FP occurs when the results 

shows the presence of cancer, even though this is not the case (4woman.gov, 2002). 

Younger women are more likely to have an FN mammogram because the breast tissue is 

denser, making cancer harder to spot. In such cases where there is ambiguity in results, a 

second interpretation would help the radiologist make his final decision.  
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The CAD technology works as a “second reading” for radiologists, alerting them to 

areas on the image that require his attention. The following section describes the CAD 

system, its benefits and limitations and its components in detail. 

2.5 Computer Aided Diagnosis (CAD) for Mammography 
  

CAD is a recent advance in the field of breast imaging. Studies on CAD technology 

estimate that for every 100,000 breast cancers currently detected with screening 

mammograms, the CAD technology could result in the detection of an additional 20,500 

breast cancers.  

  

In CAD, the computer marks abnormalities on the digitized films. After reviewing the 

results from CAD, the radiologist decides whether the marked area is indeed an 

abnormality that is of concern.  

  

Mammograms are first loaded into a special processing unit that digitizes the 

mammogram images. The CAD unit incorporates special pattern recognition algorithms 

to highlight any detected breast abnormalities. In the meantime, the radiologist reviews 

the patient’s mammogram and makes his interpretation. He then views the mammogram 

from the CAD system and modifies his/ her interpretation if appropriate. CAD 

technology is designed to detect masses and calcifications in digital mammograms.  

 

2.5.1 Components of CAD 
 

The goal of a CAD system in this work is the detection of MCs and the reduction of 

false positive MCs on mammograms. The goal is also to achieve high sensitivity in order 

to detect MCs that a radiologist might miss. Clinical utility would depend strongly on the 

number of FPs per image, since radiologists must take extra time and care to read areas of 

the mammograms with FPs (Rufus H. Nagel, 1995). FPs can also reduce the confidence a 

radiologist has in using a CAD system. Therefore, it is important to reduce the number of 

computer FPs, while maintaining high sensitivity.  
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There are many methods that can be used to classify MCs. Rule based methods (Chan 

HP, 1987; Davies DH, 1992) and NNs (Yoshida H, 1994; Zhang W, 1996) are two 

examples of these methods. The overall process involves several steps that include pre-

processing, segmentation, feature extraction and classification (Figure 5). Each module of 

the CAD process is discussed in sections below with emphasis on classification and 

evaluation modules. 

 

 
Figure 5   Stages In A CAD Process 

2.5.1.1 Pre-processing 
 

This module involves noise and artifact reduction, and intensity adjustment. Image 

enhancement is usually performed by noise reduction or contrast enhancement. Increase 

in contrast is very essential in mammograms, especially for dense breasts (Ted C. Wang, 

1998). Contrast between the malignant tissue and the normal dense tissue maybe present 

in the mammogram but may not be discernable to the human eye. As a result, defining 

the characteristics of MCs is difficult (Ted C. Wang,1998).  

 

Conventional image processing techniques may not work well on mammographic 

images because of the large variation in feature size and shape (W. Morrow,1992). There 

are two possible approaches to enhancing mammographic features. One is to suppress 

background noise and the other is to increase the contrast of suspicious areas.  



 14

Noises due to intrinsic characteristics of imaging device and from imaging process 

will impact detection sensitivity of CAD. Several types of filters have been reported 

(Qian W, 1994). 

 

Non- linear filtering has proven more robust than linear filtering in preserving details 

of the image during noise reduction. Median filtering and selective median filtering 

locally adapt to the image gray scale using empirically derived threshold criteria (Lai SM, 

1989). Selective median filtering is generally based on restricting the set of pixels within 

the selected window to those pixels with a difference in gray level not greater than an 

empirically derived threshold. However, detail preservation maybe lost since some pixels 

might be ignored within the filter window (Lai SM, 1989). Other methods like straight 

line windowing (Chan HP, 1987) and hexagonal windows (Glatt A, 1992) have been 

introduced to non-linear filtering. Though these methods were more successful for noise 

suppression than linear approaches, they did not necessarily show significant 

improvements in image detail preservation.  

 

Multi-stage filtering is introduced in order to combine the properties of single filters. 

The tree-structured nonlinear filter, a symmetric multistage filter combining the 

advantages of Central Weighted Median Filters (CWMF), linear and curved windows, 

shows more robust characteristics for noise suppression and detail preservation. This 

filter is a three-stage filter designed with CWMFs as subfiltering blocks (Qian W, 1995; 

Qian W, 1999) applied to each pixel within the filter window (Bamberger RH, 1992; 

Qian W, 1994).  CWMFs are a class of median filters where the basic principle involves 

replacing a pixel value with the median of the neighboring pixel values (Ko SJ, 1991).  

 

 The weighted median filter is an extension of the median filter, which gives more 

weight to some values within the window (Ko SJ, 1991), i.e. a weight coefficient is 

assigned to each position in a window. The filter output is the median of the sequence of 

pixel values; additionally, if weight coefficient is n at a position, the value at this position 

appears n times. As more emphasis is placed on the central weights, the filter’s ability to 

suppress noise and preserve image details increases (Qian W, 1994).  
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The Tree Structured Filter (TSF) is a symmetric multistage filter that sequentially 

compares filtered and raw image data with the objective of obtaining more robust 

characteristics for noise suppression and detail preservation (Arce GR, 1989; Bauer PH, 

1991). The TSF architecture consists of cascaded CWMFs (Qian W, 1994). Since noise is 

suppressed at each stage, the overall performance of the TSF is considered to be superior 

(Arce GR, 1989; Bauer PH, 1991). 

 

2.5.1.2 Enhancement and Segmentation 
 

Following noise suppression and artifact removal, image enhancement is performed 

to improve digital image quality. Enhancement algorithms using the wavelet 

transformation (WT) are used where the data is cut up into different frequency 

components using mathematical functions called ‘wavelets’. Each component is then 

studied with a resolution matched to its scale (Graps, 2004). This method has advantages 

over other enhancement techniques like the Fourier transform in analyzing physical 

situations where the signal contains discontinuities and sharp spikes.  

 

Segmentation is used to identify suspicious areas from the whole image. 

Mammographic lesions are extremely difficult to identify because their radiographic and 

morphological characteristics resemble those of normal breast tissue. As a mammogram 

is a projection image, lesions do not appear as isolated densities but are overlaid over 

parenchymal tissue patterns.  

 

The fuzzy C-means (FCM) algorithm was used for soft segmentation based on fuzzy 

set theory. It allows for fuzzy pixel classification based on iterative approximation of 

local minima to global objective functions. This has two advantages over other 

segmentation approaches, namely it is unsupervised and is robust to missing and noisy 

data. This algorithm helps differentiate small size suspicious regions.  
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2.5.1.3 Feature extraction and Classification 
 

Feature extraction and selection is an important part of supervised classification. The 

number of features selected for breast cancer detection reported in literature varies with 

the CAD approach employed. It is desirable to use an optimum number of features since 

a large number of features would increase computational needs, making it difficult to 

define accurate decision boundaries in a large dimensional space. Features in different 

domains (morphological, spatial, texture etc.) are extracted. In this process, the most 

important characteristics of the ROI are studied. Among the most important 

characteristics reported by radiologists are given below (Wouter J, 2000). 

 

(a) Polymorphism vs. monomorphism: MCs that are malignant tend to polymorph while 

benign clusters are mostly characterized by monomorphous calcifications of uniform 

size (Lanyi, 1988). 

(b) Size and contrast: some benign calcifications have larger size and contrast compared 

to malignant calcifications. 

(c) Branching vs. round and oval type: linear calcifications maybe an indication of 

Ductal Carcinoma in situ, since such calcifications are located in the glandular ducts. 

Benign calcifications are mostly round or oval in shape and are often located in the 

lobules.  

(d) Orientation: malignant calcifications often have shapes that are oriented to the nipple 

(Lanyi, 1988)  

(e) Number: A cluster with very few MCs is regarded as less suspicious. Five or more 

calcifications, measuring less than 1 mm, in a volume of one cubic centimeter, are 

considered to form a cluster (Popli, 2001). 

(f) Location: About 48% of the cancerous processes are located in the outer upper 

quadrant of the breast. Lesions located in this quadrant are more suspicious (Harris 

JR, 1991). 

     

Several methods for feature extraction have been proposed in literature. The use of 

wavelet features and gray level statistical features was proposed by Songyang Yu et al 

(Songyang Yu, 2000). MCs are considered to be relatively high-frequency components 
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buried in the background of low-frequency components and very high-frequency noise in 

the mammograms. Wavelets have a multiresolution property since they are localized in 

both space and frequency domains. This property makes it suitable for extracting MCs 

from low-frequency backgrounds and high-frequency noise. Spatial features which 

describe gray level statistics like median contrast (Kong, 1998) and normalized gray level 

value (Stetson PF, 1997) are used in combination with wavelet features to describe MCs.  

 

Huai Li et al (Huai Li, 1997) suggested a deterministic fractal approach to the 

enhancement of MCs. Since MCs can be characterized by different shapes, and possess 

structures with high local self-similarity, these tissue patterns can be constructed by 

fractal models (Huai Li, 1997).  

 

Features in morphological and spatial domain are most commonly used for MC 

detection. Once the feature extraction is complete, these features are used for 

classification.  

 

Several automated classification techniques have been investigated for the detection 

of MCs in mammograms. The k-Nearest Neighbor  approach is a relatively simple and 

fast classification method (Wouter J, 2000). A statistical method based on the use of 

statistical models and the general framework of Bayesian image analysis was developed 

by Karssemeijer et al (Karssemeijer, 1993; N.Karssemeijer, 1991). Another method is 

based on a difference image technique in which a signal suppressed image is subtracted 

from a signal enhanced image to remove structured background noise in the mammogram 

(Chan HP, 1987). Global and local thresholding were then used to extract potential MC 

signals. Yoshida et al (Yoshida H, 1994) used decimated wavelet transform and 

supervised learning for the detection of MCs. Zheng et al (Zheng B, 1994) proposed a 

method for the detection of MCs using mixed feature-based NNs. A fuzzy logic based 

approach was proposed by Cheng et al (Cheng HD, 1998). Issam El-Naqa et al (Issam El-

Naqa, 2002) used the SVM to detect MCs based on finite image windows. Their 

approach relies on the capability of the SVM to automatically learn the relevant features 

for optimal detection. In their work, a sensitivity of as high as 98% was achieved.  
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Recent studies have shown the superiority of SVM over other techniques, suggesting 

that SVM is a promising technique for MC classification. A detailed description of the 

NN and SVM approaches to MC/ FP classification used is given in Chapter 3. 

2.5.2 Feature Selection 
 

Feature selection is an important part of any classification scheme. The success of a 

classification scheme largely depends on the features selected and the extent of their role 

in the model. The objective of performing feature selection is three fold: (a) improving 

the prediction performance of the predictors, (b) providing faster and more cost effective 

predictors and (c) providing a better understanding of the processes that generated the 

data (Isabelle Guyon, 2003). 

 

There are many benefits of variable and feature selection: it facilitates data 

visualization and understanding, reduces the storage requirements, reduces training times 

and improves prediction performance. The discrimination power of the features used can 

be analyzed through this process. The goal is to eliminate a feature if it gives us little or 

no additional information beyond that subsumed by the remaining features (Daphne 

Koller, 1996). Only a few features may be useful or ‘optimal’ while most may contain 

irrelevant or redundant information that may result in the degradation of the classifier’s 

performance. Irrelevant and correlated attributes are detrimental because they contribute 

noise and can interact counter- productively to a classifier induction algorithm (Chun-

Nan Hsu, 2002). 

 

The information about the class that is inherent in the features determines the 

accuracy of the model (Daphne Koller, 1996). Theoretically, having more features should 

give us more discriminating power. However, the real world provides us with many 

reasons why this is generally not the case. Irrelevant and redundant features cause 

problems in this context as they may confuse the learning algorithm by obscuring the 

distributions of the small set of truly relevant features for the task at hand. In light of this, 

a number of researchers have recently addressed the issue of feature subset selection in 
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machine learning. As defined by (John G, 1994) this work is often divided along two 

lines: filter and wrapper models.  

 
In the filter model, feature selection is performed as a pre-processing step to induction 

(Figure 6). Induction refers to the classification algorithm.  

 

 
Figure 1    The Filter Model 

 

Methods using criteria such as correlation coefficients and entropy measures that do 

not involve the inducer come under the category of filter models.  

 

Many researchers in machine learning found difficulties in this classical definition of 

the “optimal” feature subset and the filter model. John et al (John G, 1994) point out that 

to measure the relevance of a given feature, one must take the existence and relevance of 

other features into account. In follow up work, Kohavi et al (Kohavi, 1995) consider that 

the optimality of a feature subset depends on both the specific induction algorithm and 

the training data at hand. This implies that an “optimal” feature subset for a given 

induction algorithm should be defined as a subset such that the induction algorithm can 

generate a hypothesis with the highest predictive accuracy. Feature selection should focus 

on finding features that are “useful” for improving the predictive accuracy rather than 

necessarily finding the “theoretically optimal” ones. Since the filter model ignores the 

effect of the feature subset on the performance of the classifier induction algorithm, an 

alternative method of feature selection called the wrapper model is proposed. The 

Wrapper model “wraps” around the induction algorithm (Figure 7). The idea is to 

generate a set of candidate feature subsets, use the induction algorithm to generate a 

hypothesis for each candidate feature subset, and evaluate candidate feature subsets by 

the classification performance of the resulting hypotheses. Methods like Forward 

Selection and Backward Elimination come under this category. 
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Figure 2   The Wrapper Model 

 

The disadvantage of the wrapper model is that since a large number of training cycles is 

required to search for the best performing feature subset, it can be prohibitively 

expensive. 

 

 Wrappers try to solve the real world problem, hence optimizing the desired criterion. 

They are very time consuming. Filters on the other hand are much faster. Also, filters 

provide a generic selection of variables, not tuned for/ by a given learning machine 

(Isabelle Guyon, 2003). Another justification is that filtering can be used as a 

preprocessing step to reduce space dimensionality and overcome over fitting.  

   
Several feature selection techniques have been discussed in literature. All these 

methods determine the relevancy of the generated feature subset candidate towards the 

classification task. There are five main types of evaluation functions (Dash M, 1997): 

(a) distance (Euclidean distance measure) 

(b) information (entropy, information gain, etc.,) 

(c) dependency (correlation coefficient) 

(d) consistency (minimum features bias) 

(e) classifier error rate (based on a classification algorithm)  

 
The first four are filter models while the last one comes under the wrapper model. Within 

the filter model, different feature selection algorithms can be further categorized into two 
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groups, namely feature weighting algorithms and subset search algorithms depending on 

whether they evaluate the goodness of features individually or through feature subsets.  

 
The distance measure calculates the physical distance (Dash M, 1997), where the 

main assumption is that instances of the same class must be closer than those in different 

class.  

 
Entropy is a measure of the uncertainty of a feature (Lei Yu, 2003). The entropy of a 

variable (or feature) X is defined in Equation 1. 
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And the entropy of a variable X after observing the value of another variable Y is 

defined by Equation 2. 
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Where P(xi) is the prior probabilities of all values of X, and P(xi|yi) is the posterior 

probability of X after observing the values of Y. Information gain (Quinlan, 1993) gives 

the amount by which the entropy of X decreases and reflects the additional information 

about X provided by Y (Equation 3). 
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In Equation 3, a feature Y is regarded more correlated to feature X than to feature Z, if  
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Another feature weighting criteria is the correlation measure which measures the 

correlation between a feature and a class label. The Pearson’s correlation coefficient is 

given by Equation 4. 
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 A positive correlation implies an simultaneous increase in X and Y (Struble). A negative 

correlation indicates increase in one variable as other decreases. If the rX,Y has a large 
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magnitude, X and Y are strongly correlated and one of the attributes can be removed 

(Struble). On the other hand, variables that have a strong correlation with the outcome are 

retained in the model. 

 

A limitation of all the methods listed above is that they may lead to the selection of a 

redundant subset of variables. Hence subset search methods are preferred over feature 

weighting methods. Isabelle et al (Isabelle Guyon, 2003) have shown that variables that 

are independently and identically distributed are not truly redundant. Noise reduction and 

better class separation can be obtained by adding variables that are presumably 

redundant. They have also shown that a variable that is completely useless by itself can 

provide a significant improvement in performance when taken with others. In other 

words, two variables that are useless by themselves can be useful together. Thus selecting 

subsets of variables could together have good predictive power, as opposed to ranking the 

variables according to their individual predictive power.  

  

The wrapper methodology is based on using the prediction performance of a learning 

machine to assess the relative usefulness of subsets of variables. However, in practice it is 

necessary to decide on a search strategy that is computationally advantageous and robust 

against overfitting. Greedy search strategies like forward selection and backward 

elimination are the most popular search strategies while genetic algorithms, best-first and 

simulated annealing are among the others (Kohavi R, 1997). 

 

In this work, the wrapper approach with logistic regression as an induction algorithm 

was used to find the best subset of features. The two most commonly used variable 

selection strategies are Stepwise Forward Selection (SFS) and Stepwise Backward 

Elimination (SBE).  

 

The SFS begins with no features in the model. At each step, it enters the feature that 

contributes most to the discriminatory power of the model as measured by the likelihood 

ratio criterion. When none of the unselected features meets the entry criterion, the SFS 

process stops. The SBE on the other hand begins with all the features in the model and at 
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each step eliminates the feature that contributes least to the discriminatory power of the 

model. The process stops when all the remaining features meet the criterion to stay in the 

model. The SFS was used in this work, details of which are given in Chapter 4. 

 

2.5.3 Limitations of CAD 
 

Though the use of CAD is becoming widespread, a great deal of time and effort is 

required to digitize the films (Imaginis, 2004). Some radiologists also believe that the 

CAD technology marks a fairly high number of “normal” areas as abnormalities leading 

to additional unnecessary and costly breast imaging and/ or biopsies.  

  

In addition, the high cost of CAD technology may hinder its widespread use. A CAD 

system costs approximately $200,000, in addition to the cost of a mammography system. 

The price of mammograms may also rise from $10 to $15 per exam with the usage of 

CAD technology.  

  

In spite of these limitations, studies continue to evaluate the advantages and 

disadvantages of CAD technology. The disadvantages stated above are weighed against 

the CAD system’s ability to diagnose cancers early, which dramatically reduces long-

term treatment costs.  
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CHAPTER 3 

 

CLASSIFICATION ALGORITHMS 
 
 

The focus of this work was to examine the suitability of using the NN and SVM 

algorithms in the detection of MCs in mammograms and study their impact on 

classification accuracy. Support Vector Machines (SVMs) and Neural Networks (NNs) 

are the mathematical structures, or models, that underlie learning. They are both machine 

learning techniques that learn patterns based on training data, fit the models to this 

training data and predict or classify unseen (or future) data. The active development of 

NNs research started in 1970s and that of SVMs started in 1980s. Currently, both 

techniques are used widely even though SVMs demonstrate superior performance in 

various problems compared to NNs. The applications of SVMs are expected to expand 

even though NNs are more widely known. The following sections describe these 

algorithms in detail. 

3.1 Machine Learning Principles 
 

Learning tasks are usually divided into supervised, unsupervised and reinforcement 

learning (Hiep Van Khuu, 2003). We discuss the supervised learning procedure which is 

an approach that uses examples to model input output relationships. The input/ output 

pairings typically reflect a functional relationship mapping of inputs to outputs 

(Cristianini N, 2000). When there exists an underlying function between the inputs and 

outputs, it is referred to as the target function. The estimate of this target function is 

known as the solution of the learning problem. This is also called the decision function in 

case of a classification problem (Cristianini N, 2000). The solution is chosen from a set 

of candidate functions that map the input to the output domain. These set of candidate 

functions are termed the hypotheses.  
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The quality of learning algorithms is assessed in terms of the number of mistakes it 

makes during the training phase. However, it is not always possible to verify the validity 

of the training process especially if the function we are trying to learn does not have a 

simple representation. Also, frequently the training data are noisy and the input-output 

mapping does not guarantee the existence of an underlying function. The fundamental 

problem of machine learning is not just to find a hypothesis that is consistent with the 

training data but also works well on unseen data. This is known as the generalization 

capability which these algorithms try to optimize. It is possible that with a difficult 

training dataset, the hypothesis behaves like a rote learner i.e. the data in the training 

dataset are correctly classified, but predictions on unseen data are uncorrelated. 

Hypotheses that become too complex in order to become consistent are said to overfit 

(Cristianini N, 2000). The VC theory due to Vapnik and Chervonenkis gives a better 

insight of choosing a hypothesis space and hypothesis (Hiep Van Khuu, 2003). Assuming 

that the data are drawn from an unknown probability distribution P(x,y) and l(.) is some 

loss function signifying the error of a hypothesis, the risk of the hypothesis is given by 

Equation 5. 
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Where h(x) is the hypothesis function. The risk of hypothesis over the training set is 

termed the empirical risk given in Equation 6. 

)),((1][
1
∑
=

=
n

i
iiemp yxhl

n
hR                       (6) 

 
The primary goal is to minimize the empirical risk (error on training data). 

Unfortunately, this is not possible since the probability distribution is unknown. 

However, the risk is bounded by the inequality given in Equation 7. 
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Where d is the VC dimension of the function class of h, and is a measure of the 

classifier’s ‘power’. This power does not depend on the choice of the training dataset and 
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hence is a true representation of the classifier’s generalization performance. The VC 

dimension is the maximum number of data points a function can shatter given all possible 

labels. A complex function will have a higher VC dimension. This gives us a way to 

estimate the error on the future data based only on the training error and the VC-

dimension of h. The goal is to choose a hypothesis that minimizes the empirical risk.  

 

3.2 Neural Networks 
 

The ANN is an information processing system inspired by the biological nervous 

system. It is composed of a large number of highly interconnected processing elements 

called neurons. The principle of ANN learning systems is much the same as the 

biological neuron; it involves adjustments to the synaptic connections that exist between 

the neurons.  

 

An artificial neuron is a device with many inputs and one output. The neuron has two 

modes of operation, the training mode and the testing mode. In the training mode, the 

neuron can be trained to fire (or not) for a particular set of input patterns. In the testing 

mode, when a pattern is presented at the input the firing rule decides whether to fire the 

neuron or not. These neurons form the nodes of the NN. Each node is assigned a 

threshold and each interconnection between the nodes is assigned a weight that represents 

the strength between the neurons.  

 

The simplest NN has a set of inputs and one output. Figure 8 shows a 1-level NN also 

called a perceptron. 

 
Figure 8   A Perceptron 



 27

In the above figure, x refers to the inputs, w the weights, y the output and T the threshold 

of the node. The strength of signals a node receives is calculated as the weighted sum of 

inputs 

nn xwxwxw +++ ...2211                          (8) 

If this value overcomes the threshold T of the node, then the signal is transmitted to other 

connected nodes. The value of the output of the node is decided by the activation function 

f, which decides whether the perceptron should fire or not. Thus, the output y is given as  

)...( 2211 Txwxwxwfy nn −+++=                  (9) 

Since Equation 9 can be interpreted as an equation of a linear line or a hyperplane, it 

classifies data (x1,x2,...xn) into two classes, one above the plane and one below the plane 

(Hiep Van Khuu, 2003).  

 

A dataset is considered linearly separable if it requires only a single hyperplane to 

classify two classes. If the dataset is not linearly separable, we need more than one 

hyperplane. Multiple hyperplanes are represented by introducing more nodes in another 

layer to a perceptron. This is known as a multi-layer perceptron network as shown in 

Figure 9. 

 
Figure 9   Multilayer Perceptron 

 

The nodes between the input and the output layer are called hidden nodes and the layers 

are called hidden layers. Once the number of layers, the number of units in each layer has 

been established, the network’s weights and thresholds must be set so as to minimize the 

prediction error made by the network. This is the role of the training algorithms. The 

training cases are run through the network and the output generated is compared to the 
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desired outputs or the targets. The differences are combined together by an error function 

to give the network error. The most common error function is the Sum of Square Error 

(SSE) where the individual errors of output units on each case are squared and summed 

together.  

3.2.1 The Standard Back Propagation Algorithm (SBP) 
 

The SBP is the most popular NN training algorithm. Other examples of training 

algorithms are the conjugate gradient descent, Quasi-Newton, quick propagation etc. In 

BP, the gradient vector of the error surface is calculated. The vector points along the line 

of the steepest descent from the current point so any move in the shortest distance 

decreases the error. A sequence of such moves, will eventually find a minimum of some 

sort (Statsoft Inc., 1984-2003). Large steps converge more quickly but might overstep the 

solution. Small steps would require a large number of iterations. The step size is defined 

by the learning rate of the algorithm. The algorithm progresses through a number of 

epochs iteratively, the error between the target and actual outputs calculated for each 

epoch. This error is used to adjust the weights, and the process repeats. The initial 

weights are random and training stops at a set convergence criterion like a predefined 

number of epochs, or an acceptable level of SSE.  

 

The BP algorithm consists of two phases: The Forward phase and the Backward 

phase. The feed-forward phase is where the inputs x are fed into the network. All outputs 

are computed using sigmoid (activation function) thresholding of the inner product of the 

corresponding weights and the input vectors. All the outputs at stage n are connected to 

all the inputs at stage n+1. Errors are then propagated backwards by apportioning them to 

each unit according to the amount of error the unit is responsible for (Anand, 1999).  

 

Let (x,t) denote a training example where x and t are vectors representing the inputs 

and targets respectively. η is the learning rate. ni, no and nh are the input, output and 

hidden nodes respectively. Input from unit i to unit j is denoted as xji and weight is 

denoted by wji. The SBP algorithm is stated as follows (Anand, 1999): 

(a) Create a feed-forward network with ni inputs, no outputs and nh hidden units.  
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(b) Initialize all the weights to random values (say between -0.05 and 0.05) 

(c) Until convergence do 

For each training sample (x,t), do 

(a) Compute the output ou of every unit for instance x 

(b) For each output unit k calculate 

))(1( kkkkk otoo −−=δ  

(c) For each hidden unit h calculate 

∑
∈

−=
)(

)1(
hdownstreamk

kkhhhh woo δδ  

(d) Update each network weight wji as 

jijiji www ∆+←   

Where jijji xw ηδ=∆  

Thus the weights of the network are updated until the convergence criterion is met.  

 

3.2.2 Over-learning and Generalization 
 

One major problem of the above learning approach is that it doesn’t actually 

minimize the error that we are actually interested in, the generalization error. In reality 

the network is trained to minimize the error on the training set. The most important 

manifestation of this problem is that of over fitting. A network with more weights models 

a more complex function, and is therefore prone to this problem. On the other hand, a 

network with fewer weights may not be sufficiently powerful to model the underlying 

function. For example, a network with no hidden layers actually models a simple linear 

function. Thus, it is important to select the optimum number of hidden units. In view of 

this, a simple model is preferred to a highly complex network.  

 

The performance of the NN depends on other factors such as nature of the datasets. It 

is of relevance here to mention the problem of having unbalanced datasets. Since a 

network minimizes the overall error, the proportion of the classes of data in the set is 

critical. A network trained with 1000 positive cases and 100 negative cases will bias its 

decision towards the positive case, as it allows the algorithm to lower the overall error. It 
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is also important that the training and testing data are representative of the underlying 

model.  

3.3 Support Vector Machines 
 

The foundations of SVM have been developed by Vapnik, and are gaining popularity 

due to many attractive features, and promising empirical performance. The formulation 

of SVM embodies the Structural Risk Minimization (SRM) principle, as opposed to 

Empirical Risk Minimization (ERM) commonly employed with other statistical methods. 

SRM minimizes the upper bound on the generalization error, as against ERM which 

minimizes the error on the training data. Thus, SVMs are known to generalize better.  

 

The SRM technique consists of finding the optimal separation surface between 

classes due to the identification of the most representative training samples called the 

support vectors. If the training dataset is not linearly separable, a kernel method is used to 

simulate a non-linear projection of the data in a higher dimensional space, where the 

classes are linearly separable. Here, we first introduce the foundation of SVMs- the linear 

learning machine. SVM kernels and other components are then explained. 

 

3.3.1 Structural Risk Minimization (SRM) 
 

A linear learning machine learns a linear classifier (Hiep Van Khuu, 2003) or 

hyperplane from the training data (Equation 10). 

RbRwbxwxh N ∈∈+= ,,.)(  (10) 

Thus the hyperplane divides the data so that that all the points with the same label lie on 

the same side of the hyper plane. This amounts to finding w and b so that 

0).( >+ bxwy ii                   (11) 

It is possible to rescale w and b so that 

1).( ≥+ bxwy ii                 (12) 

 

This system of equations can have several solutions as shown in Figure 10. 
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Figure 10   (Left) Several Feasible Hyperplanes, (Right) Optimal Separating Hyperplane 

 

The SRM approach is based on minimizing both the terms in the RHS of Equation 7. 

The classifier that has the maximal margin to the training set is the preferred solution 

among all other feasible hyperplanes shown in Figure 10 (Left). This choice of 

hyperplane gives a tighter bound on the VC dimension and reduces the risk. Thus 

determining the classifier involves the Quadratic Optimization Problem (QP) of 

minimizing 2

2
1 w under constraints (12). Thus, the N dimensional vector w and the real 

vector b define the OSH.  

 

This concept can be extended to the case when the classes are not linearly separable, i.e. 

when Equation 12 has no solution. A non-linear mapping LN RR →Φ : which maps the 

input data to a high dimensional space (also called the feature space) is introduced. Here, 

L is usually much larger than N. We can then try to find a linear classifier in feature 

space.  

 
Figure 11  Kernel Mapping From Input Space To Feature Space 
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The problem of finding a hyperplane in feature space is one of reformulating the linear 

case. Thus the problem is one of minimizing 2

2
1 w   

Subject to .,.....,1,1)))(..(( nibxwy ii =≥+Φ                  (13) 

We introduce Lagrange multipliers 0≥iα , i=1,...,n, for each constraint in Equation (13) 

and find the saddle point (or minimum) of the Lagrangian 
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At the saddle point we have 
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Substituting (15) in (14), we have the dual quadratic optimization problem 

Maximize  ∑ ∑
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ΦΦ−
n
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2
1 ααα                  (16) 

Subject to  nii ,....,1,0 =≥α                             (17) 

  ∑
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=
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i
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In Equation (16), the inner product )()( ji xx ΦΦ can be replaced with a kernel function  

),( ji xxK  that obeys Mercer’s condition. Mercer’s condition states that any positive 

semi-definite kernel ),( ji xxK  can be expressed as a dot product in high-dimensional 

space. Thus we avoid translating the input data to feature space first and then finding 

their inner products. This is equivalent to mapping the feature vectors into a high-

dimensional feature space before using a hyper plane classifier there (Figure 11). The use 

of kernels makes it possible to map the data implicitly into a feature space and to train a 

linear machine in such a space, potentially side-stepping the computational problems 

inherent in evaluating the feature map (Cristianini N, 2000)  
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In a high dimensional feature space RL the hyperplane is defined by the L dimensional 

vector w and real number b (Hiep Van Khuu, 2003). L can however be very large, hence 

storing w and b explicitly is expensive and sometimes impossible. In equations (15) and 

(17) the vector w is defined by the input vectors that have the non-zero Lagrange 

multipliers associated with them. These non-zero coefficients are called the support 

vectors, which together implicitly define the hyperplane. New data x  is classified with 

∑
=

+=
l

i
iii bxxkyy

1
)),(sgn( α                 (18) 

where l is the number of support vectors. 

 

In this research, three kinds of kernels are studied. These kernels are mathematically 

defined in Equations 19-21 (Chang and Lin, 2003):  

1. Polynomial kernel. dyxyxK )1)'((),( +∗∗= γ               (19)       

2. RBF kernel. ( )2*exp),( vuyxk −−= γ                   (20)       

3. Linear kernel. yxyxk ∗= '),(                          (21)        

 

There is no theory regarding which kernel is the best, given a problem domain. It is 

important to select the appropriate kernel based on the specific application. 

 

Training of SVMs requires the solution of a very large Quadratic Programming (QP) 

optimization problem which is very time-consuming (Platt, 1999). Sequential Mimimal 

Optimization (SMO) is an algorithm for training the SVM where this large QP problem is 

broken down into a series of smallest possible QP problems which are solved 

analytically. SMO can handle very large training datasets and considerably speeds up 

training times.  

 

SMO solves the smallest possible optimization problem at every step. The smallest 

possible optimization problem involves two Lagrange multipliers. At every step, the 

SMO chooses two Lagrange multipliers to jointly optimize, finds the optimal values for 

these multipliers, and updates the SVM to reflect the new optimal values.  
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3.4 Comparison of SVMs and NNs 
 

Both NNs and SVMs are based on the concept of linear learning models, using linear 

hyperplanes to classify data. For non-linear models, the approach of these two algorithms 

is different. SVMs use non-linear mappings to find a decision hyperplane in feature 

space. On the other hand, NNs use activation functions such as sigmoid, radial or 

Gaussian to handle non-linear data, so that the BP algorithm can compute the weight 

change depending on the error on the output. These activation functions in effect, create 

some non-linear decision boundary classifying the input data into different classes.  

 

SVMs minimize the structural risk (error on unseen data) while NNs minimize only 

the empirical risk (training data). Hence, SVMs are known to generalize better with a 

better learned hypothesis function that approximates more closely to the true 

classification function.  

  

NNs are known to have longer training times since the learning process involves 

training with the dataset repeatedly to better learn the hypothesis function that will 

perform the classification task. NNs learn better the more times they get trained. SVMs 

on the other hand, handle data simultaneously, without losing the degree of accuracy.  

 

NNs converge to local minima while the SVMs find a global solution. The problem 

of overfitting in NNs might get them stuck at local optima while with SVMs, the bound 

on the true risk and the QP solution always ensures a global solution.  

 

With a good understanding of the mathematical foundations of these algorithms, we 

explain our methodologies and results in Chapter 4 and 5. 
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CHAPTER 4 

MATERIALS AND METHODS 
 

This chapter presents the overall approach used in the CAD system. A description of 

the database and the features used is included. Detailed feature analysis as well as feature 

selection is performed prior to classification. Classification using NN and SVM 

algorithms with and without feature selection are studied and evaluated.  

4.1 Schematic of Proposed CAD System 
 

The objective of this thesis project was three-fold: 

(a) Analyze the input features and their importance in predicting the outcome. 

Perform feature selection by selecting the most significant features. 

(b) Use all the ten features with the NN and SVM to classify MC and FP and 

compare their performances. 

(c) Use the most significant features and their interactions (from Step 1) with the NN 

and SVM to classify MC and FP and compare their performances.  

The overall procedure however consists of multiple steps like pre-processing, 

segmentation, feature extraction, classification and evaluation. The schematic of the 

entire procedure is shown in Figure 12. 

 
Figure 12   Schematic Of CAD System 
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The ‘Classification’ and ‘Evaluation’ stages were the main focus of this work. 

Classification was performed using the NN and SVM algorithms, the schematic for 

which is given in Figure 13. 

 

 
 

 
 

 
 

Figure 13  Detailed Schematic Of Training And Testing Of SVM And NN Algorithms 
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4.2 Database Description 
 

The database consisted of 22 images of 60 micron resolution of which all the images 

had a case of abnormality, marked out by a radiologist. These images included the CC 

and MLO views of each breast. Figures 14 and 15 show two examples of abnormal cases. 

The images shown are the raw mammogram, the Region of Interest (ROI) marked out by 

a radiologist and a portion of the image after segmentation. Figure 16 shows other 

examples of MCs that were identified by the radiologist in this database. 

 
 

               
Figure 14  Arch Distortion With Suspected Microcalcification, (Top Left) Raw Image, (Top 

Right) ROI, (Bottom Left) Section Of Segmented Image Including MCs And FPs 
 



 38

 
 

   
Figure 15 Image Containing Both The Arch Distortions And Faint Microcalcifications, (Top 

Left) Raw Image, (Top Right) ROI, (Bottom Left) Section Of Segmented Image, 
Includes MCs And FPs 
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Large circle= Arch distortion, small circle= calcifications 
 

 

 
Calcifications 
 
Figure 16  Other Examples Of Microcalcifications Outlined By The Radiologist 

 

The above images consist of both the MC and FP signals. According to Takehiro et al 

(Takehiro Ema, 1995), false-positive MC signals in mammograms can be classified into 

four major categories: (a) MC-like noise pattern, (b) artifacts, (c) linear pattern and (d) FP 

signals appearing on ducts, step like edges or ring patterns. These False Positive MCs 

vary with database, but overall look like subtle MCs. However, careful observation 

would reveal their differences. Artifacts are caused by dusts or scratches in films or noise 
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in the digitization process (Takehiro Ema, 1995). False positive MC signals have higher 

contrast than true MCs. MC-like noise pattern is most commonly seen, while factors (b)-

(d) mentioned above also contribute to false positive MCs.  

 

4.3 Image Pre-processing and Segmentation 
 

Though not a direct part of this thesis, image pre-processing and segmentation were 

performed prior to classification and is mentioned here for completeness. Image 

preprocessing was performed using TSFs that used cascaded CWMFs. Adaptive WT-

based enhancement algorithms were developed for digitized CAD methods. 

Segmentation was performed using the fuzzy C-means algorithm.  

4.4 Feature Description 
 

 Subsequent to image segmentation, feature extraction was performed. Ten features 

that cover spatial and morphological domain and that are believed to be representative of 

the two classes were extracted from the segmented image. These features are listed in 

Table 2. 

Table 2  Input Features 
Feature No. Feature Type of feature 

3 Mean entropy 
4 Deviation of entropy 
7 Average foreground 
8 Deviation foreground 
9 Mean contrast 

Spatial 

5 Moment 
6 Compactness 

Morphological 

1 Eccentricity 
2 Spread 
10 Boundary gradient 

Describes the margins 

 

4.4.1 Spatial Domain Features 
 

These features are extracted from the enhanced output image. They describe the 

entropy and gray-levels of the image. Entropy refers to the disorder of a system. The 

entropy of a system is related to the amount of information it contains. Low entropy 
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images, such as those containing a lot of black sky, have very little contrast and large 

runs of pixels with the same or similar Digital Number values (Brien). An image that is 

perfectly flat will have entropy of zero. On the other hand, high entropy images such as 

an image of heavily cratered areas on the moon have a great deal of contrast from one 

pixel to the next. In short, the entropy refers to the Information content of the gray values. 

The entropy for each ROI can be calculated using Equation 22. 

( )∑−=
255

0
][*][ irellirelEntropy n             (22) 

Where rel[i] = histogram of the relative gray value frequencies 

             i = gray value of input image (0...255) 

 

(a) Mean entropy: This is the average entropy value given by Equation 23. 
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(b) Deviation of entropy: standard deviation of entropy values from the mean entropy, 

given by Equation 24. 
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(c) Average foreground: This is the average gray-level of foreground in enhanced           

image (Qian W, 2001) given by Equation 25. 
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(d) Deviation foreground: Standard deviation of gray-levels of the foreground in 

enhanced image given by Equation 26. 
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(e) Mean contrast: Difference in gray level values of foreground and background given 

by Equation 27. 

background

backgroundforeground

Avg
AvgAvg

Contrast
−

=               (27) 

 

The above features are based on the fact that MC spots have different gray levels 

compared to the background tissues.  

4.4.2 Morphology Domain Features 
 
These features focus on the shape description. They are extracted from the segmented 

image. 

 

(a) Compactness 

Compactness is a dimensionless quantity that provides a measure of contour 

complexity versus the area enclosed (Gavrielides, 1996; Shen L, 1994). It is one of the 

most commonly used feature in pattern recognition and classification techniques 

(Tembey, 2003). Compactness can be defined by Equation 28. 

)(4
)( 2

area
perimeter
π

γ =                          (28) 

For a disc, γ  would be a minimum and equals to 1. 

A larger value of compactness describes an irregular and elongated object while a smaller 

value is representative of a more symmetric object (Tembey, 2003) 

 

(b) Moment 

The moment refers to the roughness of a contour and increases as the irregularity of 

the shape increases.(Castleman, 1979; Tembey, 2003). It gives information regarding the 

shape roughness and is used to distinguish between the different shape categories of 

calcifications.  

 

For a two-dimensional image f(x,y), the moments mpq of order (p+q) are defined in 

Equation 29 (Qian W, 2001) 
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  While the central moments are defined as  
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For a binary image, the above formula can be rewritten as 
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4.4.3 Boundary Definitions 
 
(a) Boundary gradient 

This feature is obtained by calculating the gradient of each boundary pixels 8 

connected neighbors and taking the average of its neighbor’s gradient value as its 

gradient. 

 

The gradient operators are represented by a pair of masks H1 and H2, which measure 

the gradient of the image u(m,n) in two orthogonal directions. By defining the bi-

directional gradients as g1(m,n)=<U,H1>m,n and g2(m,n)=<U,H2>m,n the gradient vector 

magnitude and direction are given by Equation 32. 
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Using the above formulae, the segmented image is first screened, labeled all the 

boundary pixels of each calcification, and then mapped back to the enhanced image to get 

their boundary pixel gradient. The gradient feature is based on the optimized algorithm, 

which use an initially given value and initially defined searching direction to find the 
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optimized convergence solution for the problem. The Sobel gradient operator was used 

for calculating the gradient description feature used with the masks defined as: 
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(b) Eccentricity 

Eccentricity (ε) measures the degree to which an object’s mass is concentrated along 

a particular axis. The range of values for ε is [0-1] where 0 defines a circular object and 1 

a linear object. It is defined in Equation 34. 
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Where mpq is the moment of order (p+q) 

    

(c) Spread (S) is based on the central moments of the boundary pixels. It measures how 

unevenly an object’s mass is distributed along its centroid and takes values in the range 

of [0-1]. Again, a lower value represents a circular object while a large value defines a 

linear and non-uniform object. Spread is defined in Equation 35 (Tembey, 2003). 

0,22,0 µµ +=S                                (35) 

 

where pqµ is the central moment 

 

These 10 features extracted are classified into MC and FP categories based on the truth 

file (marked by radiologist). A sample of the training dataset used is shown in Table 3 

below. Here ‘-1’ stands for class FP and ‘1’ for class MC. 
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Table 3   Sample Of Training Data Used In The Study 

 

4.5 Data Analysis and Classification 
 

This was performed in three different stages: 

1. Input feature analysis and feature selection using Forward Selection method. 

2. Use all the ten features with the NN and SVM and compare their performances. 

3. Include the most significant features and their interactions (from Step 1) with the NN 

and SVM and compare their performances.  

 

4.5.1 Data Analysis 

 
The first step was a detailed analysis of input data. Since the medical implications of 

these features (or domain knowledge) were not known precisely, we seek a statistical 

explanation for the effects of the predictors. Data analysis includes the univariate 

statistics as well as multiple regression analyses. Logistic regression is a form of 

regression that gives us an insight into the independent variable effects, their significance 

and the extent of their role in the model, and their relationship with the outcome. With 

this understanding we continue with training and classification using NN and SVM.  

 

Logistic regression is used to predict a dependent variable on the basis of 

independents (Hosmer, 1989). In logistic regression, the dependent variable is binary or 

dichotomous. The goal is to find the best fitting model to describe the relationship 

between the dichotomous characteristic of interest (outcome) and a set of independent (or 

predictor) variables (Cox, 1989).  Logistic regression generates the coefficients of a 
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formula to predict a logit transformation of the probability of presence of the 

characteristic of interest (MedCalc, 2004). 

kk xbxbxbxbbpit +++++= ...)(log 3322110                   (36) 

where p is the probability of the presence of the characteristic of interest. The logit 

transformation is defined as the logged odds (Equation 37) where odds are given as: 
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Rather than choosing parameters that minimize the sum of squares errors (like in 

ordinary regression), estimation in logistic regression chooses parameters that maximizes 

the likelihood of observing the sample values. This is called the Maximum Likelihood 

Estimation (MLE) which is a method used to calculate the logit coefficients. MLE seeks 

to maximize the log likelihood (LL), which reflects the likelihood of predicting the odds 

of the observed values of the dependent from the observed values of independents.  

 

Logistic regression gives us the univariate effects of the variables on the outcome i.e. 

it gives us an idea as to how each input feature affects the classification as MC/ FP, as 

well as the strength of association between each input and the outcome.  

 

4.5.2 Feature Selection 
 

Feature selection was performed using the wrapper method explained in Section 

2.5.2. The induction algorithm used in this case was logistic regression with Stepwise 

Forward Selection (SFS) as the search strategy. Logistic regression was used previously 

for data analysis to study the significance of each variable in our model. The same 

concept is extended to a procedure for selecting the best subset of features based on the 

likelihood ratio criterion. Variables are tested for individual significances (main effect 

model) and in combination (interaction effect model) by adding each variable stepwise 
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into the model. It is to be noted here that the term ‘variables’ and ‘features’ are used 

interchangeably. 

   

The SFS was implemented in SAS. The algorithm starts out with no predictors 

(features) in the model. The test is based on the “chi-square” test which is a non-

parametric test of statistical significance. The initial chi-square reflects the error 

associated with the model when only the intercept is included in the model i.e. the initial 

chi-square is -2LL for the model which accepts the null hypothesis that all the predictors’ 

coefficients are zero. This statistic is then compared with the corresponding -2LL for the 

model with the predictors included. The chi-square value represents twice the difference 

in log likelihoods between fitting a model with only an intercept term and a model with 

an intercept and a predictor (independent variable). This value (difference) is compared 

with a chi-square distribution with degrees of freedom equal to the difference in the 

number of terms between the two models. If the difference is significant (p-value > chi-

square is lesser than 0.05), the null hypothesis that knowing the independents makes no 

difference in predicting the dependent, is rejected. Thus the new variable is added into the 

model. 

 

As stated earlier, it is important to study both the effects of individual independents as 

well as their interactions. An interaction effect is a change in the simple main effect of 

one variable over levels of the second. All possible two way interactions are included to 

test for their significance. Only two-way interactions are used since anything more than 

two way would not be significant due to issues of power and sample size.  

 

The main effect and the interaction effect models give feature subsets that are 

optimal. These feature subsets are tested with the NN and SVM algorithms. ROC curves 

for both these models are plotted and evaluated based on the c-statistic. The c-statistic 

indicates the area under the ROC curve.  
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4.5.3   Classification 
 

Classification was performed with all the (a) all ten features and (b) features selected 

from SFS procedure. 

  

Ideally, the extracted features are representative of the classes that they represent. 

Supervised classification involves two stages: Training and Testing. Three different 

training techniques were used, the single test method, Leave One Out (LOO) Cross 

Validation (CV) and the alternate class training method. 

 

In the single test method, 12 images out of the 22 were used for training and 10 

images for testing. The training images were selected after careful optimization of the 

training dataset. They were selected based on the NN’s performance on the selected 

training set and the remaining images which formed the testing set. The images that gave 

the best performance on the testing set were used as the training images.  

 

The size of the dataset however was small and training with 12 images may not have 

produced the desired high accuracy. Also the classifier may perform well on the training 

dataset, but may not be able to generalize well i.e. may not produce good test results. 

Cross Validation is an alternate evaluation method to estimate how well the trained 

model is going to ‘generalize’ or perform on unseen data. This is done in order to avoid 

the possible bias introduced by relying on any one particular division into test and train 

components. The original set is partitioned in several different ways and an average score 

is computed over the different partitions. The extreme variant of this is to split p patterns 

into a training set of size p-1 and a test set of size 1. This is performed p times and the 

squared error on the left out pattern is averaged over the iterations. This is called the 

LOO CV. In this work, LOO has been performed using the 12 images. In the first step of 

the procedure, the first 11 images were used for training and the last image for testing. In 

the next step, the next 11 images were used for training and the remaining one for testing. 

This procedure was carried out 12 times, so each image was used at least once for testing. 
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Training using alternate classes was done to account for the imbalance in the training 

data set since the number of FPs exceeded the MCs by almost five times. Training was 

performed using equal number of FPs and MCs and these classes were presented 

alternatively to the classifiers. 

 

The NN was implemented in MATLAB using the NN toolbox. A feed-forward back 

propagation network was used which consists of the forward and the backward phases. 

The NN architecture consisted of 2 hidden layers with 13 units each, and an output layer 

with 1 unit. The transfer function for the hidden layers was ‘tan-sigmoid’ and for the 

output layer was ‘linear’. The network was trained for 1000 epochs and the Sum of 

Squares Error (SSE) goal was set to 15. The architecture of the given NN is as shown in 

figure 17. Weights are initialized with random values. In the forward phase, the training 

inputs are given to the network. As the NN is learning, the value of error decreases. The 

error is propagated back to the hidden layer in the backward phase, thus modifying the 

weights of the network.  

 
Figure 17   Architecture Of NN 

 

The SVM was implemented using LIBSVM Version 2.6. This SVM classifier uses 

the Sequential Minimal Optimization (SMO) algorithm. The goal is to construct a binary 
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classifier to derive a decision function from the available samples with the least 

probability of misclassifying a future sample. Different kernel functions and parameters 

were experimented with. The kernels included the polynomial, RBF and linear kernels 

with their different parameters. Initially these kernels and their parameters were 

compared. However, during the CV process, the best parameters are chosen by nested 

cross-validation procedures. The data was highly unbalanced i.e. the number of FPs 

outnumbered the number of MCs by 5 times. Thus they were weighted unequally to set 

the penalty for an MC higher than that for an FP. Also, the data was normalized and 

scaled before presenting it to the SVM to ease mathematical calculations as well as 

reduce the effect of larger attributes.  

 

The final output of the SVM was a continuous vector ranging between 0 and 1, a 

value closer to 0 indicating a FP and a value closer to 1 indicating an MC. The output of 

the NN varied between -1 and +1. A threshold was specified on the output. If the 

likelihood value was greater than the threshold, then the predicted class would be ‘1’ or 

MC and if lesser than the threshold, the predicted class would be ‘-1’ or FP. 

 

4.5.4 Evaluation  
 

Evaluation of the classification algorithms was performed using two measures: 

Accuracy and Confusion Matrix. FROC curves were plotted by varying the threshold on 

the predicted output.  

 

The confusion matrix (Kohavi, 1988) contains information about actual and predicted 

classifications done by a classification system. The following table shows the confusion 

matrix for a binary classifier: 

 

Table 4  Confusion Matrix 
 +1 -1 

+1 TP FN 

-1 FP TN 
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Where TP = number of correct predictions that an instance is positive 

         FP = number of incorrect predictions that an instance is positive 

         TN = number of correct predictions that an instance is negative 

         FN = number of incorrect predictions that an instance is negative 

 

Based on the above values, the following evaluation criteria are defined: 

(a) Accuracy: proportion of total number of predictions that were correct (Equation 

38). 

FNTNFPTP
TNTPAccuracy

+++
+

=              (38) 

 

(b) True Positive Rate (TPR): proportion of positive cases that were correctly 

identified (Equation 39). 

FNTP
TPTPR
+

=                         (39) 

 

(c) False Positive Rate (FPR): proportion of negatives that were incorrectly classified 

as positives (Equation 40). 

TNFP
FPFPR
+

=                         (40) 

 

(d) True Negative Rate (TNR): proportion of negatives that were correctly identified 

(Equation 41). 

FPTN
TNTNR
+

=                         (41) 

 

(e) False Negative Rate (FNR): proportion of positive cases that were incorrectly 

classified as negative (Equation 42). 

TPFN
FNFNR
+

=                         (42) 
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Accuracy alone is not an adequate measure of performance especially in our case 

where the number of negative cases is much greater than the number of positive cases 

(Kubat M, 1998). Suppose there are 100 cases, 95 of which are negative and 5 positive. If 

the system classified all the cases as negative, the accuracy would be 95%, even though 

the classifier missed all the positive cases. Thus it is important to study the other 

parameters described above. The FROC curve gives a graphical representation of these 

parameters for various thresholds on the output and encapsulates all the information 

contained in the confusion matrix. Here, the number of FPs/ image is plotted on the x-

axis and the TPR on the y-axis. Each threshold results in an (FP, TP) pair and a series of 

such pairs are used to plot the FROC curve. In our case, the TPF would be the probability 

of correctly classifying a true MC as an MC. The FPF is the probability of incorrectly 

classifying a false positive (or ‘false alarm’ to avoid term confusion) as an MC. In 

medical diagnosis, these values are translated to produce two important indices of 

assessment: Sensitivity and Specificity. Sensitivity refers to the TPR or the proportion of 

patients with cancer who test positive. Specificity refers to TNR (or 1-FPR) or the 

proportion of patients without cancer who test negative. The position of the cutoff 

determines the number of TP, FP, TN and FN. As the sensitivity is increased, the 

specificity is also sacrificed. Thus, an optimum cut-off needs to be chosen, for which the 

sensitivity and specificity values are acceptable. Here, the TNR and TPR refer to the 

specificity and sensitivity of the classification stage. The overall specificity and 

sensitivity is affected by their respective values in the segmentation stage.  

 

Classification and evaluation based on SVM and NN algorithms was carried out and 

their performances were compared. Also, the performances of these algorithms using all 

features, the most significant ones and their interactions were compared. 
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CHAPTER 5 

RESULTS AND DISCUSSION 
 

 
This chapter presents the results of various experiments conducted on the training and 

testing images. The results are presented as follows: 

1. Detailed statistical analysis of input features 

2. Logistic regression and Forward Selection 

3. Classification results for different types of training methods with and without 

feature selection 

 

5.1 Statistical Analysis of Features 
 

The output of the segmentation and feature extraction process was a text file 

consisting of MC and FP cases. It was necessary to perform a detailed analysis of input 

data due to the lack of complete domain knowledge. The answers we seek are: Are the 

input features related to the outcome? Is there a pattern?  Three types of statistical 

analyses were performed: Univariate, Multivariate and Logistic Regression.  

 

Univariate analysis refers to the analysis of a single variable. This helps us get a 

‘feel’ for the data by giving us an overall description of what we are working with. 

Univariate analysis included histogram plots and feature statistics. The simplest way to 

visualize the input variables in each class is to create a frequency distribution of the data 

on each input variable (independent) or feature. Histograms give us an idea about the 

distribution of data in a dataset. The vertical axis of the histogram gives the number of 

counts of the data in each data range or bin, the bins plotted on the horizontal axis. In this 

study, the histograms were plotted to give us an idea about the distribution of data values 

in each class.  
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Figure 18   Histograms Of Individual Input Features 
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The histograms in Figure 18 show that most features are distributed in the same range 

for both the classes. This makes it impossible to use any one feature to distinguish 

between the two classes. Also, the distributions are heavily skewed (mostly to the right, 

in all cases except x3 and x5) i.e. the distribution of values is not symmetrical about the 

mean. Thus it is very difficult to estimate a “typical value” for the distribution. For 

instance, in a symmetric distribution, the typical value would be the center of the 

distribution. Data that is seriously skewed maybe an indication that there are 

inconsistencies in the process or procedures etc. Further decisions need to be made to 

determine if the skew is actually appropriate ("Histogram"). Among all the features, x3 

(mean entropy) and x5 (moment) have reasonably (though not significant) different range 

of values. 

Table 5   Univariate Statistics Of Input Features For Both Classes 
 Feature Class FP, n=5500 
  Mean SD Std. error mean upper 95% mean lower 95% mean 
x1 Eccentricity 0.1213 0.1895 0.0025 0.1263 0.1162 
x2 Spread 0.1789 0.1069 0.0014 0.1818 0.1761 
x3 Mean 

entropy 
0.1873 0.0576 0.0007 0.1888 0.1858 

x4 Dev. Entropy 0.0324 0.0216 0.0003 0.0332 0.0318 
x5 Moment 0.0817 0.0319 0.0004 0.0826 0.0809 
x6 Compactness 10.19 7.83 0.1057 10.4 9.98 
x7 Avg. 

foreground 
-25008.8 7458.7 100.58 -24811.61 -25205.97 

x8 Dev. 
Foreground 

26.47 36.5 0.492 27.43 25.5 

x9 Mean 
contrast 

1048.12 1046.05 14.1 1075.7 1020.4 

x10 Boundary 
gradient 

175.94 467.26 6.3 188.3 163.59 

 
 Feature Class MC, n=609 
  Mean SD Std. error mean upper 95% mean lower 95% mean 
x1 Eccentricity 0.1224 0.1391 0.0056 0.1335 0.1114 
x2 Spread 0.1747 0.0475 0.0019 0.1785 0.1709 
x3 Mean 

entropy 
0.1569 0.0576 0.0023 0.1615 0.1523 

x4 Dev. Entropy 0.0219 0.0195 0.0007 0.0235 0.0204 
x5 Moment 0.079 0.0296 0.0012 0.0814 0.0767 
x6 Compactness 11.173 9.295 0.3766 11.912 10.433 
x7 Avg. 

foreground 
-25460.3 4128.71 167.3 -25131.76 -25788.89 

x8 Dev. 
Foreground 

22.22 21.18 0.8586 23.91 20.54 

x9 Mean 
contrast 

1266 709.77 28.761 1322.58 1209.61 

x10 Boundary 
gradient 

170.5 465.952 18.881 207.584 133.42 
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Table 5 gives the class-wise statistics. It is observed that the means of all the features 

have approximately the same values for both the classes. However as observed in the 

histograms, the data are not symmetrically distributed. Thus studying just the mean holds 

little significance in this context. Variables x7 and x9 show very high standard deviation 

from the mean.  

 

It is difficult to visualize this data in 10-dimensional space. Instead, for visual 

representation of these classes, we plot them in 2-dimensional space. The input data was 

reduced to two principal components (PCs), which account for 98% of the variance in the 

input data. The Principal Component Analysis (PCA) was used here to transform the 

given dataset into a two-dimensional vector which contains all the information contained 

in the original dataset. Here, PCA was only used to visualize class seperability in a two-

dimensional space and not for any other data analysis. 

 
Figure 19   Plot Of PC-1 Vs PC-2 

 

The above scatter plot shows completely overlapping points for both the classes. This 

indicates that the features are statistically not representative of the classes that they 

belong to. 
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The next step is to study the relationships between the input features and the outcome. 

The main interpretation of logistic regression results is to find the significant predictors 

of the outcome. A logistic fit of each predictor vs. the outcome was performed. 

 

Table 6   Logistic Fit Of Outcome By Individual Predictors 
Variable Feature Parameter 

estimates (β) 
Std. Error Chi-square Prob > ChiSq 

x1 Eccentricity -0.034 0.229 0.02 0.882
x2 Spread -0.5759 0.5818 0.98 0.3222
x3 Mean entropy 8.1535 0.6845 141.88 <0.0001
x4 Dev. Of entropy 29.26 2.506 136.35 <0.0001
x5 Moment 2.74 1.37 4 0.0455
x6 Compactness -0.01 0.004 6.54 0.0105
x7 Avg. Foreground 0.00000902 0.0000061 2.16 0.142
x8 Dev. Foreground 0.0051 0.0018 7.9 0.0049
x9 Mean contrast -0.0001536 0.0000328 21.97 <0.0001
x10 Boundary gradient 0.0000272 0.0000997 0.07 0.7851

 

In Table 6, β>0 for variable x3 (mean entropy). Since the coefficient for mean 

entropy is positive, the log odds (and therefore the probability) of MC increases with 

mean entropy. On the other hand, the β values for x7 and x10 are close to zero. This 

would imply that the strength of association for the features ‘average foreground’ and 

‘boundary gradient’ with the outcome is very poor. 

 

Interpretation of β: The parameter estimate (β) gives the increase in log odds of the 

outcome, for one unit increase in x i.e. eβ represents the change in odds of the outcome, 

by increasing x by 1 unit. Given below is the interpretation of β: 

(a) If β=0, the odds and probability are the same at all x levels (eβ =1) 

(b) If β>0, the odds and probability increase as x increases (eβ >1) 

(c) If β<0, the odds and probability decrease as x increases (eβ <1) 

 

The overall significance of the variables is tested using the Model Chi-square, which 

is derived from the likelihood of observing the actual data under the assumption that the 

model that has been fitted is accurate. The difference in log likelihoods for the model 

with the predictor and without the predictor is distributed as a chi-square with degrees of 

freedom equal to the number of predictors. Thus, chi-square tests are used to test if the 
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predictors are significant or not. If we assume a significance level of 0.05, any value of 

likelihood less than 0.05 would be significant. In Table 6 above, x3 (mean entropy), x4 

(dev. of entropy), x5 (moment), x6 (compactness), x8 (dev. foreground) and x9 (mean 

contrast) have values < 0.05 indicating that these features are significant (individually) in 

our model. These features are from both the spatial and morphological domains. 

 

5.2 Feature Selection using SFS 
 
The above univariate analysis gives an interpretation of individual features and their 

individual relationships with the outcome. The SFS gives the best feature subset as 

explained in Section 4.5.2. The results of SFS with only the predictors included are as 

shown in Table 7. This is the main effect model. 
                    

Table 7   Forward Selection Results For Data: Main Effect Model 
Parameter DF Estimate Standard 

error 
Chi-square Pr > chisq

     
Intercept 1 1.9213 0.5857 10.7593 0.001
x1 1 -0.5201 0.6946 0.5605 0.4541
x2 1 -15.7646 4.2701 13.6301 0.0002
x3 1 -14.4453 1.1339 162.2841 <.0001
x6 1 0.0462 0.0188 6.0598 0.0138
x7 1 -0.00002 7.59E-06 9.1834 0.0024
x9 1 0.000106 0.000043 6.1915 0.0128

 

It is observed that the SFS procedure has selected the following features as a good subset: 

a) eccentricity  

b) spread 

c) compactness 

d) mean entropy 

e) average foreground  

f) mean contrast  

Features (a) and (b) are margin descriptors; (c) is a morphological feature while features 

(d) to (f) are spatial domain features. Features in both the spatial and morphological 

domain have been selected, indicating that these features are significant and important in 

improving the discriminatory power of the model. 
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SAS uses the c-statistic to determine the discriminating power of the logistic model. 

The c-statistic is nothing but the Area under the ROC curve, which is close to one for a 

model that discriminates perfectly. The c-value for the main effect model was 0.693. The 

ROC curve for the main effect model with the predictors in Table 7 is as shown in Figure 

20.  

 
Figure 20   ROC Curve For Main Effect Model, C=0.693 

 

Once the main effect model has been constructed, two-way interactions are studied to 

assess the predictive effect of two independent variables on the outcome. All possible 

interactions between the ten input variables were added into the model and a SFS 

procedure was performed. Results of SFS with all the two-way interactions included into 

the main effect model are as shown in Table 8.   

 

1-Specificity = FPR 
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Table 8   Forward Selection Results For Data: Interaction Effect Model 
Parameter DF Estimate Standard 

Error 
Chi-Square Pr > ChiSq

     
Intercept 1 0.7675 0.7844 0.9574 0.3279
x1 1 -0.4961 1.8911 0.0688 0.7931
x3 1 -20.5268 1.8069 129.0604 <.0001
x1*x3 1 16.5311 4.4748 13.6475 0.0002
x7 1 0.000011 0.000028 0.1568 0.6921
x1*x7 1 0.000162 0.000059 7.5173 0.0061
x8 1 0.00385 0.00493 0.6082 0.4355
x9 1 -0.00243 0.000443 30.1192 <.0001
x3*x9 1 0.00991 0.00147 45.7245 <.0001
x7*x9 1 -9.61E-08 1.72E-08 31.4287 <.0001
x8*x9 1 -0.00001 2.71E-06 26.6355 <.0001

 

This model has chosen the following features and their interactions as the optimal 

subset: 

a) eccentricity 

b)  mean entropy 

c)  average foreground 

d)  dev. foreground 

e)  mean contrast  

f) (eccentricity*mean entropy) 

g) (eccentricity*avg. foreground) 

h) (mean entropy*mean contrast) 

i) (avg. foreground*mean contrast) 

j) (dev. foreground*mean contrast) 

 

It is observed here that spatial domain features dominate in significance. Except for 

eccentricity, the remaining features are all in spatial domain. New indices based on these 

two-way interactions can be considered to improve the discriminatory power of the 

features.  

 

The c-value of this model is 0.77, which is a significant improvement over that of the 

main effect model. The ROC curve for the model with the predictors of Table 8 is shown 

in Figure 21. 
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Figure 21   ROC Curve For Interaction Effect Model, C=0.77 

 

This completes the data pre-processing section where we analyzed in detail the 

feature statistics, the relationships between the predictors and the outcome and performed 

feature selection (main effect and interaction effects) using SFS. 

 

In summary, it is seen that the features taken individually are not very good predictors 

of the outcome. Feature statistics and univariate analysis are evidence of this observation. 

A feature selection procedure helps select the best subset of features that could increase 

the discriminatory power of our model. Features in both the spatial domain and 

morphological domain were selected during the feature selection process. However, the 

SFS procedure used the Logistic regression as the induction algorithm. This may not 

guarantee the best performance results from NN and SVM. Further classification is 

performed with all the ten features and the features from the SFS and compared.  

1-Specificity = FPR 
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5.3 Classification 
 

The parameters used with the NN classifier were presented in the Materials and 

Methods section. Despite the theoretical advantages that SVMs possess over NNs, SVM 

requires a certain amount of model selection. The kernel parameter is one of the most 

important design choices for the SVM since it implicitly defines the structure of the high 

dimensional feature space where a maximal margin hyperplane will be found. Thus the 

choice of the SVM kernel is crucial. We study two popular kernels (polynomial and 

RBF) with various parameters, to see which one best suits our case. These kernels were 

tested on the 12 training images and on 10 unseen images. The training dataset consisted 

of 3167 cases, 553 of which were MCs and 2614 cases of FPs.  

Table 9 shows the results on training and testing data for various kernels.  

 
Table 9   Choice Of SVM Kernel* 

Kernel  Training Testing 
  Accuracy Confusion matrix Accuracy Confusion matrix 
RBF kernel, g=7 c =1000 0.85 0.12 0.88 0.93 0.16 0.84 
(equal weights for classes)   0 1  0.05 0.95 
 c =100  0.89 0.39 0.61 0.91 0.25 0.75 
   0 1  0.08 0.92 
 c =10 0.88 0.35 0.65 0.89 0.34 0.66 
   0.01 0.99  0.1 0.9 
 c =5 0.88 0.32 0.68 0.9 0.3 0.7 
   0.01 0.99  0.09 0.91 
        
RBF kernel g =9 0.88 0.81 0.19 0.82 0.43 0.57 
(with c=50 for class 1 and    0.11 0.89  0.18 0.82 
c=10 for class -1) g =7 0.87 0.8 0.2 0.81 0.48 0.52 
   0.12 0.88  0.18 0.82 
 g =5 0.86 0.76 0.24 0.81 0.45 0.55 
   0.12 0.88  0.18 0.82 
        
Polynomial kernel  d =7 0.8 0.5 0.5 0.81 0.54 0.46 
(with c=50 for class 1 and    0.14 0.87  0.19 0.82 
c=10 for class -1) d =3 0.8 0.49 0.51 0.81 0.55 0.45 
   0.13 0.87  0.19 0.81 
* All numerical values rounded to two decimal places 

The confusion matrix interpretation is as follows: 

 +1 -1 
+1 TPR FNR 
-1 FPR TNR 
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It is very important to note the usage of the term ‘False Positive’. In this work, FP is also 

one of the classes i.e. refers to a false positive MC signal. However the FP that is 

evaluated in the confusion matrix above refers to (in our case) a FP MC signal 

misclassified as an MC.  

 

From Table 9, it is observed that sensitivity (TPR) increases drastically by 

introducing different weights for the classes. This is because our data is highly 

unbalanced and higher penalty for a positive case would give equal importance to this 

under-represented class.  

 

It is observed that accuracy decreases as value of c (error penalty) decreases. A high 

value of error penalty would force the SVM training to avoid classification errors, thus 

resulting in a larger search space for the QP optimizer. It is observed that some 

experiments fail to converge for very large values of c (c > 1000).  An optimum value of 

c=10 is chosen. The performance of the RBF kernel largely depends on the value of g 

which is the radius of the RBF kernel. Accuracy decreases with kernel radius. Though 

accuracy at g=9 was the highest with a good sensitivity for training data, the TPR on 

testing data for g=7 is higher. It can be seen that the polynomial kernel performance on 

testing data is better (in terms of sensitivity). The FROC for training and testing datasets 

for the RBF and polynomial kernel is as shown in Figure 22. 

 
Figure 1  FROC Curves For (Left) Training And (Right) Testing Images, C=50 For Class 1 

And C=10 For Class -1, RBF Kernel Radius=7; Polynomial Kernel, Degree=3 
 

Considering the overall performance (on training and testing images), the RBF kernel 

shows better results than the polynomial kernel. There is a drastic improvement in 
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sensitivity of the RBF kernel for a threshold of 0.65. Sensitivity at this threshold on 

training images was about 80% while specificity was about 88%. However, the 

sensitivity of the polynomial kernel on test data was 55% as against 48% for RBF kernel. 

It is to be noted that the horizontal axis in the above graph gives the average number of 

FPs/ image and not the FP clusters. The RBF kernel with g=7 was used for further 

classification. 

 

Once the initial kernel selection was performed, classification and evaluation was 

done. This step of analysis was broken into experiments which are summarized below: 

(a) Experiment #1: Ten features with NN and SVM using single test 

(b) Experiment #2: Ten features with NN and SVM using LOO CV 

(c) Experiment #3: Ten features with NN and SVM using alternate classes for 

training 

(d) Experiment #4: Use features from forward selection results, main effect model, 

with NN and SVM 

(e) Experiment #5: Use features from forward selection results, interaction effect 

model, with NN and SVM 

 

 

 

Experiment #1 

 

This experiment used 12 images for training and 10 images for testing. The SVM 

with RBF kernel (radius=7, error penalty c=50 class 1 and 10 for class -1) was used. The 

NN used the SBP algorithm with 2 hidden layers, 13 units each. The convergence 

criterion was set to SSE of 15. All NNs were trained till there was no significant change 

in the SSE. The performances of the NN and SVM on training and testing images are 

given in Figures 23 and 24. 
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Figure 23  FROC Curve For NN Using All Ten Features- Single Test 

 

 
Figure 24  FROC Curve For SVM Using All Ten Features- Single Test 

 

 
Figure 25 Comparison Of FROC Curves For NN And SVM, (Left) Training Images, (Right) 

Testing Images 
 

Table 10  Accuracy And Confusion Matrix For Experiment #1 
Algorithm Training Testing 
 Accuracy Confusion Matrix Accuracy Confusion Matrix 
NN 0.86 0.84 0.16 0.7 0.5 0.5 
  0.13 0.87  0.3 0.7 
SVM 0.87 0.8 0.2 0.81 0.48 0.52 
  0.12 0.88  0.18 0.82 
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It can be observed from the above graphs that though the SVM shows drastic 

improvement in sensitivity for a specific threshold (0.7). The accuracy of both the 

algorithms on training data is comparable. However, the SVM clearly outperforms the 

NNs performance on testing (unseen) data. The overall accuracy on unseen data is 81% 

for SVM and 70% for NN with respective specificities of 0.82 and 0.7. Thus, the average 

number of FPs per image is much lesser for the SVM compared to the NN.  

 

 

 

Experiment #2 

 

This experiment used 12 images and performed CV on these images. The 10 testing 

images were kept completely independent of training dataset to evaluate the classifiers’ 

true generalization capability. The NN was trained using the LOO CV. Here, training is 

performed by dividing the 12 images into several training and testing sets. In each pass, 

11 images are used for training and 1 image for testing. At the end of the process, each 

image would have been used at least once for testing. LOO is generally used to find the 

parameters of the classifiers which result in least generalization error. However, with the 

NN, the model was trained each time with the LOO training datasets.   

 

The SVM on the other hand did not require training with each LOO training set. 

Here, the LOO CV was performed as a “grid-search” where pairs of (C, γ) are tried and 

the one with the best CV accuracy is picked. Trying exponentially growing sequences of 

C and γ is a practical method to identify good parameters (LIBSVM manual) (for 

instance, C = 2-5,2-3,….,215, γ=2-15,2-13,…,23). Parameter selection was performed using 

various values of C and γ. The best (C, γ) pair was (27,23) with the CV rate of 75.56%. 

Thus c=128, g=8 were used for this experiment.  

 

The performance of these algorithms on training and testing data is as shown in 

Figures 26, 27 and 28.  
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Figure 26  FROC Curve For NN Using All Ten Features- LOO 

 
Figure 27  FROC Curve For SVM Using All Ten Features- LOO 

 
Figure 28 Comparison Of FROC Curves For NN And SVM, (Left) Training Images, (Right) 

Testing Images 
 

Table 11  Accuracy And Confusion Matrix For Experiment #2 
Algorithm Training Testing 
 Accuracy Confusion Matrix Accuracy Confusion Matrix 
NN 0.75 0.47 0.53 0.61 0.38 0.63 
  0.19 0.81  0.39 0.61 
SVM 0.93 0.81 0.19 0.76 0.46 0.54 
  0.04 0.96  0.24 0.76 

 

The SVM outperformed the NN in terms of accuracy and sensitivity on training data. 

A good value of overall accuracy of the SVM in this experiment shows the importance of 

performing CV to choose good model parameters. However, the performance of the NN 
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on training data did not improve with this method though generalization performance 

improved compared to single test method. The performances of both the classifiers on 

unseen data were comparable. 

 

 

Experiment #3 

 

The number of MCs in the training set that contained 12 images was 553 and the 

number of FPs was 2614. Thus the number of FPs exceeded the MCs by almost five 

times. Initial observations showed that the classifiers were ‘biased’ to the FP class 

because of the imbalance in the data.  Since the dataset is highly unbalanced, it is desired 

to study the results of using a balanced dataset with equal number of positive and 

negative cases. 553 FPs were randomly selected from the 2614 cases. The classifiers 

were presented with a pattern from class MC, and then a pattern from class FP 

(alternatively). The performance results for three cases is given: (1) the training set which 

contains equal number of MC and FP cases, (2) the training images which are the 12 

images from which these cases were picked from and (3) testing images which are the 10 

unseen images. Results of this experiment are summarized below. 

 
Figure 29  FROC Curve For NN Using All Ten Features- Training With Alternate Classes 
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Figure 30  FROC Curve For SVM Using All Ten Features- Training With Alternate Classes 

 

 
Figure 31  Comparison Of FROC Curves For NN And SVM, (Top Left) Training Dataset, 

(Top Right) 12 Training Images, (Bottom Left) 10 Testing Images 
 

Table 12  Accuracy And Confusion Matrix For Experiment #3 
Algorithm Training dataset Training images Testing images 
 Accuracy Confusion Matrix Accuracy Confusion Matrix Accuracy Confusion Matrix 
NN 0.94 1 0 0.65 0.99 0.01 0.51 0.59 0.41 
  0.12 0.88  0.42 0.58  0.49 0.51 
SVM 0.93 0.98 0.02 0.54 0.94 0.06 0.4 0.73 0.27 
  0.12 0.88  0.55 0.45  0.61 0.39 
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From Figure 29, it can be seen that the NN performed extremely well on the training 

dataset and the training images. The SVM showed sharp increase in sensitivity for the 

training dataset and images. From the FROC curve on testing images, it is evident that 

the SVM outperformed the NN in terms of sensitivity. Thus, it is clear that the SVM’s 

capability to generalize is better than the NN. However, it should be noted that this 

method may not be the most appropriate for training the classifiers since the number of 

average false positives per image is very high (poor specificity) in spite of high 

sensitivity. This would mean that a large number of ‘-1’s are being misclassified as ‘1’. 

Also the number of FPs in the training dataset is chosen randomly, so the chosen samples 

may not necessarily be representative samples of the FP class. 

 

The above three experiments are summarized in the FROC graphs of Figure 32.  

FROC curves of various training methods: 12 Training images
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FROC curves for various training methods: 10 Testing images
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Figure 32  Comparison Of FROC Results From Experiments 1,2 And 3 
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From the above graphs, we observe that the SVM trained with alternate classes shows the 

highest sensitivity (98%) for training and testing (73%) images. However, results indicate 

poor specificity (average number of FPs/ image is high). The SVM with parameters 

selected from the CV process showed high sensitivity of 81% for training images with 

low AFP/image value, but showed a sensitivity of about 46% on the testing images. CV 

improved the performance of NN on unseen data. 

 

The SVM trained with the parameters in experiment 1 had a sensitivity of 80% and 

specificity of about 88% on training images. On testing images, the sensitivity was 48% 

and specificity was 81%. This model showed good sensitivity as well as low AFP values 

on both training and testing images. Overall the SVM outperformed the NN. In 

Experiments #1 and #3, though the two were comparable on the training data 

performance, the SVM clearly ruled on the testing (unseen) data.  

 

 

Experiment #4 

 

This experiment was performed with the feature selection results from the logistic 

regression. The SFS procedure selected features eccentricity, spread, mean entropy, 

compactness, average foreground and mean contrast as significant. Only these features 

were now used in our model to study if there was an improvement in accuracy. Thus the 

input feature space was six-dimensional. Only the main variables (or effects) were 

considered first. Training and testing was done using the single test method. 

 
Figure 33 FROC Curves For Training And Testing Images Using SFS Main Effect 

Variables 



 72

Table 13  Accuracy And Confusion Matrix For Experiment #4 
Algorithm Training Testing 
 Accuracy Confusion Matrix Accuracy Confusion Matrix 
NN 0.67 0.73 0.27 0.61 0.68 0.32 
  0.34 0.66  0.39 0.61 
SVM 0.85 0.69 0.31 0.8 0.48 0.52 
  0.12 0.88  0.19 0.81 

 

The SVM again outperforms the NN in training and testing performance. Sensitivity of 

about 69% is seen for specificity of 88% on training images (Table 13). The NN shows 

slightly better sensitivity (68%) than SVM on testing images in this case. If we consider 

an AFP value of 50, both the NN and SVM have testing sensitivity of about 50%.  

 

 

Experiment #5 

 

The interaction effects from the SFS procedure were added into the main effect 

model. The interactions that were added are discussed on Table 8. New variables were 

created by multiplying the corresponding variable values.  

 
Figure 34 FROC Curves For Training And Testing Images Using SFS Interaction Effect 

Variables 
 

Table 14 Accuracy And Confusion Matrix For Experiment #5 
Algorithm Training Testing 
 Accuracy Confusion Matrix Accuracy Confusion Matrix 
NN 0.73 0.89 0.11 0.83 0.81 0.19 
  0.31 0.69  0.17 0.83 
SVM 0.84 0.7 0.3 0.76 0.57 0.43 
  0.13 0.87  0.24 0.76 
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It is seen that the testing performance of the SVM is very poor for this case. The NN 

showed much higher sensitivity on testing data (81%) compared to the SVM (57%) 

(Table 14). 

 

We now see how these models with feature selection have performed compared to 

using all the ten features in the model. Figure 35 summarizes this comparison. 

Comparison of performance on training data with and without feature selection
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Comparison of performance on testing data with and without feature selection
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Figure 35  Comparison Of FROC Graphs For Models With And Without Feature Selection 
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The NN and SVM that used all the features showed a sensitivity of about 78% for an 

AFP value of 17 on the training images. However, the sensitivity on the testing images 

was around 33% and 47% respectively for an AFP value of 40 per image. Model 

performance on training images did not improve with feature selection. However, with 

feature selection, the generalization capability of the NN classifier increased 

significantly. For an AFP value of 40 per image, the sensitivity is about 78% for 

interaction effect variables and 48% for main effect variables, which is a significant 

improvement over the 33% sensitivity obtained from the NN without feature selection. 

However, the same feature selection variables did not show any improvement in the 

generalization performance of the SVM classifier. Performance on training data was 

worse with feature selection than with all the ten features included. 

 

On unseen data, the NN with feature selection showed great improvement in 

performance. A reasonable explanation for this would be to go back to the basis of NN 

algorithms. The feature selection procedure employed used Logistic Regression as the 

induction algorithm. A logistic regression model is identical to a NN with no hidden units 

if the logistic (sigmoidal) activation function is used (Bishop, 1995; Hastie T., 2001). In a 

NN with hidden units, each hidden unit computes a logistic regression (different for each 

hidden unit) and the output is therefore a weighted sum of logistic regression outputs. 

The weights (of the NN) or the coefficients (of Logistic Regression) are determined 

based on the dataset, by maximum likelihood estimation (Dreiseitl Stephan, 2003). 

However, the decision boundary for a NN can be non-linear, making the NN more 

flexible compared to logistic regression (Dreiseitl Stephan, 2003). Better results of NN 

with FS which used logistic regression as the induction algorithm could be attributed to 

this similarity in mathematical principle. 

 

Figure 36 shows an example of an output image obtained with the SVM using all ten 

features. 
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Figure 36 (Top) Raw Image With Suspicious ROI Outlined, (Bottom Left) Segmented Image, 

(Bottom Right) Image Showing MC Clusters With Reduced FPs 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  
 

6.1 Concluding Remarks 
 

In this work, we presented the use of SVM and NN algorithms for detection of MCs 

in mammograms. The classifiers were trained through these techniques, to test on every 

location in the segmented mammogram whether the detected signal was an MC or an FP. 

Ten features were originally used to represent the two classes. 

 

Experimental results were obtained using a database of 22 images. A detailed 

statistical analysis of the dataset was performed prior to classification. It was observed 

that based on statistics alone, it was difficult to characterize these classes. However, the 

SVM and NN algorithms, considered to model highly non-linear data, do show 

interesting results.  

 

The classifiers were trained using different training methods like single test, cross 

validation and alternate class training. The LOO CV was used with the SVM to perform 

parameter selection. Accuracy improved from about 87% to 93% on training data for the 

SVM with parameter search. However, performance on the testing set did not improve 

significantly. The single test SVM showed good results overall (training and testing). CV 

improved the performance of the NN on unseen images. With the alternate class training 

method, the classifiers showed high sensitivities of about 95% and 65% (average for NN 

and SVM) on training and testing data respectively. Though the sensitivity was high the 

average number of FPs per image was also high. Also, this method chose random cases 

of the FP class which may not be the ideally representative samples. Overall, in all the 

experiments that used all the ten features, the SVM outperformed the NN. Though the 

algorithms were comparable with results on training set, the SVM performed better on
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unseen data. The SVM with CV parameter selection showed the best performance with 

much lesser number of FPs per image.  

 

Feature selection using Stepwise Forward Selection method with logistic regression 

as the induction algorithm was performed. The most significant features were selected 

and given to the classifiers. For the SVM, though the models with feature selection 

showed lesser accuracy on the training data than the models that used all features, the 

testing sensitivities were comparable. Thus, the models with feature selection achieved 

the same generalization performance as those without feature selection. This helps us 

remove irrelevant and redundant features and achieve comparable testing performance 

with fewer features. In particular, the sensitivity of the NN model on unseen data with 

interaction effects added was extremely high (around 78% for an AFP/image value of 40) 

as compared to 33% for the NN model without these interaction terms. The NN with 

main effect model terms showed a sensitivity of around 42%. The improvement of the 

NN in accuracy and sensitivity on unseen data can be linked to its mathematical 

similarity with logistic regression which was used as the inductor during the feature 

selection process. New variables that incorporate the interactions between significant 

features could be added into the analysis to improve the discriminatory as well as 

generalization power of the classifiers.  

 

In summary, the SVM outperformed the NN in almost all cases. The generalization 

capability of the SVM was clearly noteworthy. The training time taken by SVM was also 

several magnitudes lesser. Thus we can say that for this complex dataset, the SVM is 

more suited for our analysis.  

 

6.2 Future Work 
 

The most crucial part of future work would be to cluster the output to enhance clinical 

utility. This work only involves detection of MC spots and reduction of FP signals. 

However, these spots are considered suspicious when seen in clusters of four,
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five or six (Faculty of Medicine, 1999). Clusters have to be identified individually as 

shown in Figure 36 for each image and threshold. 

 

Feature selection showed an improvement in generalization performance of the NN. 

However, this was not the case with SVM. Wrappers that use the SVM as the induction 

algorithm could be used to select features. However, all the methods based on the 

wrapper approach are tuned for/ by a given learning machine. The filter approach to 

feature selection could be a better alternative here, since it would provide a generic 

selection of variables not specific to any learning algorithm. A study based on the 

comparison of all these feature selection approaches would be worthwhile. 

 

Also a direct medical understanding of the features’ effect on the class would make 

analysis of the results easier. Feature selection could be performed just based on domain 

knowledge. Future work could include using a bigger database with more representative 

cases. More number of images and training samples would help establish our results and 

observations. Comparison with other techniques like decision trees and statistical 

classifiers could be performed.   
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