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ROBUST DOCK ASSIGNMENTS AT LESS-THAN-TRUCKLOAD TERMINALS 

 

Mesut Korhan Acar 

 

ABSTRACT 

 

Less-than-truckload industry has a valuable potential for applications of operations 

research in two areas, network design and efficiency improvement within existing networks. This 

thesis focuses on the latter, specifically the less-than-truckload terminals where cross docking 

operations occur. 

The assignment of incoming trailers to inbound docks is one of the critical decisions that 

affect the performance of less-than-truckload terminals. This research reviews existing models in 

literature and introduces an optimal mixed integer quadratic model with the objective of 

generating assignments that are robust against variability in system parameters such as truck 

arrival and service times, terminal characteristics and trailer load content. The computational 

limitations of the optimal model are discussed. 

A dock assignment heuristic is developed to overcome the computational difficulties 

reported with the optimal model to solve realistic size problems. It is concluded that the heuristic 

is generally applicable and is robust against system variably. A dynamic dock assignment 

heuristic is later introduced to implement the decision process at real time. It is concluded that he 

dynamic dock assignment heuristic is also robust against system variability. 

The last part presents a case study that benchmarks the dynamic dock assignment 

heuristic and existing static assignments at a real terminal. The results show that the dynamic 

dock assignment heuristic outperforms the static assignment under system variability. 

Conclusions and future research areas are finally addressed in the last chapter. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Transportation Sector 

The transportation sector, constituting 10% of service sector, is reported to contribute 

80% of US GDP in 2002, utilizes 3.9 million miles of public road, 190 thousand miles of railroad 

track, 25 thousand miles of waterways, 145 major ports and 5000 airports to serve 4 trillion 

passenger miles and 3.7 trillion ton-miles of domestic freight annually  [1]. According to US 

Census Bureau  [2], truck transportation and warehousing industries generated a revenue of 

237,485 million dollars in 2002, of which 13% was less-than-truckload (LTL) transportation and 

6.5% was warehousing and storage. These numbers express the importance of less than truckload 

freight transportation segment. 

 

1.2 Less-Than-Truckload (LTL) Segment  

By definition, truckload (TL) motor carriers are those operating with loads, whose weight 

is either in excess of 10,000 lbs or whose load allows no other load to be carried, whereas less-

than-truckload (LTL) carriers carry shipments with an actual weight of 10,000 lbs or less per 

destination [3, 4]. The efficiency of truckload shipment is closely related with its utilization level 

which starts to decline as the load starts to comprise a small fraction of a truck.  

 

 
Figure 1 Example of LTL Shipment Consolidation 
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LTL carriers alleviate efficiency loss problem by consolidating shipments. LTL trailers 

can carry an average of 20-30 shipments that may have different origins and destinations. For 

example, a half  truck load of goods originating from Tampa, FL is heading to San Diego, CA 

and another half truck load originating from Orlando, FL is bound to Los Angeles, CA. Instead of 

driving the trucks from coast to coast half empty, it would be a good idea to drive shipments a 

little out of the way to Birmingham, AL and consolidate the shipments in one truck which would 

then drive to west as depicted in Figure 1. This would incur some extra driving but would reduce 

the number of required trucks, trailers, drivers and total driving time. Birmingham, AL would 

also be an appropriate hub location for west bound freight coming from other locations in south 

east. 

LTL industry makes the above scenario feasible by utilizing hub-and-spoke networks. 

These hubs are in the form of breakbulk terminals which are used to consolidate LTL shipments 

moving between end-of-line terminals at origin and destination points. The primary function of 

hub-and-spoke networks and breakbulk activity is to aggregate loads with common destinations 

to achieve economies of scale [5, 6].  

 

1.2.1 LTL Networks 

The flow of freight in hub-and-spoke networks is depicted in Figure 2. The shipment is 

picked up from the shipper and brought to the origin terminal, the entry point of the hub-and-

spoke system. From the terminal, the freight is sent to a regional hub, where it is sorted and 

combined with other shipments, and sent on to other hubs where it is sorted again. Finally the 

order is sent to the destination terminal, which is the exit point of the hub-and-spoke system. 

From here, a local truck takes the shipment to its final destination. Handling freight at these 

terminals is labor intensive. Some carriers hold down the labor costs by restricting the sizes and 

weights of the packages which enables some automation via the use of draglines and conveyors. 
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There are mainly two important aspects of designing an LTL network. First is 

determining the number and locations of terminals and hubs. Appropriately located terminals and 

hubs in sufficient quantities can reduce costs significantly; however this task is difficult. A small 

number of terminals mean higher circuitry but fewer freight transfers and a large number means 

less circuitry but more freight transfers. The problem gets even more complicated from a global 

standpoint relative to freight demand and transshipment density, however, this aspect is out of the 

scope of this research. Some work in literature in this area are, an integer programming approach 

to hub location problem  [7] and methods of reducing the number of constraints and variables [8-

10]. 

The second aspect of an LTL network design is operational; i.e., efficiently moving 

freight between and inside terminals. This research relates to operational matters. 

 

1.2.2 LTL Terminals  

In a typical LTL network, terminals serve three basic functions, namely the out-bound, 

inbound, and breakbulk operations. These functions usually comprise unloading, sorting, 

consolidating and loading operations as depicted in Figure 3. The hubs, in addition to inbound 

and outbound operations, perform breakbulk operations which consolidate freight from end-of-

line terminals and transfer the freight to other hubs. The time and influx of the circulation of 

freight in and out of terminals and hubs vary through the day.  
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Figure 3 Operations in an LTL Terminal 

 

Breakbulk operations are labor intensive and costly operations. A large LTL carrier can 

spend $300-$500 million annually handling freight (about 20% of total costs)  [11]. Freight 

handling is important because time that a shipment spends at the terminal is wasted in the sense 
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that the shipment is not making progress toward its destination. In some cases, rapid turnaround 

in the terminal can mean the difference between providing overnight or second-day service to a 

destination.  

Depending on the size of the terminal, a typical breakbulk terminal workforce consists of 

an operations manager, supervisors and workers. When a trailer arrives at a terminal, it is either 

assigned to an inbound door or it is sent to a queue of trailers waiting to be unloaded. Once the 

trailer is parked at an open door, the shipments are unloaded and delivered to outbound doors 

according to their destinations. The unloaded trailer is removed from the inbound door and 

replaced by another incoming trailer. At the outbound doors, once a trailer is loaded, it is closed 

and replaced with another empty trailer that will be loaded with shipments to the same 

destination.  

The assignment of doors followed by unloading, sorting and loading is called cross-

docking operations. Material flows from inbound docks to outbound docks. Cross-docking is an 

operating strategy that moves items through without putting them into storage. Some recent work 

in cross docking systems is done by Gue and Bartholdi   [11] and Gue  [12]. Bartholdi and Gue 

 [13] studied the optimal layout of a cross dock terminal. Cross-docking centers differ from 

conventional distribution centers because significant inventories are not accumulated for long 

times. Material is unloaded from trucks and immediately reloaded onto another vehicle by means 

of individual transportation units such as forklifts. Cross-dock operations thus play a critical role 

in reducing costs and delivery times through prevention of accumulation of inventory. 

 

 
Figure 4 Crossdocking Terminal  

 

LTL crossdock terminals, as depicted in Figure 4, resemble a warehouse with docks 

along its perimeter with 10 to 200 or more doors. The arrows show crossdocking routes. The two 
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types of doors in the terminals are strip doors for receiving (unloading) and stack doors for 

shipping (loading) to specific destinations.  Some doors can be assigned either type and are left 

open for that purpose, like door number 16 in Figure 4. 

 

1.2.2.1 LTL Terminal Door (Dock) Assignment 

The assignment of incoming and outgoing trailers to a dock (a terminal strip/stack door 

will be referred to as a dock in the remaining part of this thesis) is one of the critical decision 

factors that affect the performance of LTL terminals. The dock assignment problem is a resource 

allocation problem that is commonly addressed in the literature as a quadratic assignment 

problem. This problem is some ways similar to the gate assignment problem at airports. There are 

unique characteristics associated with the operations in an LTL terminal that are not adequately 

addressed in the literature. These characteristics include: 

1. Truck Arrival Times: Arrival times of trucks do not follow a precise schedule. The 

drivers may call ahead and estimate the arrival time, however traffic congestion and other 

contingencies prevent precise planning. In the LTL industry, the assignment of inbound trucks to 

strip docks is made after the truck arrives at its destination. 

2. Truck Departure Times: Departure times associated with outbound trucks also exhibit 

considerable variability. For example, some trucks bound for end-of-line terminals must closely 

follow a time schedule to make sure that the freight at the destination terminal is available to be 

carried back to the hub. On the other hand, trucks that operate between breakbulk terminals have 

a time window for departure. 

3. Congestion: A portion of the inbound freight is staged before it can be loaded onto its 

outbound trailer. The staged freight, and loading and unloading of freight at the docks lead to 

internal congestion that effect the efficiency of operations within the terminal  [11].  

4. Destination Types: A variety of constraints must be considered when handling inbound 

freight based on its destination type. For example the freight that arrives from end-of-line 

terminals that is destined for other breakbulk terminals is handled differently and in a different 

section of the warehouse than freight from other breakbulk terminals that must be sorted and 

delivered to local terminals. Furthermore a single trailer may contain freight destined to more 

than a single destination type  [11]. 

5.Freight Flow: The LTL industry, unlike other transportation industries such as rail and 

air, does not always adhere to strict time schedules, the variability of type of freight is higher, and 

there are peak times during the day, the month and the year where the demand varies on the order 

of 10% - 20%. This variability requires robust resource allocation methods to accommodate the 

5 



 

high degree of variability. Also, one very important difference of LTL industry from airline 

industry is that freight is incapable of moving by itself unlike passengers. 

Proper assignment of incoming truck to docks may reduce the time freight spends in the 

terminal. In practice, supervisors try to assign incoming trailers to docks close to the destination 

trailers for which they have the most freight. All such assignments are constructed based on 

intuition, or perhaps with the help of some simple spreadsheet calculations. This becomes 

difficult when the supervisor must consider other issues like making an assignment as the 

terminal gets larger or managing priorities for shipments that require rapid turnaround. 

Ultimately, the supervisor's goal is to make assignments that minimize work and this almost 

always involves minimizing worker travel  [12]. 

 Research in dock assignment problem at freight terminals have concentrated on 

minimizing weighted distances  [14]. However, an objective of trying to minimize weighted 

distances in LTL terminals can lead to congestion which can adversely increase average freight 

times inside the terminals  [12].  

  

1.2.2.2 Performance Metrics of a Terminal 

To improve performance of a terminal one should clearly identify the performance 

metrics of that terminal. Some of these metrics are similar to the ones at conventional 

warehouses. Two common performance metrics of terminals are average days delayed and 

average cycle time. Average days delayed is the average number of days required to ship an item 

from its arrival to the warehouse and average cycle time is the difference between the time an 

item arrives at the warehouse and the time it is ready for shipping. Both of these metrics have 

flaws in accurately comparing performances of independent warehouses and both are internally-

focused  [15]. They tend to improve customer service, but what matters at the end of the day is 

whether the customer received the shipment any earlier or not. 

 Gue proposes that Percent making Cut-Off (PCO), a metric that records the fraction of 

orders arriving before an established cut-off time that make the next shipment cycle, would be 

invulnerable to above mentioned problems  [15]. 
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1.3 Motivation 

Physical size of the transportation sector, and its important role in supporting other 

important industries such as manufacturing, agriculture and mining, foster the need for operations 

research within this sector to improve the efficiency of its operations and improve service quality.  

According to a survey released in 2001 by Logistics Institute at Georgia Tech (TLI)  [16], 

majority of the transportation companies are not utilizing modern technology despite growing 

complexity of transportation systems. Approximately two thirds of the respondents use manual 

processes for many operations and they indicate that customer service and efficiency/cost saving 

rank highest in importance among factors regarding transportation planning.  

The reflection of inherent variability in LTL industry on truck arrival schedules and 

terminal operations cause diversions from planned service levels. LTL industry needs operations 

research tools to incorporate models that provide more robustness in the daily operations. The 

proposed model fulfills the critical need to provide robust dock assignments at LTL terminal 

docks by intelligently locating time buffers between discrete events in order to absorb 

stochasticity. A similar approach to airport gate assignment model has been reported to provide 

significant improvement  [17]. 

 

1.4 Research Objective 

Strip dock assignment at terminals is subject to significant uncertainty due to the 

variability in truck arrival and unloading times. The objective of this thesis is to develop a robust 

model for dock assignments at strip docks to accommodate the deviation from the scheduled 

arrival and unloading times. The service level is measured by PCO metric and the goal is to 

increase the fraction of the freight that makes the next outbound shipment. Different from 

existing approaches, the model does not incorporate a distance minimizing objective.  

 

1.5 Thesis Organization 

Chapter 2 reviews the previous work in literature concerning modeling of similar 

problems. Chapter 3 defines the proposed MIQP model and discusses several illustrative 

examples. Chapter 4 introduces a planning level dock assignment heuristic which can be used to 

solve realistic size problems that could not be solved by the optimal model. Also in Chapter 4, the 

dock assignment heuristic is benchmarked with existing optimal solutions fro small problems. In 

Chapter 5, the effectiveness of the dock assignment heuristic is evaluated considering the 

previously discussed variability in system parameters.  Chapter 6 introduces a dynamic dock 

assignment heuristic that can be implemented in real-time. The dynamic heuristic is then 
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compared with the planning level dock assignment heuristic. Chapter 7 is a case study that 

compares the dynamic assignment heuristic to static assignment models that exist in practice. 

Chapter 8 concludes this thesis with conclusions and future research directions. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

2.1 Combinatorial Optimization 

In the past decade the problem of finding optimal solutions to problems that can be 

structured as a function of some decision variables in presence of some constraints has been 

widely studied. Such problems can generally be formulated as follows:  

 

Minimize  f (x) 

Subject to g i  (x)  b ≥ i ; i=1,…..,m 

h j  (x)  c ≥ i ; i=1,…..,n 

 

Where x is a vector of decision variables, f (•), g i (•) and h j (•) are general functions and 

b, c, m, n are constants. The problem can easily be modified for a maximizing objective.  

 There are many specific classes of optimization problems, obtained by placing 

restrictions on the functions under consideration, and on the values that the decision variables can 

take. One of the most well-known of these classes is that obtained by restricting f (•), g i (•) and 

hj(•) to be linear functions of decision variables which are allowed to take fractional (continuous) 

variables. The general class of problems that fit this description is called Linear Programming 

(LP)  [18]. 

 Another class of problems is combinatorial problems. This term is usually used for the 

problems in which the decision variables are discrete, i.e. where the solution is a set, or a 

sequence, or integers or other discrete objects.  Combinatorial optimization is the science of 

decision making in presence of discrete alternatives  [19]. Combinatorial problems typically 

involve findings groupings, orderings, or assignments. Integer and combinatorial optimization 

deals with problems of maximizing or minimizing a function of variables subject to inequality 

and equality constraints and integrality restrictions on some or all the variables. A remarkably 

rich variety of problems can be represented by discrete optimization models. 

Some of the applications covered by integer and combinatorial optimization include 

operational problems such as distributions of goods, production scheduling, machine sequencing, 
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planning problems such as capital budgeting, facility location, portfolio analysis, communication 

and transportation network design and the design of automated production systems  [20]. Some 

more recent applications are found in artificial intelligence, bio-informatics and machine learning 

 [21]. 

Some well-known instances of combinatorial optimization problems are the assignment 

problem, the 0-1 knapsack problem, the set covering problem, the vehicle routing problem and 

the traveling salesman problem.  

 

2.2 The Assignment Problem 

The assignment problem, also known as the matching problem, is a classical and 

important combinatorial optimization problem. Assignment problems deal with the question how 

to assign a number of items (e.g. jobs) to a number of locations (e.g. workers). They consist of 

two components: the assignment as underlying combinatorial structure and an objective function. 

Mathematically an assignment is nothing else than a bijective mapping of a finite set into itself, 

i.e. permutation. Every permutation Φ of the set N = {1, …., n} corresponds in a unique way to a 

permutation matrix  X Φ = (xij) with xij = 1 for j = Φ(i) and xij = 0 for j  Φ(i). Assignments can 

be represented in various ways as depicted in Figure 5. 

≠

 

 
 

Figure 5 Different Representations of Assignments  [22] 

 

For the general formulation of assignment problems, a 0-1 integer variable is introduced, 

denoted below by y. One common use of 0-1 variable is to represent binary choice. Consider an 

event that may or may not occur, and suppose that it is part of the problem to decide between 

these possibilities. Let, 

 

0   0   1   0  

0   1   0   0 

0   0   0   1 

1   0   0   0 

Φ = 
1   2   3   4 1 1

2 23   2   4   1

3 3

XΦ = 

4 4 
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1  if the event occurs 

y =    

0  if the event does not occur 

 

Assume that there are n people and m jobs and that each job must be done by exactly one 

person; also, each person can do at most one job. The cost of person j doing job i is cij. The 

problem is to assign the people to the jobs in a way that the cost of completing all the jobs is 

minimized. If ith job is assigned to jth person then yij = 1, if not yij = 0. The problem formulation 

would then be as follows: 

 

Min    (Minimize the cost of sum of all assignments) ∑∑
= =

=
m

i

n

j
ijij ycZ

1 1

∑
=

=
n

j
ijy

1
1,      i = 1,2,….,m ( Job i  can be done by exactly one person ) 

∑
=

≤
m

j
ijy

1
1,      i = 1,2,….,n ( Person j  can do at most one job ) 

 

The class of similar problems is referred to as Linear Assignment Problems (LAP), where 

the decision variables are linearly restricted with the objective and constraining functions. 

 

2.3 Quadratic Assignment Problem (QAP) 

Another class of assignment problems is the Quadratic Assignment Problem (QAP). The 

QAP covers a broad class of problems that involve the minimization of a total pair-wise 

interaction cost among a number of facilities.  

The QAP is similar to a linear assignment problem but it has a quadratic component, a 

quadratic objective function. For example, facility location problem is a commonly addressed 

QAP where, given a set of n locations and n facilities, the objective is to find an assignment of all 

facilities to all locations such that the total cost of the assignment is minimized  [23].The cost of 

each possible assignment is determined by the traffic intensity, commonly referred to as flow, 

between each pair of facilities and the distance between the assigned locations. The overall cost is 

the addition of all individual costs.  For example, say four facilities were assigned to four 

locations as depicted in Figure 7.   
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Location 1 

 
Figure 6 Assignment of Facilities to Locations  [24] 

 

The distances are denoted with d(•,•) and flows with f(•,•); e.g. d(1,2) and f(1,2) 

indicating the distance between locations 1 and 2 and flow between facilities 1 and 2. The cost of 

the assignment shown in Figure 6 would then be: 

Cost (Figure 6) = d(1,2) * f(1,2) + d(1,3) * f(2,4) + d(2,3) * f(1,4) + d(3,4) * f(3,4) 

The cost of the alternative assignment shown in Figure 7 would be:  

Cost (Figure 7) = d(1,2) * f(3,4) + d(1,3) * f(1,4) + d(2,3) * f(1,3) + d(3,4) * f(1,2) 

 

 
 Figure 7 Alternative Assignment 

 

The assignment that minimizes the cost would be the optimal solution, for the above 

example, if Cost (Figure 6) is less than Cost (Figure 7) then optimal assignment is Figure 6. 

Quadratic assignment problems model many applications in diverse areas in operations 

research and combinatorial data analysis. In addition to its application in facility location 

problems, the QAP has been found useful in applications such as scheduling  [25], the backboard 

wiring problem in electronics  [26], parallel and distributed computing  [27], and statistical data 

analysis  [28]. Other applications can be found in [29-31]. An extensive survey on the 

formulations and solution methodologies of QAP can be found in  [23]. 

Location 3 

Location 2 

Location 4 

Facility 2 
Facility 1 

Facility 3 
Facility 4 

Location 1 
Location 2 

Location 3 

Location 4 

Facility 4 
Facility 3 

Facility 2 
Facility 1 
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One of the most distinguished instances of QAP is the Gate Assignment Problem (GAP). 

The total passenger walking distance in an airport is based on the passenger transfer volume 

between

ent Problem (GAP) 

The GAP is an easily understood but difficult to solve problem. Integer programming and 

lati  in the modeling stage. The most occurring 0-1 

integer 

i j k l
klijjlik

i j
ijij

1 1 1 11 1
(Eq. 1)  

Subject to: 

 every pair of aircrafts and the distance between every pair of gates. Therefore, the 

problem of assigning gates to arriving and departing flights at an airport is a quadratic assignment 

problem, commonly formulated as a 0-1 integer problem  [32]. The dock assignment models 

represented in the context of this thesis are motivated by the GAP, therefore the following section 

gives insight to this area. 

 

2.4 The Gate Assignm

simu on have been applied to the GAP models

representation of QAP in literature is the formulation of Koopmans and Berkmann, 

represented below in the original notation with facilities and locations  [33].  

 

Min  ∑∑∑∑∑∑ +=
N N N NN N

xxcfxaZ     
= = = == =

∑ =
N

=
ijx 1,      i = 1,2,….,N      (Eq. 2) 

xij Є {0,1}      i, j = 1,2,…..,N      (Eq. 4)   

 

where: 

 = total number of facilities / locations 

d cost of locating facility i at location j 

lity k 

tion j to location l 

ility (i.e. aircrafts) at a certain location (i.e. gates) 

depends on not only the distance from other facilities and demands, but also on the interaction 

with other facilities  [32]. Equation (2) ensures that every facility is assigned to a location, 

j 1

∑
=

=
N

i
ijx

1
1 ,      j = 1,2,….,N      (Eq. 3) 

N

aij = fixe

fik = flow of material from facility i to faci

cjl = cost of transferring a material unit from loca

xij = 1, if facility i is at location j; 0 otherwise 

 

The cost associated with placing a fac
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Equatio

e their connecting flights. For example, Equation 

1 in ab

gers 

2. Bag

me tables of flight schedules 

ost of these 

er or mixed integer (linear or quadratic) programs. Mixed 

 are 0-1 integer quadratic problems also including continuous 

variable

 distances can 

alking distances without changing the layout of the 

ear 0-1 integer program, not 

conside

intervals in a hub operation. The criterion selected in this paper is minimization of total passenger 

n (3) ensures that one location is assigned exactly one facility and Equation (4) indicates 

that variable x belongs to binary class. The constraints may be modified in accordance to the 

restrictions depicted by the problem statement.  

The main purpose of airport GAP is to find the optimal gate-flight assignments to provide 

the most convenient boarding/deplaning operations to increase operating efficiency of the airport, 

i.e. increase the number of passengers who mak

ove model minimizes the flow times cost vector where the flow would represent the 

number of passengers and cost would represent the distance between connecting airplanes. 

Efficient assignments play an important role in alleviating the airport congestion which has 

become a profound problem with today’s airline passenger volumes. 

The complex process of gate assignment usually takes into account the following factors 

 [34]: 

1. Walking distances for transfer, terminating and originating passen

gage handling distance for transfer, terminating, and originating passengers 

3. Ti

4. Aircraft gate size compatibility 

Several models have been developed to represent airport gate assignments. M

models are formulated as 0-1 integ

integer quadratic problems (MIQP)

s. Objective functions of these programs usually aim to minimize the total passenger 

walking distance, the number of off gate events, the range of unutilized time periods for gates or a 

combination of these. The two most common constraints used in the modeling are, 

1. Every flight must be assigned to a gate 

2. No two flights can be assigned to the same gate concurrently 

Braaksma  [35] demonstrated that that the procedure of minimizing walking

have a significant impact on passenger w

terminal area. Babic et al.  [36] formulated the GAP as a lin

ring the transferring passengers. The optimal strategy reported by this paper is that aircraft 

carrying more passengers should be assigned to the gate closer to the central part of the building. 

Similarly, Mangoubi and Mathaisel  [37] used linear programming relaxation of an IP formulation 

including the transfer passengers. The definitions of distances are defined similarly in these three 

studies.  

Bihr  [38] used 0-1 LP to solve the minimum walking distance GAP for fixed time 
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distance travel for a given arrival departure cycle. His model is a modification of the Koopmans 

and Berkmann 0-1 integer model. The first part of equation (1) is neglected, since there are no 

fixed costs associated with making assignments. The result is one of the most referred 0-1 integer 

GAP models: 

 

Min  ∑∑
= =

ij = PAX ( i, j ) * DIST ( i, j )     i = 1,….,m  and j = 1,….,k

,      i   

=
m

i

k

j
ijij xcZ

1 1
       i = 1,….,m  and j = 1,….,k 

Subject to 

C

∑
=

=
N

j
ijx

1
1 = 1,2,….,N   

∑
=

Xi,j = 0 or 

 

Where:  

l = number of arrival gates, m = number of arrival flights 

PAX ( i r of passengers arriving on flight i and departing from gate j  

i = 1,…   and j = 1,….,k 

 j ) = number of passenger-distance units from gate i to gate j  

ion is in 0-1 integer form and constitutes the foundation of many GAP 

tances. Baron  [39] used 

lyze the effects of different gate assignments on passenger walking 

distances.  

 

one time period) or a batch of aircraft, allows effective gate utilizations. The flights 

=
i

ijx
1

1 ,      j = 1,2,….,N  
N

1 

k = number of departure gates, 

, j ) = numbe

.,m

DIST ( i,

i = 1,….,l  and j = 1,….,k 

 

The above formulat

models. All four papers report improvements in the walking dis

simulation analysis to ana

Haghani  [32] introduced the multi-slot (several ground time) gate assignment problem, 

extending the quadratic assignment problem formulations by incorporating time constraints 

(using time tables and flights schedules). It is reported that using multi-slot time intervals versus 

single-slot (

are assigned to same gates if their time schedules are not conflicting. The study associates the 

several ground time periods with the decision variables such that: 
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 1  if flight i is assigned to gate j in time period t 

Xijt =    

  0 otherwise 

 

Other models that in te tim

All the above m hat were reported to be good in theory, however, many do not 

evaluate stochastic fligh eal life. Gosling  [43] and Srihari and 

Muthukrishnan  [44] applied expert systems to GAP and reported that these systems offer some 

advanta of the research 

in the a

5 

o solve modest size problems. 

Relaxation by linearization is an efficient pre-solving technique by which QAP can be 

relaxed to a 0-1 linear integer problem. This technique is called Reformulation Linearization 

Technique (RLT). Since it is computationally less difficult to solve linear problems than quadratic 

pora e into the GAP can be found in [40-42]. cor

odels t

t behaviors that usually occur in r

ges over conventional gate assignments in dealing with uncertainty. Most 

rea of GAP has concentrated on the static gate assignments. Static assignments are usually 

projected over a certain period of time, using historical data from a certain period of time. For 

example, using two months of historical data, one can project the gate assignment over the 

upcoming month. This model however, would be susceptible to the variability caused by internal 

or external factors, e.g. flight delays or monthly flight patterns.  Real time assignments are done 

usually for much shorter time intervals, ideally just before the plane needs to be assigned a gate. 

The interrelationship between static gate assignments and real time assignments is affected by the 

variability in flights schedules (e.g. delays). Without considering flight delays in gate assignment, 

the model may have problems finding feasible solutions if there are more flights than gates in a 

time slot (e.g. peak hours and many delays). Some models have suggested ways to help resolve 

the issue with stochastic flight delays in the planning stages. For example, Hassounah and Steuart 

 [45] showed that planned scheduled buffer times could improve schedule variability. Yan and 

Chang  [46] and Yan and Huo  [47] used fixed buffer times between continuous flights at the same 

gate in the static model, to help absorb the stochastic flight delays. 

 Some multi-objective models also have been studied. The model of Yan and Huo  [47] 

considers the minimization of both the passenger walking distance and their waiting time. The 

paper reports usefulness for actual operations.  

 

2. Solution Methodologies for QAP 

As suggested by Sahni and Gonzales  [48] QAP is an NP hard problem. It is still 

considered a computationally challenging task t

16 



 

ones, RLT technique is reported to be useful.  For example, a new decision variable such as Yijkl 

can be i

 RLT in QAP can 

be foun

the researchers an 

opportunity to benchmark solutions for quality and computational performance.  

 the literature, especially GAP literature, usually focus 

on suboptim tationally faster. 

2.5.1 

erali  [52]. The algorithms are 

reported to obtain good results but are rather computationally time consuming. 

 effective technique for problems of modest size. Among 

the type

 is plentiful. Some of this work 

includes

tion  [61], feeding 

tree me

ntroduced to represent Xij * Xkl  (each possible pair of flight-to-gate assignment) allowing 

the linearization of the quadratic objective function. Some papers that explain

d in [23, 49]. A GAP model that uses this technique is in  [32]. 

 A diverse and vast range of complete solution methodologies have been applied to the 

QAP. Solution methodologies can be grouped into following two categories: 

 

1. Optimal (Exact) Algorithms 

2. Suboptimal (Heuristic) Algorithms 

 

QAPLIB  [50] is an online library that consists of many quadratic assignment problem 

instances along with a list of current known feasible solutions. It gives 

Suggested solution algorithms in

al algorithms that prove to be compu

 

Optimal (Exact) Algorithms 

Some of the exact algorithms that are well studied in QAP literature are dynamic 

programming, cutting plane and branch-and-bound techniques.  

Dynamic programming approach has been first used by Christofides and Benavent  [51] 

and cutting plane methods were introduced by Bazaraa and Sh

Branch and bound is the most

s of branch-and-bound, single assignment algorithms are known to perform better [23]. 

The QAP literature utilizing the Branch and Bound technique

; parallel algorithms for the QAP [53, 54], lower bound calculation  [55] , lower bound 

calculation and lagrangian relaxation  [56], an accelerated branch and bound algorithm  [57], 

special QAP cases [58-60], lower bound calculation using interior point calcula

thod to accelerate branch and bound  [62] and Hungarian method  [63]. 

 Majority of work in GAP solution methodology literature comprises heuristic designs, 

since computation time is an important issue in both static and real time gate assignments. Babic 

at al.  [36] and Mangoubi and Mathaisel  [37] use LP relaxations to obtain optimal solutions and 
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customized branch and bound type algorithms to compare quality. Bihr  [38] uses LP relaxation 

and Hungarian method and reports the need for more sophisticated heuristics. 

 

2.5.2 Sub-optimal (Heuristic) Algorithms 

Heuristics are methods that maintain a trade off balance between the computational 

performance and quality. The quality of the solution is its nearness to the optimal solution 

obtained by exact algorithms mentioned in the previous chapter.  There is intensive research in 

e heuristics design aiming to achieve higher quality solutions and better computational times. 

literature are reviewed below. 

, is a technique 

that additionally limits the search directions for each step while preventing local optimality. For 

u list” will not be re-computed, resulting in improvements in 

the com

ween combinatorial optimization and 

 QAP literature include using the Tabu search technique for QAP  [68], 

n extended study  [69], an improved annealing scheme  [70], optimization methods by simulated 

d study  [40].  

quadratic assignment problems with the parallel 

th

Frequently mentioned methods in current QAP 

 

2.5.2.1 Local and Tabu Search 

Both Local search and Tabu search use initial solutions and move to a better solution, 

thus are called improvement algorithms. Both are iterative methods which terminate when there’s 

no better solution in the neighborhood. Tabu Search; introduced by Glover  [64]

example, items placed on the “tab

putational performance. A study on the quality of local search for QAP can be found in 

 [65] and a robust method for tabu search is studied in  [66]. 

 Some GAP related work includes; tabu search algorithm  [41], and tabu search and 

memetic algorithms  [42]. 

 

2.5.2.2 Simulated Annealing 

Simulated annealing benefits from the analogy bet

statistical mechanics. Simulated annealing also overcomes local optimality and is reported to be 

useful  [67]. Some work in

a

annealing  [71] and a GAP relate

 

2.5.2.3 Genetic Algorithms 

Major advantages of genetic algorithms are that they are anytime algorithms which 

means that they can be interrupted anytime and will always have a result available, and that they 

are inherently parallel which is useful for solving 
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computational capabilities of today’s computers. Studies in genetic algorithms and QAP include 

the gen

 work 

clude network models  [46], critical path method  [79], a neural network design  [80] and 

2.6 

search has been applied to the area of GAP, there 

is only a few studies directly related to the DAP. This thesis benefits from the research conducted 

 the previous sections. Research directly 

related t

ed cost associated with making assignments to docks. 

Let Xim 

etic approach to QAP  [72], a greedy genetic algorithm  [73] and a GAP model  [74]. 

 

2.5.2.4 Other Algorithms 

Some other algorithms are; network models for QAP  [75], solving QAP with clues from 

nature  [76], GRASP with path-relinking  [77] and ant colonies for QAP  [78]. GAP related

in

generalized heuristics  [81]. 

Some literature that includes the comparison of heuristic methods can be found in  [82], 

comparison of local search heuristics in [83], comparison of evolutionary heuristics in  [84] and the 

very first heuristics used in solving QAP  [85].  

 

Dock Assignment Problem (DAP) Literature 

Dock assignment problem, like the GAP, is a quadratic assignment problem and is 

combinatorial by nature. Although extensive re

in the GAP area, therefore GAP literature is reviewed in

o DAP is reviewed in this section. 

 Tsui and Chang  [14] formulated the dock assignment problem using Koopmans and 

Berkmann’s 0-1 integer representation with the objective of minimizing the total distance traveled 

to move items. It is assumed that there are M receiving docks, N shipping docks, I origins and J 

destinations for the terminal. There is no fix

= 1 if origin is assigned to receiving dock m, Xim = 0 otherwise and Yin = 1 if destination j 

is assigned to shipping dock n, Yin = 0 otherwise. Let Wij represent the number of forklift trips 

required to move items that originate from i to destination j and let djl represent the distance 

between dock j and l. 
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Min        (Eq. 5)  ∑∑∑∑
= = = =

=
N

i

N

j

N

m

N

n
jnimmnij yxdwZ

1 1 1 1

Subject to: 

∑
=

=
M

m
imx

1
1,      i = 1,…,I       (Eq. 6) 

∑
=

=
I

i
imx

1
1,      m = 1,…,M       (Eq. 7) 

∑
=

=
N

n
jny

1
1,      j = 1,…,J       (Eq. 8) 

∑
=

=
J

j
jny

1
1,      n = 1,…,N       (Eq. 9) 

xim Є {0,1}      for ∀  i 

yjn Є {0,1}       for  j ∀

 

Equation (6) ensures every origin is assigned only one receiving dock, (7) ensures each 

receiving dock is assigned only one origin, (8) ensures each destination is assigned a shipping 

dock and (9) ensures that each shipping dock is only assigned one destination. 

 The formulation above is a static distance minimization formulation and is one of the 

scarce DAP models is the literature. The model however, is faced with the same problem caused 

by the stochasticity of trailer schedules much like the examples in GAP literature. It is reported in 

the paper that changing shipping patterns only occasionally warrant re-adjustment of dock 

assignments. This may not be the case for today’s highly fluctuating shipping patterns. As a 

solution methodology, an LP relaxation and Branch and bound technique are used and 

computational difficulties are reported. Cole et al.  [86] solve a similar problem with the objective 

of minimizing total weighted distance using a genetic algorithm and report quality solutions and 

good computational times. 

 Gue and Bartholdi  [11] suggest that a DAP model with the objective function of 

minimizing distance only does not necessarily improve the performance of the terminal since it 

can lead to internal congestion. A model of travel cost inside the terminal is described along with 

three types of congestion. Using these models alternative layouts are constructed. They report 

11% improvement in productivity in a terminal. Gue  [12] develop a look-ahead dock assignment 

model and report that the model cuts the labor costs by 15% compared to FCFS policy generally 

used by terminal supervisors.  
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CHAPTER 3 

PROBLEM DESCRIPTION and MIQP SOLUTION 

 

The solution approach to increasing robustness in freight transportation networks stems 

from the idea that an assignment which provides an even distribution of idle times at strip docks 

will tend to absorb the stochastic variability in the arrival and service schedules. The proposed 

model minimizes the variance associated with the distribution of the idle times of the docks at an 

LTL terminal.  

 The problem is formulated as a mixed integer quadratic problem (MIQP), it involves 

continuous and binary variables, and the objective function is quadratic. The formulation given in 

Section 3.2 will be referred to as the optimal model in the context of this thesis. 

 

3.1 Problem Notation 

 The following notation will be used in the following sections: 

 

TEarliest,k Earliest available time of dock k in the beginning of planning horizon 

TLatest,k Latest available time of dock k at the end of planning horizon 

Aj Scheduled arrival of trailer j 

Gj Scheduled Service time (unloading or loading) of trailer j 

Ej,k Entering time of trailer j to dock k 

Lj,k Leaving time of trailer j from dock k 

Sj,k Slack (idle) time of trailer j at dock k 

SLast,k Last Slack (idle) time of dock k after the last departure from this dock 

N Number of trailers 

M Number of docks 

H A very positive large integer 

Xjk
1       if trailer j is assigned to dock k 

0       otherwise 
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3.1.1 Earliest (TEarliest ,k) and Latest (TLatest,k) Available Times of  Dock k 

 Earliest available time (TEarliest,k ) indicates the beginning of the time windows for dock k, i.e. 

start of the planning window. Latest available time (TLatest,k) indicates the end of the operation 

window. Dock availability of three docks has been exemplified in Figure 8 as timelines. 

  

 

Dock 1
TLatest,1TEarliest ,1

- ∞ ∞ 

Dock 2
TLatest,2TEarliest ,2

- ∞ ∞ 

Dock 3
TEarliest ,3 TLatest,3

- ∞ ∞ 

Figure 8 Timelines of Terminal Docks 1, 2 And 3 

 

 

3.1.2 Scheduled Arrival Time of Trailer j (Aj) 

 Scheduled arrival time (Aj) is the time that is scheduled for a trailer to enter the terminal 

yard, later to be assigned to a dock. It is assumed that trailers are sorted in descending order, i.e. if 

i > j then Ai > Aj . Figure 9 shows the timelines of trailers 1 and 4 as an example. 

 

 

Trailer 1
A1 

- ∞ ∞ 

Trailer 4
A4 

- ∞ ∞ 

Figure 9 Timeline of Trailer 1 And 4 
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3.1.3 Enter (Ej,k) , Leave (Lj,k) and Service (Gj ) Times of Trailer j on Dock k 

 Trailer j enters dock k at the assigned time denoted by Ejk . This time has to be equal to or 

greater than the scheduled arrival time of trailer j (Aj), and greater than the earliest available time 

of dock k.  After Gj time units, when the trailer is serviced and leaves the dock, its leave time Ljk  

is assigned which must be equal or less than the latest available dock time (TLatest,k) of dock k. 

Figure 10 shows the assignment of trailer 1 to dock 1 and trailer 4 to dock 2. 

  

 

G1 
Dock 1 L1,1 TLatest,1E1,1TEarliest ,1

- ∞ ∞ 

G4 Dock 2
TLatest,2L4,2 E4,2 TEarliest ,2

- ∞ ∞ 

Figure 10 Entering and Leaving Times of Trailers 1 And 2 

 

3.1.4 Slack Time of Trailer j on Dock k (Sjk) 

 Slack time is defined as the idle time between the departure of the last trailer at a gate and 

the entering time of the current trailer. As depicted in Figure 11, trailers 3 and 9 are assigned to 

dock 6 consecutively.  If a trailer is the first trailer assigned to a dock; i.e. no other trailers 

precede it, its slack time is its enter time minus the first available time of the dock, e.g. trailer 3 in 

Figure 11.  If there is an assignment before a trailer, then the slack time is its enter time minus the 

leave time of the preceding trailer, e.g. trailer 9 in Figure 11. The last slack time at a dock (S Last,k) 

is its latest available time (TLatest,k ) minus the leave time of the latest trailer assigned to the dock. 

 

 

Dock 6

Figure 11 Slacks Due To Assignments of Trailers 3 And 9 On Dock 6 

TEarliest ,6
TLatest ,6E3,6 L3,6 E9,6 L9,6 

S3,6= E3,6 - TEarliest ,6  S9,6= E9,6 - L3 ,6 SLast, 6= TLatest,6 - L9,6

 G3 G9 
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3.2 Problem Formulation (Optimal Model) 

 

Min  ∑∑
=

+

=

M

k

N

j
kjS

1

1

1

2
,         (Eq. 10) 

Subject to: 

 ∑
=

=
M

k
kjx

1
, 1         j = 1,…,N      (Eq. 11) 

 kjjkj XAE ,, ≥         j = 1,…,N        k = 1,…,M    (Eq. 12) 

 kjjkjkj XGEL ,,, =−         j = 1,…,N        k = 1,…,M   (Eq. 13) 

 )2( ,,,, −++≥ kikjkikj XXHLE  

  j = 1,…,N        k = 1,…,M        i = 1,…,N  where i < j   (Eq. 14) 

 kLatestkj TL ,, ≤         j = 1,…,N        k = 1,…,M    (Eq. 15) 

kikjkji XXY ,,,,*2 +≤        

  j = 1,…,N       k = 1,…,M      i = 1,…,N  where i < j    (Eq. 16) 

∑
−

=

=
1

1
,, 1

j

i
kjiY       j = 1,…,N       k = 1,…,M    (Eq. 17) 

)1( ,,,,, −+−≥ kjikikjkj YHLES    

  j = 1,…,N       k = 1,…,M      i = 1,…,N  where i < j   (Eq. 18) 

 { }1,0, ∈kjX          j = 1,…,N        k = 1,…,M    (Eq. 19) 

  { }1,0,, ∈kjiY         j = 1,…,N        k = 1,…,M    (Eq. 20) 

  0,,,,, ,,,, ≥kLatestjjkjkjkj TGASLE   j = 1,…,N       k = 1,…,M      (Eq. 21) 
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3.2.1 The Objective Function 

 The objective function aims to spread the slack times as evenly as possible in order to 

create buffers to absorb variability in scheduled arrival (Ajk) and scheduled service times (Gjk). 

This is achieved by minimizing the square of the slack time (Sjk) (Eq.10) since this is equivalent 

to minimizing the variance.  

 

Min  ∑∑
=

+

=

M

k

N

j
kjS

1

1

1

2
,           

 

Theorem 1 

Minimizing the sum of squares of slack times minimizes the variance of slack times. 

Proof 

 The total slack time of dock s is the difference between the total available time of docks 

and the total service time of trailers. ( N+1 denotes the end-slack; SLast,k ) 

 

∑∑∑∑
===

+

=

−−=
N
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 It is assumed that the total available time of the docks and the total service time of trailers 

are constant, thus the sum of idle times is constant, regardless of the way trailers are assigned.  

For any g ( x ) and constants a and b, E[ ag ( x ) + b ] = a E[ g ( x ) ] + b 

Thus; 

Var ( x ) =  E [ ( x – µ )2 ] ( Var ( x ) is the second central moment at zero) 

  =  E [ x2 - 2 µ x – µ 2 ]  

  =  E [ x2 ] - 2 µ E [ x ] +  µ 2  (Property 1) 

              =  E [ x2 ] - µ 2

Since µ = constant; minimizing E [ x2 ] minimizes Var (x)  ▲ 
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3.2.2 The Constraints 

 

3.2.2.1 Constraint 1 

∑
=

=
M

k
kjx

1
, 1         j = 1,…,N       

Constraint 1 guarantees that one trailer is assigned to only one dock. 

 

3.2.2.2 Constraint 2 

kjjkj XAE ,, ≥          j = 1,…,N        k = 1,…,M      

Constraint 2 ensures that the enter time of trailer j (Ejk) will be at least equal to or greater 

than its scheduled arrival time (Aj), if assigned. If not assigned, 0, =kjX  and . 0, ≥kjE

 

3.2.2.3 Constraint 3 

kjjkjkj XGEL ,,, =−        j = 1,…,N       k = 1,…,M     

Constraint 3 states that the service time of a trailer (Gj) is its assigned enter time (Ejk) 

minus its leave time (Ljk), if assigned. If not assigned, 0, =kjX  and . kjkj LE ,, =

 

3.2.2.4 Constraint 4 

)2( ,,,, −++≥ kikjkikj XXHLE           j = 1,…,N       k = 1,…,M      i = 1,…,M  where i < j 

 Constraint 3 prevents time-conflicts (overlapping assignments). A trailer has to leave a 

dock in order for another one to be assigned. For example, trailer 3 is assigned a leave time of 9. 

If trailer 8 is assigned an enter time less than 9, then overlapping occurs, as depicted in Figure 12. 

The trailer can only be assigned to a time greater than or equal to 9 (assuming it does not violate 

any other constraints). Since i < j , Xjk denotes the trailer that is being assigned and Xik  denotes a 

search for the previously assigned trailers in the same dock (note that trailer times are sorted in 

descending order, i.e. if i > j then Ai > Aj ). 

 

Dock k OVERLAP
9

Figure 12 Overlapping of Trailer 8 on Trailer 3 

TLatest ,k

E3,k L3,k

TEarliest ,k
L8,k E8,k
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If there is a previously assigned trailer in the dock; i.e. Xik = 1 and the current assignment 

is also made; i.e. Xjk =1 ; then ( Xik.+ Xjk  ) = 2 and the RHS of constraint 4 will be  equal to Lik 

yielding  which means that the considered assignment of enter time can only be made 

after the leave time of the preceding trailer.   

kikj LE ,, ≥

 If there is no previously assigned trailer in the dock, i.e. Xik = 0 and the current 

assignment will be made or will not be made; i.e. Xjk =1 or Xjk =0; then ( Xik.+ Xjk  ) = 1 or ( Xik.+ 

Xjk  ) = 1 and the RHS of constraint 4 will be  equal to a very large negative integer yielding 

 which is already in agreement with the negativity constraints. 0, ≥kjE

 

3.2.2.5 Constraint 5 

kLatestkj TL ,, ≤    j = 1,…,N k = 1,…,M      

 This constraint ensures any leave time should be less than or equal to the latest available 

time of the gate.  

 

3.2.2.6 Constraints 6, 7 and  8 

These three constraints are used to determine slack times. 

kikjkji XXY ,,,,*2 +≤  j = 1,…,N       k = 1,…,M      i = 1,…,M  where i < j 

Constraint 6 uses a similar logic to constraint 4.  

Table 1 shows the four possible scenarios of constraint 6. If two trailers are not assigned 

consecutively, the value of Y will be zero. Otherwise it can be 0 or 1 (note that all variables are 

non-negative and binary). 

 

Table 1 Possible Outcomes of Constraint 6 

 kiX ,  kjX ,  kjiY ,,  

Scenario 1 1 1 ≤  1.0 0 or 1 
Scenario 2 0 1 ≤  0.5 0 
Scenario 3 1 0 ≤  0.5 0 
Scenario 4 0 0 ≤  0.5 0 

 

∑
−

=

=
1

1
,, 1

j

i
kjiY   j = 1,…,N       k = 1,…,M      

 Constraint 7 prevents an incorrect slack time calculation by forcing the model to choose a 

slack when there are more than 1 trailers assigned before a particular trailer (all the preceding 
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trailers can be 0 or 1 and since it is a minimization problem, without Constraint 6 the model 

would make them all 0 ). Consider the example where trailer 3 is assigned to dock 1 along with 

trailers 1 and 2 as depicted in Figure 13. Constraint 9 then yields, Y131+Y231=1. One of the 

possible configurations of Y has to be 1; in this case, either Y131 or Y231.  

 

 

Dock 1
Incorrect slack Correct slack

Figure 13 Finding Correct Slack with More Than One Preceding Trailers at the Same Dock 

 

)1( ,,,,, −+−≥ kjikikjkj YZLES       j = 1,…,N       k = 1,…,M      i = 1,…,N  where i < j  

  

Constraint 8 is used to determine the objective function value. Slacks are between two 

trailers, the latest available time of the dock and the latest assigned trailer at that dock, and the 

first assigned trailer and the earliest available time of that dock. As explained before, Y variable 

is an indication to whether or not these slacks have formed. Table 2 shows the possible outcomes 

of constraint 8 with all possible Y scenarios given in Table 1. 

 

Table 2 Possible Outcomes of Constraint 8 

 kiX ,  kjX ,  kjiY ,,  Sj,k Model will force 

Scenario 1 1 1 0 or 1 ≥ ikjk LE 0 or −≥ Sjk ikjk LE −=  

Scenario 2 0 1 0 ≥  0 Sjk=0 
Scenario 3 1 0 0 ≥  0 Sjk=0 
Scenario 4 0 0 0 ≥  0 Sjk=0 

 

 To illustrate the use of constraint 8, consider trailers 1, 2 and 3. The scenarios are: 

 

1. If jth trailer (Trailer 3) is immediately preceded by the (j-1)th trailer (Trailer 2). The 

algorithm searches and finds the assigned trailers and forces S31 = E31 – L21, which is the 

correct decision. 

TLatest ,1

L2,1

TEarliest ,1

E3,1E1,1 L1,1 E2,1 L3,1 
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2. If jth trailer (Trailer 3) is immediately preceded by the (j - x)th; where (x < j - 1) trailer 

(Trailer 1). The algorithm searches and finds the assigned trailers and forces S31 = E31 – 

L11, which is the correct decision. 

3. If jth trailer (Trailer 3) is immediately preceded a trailer (Trailer 2) that is preceded by 

another trailer (Trailer1). The model has to satisfy constraint 7 and will force the lower of 

Y231and Y131 to 1 (since it wants to minimize). It will always correctly choose S31 = E31 – 

L21 over S31 = E31 – L11 since the latter equation is always greater than the first one 

(minimizing objective). 

The scenarios and results are summarized in Table 3. 

 

Table 3 Possible Outcomes of the Example 

Condition X3,1 X2,1 X1,1 Y2,3,1 Y1,3,1 Y1,3,1+ Y2,3,1 Sj,k
Model will 

force 

2 precedes 3 
2→ 3 1 1 0 1 0 1 

S31≥E31 – L21 
or 

S31≥ 0 
S31 = E31 – L21

1 precedes 3 
1→ 3 1 0 1 0 1 1 

S31≥E31 – L11 
or 

S31≥ 0 
S31 = E31 – L11

1 precedes 2 
precedes 3 
1→ 2→ 3 

1 1 1 0 or 10 or 1 Model will force the lower 
of Y231and Y131 to 1. 

S31≥E31 – L11 
or 

S31≥E31 – L21

S31 = E31 – L21

 

 

3.2.2.7 Constraint 9 and 10 

{ }1,0, ∈kjX    j = 1,…,N k = 1,…,M  

{ }1,0,, ∈kjiY   j = 1,…,N k = 1,…,M i = 1,…,N 

 These are the BINARY constraints. X and Y can be 0 or 1, indicating the assignment is a 

discrete event, it either occurs or it does not occur. 

 

3.2.2.8 Constraint 11 

0,,,,, ,,,, ≥kLatestjjkjkjkj TGASLE  j = 1,…,N       k = 1,…,M  

 This is the non-negativity constraint. 
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3.3 Illustrative Examples 

Two examples of different size will be solved in this section. Example 1 has 4 trailers and 

2 docks and Example 2 has 12 trailers and 4 docks. For Example 2 the software code is included 

in Appendix A. 

 

3.3.1 Example 1 

There are 4 trailers and 2 docks available between 0 and 10 unit time. The arriving 

schedule and estimated unloading times of the trailers are given in Table 4. The objective is to 

assign the trailers to the dock s in such a way that the slack times of the docks will evenly be 

distributed.  

 

Table 4 Data for the Example 1 

 Trailer 1 Trailer 2 Trailer 3 Trailer 4 
Scheduled Arrival Time (A) 1 2 6 7 

Unloading time (G) 4 4 3 3 
 

 

3.3.1.1 An Arbitrary Feasible Solution to Example 1 

 A feasible solution to this problem is assigning trailers 1 and 4 to dock 1, and trailers 2 

and 3 to dock 2.  (X11 = 1, X12 = 0, X21 = 0, X22 = 1, X31 = 0, X32 = 1, X41 = 1, X42 = 0) The results 

according to this assignment are given in Table 6 and displayed in Figure 14. 

 

Table 5 Feasible Assignments for the Example 1 

 Trailer 1 Trailer 2 Trailer 3 Trailer 4 
Dock assigned 1 2 2 1 
Enter time to gate E 1 (E1,1) 2 (E2,2) 6 (E3,2) 7 (E4,1) 
Leave time to gate L 5 (L1,1) 6 (L2,2) 9 (L3,2) 10 (L4,1) 
Slack time 1 (S1,1) 2 (S2,2) 0 (S3,2) 2 (S4,1) 

 

S 1,1 S 4,1 S Last,1

Dock 1
Dock 2

S 2,2 S 3,2 S Last,2

Time      0           1          2          3          4          5          6          7         8           9         10
Trailer 1

Trailer 2
Trailer 4

Trailer 3

 
Figure 14 Representation of a Feasible Solution on Timeline 
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The objective function value of this assignment is: 

Z = (S 1,1 )2 + (S 4,1 )2 + (S 2,2 )2+ (S 3,2 )2 + (S Last,1 )2 + ( S Last,2 )2

Z = 12 + 22 + 22 + 02 + 02 + 12  

Z = 10 

 

3.3.1.2 Optimal Solution of Example 1 

The problem is solved with the proposed model using commercially available Xpress  [87] 

MIQP solver. The resulting assignments are given in Table 7. 

 

Table 6 Assignment of the Proposed Model 

 Trailer 1 Trailer 2 Trailer 3 Trailer 4 
Dock assigned 1 2 1 2 
Enter time to gate E 1 (E1,1) 2 (E2,2) 6 (E3,2) 7 (E4,1) 
Leave time to gate L 5 (L1,1) 6 (L2,2) 9 (L3,2) 10 (L4,1) 
Slack time 1 (S1,1) 2 (S2,2) 1 (S3,1) 1 (S4,2) 

 

S 1,1 S 3,1 S Last,1

Dock 1
Dock 2

S 2,2 S 4,2 S Last,2

Time      0           1          2          3          4          5          6          7         8           9         10
Trailer 1 Trailer 3

Trailer 2 Trailer 4

 
Figure 15 Representation of the Solution of Proposed Model 

 

The objective function value of the robust assignment is: 

Z = (S 1,1 )2 + (S 3,1 )2 + (S 2,2 )2 + (S 4,2 )2 + (S Last,1 )2 + ( S Last,2 )2 

Z = 8 

 The objective function value of the robust model (z = 8) is less than the objective 

function value of the initial solution (z = 10). As depicted in Figure 15, the proposed model 

distributes the slacks as evenly as possible. Trailer 3 now has a slack behind it that can absorb a 

possible extent in its service time, and trailer 4 now has a slack in front to absorb second trailer’s 

arrival time or service time variability. 
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3.3.2 Example 2  

The code for Example 2 with 4 docks and 12 trailers is given in Appendix A. It should be 

noted that Xpress syntax does not allow 0 indices in vectors; e.g. A(0, 0), therefore the indices of 

trailers start from 1, e.g. S(2, 1) represents the slack of first trailer at dock 1. The trailer indices 

range from 1 and to NT+2 (where NT is the number of trailers). For example, in the case of the 

sample problem where there are 4 docks and 12 trailers, S(13, 1) represents the slack of the 12th 

trailer at dock 1 and S(14, 1) represents the latest slack at dock 1, previously named as SLast, 1.  

The proposed model is solved using Xpress-IVE module with 4 available docks and 12 

trailers. The schedules of arriving trailers are shown in Table 7. For example, trailer 1 is 

scheduled to arrive at time 0 and is estimated to have a service time of 1 unit. 

 

Table 7 Scheduled Arrival and Estimated Service Times for Example Problem 2 

Trailer 1 2 3 4 5 6 7 8 9 10 11 12 
Scheduled Arrival Time (A) 0 1 1 1 3 3 4 5 6 8 8 9 

Unloading time (G) 1 2 4 2 3 4 4 5 2 1 3 2 
 

 

The value of the objective function which is obtained for this schedule by the optimal 

model is 14.25. The corresponding assignments are shown in Figure 16. 

 

 

Optimal Assignment 

Figure 16 Graphical Representation of Robust Assignment for Sample Problem 

 

DOCK 

time      0           1          2          3          4          5          6          7          8          9         10         11        12

DOCK 1 1 1 1 1

DOCK 2 1 1 1 1 1 10 

DOCK 3 1 1 1

3.66 8.33 
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3.4 Computational Issues 

This section covers the computational aspects of the implementation by investigating the 

relationships between the number of variables/constraints and the problem size, and 

computational performance. 

 

3.4.1 Problem Size 

Due to the quadratic objective function and Yijk variable, the model generates a large 

number of variables and constraints which make the computation a non-trivial task. Table 8 

displays the relationship between the number of trailers and number of model variables when 

number of docks is constant. A similar table is given in Table 9 with constant number of trailers 

and varying number of docks. 

 

Table 8 Varying Number of Trailers 

2 Dock  2 Dock 2 Dock 2 Dock 2 Dock  
4 Trailer 8 Trailer 12 Trailer 33 Trailer 67 Trailer 

Constraints 92 278 558 3622 14194 
Variables 58 146 264 1419 5159 

 

Table 9 Varying Number of Docks 

2 Dock 8 Dock 12 Dock 33 Dock 67 Dock  
4 Trailer 4 Trailer 4 Trailer 4 Trailer 4 Trailer 

Constraints 92 372 556 1522 3086 
Variables 58 248 372 1023 2077 

 

 

Figure 17 and Figure 18 show the change in number of variables and constraints 

respectively, with the change in number of docks and trailers. The number of variables and 

constraints increase exponentially with increasing number of trailers and increase linearly with 

increasing number of docks. 
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Figure 17 Effect of Increasing Trailers/Docks on the Number of Variables 
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Figure 18 Effect of Increasing Trailers/Docks on the Number of Constraints 

 

3.4.2 Computation Time 

All experiments are run on a machine with Intel Pentium 4 @ 2.66 GHZ, 512 MB DDR 

Ram and Windows NT operating system. When the problem size is increased from 2-dock-4 

trailer to 3-dock-8 trailer the computation time increases from 0.3 seconds to 2573.6 seconds. 

An interesting observation about Xpress is that the software tends to yield good results in 

low percentile of the total computation time. For example, the case of 3 docks and 8 trailers 

yields its optimal solution in the 6% of the total run time. Furthermore, in only 1% of the total run 

time a good solution within 2.3% of the optimal solution is achieved as depicted in Figure 19. 

This is an indication that the model can be interrupted manually to reduce computational time 

with a trade-off in solution quality, however this has only been observed for small size problems 

and it is still a non-trivial task to solve even moderate size problems that exist in practice. The 
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largest model that has reached an optimal solution in experiments is 4 docks-12 trailers at 129604 

seconds. 
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Figure 19 Graph Showing the Solution Achievement Timeline of 3 Dock 8 Trailer Problem 

 

Computational experiments show that there is need for sub-optimal models for achieving 

solutions in polynomial time. The next chapter investigates the design of a dock assignment 

heuristic that produces sub-optimal solutions. 

 

 

 

 

 

 

35 



 

CHAPTER 4 

DOCK ASSIGNMENT HEURISTIC 

 

The computational difficulties associated with the optimal model require the development 

of a heuristic approach to solve practical size problems. A sub-optimal dock assignment 

algorithm which will be referred as the Dock Assignment Heuristic (DAH) is introduced in this 

chapter. DAH is then benchmarked with known optimal solutions for small size problems. 

 

4.1 Heuristic Algorithm 

 The DAH minimizes the makespan on n parallel processors (docks) to maximize idle 

times at each dock which can then be evenly distributed between the trailers assigned on that 

dock. Example in Table 7 is revisited. 

The steps of the DAH are as follows: 

 

Step 1. Sort the trailers in ascending order of Estimated Arrival Times. (Aj ) 

 

Step 2. Assign the trailer to the dock with the smallest existing leave time (Lj,) in 

sequential order as depicted in Figure 20.  

 

Step 3. Assign the enter time to the trailer so that Ej,k = Aj . If Aj time slot is occupied by 

the previous assignment move it to the first available time and update its Ej,k and Lj,k . (Lj,k = 

Ej,k + Gj,k). Repeat Step 3 for all trailers as depicted in Figure 21. 

 

Step 4. Find the total idle time at dock k and distribute it evenly between the assigned 

trailers on dock k as depicted in Figure 22. (Note that assignments must not violate Ej,k >= 

Aj.). Repeat Step 4 for all docks. 
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DOCK 2

DOCK 3

DOCK 4 4
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Heuristic Assignment
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Figure 20  Step 2 of the Heuristic Algorithm Showing 4 Trailers 

 

time 0 1 2 3 4 5 6 7 8 9 10 11 12

DOCK 1 1

DOCK 2 10

DOCK 3

DOCK 4

6

Heuristic Assignment

2

8

5 9 11

3

4 7 12  
Figure 21 Step 3 of the Heuristic Algorithm 

 

 

Heuristic Assignment
0 1 2 9 10 time 3 4 5 6 7 8 11 12

8.67 6.33

Figure 22 Step 4 of the Heuristic Algorithm 
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4.2 Effectiveness of the DAH 

This section benchmarks the effectiveness of the heuristic by comparing it with the 

existing optimal solutions. 40 data sets for 9 trailers with varying dock numbers and dock 

utilizations have been randomly generated as shown in Table 10. Trailer number has been 

restricted to 9 due to the computational complexity described in Section 3.4. S2 values for each 

data set have been calculated by both the optimal model and the DAH as displayed in Figure 23. 

 

Table 10 Number of Data Sets Used for Benchmarking the DAH 

# of Docks 9 trailers 3 4 
High 

(~85%) 10 10 
U

til
iz

at
io

n 

Low 
(~55%) 10 10 
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Figure 23 Values Sum of S2 Values Obtained From Each Data Set  

 

The dock utilizations have been varied by changing the number of docks and changing 

the service time of trailers. For example, the 3 dock high utilization case has been converted into 

4 dock low utilization case with the increasing of dock number by one. The transition from 3 

dock high utilization to 3 dock low utilization has been accomplished by decreasing the service 

times. 
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Figure 23 also shows that low utilization cases have higher sum of S2 values than high 

utilization cases and 4 dock cases have higher sum of S2 values than 3 dock cases. This is due to 

the fact that the sum of S2 values is inherently higher with docks that have higher total idle time.  

The performance measure is chosen as percent deviation from optimal solution. The 

percent deviations of sum of S2 values of the DAH from the sum of S2 values of the optimal 

solution are displayed in Figure 24. The DAH on the average performs within 4.41% of the 

optimal model. 
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Figure 24 Percent Deviations of Each Data Set from the Optimal Values  

 

4.3 Effects of # of Docks and Dock Utilization on the Performance of the DAH 

The objective of this section is to investigate general applicability of the DAH. The 

internal characteristics of the DAH such as sequential assignments bring the need to investigate 

this area. 

 

4.3.1 Effect of Number of Docks 

Tukey’s test is used to test whether there is a significant difference in the mean percent 

deviation for different number of available docks. Table 11 shows the test data, representing 20 

data sets for dock size of two, three and four.  
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Table 11 Percent Deviations from Optimal Solution for 20 Data Sets 

Sets 1 2 3 4 5 6 7 8 9 10 
2 Docks 4.52 10.8 1.11 0.6 4.07 0.79 10 14.2 2.44 12.6
3 Docks 4.53 0.57 3.85 1.66 1 16.3 7.09 7.69 2.57 0.91
4 Docks 3.5 6.59 10.2 1.85 0.67 13.8 0.31 5.84 7.19 3.16

           
Sets(Contd.) 11 12 13 14 15 16 17 18 19 20 

2 Docks 9.86 2.47 5.32 3.83 1.23 6.36 0.21 6.65 0.57 2.07
3 Docks 0.3 2.39 1.93 0.05 8.03 6.26 1.99 1.39 0.03 5.72
4 Docks 0.36 1 6.83 3.26 6.59 11.8 13.5 6.79 0.16 4.47

 

 

Table 12 ANOVA for Comparison of Means 

Analysis of Variance 
Source of Variability     DF SS MS F P-Value 
Dock         2 30.7 15.3 0.86 0.429 
Error       57 1016.8 17.8     
Total       59 1047.4       

 

 

Table 12 displays the SS (sum of squares) and MS (mean square) values for the three 

levels and the error. The value of the studentized range statistic q at a significance level of α = 

0.05 and (3, 57) degrees of freedom (3 and 57 correspond to the number of levels and the number 

of degrees of freedom associated with the MSE respectively): 
 

40.3)57,3(05.0 =q  

 

The corresponding  value is found as:  05.0T

28.805.005.0 ==
n

MSqT E  

 

The differences in averages are:  

68.1
41.0

27.1

.3.2

.3.1

.2.1
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−=−
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Since none of the differences is greater in absolute value than the value, it is 

concluded that increase in the number of docks does not significantly affect the performance of 

the heuristic for 2, 3 and 4 docks. For larger dock numbers however, the increase in the number 

of docks was expected to significantly decrease heuristic performance due to the growth of state 

space as the number of docks grows since the optimal solution has a larger state space to choose 

from where as the heuristic is restricted to a smaller state space. Further tests with high dock 

numbers was not possible to perform due to the computational restrictions of the optimal model.  

05.0T

 

4.3.2 Effect of Utilization Level  

The pairwise comparisons were subjected to paired-sample t-tests on the difference 

between means, µd . The test on utilization levels considers the hypothesis: 

 

H0 : µd  = 0 

HA : µd ≠ 0 

 

where µd = µH  – µL , H and L denote High utilization and Low utilization treatments respectively.  

 The null hypothesis is accepted at 99% and higher confidence level as shown in Table 13 

indicating the effect of utilization level is not statistically significant on the performance of the 

heuristic. The heuristic performance, on the average, decreased by 0.94% from low to high 

utilization level.  

 

Table 13 Effect of Changing Utilization of Docks on Heuristic Performance 

Utilization Average % 
Deviation 

% 
Change t-stat Deg.of 

freedom CL t-table 
value   C.I. 

High 4.91 
Low 3.97 0.94 0.78 19 99% 2.861 insig. 

 

4.4 Conclusion 

The results show that, on the average, the DAH performs within 4.41% of the optimal 

solution at the objective of evenly distributing the idle time at docks and is generally applicable. 

Most important benefit of the DAH was that it was enable to find feasible solutions to moderate 

size problems. This is an important aspect since the next chapter investigates how robust the 

objective of evenly distributing idle times at gates is when the system is subject to variability. 

41 



 

CHAPTER 5 

TESTING DAH FOR ROBUSTNESS 

 

This chapter investigates how the Dock Assignment Heuristic (DAH) manages the 

variability in system parameters. Specifically, DAH is tested using variability in arrival times, 

variability in distribution of freight flow in the LTL truck and variability in transfer time.  

 

5.1 Performance Metric for Terminals 

The performance measure used is the percent cut-off (PCO) metric that was introduced in 

Section 1.2.2.2. This metric focuses on service level of the terminal as a whole. It is important 

that a package that arrives at the terminal makes its outbound dock in a pre-set time, where it will 

then leave the terminal. During the time that a package is at the terminal there are many factors 

that affect the transition of the package directly or indirectly. PCO is a cumulative assessment of 

these factors.  

  The PCO metric works in the following way. First, a cut-off time is set for truck arrivals. 

This is referred to as the arrival cut-off time (ACOT). Another cut-off time is set for the 

completion of service for all trailers that arrived before ACOT which is referred to as the final 

cut-off time (FCOT). Any truck from the beginning of the planning horizon to FCOT is planned 

to be processed in this duration. Freight that passes a set point before FCOT increases the PCO. 

The ACOT and FCOT differ according to unique terminal characteristics and service level goals. 

  

5.2 Simulation Framework  

A simulation model with 50 trailers and 10 docks (5 inbound and 5 outbound) is built 

(shown in Figure 25 and Figure 26) using Arena Simulation v7.01 by Rockwell Software  [88].
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Figure 25 Arrival Process of the Simulation Model Showing Several Trucks 

 

 

 
Figure 26 Decision Process of Simulation Model Showing 3 Docks 
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5.2.1 Simulation Input Data  

Data input to simulation model comprise scheduled arrival times and service times. The 

model uses enter times Ej,k and dock assignment information obtained from the solution of  the 

DAH. Data obtained from Watkins Motor Lines  [89] for arrival distribution is shown in Table 14. 

10 sets of 50 trailer data sets are generated. Figure 27 displays the probability density function 

generated using the data from Watkins Motor Lines  [89]. 

 

Table 14 Arrival Data Probability Distribution 

hrs hrs 
from to prob. from to prob. 
17 18 0.0427 5 6 0.0568
18 19 0.0392 6 7 0.0538
19 20 0.0339 7 8 0.0515
20 21 0.0386 8 9 0.0386
21 22 0.0421 9 10 0.0205
22 23 0.0439 10 11 0.0322
23 24 0.0521 11 12 0.0217
24 1 0.0527 12 13 0.0234
1 2 0.0614 13 14 0 
2 3 0.0761 14 15 0 
3 4 0.0644 15 16 0 
4 5 0.0708 16 17 0 

 

ACOT has been set to 20th unit time and FCOT to 24th unit time. It is planned that all the 

trucks that arrive between time 0th and 20th unit time will be processed before 24th unit time.  Any 

truck that comes between ACOT and FCOT will be assigned to the next day’s PCO. In the 

simulation these trucks are considered to have Aj = 0.  

The ACOT and FCOT correspond to 13:00 hrs and 17:00 hrs of the day that supplied the 

data. This means that PCO will be increased by any freight that arrives between 13:00 the 

previous day and 13:00 today and make it to its outbound dock before 17:00 today.  
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Figure 27 Arrival Probability Distribution 

 

Service time in the terminal refers to two types of operations:  

1. Unloading of trailers: Time needed to completely unload the contents of a trailer. 

Analysis of data supplied from the industry shows that this is exponentially distributed 

with a mean of 2.11 hours as depicted in Table 15. 

2. Transfer of freight from the inbound to the outbound dock: The time it takes for the 

pallets to arrive at their destination dock.  

 

Table 15 Data Used in Simulation for Service Times 

` Distribution Parameter 
Unloading Time(hrs) Exponential 2.11 

Low 0.10,0.11,0.12,0,13,0.14 Transfer Time(hrs) Constant High 0.20,0.22,0.24,0,26,0.28 
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Figure 28 Transfer Times Assigned for Low Setting 

 

The transfer times are input to the simulation model as constants. The two treatments of 

transfer times are high and low.  

 

5.3 Experimental Set-up 

The experimental set-up consists of 20 data sets and 3 treatments: 

1. Variability in arrival pattern (Arrival Lateness SD): Low standard deviation means less 

variability in incoming truck arrival times with respect to scheduled arrival times. (SD≈ 0.5) 

whereas high standard deviation means high variability. (SD≈3)  

2. Inbound freight destination distribution (Load Factor): When the destinations associated 

with the incoming freight is balanced, the freight in a truck is equally distributed among the 

outbound trucks that it is transferred to. When it is unbalanced, the flow among the freight to one 

or more outbound docks is increased, resulting in a shift of load to certain doors. 

3. Transfer Time (Transfer Time): The time it takes to transfer freight to outbound docks. 

Transfer time factor is incorporated in the setup to represent the differences between the 

transferring capabilities of terminals. High setting indicates that the transfer times take long time, 

increasing the effect of the transfer time factor, and low setting indicates low transfer times, such 

as but not restricted to, smaller terminals. 

 

5.4 Experimental Results 

The following sections discuss the experimental results with respect to afore mentioned 

three factors. 
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5.4.1 Variability in Arrival Patterns 

Trucks can be subject to significant variability in their arrival times. The DAH is 

subjected to changes in the standard deviation in the truck arrival distribution. It is assumed that 

trucks arrive with lateness normally distributed with a mean of zero. By changing the standard 

deviation of the underlying distribution, the degree of variability in truck arrival times is 

increased. The results are summarized in Table 16. 

 

Table 16 PCO of DAH with Changing SD in Arrival Lateness 

Utilization % 88 80 75 62 76.25 
SD Set 1 Set 2 Set 3 Set 4 Average 
0.5 93.66 97.80 100.00 100.00 97.87 
1 93.62 97.76 100.00 99.98 97.84 

1.5 93.62 97.44 99.94 99.98 97.75 
2 92.96 96.42 99.24 99.92 97.14 

2.5 91.86 95.22 98.32 99.72 96.28 
3 90.62 93.82 96.84 99.36 95.16 

3.5 89.06 92.48 94.98 99.00 93.88 
4 88.12 90.10 93.36 98.66 92.56 

4.5 86.38 87.88 91.60 98.18 91.01 
5 85.06 85.48 90.06 97.32 89.48 

  

The graph in Figure 29 shows that the DAH is robust against the variability in arrival 

times. An average decrease of 8.4% in PCO is observed for. Data obtained from industry show 

that SD of arrival lateness is approximately 1.5, a level where the quality of the solution obtained 

using the DAH is virtually unaffected. SD of arrival lateness can vary according to the different 

characteristics of the terminal, road conditions and seasons, however the DAH proves robust even 

under significant SD’s. 

Another observation that can be made from Figure 29 is that lower utilization levels 

compensate variability better, an expected outcome due to the characteristics of PCO metric 

which is based on a pre-determined FCOT. 
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Figure 29 The DAH Subject to Different SD’s of Arrival Lateness 

 

5.4.2 Variability in Load Distribution 

As mentioned in Chapter 4, the DAH is independent of flow information, thus results are 

robust against changes in load distribution. The “load factor” had been set to distributions given 

in Table 17 , where a factor of zero indicates that the load is distributed at docks in balance and a 

factor of 5 indicates there is significant shift of demand to certain doors. 

 

Table 17 Load Factors and Their Effect on PCO Metric of 4 Arbitrary Data Sets 

  Load Distribution PCO 

Factor 
Dock 

1 
Dock 

2 
Dock 

3 
Dock 

4 
Dock 

5 Set 1 Set 2 Set 3 Set 4 
0 0.2 0.2 0.2 0.2 0.2 93.92 98.00 92.00 100.00
1 0.35 0.25 0.2 0.15 0.05 93.92 98.00 92.00 100.00
2 0.45 0.3 0.15 0.07 0.03 93.92 98.00 92.00 100.00
3 0.55 0.35 0.05 0.03 0.02 93.92 98.00 92.00 100.00
4 0.65 0.2 0.05 0.05 0.05 93.92 98.00 92.00 100.00
5 0.75 0.15 0.05 0.04 0.01 93.92 98.00 92.00 100.00

 

5.4.3 Variability in Transfer Time 

The DHA’s independence of distance and flow vectors may be a disadvantage against 

dock assignment algorithms utilizing distance minimization formulas, therefore the DHA is 

subjected to variability in transfer times.  

Table 18 displays the times it takes between inbound and 
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outbound docks in hours. The times in  

Table 18 have a time factor of 0. Time factor 5 indicates the multiplication of these values by 5.  

 

Table 18 Times between Docks in Hours with Time Factor 0 

  Outbound Docks 
  1 2 3 4 5 
1 0.05 0.06 0.07 0.08 0.09
2 0.06 0.05 0.06 0.07 0.08
3 0.07 0.06 0.05 0.06 0.07
4 0.08 0.07 0.06 0.05 0.06

In
bo

un
d 

D
oc

ks
 

5 0.09 0.08 0.07 0.06 0.05
 

 DHA yields approximately a 4% decrease in performance. For especially small transfer 

times terminals (time factors 0 and 1) the DAH is unaffected as displayed in Figure 30. 

 

Figure 30 Effect of Travel Time on PCO 

 

5.5 Conclusion 

In this chapter the DAH has been tested under varying system parameters, variability in 

lateness of arrivals, load distribution factors and transfer times. Under these test conditions the 

DAH performs robust considering PCO metric as the measure of performance.  

Although the DAH made it possible to achieve solutions for practical size problems, it 

continues to be a planning level heuristic. The next chapter introduces a dynamic hybrid heuristic 

that can be implemented in real time.  
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CHAPTER 6 

A MODEL FOR REAL TIME ASSIGNMENTS 

 

6.1 Introduction 

The optimal model introduced in Chapter 3, the distance minimization model of Tsui and 

Chang described in Section 2.6 and many existing models in literature are planning level models. 

Suboptimal solutions such as the DAH are computationally tractable; however, they are not real 

time decision processes.  

This chapter introduces a new heuristic that incorporates the benefits the distance 

minimization models and robustness of DAH. A modification to the DAH and incorporating a 

decision process for distance minimization yield a hybrid heuristic that can be implemented in 

real time. The heuristic will be referred to as the dynamic dock assignment heuristic (DDAH). 

Later in the chapter DDAH is compared with DAH for robustness under varying system 

conditions. 

 

6.2 The Dynamic Dock Assignment Heuristic (DDAH) 

As mentioned in the previous chapters, the assignment steps (steps 1, 2 and 3) of DAH 

results in evenly distributed idle times at each dock. At the operational level, this means that the 

utilizations of existing docks are similar which is valuable for robustness. DDAH also 

incorporates the distance minimization objective by considering the flow and distance 

information yielding a hybrid heuristic that aims to combine the advantages of both approaches. 

The steps of the DDAH are as follows: 

 

Step 1: Select the trailer with the earliest actual arrival time. 

Step 2: Based on the “freight distribution” select the idle inbound dock that minimizes travel time 

to outbound dock. If no docks are available, wait until a dock becomes available. 

Step 3: Repeat steps 1 and 2 for all available trailers. 

 

Step 1 of DAH sorts the trailers in ascending order of Estimated Arrival Times. At 

operational level, this is analogous to building a single queue for first come first serve processing 

50 



 

where the trailers will be selected according to their arrival order. DDAH selects the trailer with 

the earliest actual arrival time, or the first trailer in the queue. Step 2 of DAH assigns all the 

trailers sequentially to the dock with the smallest existing leave time. At operational level this is 

equivalent to assigning the trailer to the first available dock (waiting until a dock becomes 

available) since the first available dock is the dock with the smallest leave time. Step 3 of DAH is 

updating the enter times once the trailer is assigned to a dock. At operational level, this is 

analogous to assigning the actual enter time. 

 

6.3 DDAH vs. DAH 

This section compares the performance of the DDAH to DAH following the experimental 

set up shown in Figure 31. Similar to the experimental design used for testing DAH in Chapter 5, 

the DDAH is subjected to variability in system conditions and simultaneously compared to the 

DAH using the PCO metric. The decision process of the simulation model is modified to 

implement the DDAH as shown in Figure 32.  
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Figure 31 Variables Used in Experimental Design 
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Figure 32 Screenshot of the Decision Process of the DDAH Simulation Model 

 

The trailer is initially assigned to the inbound dock that minimizes the total travel 

distance of the trailer contents to the outbound dock. For example, assume a trailer is initially 

assigned to inbound dock 1 since the total travel distance of its contents is minimized at the 

inbound dock closest to outbound dock 1. If outbound dock 1 is busy, then the trailer is first re-

assigned to inbound dock 2, and then inbound dock 3 and so on. For the simulation it is assumed 

that the load distributions in each truck are known and the initial assignments are made based on 

the demand for outbound docks.   

 

Table 19 Levels of Factors Used in the Experiment 

 Transfer Time Arr. Lateness SD Load Distribution 
Low Factor 1 0.5 0.2,0.2,0.2,0.2,0.2 
High Factor 3 3 0.40,0.25,0.15,0.10,0.10

 

During the experimentation the DDAH outperformed the DAH by a small margin based 

on the PCO metric as shown in Figure 33. This was anticipated since DDAH does not delay the 

assignment of incoming trailers as is the case with DDAH, however the purpose of testing for 

robustness is to investigate how much the performance of the heuristic deviates from its 
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performance when the system is not subject to variability. The range of the averages displayed in 

Table 20 show that DDAH are not significantly affected. The range for the DDAH is 1.26 versus 

2.36 for the DAH for the test cases considered.  

 

Table 20 Table Showing the Effects of Treatments on PCO Metric 

Treatment PCO 
Run 

# 
Transfer 

Time 
Arrival 

SD 
Load 
Dist. DDAH DAH 

1 Low Low Low 98.40 97.62 
2 Low Low High 97.95 96.78 
3 Low High Low 97.88 97.10 
4 Low High High 97.96 96.34 
5 High Low Low 97.72 95.99 
6 High Low High 97.14 95.92 
7 High High Low 97.42 95.78 
8 High High High 97.23 95.26 
  Range 1.26 2.36 
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Figure 33 Changes in PCO with Different Treatments 

 

 

The results indicate that DDAH is a robust heuristic against system variability when PCO 

is considered as performance metric. The next chapter compares DDAH with a static dock 

assignment approach used in the industry using data obtained from Watkins Motor Lines. 
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CHAPTER 7 

CASE STUDY 

 

 In this chapter, the DDAH is compared to a dock assignment approach that is used by 

Watkins Motor Lines which will be referred to as the static dock assignment model (SDAM). The 

dock assignments in SDAM are made based on minimization of travel distance, similar to the 

model of Tsui and Chang  [14] that has been previously presented. In SDAM inbound and 

outbound docks are assigned based on aggregate data representing several months or longer. The 

two models are tested under the experimental setup used in Chapter 6.  

 

7.1 Input Data 

The terminal under consideration has a total of 49 docks of which 46 are used. 23 docks 

are allocated to inbound and 23 are allocated to outbound operations as shown in Figure 34. (City 

names with * denote strip docks) 

 

 

Figure 34 Layout of the Terminal Used for the Case Study [90]
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 The terminal is 264 ft. in length and 84 ft. in width with 12 ft. of space between adjacent 

docks.  Using the distance information travel times between doors have been calculated as shown 

in Figure 35 with the city codes given in Table 21. 

 

Table 21 City Codes and Corresponding Dock Numbers 

Dock 1 2 3 4 5 6 7 8 9 10 11 12 
City NWK HBG MCT CHA ATL SLC HOU MIA ORL OCA FTM TPA 
Dock 13 14 15 16 17 18 19 20 21 22 23 24 
City PBC SAC SBR DLS ELP SAT KCY CIN MPS SCH LAK  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0.24 0.48 0.96 1.68 2.40 2.64 2.88 3.84 4.56 5.40 6.12 6.24 5.52 5.04 4.56 4.32 3.84 3.60 3.12 2.88 2.40 1.92 1.68
2 0.48 0.24 0.24 0.96 1.68 1.92 2.16 3.12 3.84 4.92 5.64 5.76 5.04 4.56 4.08 3.84 3.36 3.12 2.64 2.40 1.92 1.92 2.16
3 0.96 0.72 0.24 0.48 1.20 1.44 1.68 2.64 3.36 4.20 4.92 5.04 4.32 3.84 3.36 3.12 2.64 2.40 1.92 1.68 2.16 2.64 2.88
4 1.20 0.96 0.48 0.24 0.96 1.20 1.44 2.40 3.12 3.96 4.68 4.80 4.08 3.60 3.12 2.88 2.40 2.16 1.68 1.92 2.40 2.88 3.12
5 1.92 1.68 1.20 0.48 0.24 0.48 0.72 1.68 2.40 3.24 3.96 4.08 3.36 2.88 2.40 2.16 1.68 1.92 2.40 2.64 3.12 3.60 3.84
6 3.12 2.88 2.40 1.68 0.96 0.72 0.48 0.48 1.20 2.04 2.76 2.88 2.16 1.68 2.16 2.40 2.88 3.12 3.60 3.84 4.32 4.80 5.04
7 2.88 2.64 2.16 1.44 0.72 0.48 0.24 0.72 1.44 2.28 3.00 3.12 2.40 1.92 1.92 2.16 2.64 2.88 3.36 3.60 4.08 4.56 4.80
8 3.36 3.12 2.64 1.92 1.20 0.96 0.72 0.24 0.96 1.84 2.52 2.64 1.92 1.92 2.40 2.64 3.12 3.36 3.84 4.08 4.56 5.04 5.28
9 4.08 3.84 3.36 2.64 1.92 1.68 1.44 0.48 0.24 1.20 1.92 1.92 2.16 2.64 3.12 3.36 3.84 4.08 4.56 4.80 5.28 5.76 6.00
10 4.92 4.64 4.20 3.48 2.76 2.52 2.28 1.32 0.60 0.24 0.96 1.80 2.52 3.00 3.48 3.72 4.20 4.44 4.92 5.16 5.64 6.12 6.36
11 6.00 5.76 5.28 4.56 3.84 3.60 3.36 2.40 1.68 0.96 0.24 0.48 1.20 1.68 2.16 2.40 2.88 3.12 3.60 3.84 4.32 4.80 5.04
12 5.76 5.52 5.04 4.32 3.60 3.36 3.12 2.16 1.92 1.80 1.08 0.24 0.48 0.96 1.44 1.68 2.16 2.40 2.88 3.12 3.60 4.08 4.32
13 5.04 4.80 4.32 3.60 2.88 2.64 2.40 1.92 2.64 2.52 1.80 0.96 0.24 0.24 0.72 0.96 1.44 1.68 2.16 2.40 2.88 3.36 3.60
14 5.52 5.28 4.80 4.08 3.36 3.12 2.88 1.92 2.16 2.04 1.32 0.48 0.24 0.72 1.20 1.44 1.92 2.16 2.64 2.88 3.36 3.84 4.08
15 4.56 4.32 3.84 3.12 2.40 2.16 1.92 2.40 3.12 3.00 2.28 1.44 0.72 0.24 0.24 0.48 0.96 1.20 1.68 1.92 2.40 2.88 3.12
16 3.84 3.60 3.12 2.40 1.68 1.92 2.16 3.12 3.84 3.72 3.00 2.16 1.44 0.96 0.48 0.24 0.24 0.48 0.96 1.20 1.68 2.16 2.40
17 3.12 2.88 2.40 1.68 2.40 2.64 2.88 3.84 4.56 4.44 3.72 2.88 2.16 1.68 1.20 0.96 0.48 0.24 0.24 0.48 0.96 1.44 1.68
18 1.68 1.44 0.96 0.24 0.72 0.48 0.96 1.92 2.64 3.48 4.20 4.32 3.60 3.36 2.88 2.40 1.92 1.68 2.16 2.40 2.88 3.36 3.60
19 4.56 4.32 3.84 3.12 2.40 2.16 1.92 0.96 0.24 0.48 1.20 1.68 2.40 2.88 3.36 3.60 4.08 4.32 4.80 5.04 5.52 6.00 6.24
20 2.40 2.16 1.68 2.40 3.12 3.36 3.60 4.56 5.28 5.16 4.44 3.60 2.88 2.40 1.92 1.68 1.20 0.96 0.48 0.24 0.24 0.72 0.96
21 1.92 1.68 2.16 2.88 3.60 3.84 4.08 5.04 5.76 5.64 4.92 4.08 3.36 2.88 2.40 2.16 1.68 1.44 0.96 0.72 0.24 0.24 0.48
22 3.84 3.60 3.12 2.40 1.68 1.44 1.20 0.24 0.48 1.32 2.04 2.16 1.92 2.40 2.88 3.12 3.60 3.84 4.32 4.56 5.04 5.52 5.76
23 2.16 2.40 2.88 3.60 4.32 4.56 4.80 5.76 6.48 6.36 5.64 4.80 4.08 3.60 3.12 2.88 2.40 2.16 1.68 1.44 0.96 0.48 0.24
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Figure 35 Transfer Times between Docks in Minutes 

 

The travel times are used to represent transfer time of pallets from the strip door to its 

stack door. There are two levels of transfer time, low and high. The travel times given in Figure 

35 represent low setting and at high setting travel times are twice as much. Both DDAH and 

SDAM utilize distance minimization objectives, thus it is anticipated that the models will not be 

affected by the change in transfer time.  

The analysis of data obtained from the terminal suggests that truck arrivals have 

exponential interarrival time with a mean of 12 minutes and the service rate is exponentially 

distributed with a mean of 2.11 hours.  
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Table 22 shows the original distribution of freight on outbound docks. There are two 

levels of load distribution as shown in Figure 36. The original distribution obtained from the data 

is accepted as a “balanced” distribution since static dock assignments are made to minimize this 

freight travel distance. The “shifted” distribution represents an unbalanced load distribution. 

For the case study the load distribution data for inbound trucks is not available. 

Therefore, the initial assignments are made based on the dominant load in a truck. The dominant 

loads are determined according to the outbound load distribution. The inbound trucks are 

assigned a dominant destination load according to the aggregate outbound load data, and later 

initially assigned to the inbound door that minimizes the distance to the outbound dock of 

dominant load. 

Table 22 Original Freight Distributions for Outbound Docks 

Dock % Dock % 
1 1.32 13 10.68
2 3.59 14 2.34 
3 3.02 15 3.21 
4 3.01 16 3.75 
5 3.91 17 2.27 
6 2.49 18 1.89 
7 1.15 19 2.29 
8 12.42 20 2.72 
9 11.86 21 2.70 

10 5.18 22 4.30 
11 4.30 23 0.12 
12 11.48     
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Figure 36  Original and Shifted Freight Load % Distributions  

56 



 

7.2 Simulation Results 

The results indicate that DDAH outperforms SDAM based on the PCO metric. The 

simulation results for low utilization are displayed in Table 23 and for high utilization in Table 

24. 

The DDAH is less affected then SDAM on the average and individually at each 

treatment. The deviations in the PCO metric for low and high utilization levels are shown in 

Table 25 and Table 26, respectively. At low utilization levels the differences in deviations are less 

significant because at low utilization levels the system is capable of creating enough time to 

compensate for the losses as depicted in Table 25. System utilization is increased by increasing 

the number of arrivals by a factor of two. When utilization level is increased, the performance of 

the DDAH proved more robust as the differences in deviations increased based on PCO metric as 

displayed in Table 26. 

 

Table 23 Simulation Results Showing PCO for Low Utilization 

   PCO 
Forklift 
Transfer Flow 

Delay 
CV DDAH SDAM 

Low Bal. Low 97.65 80.73 
Low Bal. High 92.38 76.38 
Low UnBal Low 97.64 75.41 
Low UnBal High 92.40 71.70 
High Bal. Low 97.62 80.70 
High Bal. High 92.36 76.36 
High UnBal Low 96.86 71.70 
High UnBal High 92.38 71.70 

 

Table 24 Simulation Results Showing PCO for High Utilization 

   PCO 
Forklift 
Transfer Flow 

Delay 
CV DDAH SDAM 

Low Bal. Low 88.54 58.28 
Low Bal. High 85.18 56.41 
Low UnBal Low 88.52 52.79 
Low UnBal High 85.18 51.13 
High Bal. Low 88.44 58.28 
High Bal. High 85.11 56.41 
High UnBal Low 88.41 52.79 
High UnBal High 85.07 51.13 
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Table 25 Percent Deviations from PCO for Low Utilization 

Transfer 
Time 

Load 
Dist. 

Arrival 
SD DDAH SDAM 

Low Bal. Low PCO Dev. 
Low Bal. High -5.40 -5.40 
Low UnBal Low -0.02 -6.59 
Low UnBal High -5.38 -11.18 
High Bal. Low -0.03 -0.04 
High Bal. High -5.42 -5.42 
High UnBal Low -0.81 -11.18 
High UnBal High -5.40 -11.18 

 Average -3.21 -7.28 
 Range 5.40 11.14 

 

 

The results also point out that DDAH is virtually unaffected from the variability in 

distribution of load in trucks as denoted by Flow in Table 25 and Table 26. The “range” indicates 

the difference between the maximum and minimum value of deviation of PCO from the base 

treatment for the different treatments. Figure 37 depicts the deviations of the results 

 

Table 26 Percent Deviations from PCO for High Utilization 

Transfer 
Time 

Load 
Dist. 

Delay 
SD DDAH SDAM 

Low Bal. Low PCO Dev. 
Low Bal. High -3.80 -3.21 
Low UnBal Low -0.02 -9.42 
Low UnBal High -3.80 -12.28 
High Bal. Low -0.11 0.00 
High Bal. High -3.87 -3.21 
High UnBal Low -0.15 -9.42 
High UnBal High -3.92 -12.28 

 Average -2.24 -7.11 
 Range 3.89 12.28 
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Figure 37 Deviations from PCO as Variability is Introduced to the System for Low Utilization 

 

 The effect of transfer time is very insignificant due to the low utilization of the terminal 

since at low utilizations the system has more capability to compensate the transfer time factor. 

When the utilization is increased DDAH experiences a slight decrease in its performance. This is 

due to its inherent characteristic which balances a trade-off between travel distance and 

robustness. 

 

7.3 Conclusion 

A case study using real data from an LTL terminal has been performed to investigate the 

robustness of the DDAH. The performance of DDAH is compared to the existing static 

assignment approach of the terminal. 

The results show that DDAH is a robust heuristic when compared to the SDAM based on 

PCO metric, a metric chosen to represent the service levels of the terminal as a whole.  DDAH 

performed equally or better in every treatment introduced to the system.  Its performance is also 

better at higher utilization levels.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

 

8.1 Conclusions 

This thesis presents a robust dock assignment approach at LTL terminals to minimize the 

performance decrease when variability is present. Variability is defined in the following three 

categories:  

 

1. Variability in Truck Arrival Times: Represented by standard deviation of the lateness 

distribution. 

2. Variability in Load Distribution: The distribution of the destination of freight inside the 

trailer that make a “less-than-truckload” type of load.  

3. Variability in Transfer Time: Times that transportation units inside the terminal need to 

travel. Models utilizing minimization of distance are advantageous in theory in this 

aspect. 

 

An optimal model is introduced in Chapter 3 as a resource allocation model. The optimal 

model represents the theory behind the robustness approach, that is, by evenly distributing the 

total idle time of the docks between the trailers, the system is expected to have buffers to manage 

variability between the scheduled times and actual times. The computational difficulties 

associated with the optimal model render realistic size problems unsolvable. 

The need for feasible solutions that reflect the robustness approach has lead to the 

development of a dock assignment heuristic; the DAH. First the DAH has been benchmarked 

with the existing optimal solutions to investigate its quality. The statistical tests indicated that 

with small size problems the DAH performs on the average within 4.41% of the optimal model 

which concluded that the DAH is acceptable for general applicability. 

By modifying the DAH a hybrid heuristic that can be implemented in real time is 

developed, namely the dynamic dock assignment heuristic (DDAH). The DDAH has been tested 

with the experimental setup used to test the robustness of the DAH. The results show that DDAH 

is also a robust heuristic, considering the PCO metric.  
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At the next stage, a design of experiments is performed to test the capabilities of the 

DAH under system variability. The percent cut-off metric has been adapted as a performance 

measure, for its representative capabilities of the service level of a terminal as a whole. The 

results show that the DAH is not significantly affected by the variability in the system, therefore 

its robustness is accepted. The DAH alleviated computational issues, however not to a level to be 

implemented in real time, thus a heuristic with real time assignment capabilities is investigated. 

The final testing of the DDAH was a case study that used real data supplied by Watkins 

Motor Lines comparing with the existing static dock assignment model (SDAM) of the terminal. 

The results agree that DDAH is robust when compared to the SDAM based on PCO metric.  

DDAH performed equally or better than SDAM in every treatment introduced to the system.  It is 

also shown that it performs well at low and high utilization levels.  

 

8.2 Future Research 

Some of the potential areas for future research include: 

The reformulation of the optimal model: Increasing the efficiency of the optimal model 

by reformulating the model such as substituting the Yijk variable. Optimal solutions to larger size 

problems will provide better comparing grounds for heuristics.  

Artificial Intelligence Approaches: Techniques mentioned in the literature review are 

potential solution methodologies for significant improvement in computation times with 

acceptable trade offs in solution quality. 

Increasing the Level of Uncertainty: Introducing new sources of variability to the system 

by examining the terminals in more detail would help increase robustness in practical sense. 

The Economics of The Optimal Model and DAH: Since both models are planning level 

models and they extend the duration of service times, their impact on the economy of the terminal 

hold potential for savings for labor. 
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Appendix A. Xpress Code for Example 2 

Model 4-dock-12-Trailer 

uses "mmxprs","mmquad" 

declarations 

NT=4 ! Number of trailers 

ND=2  ! Number of docks 

! Defining Sets  

T = 2..NT+1 ! Set of trailers 1 

TT= 2..NT+2      ! Set of trailers 2 

TTT= 1..NT+2         ! Set of trailers 3 

D = 1..ND ! Set of docks 

! Defining Vectors 

EARLIEST: array(D) of real ! Start of time windows 

LATEST: array(D) of real ! End of time windows  

A: array(TTT) of real      ! Planned arrival times 

G: array(TTT) of real      ! Planned service times 

S: array(TT,D) of mpvar    ! Slack between trailers 

X: array(TTT,D) of mpvar   ! Binary variable X 

Y: array(TTT,TT,D) of mpvar ! Binary variable Y 

E: array(TTT,D) of mpvar   ! Enter time of trailers 

L: array(TTT,D) of mpvar   ! Leave time of trailers 

H: integer ! Very large integer 

z: qexp ! Quadratic Objective Function  

end-declarations 

! User Input 

A:= [0,0,1,1,1,3,3,4,5,6,8,8,9,12] ! Planned arrival times 

G:= [0,1,2,4,2,3,4,4,5,2,1,3,2,0] ! Planned service times 

H:=1000 ! Very large integer 

EARLIEST:= [0,0]  ! Start of time windows 

LATEST:= [10,10]   ! End of time windows 

! Constraint 1 

forall(j in T) SUM(k in G) X(j,k) = 1  

! Constraint 2 

forall(j in T,k in D) E(j,k) >= A(j) * X(j,k) 
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Appendix A. (Continued) 

! Constraint 3: 

forall(j in T,k in D) L(j,k) - G(j) * X(j,k) = E(j,k) 

! Constraint 4 

forall(j,i in T,k in D| i<j)  E(j,k) >= L(i,k) + H*(X(i,k)+X(j,k) - 2) 

! Constraint 5 

forall(j in T,k in D) L(j,k) <= LATEST(k) 

! Constraint 6 

forall(i in TTT,j in TT,k in D | i<j) Y(i,j,k) <= (X(j,k) +X(i,k)) / 2 

! Constraint 7 

forall(j in TT,k in D) SUM(i in 1..j-1) Y(i,j,k) = 1    

! Constraint 8 

forall(i in TTT,j in TT,k in D | i<j) S(j,k) >= E(j,k) - L(i,k) + H*(Y(i,j,k) - 1) 

! Constraint 9 

forall(j in T,k in D) X(j,k) is_binary 

! Constraint 10  

forall(i in TTT,j in TT,k in D | i<j) Y(i,j,k) is_binary 

! Initializations  

forall(k in D) E(NT+2,k) = LATEST(k) 

forall(k in D) X(NT+2,k) = 1 

forall(k in D) L(NT+2,k) = LATEST(k) 

forall(k in D) E(1,k) = EARLIEST(k) 

forall(k in D) L(1,k) = EARLIEST(k) 

! Objective Function 

z:= SUM(j in TT)SUM(k in D) S(j,k)^2 

minimize(z) 

 ! Output 

writeln("Objective Function: ", getobjval) 

forall(j in 2..NT+2,k in G ) 

writeln("S",j,k,"-","Value:--->", getsol(S(j,k))) 

forall(j in 1..NT+2,k in G ) do 

 if getsol(X(j,k)) <> 0 then 

  writeln("______","X",j,k,"-","Value:--->", getsol(X(j,k))) 

end-if-do-model 
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