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A B S T R A C T

The concept of level of service (LOS) is meant to reflect user perception of the quality of service provided by a
transportation facility or service. Although the LOS of bus rapid transit (BRT) has received considerable at-
tention, the number of levels of service of BRT that a user can perceive still remains unclear. Therefore, this
paper addresses this issue using fuzzy clustering of user perception. User perception is a six-dimension vector
including perceived arrival time, perceived waiting time, bus speed perception, passenger load perception,
perceived departure time, and overall perception. The research team developed a smartphone-based transit
travel survey system to conduct the user perception surveys in three BRT systems in China. Fuzzy C-means
clustering, improved using a simulated annealing genetic algorithm, was adopted to partition user perception
into 2–10 clusters. Seven cluster validity indices were used to determine the appropriate number of LOS cate-
gories. The results indicate that users can perceive two to four levels of service.

Introduction

Level of service (LOS) is used to describe the traffic operating con-
ditions of transportation facilities from intersections to highways in the
Highway Capacity Manual (HCM) (Roess et al., 2010; TRB 2010). This
important concept affects the planning, design, and operational aspects
of transportation facilities as well as the allocation of limited financial
resources among competing transportation projects (Choocharukul
et al., 2004; Washburn and Kirschner, 2006).

The HCM states, “Quality of service describes how well a trans-
portation facility or service operates from a traveler’s perspective,” and
defines LOS as the quantitative stratification of a performance measure
or measures that represent quality of service (TRB 2010). The definition
of LOS indicates that it must reflect user perception of the quality of
service provided by a transportation facility or service, which is also
common in past research (Das and Pandit, 2013, 2015; Fang et al. 2003;
Fang and Pecheux, 2009; Pecheux et al., 2000; Zhang and Prevedouros,
2011). Although the concept of LOS is meant to reflect user perception,
its implementations—including determination of the number of LOS
categories, selection of service measure(s), and identification of
thresholds that separate one level from another—are based on the
judgments of transportation professionals (Choocharukul et al., 2004;
TRB 2010; Washburn and Kirschner, 2006).

Specifically, for the number of LOS categories, six levels of service
are defined using the letters A through F and based on the judgments of
transportation professionals in the HCM (TRB 2010). In addition, four,
five, and nine or more levels of service have been proposed (Cameron,
1996; Das and Pandit, 2015; Huo et al. 2015; Maitra et al., 1999).
Determining the number of LOS grades is part of the studies defining
LOS criteria, which mostly assign the six levels conforming to the HCM
and discuss deciding threshold values (Bhuyan and Mohapatra, 2014;
Bhuyan and Rao, 2010, 2011). Other studies address the number of LOS
categories at signalized intersections (Fang et al. 2003; Fang and
Pecheux, 2009; Pecheux et al., 2000). These studies aim to test the
appropriateness of the six levels of service in the HCM in terms of user
perception rather than finding the optimal number of LOS categories.
The LOS number is predetermined to be six and to date no special study
has explored the issue of the number of LOS categories.

Bus rapid transit (BRT) combines the operational flexibility and low
cost of conventional bus transit with the high efficiency and reliability
of rail transit (Cervero and Kang, 2011). Currently, 168 cities world-
wide have constructed BRT corridors, totaling 4998 kilometers (BRT
Center of Excellence 2019). Although the topic of BRT level of service
has received increasing attention, the number of BRT levels of service
that users can perceive remains unclear. However, this is an important
question because it helps to understand how passengers perceive LOS
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and guides the use of LOS to reflect user perception. In addition, de-
termining the number of LOS users perceive will provide insights into
developing strategies that meet passenger demand and effectively im-
prove bus service.

This study therefore deals with the number of BRT levels of service
that users can perceive (i.e., what is the appropriate number of BRT LOS
categories from the users’ perspective). Our objective was to provide a
systematic methodology for defining the number of LOS categories for a
transportation facility or service, propose recommendations regarding
the appropriate number of BRT LOS categories, and spur further re-
search by highlighting this concept.

The remainder of this paper is organized as follows. After a litera-
ture review, user perception is defined. Subsequently, data collectio-
n—including the development of the transit travel survey system, BRT
user perception survey, and sample characteristics—is described. The
methodology involving fuzzy C-means clustering is then explained, and
this algorithm is improved by a simulated annealing genetic algorithm
and cluster validity indices. Finally, the values of the cluster validity
indices are analyzed, and an appropriate number of BRT LOS categories
is recommended.

Literature review

Based on the judgments of transportation professionals, six levels of
service are defined in the HCM using the letters A through F. The HCM
also provides LOS criteria with six levels for freeways, multilane
highways, two-way highways, urban streets, and intersections (TRB
2010). Through collective professional judgments, the Transit Capacity
and Quality of Service Manual (TCQSM) presents LOS criteria for service
measures of availability, comfort, and convenience. The number of le-
vels within the LOS criteria is not fixed to six in the TCQSM, allowing
more or fewer levels depending on the service measure characteristics
(TRB 2013).

Instead of relying on professional judgment, Das and Pandit (2015)
and Huo et al. (2015) placed transit LOS on a solid academic research
footing. Das and Pandit (2015) employed the law of successive interval
scaling to define LOS criteria for bus transit service measures in India.
LOS criteria for delay in total journey time, distance to bus stop, waiting
time, on-time performance, and service hours were established. Re-
spondents were shown to be comfortable rating their satisfaction on a
five-point scale; thus, five levels of service from LOS A to LOS E were
defined and there was no additional discussion on the number of ca-
tegories. Huo et al. (2015) used fuzzy C-means clustering of delay to
develop LOS criteria for BRT in China. By applying a delay estimation
model and conducting field surveys, a delay dataset was formed, and
then delay threshold values between adjacent grades were proposed.
This paper predesignates the number of LOS grades to four following a
tradition of LOS classification of transportation facilities in China and
does not present any discussion on it.

The Bhuyan group in India closely examined how to define urban
street LOS criteria considering the country’s highly heterogeneous
traffic flow (Bhuyan and Mohapatra, 2014; Bhuyan and Rao, 2010,
2011). They selected the average travel speed as a service measure.
Different clustering methods such as fuzzy C-mean, affinity propa-
gation clustering, and self-organizing map were used to recognize the
actual number of urban street classes and ascertain the speed ranges
of six LOS categories. The problem of the number of LOS categories
was not discussed in their studies and was specified as six following
the HCM.

Choocharukul et al. (2004) examined user perception of a freeway
LOS by conducting a multivariate statistical analysis of speed, density,
vehicle headways, and the socioeconomic characteristics of partici-
pants. Freeway LOS criteria for perceived density were proposed. The
research focused on comparing the density threshold values in the
proposed and current HCM LOS criteria. The number of LOS categories
was assigned to six to comply with the HCM and was not discussed. A

similar study specific to the rural freeway was conducted by Washburn
and Kirschner (2006).

Arguing that the concept of LOS, although meant to reflect opera-
tional conditions as perceived by users is not explicitly based on studies
of user perception in the HCM, Pecheux et al. (2000), Fang et al. (2003),
and Fang and Pecheux (2009) conducted a series of studies to address
“how users perceive quality of service and how many levels of service
they are able to perceive” at signalized intersections. A total of 24 in-
tersection approaches located in Pennsylvania were chosen to video-
tape the operations of actual intersections. In the laboratory experi-
ment, 100 subjects were recruited to participate in experiments by
watching the intersection approach videos, and they were required to
estimate the time and assess the quality of service provided by the
traffic signals. A database containing two types of data with user-esti-
mated delays and quality-of-service ratings was developed and used as
the basis on which the studies were performed.

Pecheux et al. (2000) performed rigid clustering of quality of service
ratings to group intersection approaches. Different numbers of clusters
ranging from six to three were tested. This study demonstrates that dri-
vers do not perceive LOS as precisely as the existing HCM six levels,
suggesting only three levels are perceived. Fang et al. (2003) stated that
using the rigid LOS boundaries limited the subjective variations and un-
certainties in user perception; thus, fuzzy C-means clustering was em-
ployed to partition delays or ratings into six to three clusters. They ob-
served that six levels of service can be distinguished in the fuzzy domain
for users’ estimated delays; the current HCM LOS ranges for signalized
intersections were acceptable after considering user perception.

Fang et al. (2003) did not examine whether the separate rating
membership matched the delay membership and did not check whether
users properly perceived each approach’s LOS. Thus, Fang and Pecheux
(2009) used fuzzy clustering again to revisit user perception of LOS at
signalized intersections. After preprocessing the database, the delays
and ratings were classified into seven clusters and mined to discover
distinct clusters. The results were presented by analyzing delay mem-
bership, approach membership, and rating membership. The study
concluded that users were able to perceive six levels of service but not
the six defined in the HCM. A new set of six levels of service was pro-
posed by merging HCM LOS A and LOS B and splitting HCM LOS F into
two; fuzzy membership is effective at reflecting subjective perception.
These studies used the HCM LOS criteria as guidelines for experimental
design and examined the appropriateness of the current HCM LOS in
terms of user perception. Their objective was not to determine the
appropriate number of LOS categories, and they therefore did not dis-
cuss the issue of defining the LOS number.

Viewing that road users always consider multiple factors in LOS
evaluation, Zhang and Prevedouros (2011) chose the factors of left-turn
lane treatment, pavement markings, and delay to ascertain the signa-
lized intersection LOS. To reflect the fuzziness of user perception, fuzzy
logic was applied and rigid LOS thresholds were replaced with fuzzy
ones. Level of service was classified into six levels to be consistent with
the HCM, and there was no further discussion on the number of LOS
categories.

In summary, no previous studies have addressed how to determine
the number of LOS categories on a transportation facility or service.
This study therefore addresses how to determine the actual number of
LOS categories for BRT based on fuzzy clustering of user perception. We
hope this work can lay the groundwork for methodology to determine
the number of LOS categories for a transportation facility or service and
encourage further exploration.

User perception

User perception of a transportation facility or service is the user’s
personal experience of the operational conditions of a transportation
facility or service. For BRT, the trip journey of an individual includes
traveling from the origin to the boarding station, waiting for a bus at
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the station, riding on the bus, and traveling from the alighting station to
the destination. For arriving station perception and departing station
perception, users are influenced by passenger arrival or departure time,
availability of pedestrian overpasses or underpasses, width, isolation
with bicycle lanes, and cleanliness of sidewalks. Waiting perception is
affected by passenger waiting time, availability of real-time bus arrival
information, availability of shelter and benches, availability of bus
route map, and station width, height, and cleanliness. Riding percep-
tion is impacted by bus speed, passenger load, vehicle cleanliness,
driver attitude, and comfort of seats.

Of the attributes mentioned above, the cleanliness of sidewalks,
stations, and vehicles, driver attitude, and comfort of seats are difficult
to quantify. The attributes of availability, such as the availability of
pedestrian overpasses, involve a yes-or-no perception and do not in-
volve a perception scale. On the other hand, people are very sensitive to
time. The remaining attributes of facility condition (width, height, and
isolation) and time-related attributes are more easily perceived by
passengers. Crowding is also quite easily perceived by passengers. In
other words, passengers intuitively perceive arrival time, waiting time,
bus speed, passenger load, and departure time during the corresponding
sub-journeys. Passengers also have an overall perception of the entire
bus journey. User perception is therefore defined as a six-dimension
vector including perceived arrival time, perceived waiting time, bus
speed perception, passenger load perception, perceived departure time,
and overall perception.

Perceived arrival time is a passenger’s own perspective of travel
time from the trip origin to the boarding station, and it differs from the
actual arrival time. Perceived waiting time is a passenger’s expected
wait for a bus at the station, which differs from the actual waiting time.
Bus speed perception is a passenger’s experience rating on bus running
speed generated during the bus ride, which is measured on a scale of
1–10 (1 = very poor, 10 = very good). Passenger load perception is a
passenger’s experience rating on crowding encountered during the bus
ride, also measured on a scale of 1–10 (1 = very poor, 10 = very good).
Perceived departure time is a passenger’s perception of travel time from
the alighting station to the destination, different from the actual de-
parture time. Overall perception is a passenger’s experience rating on
the operational conditions of the entire bus travel from origin to des-
tination, measured on a scale of 1–10 (1 = very poor, 10 = very good).

Data collection

Transit travel survey system

The research team developed a smartphone-based transit travel
survey system, comprised of an app, a server, and a web interface. The
app, shown in Fig. 1, interacts with users and collects and uploads data
to the server. The server stores data and prepares the data for the web
interface. The web interface is the output end of the system, from which
the collected data are downloaded.

The data downloaded from the web interface (i.e., the collected data
by this system) include personal demographics, the moments users pre-
sent at each travel node, the times users spend in each sub-journey, user
perception, and other travel information. Specifically, personal demo-
graphics include gender, age group, highest completed educational level,
occupation, monthly income, car ownership status, most common travel
mode, BRT use frequency, and city of residence. The moments include
when a user sets out from the origin, arrives at the boarding station,
boards a bus, alights from the bus, arrives at the transfer station, boards a
transfer bus, alights from the transfer bus, and arrives at the destination.
The times include those spent by a user arriving at a boarding station,
waiting for a bus, riding on the bus, arriving at the transfer station,
waiting for a transfer bus, transferring a bus, and departing from the
station. User perception (i.e., perceived arrival time, perceived waiting
time, bus speed perception, passenger load perception, perceived transfer
time, perceived departure time, and overall perception) is gathered. Other

travel information such as travel purpose, bus route number, ride dis-
tance, and bus speed are collected as well.

BRT user perception survey

The Guangzhou BRT, Changzhou BRT, and Yichang BRT are the
most representative systems in Asia and were selected to conduct the
user perception surveys using the transit travel survey system. The basic
survey process included recruiting participants to use the app in daily
travel for data collection. Recruiting participants is crucial and difficult.
The research team tried several recruiting methods, such as using an
investigation firm, acquaintance recommendations, and WeChat mar-
keting. Ultimately, face-to-face communication with passengers at the
station proved the most effective way of recruiting, specifically at sta-
tions with large passenger volumes. For Guangzhou BRT, we entered
the Gangding, Normal University & Jinan University, Shipai Qiao, and
Tangxiacun stations, which are illustrated in Fig. 2(a). Four surveyors
worked November 4–6, 2017, and 65 participants were gained. For
Changzhou BRT, the stations of Wanfu Qiao, Huaide Road & Yanling
Road, Lanling Road & Renmin Road, and Qinggong College were en-
tered, as shown in Fig. 2(b). A total of 100 participants were recruited
during November 26–29, 2017. For Yichang BRT, the working stations
included Wuyi Square, Pagoda River, Liujiadayan, and Lvluo Road, as
shown in Fig. 2(c). A total of 100 participants were obtained January
16–19, 2018.

After finding participants interested in the survey, data collection
began through participants using the app in daily BRT travel. One data
record was received per participant successfully using the app in one
BRT trip. The data collection continued for one month in each city.
Throughout the duration of the survey, participants were able to choose
to take part in it as they wished, although surveyors frequently en-
couraged them to use the app when taking BRT.

Participation in the survey took place as follows:

1. Surveyors invited passengers to participate in the BRT user per-
ception survey.

2. Passengers accepted invitations and became participants.
3. Participants downloaded and installed apps available for an

Android-based smartphone and registered.
4. Prior to the formal survey, participants took a pilot survey to be-

come familiar with the app.
5. In daily BRT travel, participants used the app during the entire trip.

They ran the app and logged in before setting out from the trip
origin. They operated the app following prompts at each travel
node. The app was placed in the backstage when no operation was
performed.

6. After finishing the BRT travel (i.e., app use ended), participants took
a screenshot of the final app interface and sent the screenshot to the
surveyors.

7. Surveyors judged whether participants used the app truly and cor-
rectly (i.e., whether the collected data were valid) according to the
final interface.

8. After completing a valid survey (i.e., correctly using the app in one
BRT travel), participants received a monetary reward. Participants
could choose to end or continue their participation.

Sample characteristics

BRT user perception surveys produced 1304 valid records. Fifty-five
percent of the sample is male. Approximately 95% of the sample be-
longs to both the 19–30 and 31–50 age groups, and 83% have received
an upper-middle education of technical college and bachelor’s degree.
Basically, the sample equally covers different occupations, with 65%
having a monthly income lower than $780 and 63% not owning a car.
Most of the sample includes frequent transit users, with 98.24% of the
most common travel mode being transit and 68% using BRT every day.
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For travel purpose, 67% of participants listed commuting and 25%
listed recreation. In general, the sample is, perhaps not surprisingly,
composed heavily of youth and middle-aged people, upper-middle
education level riders, particularly low-income riders, riders without a
car, and frequent transit users.

The traffic management departments in Guangzhou, Changzhou,
and Yichang often conduct BRT passenger satisfaction surveys and they
have a deep understanding of passenger characteristics. The research
team asked the traffic management departments about the socio-eco-
nomic characteristics of BRT passengers before data collection. The

Fig. 1. App interface (partial).
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sample collected fits the BRT passenger characteristics provided by the
traffic management departments.

Methodology

Clustering, a data-mining technology, is an unsupervised learning
method always used to discover the potential knowledge hidden behind
data (Fang and Pecheux, 2009). Clustering refers to the procedure of
partitioning a finite dataset of objects into a certain number of clusters
such that objects in the same clusters are homogeneous, whereas ob-
jects in different clusters are heterogeneous (Fang and Pecheux, 2009).
Defining LOS is basically a clustering problem (Bhuyan and Rao, 2010).
Hence, a clustering method was used for this study. Since user per-
ception is fundamentally subjective and inexact (Fang et al. 2003),
fuzzy C-means clustering (FCM) was adopted. Because FCM may be
trapped in a local optimum, it was improved by a simulated annealing
genetic algorithm (SAGA-FCM), thereby making FCM more effective by
fast convergence to a global optimal solution (Zhang et al. 2017).

The objective of this study was to identify the appropriate number of
LOS categories for BRT. The angle of clustering was used to discover the
optimal number of clusters for a given dataset. Clustering is seen as an
unsupervised learning method because there is no concrete answer to
what is the optimal number of clusters for a given dataset (Kim et al.,
2018), which requires developing a methodology to evaluate clustering
results. This methodology is cluster validity indices (CVIs); a decision

on the optimal number of clusters for a given dataset is always judged
from CVIs (Askari et al., 2017). The following CVIs were used herein to
determine the appropriate number of LOS categories: Calinski–Har-
abasz index (CH), Dunn's index (D), partition coefficient (PC), partition
entropy (PE), Fukuyama–Sugeno index (FS), Xie–Beni index (XB), and
Pakhira–Bandyopadhyay index (PB) (Kim et al., 2003; Pakhira et al.,
2004; Zhao and Fränti 2014).

The user perception dataset contains a total of 1304 records that
were used to study the number of LOS categories for BRT. First, the
potential number of LOS categories was assumed to be 2–10.
Subsequently, user perception was partitioned into 2–10 clusters using
FCM and SAGA-FCM. Next, the values of multiple CVIs were computed
for 2–10 clusters based on cluster results and user perception. Finally,
the optimal number of BRT LOS categories was identified by analyzing
the CVIs.

Fuzzy C-means clustering (FCM)

FCM is a clustering algorithm that groups the data points in multi-
dimensional space into a specific number of clusters with every data
point in the dataset belonging to every cluster for a certain membership
(Zhang et al. 2017). The purpose of FCM is to determine the cluster
center =V v v v( , , ., )c1 2 and associated membership matrix =U u{ }ij . It is
based on the minimization of the following objective function:

Fig. 2. BRT routes in Guangzhou, Changzhou, and Yichang.
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This iteration will stop when
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where is a termination criterion.

FCM Based on Simulated Annealing Genetic Algorithm (SAGA-FCM)

The basic steps of SAGA-FCM are as follows (Zhang et al. 2017):

1) Initiate the controlling parameters, population size sizepop, max-
imum generation MAXGEN , crossover probability Pc, mutation
probability Pm, initial annealing temperature T0, temperature cooling
coefficient q, and ending temperature Tend.

2) Initiate random c clustering centers, create the initial population
Chrom, calculate the membership of individual samples for each
clustering center using Eq. (2), and calculate the fitness value fi of
each sample, where =i sizepop1, 2, ., .

3) Let the cycle count parametergen be 0.
4) For the group Chrom, perform genetic operations including selec-

tion, crossover, and mutation. Eqs. (2) and (3) are used to calculate
the membership for each cluster center and the fitness value f i of
each individual. If >f fi i, replace the old individual with the new
one. Otherwise, accept the new individual with
probability =P f f Texp(( ) )i i and abandon the old one, where re-
quired.

5) If <gen MAXGEN , then = +gen gen 1. Go to step 4. Otherwise, go
to step 6.

6) If <T Ti end, the algorithm ends successfully and returns the globally
optimal solution. Otherwise, perform the cooling operation

=+T qTi i1 and proceed to step 3.

Cluster validity indices

The CVIs of CH, D, PC, PE, FS, XB, and PB were used to determine
the appropriate number of LOS categories. Table 1 provides brief ex-
planations of these indices.

Results and analysis

We wrote two main MATLAB programs. One invokes FCM to classify
user perception data into 2–10 clusters and calculate the values of the
seven CVIs for 2–10 clusters. The other executes SAGA-FCM and com-
putes the values of CVIs over each cluster. The values of the SAGA-FCM
parameters are =sizepop 10, =MAXGEN 100, =P 0.7c , =P 0.01m ,

=T 1000 , =q 0.8, and =T 20end . The outputs of the two programs are
CVI values, membership matrices, and cluster centers for a cluster
number of 2–10.

The CVIs of CH, D, and PC are designed to be maximized with the
optimal number of clusters and others are designed to be minimized.

Thus, CH, D, and PC are changed to 1/CH, 1/D, and 1/PC to make
analysis convenient. The value ranges of the seven CVIs differ greatly,
so they are standardized using =CVIsi

CVI CVI
CVI CVI

i i

i i

min

max min , CVIsi is the ith
standardized cluster validity index.

Fig. 3 displays the values of the standardized CVIs with FCM par-
titioning user perception into 2–10 clusters. The values of 1/CH decline
in a fluctuating manner as the cluster number increases from 2 to 10.
The minimum value of 1/CH is attained as the cluster number is eight.
Thus, the appropriate cluster number of user perception is eight ac-
cording to CH. That is, users can perceive eight categories; therefore,
BRT LOS should be partitioned into eight categories according to CH
from the perspective of users. Since 1/D shows a declining trend with
user perception grouped into 2–10 clusters and obtains the minimum
value at 5 and 6 clusters, the most desirable partition of user perception
is 5 or 6 clusters based on D. Correspondingly, users can distinguish five
or six LOS categories, and the appropriate number of BRT LOS cate-
gories is five or six according to D. As the cluster number of user per-
ception varies from 2 to 10, 1/PC and PE gradually increase. The
minimum values of 1/PC and PE are reached at cluster two, meaning an
optimal partition of user perception is two clusters. That is, users can
differentiate two LOS categories and BRT LOS should be divided into
two categories according to 1/PC and PE. Since FS fluctuates over 2–10
clusters and the minimum value appears at 6 and 10 clusters, users can
distinguish 6 or 10 LOS categories. According to FS, BRT level of service
should be partitioned into 6 or 10 categories. XB indicates a slow in-
crease as the cluster number increases from two to nine and then a
sharp increase. The minimum value of XB appears as user perception,
which is classified into two clusters. Therefore, users can perceive two
LOS categories and the appropriate number of LOS categories is two
based on XB. PB also displays a slow increase as the cluster number
increases from 2 to 6, but then it sharply increases from 6 to 10. The
minimum value of PB appears when user perception is grouped into two
clusters, while the values for three and four clusters are nearly equal to
the minimum value. Hence, the proper cluster number of user percep-
tion is two, three, or four based on PB, and accordingly the appropriate
number of BRT LOS categories is two, three, or four.

Fig. 4 shows the values of standardized CVIs using SAGA-FCM,
classifying user perception into 2–10 clusters. For the CVIs of D, PC, PE,
XB, and PB, the results using SAGA-FCM are the same as those of FCM,
as shown in Table 2. The minimum value of 1/CH using SAGA-FCM and
grouping user perception into 2–10 clusters appears at 7 clusters.
Therefore, the correct number of BRT LOS categories is seven according
to CH. The minimum value of FS is achieved as user perception and
classified into 10 clusters using SAGA-FCM, and the values for 4, 8, and
9 clusters are nearly equal to the minimum value. Thus, the desirable
partition of user perception is 4, 8, 9, or 10 clusters. Correspondingly,
the appropriate number of BRT LOS categories is 4, 8, 9, or 10 ac-
cording to FS.

The CVIs of CH and D only consider the geometric structure of the
dataset, and they are more suitable for evaluating hard clustering. PC
and PE are designed to reflect the membership of fuzzy clustering. FS,
XB, and PB are validity indices that simultaneously consider the geo-
metric structure of the dataset and fuzzy membership. Some new in-
dices proposed in the latest research on cluster validity evaluation are
defined to report both data structure and membership (Askari et al.,
2017; Kim et al., 2018, 2003; Pakhira et al., 2004; Zhao and Fränti
2014). Therefore, it is reasonable to state that FS, XB, and PB are more
comprehensive and effective indices and that they influence the parti-
tion evaluation results.

The indices FS, XB, and PB focus on two properties of fuzzy parti-
tion: intra-cluster compactness and inter-cluster separation. FS is the
difference between compactness and separation, XB is compactness
divided by separation, and PB is the product of three factors, the
minimization of which ensures the formation of a small number of
compact clusters with large separation between clusters (Pakhira et al.,
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2004).
Kim et al. (2003) conducted performance reliability comparisons

across eight CVIs on seven datasets. These seven datasets—BENSAID,
SYNTHETIC, STARFIELD, X30, BUTTERFLY, IRIS, and COLOR— are
commonly used to test the effectiveness of the clustering method and
validity indices. The eight CVIs contain XB and FS. The authors ob-
served that XB is one of the most reliable indices because it correctly
recognizes the number of clusters for six of the seven datasets, and FS is
more unreliable than the other indices. In addition, XB is more fre-
quently used than FS in current cluster validity evaluation research
(Kim et al., 2018). Hence, XB demonstrates more reliable performance
than FS in finding the best partition.

Pakhira et al. (2004) chose four real-life and four artificial datasets
to compare the performance of PB and XB. The four artificial datasets
are CIRCULAR_5_2, CIRCULAR_6_2, ELLIPTICAL_10_2, and

SPHERICAL_4_3, and the four real-life datasets are IRIS, CRUDE_OIL,
CANCER, and KALAZAAR, which are well-known. These authors dis-
covered that PB can identify the right cluster number for all datasets
except KALAZAAR, while XB recognizes the right cluster number for
two of the eight datasets. Thus, based on the findings of this study, PB
outperforms XB in searching for optimal clustering.

In general, PB performs better in determining the optimal number of
clusters among FS, XB, and PB. This paper adopted the result of the
clustering evaluation of PB, meaning users can perceive two, three, or
four levels of service; accordingly, BRT LOS should be divided into two,
three, or four categories. Pecheux et al. (2000) addressed the number of
levels of service individuals could perceive at signalized intersections
and found that two and perhaps three levels of service are generally
perceived. The research findings in this study are similar to the findings
in their study.

Table 1
Definitions of Cluster Validity Indices.

Index Abb. Definition Optimal Value

Calinski–Harabasz Index CH ×SSB
SSW

n c
c 1

= =SS n v XB i
c

i i1
2

= =SS x vW i
c

x Ci i1
2

= =X xn j
n

j
1

1

max

Dunn’s Index D = = +

=

i
c

j i
c d Ci Cj

k
c diam Ck

min 1min 1 ( , )

max 1 ( )

=d C C x y( , ) mini j x Ci y Cj, 2

=diam C x y( ) maxk x y Ck, 2

max

Partition Coefficient PC
= = µn i

c
j
n

ij
m1

1 1
max

Partition Entropy PE
= = µ µ[ log ( )]n i

c
j
n

ij a ij
1

1 1
min

Fukuyama–Sugeno Index FS
= = = =µ x v µ v vi

c
j
n

ij
m j i i

c
j
n

ij
m i1 1

2
1 1

2 min

Xie–Beni Index XB = =i
c

j
n µijm xj vi

n i k vi vk

1 1
2

min 2
min

Pakhira–Bandyopadhyay Index PB ( )D1/ c
E
J

1 1 2

= =E x vj
n

j1 1

= = =J µ x vj
n

i
c

ij
m j i1 1

2

= =D v vmaxi j
c

i j, 1

min

The above-mentioned variables are as follows: xj is the jth d dimensional measured data point; n is the number of data points; vi is the ith d dimensional cluster
center; c is the number of clusters, cluster center =V v v v( , , ., )c1 2 ; uij is the membership of xj in cluster i; m is a fuzziness index; Ci is the ith cluster; v is the center of
dataset.

Fig. 3. Values of standardized CVIs based on FCM of user perception.
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Conclusions

This paper presents a framework to determine the appropriate
number of BRT LOS categories based on fuzzy clustering of user per-
ception (i.e., the number of BRT levels of service that users can per-
ceive). The research team developed a smartphone-based transit travel
survey system to collect personal demographics, travel characteristics,
and user perception. The surveys were conducted in Guangzhou BRT,
Changzhou BRT, and Yichang BRT, which produced a user perception
dataset containing 1304 records. To deal with the ambiguity in user
perception, FCM and SAGA-FCM were adopted to partition user per-
ception into 2–10 clusters. Seven CVIs of CH, D, PC, PE, FS, XB, and PB
were used to search for the appropriate number of LOS categories. By
analyzing the values of CVIs, we observed that users could perceive two
to four levels of service, and accordingly BRT LOS should be divided
into two to four categories, thereby supporting the conclusion of
Pecheux et al. (2000).

User perception was defined to represent the entire bus journey and
each sub-journey, enabling determination of the number of LOS cate-
gories to rely on the comprehensive perception of bus transit passen-
gers. The development of the transit travel survey system collected data
in real time instead of depending on respondents’ recall. In contrast to
video laboratory studies, field surveys were conducted to collect data.
To classify user perception, SAGA-FCM was used, which improved the
shortcoming of FCM becoming trapped in local optima. The idea of
cluster validity evaluation was applied to determine the appropriate
number of LOS categories. These are the special features of this study.

Several studies have shown that the value of waiting time is higher
than that of in-vehicle time. Indeed, passengers feel more dissatisfied
with their waiting time than in-vehicle travel time. For example, Lu

et al. (2018) found that for the London-specific waiting time, the in-
vehicle time multiplier was 2.0. This means that on average London bus
travelers value changes in their waiting time two times more than
changes in their in-vehicle time. In this paper, we considered perceived
waiting time to study the number of LOS categories. We did not con-
sider time values from the user’s viewpoint. However, it would be in-
teresting for future research to consider time values to address the
number of LOS categories for public transit.

The perceived in-vehicle crowding levels (i.e., passenger load per-
ception) differ for seated and standing passengers. User perception in
this paper is defined as perceived arrival time, perceived waiting time,
bus speed perception, passenger load perception, perceived departure
time, and overall perception. The passenger load perception is a com-
ponent of user perception, but for other components, there is no need to
distinguish between seated and standing passengers. Therefore, we did
not make a distinction between the level of discomfort experienced by
seated and standing passengers. In the future, it would be beneficial to
make this distinction when developing BRT level of service criteria for
passenger load.
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