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A B S T R A C T

Due to concerns about data quality, Automated Passenger Counting technology has rarely been used to analyze
local ridership trends. This paper presents a novel framework to test the consistency and completeness of au-
tomated passenger count (APC) data in four cities. Weekday APC data are aggregated at the system level and
compared with the National Transit Database between 2012 and 2018. In all four agencies, passenger counts
closely follow the fluctuations observed in the national transit database. There is, however, a slight drift in two of
the four agencies, possibly due to the diverging trends between weekday and weekend ridership. At the stop-
level, missing and duplicate vehicle-trips are identified using schedule data from the General Transit Feed
Specification. Missing and duplicate trips only concern a small proportion of stops, which can be eliminated
using the proposed method. Overall, this research leads the way towards the analysis of factors affecting ri-
dership on a tight spatial and temporal scale.

Introduction

Even before the start of the COVID-19 pandemic, American cities
were experiencing an unprecedented crisis in bus ridership. According
to the National Transit Database (NTD), bus ridership has declined
every year between 2012 and 2019. While this trend has drawn wide-
spread attention from policymakers and the general public, there still
lacks a consensus on its causes and remedies (for a more in-depth re-
view of the literature, see Berrebi et al. (2021). In recent years, several
studies have evaluated ridership change over time at the transit agency
or regional level (Kain and Liu, 1999; Kohn, 2000; Brown and
Thompson, 2008; Lane, 2010; Chen et al., 2011; Iseki and Ali, 2015;
Boisjoly et al., 2018; Driscoll et al., 2018; Hall et al., 2018; Graehler
et al., 2019; Taylor et al., 2019; Ederer et al., 2019; Watkins et al.,
2019; Ko et al., 2019). Other studies have looked at factors explaining
static ridership as a cross-section at a more local level (Taylor et al.,
2019; Peng et al., 1997; Kimpel et al., 2007; Estupinan and Rodriguez,
2008; Ryan and Frank, 2009; Gutiérrez et al., 2011; Pulugurtha and
Agurla, 2012; Dill et al., 2013; Chakrabarti and Giuliano, 2015; Hu
et al., 2016; Chakour and Eluru, 2016; Ma et al., 2018; Mucci and
Erhardt, 2018). However, the study of ridership trends over time on a
hyper-local level remains marginal with only few studies addressing the
question (Tang and Thakuriah, 2012; Frei and Mahmassani, 2013;
Kerkman et al., 2015; Brakewood et al., 2015; Berrebi and Watkins,
2020). Furthermore, there lacks a framework to test the adequacy of

stop-level ridership data to represent ridership trends over time. Transit
agencies need to know which segments of their service are most im-
pacted, how ridership responds to service changes, and what micro-
phenomena correlate with ridership change. Modeling ridership on a
hyper-local level over time is, therefore, necessary to understand the
root causes of the decline and identify corrective measures.

Among the data sources that can provide ridership data, Automated
Passenger Counts (APC) present a unique opportunity to conduct travel
demand analysis on a hyper-local level. Fare collection systems in the
United States typically record ridership at the route-level. Rahman et al.
(2020) developed a method to split fare-collection ridership data at the
stop-level. Nonetheless, the model requires ground-truth data for cali-
bration. There are also methods using WiFi probes to count passengers
in vehicles (Ryu et al., 2020; Oliveira et al., 2019). However, these
methods are not commercially available at scale to transit agencies.
APC trackers, on the other hand, are already widely implemented in bus
fleets across the United States. Passenger Counters are laser beacons
mounted on transit vehicle doors or treadle mats that record bus ri-
dership at every stop. Each time the laser signal is broken or the mat is
stepped on, a passenger boarding or alighting is detected, depending on
the direction of the motion. APC technology is designed to record the
precise geolocation of passenger activity, which provides the necessary
stop-level granularity for in-depth ridership analysis.

Although transit agencies started deploying APCs in the mid-1970′s
(Attanucci and Vozzolo, 1983), the technology has seldom been used to
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explain disaggregated ridership change. In 2006, a TCRP Synthesis on
Fixed-Route Transit Ridership Forecasting and Service Planning
Methods surveyed transit agencies on the state of practice (Boyle,
2006). The study found that APC was the least likely data source to be
used for ridership forecasting and, according to respondents, the tech-
nological advancement most likely to change forecasting methodology.
In 2008, a TCRP Synthesis on Passenger Counting Systems found that
“It is still the rule rather than the exception to install APCs on only a
portion of the bus fleet and then rotate the APC buses among the var-
ious routes” (Boyle, 2008). Today, many transit agencies approach or
even meet full APC coverage, which could enable the analysis of ri-
dership on a highly specific spatial and temporal scale. The question
remains, however, whether the consistency and completeness of APC
data are sufficient to be relied upon for multi-year network analysis.

To enable the understanding of system-wide and even national ri-
dership trends, automated passenger count data must be consistent with
these trends. Passenger count data can only be useful if they match the
monthly unlinked passenger trip from NTD on aggregate, which are
typically derived from manual counts. Otherwise, if the two data
sources show diverging trends, then either APC or NTD may be at fault.
But if both data sources are consistent, then they are most likely both
accurate. To ensure the consistency of APC data, this study compares
aggregated APC trends with NTD.

In order to enable deep dives across bus stops and times of day,
there needs to be at least some data collected at all stop-trip combi-
nations. If, during an entire mark-up period, no data is collected on a
scheduled trip at a particular stop, then APC data will be missing an
unknown number of passenger boardings and alightings. Analyzing
these data as if they represented overall ridership could lead to a sur-
vivorship bias. Over time, as older vehicles on the fleet get replaced
with newer ones that are equipped with APC, the decline in missing
trips could be interpreted as an increase in ridership. Verifying whether
every scheduled trip is sampled at least once at each stop during the
mark-up ensures that ridership trends can be evaluated on the basis of
complete data sets. This study presents a novel methodology to cross-
check APC data completeness with the General Transit Feed
Specification (GTFS), a data standard for schedules, routes, and stops.

This paper is informed by interviews of practitioners and subject
matter experts. The research team spoke with transit officials re-
sponsible for collecting, analyzing, and managing APC data at the four
agencies in our case-study. Emails were exchanged with Federal Transit
Administration officials responsible for National Transit Database re-
porting. Finally, representatives from the leading APC hardware and
software companies were interviewed.

In this paper, the consistency and coverage of APC data between
2012 and 2018 are evaluated in four transit agencies, TriMet, OR,
Miami-Dade County, FL, Metro Transit, MN, and the Metropolitan
Atlanta Rapid Transit Authority (MARTA), GA. The next section pre-
sents the main studies from the literature on the accuracy of APC data.
Next is a description of the data, case studies, and methodology, which
could be replicated on any type of APC capturing the number of
boarding and alighting passengers. The Results section describes how
the automatically collected data perform in each of the four transit
agencies over time. Finally, broader implications and future work are
discussed in the conclusion.

Review of practice and literature

The research on APC data thus far has focused on assessing the
accuracy of counts themselves. Since the early 1990s, studies have
cross-checked the data with manual counts, fare collection, and vi-
deocameras (Boyle, 2008). In 1991, Strathman and Hopper compared
APC with manual counts in TriMet buses (Strathman and Hopper,
1991). They did not find any significant under or over counting of
passenger boardings. In 2003, Kimpel et al. compared APC data with
counts derived from video cameras (Kimpel et al., 2003). The study

found that, overall, passenger boardings recorded by APC were con-
sistent with video camera counts. The post-processing of APC data was
found to be sufficient to ensure accurate passenger counts.

The Federal Transit Administration mandates that transit agencies
relying on APC for NTD reporting must benchmark the data with
manual counts in the first year and periodically thereafter (NTD, 2018).
These steps ensure that APC data are consistent with manual counts on
individual trips. The benchmarking requirement is typically targeted at
passenger loads, which are more sensitive to errors than unlinked
passenger trips; both are included. The consistency between manual
and automated counts is tested on a relatively small subset of the bus
network and on a single time period. Transit agencies that rely on
manual counts for NTD reporting can pick a random sample of vehicle-
blocks to estimate system-wide ridership (Chu, 2010). For transit
agencies looking to change methods of data collection, testing the
consistency can help identify any bias that would have caused historical
data to differ from what was reported to NTD.

Interviews with researchers and practitioners reveal that all pas-
senger count data sources have potential flaws. In crowded conditions,
surveyors conducting manual counts can lose track of passenger
boardings and alightings. Fare collection systems are unable to directly
account for fare evaders. Therefore, in the absence of significant dif-
ferences between automated passenger counts and other datasets, these
types of studies only provide limited intelligence on the quality of APC
data.

The usefulness of APC ultimately depends on the coverage and
sampling plan. Siebert and Ellenberger recently developed a new sta-
tistical tool to allocate APC-equipped vehicles throughout the network
(Siebert and Ellenberger, 2019). The sampling plan is designed to meet
NTD criteria with a fleet only partially equipped with APC. Unlike NTD
reporting, the analysis of hyper-local ridership trends cannot rely on
partial sampling. In order to assess the state of practice, APC data need
to be evaluated at every stop and trip. The literature, therefore, cur-
rently lacks an evaluation of the consistency and completeness of APC
data, which is the focus of this paper. Transit agencies can easily check
how their APC data compares to the four case studies presented in this
study. By testing these criteria, this research clears an important hurdle
towards the application of APC data for ridership modeling.

Methodology

Consistency

In order to verify whether hyper-local ridership trends were con-
sistent with NTD, APC data were aggregated at the system level. We
took the sum of weekday average ridership per mark-up over all stop-
route-direction combinations. While NTD contains the number of
monthly unlinked passenger trips, APC data is averaged by day at the
trip level. To avoid the temporal mismatch, we simply normalized both
datasets to the first mark-up for which APC data were available. We
then took a four-month rolling average of the normalized NTD data to
match the mark-up periods in APC. Through this methodology, we only
test APC data from weekdays, but Saturdays and Sundays could be
tested in the same manner.

This methodology allows to identify systematic biases, which may
increase or decrease in intensity over time. If, for example, the fleet has
heterogeneous APC trackers, which are all calibrated differently, then
as new vehicles get on-boarded and old vehicles get decommissioned,
there could be a spurious trend, upward or downward. Another ex-
ample is if the under-counting is caused by missing trips, which could
change over time as the coverage increases or the discarded measure-
ments decrease. Comparing APC with NTD allows to identify these is-
sues. At the same time, it is also possible that any deviation between
APC and NTD be caused by differences in weekday versus weekend
ridership trends.
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Completeness

In order to verify the complete sampling of scheduled trips in APC,
the number of trips was compared with GTFS at each stop-route com-
bination. Some of the agencies in the case study assign no unique trip
identifier in APC, which makes a one-to-one correspondence at the trip-
level impossible to establish. Instead, we counted the number of trips
for which APC data were collected at least once during each markup. To
determine the number of scheduled trips in GTFS, the stop_times and
trips tables were joined using the trip_id field for each stop-route-di-
rection. Histograms of the difference between APC and GTFS trips over
successive years can then show how the number missing and duplicate
trips has changed over time.

This methodology allows to quantify the number of stop-route-di-
rections with missing trips. A scheduled trip is missing from APC if it
was not sampled even once during the markup. It also helps to identify
locations where the same trip was recorded multiple times by mistake.
As the APC coverage and accuracy improves, missing and duplicate
trips become rarer. It is therefore important to distinguish between real
ridership trends and the artifacts resulting from technological issues.

Although transit agencies in our case study all have full or close-to-
full APC coverage, the hardware is subject to daily use and therefore
prone to defect. Many of the measurements produced by functional APC
units are discarded in the post-processing phase. For example, TriMet
reported discarding 25% of recorded passenger activity. In an evalua-
tion of TriMet APC, Strathman and Hopper tested sampling plans and
found that data recovery rate was spatially correlated with garage
depot, block assignment, and other related factors (Strathman and
Hopper, 1991). Although vehicles were deliberately dispatched across
the system, some routes were ultimately under-represented in the
sample. For the application of modeling hyper-local ridership trends,
identifying potential sources of bias that may affect particular locations
and have drifting effects over time is paramount.

Case studies

To evaluate the relationship between transit ridership and fre-
quency, four transit agencies were selected based on the quality of their
APC data. The research team initially contacted 14 mid-sized transit
agencies. Of these agencies, eight were able to provide stop-level data.
Three of these data sets did not pass our initial screening. One agency
had undergone a network redesign, which created disruptions of a
greater magnitude than the phenomena we were looking to capture.
The analysis presented in this paper is therefore based on four agencies,
which are at the leading edge of best practices:

• Tri-County Metropolitan Transportation District of Oregon (TriMet)
in Portland, OR
• Miami-Dade Transit in Miami, FL
• Metro Transit in Minneapolis/St-Paul, MN
• Metropolitan Atlanta Rapid Transit Authority (MARTA) in Atlanta,
GA

Although they come from widely different regions of the United
States, the four agencies have similar governing structures. They are all
multi-county authorities with an independent board from their states
and local municipalities. The agencies are also similar in size: in 2018,
they all operated between 51 and 57 million unlinked passenger trips.
Finally, these agencies have a history of early technological adoption,
which made the analysis of APC data over time possible.

The Tri-County Transportation District of Oregon (TriMet) is the
largest transit agency operating in the Portland Metropolitan Area.
TriMet operated bus service at 6800 distinct bus stop in 2017. In ad-
dition to bus service, the transit agency also operated light-rail and
commuter rail. TriMet was one of the pioneers when it started rolling
out APC technology in 1985 (Boyle, 1998). TriMet has developed its

own software to match APC data with the corresponding stop and
block. The agency also cleans and filters APC data itself. The bus fleet
has been fully equipped with APC since 2014. About 25% of recorded
data are discarded in post-processing.

Metro Transit operates bus and rail transit service in the seven-
county Minneapolis/St-Paul Metropolitan Area. The Metro Transit bus
networks included 13,400 distinct bus stops in 2017. The transit agency
operates local and express bus service in addition to Bus Rapid Transit,
light-rail, and commuter-rail. Like TriMet, Metro Transit also developed
post-processing software in-house. In 2008, Metro Transit equipped the
first 10% of its buses with passenger counting technology. In ten years,
APC coverage has grown to 95%. The passenger counting devices come
from Trapeze and Red Pine, which was acquired by Trapeze.

The Metropolitan Atlanta Rapid Transit Authority (MARTA) oper-
ates bus and rail service in the Atlanta Region. In 2017, MARTA op-
erated bus service at 9400 bus stops forming a feeder system around the
heavy rail network. The transit agency uses the Ride Check Plus post-
processing tool provided by Clever Devices. The APC hardware were
provided by IRMA. Since 2010, the bus fleet is fully covered by APC
units. However, according to interviews with planning staff, defective
hardware and discarded data substantially reduce the actual coverage.

Miami-Dade Transit is the transit authority responsible for providing
service in the Miami Region. In 2017, Miami-Dade transit provided
service at 8100 bus stops in addition to the heavy-rail and mono-rail
systems. Buses are equipped with APC trackers from Urban
Transportation Associates. The same company provides software to
clean, process, and maintain the data. Miami-Dade has had 100% APC
coverage since 2008. However, over this period of time, the agency has
subcontracted service to third party operators, which are not equipped
with APC systems.

Data

For each case study, the research team asked service planners to
provide APC data averaged by trip and by stop-route-direction for each
mark-up going back as far as possible. While the exact format of the
data differed slightly between agency, each data-set contained the
average number of passenger boardings and alightings for each trip
during each mark-up (for more information about the data, see Berrebi
and Watkins (2020). While some agencies were able to provide the
sample size on which these averages were based, others did not have
the information available. Since transit agencies started nearing full
APC coverage at different times, the timespan of available data is dif-
ferent for each. We aggregated weekday ridership and frequency data
over the entire system by mark-up to evaluate APC data completeness
and consistency as of 2012 and going as close as possible to the present.
Data were available from 2012 to 2017 at TriMet and Metro Transit,
from 2013 to 2017 at Miami-Dade, and from 2014 to 2018 at MARTA.

At the end of each day, when transit vehicles return to the main-
tenance facility, APC data are uploaded onto a server. From there, an
initial filtering process removes compromised data. For example, any
trip (i.e. vehicle run taking place every day on the same route at the
same time) with a large difference in the total number of boardings and
alightings is discarded (Furth et al., 2005). This step is based on the
assumption that all alighting passengers must have boarded at some
point and vice versa. Another example is the elimination of passenger
activity recorded too far from the actual stop. Based on a survey of
transit agencies, TCRP Synthesis Report 77 describes the typical steps
involved in the process (Boyle, 2008). Some agencies use proprietary
data-processing software, making it impossible to compare data
cleaning rules for each agency. Nonetheless, we expect these steps to be
consistent across agencies based on interviews with practitioners.

Transit planners typically publish GTFS data at the beginning of
each mark-up period. The schedule information provided by the GTFS
files is updated throughout the mark-up as slight changes in schedules
and routes are planned. TriMet was the first agency to publish service
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information in the GTFS standard. In 2007, they partnered with Google
to define the standard, which has been adopted by transit agencies
across the world since (McHugh, 2013). In this study, historical GTFS
data were obtained from the third-party repositories OpenMobilityData
and GTFS Data Exchange. The first GTFS files published following the
beginning of each mark-up were selected. The number of daily trips in
each stop-route-direction combination was counted in both GTFS and
APC. For a more in-depth description of this process, please refer to
Joshi (2019).

Since 1974, transit agencies are responsible for reporting financial
and service information to the National Transit Database. The Federal
Transit Administration (FTA) uses NTD data to allocate funding. The
data are openly accessible and include unlinked passenger trips by
month. Although the FTA allows the use of APC for NTD reporting, the
criteria are prohibitive for most agencies. For this reason, no agency in
our case study relies on APC data to report unlinked passenger trip
information. Miami-Dade uses manual counts and all other agencies use
the fare collection system. This enables a comparison between fare
collection or manual data and APC for each agency using NTD.

Results

Consistency

Fig. 1 shows normalized NTD (blue) and APC (red) unlinked pas-
senger trips. In all four agencies, the two data sources are consistent
with each other in representing ridership fluctuations. Sudden jumps
and dips in unlinked passenger trips happen at about the same time,
besides the obvious lag introduced by the rolling-average. These
system-wide changes in ridership include both seasonality and other
short-term trends affecting ridership.

Fig. 1 shows whether long-term ridership trends in weekday APC are
consistent with overall NTD. Ridership trends are clearly consistent in
Portland and Atlanta. In both agencies, the red line follows the blue line
throughout the entire time span for which data are available. There are

no prolonged time periods during which APC is systematically higher or
lower than NTD. In Miami and Minneapolis, on the other hand, APC
data seems to be slightly more optimistic about the change in ridership
over time than NTD. In both agencies, the red (APC) lines show a slower
decline in unlinked passenger trips than NTD. In the last four years, APC
estimates in Miami and Minneapolis are consistently higher than NTD.

The fact that automated passenger counts can capture the fluctua-
tions impacting ridership on a system-wide level suggests they should
also be reliable for modeling short-term change on a local level. The
data can also be used to model longer-term trends in Portland and
Atlanta. In Miami and Minneapolis, the upward drift in ridership could
be due to a number of different factors. Firstly, this study is limited to
weekday ridership. We know from a separate analysis that ridership has
been declining at a faster rate, especially in Miami and Minneapolis.
Another possible explanation is the increasing APC quality. On one
hand, a greater proportion of the fleet may be equipped with APC. On
the other hand, evolving software could be reducing the occurrence of
under-counting through a process of internal checks and validations.
The next section evaluates the completeness of APC data over time.

Completeness

Fig. 2 shows a histogram of the absolute difference in daily trips
between GTFS and APC. Since the timespan of APC availability varies
by agency in our case study, the comparison is made between the first
year (2012 for TriMet and Metro Transit, 2013 for Miami-Dade, and
2014 for MARTA) and the last year (2018 for MARTA, 2017 for all other
agencies). All agencies have varying proportions of trips in GTFS
missing from APC, and vice versa. In order to discern the differences
between APC and GTFS, the 79–99% of stop-route combinations that
have the same number of daily trips are shown as a truncated dashed
line. The proportion of stop-route combinations with complete sam-
pling (i.e. same number of trips in APC and GTFS) are shown in Table 1.

Overall, the vast majority of stop-route combinations have the same
number of trips in APC and GTFS in both the first and the last year.

Fig. 1. Comparison of system-wide NTD (blue) and APC (red) unlinked passenger trips.
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TriMet’s APC data is quite complete with only 6% of stop-routes missing
trips in 2012 and close to none in 2017. In Miami, the proportion of
stop-routes with missing trips increased by 7% between 2013 and 2017.
This could be due to the increase in subcontracting during that period,
which led to the loss of APC data. Subcontracted service in Miami is
performed on third-party vehicles, which are not equipped with APC. In
Minneapolis/St-Paul, the proportion of stop-routes with the same
number of trips in APC as in GTFS increased by 12% between 2012 and
2017. In particular, the proportion of stop-routes with more trips in
GTFS than in APC was virtually null in 2017. This could be one of the
reasons or the drift observed in APC data in the last section. Finally, the
proportion of missing and duplicate trips in Atlanta remained constant
between 2014 and 2018.

The sizable portion of stop-route combinations with missing or du-
plicate trips suggests that some measures should be taken to avoid the
associated bias. It is usually preferable to remove stop-routes with in-
complete data than to let the APC sampling dictate the direction of
ridership change at those locations. The process employed to compare
APC and GTFS can also be used to define a subset of stop-routes with
the same number of trips in APC and GTFS.

Conclusion

Overall, automated passenger counts are sufficiently consistent and
complete to support the analysis of ridership trends on a hyper-local
level. In all four agencies, aggregated APC data at the system-level
follow the short-term fluctuations exhibited in NTD data. While there
was a slight upward drift in Miami and Minneapolis, these trends cor-
respond to the deviation between weekday and weekend data, which
are not represented in the APC dataset used in this paper. Missing and
duplicate trips remain by-and large a limited phenomenon that only
affects less than 20% of stop-routes in the worst case. Nonetheless, stop-
route combinations with missing or duplicate trips should be meticu-
lously eliminated from the analysis. These trips can create spurious
trends in ridership when, for example, what appears to be an increase in
ridership may only be a decline in missing trips.

The completeness test enables transit agencies to identify and target
the causes of missing and duplicate trips. If data are missing on a route
across stops and trips, then cause may be found in the maintenance

garage where vehicles are stored overnight. If data are missing on an
entire route but for only a specific trip, then the tracking device on the
bus scheduled to operate this trip is probably responsible. If data are
missing at a particular stop across routes and trips, then a faulty GPS
connection at that location may be the problem. Duplicate trips are
typically the result of service changes occurring during a mark-up. The
test of completeness can be used to target these instances and collate
the multiple versions of GTFS.

This paper introduced a new methodology to assess the consistency
and completeness of APC. This assessment is the first step towards new
planning and analysis applications of the data. According to the Transit
Capacity and Quality of Service Manual, potential applications include
ridership estimation, bus stop relocation, dwell time estimation in
scheduling, and ridership elasticity to frequency (Kittelson and
Associates, 2013). Estimating the impact of service decisions on rider-
ship requires a reliable passenger counting system. This is why the es-
tablishment of tests and metrics are so important.

Passenger counts can also be available from fare collection systems.
Transit agencies in the United States typically rely on legacy farebox
systems that are not linked with GPS, and can, therefore, only provide
data at the route-level. However, recent trends in AFC show a promise
for passenger-counting at the stop-level. Some transit agencies, in-
cluding Sound Transit in Washington, have access to disaggregated
passenger count data through smart-card systems. Abroad, transit
agencies in Seoul, Korea and Sydney, Australia even have access to
disaggregated vehicle occupancy information in real-time. While AFC
has its own imperfection, due for example, to fare evasion, it has the
potential to be a reliable alternative to APC. Future research should
compare the two passenger-counting technologies.

As transit agencies gain in data collection capabilities, setting up a
scalable and consistent framework is important. Although APC tech-
nology was hailed as a potential solution to the labor-intensive manual
counts when they were first introduced fifty years ago, they are still not
used at their maximum potential. In September 2017, a new data
standard called “GTFS-ride” was released to enable real-time feeds of
passenger count data (Carleton et al., 2019). As transit agencies start to
attain high APC coverage and implement new fare collection systems,
which can track vehicle location, GTFS-ride provides the opportunity to
make the data available in a standard format. Greater integration across
data sources, applications, and institutions could lead to further bene-
fits for automatically collected data.

Real-time APC could eventually inform vehicle arrival predictions
(Shalaby and Farhan, 2004; Patnaik et al., 2004) and real-time control
(Berrebi et al., 2015, 2018a, 2018b). The dissemination of real-time
passenger counts still faces numerous challenges, including the ne-
cessity to rely on raw counts without going through post-processing. If
APC data is to inform travel decisions for both passengers and opera-
tors, the level of accuracy must be measured against other, more es-
tablished, data sources. Future research should therefore develop tests

Fig. 2. Histogram of the difference between GTFS and APC trips (GTFS-APC) in the first and last year.

Table 1
Percent of stop-route combinations with full sampling (i.e. same number of trips
in APC and GTFS).

First Year Last Year

Portland (2012–2017) 93.4 99.4
Miami (2013–2017) 85.5 79.0
Minneapolis/St-Paul (2012–2017) 82.1 93.9
Atlanta (2014–2018) 90.0 89.0
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of APC data quality specifically adapted for real-time applications.
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